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DESY 08-104Imperial/TP/2008/JG/01AdS Solutions Through TransgressionAristomenis Donos1, Jerome P. Gauntlett2 and Nakwoo Kim31DESY Theory Group, DESY HamburgNotkestrasse 85, D 22603 Hamburg, Germany2Theoretial Physis Group, Blakett Laboratory,Imperial College, London SW7 2AZ, U.K.2The Institute for Mathematial Sienes,Imperial College, London SW7 2PE, U.K.3Department of Physis and Researh Institute of Basi Siene,Kyung Hee University, Seoul 130-701, KoreaAbstratWe present new lasses of expliit supersymmetri AdS3 solutions of typeIIB supergravity with non-vanishing �ve-form ux and AdS2 solutionsof D = 11 supergravity with eletri four-form ux. The former aredual to two-dimensional SCFTs with (0; 2) supersymmetry and the latterto supersymmetri quantum mehanis with two superharges. We alsoinvestigate more general lasses of AdS3 solutions of type IIB supergrav-ity and AdS2 solutions of D = 11 supergravity whih in addition havenon-vanishing three-form ux and magneti four-form ux, respetively.The onstrution of these more general solutions makes essential use ofthe Chern-Simons or \transgression" terms in the Bianhi identity or theequation of motion of the �eld strengths in the supergravity theories. Weonstrut in�nite new lasses of expliit examples and for some of thetype IIB solutions determine the entral harge of the dual SCFTs. Thetype IIB solutions with non-vanishing three-form ux that we onstrutinlude a two-torus, and after two T-dualities and an S-duality, we obtainnew AdS3 solutions with only the NS �elds being non-trivial.
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1 IntrodutionAn interesting lass of supersymmetri AdS3 solutions of type IIB supergravity withnon-vanishing �ve-form ux and dual to (0; 2) SCFTs in d = 2 were analysed in [1℄.Similarly, a lass of AdS2 solutions ofD = 11 supergravity with eletri four-form uxand dual to superonformal quantum mehanis with two superharges were analysedin [2℄. It is remarkable that the geometries of the orresponding internal seven andnine-dimensional spaes have a similar struture. In partiular, they both have aKilling vetor (dual to an R-symmetry in the orresponding SCFT) whih loallyde�nes a foliation, and the metris are ompletely determined by a K�ahler metrion the orresponding six or eight-dimensional leaves. In both ases, the loal K�ahlermetri satis�es the same di�erential equation�R� 12R2 +RijRij = 0 (1.1)where Rij and R are the Rii tensor and Rii salar for the K�ahler metri. These2n+ 1 dimensional geometries, with n = 3; 4, were further investigated in [3℄, whihalso generalised them to all n. It was shown that the 2n + 2 dimensional onegeometries over these spaes admit ertain Killing spinors that de�ne an SU(n + 1)struture with partiular intrinsi torsion that was determined in [3℄.This geometry has striking similarities with Sasaki-Einstein (SE) geometry. Reallthat a �ve-dimensional SE manifold SE5 gives rise to a supersymmetri type IIBAdS5 � SE5 solution with non-vanishing �ve-form ux, while a seven-dimensionalSE manifold SE7 gives rise to a AdS4 � SE7 solution of D = 11 supergravity witheletri four-form ux. All SE spaes have a Killing vetor, whih loally de�nes afoliation, and the SE metri is ompletely determined by a K�ahler-Einstein metrion the orresponding leaves. Furthermore, the 2n + 2 dimensional one geometriesover the SE spaes are Calabi-Yau i.e. they admit ovariantly onstant spinors thatde�ne an SU(n + 1) struture with vanishing intrinsi torsion (i.e. the metri hasSU(n+ 1) holonomy).The AdS5 � SE5 and AdS4 � SE7 solutions are the near horizon limits of moregeneral supergravity solutions that desribe D3-branes and M2-branes sitting at theapex of the Calabi-Yau three and four-fold ones, respetively. In these more generalsolutions, only the �ve-form ux and eletri four-form ux are non-trivial, and thesolutions are determined by a harmoni funtion on the Calabi-Yau spae. An inter-esting further generalisation for the type IIB ase, is to onsider any Calabi-Yau threefold and to swith on imaginary self-dual harmoni three form ux. One �nds that1



this solution preserves the same amount of supersymmetry. Furthermore the Bianhiidentity for the �ve-form, modi�ed by Chern-Simons or \transgression" terms,dF5 = i2G ^G� (1.2)where G is a omplex three-form whih ontains the NS-NS and R-R three-forms, im-plies that the solutions are determined by a funtion that satis�es a Laplae equationwith a soure term. Similarly, for D = 11 supergravity one an onsider an arbitraryCalabi-Yau four-fold and swith on a harmoni self-dual four-form. Now it is theequation of motion for the three-form potential with its transgression terms,d �11 G4 + 12G4 ^G4 = 0 (1.3)whih is playing a key role in the solution. Swithing on the additional uxes inthese type IIB and D = 11 solutions neessarily breaks the onformal symmetry. Aprominent example of suh solutions is the Klebanov-Strassler solution of type IIB[4℄ (see also [5, 6℄), whih is onstruted using the deformed onifold metri. A moregeneral analysis of these kinds of solutions an be found in [7℄.One of the main aims of this paper is to show that we an similarly generalise thelasses of type IIB solutions onsidered in [1℄ and the D = 11 solutions onsidered in[2℄ to inlude three-form ux and magneti four-form ux, respetively. The entralidea is to swith on suh uxes on the six and eight dimensional K�ahler spaes,respetively. We will show that this an be done in a way that maintains the AdS3 andAdS2 fators, and hene the dual onformal symmetry (in ontrast to the examplesdisussed above), and also preserves the same amount of supersymmetry. We �ndthat the solutions are still, loally, spei�ed by a K�ahler metri but (1.1) is modi�edby a term involving the new ativated uxes. We will also onstrut rih new lassesof expliit solutions by following a similar analysis to that of [8℄.The plan of the rest of the paper is as follows. We will summarise the generallasses of AdS3 solutions of type IIB and AdS2 solutions of D = 11 in setion 2. Wehave left some details of the derivations, whih are very similar to those in [1℄ and[2℄, to appendix A. We will also briey interrupt the main narrative to explain howthe solutions an be analytially ontinued so that the AdS fators are replaed byspheres. This gives rise to new general lasses of 1/8 BPS bubble solutions gener-alising those disussed in [8℄ (1/2 BPS bubble solutions were �rst analysed in [9℄,and other studies of general lasses of bubble solutions preserving various amountsof supersymmetry in type IIB and D = 11 supergravity have appeared in [10℄-[23℄).2



In setion 3 we will onstrut expliit AdS solutions by taking the six and eightdimensional K�ahler metris to be produts of two-dimensional K�ahler-Einstein (KE)spaes. For type IIB we will �rst analyse the global properties of the loal solutionswith vanishing three-form ux that were found in [8℄ and alulate the entral hargeof the dual CFTs. These AdS3 solutions are labelled by a rational number s=t 2[�1=2; 0) and an integer N �xing the �ve-form ux. The topology of the internalseven-manifold is a ertain U(1) bundle over a produt of two two-spheres and aRiemann surfae with genus greater than one. We then onsider solutions with non-zero three-form ux by taking one of the K�ahler-Einstein fators to be a two-torus.We �nd that the two other KE spaes must be spheres. After two T-dualities we�nd that the solutions turn out to be the well known AdS3 � S3 � S3 � S1 solutionsof type IIB supergravity (see [24, 25, 26, 27℄). We onlude setion 3 with a similaronstrution of expliit AdS2 solutions of D = 11 with non-vanishing magneti four-form ux.In setions 4 and 5 we will present a di�erent onstrution of loal six and eightdimensional K�ahler metris, using �brations over KE spaes, generalising the on-strutions in [8℄ (see also [28℄). We have reorded some details in appendies C and D,respetively. For type IIB we will onsider the produt of T 2 with a two-dimensional�bration over an S2. This leads to in�nite new expliit examples of AdS3 solutionsof type IIB supergravity with the internal seven dimensional spae having topologyS3 � S2 � T 2 and the metri labelled by a pair of positive relatively prime integersp; q. When the type IIB three-ux is vanishing we show that demanding that the�ve-form is properly quantised implies that as solutions of type IIB string theory theydepend on two more integersM;N whih �x the �ve-form ux and the size of the T 2.For these solutions we alulate the entral harge of the dual CFTs1. We also showthat after two T-dualities the solutions are mapped to type IIB AdS3 solutions withnon-vanishing dilaton and RR three-form: after a further S-duality only NS �elds arenon-zero.Setion 5 arries out similar onstrutions of loal eight dimensional K�ahler met-ris whih are the produt of T 2 with a two-dimensional �bration over a four dimen-sional KE spae with positive urvature. This gives rise to in�nite lasses of AdS2solutions with non-vanishing magneti four-form ux. Setion 6 briey onludes.1The orresponding analysis for the ase when the three-form ux is non-vanishing will be de-termined in [29℄.
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2 AdS solutions through transgressionWe �rst onsider a general lass of supersymmetri AdS3 solutions of type IIB super-gravity that are dual to (0; 2) SCFTs in d = 2. The metri and the self-dual �ve-formtake the form ds2 = e2A �ds2 (AdS3) + ds2(Y7)�F5 = (1 + �10)V ol(AdS3) ^ F2 (2.1)where F2 is a two-form on Y7. The dilaton and axion are onstant and for simpliitywe set them to zero. We also demand that the omplex three-form ux, G, whihontains the NS-NS and R-R three-form �eld strengths, is a three-form on Y7.As we show in appendix A, by following the analysis of [1℄, demanding that thisis a supersymmetri solution to the equations of motion, preserving supersymmetryas desribed in the appendix, leads to the following loal desription. The metri anbe written ds2(Y7) = 14 (dz + P )2 + e�4Ads26 (2.2)where �z is a Killing vetor, ds26 is a K�ahler metri and dP is the Rii form for ds26.The warp fator is given by e�4A = 18R (2.3)where R is the Rii salar for ds26 and we thus need to demand that R > 0. Thetwo-form F2 appearing in the �ve-form an be writtenF2 = 2J � 12d �e4A (dz + P )� (2.4)where J is the K�ahler form for ds26.So far, this is exatly the same as when the three-form ux vanishes [1℄. However,further analysis shows that we an swith on the three-form G, provided that G is alosed, (1; 2) and primitive three-form on the K�ahler spae. In partiular G must beimaginary self-dual, �6G = iG, and harmoni. Furthermore, the Bianhi identity forthe �ve-form with its transgression terms (1.2), implies that the K�ahler metri ds26must satisfy �R � 12R2 +RijRij + 23GijkG�ijk = 0 (2.5)whih is the key equation generalising (1.1).We now onsider a general lass of supersymmetri AdS2 solutions of D = 11supergravity that are dual to superonformal quantum mehanis with two super-4



