
*0
80
7.
43
75
*

Revised Version  DESY 08-104
 Imperial/TP/2008/JG/01

ar
X

iv
:0

80
7.

43
75

v2
  [

he
p-

th
] 

 1
 A

ug
 2

00
8

DESY 08-104Imperial/TP/2008/JG/01AdS Solutions Through TransgressionAristomenis Donos1, Jerome P. Gauntlett2 and Nakwoo Kim31DESY Theory Group, DESY HamburgNotkestrasse 85, D 22603 Hamburg, Germany2Theoreti
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s Group, Bla
kett Laboratory,Imperial College, London SW7 2AZ, U.K.2The Institute for Mathemati
al S
ien
es,Imperial College, London SW7 2PE, U.K.3Department of Physi
s and Resear
h Institute of Basi
 S
ien
e,Kyung Hee University, Seoul 130-701, KoreaAbstra
tWe present new 
lasses of expli
it supersymmetri
 AdS3 solutions of typeIIB supergravity with non-vanishing �ve-form 
ux and AdS2 solutionsof D = 11 supergravity with ele
tri
 four-form 
ux. The former aredual to two-dimensional SCFTs with (0; 2) supersymmetry and the latterto supersymmetri
 quantum me
hani
s with two super
harges. We alsoinvestigate more general 
lasses of AdS3 solutions of type IIB supergrav-ity and AdS2 solutions of D = 11 supergravity whi
h in addition havenon-vanishing three-form 
ux and magneti
 four-form 
ux, respe
tively.The 
onstru
tion of these more general solutions makes essential use ofthe Chern-Simons or \transgression" terms in the Bian
hi identity or theequation of motion of the �eld strengths in the supergravity theories. We
onstru
t in�nite new 
lasses of expli
it examples and for some of thetype IIB solutions determine the 
entral 
harge of the dual SCFTs. Thetype IIB solutions with non-vanishing three-form 
ux that we 
onstru
tin
lude a two-torus, and after two T-dualities and an S-duality, we obtainnew AdS3 solutions with only the NS �elds being non-trivial.
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1 Introdu
tionAn interesting 
lass of supersymmetri
 AdS3 solutions of type IIB supergravity withnon-vanishing �ve-form 
ux and dual to (0; 2) SCFTs in d = 2 were analysed in [1℄.Similarly, a 
lass of AdS2 solutions ofD = 11 supergravity with ele
tri
 four-form 
uxand dual to super
onformal quantum me
hani
s with two super
harges were analysedin [2℄. It is remarkable that the geometries of the 
orresponding internal seven andnine-dimensional spa
es have a similar stru
ture. In parti
ular, they both have aKilling ve
tor (dual to an R-symmetry in the 
orresponding SCFT) whi
h lo
allyde�nes a foliation, and the metri
s are 
ompletely determined by a K�ahler metri
on the 
orresponding six or eight-dimensional leaves. In both 
ases, the lo
al K�ahlermetri
 satis�es the same di�erential equation�R� 12R2 +RijRij = 0 (1.1)where Rij and R are the Ri

i tensor and Ri

i s
alar for the K�ahler metri
. These2n+ 1 dimensional geometries, with n = 3; 4, were further investigated in [3℄, whi
halso generalised them to all n. It was shown that the 2n + 2 dimensional 
onegeometries over these spa
es admit 
ertain Killing spinors that de�ne an SU(n + 1)stru
ture with parti
ular intrinsi
 torsion that was determined in [3℄.This geometry has striking similarities with Sasaki-Einstein (SE) geometry. Re
allthat a �ve-dimensional SE manifold SE5 gives rise to a supersymmetri
 type IIBAdS5 � SE5 solution with non-vanishing �ve-form 
ux, while a seven-dimensionalSE manifold SE7 gives rise to a AdS4 � SE7 solution of D = 11 supergravity withele
tri
 four-form 
ux. All SE spa
es have a Killing ve
tor, whi
h lo
ally de�nes afoliation, and the SE metri
 is 
ompletely determined by a K�ahler-Einstein metri
on the 
orresponding leaves. Furthermore, the 2n + 2 dimensional 
one geometriesover the SE spa
es are Calabi-Yau i.e. they admit 
ovariantly 
onstant spinors thatde�ne an SU(n + 1) stru
ture with vanishing intrinsi
 torsion (i.e. the metri
 hasSU(n+ 1) holonomy).The AdS5 � SE5 and AdS4 � SE7 solutions are the near horizon limits of moregeneral supergravity solutions that des
ribe D3-branes and M2-branes sitting at theapex of the Calabi-Yau three and four-fold 
ones, respe
tively. In these more generalsolutions, only the �ve-form 
ux and ele
tri
 four-form 
ux are non-trivial, and thesolutions are determined by a harmoni
 fun
tion on the Calabi-Yau spa
e. An inter-esting further generalisation for the type IIB 
ase, is to 
onsider any Calabi-Yau threefold and to swit
h on imaginary self-dual harmoni
 three form 
ux. One �nds that1



this solution preserves the same amount of supersymmetry. Furthermore the Bian
hiidentity for the �ve-form, modi�ed by Chern-Simons or \transgression" terms,dF5 = i2G ^G� (1.2)where G is a 
omplex three-form whi
h 
ontains the NS-NS and R-R three-forms, im-plies that the solutions are determined by a fun
tion that satis�es a Lapla
e equationwith a sour
e term. Similarly, for D = 11 supergravity one 
an 
onsider an arbitraryCalabi-Yau four-fold and swit
h on a harmoni
 self-dual four-form. Now it is theequation of motion for the three-form potential with its transgression terms,d �11 G4 + 12G4 ^G4 = 0 (1.3)whi
h is playing a key role in the solution. Swit
hing on the additional 
uxes inthese type IIB and D = 11 solutions ne
essarily breaks the 
onformal symmetry. Aprominent example of su
h solutions is the Klebanov-Strassler solution of type IIB[4℄ (see also [5, 6℄), whi
h is 
onstru
ted using the deformed 
onifold metri
. A moregeneral analysis of these kinds of solutions 
an be found in [7℄.One of the main aims of this paper is to show that we 
an similarly generalise the
lasses of type IIB solutions 
onsidered in [1℄ and the D = 11 solutions 
onsidered in[2℄ to in
lude three-form 
ux and magneti
 four-form 
ux, respe
tively. The 
entralidea is to swit
h on su
h 
uxes on the six and eight dimensional K�ahler spa
es,respe
tively. We will show that this 
an be done in a way that maintains the AdS3 andAdS2 fa
tors, and hen
e the dual 
onformal symmetry (in 
ontrast to the examplesdis
ussed above), and also preserves the same amount of supersymmetry. We �ndthat the solutions are still, lo
ally, spe
i�ed by a K�ahler metri
 but (1.1) is modi�edby a term involving the new a
tivated 
uxes. We will also 
onstru
t ri
h new 
lassesof expli
it solutions by following a similar analysis to that of [8℄.The plan of the rest of the paper is as follows. We will summarise the general
lasses of AdS3 solutions of type IIB and AdS2 solutions of D = 11 in se
tion 2. Wehave left some details of the derivations, whi
h are very similar to those in [1℄ and[2℄, to appendix A. We will also brie
y interrupt the main narrative to explain howthe solutions 
an be analyti
ally 
ontinued so that the AdS fa
tors are repla
ed byspheres. This gives rise to new general 
lasses of 1/8 BPS bubble solutions gener-alising those dis
ussed in [8℄ (1/2 BPS bubble solutions were �rst analysed in [9℄,and other studies of general 
lasses of bubble solutions preserving various amountsof supersymmetry in type IIB and D = 11 supergravity have appeared in [10℄-[23℄).2



