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Abstract

We study deeply virtual Compton scattering on a virtual pion that is emitted by a proton.
Using a range of models for the generalized parton distributions of the pion, we evaluate the
cross section, as well as the beam spin and beam charge asymmetries in the leading-twist
approximation. Studying Compton scattering on the pion in suitable kinematics puts high
demands on both beam energy and luminosity, and we find that the corresponding require-
ments will first be met after the energy upgrade at Jefferson Laboratory. As a by-product
of our study, we construct a parameterization of pion generalized parton distributions that
has a non-trivial interplay between the x and ¢ dependence and is in good agreement with
form factor data and lattice calculations.
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1 Introduction

The concept of generalized parton distributions (GPDs) is a versatile tool to describe hadron structure
at the quark-gluon level and has given rise to vigorous theoretical and experimental activities. Among
the attractive features of GPDs are the possibilities to connect ordinary parton densities with elastic
form factors [1] and to explore the spatial distributions of partons inside a hadron [2,3]. Reviews of
this extensive subject can be found in [4-7].

The pion plays a special role in the low-energy sector of QCD as the lightest bound state and the
Pseudo-Goldstone boson associated with chiral symmetry breaking. Given the difficulty to perform
high-energy experiments with a pion in the initial state, our knowledge of its internal structure is,
however, scarce compared with what is known about the nucleon. Currently, the principal sources of
information are the spacelike electromagnetic form factor of the pion [8-11] and its parton densities
extracted from Drell-Yan production with pion beams [12-14]. Measurements constraining the GPDs
of the pion would provide a natural extension of this knowledge. On the theoretical side, the pion
GPDs have been studied in a number of dynamical models [15] and on the lattice [16-19]. Important
theoretical investigations have been performed for a pion target in the first instance, because of its
relative simplicity as a spin-zero particle, see for instance [20,21].

The purpose of the present work is to estimate how pion GPDs may be investigated in deeply
virtual Compton scattering (DVCS), which is the theoretically cleanest and most advanced among
the hard exclusive processes involving generalized parton distributions. We consider the reaction
ep — eym T n at small invariant momentum transfer between the proton and neutron. In the one-pion
exchange approximation, the reaction is then described by the emission of a slightly off-shell pion from
the proton, followed by the scattering process ert — eyn ™. This can be seen as an analog of the
reaction ep — e n, which has been used to extract the electromagnetic pion form factor for all but
the smallest values of momentum transfer [9-11]. Two mechanisms contribute to er — eym, namely
virtual Compton scattering and the Bethe-Heitler process, as shown in Fig. [l Suitable strategies for
isolating the Compton signal are the same as those for scattering on a nucleon target, which have been
elaborated in detail [22] and successfully used in experiment [23,24]. The corresponding expressions
for the pion can be found in [25], where also numerical estimates for er — eym have been given.
We note that in suitable kinematics, the reaction ep — eyn™n may also be used to study virtual
Compton scattering on the pion in the backward region, whose description involves the so-called
transition distribution amplitude from a pion to a photon [26]. In experiments with a real photon
beam, the lepton-pair production process yp — ete™mn can provide access to timelike Compton
scattering yr — v*m on the pion, which is closely related to DVCS by crossing [27].

Our paper is organized as follows. In the next section we present in some detail the kinematics of
ep — eyrTn. In Sect. Bl we give the basic equations for the analysis of this process in the one-pion
exchange picture and in the framework of generalized parton distributions. We also briefly discuss
the validity of the one-pion exchange approximation. In Sect. @ we present a model for the GPDs of
the pion, paying special attention to their ¢-dependence. In Sect. Bl we finally give estimates for cross
sections and asymmetries in the HERMES experiment and at Jefferson Lab, before summarizing our
main findings in Sect.

2 Kinematics

In this section we discuss the kinematics of the reaction

e(l) +p(p) = e(l') + () + = (p}) + n(p'), (1)
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Figure 1: Graphs for ep — eym™n in the one-pion exchange approximation. Contributing subprocesses
are virtual Compton scattering on a pion (left) and the Bethe-Heitler process (right). The crossed
Bethe-Heitler graph (not shown) has the photons attached to the lepton line in opposite order. The
blob marked with F}: represents the electromagnetic pion form factor.

with four-momenta given in parentheses. We write
g=1-1, pr=p—p (2)

for the four-momenta of the virtual photon and the virtual pion, and use the standard variables

Q2:—q2, W2:(p—|—q)2, sZ(p-i-l)Z, 5 = Q2 ’ y:M (3)
2p-q p-l
for deep inelastic scattering processes. The variables
Pr - l
t — o 2 — 4
(» -2, = (4)

describe the emission of the virtual pion from the proton target, where z, is the fraction of energy
that the virtual pion takes away from the proton in the ep c.m. The azimuthal angles of the final-state
electron and neutron in that frame are respectively denoted by . and 1), where the z-axis is chosen
along the lepton beam momentum. We write my and m, for the nucleon and pion masses, and
neglect the lepton mass throughout our work. An important role is played by the kinematic limit

2,2
zim
—t> —tg=-=N (5)
1 -z’
which is readily obtained from the expression p’? = —t(1 — z,.) — 2z2m2, for the squared transverse

momentum of the neutron in the ep c.m. We need two more variables to describe the v and 7 in the
final state, namely

te = (pr — Ply)? (6)
and the azimuthal angle ¢, between the plane spanned by p. and p!. and the plane spanned by ! and
' in the c.m. of 7wy in the final state. For the sign of ¢, we follow the usual convention for DVCS
on a proton targetl| For our later discussion it is useful to introduce further variables, which refer to
the subprocess emr — eym on the virtual pion target, namely

Q* Pr-q
STF:(pﬂ'_i_q)Z? $§:2p ‘qa yw:pw_l- (7)
T T

!One thus obtains ¢, from the angle ¢, in [28] by replacing P — p, and P, — pl.