harges. The metri and the four-form are given byds2 = e2A �ds2 (AdS2) + ds2(Y9)�G4 = Vol(AdS2) ^ F2 + F4 (2.6)where F2 is a two-form on Y9 and F4 is a four-form on Y9. This generalises the lassof solutions studied in [2℄ whih had F4 = 0 i.e. purely eletri uxes.As we show in appendix A, now following the analysis of [2℄, demanding that thisis a supersymmetri solution to the equations of motion, preserving supersymmetryas desribed in the appendix, leads to the following loal desription. The metri anbe written ds2(Y9) = (dz + P )2 + e�3Ads28 (2.7)where �z is a Killing vetor, ds28 is a K�ahler metri and dP is the Rii form for ds28.The warp fator is given by e�3A = 12R (2.8)where R is the Rii salar for ds28 and so we demand R > 0. The two-form F2appearing in the four-form an be writtenF2 = �J + d �e3A (dz + P )� (2.9)where J is the K�ahler form for ds28. This is exatly as in the ase of purely eletrifour-form ux [2℄. We now �nd that we an swith on F4 provided that it is a losed,(2; 2) and primitive four-form on the K�ahler spae. In partiular F4 must be self-dual and harmoni. Furthermore, the equation of motion for the four-form with itstransgression terms (1.3) implies that the K�ahler metri ds28 must now satisfy�R� 12R2 +RijRij + 14!F ijkl4 F4ijkl = 0: (2.10)In the speial ase that the eight-dimensional K�ahler metri ds28 ontains a T 2fator, we an dimensionally redue the D = 11 solution on one leg of the T 2 andthen T-dualise on the other leg, to obtain a type IIB solution. In the ase that F4 = 0,it was shown in [8℄ that the resulting type IIB solution is in fat the AdS3 solutionwith vanishing three-form ux. There is a simple generalisation to non-vanishing F4.Deompose the eight-dimensional K�ahler form asJ8 = J6 + du1 ^ du2 (2.11)where u1; u2 are oordinates on the T 2. Suppose we an write the (2; 2) four form asF4 = iG ^ �du1 + idu2�� iG� ^ �du1 � idu2� (2.12)5



where G is a losed primitive (1; 2) form in six-dimensions (i.e. we are asuumingthat there is no term involving the volume form of the two torus, du1 ^ du2). If wedimensionally redue on the u2 diretion and then T-dualise on the u1 diretion we�nd that the D = 11 AdS2 solution is transformed into the type IIB AdS3 solution.2.1 Bubble solutionsIn subsequent setions we will �nd expliit examples of the AdS3 and AdS2 solu-tions just desribed. Before doing that we pause to briey omment on how theabove lasses of solutions an be analytially ontinued so that the AdS fators arereplaed with spheres. These \bubble" solutions preserve 1/8 of the supersymmetryand generalise those disussed in [8℄.For the type IIB ase, the metri is given byds2 = e2A ��14 (dt+ P )2 + ds2 �S3�+ e�4Ads26� (2.13)where �t is a Killing vetor, ds26 is again a K�ahler metri and dP is the Rii form fords26. The warp fator is given by e�4A = �18R (2.14)where R is the Rii salar for ds26 and so now we want R < 0. The �ve-form ux isgiven by F5 = (1 + �10)V ol(S3) ^ F2 (2.15)where F2 = 2J + 12d �e4A (dt+ P )� (2.16)and J is the K�ahler form for ds26. The three-form G is again a losed, (1; 2) andprimitive three-form on the K�ahler spae. Finally the master equation reads�R � 12R2 +RijRij � 23GijkG�ijk = 0: (2.17)For the D = 11 ase, the metri is given byds2 = e2A �� (dt + P )2 + ds2(S2) + e�3Ads28� (2.18)where �t is a Killing vetor, ds28 is a K�ahler metri and dP is the Rii form for ds28.The warp fator is given by e�3A = �12R (2.19)6



where R is the Rii salar for ds28 and we demand R < 0. The four-form ux is givenby G4 = V ol(S2) ^ F2 + F4 (2.20)where F2 = �J � d �e3A (dt+ P )� (2.21)and J is the K�ahler form for ds28. F4 is again a losed, (2; 2) and primitive four-formon the K�ahler spae. Finally, the master equation is now�R � 12R2 +RijRij � 14!F ijkl4 F4ijkl = 0: (2.22)3 Produt of KE spaesIn this setion we will explore solutions for whih the K�ahler metris ds26 and ds28appearing in (2.2) and (2.7), respetively, are simply the produt of a set of two-dimensional K�ahler{Einstein metrisds22n = nXi=1 ds2(KE(i)2 ) (3.1)where ds2(KE(i)2 ) is a two-dimensional K�ahler-Einstein metri, i.e. loally propor-tional to the standard metri on S2, T 2 or H2. For the latter ase, we an also takea quotient H2=� to get a Riemann surfae with genus greater than one. The metrids22n is normalised so that the Rii form is given byR = nXi=1 Ri = nXi=1 liJi (3.2)where Ri and Ji are the Rii and K�ahler forms of the ds2(KE(i)2 ) metris, respe-tively, and li is zero, positive or negative depending on whether the metri is loallythat on T 2, S2 or H2, respetively. We also have P = Pi Pi with dPi = Ri andthe Rii salar is R = 2Pni=1 li. Note that in the speial ase that two of the liare equal, say l1 = l2, the analysis an be simply extended to over the ase whenthe produt KE(1)2 �KE(2)2 is replaed with a more general four-dimensional K�ahler-Einstein manifold, KE4. Similar generalisations are possible if more of the li areequal. Finally, it will be useful to reall that if the ith KE spae, �gi, is a Riemannsurfae of genus gi, then 12� Z�gi Ri = 2(1� gi) : (3.3)
7