In se
tion 3 we will 
onstru
t expli
it AdS solutions by taking the six and eightdimensional K�ahler metri
s to be produ
ts of two-dimensional K�ahler-Einstein (KE)spa
es. For type IIB we will �rst analyse the global properties of the lo
al solutionswith vanishing three-form 
ux that were found in [8℄ and 
al
ulate the 
entral 
hargeof the dual CFTs. These AdS3 solutions are labelled by a rational number s=t 2[�1=2; 0) and an integer N �xing the �ve-form 
ux. The topology of the internalseven-manifold is a 
ertain U(1) bundle over a produ
t of two two-spheres and aRiemann surfa
e with genus greater than one. We then 
onsider solutions with non-zero three-form 
ux by taking one of the K�ahler-Einstein fa
tors to be a two-torus.We �nd that the two other KE spa
es must be spheres. After two T-dualities we�nd that the solutions turn out to be the well known AdS3 � S3 � S3 � S1 solutionsof type IIB supergravity (see [24, 25, 26, 27℄). We 
on
lude se
tion 3 with a similar
onstru
tion of expli
it AdS2 solutions of D = 11 with non-vanishing magneti
 four-form 
ux.In se
tions 4 and 5 we will present a di�erent 
onstru
tion of lo
al six and eightdimensional K�ahler metri
s, using �brations over KE spa
es, generalising the 
on-stru
tions in [8℄ (see also [28℄). We have re
orded some details in appendi
es C and D,respe
tively. For type IIB we will 
onsider the produ
t of T 2 with a two-dimensional�bration over an S2. This leads to in�nite new expli
it examples of AdS3 solutionsof type IIB supergravity with the internal seven dimensional spa
e having topologyS3 � S2 � T 2 and the metri
 labelled by a pair of positive relatively prime integersp; q. When the type IIB three-
ux is vanishing we show that demanding that the�ve-form is properly quantised implies that as solutions of type IIB string theory theydepend on two more integersM;N whi
h �x the �ve-form 
ux and the size of the T 2.For these solutions we 
al
ulate the 
entral 
harge of the dual CFTs1. We also showthat after two T-dualities the solutions are mapped to type IIB AdS3 solutions withnon-vanishing dilaton and RR three-form: after a further S-duality only NS �elds arenon-zero.Se
tion 5 
arries out similar 
onstru
tions of lo
al eight dimensional K�ahler met-ri
s whi
h are the produ
t of T 2 with a two-dimensional �bration over a four dimen-sional KE spa
e with positive 
urvature. This gives rise to in�nite 
lasses of AdS2solutions with non-vanishing magneti
 four-form 
ux. Se
tion 6 brie
y 
on
ludes.1The 
orresponding analysis for the 
ase when the three-form 
ux is non-vanishing will be de-termined in [29℄.
3



2 AdS solutions through transgressionWe �rst 
onsider a general 
lass of supersymmetri
 AdS3 solutions of type IIB super-gravity that are dual to (0; 2) SCFTs in d = 2. The metri
 and the self-dual �ve-formtake the form ds2 = e2A �ds2 (AdS3) + ds2(Y7)�F5 = (1 + �10)V ol(AdS3) ^ F2 (2.1)where F2 is a two-form on Y7. The dilaton and axion are 
onstant and for simpli
itywe set them to zero. We also demand that the 
omplex three-form 
ux, G, whi
h
ontains the NS-NS and R-R three-form �eld strengths, is a three-form on Y7.As we show in appendix A, by following the analysis of [1℄, demanding that thisis a supersymmetri
 solution to the equations of motion, preserving supersymmetryas des
ribed in the appendix, leads to the following lo
al des
ription. The metri
 
anbe written ds2(Y7) = 14 (dz + P )2 + e�4Ads26 (2.2)where �z is a Killing ve
tor, ds26 is a K�ahler metri
 and dP is the Ri

i form for ds26.The warp fa
tor is given by e�4A = 18R (2.3)where R is the Ri

i s
alar for ds26 and we thus need to demand that R > 0. Thetwo-form F2 appearing in the �ve-form 
an be writtenF2 = 2J � 12d �e4A (dz + P )� (2.4)where J is the K�ahler form for ds26.So far, this is exa
tly the same as when the three-form 
ux vanishes [1℄. However,further analysis shows that we 
an swit
h on the three-form G, provided that G is a
losed, (1; 2) and primitive three-form on the K�ahler spa
e. In parti
ular G must beimaginary self-dual, �6G = iG, and harmoni
. Furthermore, the Bian
hi identity forthe �ve-form with its transgression terms (1.2), implies that the K�ahler metri
 ds26must satisfy �R � 12R2 +RijRij + 23GijkG�ijk = 0 (2.5)whi
h is the key equation generalising (1.1).We now 
onsider a general 
lass of supersymmetri
 AdS2 solutions of D = 11supergravity that are dual to super
onformal quantum me
hani
s with two super-4




harges. The metri
 and the four-form are given byds2 = e2A �ds2 (AdS2) + ds2(Y9)�G4 = Vol(AdS2) ^ F2 + F4 (2.6)where F2 is a two-form on Y9 and F4 is a four-form on Y9. This generalises the 
lassof solutions studied in [2℄ whi
h had F4 = 0 i.e. purely ele
tri
 
uxes.As we show in appendix A, now following the analysis of [2℄, demanding that thisis a supersymmetri
 solution to the equations of motion, preserving supersymmetryas des
ribed in the appendix, leads to the following lo
al des
ription. The metri
 
anbe written ds2(Y9) = (dz + P )2 + e�3Ads28 (2.7)where �z is a Killing ve
tor, ds28 is a K�ahler metri
 and dP is the Ri

i form for ds28.The warp fa
tor is given by e�3A = 12R (2.8)where R is the Ri

i s
alar for ds28 and so we demand R > 0. The two-form F2appearing in the four-form 
an be writtenF2 = �J + d �e3A (dz + P )� (2.9)where J is the K�ahler form for ds28. This is exa
tly as in the 
ase of purely ele
tri
four-form 
ux [2℄. We now �nd that we 
an swit
h on F4 provided that it is a 
losed,(2; 2) and primitive four-form on the K�ahler spa
e. In parti
ular F4 must be self-dual and harmoni
. Furthermore, the equation of motion for the four-form with itstransgression terms (1.3) implies that the K�ahler metri
 ds28 must now satisfy�R� 12R2 +RijRij + 14!F ijkl4 F4ijkl = 0: (2.10)In the spe
ial 
ase that the eight-dimensional K�ahler metri
 ds28 
ontains a T 2fa
tor, we 
an dimensionally redu
e the D = 11 solution on one leg of the T 2 andthen T-dualise on the other leg, to obtain a type IIB solution. In the 
ase that F4 = 0,it was shown in [8℄ that the resulting type IIB solution is in fa
t the AdS3 solutionwith vanishing three-form 
ux. There is a simple generalisation to non-vanishing F4.De
ompose the eight-dimensional K�ahler form asJ8 = J6 + du1 ^ du2 (2.11)where u1; u2 are 
oordinates on the T 2. Suppose we 
an write the (2; 2) four form asF4 = iG ^ �du1 + idu2�� iG� ^ �du1 � idu2� (2.12)5



where G is a 
losed primitive (1; 2) form in six-dimensions (i.e. we are asuumingthat there is no term involving the volume form of the two torus, du1 ^ du2). If wedimensionally redu
e on the u2 dire
tion and then T-dualise on the u1 dire
tion we�nd that the D = 11 AdS2 solution is transformed into the type IIB AdS3 solution.2.1 Bubble solutionsIn subsequent se
tions we will �nd expli
it examples of the AdS3 and AdS2 solu-tions just des
ribed. Before doing that we pause to brie
y 
omment on how theabove 
lasses of solutions 
an be analyti
ally 
ontinued so that the AdS fa
tors arerepla
ed with spheres. These \bubble" solutions preserve 1/8 of the supersymmetryand generalise those dis
ussed in [8℄.For the type IIB 
ase, the metri
 is given byds2 = e2A ��14 (dt+ P )2 + ds2 �S3�+ e�4Ads26� (2.13)where �t is a Killing ve
tor, ds26 is again a K�ahler metri
 and dP is the Ri

i form fords26. The warp fa
tor is given by e�4A = �18R (2.14)where R is the Ri

i s
alar for ds26 and so now we want R < 0. The �ve-form 
ux isgiven by F5 = (1 + �10)V ol(S3) ^ F2 (2.15)where F2 = 2J + 12d �e4A (dt+ P )� (2.16)and J is the K�ahler form for ds26. The three-form G is again a 
losed, (1; 2) andprimitive three-form on the K�ahler spa
e. Finally the master equation reads�R � 12R2 +RijRij � 23GijkG�ijk = 0: (2.17)For the D = 11 
ase, the metri
 is given byds2 = e2A �� (dt + P )2 + ds2(S2) + e�3Ads28� (2.18)where �t is a Killing ve
tor, ds28 is a K�ahler metri
 and dP is the Ri