One finds

3= Q@ (T = 1) —2cos(the — ) VI~ )@ — (g /(L= 22) (o — 1)
+ 2yzp Tamy + (1 — yap)t. (8)

To select kinematics where DVCS on a pion can be described in terms of generalized parton
distributions, we take the Bjorken limit

Q? = x at fixed vy, 2, T, t, t,. (9)
The squared c.m. energies s, W?2, and s, then become large, whereas the squared momentum transfers
t and t, are small compared with Q2. The relation (§) then implies

. IB R
Ip ~ ) Yr =Y p
Ty TrTf

~y (10)

and
Sq + Q2
S

TrlYy =

(11)
2

with corrections of order m/Q, where m? represents the small scales My, m2, t and t,, whose
magnitudes we do not distinguish at this point. The phase space element of the process (Il) can be
written as

Pl &g Epl d’p'
2l’0 2(]'0 2p;(_) 2p'0

dQ? dy dip, dty dpy dt dzy dipy,
"+d +pr+p —1-p)= O dydy O Dl dir A (12)
64/ (sr + Q2 +1)2 — ds,t

The interpretation of the process (Il) in terms of DVCS on a virtual pion target puts several
conditions on the kinematics, which we now discuss. First of all we impose an upper cutoff on |¢|,

|t < [tmax , (13)

to ensure that the p — n transition is dominated by virtual pion emission. Since [¢|max must be bigger
than —t¢ in (B]), this implies a maximum value for z,

1 t|max
Tr < Trmax = 3 [\/ T2 441 — T] with 7 = | |m; . (14)

my

Since we want the subprocess v*m — 7 to be in Bjorken kinematics, we further impose lower cutoffs
Sr 2 Srmin s Q2 > Q?nin . (15)
According to () this implies lower limits on x, and on vy,

2 2
L~ 1 Sz min + Qmin L~ 1 Sz min + Qmin (16)
Trmin ~ 5 Ymin ~ 5
Ymax S Trmax S

where Ymax is an upper limit on y we will later impose both for theoretical and for experimental
reasons (see Sect. [). The relation (I also restricts the largest possible values of Q2 to

2 RST -8 (17)

max wmax Ymax Tmin *
For a clean physical interpretation of the reaction (Il) as DVCS on a weakly off-shell pion target, it is
desirable to take rather small |#|ax and rather large s__. and Q2. . With (I4) and the first relation
in (@), this only leaves enough phase space for x, if the total c.m. energy s is sufficiently large.



3 Calculation of the cross section

In this section we give some basic formulae for the process ep — eymn in the one-pion exchange
approximation and discuss the validity of this approximation.

3.1 The one-pion exchange approximation

In the one-pion exchange approximation, the amplitudes for ep — eymn and for er — eym are related
as

\/ign A? — m72r
TNéVF(t)Mem F(t):ﬁ

™

Mep = (p")ysu(p) (18)

with the pion-nucleon coupling g-yny = 13.05 [29]. Here we have introduced a phenomenological
factor F'(t) to soften the pion-nucleon vertex when the pion virtuality ¢ becomes large compared to
m2. In our calculations we will take A = 800 MeV from [30]. The ep cross section is then given by
d8c(ep — eymn) B 1
dy dQ? dipe dty dpy dt dzr dipn,  128(27)8 (s — mfv)\/ (s,r + Q% +t)2 — 4st
x [V2genn F(t)]? Z Men|, (19)

spins

where Espins sums over the polarizations of the final-state electron and photon. In (I9) we have
further averaged over the polarization of the proton target and summed over the polarization of the
outgoing neutron, but kept the lepton beam polarization fixed. Defining the cross section

do(er — ey) 1 2
- Mer 20
dyr dQ? dt; dpr 32 (2m)* wr (s — m]%f)\/(sﬂ' +Q? +1)% —dst Z | | .

spins
on a virtual pion target, we have the simple relation

dSo(ep — eymn) . PN [F(t)]2 —t d*o(er — eym)
dy dQ? dt, dg, didz, " 8r2 (m2 — 1) dyy dQ2dt, dpy

(21)

where we have integrated over the angles v, and .
For a rough estimate one may neglect the dependence of the er cross section (20) on the pion
virtuality ¢. Integrating the factor of proportionality in (2I) over ¢, one then obtains

d*o(ep — eymn) N d*o(er — eym)

~ [ dz: T(2r, |t max 22
dy dQ? dt, do, / 2r W [thoa) G107 ardg (22)
with
9 to(:vﬂ—) ;
B 9rNN 2 —
e thow) = 20 25 [ a [P0 (23

_|t‘max
where to(z,) is given in (Bl). Note that the er cross section on the r.h.s. of ([22) depends on z, via
Sp & Tryrs — Q2. With the form factor of the pion-nucleon vertex taken in (8], the integral in (23)
can be done analytically using

—t A2+m2 AZ—t  A? 2
/dt[F(t)]2 2 12 A2 mgln2 VI 72717r :
(m2 — 1) A2—m2 m2—-t A2—t m2-—t

In Fig. 2 we show the pion flux factor II(z, |t|max) as a function of z, for two values of |t|max.

