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AbstratWe study a supersymmetri �eld theory in six dimensions ompati�ed on theorbifold T 2=Z2 with two Wilson lines. After supersymmetry breaking, the Casimirenergy �xes the shape moduli at �xed points in �eld spae where the symmetry ofthe torus lattie is enhaned. Loalized Fayet-Iliopoulos terms stabilize the volumemodulus at a size muh smaller than the inverse supersymmetry breaking sale.All moduli masses are smaller than the gravitino mass.
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1 IntrodutionHigher-dimensional theories provide a natural framework for extensions of the super-symmetri standard model whih unify gauge interations with gravity [1℄. In reentyears, phenomenologially attrative examples have been onstruted in �ve and six di-mensions ompati�ed on orbifolds, and it has beome lear how to embed suh orbifoldGUTs into the heteroti string [2℄.An important problem in orbifold ompati�ations is the stabilization of moduli. Inthe following we study this question for an SO(10) model in six dimensions (6D) [3, 4℄whih, ompared to models derived from the heteroti string [5, 6℄, has onsiderablysimpler �eld ontent. The paper extends previous work whih demonstrated that theompat dimensions an be stabilized at small radii, R � 1=MGUT, muh smaller thanthe inverse supersymmetry breaking sale 1=� [7℄.A ruial ingredient for the stabilization of ompat dimensions is the Casimir en-ergy of bulk �elds [8℄. Various aspets of the Casimir energy for 6D orbifolds havealready been studied in [9{11℄. Stabilization of the volume modulus an be ahieved bymeans of massive bulk �elds, brane loalized kineti terms or bulk and brane osmo-logial terms [9℄. Alternatively, the interplay of one- and two-loop ontributions to theCasimir energy an lead to a stabilization at the length sale of higher-dimensional oup-lings [12℄. Furthermore, uxes and gaugino ondensates play an important role [13, 14℄.The mehanism studied in this paper is based on expetation values O(MGUT) of bulk�elds, indued by loal Fayet-Iliopoulos (FI) terms, and loalized supersymmetry break-ing leading to gaugino mediation [15, 16℄. In the framework of moduli mediation thismehanism is disussed in [17℄.For a retangular torus it has been shown in [7℄ that the interplay of `lassial' andone-loop ontributions to the vauum energy density an stabilize the ompat dimen-sions at R � 1=MGUT. Here we study the stabilization of all three shape and volumemoduli of the torus. Remarkably, it turns out that the minimum ours at a point with`enhaned symmetry', where the torus lattie orresponds to the root lattie of SO(5).Tori de�ned by Lie latties are the starting point for orbifold ompati�ations in stringtheory, whih lead to large disrete symmetries [18℄. These restrit Yukawa ouplings andan forbid or strongly suppress the �-term of the supersymmetri standard model [6,19℄.Enhaned disrete symmetries have previously been disussed in onnetion with stringvaua [20℄.The paper is organized as follows. In Setion 2 we disuss symmetries of the ompatspae and the assoiated moduli �elds, whereas the relevant features of the onsidered6D orbifold GUT model are briey desribed in Setion 3. The Casimir energies of salar�elds with di�erent boundary onditions are analyzed in Setion 4. These results arethe basis for the moduli stabilization disussed in Setion 5. The Appendix deals withthe evaluation of Casimir sums. 1



2 Modular Symmetries of OrbifoldsIn this setion we briey disuss the geometry of the ompat spae and the assoiatedthree moduli �elds. The torus T 2, and also the T 2=Z2 orbifold, an be parameterized bythe volume parameter A and the omplex shape parameter � = �1 + i�2. Following [9℄,we hoose the following metri for M4 � T 2,ds2 = A�1 g��dx�dx� +A ijdyidyj ; (1)where yi 2 [0; L℄, and the metri ij on the torus is given byij = 1�2 � 1 �1�1 j� j2 � : (2)4D Minkowski spae orresponds to g�� = ��� , and the indued metri at the orbifold�xed points is ~g�� = A�1��� . The kineti terms of the moduli �elds are obtained bydimensional redution from the 6D Einstein-Hilbert ation,S = M462 Z d6xpGR(G)= M46L22 Z d4xpg�R(g) + g����A��AA2 + g�������� �2� 22 � : (3)Here � � = �1 � i�2, and the Rii salar R is evaluated with the metri indiated inparenthesis. Note, that M26L is not the 4D Plank mass, sine g�� does not determinethe physial distane in the non-ompat dimensions, f. (1). One the area modulusA is stabilized at A0, a onstant Weyl resaling g�� = A0�g�� yields the physial Plankmass M4 = pA0L2M26 , with A0L2 being the area of the torus.In this paper we extend previous work [7℄, where only a retangular torus lattie wasonsidered. Note, that the torus an alternatively be desribed by the two radii R1;2 ofthe torus lattie and the angle � between them. The relation between the two sets ofparameters is given by2�R1 = LrA�2 ; 2�R2 = j� jLrA�2 ; � = aros �1j� j : (4)The retangular torus in [7℄ has been parameterized in terms of the two radii R1;2,orresponding to �1 = 0 and �2 = R2=R1.The group SL(2;Z) of modular transformations� ! a� + b� + d ; a; b; ; d 2 Z ; ad� b = 1 ; (5)relates modular parameters of di�eomorphi tori. Distint tori have modular parameters� taking values in the fundamental region j� j � 1, �1=2 � �1 � 1=2 and �2 > 0(f. Figure 1). 2