i form for ds28.The warp fa
tor is given by e�3A = �12R (2.19)6



where R is the Ri

i s
alar for ds28 and we demand R < 0. The four-form 
ux is givenby G4 = V ol(S2) ^ F2 + F4 (2.20)where F2 = �J � d �e3A (dt+ P )� (2.21)and J is the K�ahler form for ds28. F4 is again a 
losed, (2; 2) and primitive four-formon the K�ahler spa
e. Finally, the master equation is now�R � 12R2 +RijRij � 14!F ijkl4 F4ijkl = 0: (2.22)3 Produ
t of KE spa
esIn this se
tion we will explore solutions for whi
h the K�ahler metri
s ds26 and ds28appearing in (2.2) and (2.7), respe
tively, are simply the produ
t of a set of two-dimensional K�ahler{Einstein metri
sds22n = nXi=1 ds2(KE(i)2 ) (3.1)where ds2(KE(i)2 ) is a two-dimensional K�ahler-Einstein metri
, i.e. lo
ally propor-tional to the standard metri
 on S2, T 2 or H2. For the latter 
ase, we 
an also takea quotient H2=� to get a Riemann surfa
e with genus greater than one. The metri
ds22n is normalised so that the Ri

i form is given byR = nXi=1 Ri = nXi=1 liJi (3.2)where Ri and Ji are the Ri

i and K�ahler forms of the ds2(KE(i)2 ) metri
s, respe
-tively, and li is zero, positive or negative depending on whether the metri
 is lo
allythat on T 2, S2 or H2, respe
tively. We also have P = Pi Pi with dPi = Ri andthe Ri

i s
alar is R = 2Pni=1 li. Note that in the spe
ial 
ase that two of the liare equal, say l1 = l2, the analysis 
an be simply extended to 
over the 
ase whenthe produ
t KE(1)2 �KE(2)2 is repla
ed with a more general four-dimensional K�ahler-Einstein manifold, KE4. Similar generalisations are possible if more of the li areequal. Finally, it will be useful to re
all that if the ith KE spa
e, �gi, is a Riemannsurfa
e of genus gi, then 12� Z�gi Ri = 2(1� gi) : (3.3)
7



3.1 Type IIBFor this 
ase, the metri
 ds2(Y7) appearing in (2.1) is given by1L2ds2(Y7) = 14 (dz + P )2 + e�4A " 3Xi=1 ds2(KE(i)2 )# (3.4)where we have introdu
ed an overall length s
ale L, and the warp fa
tor is given bye�4A = 14(l1 + l2 + l3) : (3.5)Writing the �ve-form 
ux as F5 = AdS3 ^ F2 + !5 (3.6)we have1L4F2 = 2l1 + l2 + l3 [(l2 + l3)J1 + (l1 + l3)J2 + (l1 + l2)J3℄1L4!5 = 14 [(l1 + l2)J1 ^ J2 + (l1 + l3)J1 ^ J3 + (l2 + l3)J2 ^ J3℄ (dz + P ) :(3.7)3.1.1 G = 0We �rst 
onsider the lo
al solutions with zero three-form 
ux, G = 0, that werepresented in se
tion 6.1 of [8℄. We will show that there are an in�nite number ofglobally de�ned solutions with appropriately quantised �ve-form 
ux and we will
al
ulate the 
entral 
harges of the dual d = 2 (0; 2) SCFTs.It was shown in [8℄ that the master equation (1.1) is solved if (l1; l2; l3)=(l1;� l11+l1 ; 1)with l1 2 [�1=2; 0℄. When l1 = 0 we obtain the well known AdS3 � S3� T 4 solution.We therefore restri
t to l1 2 [�1=2; 0) so that the six-dimensional K�ahler manifold is�g � S21 � S22 , where �g is a Riemann surfa
e with genus g > 1.We now examine the 
onditions required for Y7 to be a well de�ned U(1) �brationover �g�S21�S22 . If we let the period of the 
oordinate z be 2�l then we require thatl�1P be a bona-�de U(1) 
onne
tion. This is guaranteed if the integral of l�1dP=(2�)over a basis of two 
y
les on �g�S21�S22 are all integers. Taking the obvious basis, we
on
lude that we should take z to have period 4� and then the periods are (1�g; 1; 1).We now turn to the �ve-form. We �rst observe that this is a globally de�ned�ve-form on Y7. To ensure that we have a good solution of type IIB string theory, wedemand that the �ve-form 
ux is properly quantised:N(D) = 1(2�ls)4gs ZD F5 2 Z (3.8)8



for any �ve-
y
le D 2 H5(Y7;Z). A basis for the free part of H5(Y7;Z) is obtained bytaking the U(1) �bration over a basis of four-
y
les on the base �g�S2�S2. Let D1,D2 and D3 denote the �ve 
y
les arising from the four-
y
les �g � S21 , �g � S22 andS21 � S22 , respe
tively. Sin
e the U(1) �bration is non-trivial, these �ve-
y
les are notindependent in homology and we have [D1℄ + [D2℄ + (1� g)[D3℄ = 0. Cal
ulating theN(Di) we then dedu
e that for them to be all integers, l1 must be rational, l1 = s=tand L4�gsl4s = shN (3.9)where h = h
f(t; (g � 1)). Indeed, we then �nd thatN(D1) = �s(1� g)h NN(D2) = (s+ t)(1� g)h NN(D3) = � thN : (3.10)Clearly we have N(D1)+N(D2)+(1�g)N(D3) = 0 whi
h 
orresponds to the relationamongst the �ve-
y
les mentioned above.We have thus established that there is an in�nite 
lass of solutions labelled byrational l1 = s=t 2 [�1=2; 0), ea
h of whi
h gives rise to a d = 2 (0; 2) SCFT. The
entral 
harge of the SCFTs is given by
 = 3RAdS32G(3) (3.11)where G(3) is the three-dimensional Newton's 
onstant and RAdS3 is radius of theAdS3 spa
e. In our 
onventions the type IIB supergravity Lagrangian has the form1(2�)7g2s l8sp�detgR + : : : (3.12)and we 
al
ulate that 
 = 6(g � 1)(s2 + st+ t2)h2 N2 : (3.13)Note that for the spe
ial 
ase of s = 1; t = �2 we have (l1; l2; l3) = (�1=2; 1; 1): this isa 
ase whose 
entral 
harge was already 
al
ulated in [30℄ (substitute M = 8, m = 2into equation (6.14) of that referen
e).3.1.2 G 6= 0We now turn to the 
onstru
tion of solutions with non-vanishing three-form 
ux. Inorder to �nd a suitable three-form 
ux G we will demand that the produ
t of the KE9



spa
es in
ludes a T 2 fa
tor, l3 = 0. We then take the three-form to be given by1L2G = d�u ^ [m1J1 +m2J2℄ (3.14)where u is a 
omplex 
oordinate on the T 2 and m1; m2 are 
onstant. This is 
losedand is also a (1; 2) form on the K�ahler spa
e. In order that it is primitive we mustset m1 = �m2. Without loss of generality we take m1 > 0. It just remains to solvethe master equation (2.5) whi
h givesl1l2 = 4m21 : (3.15)Re
alling the expression for the warp fa
tor, (3.5) (with l3 = 0), whi
h must bepositive, we dedu
e that li > 0 and in parti
ular our six-dimensional K�ahler spa
emust be S21 � S22 � T 2. After a possible res
aling we 
an take l2 = 1. The �ve-form
ux is given by (3.6) and (3.7) with l3 = 0.To analyse this solution further, it is 
onvenient to perform su

essive T-dualitieson the two legs of the T 2 (whi
h we take to be square). Using the formulae inappendix B, we are led to the following type IIB solution21L2ds2 = ds2(AdS3) + a+ 14a ds2(S21) + a+ 14 ds2(S22)+14(dz + P1 + P2)2 + a4(du1 � 1aP1 + P2)2 + (du2)21L2F3 = 2V ol(AdS3) + 14(R1 +R2)(dz + P1 + P2)� a4(1aR1 �R2)(du1 � 1aP1 + P2)e2� = 1 : (3.16)Note that here (unlike above) the metri
s on the two-spheres have unit radius and a =l1=l2. Introdu
ing the 
oordinates  1 = (a=(1+a))(z�y) and  2 = (1=(1+a))(z+ay)and then 
ompleting the squares using the  i we are led to1L2ds2 = ds2(AdS3) + a + 1a ds2(S31) + (a+ 1)ds2(S32) + (du2)21L2F3 = 2V ol(AdS3) + 2(a+ 1)a V ol(S31) + 2(a+ 1)V ol(S32) (3.17)where ds2(S3i ) are the round metri
s on unit radius three spheres. This is the wellknown AdS3 � S3 � S3 � S1 solution of type IIB supergravity (see [24, 25, 26, 27℄).Note that this solution is dual to a d = 2 SCFT with (4; 4) supersymmetry: when weT-dualise ba
k the 
on�guration with G 6= 0 we will possibly break some of the super-symmetry: our 
onstru
tion guarantees that there is at least (0; 2) supersymmetry,but we haven't 
he
ked if more supersymmetry is preserved.2To obtain the solution in this form, we res
aled the u1 
oordinate, u1 ! u1(m1=l2), we set thedilaton to zero by shifting the dilaton and res
aling F3, and we also absorbed the warp fa
tor intoL2. 10