3.1 Type IIBFor this ase, the metri ds2(Y7) appearing in (2.1) is given by1L2ds2(Y7) = 14 (dz + P )2 + e�4A " 3Xi=1 ds2(KE(i)2 )# (3.4)where we have introdued an overall length sale L, and the warp fator is given bye�4A = 14(l1 + l2 + l3) : (3.5)Writing the �ve-form ux as F5 = AdS3 ^ F2 + !5 (3.6)we have1L4F2 = 2l1 + l2 + l3 [(l2 + l3)J1 + (l1 + l3)J2 + (l1 + l2)J3℄1L4!5 = 14 [(l1 + l2)J1 ^ J2 + (l1 + l3)J1 ^ J3 + (l2 + l3)J2 ^ J3℄ (dz + P ) :(3.7)3.1.1 G = 0We �rst onsider the loal solutions with zero three-form ux, G = 0, that werepresented in setion 6.1 of [8℄. We will show that there are an in�nite number ofglobally de�ned solutions with appropriately quantised �ve-form ux and we willalulate the entral harges of the dual d = 2 (0; 2) SCFTs.It was shown in [8℄ that the master equation (1.1) is solved if (l1; l2; l3)=(l1;� l11+l1 ; 1)with l1 2 [�1=2; 0℄. When l1 = 0 we obtain the well known AdS3 � S3� T 4 solution.We therefore restrit to l1 2 [�1=2; 0) so that the six-dimensional K�ahler manifold is�g � S21 � S22 , where �g is a Riemann surfae with genus g > 1.We now examine the onditions required for Y7 to be a well de�ned U(1) �brationover �g�S21�S22 . If we let the period of the oordinate z be 2�l then we require thatl�1P be a bona-�de U(1) onnetion. This is guaranteed if the integral of l�1dP=(2�)over a basis of two yles on �g�S21�S22 are all integers. Taking the obvious basis, weonlude that we should take z to have period 4� and then the periods are (1�g; 1; 1).We now turn to the �ve-form. We �rst observe that this is a globally de�ned�ve-form on Y7. To ensure that we have a good solution of type IIB string theory, wedemand that the �ve-form ux is properly quantised:N(D) = 1(2�ls)4gs ZD F5 2 Z (3.8)8



for any �ve-yle D 2 H5(Y7;Z). A basis for the free part of H5(Y7;Z) is obtained bytaking the U(1) �bration over a basis of four-yles on the base �g�S2�S2. Let D1,D2 and D3 denote the �ve yles arising from the four-yles �g � S21 , �g � S22 andS21 � S22 , respetively. Sine the U(1) �bration is non-trivial, these �ve-yles are notindependent in homology and we have [D1℄ + [D2℄ + (1� g)[D3℄ = 0. Calulating theN(Di) we then dedue that for them to be all integers, l1 must be rational, l1 = s=tand L4�gsl4s = shN (3.9)where h = hf(t; (g � 1)). Indeed, we then �nd thatN(D1) = �s(1� g)h NN(D2) = (s+ t)(1� g)h NN(D3) = � thN : (3.10)Clearly we have N(D1)+N(D2)+(1�g)N(D3) = 0 whih orresponds to the relationamongst the �ve-yles mentioned above.We have thus established that there is an in�nite lass of solutions labelled byrational l1 = s=t 2 [�1=2; 0), eah of whih gives rise to a d = 2 (0; 2) SCFT. Theentral harge of the SCFTs is given by = 3RAdS32G(3) (3.11)where G(3) is the three-dimensional Newton's onstant and RAdS3 is radius of theAdS3 spae. In our onventions the type IIB supergravity Lagrangian has the form1(2�)7g2s l8sp�detgR + : : : (3.12)and we alulate that  = 6(g � 1)(s2 + st+ t2)h2 N2 : (3.13)Note that for the speial ase of s = 1; t = �2 we have (l1; l2; l3) = (�1=2; 1; 1): this isa ase whose entral harge was already alulated in [30℄ (substitute M = 8, m = 2into equation (6.14) of that referene).3.1.2 G 6= 0We now turn to the onstrution of solutions with non-vanishing three-form ux. Inorder to �nd a suitable three-form ux G we will demand that the produt of the KE9



spaes inludes a T 2 fator, l3 = 0. We then take the three-form to be given by1L2G = d�u ^ [m1J1 +m2J2℄ (3.14)where u is a omplex oordinate on the T 2 and m1; m2 are onstant. This is losedand is also a (1; 2) form on the K�ahler spae. In order that it is primitive we mustset m1 = �m2. Without loss of generality we take m1 > 0. It just remains to solvethe master equation (2.5) whih givesl1l2 = 4m21 : (3.15)Realling the expression for the warp fator, (3.5) (with l3 = 0), whih must bepositive, we dedue that li > 0 and in partiular our six-dimensional K�ahler spaemust be S21 � S22 � T 2. After a possible resaling we an take l2 = 1. The �ve-formux is given by (3.6) and (3.7) with l3 = 0.To analyse this solution further, it is onvenient to perform suessive T-dualitieson the two legs of the T 2 (whih we take to be square). Using the formulae inappendix B, we are led to the following type IIB solution21L2ds2 = ds2(AdS3) + a+ 14a ds2(S21) + a+ 14 ds2(S22)+14(dz + P1 + P2)2 + a4(du1 � 1aP1 + P2)2 + (du2)21L2F3 = 2V ol(AdS3) + 14(R1 +R2)(dz + P1 + P2)� a4(1aR1 �R2)(du1 � 1aP1 + P2)e2� = 1 : (3.16)Note that here (unlike above) the metris on the two-spheres have unit radius and a =l1=l2. Introduing the oordinates  1 = (a=(1+a))(z�y) and  2 = (1=(1+a))(z+ay)and then ompleting the squares using the  i we are led to1L2ds2 = ds2(AdS3) + a + 1a ds2(S31) + (a+ 1)ds2(S32) + (du2)21L2F3 = 2V ol(AdS3) + 2(a+ 1)a V ol(S31) + 2(a+ 1)V ol(S32) (3.17)where ds2(S3i ) are the round metris on unit radius three spheres. This is the wellknown AdS3 � S3 � S3 � S1 solution of type IIB supergravity (see [24, 25, 26, 27℄).Note that this solution is dual to a d = 2 SCFT with (4; 4) supersymmetry: when weT-dualise bak the on�guration with G 6= 0 we will possibly break some of the super-symmetry: our onstrution guarantees that there is at least (0; 2) supersymmetry,but we haven't heked if more supersymmetry is preserved.2To obtain the solution in this form, we resaled the u1 oordinate, u1 ! u1(m1=l2), we set thedilaton to zero by shifting the dilaton and resaling F3, and we also absorbed the warp fator intoL2. 10



3.2 D = 11We briey onsider similar onstrutions of AdS2 solutions of D = 11 supergravity.The metri ds2(Y9) appearing in (2.6) is given byds2(Y9) = (dz + P )2 + e�3A 4Xi=1 ds2(KE(i)2 ) (3.18)and the warp fator is given by e�3A = 4Xi=1 li : (3.19)The four form ux is G4 = V ol(AdS2) ^ F2 + F4 (3.20)withF2 = 2P4i=1 li [(l1 + l2 + l3)J1 + (l1 + l3 + l4)J2 + (l1 + l2 + l4)J3 + (l1 + l2 + l3)J4℄F4 = Xi;j mij J i ^ J j (3.21)where the entries of the symmetri matrix m are onstants and the diagonal entriesare zero. Clearly F4 is a (2; 2) form. Demanding that it is primitive implies thatm12 = m34; m13 = m24; m14 = m23 ; (3.22)and hene F is self dual, and m12 +m13 +m14 = 0 : (3.23)Finally, the master equation (2.10) now implies thatl1l2 + l1l3 + l1l4 + l2l3 + l2l4 + l3l4 = 2[(m12)2 + (m13)2 + (m14)2℄ : (3.24)In the speial ase that one has a T 2 fator, say l4 = 0, one might wonder if one anget a type IIB AdS3 solution after dimensional redution and T-duality. Followingthe disussion at the end of setion 2, in order to get an AdS3 fator one needs thatmi4 = 0 for all i. This implies all the mij = 0 and one returns to the ases analysedin [8℄.
11



4 Fibration Construtions using KE spaes: typeIIB solutionsIn this setion we will onstrut new AdS3 solutions of type IIB supergravity bothwith G = 0 and G 6= 0. For both ases we will take the loal six-dimensionaldimensional K�ahler metri, ds26, to be the produt of T 2 with a four dimensional loalK�ahler metri whih is onstruted using the line bundle over a two dimensionalK�ahler Einstein spae, whih we take to be an S2. The onstrution of suh K�ahlerspaes is very similar to the onstrution in setion 3 of [8℄ whih in turn was inspiredby [31℄. Using this onstrution we take G to be the wedge produt of a (0; 1) form onthe T 2 with a (1; 1) form on the four-dimensional K�ahler spae. We have presenteda few details of the derivation of these solutions in appendix C.The metri of type IIB supergravity is given by1L2ds2 = �y1=2 [ds2(AdS3) + ds2(Y7)℄ (4.1)where L is an arbitrary length sale,ds2(Y7) = �2 � 1 + 2y �Q2y24�2 Dz2 + U(y)4(�2 � 1 + 2y �Q2y2)D 2 + dy24�2y2U(y)+ 1�2ds2(S2) + y�2ds2(T 2) (4.2)with D = d + 2V , dV = 2JS2 and the round metri on S2, ds2(S2), is normalisedso that RS2 = 4JS2. We also haveDz = dz � g(y)D (4.3)with g(y) = y(1�Q2y)�2 � 1 + 2y �Q2y2 (4.4)and U(y) = 1� 1�2 (1� y)2 �Q2y2 (4.5)where �;Q are positive onstants.The self-dual �ve-form an be writtenF5 = AdS3 ^ F2 + !5 (4.6)with1L4F2 = �2(1�Q2y)2y(�2 � 1 + 2y �Q2y2)dy ^D + �22y2dy ^Dz + 2JS2 + 2V ol(T 2) (4.7)12