(24)
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Figure 2: The pion flux factor TI(, |t|max) defined in (Z3), shown for |t|max = 0.3 GeV? (solid) and
|t|max = 0.5 GeV? (dashed).

3.2 Validity of the one-pion exchange approximation

The validity of the one-pion exchange approximation in the process (IJ) cannot be taken for granted,
and it is natural to see what is known for similar processes.

As already mentioned in the introduction, an important process in this context is ep — enn, where
the one-pion exchange approximation yields the subprocess er — e, from which the electromagnetic
pion form factor can be extracted. The most recent measurements [10,11], as well as previous data,
provide a clear indication that pion exchange cannot be the only contribution to this reaction. This
is because the cross section o for v*p — 7n with transverse v* polarization in the v*p c.m. is seen to
be clearly nonzero, although at low |¢| it is smaller than the cross section oy, for a longitudinal v*. To
understand the implications of this observation, let us take the case |t| = |t|min, where by definition
the angle between the proton and neutron momenta is zero in the v*p c.m. Due to angular momentum
conservation, the subprocess v*m — 7 can then only proceed for longitudinal photon polarization, i.e.,
pion exchange contributes only to 7. In terms of ¢-channel exchanges, the presence of o7 is thus an
indicator for the exchange of states with nonzero spin, with the p being an obvious candidate because
of its relatively low mass. A corresponding model calculation in [31] indeed yields a nonvanishing o7,
although it undershoots the measured values of [10] and [11], which were taken at v*p c.m. energies
of W = 1.95GeV and W = 2.22 GeV, respectively. In [10] this mismatch was ascribed to possible
resonance contributions in the 7wn channel. At || = |t|min there is no contribution to o7 from p
exchange because of parity conservation in the subprocess v*p — m, so that for the extraction of the
pion form factor a separation of o7, and op should considerably enhance the contribution from pure
pion exchange.

We note that the situation in v*p — y7n is different. Even at |t| = |t|min both subprocesses
v*m — ym and v*p — y7 can take place for transverse v* polarization, which is dominant in Bjorken
kinematics according to the factorization theorem for DVCS. Whereas taking low |¢| will enhance pion
exchange also in this case, it may be useful to assess the quantitative importance of v*p — ~m. This
would require information about the GPDs for the p — 7 transition. Simple helicity counting [32]
shows that at twist-two level there are two GPDs involving the axial current and one GPD involving
the vector current for the quarks. Their z moments are accessible to an evaluation in lattice QCD,
which may thus help to estimate the role of p exchange in the reaction ep — eymn. In particular, the
lowest moment of the vector current GPD gives the electromagnetic p — 7 transition form factor,



which also enters the Bethe-Heitler process in ep — eymw. A further constraint on the p — 7 transition
GPDs can be obtained by taking the limit of soft pion momentum, in analogy to what has been done
for the N — 7 transition in [33].

Concerning resonance contributions, we recall that the v*p c.m. energy W is large in Bjorken
kinematics. In experiments suited to investigate DVCS, W will thus be much larger than in the pion
form factor measurements [10,11]. More problematic are possible resonances in the 7n channel of the
final state, which are of course not taken into account by the one-pion exchange approximation. The
relevant invariant mass is

M2, = (py +p')° =my +2myEr +tr —t

my

1 1
:m?v+m3r+m—[(t,r0—tw)(1—xw)—t(1—xg)+l_ﬂ
™ 'B

3

# 20080 + e~ )y [T = o)L= a0~ Ot — 1) | +0() . (29

Here FE is the energy of the outgoing pion in the proton rest frame, and .o is the upper kinematic
limit of ¢;. In the Bjorken limit one has

xEm?
tro = TRt — 13_3} (26)
B

with corrections of order (z%m)?/Q?. In our numerical calculations we use the exact expression of
tr0, so that any ¢, dependent term exactly vanishes at the kinematical point ¢, = t,¢, where ¢, is not
defined. We see from (28] that to avoid resonances contributions in the 7n channel it is advantageous
to have low z, and relatively large |t.| (while still respecting the condition |t,| < @Q? for Bjorken
kinematics).

A different process relevant in our context is deep inelastic scattering with a leading neutron in
the target hemisphere, ep — en + X. In the one-pion exchange approximation, this gives access to
inclusive deep inelastic scattering v*m — X and thus provides information of the parton densities of
the pion. There is a number of theoretical investigations focusing on very high energies, as achieved
in the HERA collider experiments [34]. In particular, the studies [35-37] have investigated the role of
p and also of as exchange in the framework of Regge theory. Furthermore, rescattering of the neutron
has been studied in [37-40] and is typically found to be non-negligible even for Q? of several GeV?.
Given the high-energy limit underlying these investigations, we find it difficult to assess the situation
for deeply virtual Compton scattering at significantly lower energies.