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Figure 1: Fundamental domain for the modular groups SL(2;Z) and �(2).The Kaluza-Klein mode expansion of bulk �elds on the torus an be written as�(x; y) = 1pAL 1Xm;n=�1�m;n(x) exp� 2�iLpA�2 [m (�2y1 � �1y2) + ny2℄� ; (6)with the orresponding Kaluza-Klein (KK) massesM2m;n = (2�)2AL2�2 jm� � nj2 : (7)Note that the sum over all KK modes is modular invariant: the transformations asso-iated with the two SL(2;Z) generators, � ! � + 1 and � ! �1=� , orrespond to therelabeling of terms (m;n)! (m;n�m) and (m;n)! (�n;m), respetively.In the ase of non-zero Wilson lines the KK masses take the values [11℄M2m;n = (2�)2AL2�2 jn+ � � �(m + �)j2 ; (8)where (�; �) are real numbers. For a T 2=Z2 orbifold, � and � are restrited, �; � 2f0; 1=2g. The modular transformation (5), with �2 ! �2=(j� + dj2), now orresponds tothe relabeling of KK modesm+ �! a(m + �)� (n+ �) ; n+ � ! d(n+ �)� b(m + �) : (9)Depending on the values of the disrete Wilson lines, the sum over KK modes is invariantunder the full modular group SL(2;Z) or some subgroup [21℄. For � = � = 0, theWilson lines are zero and SL(2;Z) remains unbroken. In the ase � = 0 and � = 1=2,modular invariane yields the additional restrition  = 0 mod 2 and d = 1 mod 2.Correspondingly, for � = 1=2 and � = 0 one �nds the restrition a = 1 mod 2 and3



b = 0 mod 2, while for � = � = 1=2 one has a; d = 1 mod 2, b;  = 0 mod 2 ora; d = 0 mod 2 and b;  = 1 mod 2. The largest ommon subgroup orresponds toa; d = 1 mod 2 and b;  = 0 mod 2, whih orresponds to �(2) [22℄. The fundamentaldomain of the groups �(2) and SL(2;Z) are ompared in Figure 1.We are interested in �xed points of the modular group in the upper half plane,beause the e�etive potential V (�1; �2) has extrema at these �xed points. To this endnotie that a matrix M 2 SL(2;Z);M 6= �1, has a �xed point in the upper half planeif and only if TrM < 2. This an be seen from the �xed point equation Mz = z whihimpliesz2 + (d� a)z � b = 0 : (10)Using the property ad� b = 1, one obtains for the solutions of this equationz = a� d�p(a+ d)2 � 42 : (11)We see that only for (a + d)2 < 4 we have omplex solutions in the upper half plane,whereas for (a + d)2 � 4 there are only real solutions. Clearly, only points on the edgeof the fundamental domain an be �xed points, beause points within the fundamentaldomain are inequivalent and therefore annot be mapped onto eah other by a modulartransformation.It is well known that SL(2;Z) has two �xed points at (�1; �2) = (0; 1) and (�1; �2) =(1=2;p3=2), respetively. For the ase  = 0 mod 2 and d = 1 mod 2 there is a �xedpoint at (�1; �2) = (1=2; 1=2), while for a = 1 mod 2 and b = 0 mod 2 there is a �xedpoint at (�1; �2) = (1; 1). Finally, in the ase a; d = 0 mod 2 and b;  = 1 mod 2 thereis a �xed point at (0; 1). The subgroup �(2) has no �xed points in the upper half plane.3 An Orbifold GUT ModelAs an example, we onsider a 6D N = 1 SO(10) gauge theory ompati�ed on anorbifold T 2=Z32, orresponding to T 2=Z2 with two Wilson lines [3℄. The model hasfour inequivalent �xed points (`branes') with the unbroken gauge groups SO(10), thePati-Salam group Gps = SU(4) � SU(2) � SU(2), the extended Georgi-Glashow groupGgg = SU(5) � U(1)X and ipped SU(5), G = SU(5)0 � U(1)0, respetively. Theintersetion of these GUT groups yields the standard model group with an additionalU(1) fator, G0sm = SU(3)C � SU(2)L � U(1)Y � U(1)X , as unbroken gauge symmetrybelow the ompati�ation sale.The model has three 16-plets of matter �elds, loalized at the Pati-Salam, the Georgi-Glashow, and the ipped SU(5) branes. Further, there are two 16-plets, � and �, andtwo 10-plets, H5 and H6, of bulk matter �elds. Their mixing with the brane �elds yieldsthe harateristi avor struture of the model [3℄.4



The Higgs setor onsists of two 16-plets, � and �, and four 10-plets, H1; : : : ; H4,of bulk hypermultiplets. The hypermultiplets H1 and H2 ontain the two Higgs doubletsof the supersymmetri standard model as zero modes, whereas the zero modes of H3 andH4 are olor triplets. The zero modes of the 16-plets are singlets and olor triplets,� : N ; D ; � : N; D : (12)The olor triplets D and D, together with the zero modes of H3 and H4, aquire massesthrough brane ouplings.Equal vauum expetation values of � and � form a at diretion of the lassialpotential,h�i = hN i = hNi = h�i : (13)Non-zero expetation values an be enfored by a brane superpotential term or by anFI-term loalized at the GG-brane where the U(1) fator ommutes with the standardmodel gauge group.The expetation values (13) break SO(10) to SU(5), and therefore also the additionalU(1)X symmetry, leading to bulk masses1M2 ' g26h�i2 ; (14)where g6 is the 6D gauge oupling, whih is related to the 4D gauge oupling by a volumefator, g4 = g6=pAL2.Supersymmetry breaking is naturally inorporated via gaugino mediation [4℄. Thenon-vanishing F -term of a brane �eld S generates mass terms for vetor- and hypermul-tiplets. In the onsidered model, S is loalized at the SO(10) preserving brane, whihyields the same mass for all members of an SO(10) multiplet. For the 45 vetor multipletand the 10 and 16 hypermultiplets of the Higgs setor one has�S = Z d4xd2y peg Æ2(y)�Z d2� h2�3STr[W �W�℄ + h::+ Z d4�� ��4SyS �Hy1H1 +Hy2H2� + �0�4SyS �Hy3H3 +Hy4H4�+�00�4SyS ��y� + �y���� : (15)Here eg�� is the metri indued at the �xed point, and W �(V ), H1; : : : ; H4, �;� are the4D N = 1 multiplets ontained in the 6D N = 1 multiplets, whih have positive parityat y = 0; � is the UV uto� of the model, whih is muh larger than the inverse size1For more details onerning the parity assignments and gauge symmetry breaking, see [7℄.