and1L4!5 = �y(1�Q2y)�2 V ol(T 2) ^ JS2 ^Dz + U(y)(�2 � 1 + 2y �Q2y2)V ol(T 2) ^ JS2 ^D � 14�2y2dy ^D ^ JS2 ^Dz � 14�2V ol(T 2) ^ dy ^D ^Dz : (4.8)If we introdue a omplex oordinate u = u1 + iu2 on the T 2 with ds2(T 2) = dud�u,we an write the three-form ux as1L2G = Q� d�u ^ �(1� g)2 dy ^D � 12dy ^Dz + 2yJS2� : (4.9)We now investigate how to restrit the parameters (�;Q) and hoose suitableranges of the oordinates so that these loal solutions an be extended to provide goodglobally de�ned solutions. In setion 4.1, for G = 0, we show that there are an in�nitenumber of solutions of type IIB string theory, labelled by a pair of positive relativelyprime integers, p; q, and two integers M;N where Y7 has topology S3�S2�T 2. The�ve-form ux is properly quantised an we also alulate the entral harge of theorresponding dual CFTs. In setion 4.2, for G 6= 0, we show that there is a similarin�nite lass of AdS3 solutions of type IIB supergravity, but the analysis of the uxquantisation will be studied in [29℄. In setion 4.3 we show that after two T-dualitesand an S-duality all of these solutions get transformed into type IIB solutions withonly NS �elds being non-trivial.4.1 Type IIB solutions with G = 0Setting Q = 0 so that U(y) = 1� 1�2 (1� y)2 (4.10)we hoose y1 � y � y2 (4.11)where yi are two positive distint roots of U . The roots of U are given byy1 = 1� �; y2 = 1 + � (4.12)and we therefore hoose 0 < � < 1.We want to argue, after suitable further restritions, that Y7 = M5 � T 2 is theprodut of a two-torus with a �ve manifoldM5, parametrised by z; y;  and the roundS2. More preisely the manifold M5 will be a good irle �bration, with the �breoordinate labelled by z, over a four-dimensional base manifold, B4, parametrised by13



y;  and the round S2. The analysis is very similar to that for the �ve-dimensionalSasaki-Einstein metris of [32℄ (for further diussion see [33℄).We �rst observe that if we hoose the period of  to be 2�, then y;  parametrise asmooth two-sphere (in partiular, one an hek that there are no onial singularitiesat the poles y = y1 and y = y2) and that B4 is a smooth manifold whih is an S2bundle over the round S2. In fat, topologially, B4 = S2 � S2. To onstrut M5as a irle bundle over B4, we let z be periodi with period 2�l. We next observethat the norm of the Killing vetor �z is non-vanishing and so the size of the S1 �bredoesn't degenerate. If we write Dz = dz � A, we require that l�1A is a onnetionon a bona �de U(1) �bration. This is guaranteed if the orresponding �rst Chernlass l�1dA lies in the integer ohomology H2deRahm(B4;Z). It is straightforward to�rst hek that l�1dA is indeed a globally de�ned two-form on B4. We next need tohek that periods are integral. A basis for the free part of the homology on B4 isgiven by �f , the (y;  ) two-sphere �bre at a point on the round S2, and �1, �2, thetwo-spheres loated at the poles y = y1, y = y2, respetively. We note that we havethe relation �1 = �2 � 2�f in homology. If we denote the periods for �f and �2 tobe integers �q and p, respetively, we onlude that must haveg(y2)� g(y1) = �lqg(y2) = lp2 : (4.13)We note that the period for �1 is then p + 2q, onsistent with the relation betweenthe two-yles noted above. These onditions are satis�ed if� = qp+ ql = 2(p+ q)p(p+ 2q) (4.14)with p; q > 0. We hoose p and q to be relatively prime and then Y7 is the produtof T 2 with a simply onneted manifold M5. By following the argument in [32℄ weonlude that topologiallyM5 is S2 � S3.Realling that the irle bundle (parametrised by z) is trivial over the two yleq�2+p�f we onlude that setting z to be onstant, q�2+p�f generates H2(M5;Z).We also observe that M5 has three obvious three-yles: E1 and E2 obtained by�xing y = y1 or y = y2, i.e. the irle bundle over �1 and �2, and the three-yleE3 obtained by �xing a point on the round S2, i.e. the irle bundle over �f . Ifwe let E be the generator of H3(M5;Z) we have E1 = �pE, E2 = �(p + 2q)E and14



E3 = �qE. The generator E an be obtained, for example, as the linear ombinationE = e1E1 + e2E3 where e1 and e2 are integers satisfying e1p+ e2q = �1.At this stage we have shown that for eah pair of relatively prime positive integers,(p; q), we have a regular manifold Y7 =M5 � T 2 with M5 = S2 � S3. In order to geta good solution of type IIB string theory we now demand that the �ve-form ux isproperly quantised: N(D) = 1(2�ls)4gs ZD F5 2 Z (4.15)for any �ve-yle D 2 H5(Y7;Z). There are two independent �ve-yles, M5 at a�xed point on T 2 and S3 � T 2. For the latter, the S3 fator is the generator E ofH3(M5;Z), at a �xed point on the T 2. It is illuminating to alulate the ux throughthe �ve-yles Ei � T 2, where the Ei are the three-yles on M5 introdued in thelast paragraph. After setting L44�gsl4s = qp2(p+ 2q)2(p+ q)4 NV ol(T 2) = � q(p+ q)2p(p+ 2q)MN (4.16)where M and N are integers, we �nd that1(2�ls)4gs ZM5 F5 = �N1(2�ls)4gs ZE1�T 2 F5 = �pM1(2�ls)4gs ZE2�T 2 F5 = �(p + 2q)M1(2�ls)4gs ZE3�T 2 F5 = �qM : (4.17)We see that the results are onsistent with the relations in homology between thethree-yles Ei on M5 that we noted above: in partiular the �ve-form ux throughthe yle E � T 2 is M .We are now in a position to alulate the entral harge of the orresponding duald = 2 (0; 2) SCFT. Using (3.11) and (3.12) we �nd that = 6pq2(p+ 2q)NM(p+ q)2 : (4.18)
15



4.2 Type IIB solutions with G 6= 0Let us now onsider the solutions with Q 6= 0 and hene non-vanishing G. The rootsof U are now given by y1;2 = 1� �p1 +Q2(�2 � 1)1 +Q2�2 (4.19)and in order that we have two positive distint roots, y2 > y1 > 0 we demand that0 < �2 < 1; 0 � Q2 < 11� �2 : (4.20)We will again argue that Y7 =M5 � T 2 with M5 a irle �bration, with the �breoordinate labelled by z, over a four-dimensional base manifold, B4, parametrised byy;  and the round S2. To ensure that y;  parametrise a two-sphere, remarkably, itis again suÆient to hoose  to have period 2�. This again leads to a regular B4,whih is again topologially S2 � S2. Following the logi of the last subsetion, andalulating the periods of l�1dA=(2�), to ensure that we have a good irle �brationover B4 we now impose g(y2)� g(y1) = �lq � �(lp)=Xg(y2) = lp2 (4.21)for relatively prime integers p and q and we have de�ned X = p=q.Let us �rst onsider Q 6= 1. If X > 0 we hoose Q < 1 and if �1 < X < 0 wehoose Q > 1 (other hoies for X lead to the same solutions). We have�2 = 1�Q2(1 +X)2 �Q2l = 2((1 +X)2 �Q2)p(2 +X)(1 +X) (4.22)and y1 = X(1 +X +Q2)(1 +X)2 �Q4y2 = (2 +X)(1 +X �Q2)(1 +X)2 �Q4 : (4.23)TopologiallyM5 = S2�S3. For future referene, we note that as in the last subse-tion, the generator of H2(MZ) is given by q�2 + p�f at �xed z. Also as in the lastsubsetion, M5 has three natural three-yles Ei and the generator E of H3(M5;Z),is a linear ombination of them. 16