In summary, we find that existing theoretical investigations of similar processes cannot readily be
used to quantify effects beyond the one-pion exchange approximation for ep — eynn. They emphasize,
however, the importance of taking |¢| as small as possible. Working at low z, will in addition help
to avoid resonance effects between the outgoing neutron and pion. The incorporation of p exchange
into the theoretical analysis should be practically feasible (at least at the level of estimates) if one
could gain some information on the size of the p — 7 transition GPDs, for instance from lattice
calculations.

3.3 Compton scattering on the pion

Let us now recall the basics of the process er — eyw in the Bjorken limit, which have been elaborated
in detail in earlier work [25]. The analysis of this reaction proceeds in close analogy to the well-known
case of a proton target [22]. It is in fact simpler because the pion has spin zero and thus involves



fewer GPDs and form factors than the proton. Throughout this section, we retain only the leading
terms in the 1/Q) expansion, unless explicitly indicated.
We decompose the amplitude for er — ey into contributions from Compton scattering and from
the Bethe-Heitler process,
Mer = Mvycs + Mgph . (27)

The corresponding decomposition of the differential cross section for er — eym and thus also for
ep — eymn reads
do = doycs + dogu + doiNT (28)

where doryT is the interference term between the Bethe-Heitler and Compton processes. In the
Bjorken limit we have for the squared Compton amplitude

2
> [Myes|? = —Mm i (29)
spin y7r
with
t)—Ze2/1dxHq(x§t) L ! (30)
i p 7/, TSI —r—ie E4x—ie

at leading order in . Here H{ is the GPD for quark flavor ¢ in a 7" as defined in [5], e, is the
quark charge in units of the positron charge e, and sums over the polarization of the final-state
photon. The skewness variable is given by

spin

™

x
f= 50 (31)
B
The squared Bethe-Heitler amplitude can be written as
16e 1- 0—te 1—y, +1y2/2 2
Z |-/\/IBH|2 ( )2 t2 = 171-_ e [Fw(tw)] ? (32)
spin L T Y
where the factor L
p_ —s'u _ (As — Bcos ¢r)(Ay — B cos ¢r) (33)
Q' (1 —y.)/vz Q' (1 —y.)/vz

with s’ = (I' + ¢')? and «' = (I — ¢’)? comes from the lepton propagators. This factor is unity in
the Bjorken limit, but it can deviate quite significantly in experimentally relevant kinematics. Up to
relative corrections of order x7 m?/Q?, one has

. Q? — (1 — yr)tr o= o yr)Q2 — tr . p-2 \/(1 — ) (1 — 2 (b — tr),  (34)
Ym Yrm Yn

so that for 4(1—a%)(tzo —tr) ~ (1 —yx)Q? one can have P close to zero. In our numerical calculations
we use the exact expressions of s’ and ' in ([3). The interference term between Compton scattering
and the Bethe-Heitler process reads

. 16e8 /1 —zf \/t_,—1

D Mg Mpr + c.c. = e g v — B Vi T F(tr)

. Tp Qtw

sSpin
1 -y, +y2/2 1 -y /2 .
——T TS cos ¢ Re Hy + Pp ——2= sindr Im Hy | 35
YrvV' 1 — Yr " " I'—yx " " ( )



where ey = +1 is the charge of the lepton beam and P, = £1 its helicity.

For lack of better knowledge, we will ignore the off-shellness of the incoming pion when evaluating
F.(t;) and H q(m &,t;). In kinematical factors we take, however, the virtuality ¢ of the initial pion
instead of m As can be seen in (26)), this has an important effect on ¢,y and thus on the factors
tzo — tr in (I:{ZI) and ([BB). The approximation ([22), where the t-dependence of do(emr — eym) is
neglected, should therefore be used with caution, especially for small |¢.].

In the Bjorken limit, the Bethe-Heitler process dominates over Compton scattering (unless ¥, is
very small). This is because |Mycs|?/|[Mgpu|* ~ t/Q? according to (29) and ([B2). In this situation,
privileged access to the Compton amplitude is provided by the interference term (B%)), which can be
separated from the cross section by reversing the beam charge e, or the beam helicity P,. We remark
that there are also Py dependent terms in dovcs. As can be seen in [25] they are, however, suppressed
by 1/@Q compared with the dominant term given in (29).

To conclude this section we remark on the process en — eym~p, which is accessible through
incoherent scattering on nuclear targets. Comparing the subprocesses er™ — eyr™ and er™ — eym—,
we find that the amplitudes for the Bethe-Heitler process have opposite sign, whereas those for the
Compton process are equal. This is because the yrm three-point function changes sign under charge
conjugation while the yrmy four-point function remains the same, and therefore holds even beyond
the leading approximation in 1/Q. As a consequence, the relations

doyos(en — eynp) = doveg(ep = eyr'n),
dogu(en — eyn~p) = dogu(ep — eyntn),
dornr(en — eyn™p) = —dont(ep — eyrn) (36)

hold as long as the one-pion exchange approximation is valid, whereas they will be invalid if for
instance interference between 7 and p exchange is important. In typical fixed-target kinematics dopp
is much larger than doinT, so that the relations (B6]) can principle be tested experimentally: when
going from ep — eym™n to en — eym p, the overall cross section should approximately remain
the same, whereas the beam spin or beam charge asymmetry should change sign. We note that a
corresponding consistency check for the one-pion exchange approximation in ep — er*n and en —
en”p was performed in the extraction [11] of the pion form factor.