3.2 D = 11We brie
y 
onsider similar 
onstru
tions of AdS2 solutions of D = 11 supergravity.The metri
 ds2(Y9) appearing in (2.6) is given byds2(Y9) = (dz + P )2 + e�3A 4Xi=1 ds2(KE(i)2 ) (3.18)and the warp fa
tor is given by e�3A = 4Xi=1 li : (3.19)The four form 
ux is G4 = V ol(AdS2) ^ F2 + F4 (3.20)withF2 = 2P4i=1 li [(l1 + l2 + l3)J1 + (l1 + l3 + l4)J2 + (l1 + l2 + l4)J3 + (l1 + l2 + l3)J4℄F4 = Xi;j mij J i ^ J j (3.21)where the entries of the symmetri
 matrix m are 
onstants and the diagonal entriesare zero. Clearly F4 is a (2; 2) form. Demanding that it is primitive implies thatm12 = m34; m13 = m24; m14 = m23 ; (3.22)and hen
e F is self dual, and m12 +m13 +m14 = 0 : (3.23)Finally, the master equation (2.10) now implies thatl1l2 + l1l3 + l1l4 + l2l3 + l2l4 + l3l4 = 2[(m12)2 + (m13)2 + (m14)2℄ : (3.24)In the spe
ial 
ase that one has a T 2 fa
tor, say l4 = 0, one might wonder if one 
anget a type IIB AdS3 solution after dimensional redu
tion and T-duality. Followingthe dis
ussion at the end of se
tion 2, in order to get an AdS3 fa
tor one needs thatmi4 = 0 for all i. This implies all the mij = 0 and one returns to the 
ases analysedin [8℄.
11



4 Fibration Constru
tions using KE spa
es: typeIIB solutionsIn this se
tion we will 
onstru
t new AdS3 solutions of type IIB supergravity bothwith G = 0 and G 6= 0. For both 
ases we will take the lo
al six-dimensionaldimensional K�ahler metri
, ds26, to be the produ
t of T 2 with a four dimensional lo
alK�ahler metri
 whi
h is 
onstru
ted using the line bundle over a two dimensionalK�ahler Einstein spa
e, whi
h we take to be an S2. The 
onstru
tion of su
h K�ahlerspa
es is very similar to the 
onstru
tion in se
tion 3 of [8℄ whi
h in turn was inspiredby [31℄. Using this 
onstru
tion we take G to be the wedge produ
t of a (0; 1) form onthe T 2 with a (1; 1) form on the four-dimensional K�ahler spa
e. We have presenteda few details of the derivation of these solutions in appendix C.The metri
 of type IIB supergravity is given by1L2ds2 = �y1=2 [ds2(AdS3) + ds2(Y7)℄ (4.1)where L is an arbitrary length s
ale,ds2(Y7) = �2 � 1 + 2y �Q2y24�2 Dz2 + U(y)4(�2 � 1 + 2y �Q2y2)D 2 + dy24�2y2U(y)+ 1�2ds2(S2) + y�2ds2(T 2) (4.2)with D = d + 2V , dV = 2JS2 and the round metri
 on S2, ds2(S2), is normalisedso that RS2 = 4JS2. We also haveDz = dz � g(y)D (4.3)with g(y) = y(1�Q2y)�2 � 1 + 2y �Q2y2 (4.4)and U(y) = 1� 1�2 (1� y)2 �Q2y2 (4.5)where �;Q are positive 
onstants.The self-dual �ve-form 
an be writtenF5 = AdS3 ^ F2 + !5 (4.6)with1L4F2 = �2(1�Q2y)2y(�2 � 1 + 2y �Q2y2)dy ^D + �22y2dy ^Dz + 2JS2 + 2V ol(T 2) (4.7)12



and1L4!5 = �y(1�Q2y)�2 V ol(T 2) ^ JS2 ^Dz + U(y)(�2 � 1 + 2y �Q2y2)V ol(T 2) ^ JS2 ^D � 14�2y2dy ^D ^ JS2 ^Dz � 14�2V ol(T 2) ^ dy ^D ^Dz : (4.8)If we introdu
e a 
omplex 
oordinate u = u1 + iu2 on the T 2 with ds2(T 2) = dud�u,we 
an write the three-form 
ux as1L2G = Q� d�u ^ �(1� g)2 dy ^D � 12dy ^Dz + 2yJS2� : (4.9)We now investigate how to restri
t the parameters (�;Q) and 
hoose suitableranges of the 
oordinates so that these lo
al solutions 
an be extended to provide goodglobally de�ned solutions. In se
tion 4.1, for G = 0, we show that there are an in�nitenumber of solutions of type IIB string theory, labelled by a pair of positive relativelyprime integers, p; q, and two integers M;N where Y7 has topology S3�S2�T 2. The�ve-form 
ux is properly quantised an we also 
al
ulate the 
entral 
harge of the
orresponding dual CFTs. In se
tion 4.2, for G 6= 0, we show that there is a similarin�nite 
lass of AdS3 solutions of type IIB supergravity, but the analysis of the 
uxquantisation will be studied in [29℄. In se
tion 4.3 we show that after two T-dualitesand an S-duality all of these solutions get transformed into type IIB solutions withonly NS �elds being non-trivial.4.1 Type IIB solutions with G = 0Setting Q = 0 so that U(y) = 1� 1�2 (1� y)2 (4.10)we 
hoose y1 � y � y2 (4.11)where yi are two positive distin
t roots of U . The roots of U are given byy1 = 1� �; y2 = 1 + � (4.12)and we therefore 
hoose 0 < � < 1.We want to argue, after suitable further restri
tions, that Y7 = M5 � T 2 is theprodu
t of a two-torus with a �ve manifoldM5, parametrised by z; y;  and the roundS2. More pre
isely the manifold M5 will be a good 
ir
le �bration, with the �bre
oordinate labelled by z, over a four-dimensional base manifold, B4, parametrised by13