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of the ompat dimensions. For the zero modes, the orresponding gaugino and salarmasses are given bymg = h�AL2�2 ; m2H1;2 = � ��2AL2�2 ; m2H3;4 = � �0�2AL2�2 ; m2� = � �00�2AL2�2 ; (16)where AL2 is the volume of the ompat dimensions and � = FS=�. Note that thegaugino mass is stronger volume suppressed than the salar masses. This implies thatthe ontribution of the vetor multiplet to the Casimir energy relative to the one of thehypermultiplets is also suppressed, as shown in the appendix.4 Casimir Energy on T 2=Z32The Casimir energy of a real salar �eld on the given orbifold bakground an be writtenas VM = 12 hXim;n Z d4kE(2�)4 log�k2E + M2m;nA + M2A � ; (17)with [P℄m;n shorthand for the double sum andM2m;n denoting the Kaluza-Klein masses,whih are given by (8) exept for a fator of four due to the two additionalZ2 symmetries,whih have been modded out. The mass M stands for bulk and brane mass terms.The expression (17) for the Casimir energy is divergent. Following [9℄, we extrat a�nite piee using zeta funtion regularization,V = �d�(s)ds ����s=0 ; (18)where�(s) = 12 hXim;n �2sr Z d4kE(2�)4 �k2E + 4(2�)2A2L2�2 jn+ � � �(m + �)j2 + M2A ��s : (19)Note that, as in dimensional regularization, a mass sale �r is introdued. The momen-tum integration an be performed, whih yields�(s) = 12 1(2�)4�2�(s� 2)�(s) hXim;n �2sr � 4(2�)2A2L2�2 jn+ � � �(m + �)j2 + M2A �2�s= �2sr 42�s(2�)�2s�22A4�2sL4�2s� 2�s2 (s� 2)(s� 1)hXim;n �(n + � � (m+ �)�1)2 + (m + �)2� 22 + AL2�24(2�)2M2�2�s : (20)Carrying out the summations (f. Appendix) we �nd for the Casimir energy6



Figure 2: The di�erent ontributions to the Casimir energy for the di�erent boundary onditions. Notethat the potential is periodi in �1 with period 1 for � = 0 and period 2 for � = 1=2.
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V �;�M = M6L23072�3A �1112 � log� MpA�r��� M464�2A2 �34 � log� MpA�r�� Æ�0Æ�0� M3� 3=224�3A5=2L 1Xp=1 os(2�p�)p3 K3 �ppALM2p�2 �� 32A4L4� 22 1Xp=1 1Xm=0 12Æ�0Æm0 os(2�p(� � (m+ �)�1))p5=2� �� 22 (m + �)2 + AL2�2M2(4�)2 � 54 K5=2 2� ps� 22 (m+ �)2 + AL2�2M2(4�)2 ! : (21)The di�erent ontributions to the Casimir energy are displayed in Figure 2 as funtionof the shape moduli �1 and �2 for �xed volume modulus A.In supersymmetri theories there is a anellation between bosoni and fermioniontributions, and the expression for the Casimir energy is given byV = A �V 0;0M 0 � V 0;0M �+B �V 0;1=2M 0 � V 0;1=2M �+C �V 1=2;0M 0 � V 1=2;0M � +D �V 1=2;1=2M 0 � V 1=2;1=2M � ; (22)where M 0 = pM2 +m2, with supersymmetri mass M and supersymmetry breakingmass m; the oeÆients A,B,C,D depend on the �eld ontent of the model. Note thateven in the supersymmetri framework there are divergent bulk and brane terms, whihare proportional to the supersymmetry breaking mass m2, unlike the ase in Sherk-Shwarz breaking. These divergenies have to be subtrated from the unrenormalizedCasimir energy to obtain a �nite result, and to tune the four-dimensional osmologialonstant to zero.5 Stabilization5.1 Shape ModuliBefore disussing moduli stabilization for our partiular orbifold GUT model, it is in-strutive to onsider the shape moduli potential for varying �eld ontent, i.e., for di�erentoeÆients A,B,C,D. The modular symmetries (5) of the four di�erent ontributions aregiven in Table 1. They are obtained by requiring invariane of the Kaluza-Klein sumsunder the orresponding modular transformation, as disussed in Setion 2. Naively, onewould expet that adding two di�erent ontributions with di�erent symmetries wouldlead to the largest ommon subgroup, whih is given by �(2). However, for ertainrelations between the oeÆients A,B,C,D there an be non-trivial anellations, whih8



Figure 3: E�etive potential for the shape moduli �1 and �2. In the upper left (right) panel we plotthe potential for V 0;0M (V 0;0M +V 0;1=2M ). In the lower panels we show the potential for the shape moduliin the given model. Note that the saling in the �2 diretion is di�erent. The di�erent periodiitiesof the potential in the �1 diretion orrespond to di�erent values of the parameter b in the modulartransformations. For the given model there is a loal minimum of the full potential at (�1; �2) =(1=2; 1=2) and a saddle point at (�1; �2) = (0; 1=p2).