4 The generalized quark distribution of the pion

In this section we describe the model for the pion GPDs which we will use in our numerical studies.
We generate a dependence on the skewness ¢ by the model of Musatov and Radyushkin [41],

1-18]
HY(x, €, 1) / ap / oy 19 8= €N (,0) HI(B,0,) (37)
with

r@2v+2) [(1-8)* -’
22b+1F2(b_|_ 1) (1 _ |ﬁ|)2b+1

hb(ﬁ? 0[) = (38)
For the profile parameter we will take either b = 2 or b = 1. The forward limit of the GPDs is given
by the parton densities in the pion as Hi(z,0,0) = q,(z) for z > 0 and H{(z,0,0) = —G(—z) for
z < 0. As an input we will take the parameterizations of SMRS [12] or of GRS [13], both at scale
1w =2GeV.



GRS ——

SMRS ------
0.8}
__o0s}

S
B 04f
;
0.2}
0 L L L L
0 0.5 1 15 2 25

—t, [GeV?]

Figure 3: Data for the electromagnetic pion form factor from [8-11], compared to a fit specified by

@1, @2), and the parameters in (43]).

The simplest way to model the ¢, dependence is a factorized ansatz
Hg’(l‘voatﬂ’) :Hg(xvoao)Fﬂ(tﬂ)v (39)

which automatically satisfies the sum rule
1
Zeq/ dz Hi(z,0,t;) = Fr(tz). (40)
-1
q

Both theoretical considerations [42] and lattice QCD calculations [16,17] indicate, however, that the
dependence of the GPDs on t,; and x is correlated. As a model ansatz we will take an exponential
tr dependence with an  dependent slope. Such an ansatz has proven to be quite successful for the
proton [43,44]. Following [43] we set

H(,0,tr) = Hi(,0,0) exp[trf(|z])] (41)

with
f(z)=d(1 —x)?’ln%+B(1—$)3+A$(1—x)2, (42)

where o = 0.9 GeV~2 is taken in accordance with Regge phenomenology. We fit A and B to describe
the pion form factor through the sum rule ([@0), using the data [8-11] as selected in [45]. With the
fitted values

A=219GeV~2, B = —0.38 GeV 2 for GRS,
A=135GeV2, B= 0.58GeV~2 for SMRS (43)

we get a good description for Fy(t,) with both parameterizations of the parton densities, as shown in
Fig. Bl An intuitive physical interpretation of the function f(x) is obtained in the impact parameter
representation [2]: for x > 0 the average of the squared transverse distance between the quark and
the center of momentum of the pion is (b?); = 4f(x). The results of our two fits are rather similar
and yield physically reasonable values, as shown in Fig. @
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Figure 4: The average transverse distance /(b%), between a u-quark and the center of momentum of
the 7T, as obtained in the two fits of Fig. Bl

As a caveat we note that the sum rule (0] only constrains the valence quark distributions, given
by H(z,0,tr) + HI(—,0,tz) = [g=(z) — ¢=(z)] exp[t=f(z)] for z > 0, and is insensitive to the sea
quarks. Since sea quarks mix with gluons under evolution, one may expect that the ¢ dependence
in this sector is different from the one for valence distributions. The ansatz ([AIl) with a common
tr dependence for valence and sea quarks (including the strange sea) may hence be regarded as
oversimplified. Given, however, that even in the forward limit the sea quark distributions in the pion
are poorly known at present, we deem this ansatz to be acceptable for our purpose.

Using (@I and ([42) we can also evaluate the second moment

1
4 (tr) = / do 2 HY (2,0, ) (44)
-1

which has been evaluated in lattice QCD [16,17]. In Fig. Bl we compare the results of our fits ([43)) with
a monopole parameterization of the lattice data given in [17]. Although not perfect, the agreement
is quite good, and certainly much better than the result of the factorized ansatz ([39). We note that,
in our parameterization, the contribution of sea quarks to the moment (@) is below 30% at ¢, = 0
and smaller at nonzero t,.

Notwithstanding the success of the ansatz given by ([#Il) and ([@2]) in reproducing the lowest two
moments of the pion GPD, some cautionary remarks from the theoretical side are in order. As
discussed in [43], the asymptotic behavior of the pion form factor at large negative ¢ in our ansatz
is controlled by the Feynman mechanism and given by the Drell-Yan relation Fy(t) ~ [t|=(118)/2,
Here 3 describes the behavior ¢(z) ~ (1 — z)? of the parton densities in the limit # — 1 and is
predicted to be f = 2 for the pion [46,47]. Asymptotically the Feynman mechanism hence gives
a contribution Fy(t) ~ |t/ %/? to the form factor, which is power suppressed compared with the
contribution Fy(¢) ~ [t|~! from the hard-scattering mechanism [46,48], where it is understood that
both power laws are modified by logarithms. The ansatz ([41), (2) does not have the form generated
by the hard-scattering mechanism for H(z,¢,t) at large ¢ [49]. However, it turns out that the parton
density parameterizations [12,13] at u = 2 GeV both have a large-z power 5 ~ 1 within less than 10%,
in stark contrast with the prediction 8 = 2 from power counting. Thus, our ansatz gives F (t) ~ [¢| "}
at large negative ¢, which is compatible with the monopole behavior that describes very well the