y;  and the round S2. The analysis is very similar to that for the �ve-dimensionalSasaki-Einstein metri
s of [32℄ (for further di
ussion see [33℄).We �rst observe that if we 
hoose the period of  to be 2�, then y;  parametrise asmooth two-sphere (in parti
ular, one 
an 
he
k that there are no 
oni
al singularitiesat the poles y = y1 and y = y2) and that B4 is a smooth manifold whi
h is an S2bundle over the round S2. In fa
t, topologi
ally, B4 = S2 � S2. To 
onstru
t M5as a 
ir
le bundle over B4, we let z be periodi
 with period 2�l. We next observethat the norm of the Killing ve
tor �z is non-vanishing and so the size of the S1 �bredoesn't degenerate. If we write Dz = dz � A, we require that l�1A is a 
onne
tionon a bona �de U(1) �bration. This is guaranteed if the 
orresponding �rst Chern
lass l�1dA lies in the integer 
ohomology H2deRahm(B4;Z). It is straightforward to�rst 
he
k that l�1dA is indeed a globally de�ned two-form on B4. We next need to
he
k that periods are integral. A basis for the free part of the homology on B4 isgiven by �f , the (y;  ) two-sphere �bre at a point on the round S2, and �1, �2, thetwo-spheres lo
ated at the poles y = y1, y = y2, respe
tively. We note that we havethe relation �1 = �2 � 2�f in homology. If we denote the periods for �f and �2 tobe integers �q and p, respe
tively, we 
on
lude that must haveg(y2)� g(y1) = �lqg(y2) = lp2 : (4.13)We note that the period for �1 is then p + 2q, 
onsistent with the relation betweenthe two-
y
les noted above. These 
onditions are satis�ed if� = qp+ ql = 2(p+ q)p(p+ 2q) (4.14)with p; q > 0. We 
hoose p and q to be relatively prime and then Y7 is the produ
tof T 2 with a simply 
onne
ted manifold M5. By following the argument in [32℄ we
on
lude that topologi
allyM5 is S2 � S3.Re
alling that the 
ir
le bundle (parametrised by z) is trivial over the two 
y
leq�2+p�f we 
on
lude that setting z to be 
onstant, q�2+p�f generates H2(M5;Z).We also observe that M5 has three obvious three-
y
les: E1 and E2 obtained by�xing y = y1 or y = y2, i.e. the 
ir
le bundle over �1 and �2, and the three-
y
leE3 obtained by �xing a point on the round S2, i.e. the 
ir
le bundle over �f . Ifwe let E be the generator of H3(M5;Z) we have E1 = �pE, E2 = �(p + 2q)E and14



E3 = �qE. The generator E 
an be obtained, for example, as the linear 
ombinationE = e1E1 + e2E3 where e1 and e2 are integers satisfying e1p+ e2q = �1.At this stage we have shown that for ea
h pair of relatively prime positive integers,(p; q), we have a regular manifold Y7 =M5 � T 2 with M5 = S2 � S3. In order to geta good solution of type IIB string theory we now demand that the �ve-form 
ux isproperly quantised: N(D) = 1(2�ls)4gs ZD F5 2 Z (4.15)for any �ve-
y
le D 2 H5(Y7;Z). There are two independent �ve-
y
les, M5 at a�xed point on T 2 and S3 � T 2. For the latter, the S3 fa
tor is the generator E ofH3(M5;Z), at a �xed point on the T 2. It is illuminating to 
al
ulate the 
ux throughthe �ve-
y
les Ei � T 2, where the Ei are the three-
y
les on M5 introdu
ed in thelast paragraph. After setting L44�gsl4s = qp2(p+ 2q)2(p+ q)4 NV ol(T 2) = � q(p+ q)2p(p+ 2q)MN (4.16)where M and N are integers, we �nd that1(2�ls)4gs ZM5 F5 = �N1(2�ls)4gs ZE1�T 2 F5 = �pM1(2�ls)4gs ZE2�T 2 F5 = �(p + 2q)M1(2�ls)4gs ZE3�T 2 F5 = �qM : (4.17)We see that the results are 
onsistent with the relations in homology between thethree-
y
les Ei on M5 that we noted above: in parti
ular the �ve-form 
ux throughthe 
y
le E � T 2 is M .We are now in a position to 
al
ulate the 
entral 
harge of the 
orresponding duald = 2 (0; 2) SCFT. Using (3.11) and (3.12) we �nd that
 = 6pq2(p+ 2q)NM(p+ q)2 : (4.18)
15



4.2 Type IIB solutions with G 6= 0Let us now 
onsider the solutions with Q 6= 0 and hen
e non-vanishing G. The rootsof U are now given by y1;2 = 1� �p1 +Q2(�2 � 1)1 +Q2�2 (4.19)and in order that we have two positive distin
t roots, y2 > y1 > 0 we demand that0 < �2 < 1; 0 � Q2 < 11� �2 : (4.20)We will again argue that Y7 =M5 � T 2 with M5 a 
ir
le �bration, with the �bre
oordinate labelled by z, over a four-dimensional base manifold, B4, parametrised byy;  and the round S2. To ensure that y;  parametrise a two-sphere, remarkably, itis again suÆ
ient to 
hoose  to have period 2�. This again leads to a regular B4,whi
h is again topologi
ally S2 � S2. Following the logi
 of the last subse
tion, and
al
ulating the periods of l�1dA=(2�), to ensure that we have a good 
ir
le �brationover B4 we now impose g(y2)� g(y1) = �lq � �(lp)=Xg(y2) = lp2 (4.21)for relatively prime integers p and q and we have de�ned X = p=q.Let us �rst 
onsider Q 6= 1. If X > 0 we 
hoose Q < 1 and if �1 < X < 0 we
hoose Q > 1 (other 
hoi
es for X lead to the same solutions). We have�2 = 1�Q2(1 +X)2 �Q2l = 2((1 +X)2 �Q2)p(2 +X)(1 +X) (4.22)and y1 = X(1 +X +Q2)(1 +X)2 �Q4y2 = (2 +X)(1 +X �Q2)(1 +X)2 �Q4 : (4.23)Topologi
allyM5 = S2�S3. For future referen
e, we note that as in the last subse
-tion, the generator of H2(MZ) is given by q�2 + p�f at �xed z. Also as in the lastsubse
tion, M5 has three natural three-
y
les Ei and the generator E of H3(M5;Z),is a linear 
ombination of them. 16



For Q = 1 we observe thaty1 = 1� �21 + �2 ; y2 = 1 : (4.24)We further observe that g(y2) = 0 and hen
e we just need to demand that the periodof l�1dA=(2�) over �f , the two sphere �bre parametrised by y;  , is quantised whi
h
an be a
hieved by 
hoosing l = 21� �2 : (4.25)For Q = 1, the topology of M5 is again S2� S3, but the details are slightly di�erent,sin
e the z 
ir
le is only �bred over �f . For future referen
e, we 
an take �2 togenerate H2(M5;Z) and similarly, we 
an take the z 
ir
le �bred over �f to representH3(M5;Z).We have now shown that it is possible to swit
h on the three-form 
ux and obtainin�nite 
lasses of regular geometries. Furthermore, we observe that the �ve-form andthe three-form are globally de�ned on Y7.In order to �nd good solutions of string theory we need to ensure that the three-form is suitably quantised. Writing G = �dB � idC(2) (sin
e the axion and dilatonare zero), we need to demand that1(2�ls)2gs Z dC(2) 2 Z1(2�ls)2 Z dB 2 Z : (4.26)Due to the Bian
hi identity dF5 = i2G ^G� (4.27)we also need to ensure that 
orresponding Page 
harges (see e.g. [34, 35℄) are quan-tised. We will not 
arry out this analysis here, but an equivalent analysis will be
arried out in [29℄ using the results of the next subse
tion.4.3 T-dual solutionsAfter 
arrying out T-dualities along ea
h of the two legs of the T 2, using the formulaein appendix B, we arrive at the following type IIB solutions. The string frame metri
is given by 1�L2ds2� = �y1=2 [ds2(AdS3) + ds2(X7)℄ (4.28)
17



whereds2(X7) = �2 � 1 + 2y �Q2y24�2 Dz2 + U(y)4(�2 � 1 + 2y �Q2y2)D 2 + dy24�2y2U(y)+ 1�2ds2(S2) + (du1 � Qy2� [(1� g)D �Dz℄)2 + (du2)2 : (4.29)The dilaton is given by e2� = �2y (4.30)and the RR three-form �eld strength is1�L2dC(2) = � 14�2dy ^D ^Dz � y�2J ^Dz + [1� yg�2 ℄J ^D + Q2�du1 ^ [dy ^Dz � 4yJ � (1� g)dy ^D ℄ + 2V ol(AdS3) :(4.31)Note that �L is an arbitrary length s
ale that will be �xed by 
onsidering quantisationof the 
ux.After a further S-duality transformation we obtain AdS3 solutions with only NS�elds non-vanishing, but we will 
ontinue to work with the above solution.For these solutions to be good solutions of type IIB string theory we need toensure that the metri
 extends to a metri
 on a globally de�ned manifold X7 andthat both the ele
tri
 and magneti
 RR three-form 
harges are properly quantised:n1 = 1(2�ls)6gs ZX7 �dC(2) 2 Z (4.32)and 1(2�ls)2gs ZT dC(2) 2 Z (4.33)when integrated over any three-
y
le T 2 H3(X7;Z).It is useful to note that sin
e1�L6 � dC(2) = 14�2y2J ^ dy ^D ^Dz ^ du1 ^ du2 + V ol(AdS3) ^ (: : : ) (4.34)we have n1 = � �Lls�6 lgs64�3�2�u1�u2y2 � y1y1y2 : (4.35)Thus, for any good solution of type IIB string theory, the 
entral 
harge 
an then bewritten 
 = 6n1� �Lls�2 1gs : (4.36)
18