For Q = 1 we observe thaty1 = 1� �21 + �2 ; y2 = 1 : (4.24)We further observe that g(y2) = 0 and hene we just need to demand that the periodof l�1dA=(2�) over �f , the two sphere �bre parametrised by y;  , is quantised whihan be ahieved by hoosing l = 21� �2 : (4.25)For Q = 1, the topology of M5 is again S2� S3, but the details are slightly di�erent,sine the z irle is only �bred over �f . For future referene, we an take �2 togenerate H2(M5;Z) and similarly, we an take the z irle �bred over �f to representH3(M5;Z).We have now shown that it is possible to swith on the three-form ux and obtainin�nite lasses of regular geometries. Furthermore, we observe that the �ve-form andthe three-form are globally de�ned on Y7.In order to �nd good solutions of string theory we need to ensure that the three-form is suitably quantised. Writing G = �dB � idC(2) (sine the axion and dilatonare zero), we need to demand that1(2�ls)2gs Z dC(2) 2 Z1(2�ls)2 Z dB 2 Z : (4.26)Due to the Bianhi identity dF5 = i2G ^G� (4.27)we also need to ensure that orresponding Page harges (see e.g. [34, 35℄) are quan-tised. We will not arry out this analysis here, but an equivalent analysis will bearried out in [29℄ using the results of the next subsetion.4.3 T-dual solutionsAfter arrying out T-dualities along eah of the two legs of the T 2, using the formulaein appendix B, we arrive at the following type IIB solutions. The string frame metriis given by 1�L2ds2� = �y1=2 [ds2(AdS3) + ds2(X7)℄ (4.28)
17



whereds2(X7) = �2 � 1 + 2y �Q2y24�2 Dz2 + U(y)4(�2 � 1 + 2y �Q2y2)D 2 + dy24�2y2U(y)+ 1�2ds2(S2) + (du1 � Qy2� [(1� g)D �Dz℄)2 + (du2)2 : (4.29)The dilaton is given by e2� = �2y (4.30)and the RR three-form �eld strength is1�L2dC(2) = � 14�2dy ^D ^Dz � y�2J ^Dz + [1� yg�2 ℄J ^D + Q2�du1 ^ [dy ^Dz � 4yJ � (1� g)dy ^D ℄ + 2V ol(AdS3) :(4.31)Note that �L is an arbitrary length sale that will be �xed by onsidering quantisationof the ux.After a further S-duality transformation we obtain AdS3 solutions with only NS�elds non-vanishing, but we will ontinue to work with the above solution.For these solutions to be good solutions of type IIB string theory we need toensure that the metri extends to a metri on a globally de�ned manifold X7 andthat both the eletri and magneti RR three-form harges are properly quantised:n1 = 1(2�ls)6gs ZX7 �dC(2) 2 Z (4.32)and 1(2�ls)2gs ZT dC(2) 2 Z (4.33)when integrated over any three-yle T 2 H3(X7;Z).It is useful to note that sine1�L6 � dC(2) = 14�2y2J ^ dy ^D ^Dz ^ du1 ^ du2 + V ol(AdS3) ^ (: : : ) (4.34)we have n1 = � �Lls�6 lgs64�3�2�u1�u2y2 � y1y1y2 : (4.35)Thus, for any good solution of type IIB string theory, the entral harge an then bewritten  = 6n1� �Lls�2 1gs : (4.36)
18



To get the expliit expression we need the values of �u1, �u2 and �L2. In this paperwe will only analyse this further for the ase of Q = 0, reovering results ompatiblewith those of the last subsetion. The analysis for the ase of Q 6= 0 will be arriedout in [29℄.4.3.1 Q = 0When Q = 0, we �rst observe that ds2(X7) is preisely the same as ds2(Y7) in (4.2).In setion 4.1 we showed that X7 = M5 � T 2 where M5 is a manifold parametrisedby z;  ; y and the round S2 and the T 2 is parametrised by u1 and u2. FurtherM5 = S2 � S3.Let us now onsider the quantisation of the three-form on X7. After �xing a pointon the torus, the three-yles Ei onM5, introdued in setion 4.1, all give rise to threeyles on X7. If we hoose the length sale to satisfy1gs � �Lls�2 = pq2(p+ 2q)M(p+ q)2 (4.37)where M is an integer then we alulate1(2�ls)2gs ZE1 dC(2) = �pM1(2�ls)2gs ZE2 dC(2) = �(p+ 2q)M1(2�ls)2gs ZE3 dC(2) = �qM : (4.38)In partiular we see that the ux through the generator of H3(X7;Z), the three-yleE introdued in setion 4.1 at a �xed point on the torus, is M .The expression (4.35) takes the more expliit formn1 = � �Lls�6 1gs16�3V ol(T 2) (p+ q)4p2q(p+ 2q)2 (4.39)whih, after substituting (4.37), provides a quantisation ondition on V ol(T 2). Forthe entral harge, after substituting (4.37) into (4.36), we now reover the previousresult (4.18) (with N = n1), as expeted.The uxes that we have ativated, plus the amount of supersymmetry preserved,suggests that the dual SCFT might arise by taking on�gurations of fundamentalstrings interseting NS �vebranes with the other four diretions of the NS �vebraneswrapped on a holomorphi four-yles inside a Calabi-Yau four-fold.19



4.3.2 Q 6= 0A areful analysis of the topology of X7 and the quantisation of the three-form uxwhen Q 6= 0 will be arried out in [29℄.5 Fibration Construtions using KE spaes: D =11 solutionsIn this setion we will present new AdS2 solutions of D = 11 supergravity withmagneti four-form ux swithed on. We take the loal eight-dimensional dimensionalK�ahler metri, ds28, to be the produt of T 2 with a six-dimensional loal K�ahler metriwhih is onstruted using the line bundle over a four dimensional K�ahler Einsteinspae with positive urvature. We have presented a few details of the derivation ofthese solutions in appendix D.The metri of D = 11 supergravity is given by1L2ds2 = 164=3�2=3y4=3 [ds2(AdS2) + ds2(Y9)℄ (5.1)where L is an arbitrary length sale,ds2(Y9) = (1� 8�y + 12�y2 � 4�Qy4)Dz2 + 4�yU(y)(1� 8�y + 12�y2 � 4�Qy4)D 2+ 9�yU(y)dy2 + 36�yds2(KE+4 ) + 36�y2ds2(T 2) (5.2)with D = d + 2V , dV = 2JS2 and the metri on the four-dimensional positivelyurved K�ahler-Einstein spae, ds2(KE+4 ), is normalised so that RKE = 6JKE. Wealso have Dz = dz � g(y)D (5.3)with g(y) = � 2�y(1� 3y + 2Qy3)1� 8�y + 12�y2 � 4�Qy3 (5.4)and U(y) = 1� 9�y(1� y)2 �Qy3 (5.5)with �;Q onstants.Writing the four-form as G4 = AdS2 ^ F2 + F4 (5.6)20



we have 1L3F2 = �JKE � 2y3dy ^Dz + 2gy3 dy ^D � i2du ^ d�u (5.7)and 1L3F4 = 6�1=2Q 2JKE ^ JKE + 13[(1� g)D �Dz℄ ^ JKE ^ dy�2iy2JKE ^ du ^ d�u� iy3 dy ^ [(1� g)D �Dz℄ ^ du ^ d�u! : (5.8)We will not arry out a omplete analysis of these solutions, but it is lear thatthere are in�nitely many new regular solutions. As in the last setion, the task isto hoose appropriate values of the onstants �;Q and ranges of the oordinates sothat Y9 is a U(1) �bration, with �bre parametrised by z, over an eight dimensionalbase manifold, parametrised by  ; y, the KE+4 spae and the two-torus. By hoosingappropriate �;Q we an restrit y to lie between two suitable roots of the ubi U = 0.One an then show that if  has period 2�, then, remarkably, the eight-dimensionalbase manifold is a regular S2 bundle, with S2 parametrised by y;  , over KE+4 � T 2.Demanding that the U(1) �bration is well de�ned, for appropriately hosen period forz, will lead to additional restritions on the parameters, but it is lear that there willbe in�nite number of solutions. Finally, there will be additional restritions imposedby demanding that the four-form ux Page harges are suitably quantised.We onlude this setion by pointing out that when F4 = 0, i.e. when Q = 0, ifwe dimensionally redue on one leg of the T 2 and T-dualise on the other, we obtaintype IIB AdS3 solutions as onstruted in [28℄ (see appendix A and setion 3.1 of[8℄). However, when F4 6= 0, while we still get type IIB solutions, beause F4 has aterm proportional to the volume of the torus, the metri will no longer be a warpedprodut of AdS3 with a seven manifold.6 ConlusionsWe have analysed new general lasses of supersymmetri AdS3 solutions of type IIBsupergravity and AdS2 solutions of D = 11 supergravity, whih are dual to SCFTswith (0; 2) supersymmetry in d = 2 and supersymmetri quantum mehanis withtwo superharges, respetively. The onstrutions whih generalise those of [1, 2℄ toallow for additional uxes, depend ruially on the \transgression terms" appearingin the Bianhi identities. 21