11
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Figure 5: The second moment ([@4) of the pion GPD HY, obtained with the two fits of Fig. Bl
Also shown is the result of the factorized ansatz (B9) with the GRS parton densities. The band

corresponds to a parameterization of lattice results given in [17], A%)(t;) = A% (0)/(1 —t,/M?) with
4 (0) = 0.261(5) and M = 1.37(7) GeV.

available data [45]. We shall not pursue this issue further, and use our ansatz for Hi(z,&,t,) as a
simple candidate form that is not in contradiction with phenomenological constraints.

5 Cross section estimates

In this section, we calculate the cross section for ep — enym and its dependence on the beam charge
and beam helicity. Since the unpolarized cross section is dominated by the Bethe-Heitler process, the
corresponding results are largely model independent (as long as the one-pion exchange approximation
is adequate). On the other hand, we will see that the charge and polarization asymmetries for the
lepton beam are quite sensitive to the model we assume for the pion GPD. We will compare four
simple model scenarios:

1. a skewness dependence generated by ([B7) and (B8] with b = 2 and a ¢, dependence given by
@I to (@3], with the GRS parton densities in the pion,

2. the same as model 1, but with the SMRS parton densities,
3. the same as model 1, but with b = 1 instead of b = 2,

4. the same as model 1, but with a factorizing ¢, dependence ([B9). We use this model for the sake
of contrast, although it is disfavored by theoretical considerations and lattice data.

For the pion form factor we use a monopole parameterization Fy(t;) = 1 / (1 —tz/M 2) with M =
714 MeV. This provides a very good description of the experimental data, as shown in [45].

As explained in Sect. 2] we impose minimal values for Q? and s, and at the same time a maximal
value for |¢|, which requires a sufficiently large energy. We therefore concentrate on typical kinematics
for HERMES and for the planned Jefferson Lab upgrade to 11 GeV beam energy. The leading-twist
interpretation of DVCS demands that |t,| < Q?, so that we also put a cut [t;| < |tr|lmax. We
finally impose a maximum value on y (and thus on y;). On the experimental side, this ensures
that the scattered lepton has sufficient energy to be detected and identified. On the theoretical side,

12



this improves the 1/@Q expansion underlying the approximate formulae ([B2]) and (B5), since there are
subleading terms in 1/Q that come with a factor 1/1/1 — y; relative to the leading terms. An example
of such a subleading term is found in the propagator factor P, see (33)) and (34).

Let us first consider the case of HERMES, with a beam energy F, = 27.6 GeV in the proton
rest frame. We impose a lower limit 9, > 2.57° on the angle between the momenta of the final-
state photon and the lepton beam in the target rest frame. This value corresponds to the maximal
geometric acceptance of the electromagnetic calorimeter in the experiment, see e.g. Sect. 5.22 of [50].
Taking limiting values

QrQnin =2 GeV2 5 Srmin = 4 GeV2 s Ymax = 0.85 (45)
and
|t|max = 0.5 GeV?, |t |max = 0.9 GeV?, (46)

we find a Bethe-Heitler cross section of ogy = 1620 fb, which is between 15% and 20% smaller than
the result we obtain in model 1 for ogy 4+ oves + ot with either an electron or positron beam.
With an integrated luminosity of order 1fb~! for HERMES running on a proton target [51], we
deem this cross section to be too small, since it will be further decreased by experimental acceptance
cuts and detection efficiency, and since according to ([BD) the extraction of the beam charge or beam
polarization asymmetry requires a differential measurement at least in the angle ¢,. Loosening the
requirements (@3] or ([@6) would increase the rate at the price of going to kinematics where the
theoretical interpretation used in this paper becomes increasingly questionable.

Higher luminosities than at HERMES can be achieved by the experiments at Jefferson Lab. With a
currently available beam energy of up to E, = 6 GeV, the requirements ([43]) and ([6]) leave no available
phase space, as can be seen from the bounds on z, in (I4) and (I6). This will be changed with the
energy upgrade to F, = 11 GeV, which we consider in the remainder of this section. We assume that
the outgoing electron, photon, and pion are detected experimentally. Note that identification of the
pion (or of the recoiling neutron) is necessary to distinguish the signal process ep — eyrtn from
DVCS on the proton, ep — eyp, which has a far greater rate. In the proton rest frame we have

1

N 2my Ty

E {mgr—tn— (1 —z,)(1 — zf) — zg]t

2

+ 2008(¢ + e —1hn) /(1 = @) (1 = 2) (0 — 8) (b0 — L) } + O(%) :
cos ¥, = (1—$”(1 _Eig)mN>\/%+O(g>, (47)

where F is the energy of the final-state pion and 9, the angle between its momentum and the lepton
beam direction. Likewise, we find

Q? 2(1 — y)zZm3 m>
E, = O(m), costyy =1—- —>— (’)(—) 48
1= g+ O(m) y B +O( 58 (48)
for the energy of the outgoing photon and its polar angle. To estimate the cross section and its
dependence on the beam charge and polarization, we assume some minimal experimental cuts, which
correspond to the acceptance planned for the CLAS++ detector [52],