To get the expli
it expression we need the values of �u1, �u2 and �L2. In this paperwe will only analyse this further for the 
ase of Q = 0, re
overing results 
ompatiblewith those of the last subse
tion. The analysis for the 
ase of Q 6= 0 will be 
arriedout in [29℄.4.3.1 Q = 0When Q = 0, we �rst observe that ds2(X7) is pre
isely the same as ds2(Y7) in (4.2).In se
tion 4.1 we showed that X7 = M5 � T 2 where M5 is a manifold parametrisedby z;  ; y and the round S2 and the T 2 is parametrised by u1 and u2. FurtherM5 = S2 � S3.Let us now 
onsider the quantisation of the three-form on X7. After �xing a pointon the torus, the three-
y
les Ei onM5, introdu
ed in se
tion 4.1, all give rise to three
y
les on X7. If we 
hoose the length s
ale to satisfy1gs � �Lls�2 = pq2(p+ 2q)M(p+ q)2 (4.37)where M is an integer then we 
al
ulate1(2�ls)2gs ZE1 dC(2) = �pM1(2�ls)2gs ZE2 dC(2) = �(p+ 2q)M1(2�ls)2gs ZE3 dC(2) = �qM : (4.38)In parti
ular we see that the 
ux through the generator of H3(X7;Z), the three-
y
leE introdu
ed in se
tion 4.1 at a �xed point on the torus, is M .The expression (4.35) takes the more expli
it formn1 = � �Lls�6 1gs16�3V ol(T 2) (p+ q)4p2q(p+ 2q)2 (4.39)whi
h, after substituting (4.37), provides a quantisation 
ondition on V ol(T 2). Forthe 
entral 
harge, after substituting (4.37) into (4.36), we now re
over the previousresult (4.18) (with N = n1), as expe
ted.The 
uxes that we have a
tivated, plus the amount of supersymmetry preserved,suggests that the dual SCFT might arise by taking 
on�gurations of fundamentalstrings interse
ting NS �vebranes with the other four dire
tions of the NS �vebraneswrapped on a holomorphi
 four-
y
les inside a Calabi-Yau four-fold.19



4.3.2 Q 6= 0A 
areful analysis of the topology of X7 and the quantisation of the three-form 
uxwhen Q 6= 0 will be 
arried out in [29℄.5 Fibration Constru
tions using KE spa
es: D =11 solutionsIn this se
tion we will present new AdS2 solutions of D = 11 supergravity withmagneti
 four-form 
ux swit
hed on. We take the lo
al eight-dimensional dimensionalK�ahler metri
, ds28, to be the produ
t of T 2 with a six-dimensional lo
al K�ahler metri
whi
h is 
onstru
ted using the line bundle over a four dimensional K�ahler Einsteinspa
e with positive 
urvature. We have presented a few details of the derivation ofthese solutions in appendix D.The metri
 of D = 11 supergravity is given by1L2ds2 = 164=3�2=3y4=3 [ds2(AdS2) + ds2(Y9)℄ (5.1)where L is an arbitrary length s
ale,ds2(Y9) = (1� 8�y + 12�y2 � 4�Qy4)Dz2 + 4�yU(y)(1� 8�y + 12�y2 � 4�Qy4)D 2+ 9�yU(y)dy2 + 36�yds2(KE+4 ) + 36�y2ds2(T 2) (5.2)with D = d + 2V , dV = 2JS2 and the metri
 on the four-dimensional positively
urved K�ahler-Einstein spa
e, ds2(KE+4 ), is normalised so that RKE = 6JKE. Wealso have Dz = dz � g(y)D (5.3)with g(y) = � 2�y(1� 3y + 2Qy3)1� 8�y + 12�y2 � 4�Qy3 (5.4)and U(y) = 1� 9�y(1� y)2 �Qy3 (5.5)with �;Q 
onstants.Writing the four-form as G4 = AdS2 ^ F2 + F4 (5.6)20



we have 1L3F2 = �JKE � 2y3dy ^Dz + 2gy3 dy ^D � i2du ^ d�u (5.7)and 1L3F4 = 6�1=2Q 2JKE ^ JKE + 13[(1� g)D �Dz℄ ^ JKE ^ dy�2iy2JKE ^ du ^ d�u� iy3 dy ^ [(1� g)D �Dz℄ ^ du ^ d�u! : (5.8)We will not 
arry out a 
omplete analysis of these solutions, but it is 
lear thatthere are in�nitely many new regular solutions. As in the last se
tion, the task isto 
hoose appropriate values of the 
onstants �;Q and ranges of the 
oordinates sothat Y9 is a U(1) �bration, with �bre parametrised by z, over an eight dimensionalbase manifold, parametrised by  ; y, the KE+4 spa
e and the two-torus. By 
hoosingappropriate �;Q we 
an restri
t y to lie between two suitable roots of the 
ubi
 U = 0.One 
an then show that if  has period 2�, then, remarkably, the eight-dimensionalbase manifold is a regular S2 bundle, with S2 parametrised by y;  , over KE+4 � T 2.Demanding that the U(1) �bration is well de�ned, for appropriately 
hosen period forz, will lead to additional restri
tions on the parameters, but it is 
lear that there willbe in�nite number of solutions. Finally, there will be additional restri
tions imposedby demanding that the four-form 
ux Page 
harges are suitably quantised.We 
on
lude this se
tion by pointing out that when F4 = 0, i.e. when Q = 0, ifwe dimensionally redu
e on one leg of the T 2 and T-dualise on the other, we obtaintype IIB AdS3 solutions as 
onstru
ted in [28℄ (see appendix A and se
tion 3.1 of[8℄). However, when F4 6= 0, while we still get type IIB solutions, be
ause F4 has aterm proportional to the volume of the torus, the metri
 will no longer be a warpedprodu
t of AdS3 with a seven manifold.6 Con
lusionsWe have analysed new general 
lasses of supersymmetri
 AdS3 solutions of type IIBsupergravity and AdS2 solutions of D = 11 supergravity, whi
h are dual to SCFTswith (0; 2) supersymmetry in d = 2 and supersymmetri
 quantum me
hani
s withtwo super
harges, respe
tively. The 
onstru
tions whi
h generalise those of [1, 2℄ toallow for additional 
uxes, depend 
ru
ially on the \transgression terms" appearingin the Bian
hi identities. 21



We also presented a ri
h set of new expli
it examples using some 
onstru
tionsthat generalise those of [8℄. For the type IIB AdS3 solutions we found an in�nite
lass of solutions with vanishing three-form 
ux in se
tion 3.1 and determined the
entral 
harge of the dual SCFT. In se
tion 4 we presented a di�erent 
lass of expli
itsolutions of type IIB, with the three-form 
ux labelled by Q. The solutions have atwo-torus and after two T-dualities and an S-duality we showed that the solutions 
anbe written in terms of NS �elds only. For the 
ase when Q = 0 we showed that thesolutions extend to well de�ned solutions of type IIB string theory and we 
al
ulatedthe 
orresponding 
entral 
harge. The analysis for the 
ase of Q 6= 0 will be 
arriedout in [29℄.We also 
onstru
ted analogous AdS2 solutions of D = 11 supergravity. It wouldworthwhile 
arefully analysing the 
onditions required on the lo
al solutions to giverise to properly quantised solutions of M-theory.Despite the ri
hness of the 
onstru
tions we have presented, it is 
lear that they
an be generalised still further. For example, the D = 11 solutions in se
tion 5 are
onstru
ted using a four-dimensional K�ahler-Einstein manifold. For the spe
ial 
asewhen this is S2 � S2 there are almost 
ertainly generalisations when we allow theratio of the 
urvatures of the two S2's to vary.It remains an important outstanding problem to identify the dual SCFTs for all ofthese examples. For the 
lasses of type IIB AdS3 solutions that depend on NS �eldsonly, it would also be very interesting to 
onstru
t the worldsheet CFT des
ribingthe type IIB solutions.We also showed how the general 
lass of AdS solutions 
an be analyti
ally 
on-tinued to obtain general 
lasses of 1/8 BPS bubble solutions with additional 
uxesto the 
lasses of solutions 
onsidered in [8℄. It would be interesting to study thesefurther. For example, the 
onstru
tions of this paper 
an be used to obtain expli
itsolutions.A
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h Foundation Grant No. KRF-2007-331-C00072.A AdS solutionsA.1 AdS3 solutions of type IIB supergravityWe will be interested in bosoni
 