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a b  d Fixed Points (�1; �2)V 0;0 0 mod 1 0 mod 1 0 mod 1 0 mod 1 (0; 1) , (1=2;p3=2)V 0;1=2 0 mod 1 0 mod 1 0 mod 2 1 mod 2 (1=2; 1=2)V 1=2;0 1 mod 2 0 mod 2 0 mod 1 0 mod 1 (1; 1)V 1=2;1=2 1 mod 2 0 mod 2 0 mod 2 1 mod 20 mod 2 1 mod 2 1 mod 2 0 mod 2 (0; 1)�(2) 1 mod 2 0 mod 2 0 mod 2 1 mod 2 {V 0;0+V 0;1=2 0 mod 1 0 mod 1/2 0 mod 2 0 mod 1 (0; 1=2) , (1=4;p3=4)Vasimir 0 mod 1 0 mod 1 0 mod 2 1 mod 2 (1=2; 1=2)Table 1: Modular symmetries (f. (5)) of di�erent ontributions to the Casimir energy and the �xedpoints under those symmetries. For general oeÆients A;B;C;D in (22), the symmetry orrespondsto the largest ommon subgroup, whih is known as �(2). However, if the oeÆients ful�ll ertainrelations, the modular symmetry an be enhaned as shown in the last two lines.lead to a larger modular symmetry. For example, if the �eld ontent is suh that A = Band D = C = 0, the parameters of the modular group are restrited to b = 0 mod1=2 and  = 0 mod 2. Surprisingly, the resulting symmetry is not only larger than thesymmetry of V 0;1=2, it is not even a subgroup of SL(2;Z).Fixed points under the modular symmetry are extrema of the e�etive potential,assuming that the volume is stabilized. Hene, minima of the e�etive potential mayorrespond to suh �xed points. For �elds with boundary ondition (+;+), this is indeedthe ase. The Casimir energy then has a minimum at (�1; �2) = (1=2;p3=2) and a saddlepoint at (�1; �2) = (0; 1) [9℄. This implies that the shape moduli are stabilized at a toruslattie with R1 = R2 and � = �=3, whih orresponds to the root lattie of the Liealgebras SU(3) or G2. For our example with A = B and D = C = 0 on the other hand,there is a minimum at (�1; �2) = (1=4;p3=4) and a saddle point at (�1; �2) = (0; 1=2).The minimum orresponds to the lattie with R1 = 2R2 and � = �=3.
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Let us now turn to our model. The wanted repulsive behavior of the Casimir energyat small volume an be obtained if the ontribution of partiular bulk hypermultipletsdominates [7℄,Vasimir = 12 �V 0;0mH � V 0;0�+ 12 �V 0;1=2mH � V 0;1=2�+8 �V 1=2;0mH � V 1=2;0�+ 8 �V 1=2;1=2mH � V 1=2;1=2� ; (23)withm2H = ��0�2=(AL2�2) and �0 < 0, j�0j > j�j; j�00j (f. (16)). Remarkably, the poten-tial has an enhaned modular symmetry ompared to �(2). The allowed transformationshave  = 0 mod 2 and d = 1 mod 2, with a and b 2 Z.Solving the �xed point equation (11), one �nds a �xed point in the upper half-plane:(�1; �2) = (1=2; 1=2) with a = �b = �d = 1 and  = 2. It orresponds to a minimumin the e�etive potential. There is also a saddle point at (�1; �2) = (0; 1=p2). For theminimum, the torus lattie again has an enhaned symmetry: R1 = p2R2 and � = �=4,whih orresponds to the root lattie of SO(5). Its disrete symmetry is Z4.5.2 Volume ModulusIn [7℄ it has been shown that spontaneous gauge symmetry breaking by bulk Higgs�elds together with supersymmetry breaking an stabilize the ompat dimensions atthe GUT sale. The detailed mehanism of supersymmetry breaking is disussed in [17℄.Consider the breaking of U(1)X as disussed in Setion 3. In orbifold ompati�ationsof the heteroti string a vauum expetation value h�i an be indued by loalizedFayet-Iliopoulos (FI) terms. Vanishing of the D-terms then impliesh�i2 = C�2AL2 ; (24)where C � 1 is a loop fator and � is the string sale or, more generally, the UV uto�of the model. The expetation value is volume suppressed beause � is a bulk �eldand the FI-terms are loalized at �xed points. In terms of the bulk Higgs mass (14) oneobtains, using g26=(AL2) = g24 ' 1=2,M2 ' g26h�i2 ' 12C�2 : (25)For orbifold ompati�ations of the heteroti string one �nds M�MGUT.Supersymmetry breaking by a brane �eld S, with � = FS=�, leads to a `lassial'ontribution to the vauum energy density,Vl = Z d2y Z d4�peg Æ2(y)�SyS �1� �00�4 (�y� + �y�)��= F 2SA2 � 2�00�2M2A3L2�2 + : : : ; (26)11