We also presented a rih set of new expliit examples using some onstrutionsthat generalise those of [8℄. For the type IIB AdS3 solutions we found an in�nitelass of solutions with vanishing three-form ux in setion 3.1 and determined theentral harge of the dual SCFT. In setion 4 we presented a di�erent lass of expliitsolutions of type IIB, with the three-form ux labelled by Q. The solutions have atwo-torus and after two T-dualities and an S-duality we showed that the solutions anbe written in terms of NS �elds only. For the ase when Q = 0 we showed that thesolutions extend to well de�ned solutions of type IIB string theory and we alulatedthe orresponding entral harge. The analysis for the ase of Q 6= 0 will be arriedout in [29℄.We also onstruted analogous AdS2 solutions of D = 11 supergravity. It wouldworthwhile arefully analysing the onditions required on the loal solutions to giverise to properly quantised solutions of M-theory.Despite the rihness of the onstrutions we have presented, it is lear that theyan be generalised still further. For example, the D = 11 solutions in setion 5 areonstruted using a four-dimensional K�ahler-Einstein manifold. For the speial asewhen this is S2 � S2 there are almost ertainly generalisations when we allow theratio of the urvatures of the two S2's to vary.It remains an important outstanding problem to identify the dual SCFTs for all ofthese examples. For the lasses of type IIB AdS3 solutions that depend on NS �eldsonly, it would also be very interesting to onstrut the worldsheet CFT desribingthe type IIB solutions.We also showed how the general lass of AdS solutions an be analytially on-tinued to obtain general lasses of 1/8 BPS bubble solutions with additional uxesto the lasses of solutions onsidered in [8℄. It would be interesting to study thesefurther. For example, the onstrutions of this paper an be used to obtain expliitsolutions.AknowledgementsWe would like to thank David Ridout, Volker Shomerus, Daniel Waldram and es-peially James Sparks for helpful disussions. AD and NK would also like to thankthe Institute for Mathematial Sienes at Imperial College and JPG would like tothank the Perimeter Institute for hospitality. JPG is supported by an EPSRC SeniorFellowship and a Royal Soiety Wolfson Award. NK is supported by the SieneResearh Center Program of the KOSEF through the Center for Quantum Spaetime
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(CQUeST) of Sogang University with grant number R11-2005-021, and by the KoreaResearh Foundation Grant No. KRF-2007-331-C00072.A AdS solutionsA.1 AdS3 solutions of type IIB supergravityWe will be interested in bosoni on�gurations of type IIB supergravity with onstantaxion and dilaton. For simpliity we will mostly set the axion and dilaton to zero.We will use the onventions for type IIB supergravity that were used in [36℄. Theonditions for suh a on�guration to be supersymmetri read:rM�� 196 ��MP1P2P3GP1P3P3 � 9�P1P2GMP1P2� �+ i16 � 5!�M1:::M5FM1:::M5�M� = 0; (A.1)�P1P2P3GP1P2P3� = 0; (A.2)where F5 is self-dual, F5 = �10F5 and the omplex three-form G an be written3G = ie�=2 ��dB � dC(2)� ;� = C(0) + ie��: (A.3)We have also hosen �11� = �� where �11 = �0 : : :�9. and we take �0:::9 = +1. Toobtain a supersymmetri solution to the equations of motion it is suÆient [36℄ toalso impose rPGMNP = � i6FMNP1P2P3GP1P2P3 (A.4)GP1P2P3GP1P2P3 = 0 (A.5)dG = 0 (A.6)dF = i2G ^G� (A.7)and at most one omponent of the Einstein equations, whih is automatially solvedfor the lasses of solutions we onsider.We now introdue the following ansatzds2 = e2Ads2 (AdS3) + ds27;F5 = (1 + �10)V ol(AdS3) ^ F2; (A.8)3If one hanges the sign of C(2) one gets the onventions used in [38℄ .23



as in [1℄, but generalised to inlude a losed three form G de�ned on the sevendimensional spae. We also demand that the Killing spinors are the same as thosefor the AdS3 solutions with G = 0 that were analysed in [1℄.For the gamma matries we take�� = �1 
 I8�8 
 ��; � = 0; 1; 2�a = �2 
 a 
 I2�2; a = 3; : : : ; 9 (A.9)where �i are Pauli matries and we hoose the three-dimensional and seven dimen-sional gamma matries �� and a, respetively, to satisfy�0�1�2 = �I2�2;Ya a = �iI8�8: (A.10)For the Killing spinor � we make the ansatz� = �
 � 
  (i)n (A.11)where � is a onstant spinor satisfying�3� = � (A.12) (i)n are Killing spinors on AdS3 satisfyingr̂� (i)n = n2 �� (i)n ; n = �1; i = 1; 2; (A.13)and � is a seven dimensional Dira spinor. After substituting into (A.1) we �nd thefollowing system of equations ra� � 116e�3A 6F2a� = 0 (A.14)�n2 e�A + i2 6�A + i16e�3A 6F2� � = 0 (A.15)p2p3G�ap2p3� = 0 (A.16)p1p2p3Gp1p2p3� = 0: (A.17)As shown in [1℄, by just using equations (A.14) and (A.15), the geometry and �veform ux are onstrained to take the loal formds2 = e2A �ds2 (AdS3) + 14 (dz + P )2 + e�4Ads26�F2 = 2nJ � 12d �e4A (dz + P ℄� (A.18)24



where �z is a Killing vetor, ds26 is a six dimensional K�ahler metri with K�ahler formJ , Rii form given by R = n dP , salar urvature R = 8e�4A and holomorphi threeform 
. This result is obtained by analysing various bilinears in �. In partiularwe note that �y� = eA, 
 = e2Aeinz�T(3)� and J = �eAi�y(2)�. Furthermore,K � �y(1)� = (e2A=2)(dz + P ), so that the orresponding dual vetor is the Killingvetor 2�z. It is also useful to note that 	 � �T(4)� = �e�3Ae�nizK ^ 
.We next argue that iKG = 0: (A.19)To see this we �rst multiply (A.16) by �Tka and (A.17) by �Tk to dedue that
kp1p2(iKG)p1p2 = 0; �
kp1p2(iKG)p1p2 = 0 : (A.20)This shows that the (0; 2) and (0; 2) piees of iKG vanish. Next multiplying (A.16)by �Tq1q2q3 we dedue that �
p[q1q2Gq3℄pr = 0 : (A.21)Letting q1 be just in the z diretion we dedue that�
pq1q2(iKG)pr = 0 (A.22)showing that the (1; 1) piee of iKG also vanishes.Sine iKG = 0 we an now deompose G in terms of (p; q) forms on B6G = G(1;2) +G(2;1) +G(3;0) +G(0;3):From equations (A.16) and (A.17) we obtain
p1p2p3Gp1p2p3 = 0; �
p1p2 aGp1p2b = 0; (A.23)implying that only the (1; 2) omponent of the three form G an be non-zero. Fromequation (A.16) we have that J ^G = 0: (A.24)Thus we onlude that supersymmetry implies that the (1; 2) form G is primitive.These two properties when ombined give the duality ondition on the base B6�6 G = iG; (A.25)where we used the volume form Vol6 = 16 J ^ J ^ J: (A.26)25



We an now easily hek that (A.4) and (A.5) are both satis�ed.Thus to ensure that all equations of motion are satis�ed we just need to ensurethat (A.7) holds. Using (A.25) we �nd that (A.7) an be written as116J ^ R ^R + 132d �6 dR = �18G ^ �6G�; (A.27)whih may also be written as a salar equation�R � 12R2 +RijRij + 23GijkG�ijk = 0: (A.28)Note that in the main text we have �xed n to be +1. The solution preserves foursupersymmetries sine i runs from 1 to 2 in the AdS3 Killing spinors  (i)n appearingin (A.11) and � is a Dira spinor. Two of these are Poinar�e supersymmetries andtwo are speial onformal supersymmetries. Using horospherial oordinates, thePoinar�e Killing spinors on AdS3 are eigenvalues of the gamma matrix along theradial diretion, say �2 [37℄. Observing that �01 = �I2�2 
 I8�8 
 �2 we see that thetwo Poinar�e supersymmetries are eigenvalues of �01 with the same eigenvalue andhene the solutions are dual to SCFTs with (0; 2) supersymmetry.A.2 AdS2 solutions of D = 11 supergravityThe ondition for a bosoni on�guration of D = 11 supergravity to be supersym-metri readsÆ M = rM�+ 1288 ��MN1N2N3N4 � 8ÆN1M �N2N3N4�G4N1N2N3N4� = 0; (A.29)where we are using the onventions of [39℄ and in partiular �0:::10 = 1 and �0:::10 = +1.For the supersymmetri bosoni on�gurations we will be onsidering, in order thatall equations of motion are satis�ed it is suÆient [39℄ to also just demand thatdG4 = 0;d �11 G4 = �12G4 ^G4: (A.30)Our AdS2 ansatz is ds2 = e2Ads2 (AdS2) + ds29;G4 = Vol(AdS2) ^ F2 + F4; (A.31)where F2 and F4 are losed forms de�ned on the nine dimensional spae. For thegamma matries we perform the redution�� = �� 
 I; � = 0; 1�a = �2 
 a; a = 2; : : : ; 10 (A.32)26



with � and  being real matries and we use the onventions�0�1�2 = �1;Ya a = �1: (A.33)In this representation we an make the ansatz for the eleven dimensional Majoranaspinor � = �(i)n 
 � + :: (A.34)where the � is a nine-dimensional Dira spinors and the real three-dimensional spinor�(i)n satis�es r̂��(i)n = in2 ���2�(i)n ; i = �1; n = �1; (A.35)and an be taken to satisfy the orthogonality ondition(�(i)n )y�2�(i)n = 0: (A.36)(whih an be heked, for example, by expliitly alulating the spinors).We now �nd the following system of equations�ra + 124e�2A � ba F2b � 4F2abb�� � = 0 (A.37)�ine�A + a�aA� 16e�2AabF2ab� � = 0 (A.38)b1b2b3F4ab1b2b3� = 0: (A.39)Using the results of [2℄ one an show that equations (A.37) and (A.38) imply thatthe metri and the two form ux are onstrained to be of the formds2 = e2A �ds2 (AdS2) + (dz + P )2 + e�3Ads28� ; (A.40)F2 = nJ + d �e3A (dz + P )� ; (A.41)where R = �ndP and ds28 is K�ahler with K�ahler form J , Rii potential given by Pand salar urvature given by R = 2e�3A.The onstraint (A.39) implies that the only non-zero part of the magneti om-ponent F4 is a (2; 2) and primitive form with no non-zero omponents along the zdiretion: J ^ F4 = 0; (A.42)iKF4 = 0: (A.43)27