on�gurations of type IIB supergravity with 
onstantaxion and dilaton. For simpli
ity we will mostly set the axion and dilaton to zero.We will use the 
onventions for type IIB supergravity that were used in [36℄. The
onditions for su
h a 
on�guration to be supersymmetri
 read:rM�� 196 ��MP1P2P3GP1P3P3 � 9�P1P2GMP1P2� �
+ i16 � 5!�M1:::M5FM1:::M5�M� = 0; (A.1)�P1P2P3GP1P2P3� = 0; (A.2)where F5 is self-dual, F5 = �10F5 and the 
omplex three-form G 
an be written3G = ie�=2 ��dB � dC(2)� ;� = C(0) + ie��: (A.3)We have also 
hosen �11� = �� where �11 = �0 : : :�9. and we take �0:::9 = +1. Toobtain a supersymmetri
 solution to the equations of motion it is suÆ
ient [36℄ toalso impose rPGMNP = � i6FMNP1P2P3GP1P2P3 (A.4)GP1P2P3GP1P2P3 = 0 (A.5)dG = 0 (A.6)dF = i2G ^G� (A.7)and at most one 
omponent of the Einstein equations, whi
h is automati
ally solvedfor the 
lasses of solutions we 
onsider.We now introdu
e the following ansatzds2 = e2Ads2 (AdS3) + ds27;F5 = (1 + �10)V ol(AdS3) ^ F2; (A.8)3If one 
hanges the sign of C(2) one gets the 
onventions used in [38℄ .23



as in [1℄, but generalised to in
lude a 
losed three form G de�ned on the sevendimensional spa
e. We also demand that the Killing spinors are the same as thosefor the AdS3 solutions with G = 0 that were analysed in [1℄.For the gamma matri
es we take�� = �1 
 I8�8 
 ��; � = 0; 1; 2�a = �2 
 
a 
 I2�2; a = 3; : : : ; 9 (A.9)where �i are Pauli matri
es and we 
hoose the three-dimensional and seven dimen-sional gamma matri
es �� and 
a, respe
tively, to satisfy�0�1�2 = �I2�2;Ya 
a = �iI8�8: (A.10)For the Killing spinor � we make the ansatz� = �
 � 
  (i)n (A.11)where � is a 
onstant spinor satisfying�3� = � (A.12) (i)n are Killing spinors on AdS3 satisfyingr̂� (i)n = n2 �� (i)n ; n = �1; i = 1; 2; (A.13)and � is a seven dimensional Dira
 spinor. After substituting into (A.1) we �nd thefollowing system of equations ra� � 116e�3A 6F2
a� = 0 (A.14)�n2 e�A + i2 6�A + i16e�3A 6F2� � = 0 (A.15)
p2p3G�ap2p3� = 0 (A.16)
p1p2p3Gp1p2p3� = 0: (A.17)As shown in [1℄, by just using equations (A.14) and (A.15), the geometry and �veform 
ux are 
onstrained to take the lo
al formds2 = e2A �ds2 (AdS3) + 14 (dz + P )2 + e�4Ads26�F2 = 2nJ � 12d �e4A (dz + P ℄� (A.18)24



where �z is a Killing ve
tor, ds26 is a six dimensional K�ahler metri
 with K�ahler formJ , Ri

i form given by R = n dP , s
alar 
urvature R = 8e�4A and holomorphi
 threeform 
. This result is obtained by analysing various bilinears in �. In parti
ularwe note that �y� = eA, 
 = e2Aeinz�T
(3)� and J = �eAi�y
(2)�. Furthermore,K � �y
(1)� = (e2A=2)(dz + P ), so that the 
orresponding dual ve
tor is the Killingve
tor 2�z. It is also useful to note that 	 � �T
(4)� = �e�3Ae�nizK ^ 
.We next argue that iKG = 0: (A.19)To see this we �rst multiply (A.16) by �T
k
a and (A.17) by �T
k to dedu
e that
kp1p2(iKG)p1p2 = 0; �
kp1p2(iKG)p1p2 = 0 : (A.20)This shows that the (0; 2) and (0; 2) pie
es of iKG vanish. Next multiplying (A.16)by �T
q1q2q3 we dedu
e that �
p[q1q2Gq3℄pr = 0 : (A.21)Letting q1 be just in the z dire
tion we dedu
e that�
pq1q2(iKG)pr = 0 (A.22)showing that the (1; 1) pie
e of iKG also vanishes.Sin
e iKG = 0 we 
an now de
ompose G in terms of (p; q) forms on B6G = G(1;2) +G(2;1) +G(3;0) +G(0;3):From equations (A.16) and (A.17) we obtain
p1p2p3Gp1p2p3 = 0; �
p1p2 aGp1p2b = 0; (A.23)implying that only the (1; 2) 
omponent of the three form G 
an be non-zero. Fromequation (A.16) we have that J ^G = 0: (A.24)Thus we 
on
lude that supersymmetry implies that the (1; 2) form G is primitive.These two properties when 
ombined give the duality 
ondition on the base B6�6 G = iG; (A.25)where we used the volume form Vol6 = 16 J ^ J ^ J: (A.26)25



We 
an now easily 
he
k that (A.4) and (A.5) are both satis�ed.Thus to ensure that all equations of motion are satis�ed we just need to ensurethat (A.7) holds. Using (A.25) we �nd that (A.7) 
an be written as116J ^ R ^R + 132d �6 dR = �18G ^ �6G�; (A.27)whi
h may also be written as a s
alar equation�R � 12R2 +RijRij + 23GijkG�ijk = 0: (A.28)Note that in the main text we have �xed n to be +1. The solution preserves foursupersymmetries sin
e i runs from 1 to 2 in the AdS3 Killing spinors  (i)n appearingin (A.11) and � is a Dira
 spinor. Two of these are Poin
ar�e supersymmetries andtwo are spe
ial 
onformal supersymmetries. Using horospheri
al 
oordinates, thePoin
ar�e Killing spinors on AdS3 are eigenvalues of the gamma matrix along theradial dire
tion, say �2 [37℄. Observing that �01 = �I2�2 
 I8�8 
 �2 we see that thetwo Poin
ar�e supersymmetries are eigenvalues of �01 with the same eigenvalue andhen
e the solutions are dual to SCFTs with (0; 2) supersymmetry.A.2 AdS2 solutions of D = 11 supergravityThe 
ondition for a bosoni
 
on�guration of D = 11 supergravity to be supersym-metri
 readsÆ M = rM�+ 1288 ��MN1N2N3N4 � 8ÆN1M �N2N3N4�G4N1N2N3N4� = 0; (A.29)where we are using the 
onventions of [39℄ and in parti
ular �0:::10 = 1 and �0:::10 = +1.For the supersymmetri
 bosoni
 
on�gurations we will be 
onsidering, in order thatall equations of motion are satis�ed it is suÆ
ient [39℄ to also just demand thatdG4 = 0;d �11 G4 = �12G4 ^G4: (A.30)Our AdS2 ansatz is ds2 = e2Ads2 (AdS2) + ds29;G4 = Vol(AdS2) ^ F2 + F4; (A.31)where F2 and F4 are 
losed forms de�ned on the nine dimensional spa
e. For thegamma matri
es we perform the redu
tion�� = �� 
 I; � = 0; 1�a = �2 
 
a; a = 2; : : : ; 10 (A.32)26



with � and 
 being real matri
es and we use the 
onventions�0�1�2 = �1;Ya 
a = �1: (A.33)In this representation we 
an make the ansatz for the eleven dimensional Majoranaspinor � = �(i)n 
 � + 
:
: (A.34)where the � is a nine-dimensional Dira
 spinors and the real three-dimensional spinor�(i)n satis�es r̂��(i)n = in2 ���2�(i)n ; i = �1; n = �1; (A.35)and 
an be taken to satisfy the orthogonality 
ondition(�(i)n )y�2�(i)n = 0: (A.36)(whi
h 
an be 
he
ked, for example, by expli
itly 
al
ulating the spinors).We now �nd the following system of equations�ra + 124e�2A �
 b
a F2b
 � 4F2ab
b�� � = 0 (A.37)�ine�A + 
a�aA� 16e�2A
abF2ab� � = 0 (A.38)
b1b2b3F4ab1b2b3� = 0: (A.39)Using the results of [2℄ one 
an show that equations (A.37) and (A.38) imply thatthe metri
 and the two form 
ux are 
onstrained to be of the formds2 = e2A �ds2 (AdS2) + (dz + P )2 + e�3Ads28� ; (A.40)F2 = nJ + d �e3A (dz + P )� ; (A.41)where R = �ndP and ds28 is K�ahler with K�ahler form J , Ri

i potential given by Pand s
alar 
urvature given by R = 2e�3A.The 
onstraint (A.39) implies that the only non-zero part of the magneti
 
om-ponent F4 is a (2; 2) and primitive form with no non-zero 
omponents along the zdire
tion: J ^ F4 = 0; (A.42)iKF4 = 0: (A.43)27