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VcasimirPSfrag replaements AFigure 4: E�etive potential for the volume modulus (full line). The di�erent ontributions to thepotential are also shown separately; Vbrane represents the brane ounterterm.where the �rst term is a tree level potential [17℄, and ~g�� = A�1��� is the indued metriat the �xed point y = 0. The �rst term proportional to F 2S will be absorbed into thebrane tension.In the viinity of �1 = 1=2, the Casimir energy is to a good approximation given byV �;�M =+ M6L23072�3A �1112 � log� MpA�r��� M464�2A2 �34 � log� MpA�r�� Æ�0Æ�0� M3� 3=224�3A5=2L 1Xp=1 os(2�p�)p3 K3 �ppALM2p�2 �� M3��3=2232�3A5=2L 1Xp=1 os(2�p�)p3 K3 �ppA�2LM�+ M464�3� 32A2 1Xp=1 os(2�p�)p2 K4 �ppA�2LM� ��1 � 12�2 ; (27)where we have performed a Taylor expansion around �1 = 1=2. This approximation isvalid for small �2, and we have dropped additional terms in V 0;�M , whih anel in thesum of V 0;0M and V 0;1=2M .Expanding the Bessel funtions for small arguments and performing the summationsover p, we obtain for the four di�erent ontributionsV 0;0M (A; �1; �2) =� 16�3� 32945A4L4 � �33780A4L4� 32 + �3(�1 � 1=2)21260A4L4� 52+ �M2� 22180A3L2 + �M22880A3L2� 22 � �M2(�1 � 1=2)25760A3L2� 22 ; (28)12



V 0;1=2M (A; �1; �2) =� 16�3� 32945A4L4 � �33780A4L4� 32 + �3(�1 � 1=2)21260A4L4� 52+ �M2� 22180A3L2 + �M22880A3L2� 22 � �M2(�1 � 1=2)25760A3L2� 22 ; (29)V 1=2;0M (A; �1; �2) = + 31�3� 321890A4L4 + 31�3120960A4L4� 32 � 31�3(�1 � 1=2)240320A4L4� 52� 7�M2� 221440A3L2 � 7�M223040A3L2� 22 + 7�M2(�1 � 1=2)246080A3L2� 22 ; (30)V 1=2;1=2M (A; �1; �2) = + 31�3� 321890A4L4 + 31�3120960A4L4� 32 � 31�3(�1 � 1=2)240320A4L4� 52� 7�M2� 221440A3L2 � 7�M223040A3L2� 22 + 7�M2(�1 � 1=2)246080A3L2� 22 : (31)The total e�etive potential is now given by the sum of the Casimir energy (23), thelassial energy density (26) and a brane tension,Vtot(A; �1; �2) = Vasimir(A; �1; �2) + Vl(A) + Vbrane(A) : (32)Inserting the expansions (28)-(31) into the expression for the Casimir energy, one �nallyobtainsVtot(A; �1; �2) = � ��0�2288A4L4�2 �16� 22 + ��22 � 2(�1 � 1=2)2� 42 �� 2�00�2M2A3L2�2 + �A2 ; (33)where� = �36�002�2M4��0�2 > 0 : (34)The brane tension � has been adjusted suh that the potential Vtot vanishes at the loalminimum. The di�erent ontributions to the e�etive potential are shown in Figure 4.As disussed in the previous setion, the Casimir energy, and therefore Vtot, has aloal minimum at �1 = �2 = 1=2. The volume modulus is then �xed atA0L2 = � ��036�00 1M2 : (35)For j�0j > �00, as required by a repulsive Casimir energy at small volume, one thenobtains stabilization of the ompat dimensions at the inverse GUT sale, pAL2 �1=M� 1=MGUT.5.3 Moduli MassesThe moduli �elds A; �1 and �2 have masses muh smaller than the inverse size of theompat dimensions. Their Lagrangian is obtained by dimensional redution (f. [9℄)13



and from the e�etive potential (32),L = pg�M46L22 �R(g) + g����A��AA2 + g�������� �2� 22 �� Vtot(A; �1; �2)� : (36)After a onstant Weyl resaling, g�� = A0�g�� (f. (35)), the Lagrangian for the modulidepends on A0 and the 4D Plank mass M4 = pA0L2M26 ,LM = p�g�M242 ��g����A��AA2 + �g�������� �2� 22 ��A20 Vtot(A; �1; �2)� : (37)Expanding the moduli �elds around the minimum,A = A0 + A0M4 �A ; �1;2 = 12 + 1p2M4 ��1;2 ; (38)yields the Lagrangian for the anonially normalized utuations,LM = p�g(12 ��g���� �A�� �A+ �g������1����1 + �g������2����2��A20M24  A202\�2Vtot�A2 �A2 + 14\�2Vtot�� 21 �� 21 + 14\�2Vtot�� 22 �� 22!+ : : :) ; (39)where the hat denotes that the seond derivatives of Vtot are evaluated at the minimum.Together with Eqs. (33) and (35) we now obtain the moduli massesm2A = A40M24\�2Vtot�A2 = �00A0L2 2M2�2�2M24 ; (40)m2�2 = A202M24\�2Vtot�� 22 = 4m2A ; (41)m2�1 ' m2�2 ; (42)whih depend on the sale of supersymmetry breaking �, the uto� � and the sizeof the ompat dimensions pA0L2 � 1=M > 1=�. The mass m�1 has been obtainednumerially, based on the omplete expression (23) for Vasimir, sine the analytial result(33) away from �1 = 1=2 only holds for small �2 and not at the minimum �1 = �2 = 1=2.The moduli masses an be related to the gravitino mass using � = FS=� and m3=2 =FS=(p3M4), whih yieldsm2A = 6�00M2A0L2�4m23=2 : (43)For a ompati�ation sale pA0L2 � 1=M, one obtainsm2A = 6�00A20L4�4m23=2 ; (44)14