Here K is the one-form onstruted out of the nine dimensional bilinears K =�y(1)� = e2A (dz + P ) whose dual is the Killing vetor �z. Note that these on-ditions imply that the four form is also self-dual with respet to ds28:�8 F4 = F4: (A.44)Using that the D = 11 epsilon tensor is given by � = �e�AV ol(AdS2)(dz + P )J44! , we�nd that the equation of motion for the four form (A.30) implies thatJ2 ^R ^R + d �8 dR = F4 ^ F4: (A.45)whih may also be written as a salar equation�R � 12R2 +RijRij + 14!FijklF ijk = 0: (A.46)B T-dualityWe onsider a type IIB solution with a square two-torus, parametrised by u1 and u2,of the form ds2 = e2A �ds2(AdS3) + ds2(M5) + �((du1)2 + (du2)2)�F5 = f5 + f3 ^ du1 ^ du2G = (du1 � idu2) ^ dv� = 0; C(0) = 0 (B.1)where f5, f3, v and ds2(M5) have no dependene on the oordinates ui. Using theformulae in, for example, [40℄ we an T-dualise on the u1 diretion and then the u2diretion to get the following type IIB solutionds2� = e2A �ds2(AdS3) + ds2(M5)�+ 1�e2A �(du1 � v)2 + (du2)2�dC(2) = f3 � dv ^ (du1 � v)e2� = 1�2e4A (B.2)where the metri, here, is written in the string frame.C Type IIB solutions from �brations over S2 � T 2Consider the following ansatz for a six dimensional K�ahler metrids26 = dx24x3U(x) + U(x)x D�2 + 1xds2 �S2�+ du d�u; (C.1)28



where D� = d� + V , dV = 2JS2, the S2 is normalised so that RS2 = 4JS2 and wehave introdued a omplex oordinate u = u1 + iu2 for a T 2 fator. In this ase theK�ahler form J and the (3; 0) form 
 readJ = � 12x2dx ^D�+ 1xJS2 + i2 du ^ d�u;
 = e2i� "� 12x2pU dx + ipUx D�# ^ 
S2 ^ du: (C.2)We have d
 = iP ^ 
 where P is the Rii form given byP = fD�; f = 2(1� U) + xU 0: (C.3)It is easy to alulate the Rii form, given by R = dP , and we reord that the Riisalar is given by R = 4xf � 4x2f 0: (C.4)For the three form G we make the simple ansatz that it is the wedge produt of d�uwith a primitive (1; 1) form on the four-dimensional K�ahler spae parametrised byx; � and the S2. This leads us to onsiderG = d�u ^ d [qxD�℄ : (C.5)If we now substitute into (2.5), after integrating one, we are led to the followingdi�erential equation for U :2f 2 + U R0 + 8q2x2 = onstant: (C.6)We look for polynomial solutions to this equation by onsidering the ansatz U(x) =1 +P2i=0 aixi. This implies that R = �8a0x and in order to have R > 0 we hoosea0 = �1=�2. A little alulation shows that U takes the formU(x) = 1� 1�2 �1� a1�22 x�2 � q2�2x2: (C.7)It is now straightforward to assemble the full ten-dimensional solution using (2.1)-(2.4). It is onvenient to make the following resalingsy = a1�22 x; Q = 2a1� q; ~u = p2�pa1u : (C.8)Furthermore we also perform a simultaneous saling of the ten-dimensional metriand the three-form by a fator of p2�pa1 and the �ve-form by a fator of 2�2a1 (whihindeed transforms a solution to another solution). Finally, it is very helpful to performthe oordinate hange � = ( � z)=2 and this then leads to the type IIB solutionsas reorded in the main text, although we note that we have dropped the tildes formthe oordinates on the torus for larity. 29



D D = 11 solutions from �brations over KE+4 � T 2Consider the following ansatz for an eight dimensional K�ahler metrids28 = dx24x3U(x) + U(x)x D�2 + 1xds2 �KE+4 �+ du d�u; (D.1)where D� = d� + V , dV = 2JKE, the K�ahler-Einstein four metri with positiveurvature, ds2(KE+4 ), is normalised so that RS2 = 6JS2 and u = u1 + iu2 is aomplex oordinate for a T 2 fator. In this ase the K�ahler form J and the (4; 0)form 
 read J = � 12x2dx ^D�+ 1xJKE + i2 du ^ d�u;
 = e3i� "� 12x5=2pU dx + ipUx3=2D�# ^ 
KE ^ du: (D.2)We have d
 = iP ^ 
 where P is the Rii form given byP = fD�; f = 3(1� U) + xU 0: (D.3)It is easy to alulate the Rii form, given by R = dP , and we reord that the Riisalar is given by R = 8xf � 4x2f 0: (D.4)For the magneti four form, F4, we hoose the ansatz:F4 = A2 ^ (J6 � i2du ^ d�u)= A2 ^ (� 12x2dx ^D�+ 1xJKE � i2du ^ d�u) (D.5)where J6 is the K�ahler form on the six spae exluding the torus. We learly havethat F4 is (2; 2) and is losed provided that the two-form A2 is (1; 1) and losed. Asuitable ansatz is A2 = d[�(x)D�℄ and we �nd that F4 is primitive provided that� = qx2 for an arbitrary onstant q. We thus haveF4 = d[qx2D�℄ ^ (� 12x2dx ^D�+ 1xJKE � i2du ^ d�u) : (D.6)If we now substitute into (2.10), after integrating one, we are led to the followingdi�erential equation for U :4f 2 + U R0 + 4q2x4 = onstant� x: (D.7)
30



We look for polynomial solutions to this equation by onsidering the ansatz U(x) =P3i=0 aixi. We �nd two lasses of solutions, one with a0 = 1 and the other witha0 = 3. Sine we are interested here in AdS2 solutions, we only onsider the solutionwith a0 = 1 and we haveU(x) = 1 + a1x�1 + a22a1x�2 + q24a1x3 : (D.8)Sine R = �8a1x2, we demand that a1 < 0.It is now straightforward to assemble the full eleven-dimensional solution using(2.6)-(2.9). It is onvenient to make the following resalingsy = �a22a1 x; Q = 2a21a32 q2; ~u = p�2a1pa2 u : (D.9)We also de�ne � = 2a219a2 . Furthermore we also perform a simultaneous saling of theeleven-dimensional metri by a fator of � 2(�a1)a2 �2=3 and the four-form by a fator of2(�a1)a2 (whih indeed transforms a solution to another solution). Finally, it is veryhelpful to perform the oordinate hange � = ( � z)=3 and this then leads to theD = 11 solutions as reorded in the main text, although we note that we have droppedthe tildes form the oordinates on the torus for larity.Referenes[1℄ N. Kim, \AdS(3) solutions of IIB supergravity from D3-branes," JHEP 0601,094 (2006) [arXiv:hep-th/0511029℄.[2℄ N. Kim and J. D. Park, \Comments on AdS(2) solutions of D = 11 supergravity,"JHEP 0609 (2006) 041 [arXiv:hep-th/0607093℄.[3℄ J. P. Gauntlett and N. Kim, \Geometries with Killing Spinors and Supersym-metri AdS Solutions," arXiv:0710.2590 [hep-th℄.[4℄ I. R. Klebanov and M. J. Strassler, \Supergravity and a on�ning gauge the-ory: Duality asades and hiSB-resolution of naked singularities," JHEP 0008(2000) 052 [arXiv:hep-th/0007191℄.[5℄ I. R. Klebanov and A. A. Tseytlin, \Gravity duals of supersymmet-ri SU(N) x SU(N+M) gauge theories," Nul. Phys. B 578 (2000) 123[arXiv:hep-th/0002159℄. 31

http://arXiv.org/abs/hep-th/0511029
http://arXiv.org/abs/hep-th/0607093
http://arXiv.org/abs/0710.2590
http://arXiv.org/abs/hep-th/0007191
http://arXiv.org/abs/hep-th/0002159