E| > 500 MeV , 8% <, < 45°,
E, > 100 MeV , 2° <9, < 40°,
E; > 200 MeV , 5° < ¥, < 135°. (49)

13



135 10
120 & ]
105 ] g |
90 F 1

— 60 L 4 .,

= o

> 45 ¢ ] >
30} ] 4r
15+ 1

0 S : — : 2 : :
0.2 04 06 08 1 1.2 14 16 6.5 7 7.5 8 8.5 9 9.5
E; [GeV] E, [GeV]

Figure 6: Scatter plots for the energies and polar angles of the final-state pion and photon in the
proton rest frame. The plots are generated from the Bethe-Heitler cross section within the kinematics

specified by ({@3)), [@9), and ([G0).

Typical values of these quantities are shown in the scatter plots of Fig. These plots have been
generated using the Bethe-Heitler cross section, which dominates the total rate as we shall see shortly.
We have imposed the kinematic requirements ([45) and

|t|max = 0.3 GeV?, |t |max = 0.7 GeV?Z, (50)

where compared with (@8] we have taken smaller |¢|max and |¢;|max, S0 that the one-pion exchange and
the leading-twist approximations are better fulfilled. We see that the pion has small to intermediate
energy and covers a large angular region, whereas the photon is energetic and strongly focused in the
beam direction. In the corresponding scatter plot for the outgoing electron kinematics (not shown
here) we have 1.6 GeV < E. < 3.4GeV and 13° < ¥, < 25°, so that the experimental cuts on these
quantities in (@9 have no influence.

Figure [[ shows corresponding scatter plots for other relevant variable pairs. In the first two panels
we see the values of Q?, s,, and z at which the Compton process y*m — ym can be probed with
E., = 11GeV. The last panel shows that typical values of the squared mn invariant mass M2, are
between 1.3 GeV? and 2.2 GeV?, which unfortunately includes the region of nucleon resonances. We
will come back to this point shortly.

In addition to the contributions oy, ovcs, ot of the different subprocesses and their interference
to the integrated cross section, we evaluate the weighted differences

semtn = [ cos g, [0 A=),

ddr A
gino _ /d% dn g [da(Pé(; +1) da(}Z(; —1)] ’ (51)

of cross sections for different beam charge or beam polarization. In the approximation given by (29)),
[2), B5), they are respectively proportional to Re#H, and Im#, in the interference term. In the
Bjorken limit, the propagator factor P in (33]) becomes ¢, independent, so that SZ?S 97 and Szm 9
respectively give the coefficients of cos ¢, and sin ¢, in 2wdont/dp,. With E, = 11 GeV and the
kinematics delineated by (@Z) and (B0), we find, however, a clear ¢, dependence for P. For this
reason, the interference term (BE) also contributes to the cross section integrated over ¢, as seen in
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Table 1: The contributions of the Bethe-Heitler and Compton processes and of their interference
to the integrated cross section, as well as the weighted cross sections defined in (5I). Results are
evaluated in model 1 for different kinematic constraints in addition to the cuts ([@J). The signs of
ot and S7° 97 refer to an electron beam (e = —1). Limiting values of Q?, sy, t, t,, and M2, are
given in units of GeV?, and cross sections in units of fb.

2in Stmin [tmax  |trlmax  Ymax M2, OBm Oyes  OINT St gpnen
2 4 0.3 0.7 0.85 — 18.4 0.88 —0.18 0.39 7.57
2 4 0.3 0.7 0.8 — 5.12  0.29 —0.09 0.17 2.17
2 4 0.3 0.7 0.9 — 45.6 1.86 —0.27 0.64 17.9
2 4 0.2 0.7 0.85 — 0.41 0.016 —0.002 0.004 0.16
2 4 0.5 0.7 0.85 — 105 6.52 —2.32 5.00 46.2
2.5 4 0.3 0.7 0.85 — 2.55 0.103 —-0.010 0.018 0.96
2 5 0.3 0.7 0.85 — 0.30 0.013 —0.003 0.008 0.12
2 4 0.3 0.5 0.85 — 16.2 0.69 —0.09 0.18 6.30
2 4 0.3 0.7 0.85 1.5 13.4 0.67 —0.19 0.42 5.72
2 4 0.3 0.7 0.85 1.8 5.08 0.31 —-0.14  0.30 2.46

Table [l We also recall that beyond the leading approximation in 1/@Q, the weighted cross section
Szm 7 receives a contribution from dovycs in addition to the one from dopyT. This can be seen from
the expressions in [25] and is well-known in the case of DVCS on a proton [22].

In Table [ we show our results for the integrated and weighted cross sections calculated in model
1 for different kinematic constraints. For the choice in (@) and (B0), shown in the first row, one
obtains an integrated cross section of 18.4 fb. With an estimated luminosity of 3000 fb~! per year at
CLAS+H+, this gives a very comfortable rate of about 55000 events, so that one may hope that even
with realistic experimental cuts and detection efficiencies there will be sufficient statistics to perform
a binning in several variables.