i.e., the moduli masses are volume suppressed ompared to the gravitino mass [17℄.An upper bound on the oupling �00 of the brane �eld S(x) to the bulk �eld �(x; y),and therefore on the moduli masses, an be obtained by naive dimensional analysis(NDA) [23℄. For this purpose, one rewrites the relevant part of the 6D LagrangianL = L̂bulk(�(x; y)) + Æ2(y � yS) L̂S(�(x; y); S(x)) (45)in terms of dimensionless �elds �̂(x; y) and Ŝ(x), and the uto� �,L = �6`6=C L̂bulk(�̂(x; y)) + Æ2(y � yS) �4`4=C L̂S(�̂(x; y); Ŝ(x)) ; (46)where `6 = 128�3 and `4 = 16�2; the fator C aounts for the multipliity of �elds inloop diagrams, with C = 8 in the present model (f. [4℄). The resaling of hiral bulkand brane super�elds reads�(x; y) = �p`6=C �̂(x; y) ; S(x) = �p`4=C Ŝ(x) : (47)The ratio C=`D gives the typial suppression of loop diagrams. This suppression isaneled by the fators `6=C and `4=C in front of the Lagrangians L̂ in Eq. (46). Con-sequently, all loops will be of the same order of magnitude, provided that all ouplingsare O(1). Thus, aording to the NDA reipe the e�etive 6D theory remains weaklyoupled up to the uto� �, if the dimensionless ouplings in Eq. (46) are smaller thanone.Let us now apply the NDA reipe to the oupling �00. Using Eq. (47), we obtainLS � �4`4=C Z d4��2 �00C`6 ŜyŜ ��̂y�̂ + �̂y�̂� : (48)The NDA requirement that all ouplings be smaller than one implies �00 . `6=C = 16�3.This translates intom2A . 96�3A20L4�4m23=2 : (49)However, this bound annot be saturated, sine the same bound holds for j�0j > �00.Further, one has � ' M6 ' 10 MGUT in the model under onsideration [4℄. This,together with the bound on �00, leads to the estimatem2A . 0:1 m23=2 : (50)Hene, all moduli masses are smaller than the gravitino mass.It is instrutive to ompare the upper bound on the moduli masses with the upperbound on the gaugino mass (16),mg = h�AL2�2 ' p3hpA0L2�m3=2 : (51)15



Compared to the moduli masses (44), the gaugino mass is weaker volume suppressed.Correspondingly, the NDA analysis allows the gaugino mass to be larger or smaller thanthe gravitino mass [24℄.6 ConlusionsWe have studied a 6-dimensional orbifold GUT model, ompati�ed on a T 2=Z2 orbifoldwith two Wilson lines. The Casimir energy depends on the boundary onditions ofthe various bulk �elds and is a funtion of the shape moduli. It is remarkable that theminimum of the e�etive potential ours at a point in �eld spae where the torus lattiehas an `enhaned symmetry' orresponding to the root lattie of SO(5).The SO(5) lattie has a disrete Z4 symmetry whih is larger than the Z2 symmetryof a generi torus. Vaua with unbroken disrete symmetries are phenomenologiallydesirable sine they an explain ertain features of the supersymmetri standard model,in partiular the di�erene between Higgs and matter �elds. Our analysis suggeststhat suh disrete symmetries may arise dynamially in the ompati�ation of higher-dimensional �eld and string theories.The interplay of a repulsive Casimir fore at small volume and an attrative intera-tion generated by the oupling of a bulk Higgs �eld to a supersymmetry breaking brane�eld stabilizes the volume modulus at the GUT sale, whih is determined by the sizeof loalized Fayet-Iliopoulos terms. The masses of shape and volume moduli are smallerthan the gravitino mass.A full supergravity treatment of the desribed stabilization mehanism still remainsto be worked out. Also the phenomenologial and osmologial onsequenes of moduli�elds lighter than the gravitino require further investigations.AknowledgmentsWe would like to thank A. Hebeker, M. Klaput, O. Lebedev, J. Louis, J. M�oller,C. Paleani, M. Ratz, J. Shmidt and J. Teshner for helpful disussions. This workhas been supported by the SFB-Transregio 27 \Neutrinos and Beyond" and by the DFGluster of exellene \Origin and Struture of the Universe".