[6℄ M. Grana and J. Polhinski, \Supersymmetri three-form ux perturbations onAdS(5)," Phys. Rev. D 63 (2001) 026001 [arXiv:hep-th/0009211℄.[7℄ M. Cveti, H. Lu and C. N. Pope, \Brane resolution through transgression,"Nul. Phys. B 600, 103 (2001) [arXiv:hep-th/0011023℄.[8℄ J. P. Gauntlett, N. Kim and D. Waldram, \Supersymmetri AdS(3), AdS(2) andbubble solutions," JHEP 0704 (2007) 005 [arXiv:hep-th/0612253℄.[9℄ H. Lin, O. Lunin and J. M. Maldaena, \Bubbling AdS spae and 1/2 BPSgeometries," JHEP 0410 (2004) 025 [arXiv:hep-th/0409174℄.[10℄ S. Yamaguhi, \Bubbling geometries for half BPS Wilson lines," Int. J. Mod.Phys. A 22 (2007) 1353 [arXiv:hep-th/0601089℄.[11℄ O. Lunin, \On gravitational desription of Wilson lines," JHEP 0606 (2006)026 [arXiv:hep-th/0604133℄.[12℄ J. Gomis and C. Romelsberger, \Bubbling defet CFT's," JHEP 0608 (2006)050 [arXiv:hep-th/0604155℄.[13℄ A. Donos, \A desription of 1/4 BPS on�gurations in minimal type IIBSUGRA," Phys. Rev. D 75 (2007) 025010 [arXiv:hep-th/0606199℄.[14℄ A. Donos, \BPS states in type IIB SUGRA with SO(4) x SO(2)(gauged) sym-metry," JHEP 0705 (2007) 072 [arXiv:hep-th/0610259℄.[15℄ E. G, G. Milanesi, K. S. Narain and M. O'Loughlin, \1/8 BPS states inAdS/CFT," JHEP 0705 (2007) 030 [arXiv:hep-th/0611065℄.[16℄ O. A. P. Ma Conamhna and E. O Colgain, \Supersymmetri wrapped mem-branes, AdS(2) spaes, and bubbling geometries," JHEP 0703 (2007) 115[arXiv:hep-th/0612196℄.[17℄ B. Chen et al., \Bubbling AdS and droplet desriptions of BPS geometries inIIB supergravity," JHEP 0710 (2007) 003 [arXiv:0704.2233 [hep-th℄℄.[18℄ O. Lunin, \1/2-BPS states in M theory and defets in the dual CFTs," JHEP0710 (2007) 014 [arXiv:0704.3442 [hep-th℄℄.[19℄ E. D'Hoker, J. Estes and M. Gutperle, \Gravity duals of half-BPSWilson loops,"JHEP 0706 (2007) 063 [arXiv:0705.1004 [hep-th℄℄.32

http://arXiv.org/abs/hep-th/0009211
http://arXiv.org/abs/hep-th/0011023
http://arXiv.org/abs/hep-th/0612253
http://arXiv.org/abs/hep-th/0409174
http://arXiv.org/abs/hep-th/0601089
http://arXiv.org/abs/hep-th/0604133
http://arXiv.org/abs/hep-th/0604155
http://arXiv.org/abs/hep-th/0606199
http://arXiv.org/abs/hep-th/0610259
http://arXiv.org/abs/hep-th/0611065
http://arXiv.org/abs/hep-th/0612196
http://arXiv.org/abs/0704.2233
http://arXiv.org/abs/0704.3442
http://arXiv.org/abs/0705.1004


[20℄ H. Kim, K. K. Kim and N. Kim, \1/4-BPS M-theory bubbles with SO(3) xSO(4) symmetry," JHEP 0708 (2007) 050 [arXiv:0706.2042 [hep-th℄℄.[21℄ J. P. Gauntlett and O. A. P. Ma Conamhna, \AdS spaetimes from wrappedD3-branes," Class. Quant. Grav. 24 (2007) 6267 [arXiv:0707.3105 [hep-th℄℄.[22℄ O. Lunin, \Brane webs and 1/4-BPS geometries," arXiv:0802.0735 [hep-th℄.[23℄ E. D'Hoker, J. Estes, M. Gutperle and D. Krym, \Exat Half-BPS Flux Solutionsin M-theory I, Loal Solutions," arXiv:0806.0605 [hep-th℄.[24℄ P. M. Cowdall and P. K. Townsend, \Gauged supergravity vaua from interset-ing branes," Phys. Lett. B 429 (1998) 281 [Erratum-ibid. B 434 (1998) 458℄[arXiv:hep-th/9801165℄.[25℄ H. J. Boonstra, B. Peeters and K. Skenderis, Nul. Phys. B 533 (1998) 127[arXiv:hep-th/9803231℄.[26℄ J. de Boer, A. Pasquinui and K. Skenderis, \AdS/CFT dualities involvinglarge 2d N = 4 superonformal symmetry," Adv. Theor. Math. Phys. 3 (1999)577 [arXiv:hep-th/9904073℄.[27℄ S. Gukov, E. Martine, G. W. Moore and A. Strominger, Adv. Theor. Math.Phys. 9 (2005) 435 [arXiv:hep-th/0403090℄.[28℄ J. P. Gauntlett, O. A. P. Ma Conamhna, T. Mateos and D. Waldram, \Su-persymmetri AdS(3) solutions of type IIB supergravity," Phys. Rev. Lett. 97(2006) 171601 [arXiv:hep-th/0606221℄.[29℄ A. Donos, J. P. Gauntlett, J. Sparks, to appear.[30℄ J. P. Gauntlett, O. A. P. Ma Conamhna, T. Mateos and D. Waldram,\New supersymmetri AdS(3) solutions," Phys. Rev. D 74 (2006) 106007[arXiv:hep-th/0608055℄.[31℄ D. N. Page and C. N. Pope, \Inhomogeneous Einstein Metris On Complex LineBundles," Class. Quant. Grav. 4 (1987) 213.[32℄ J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, \Sasaki-Einstein metrison S(2) x S(3)," Adv. Theor. Math. Phys. 8 (2004) 711 [arXiv:hep-th/0403002℄.
33

http://arXiv.org/abs/0706.2042
http://arXiv.org/abs/0707.3105
http://arXiv.org/abs/0802.0735
http://arXiv.org/abs/0806.0605
http://arXiv.org/abs/hep-th/9801165
http://arXiv.org/abs/hep-th/9803231
http://arXiv.org/abs/hep-th/9904073
http://arXiv.org/abs/hep-th/0403090
http://arXiv.org/abs/hep-th/0606221
http://arXiv.org/abs/hep-th/0608055
http://arXiv.org/abs/hep-th/0403002


[33℄ D. Martelli and J. Sparks, \Tori geometry, Sasaki-Einstein manifolds and anew in�nite lass of AdS/CFT duals," Commun. Math. Phys. 262 (2006) 51[arXiv:hep-th/0411238℄.[34℄ D. N. Page, \Classial Stability Of Round And Squashed Seven Spheres InEleven-Dimensional Supergravity," Phys. Rev. D 28 (1983) 2976.[35℄ D. Marolf, \Chern-Simons terms and the three notions of harge,"arXiv:hep-th/0006117.[36℄ J. P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, \SupersymmetriAdS(5) solutions of type IIB supergravity," Class. Quant. Grav. 23 (2006) 4693[arXiv:hep-th/0510125℄.[37℄ H. Lu, C. N. Pope and P. K. Townsend, \Domain walls from anti-de Sitterspaetime," Phys. Lett. B 391 (1997) 39 [arXiv:hep-th/9607164℄.[38℄ R. C. Myers, \Dieletri-branes," JHEP 9912 (1999) 022[arXiv:hep-th/9910053℄.[39℄ J. P. Gauntlett and S. Pakis, \The geometry of D = 11 Killing spinors," JHEP0304 (2003) 039 [arXiv:hep-th/0212008℄.[40℄ S. F. Hassan, \T-duality, spae-time spinors and R-R �elds in urved bak-grounds," Nul. Phys. B 568 (2000) 145 [arXiv:hep-th/9907152℄.

34

http://arXiv.org/abs/hep-th/0411238
http://arXiv.org/abs/hep-th/0006117
http://arXiv.org/abs/hep-th/0510125
http://arXiv.org/abs/hep-th/9607164
http://arXiv.org/abs/hep-th/9910053
http://arXiv.org/abs/hep-th/0212008
http://arXiv.org/abs/hep-th/9907152

	Introduction
	AdS solutions through transgression
	Bubble solutions

	Product of KE spaces
	Type IIB
	G=0
	G=0

	D=11

	Fibration Constructions using KE spaces: type IIB solutions
	Type IIB solutions with G=0
	Type IIB solutions with G=0
	T-dual solutions
	Q=0
	Q=0


	Fibration Constructions using KE spaces: D=11 solutions
	Conclusions
	AdS solutions
	AdS3 solutions of type IIB supergravity
	AdS2 solutions of D=11 supergravity

	T-duality
	Type IIB solutions from fibrations over S2T2
	D=11 solutions from fibrations over KE4+T2