Here K is the one-form 
onstru
ted out of the nine dimensional bilinears K =�y
(1)� = e2A (dz + P ) whose dual is the Killing ve
tor �z. Note that these 
on-ditions imply that the four form is also self-dual with respe
t to ds28:�8 F4 = F4: (A.44)Using that the D = 11 epsilon tensor is given by � = �e�AV ol(AdS2)(dz + P )J44! , we�nd that the equation of motion for the four form (A.30) implies thatJ2 ^R ^R + d �8 dR = F4 ^ F4: (A.45)whi
h may also be written as a s
alar equation�R � 12R2 +RijRij + 14!FijklF ijk = 0: (A.46)B T-dualityWe 
onsider a type IIB solution with a square two-torus, parametrised by u1 and u2,of the form ds2 = e2A �ds2(AdS3) + ds2(M5) + �((du1)2 + (du2)2)�F5 = f5 + f3 ^ du1 ^ du2G = (du1 � idu2) ^ dv� = 0; C(0) = 0 (B.1)where f5, f3, v and ds2(M5) have no dependen
e on the 
oordinates ui. Using theformulae in, for example, [40℄ we 
an T-dualise on the u1 dire
tion and then the u2dire
tion to get the following type IIB solutionds2� = e2A �ds2(AdS3) + ds2(M5)�+ 1�e2A �(du1 � v)2 + (du2)2�dC(2) = f3 � dv ^ (du1 � v)e2� = 1�2e4A (B.2)where the metri
, here, is written in the string frame.C Type IIB solutions from �brations over S2 � T 2Consider the following ansatz for a six dimensional K�ahler metri
ds26 = dx24x3U(x) + U(x)x D�2 + 1xds2 �S2�+ du d�u; (C.1)28



where D� = d� + V , dV = 2JS2, the S2 is normalised so that RS2 = 4JS2 and wehave introdu
ed a 
omplex 
oordinate u = u1 + iu2 for a T 2 fa
tor. In this 
ase theK�ahler form J and the (3; 0) form 
 readJ = � 12x2dx ^D�+ 1xJS2 + i2 du ^ d�u;
 = e2i� "� 12x2pU dx + ipUx D�# ^ 
S2 ^ du: (C.2)We have d
 = iP ^ 
 where P is the Ri

i form given byP = fD�; f = 2(1� U) + xU 0: (C.3)It is easy to 
al
ulate the Ri

i form, given by R = dP , and we re
ord that the Ri

is
alar is given by R = 4xf � 4x2f 0: (C.4)For the three form G we make the simple ansatz that it is the wedge produ
t of d�uwith a primitive (1; 1) form on the four-dimensional K�ahler spa
e parametrised byx; � and the S2. This leads us to 
onsiderG = d�u ^ d [qxD�℄ : (C.5)If we now substitute into (2.5), after integrating on
e, we are led to the followingdi�erential equation for U :2f 2 + U R0 + 8q2x2 = 
onstant: (C.6)We look for polynomial solutions to this equation by 
onsidering the ansatz U(x) =1 +P2i=0 aixi. This implies that R = �8a0x and in order to have R > 0 we 
hoosea0 = �1=�2. A little 
al
ulation shows that U takes the formU(x) = 1� 1�2 �1� a1�22 x�2 � q2�2x2: (C.7)It is now straightforward to assemble the full ten-dimensional solution using (2.1)-(2.4). It is 
onvenient to make the following res
alingsy = a1�22 x; Q = 2a1� q; ~u = p2�pa1u : (C.8)Furthermore we also perform a simultaneous s
aling of the ten-dimensional metri
and the three-form by a fa
tor of p2�pa1 and the �ve-form by a fa
tor of 2�2a1 (whi
hindeed transforms a solution to another solution). Finally, it is very helpful to performthe 
oordinate 
hange � = ( � z)=2 and this then leads to the type IIB solutionsas re
orded in the main text, although we note that we have dropped the tildes formthe 
oordinates on the torus for 
larity. 29



D D = 11 solutions from �brations over KE+4 � T 2Consider the following ansatz for an eight dimensional K�ahler metri
ds28 = dx24x3U(x) + U(x)x D�2 + 1xds2 �KE+4 �+ du d�u; (D.1)where D� = d� + V , dV = 2JKE, the K�ahler-Einstein four metri
 with positive
urvature, ds2(KE+4 ), is normalised so that RS2 = 6JS2 and u = u1 + iu2 is a
omplex 
oordinate for a T 2 fa
tor. In this 
ase the K�ahler form J and the (4; 0)form 
 read J = � 12x2dx ^D�+ 1xJKE + i2 du ^ d�u;
 = e3i� "� 12x5=2pU dx + ipUx3=2D�# ^ 
KE ^ du: (D.2)We have d
 = iP ^ 
 where P is the Ri

i form given byP = fD�; f = 3(1� U) + xU 0: (D.3)It is easy to 
al
ulate the Ri

i form, given by R = dP , and we re
ord that the Ri

is
alar is given by R = 8xf � 4x2f 0: (D.4)For the magneti
 four form, F4, we 
hoose the ansatz:F4 = A2 ^ (J6 � i2du ^ d�u)= A2 ^ (� 12x2dx ^D�+ 1xJKE � i2du ^ d�u) (D.5)where J6 is the K�ahler form on the six spa
e ex
luding the torus. We 
learly havethat F4 is (2; 2) and is 
losed provided that the two-form A2 is (1; 1) and 
losed. Asuitable ansatz is A2 = d[�(x)D�℄ and we �nd that F4 is primitive provided that� = qx2 for an arbitrary 
onstant q. We thus haveF4 = d[qx2D�℄ ^ (� 12x2dx ^D�+ 1xJKE � i2du ^ d�u) : (D.6)If we now substitute into (2.10), after integrating on
e, we are led to the followingdi�erential equation for U :4f 2 + U R0 + 4q2x4 = 
onstant� x: (D.7)
30



We look for polynomial solutions to this equation by 
onsidering the ansatz U(x) =P3i=0 aixi. We �nd two 
lasses of solutions, one with a0 = 1 and the other witha0 = 3. Sin
e we are interested here in AdS2 solutions, we only 
onsider the solutionwith a0 = 1 and we haveU(x) = 1 + a1x�1 + a22a1x�2 + q24a1x3 : (D.8)Sin
e R = �8a1x2, we demand that a1 < 0.It is now straightforward to assemble the full eleven-dimensional solution using(2.6)-(2.9). It is 
onvenient to make the following res
alingsy = �a22a1 x; Q = 2a21a32 q2; ~u = p�2a1pa2 u : (D.9)We also de�ne � = 2a219a2 . Furthermore we also perform a simultaneous s
aling of theeleven-dimensional metri
 by a fa
tor of � 2(�a1)a2 �2=3 and the four-form by a fa
tor of2(�a1)a2 (whi
h indeed transforms a solution to another solution). Finally, it is veryhelpful to perform the 
oordinate 
hange � = ( � z)=3 and this then leads to theD = 11 solutions as re
orded in the main text, although we note that we have droppedthe tildes form the 
oordinates on the torus for 
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