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A Evaluation of Casimir SumsOur evaluation of the Casimir double sums requires two single sums whih we shall nowonsider. The �rst sum readseF (s; a; ) � 1Xm=0 1[(m + a)2 + 2℄s : (52)This is a series of the generalized Epstein-Hurwitz zeta type. The result an be foundin [25℄ and is given byeF (s; a; ) = �2s�(s) 1Xm=0 (�1)m�(m+ s)m! �2m�H(�2m; a) +p��(s� 12)2�(s) 1�2s+ 2�s�(s)1=2�s 1Xp=1 ps�1=2 os(2�pa)Ks�1=2(2�p) ; (53)where �H(s; a) is the Hurwitz zeta-funtion. Note that this is not a onvergent se-ries but an asymptoti one. In the following it will be important that �H(�2m; 0) =�H(�2n; 1=2) = 0 for m 2 N and n 2 N0. In our ase, the �rst sum in eF (s; a; ) thusredues to a single term. For a = 1=2 the sum vanishes, and for a = 0 only the �rstterm ontributes; with �H(0; 0) = 1=2 one obtains �2s=2.The seond, related sum is given byF (s; a; ) � 1Xm=�1 1[(m + a)2 + 2℄s : (54)Using the two identities (m 2 N)�H(�2m; a) = ��H(�2m; 1� a) ; (55)F (s; a; ) = eF (s; a; ) + eF (s; 1� a; ) ; (56)one easily obtains, in agreement with [9℄,F (s; a; ) = p��(s) jj1�2s "� �s� 12�+ 4 1Xp=1 os(2�pa)(� p jj)s� 12Ks� 12 (2� p jj)# : (57)These two sums provide the basis for our evaluation of the Casimir sums.A.1 Casimir Sum (I) on T2=Z32We �rst onsider the summationhXim;n = 1Xm=0 1Xn=�1 : (58)
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In this ase the Casimir energy is obtained from1Xm=0 1Xn=�1 �(n + � � (m + �)�1)2 + (m + �)2� 22 + �2��s : (59)where we have shifted s ! s + 2 and de�ned �2 = AL2�24(2�)2M2. Using the expression forF (s; a; ) we an perform the sum over n,1Xm=0 1Xn=�1 �(n+ � � (m + �)�1)2 + (m+ �)2� 22 + �2��s= p��(s� 12)�(s) 1Xm=0(� 22 (m+ �)2 + �2)1=2�s+ 4p��(s) 1Xp=1 os(2�p(� � (m + �)�1)) 1Xm=0(� p)s�12 �q� 22 (m + �)2 + �2� 12�s� Ks� 12 �2� pq� 22 (m+ �)2 + �2��f1(s) + f2(s) : (60)Let us onsider f1(s) �rst. The sum over m an be performed with the help of eF (s; a; ),f1(s) = p��(s� 12)�(s) 1Xm=0(� 22 (m + �)2 + �2)1=2�s= p��(s� 1=2)�(s) �1�2s�H(0; �) + �2(s� 1) �2�2s�2+ 2�s�(s)��s2 �1�s 1Xp=1 ps�1 os(2�p�)Ks�1 �2�p� ��2�� (61)Realling the shift in s, we an now write �(s) as�(s) = �2s+4r 4�s(2�)�2s�4�22A�2sL�2s��s2 s(s+ 1)�p��(s� 1=2)�(s) �1�2s�H(0; �)+ �2(s� 1) �2�2s�2+ 2�s�(s)��s2 �1�s 1Xp=1 ps�1 os(2�p�)Ks�1 �2�p� ��2��+ 4p��(s) 1Xp=1 os(2�p(� � (m+ �)�1)) 1Xm=0(� p)s�12 �q� 22 (m + �)2 + �2� 12�sKs� 12 �2� pq� 22 (m + �)2 + �2�� : (62)
18



Now we have to di�erentiate with respet to s and set s = �2. Sine �(�2) = 1, thederivative has only to at on �(s) if the orresponding term is inversely proportional to�(s). Performing the di�erentiation, usingdds 1�(s) ����s=�2 = ��0(s)�(s)2 ����s=�2 = +2 ; (63)as well as Ka(z) = K�a(z) and substituting again � = pA�2ML4� we �nally obtain for theCasimir energy,V �;�(I)M =� 4�2A4L4� 22 �� 16�15 A5=2L5� 5=22 M5(4�)5 �H(0; �)+ �A3L6� 22M636(4�)6 ��11 + 12 log� MpA�r��+ 4�2 � 22 A3=2L3� 3=22 M3(4�)3 1Xp=1 os(2�p�)p3 K3(2�p�pALM4�p�2 �)+ 8�2 1Xp=1 os(2�p(� � (m+ �)�1))p5=2 1Xm=0�� 22 (m+ �)2 + AL2�2M2(4�)2 � 54K5=2(2� ps� 22 (m+ �)2 + AL2�2M2(4�)2 )� : (64)A.2 Casimir Sum (II) on T2=Z32The seond relevant summation ishXim;n = "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1# : (65)For the orresponding boundary onditions one has � = 0. The Casimir sum an thenbe written as"Æ0;m 1Xn=0+ 1Xm=0 1Xn=�1�Æm;0 1Xn=�1# �(n+ � �m�1)2 +m2� 22 + �2��s ; (66)where we again shifted s! s+2. The double sum is the sum (I) whih we have alreadyalulated. Using�1Xn=�1 �(n+ �)2 + �2��s = 1Xn=0 �(n + 1� �)2 + �2��s (67)