The further entries in Table [ illustrate how the situation changes if one modifies our baseline
kinematic constraints. Raising ymax from 0.85 to 0.9 would more than double the rate, but as discussed
above this would make the 1/@Q expansion underlying the formulae (82]) and (B3] worse. Lowering
instead ymax from 0.85 to 0.8, would reduce the rate by a factor of about 3.5. Increasing |t|max from
0.3GeV? to 0.5 GeV? we obtain a significantly higher rate, but the one-pion exchange approximation
is much more problematic in that case. Decreasing |t|max to 0.2 GeV? would improve the quality of
the one-pion exchange approximation, but the resulting loss of rate is probably too much for such
a cut to be useful. Taking a stricter cut of 2.5GeV? instead of 2GeV? for 2. would make the
leading-twist analysis of DVCS safer but decrease the cross section by about a factor of 7. An even
stronger decrease is found if one requires s, to be above 5GeV? instead of 4 GeV2. By contrast,
only very little rate is lost if one takes 0.5 GeV? instead of 0.7 GeV? for |t;|max, 50 that it may be
worthwhile to consider a stronger cut on this variable. Finally, one may wish to impose a cut on
the invariant mass of the 7mn system, so as to reduce possible resonance effects in this channel, which
are not taken into account in our theoretical description. The entries in the last two rows of Table [T]
respectively correspond to a lower cut on M, at the mass of the A and at the mass of the A plus
its width. The resulting rates show that at least part of the kinematic region where resonance effects
may spoil a simple interpretation can be removed in an analysis without losing too much signal.
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Table 2: As Table [[l but for different models of the pion GPDs. The kinematic constraints in (43,
@9), and ([B0) are always assumed. The corresponding Bethe-Heitler cross sections is opy = 18.41b.

model oy g OINT SE? SO Szin O
1 0.88 —0.18 0.39 7.57
2 0.67 —0.66 1.57 6.44
3 1.12 -0.21 0.43 8.57
4 0.70 0.25 —0.62 6.78

In Fig. B we show the Bethe-Heitler cross section differential in ¢, ¢;, or in z;. We see that in
the kinematics of Jefferson Lab at 11 GeV a cutoff |t|nax much below 0.3 GeV? severely restricts the
available phase space. The ¢, spectrum falls off much more slowly than the corresponding ¢ spectrum
for DVCS on the proton, which readily follows from the slower decrease of the pion electromagnetic
form factor compared with the proton form factors. Nevertheless, the falloff for |t,|>0.2GeV? is
sufficiently steep to account for the weak dependence of the cross section on |t;|max seen in Table [T
The spectrum in z is rather featureless and reflects the form of the pion flux factor in Fig. 2 together
with the phase space boundaries =i, and zpyax given in (I4]) and (I6]).

The sensitivity to the pion GPDs of the Compton cross section and the interference term is
documented in Table 2l for the different models introduced above. To obtain a more detailed picture,
we plot in Fig. [0 the weighted cross sections (BI)) differential in ¢, ¢,, and z,. We see that the spread
between models is much more pronounced for S¢;° ‘b", with different signs and even a zero crossing in
tr for some of the models. By contrast, the variation of Simd”' is less drastic and concerns the size
of the weighted cross section more than its dependence on t, ¢, or ;. On the other hand, the beam
spin asymmetry Szm o7 is significantly larger than the beam charge asymmetry Sg) 57 and may be
easier to measure in practice.

6 Summary

We have investigated the possibility to study DVCS on the pion in the reaction ep — eyr™n. Such
a study is experimentally demanding for several reasons. Firstly, the phase space is limited by the
requirements of small ¢ on one side (so that pion exchange dominates the process and the pion is not
too far off-shell) and of large Q? and s, on the other side (so that an analysis based on the Bjorken
limit is applicable). As can be seen from ([I4)) and (8], this favors experiments with a higher ep c.m.
energy. Secondly, the cross section for ep — eyn™n is significantly smaller than the one for ep — evyp,
which puts high demands on both the luminosity and the experimental identification of the final state.

We find that conditions for an experimental study of this process are not favorable in current
experiments, with HERMES being limited by the available event rate and Jefferson Lab by the beam
energy. After the planned energy upgrade to 11 GeV at Jefferson Lab, it should, however, be possible
to investigate the reaction in detail. Using acceptance cuts relevant for the CLAS++ detector, we find
comfortable event rates for kinematical conditions that may not be optimal but should be adequate for
a first look at DVCS on the pion in the Bjorken regime and at intermediate values of the skewness £.
Using simple models for the GPDs of the pion, we estimate that information about them could be
provided both by the beam spin and by the beam charge asymmetry, with the latter showing a more
pronounced sensitivity to the ansatz for the GPDs but being smaller in size. Optimized studies might
be feasible one day at a projected electron-ion collider [53], where in particular it should be possible
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to take the invariant mass of the mn system above the resonance region.

As a part of our model study, we have explored an ansatz for the pion GPDs that depends
exponentially on ¢, with a slope decreasing with . Taking a functional form previously used for the
nucleon [43] together with current parameterizations of the parton densities in the pion, we obtain
an excellent fit to the experimental data of the electromagnetic pion form factor. Without adjusting
further parameters, the ansatz then compares rather well with recent results from lattice QCD for
the second Mellin moment of the GPDs.
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