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one easily �nds for the remaining piee2f3(s) = � 1Xn=0 �(n+ 1� �)2 + �2��s= ���2s�H(0; 1� �)�p��(s� 12)2�(s) �1�2s� 2�s�(s)�1=2�s 1Xp=1 ps�1=2 os(2�p(1� �))Ks�1=2 (2�p�) : (68)Di�erentiating the orresponding ontribution to �(s), setting s = �2, and substituting� yields the Casimir energy,V �;�(II)M =V �;�(I)M+ 4�2A4L4� 22 �A2L4� 22M4(4�)4 �32 � 2 log� MpA�r�� �H(0; 1� �)� 8�15 A5=2L5� 5=22 M5(4�)5+ 4�2 �(A�2)1=2LM(4�) �5=2 1Xp=1 os(2�p(1� �))p5=2 K5=2 �2�ppA�2LM4� ��: (69)A.3 ResultPutting everything together the Casimir energy an be written asV �;�M =+ M6L23072�3A �1112 � log� MpA�r��� M464�2A2 �34 � log� MpA�r�� Æ�0Æ�0� M3� 3=224�3A5=2L 1Xp=1 os(2�p�)p3 K3 �ppALM2p�2 �� 32A4L4� 22 1Xp=1 1Xm=0 12Æ�0Æm0 os(2�p(� � (m + �)�1))p5=2 �� 22 (m+ �)2 + AL2�2M2(4�)2 � 54K5=2 2� ps� 22 (m + �)2 + AL2�2M2(4�)2 ! (70)2 Note that �H(0; 1) = �1=2 and �H (�2m; 1) = 0
20



or in terms of the moduli R1, R2 and � (and in the frame used in [7℄)V ��M =+ M6R1R2768� sin ��1112 � log�M�r��� Æ�0Æ�0 M464�2 �34 � log�M�r��� 18�4M3R2R21 sin � 1Xp=1 os(2�p�)p3 K3(�pMR1)� 2�4 1R42 1sin4 � 1Xp=1 1Xm=0 12Æ�0Æm0 os(2�p[� � (m+ �)R2=R1 os �℄)p5=2�R2R1 sin �q(m+ �)2 + M2R214 �5=2K5=2 �2� p R2R1 sin �q(m + �)2 + M2R214 � : (71)For � = �2 this agrees with the expression for a retangular torus [7℄, as expeted.B Contributions from Vetor- and HypermultipletsIn this appendix we ompare the leading ontributions to the Casimir energy fromvetor and hypermultiplets, respetively. We will see that the ontribution of the vetormultiplets is generially suppressed ompared to the one of the hypermultiplets, andhene it was justi�ed to neglet this ontribution in Eq. (23).The relative suppression an be seen by an expliit investigation of the mass matriesof the gauginos and the hypersalars, respetively. For simpliity we only fous on onesingle salar � and one gaugino  . For the present disussion, the relevant part of the4D Lagrangian readsL = �Xi �iM s2i ��i �Xi  iMfi �i + ��2�2 Xij �iC�ij��j � h�2�2 Xij  iC ij j (72)where for the mode expansion we used the notation�(x; y) =Xi �i(x)�i(y) ; Z d2y �i(y)�j(y) = Æij ; (73)with Kaluza-Klein mass M si andC�ij = �i(0)�j(0) : (74)In the fermioni ase the notation is analogous. Here � is the Weyl fermion whih,together with the gaugino, forms the four-omponent spinor of the six-dimensional ve-tor multiplet. For simpliity we did not onsider any mass terms oming from gauge21



symmetry breaking, although to inlude also these terms would be straightforward. The�rst two terms in Eq. (72) follow diretly from the KK mode expansion and dimensionalredution, whereas the last two terms ome from supersymmetry breaking with � thesupersymmetry breaking mass. From Eq. (72) one an read o� the salar as well as thefermioni mass matrix squared. The fermioni mass matrix squared reads expliitly (inthe basis ( ; �))Mf2 = 0B� Mf2i Æik + � h2�2 �2Pj C ijC jk�2 h2�2C jk�Mfkh2�2C jk�Mfk Mf2i Æik 1CA : (75)Both, the salars and the gauginos give a ontribution to the Casimir energy whih isproportional to the Trae-Log operator Tr log(k2+M2). One an deompose the matrixM2 as the sum of two terms M2 = M20 + �M2 (diagonal plus orretions). In thefermioni ase this readsMf20 = 0B� Mf2i Æik 00 Mf2i Æik 1CA ; �Mf2 = 0B� � h2�2 �2Pj C ijC jk�2 h2�2C jk�Mfkh2�2C jk�Mfk 0 1CA (76)Expanding the Trae-Log operator in powers of �M2=(k2+M20) leads to the expressionTr log(k2 +M2) = Tr log(k2 +M20) + Tr� 1k2 +M20�M2�� 12 Tr� 1k2 +M20�M2 1k2 +M20�M2� + : : : (77)whih in the fermioni ase readsTr log(k2 +Mf2) = Tr log(k2 +Mf20 ) + � h2�2�2Xi 1k2 +Mf2i Xk C ikC ki�2� 12Xij 1k2 +Mf2i 1k2 +Mf2j � h2�2�2Xk C ikC kj�2Mfi Mfj + : : :(78)Performing the analogous steps in the salar ase we obtainTr log(k2 +Ms2) = Tr log(k2 +Ms20 ) + ��2 Xi 1k2 +M s2i C�ii�2� 12Xij 1k2 +M s2i 1k2 +M s2j � ��2�2Xk C�ikC�kj�4 + : : : (79)Sine C ;� � 1=AL2, we see that the leading ontribution to the Casimir energy fromthe vetor multiplet is generially volume and uto� suppressed ompared to the onefrom the hypermultiplets. 22
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