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Quantum eletrodynamis (QED), the gauged quantum �eld theory of the eletromag-neti interation, has elebrated ground-breaking suesses in the twentieth entury. Infat, its multi-loop preditions for the anomalous magneti moments of the eletron andthe muon were found to agree with highest-preision measurements within a few parts of10�12 and 10�10, respetively.Another ultrapure laboratory for high-preision tests of QED is provided by positron-ium (Ps), the lightest known atom, being the eletromagneti bound state of the eletrone� and the positron e+, whih was disovered in the year 1951 [1℄. In fat, thanks to thesmallness of the eletron mass m relative to typial hadroni mass sales, its theoretialdesription is not plagued by strong-interation unertainties and its properties, suh asdeay widths and energy levels, an be alulated perturbatively in non-relativisti QED(NRQED) [2℄, as expansions in Sommerfeld's �ne-struture onstant �, with very highpreision.Ps omes in two ground states, 1S0 parapositronium (p-Ps) and 3S1 orthopositronium(o-Ps), whih deay to two and three photons, respetively. In this Letter, we are on-erned with the lifetime of o-Ps, whih has been the subjet of a vast number of theoretialand experimental investigations. Its �rst measurement [3℄ was performed later in the year1951 and agreed well with its lowest-order (LO) predition of 1949 [4℄. Its �rst preisionmeasurement [5℄, of 1968, had to wait nine years to be ompared with the �rst ompleteone-loop alulation [6℄, whih ame two deades after the analogous alulation for p-Ps[7℄ being onsiderably simpler owing to the two-body �nal state. In the year 1987, theAnn Arbor group [8℄ published a measurement that exeeded the best theoretial predi-tion available then by more than ten experimental standard deviations. This so-alledo-Ps lifetime puzzle triggered an avalanhe of both experimental and theoretial ativities,whih eventually resulted in what now appears to be the resolution of this puzzle. In fat,the 2003 measurements at Ann Arbor [9℄ and Tokyo [10℄,�(Ann Arbor) = 7:0404(10 stat.)(8 syst.) �s�1;�(Tokyo) = 7:0396(12 stat.)(11 syst.) �s�1; (1)agree mutually and with the present theoretial predition,�(theory) = 7:039979(11) �s�1: (2)The latter is evaluated from�(theory) = �0 "1 + A�� + �23 ln� +B ����2� 3�32� ln2 � + C�3� ln�# ; (3)where [4℄ �0 = 29(�2 � 9)m�6� (4)2



is the LO result. The leading logarithmially enhaned O(�2 ln�) and O(�3 ln2 �) termswere found in Refs. [11,12℄ and Ref. [13℄, respetively. The oeÆients A = �10:286606(10)[6,11,14,15,16℄, B = 45:06(26) [15℄, and C = �5:51702455(23) [17℄ are only available innumerial form so far. Comprehensive reviews of the present experimental and theoretialstatus of o-Ps may be found in Ref. [18℄.Given the fundamental importane of Ps for atomi and partile physis, it is desir-able to omplete our knowledge of the QED predition in Eq. (3). Sine the theoretialunertainty is presently dominated by the errors in the numerial evaluations of the o-eÆients A, B, and C, it is an urgent task to �nd them in analytial form, in terms oftransendental numbers, whih an be evaluated with arbitrary preision. In this Letter,this is ahieved for A and C. The ase of B is beyond the sope of presently availabletehnology, sine it involves two-loop �ve-point funtions to be integrated over a three-body phase spae. The quest for an analyti expression for A is a topi of old vintage:about 25 years ago, some of the simpler ontributions to A, due to self-energy and outerand inner vertex orretions, were obtained analytially [19℄, but further progress thensoon ame to a grinding halt. The sustained endeavor of the ommunity to improve thenumerial auray of A [6,11,14,15,16℄ is now �nally brought to a termination.

Figure 1: Feynman diagrams ontributing to the total deay width of o-Ps at O(�). Self-energy diagrams are not shown. Dashed and solid lines represent photons and eletrons,respetively.The O(�) ontribution in Eq. (3), �1 = �0A�=�, is due to the Feynman diagramswhere a virtual photon is attahed in all possible ways to the tree-level diagrams, withthree real photons linked to an open eletron line, and the eletron box diagrams with ane+e� annihilation vertex onneted to one of the photons being virtual (see Fig. 1). Takingthe interferene with the tree-level diagrams, imposing e+e� threshold kinematis, andperforming the loop and angular integrations, one obtains the two-dimensional integral
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representation [16℄ �1 = m�736�2 1Z0 dx1x1 dx2x2 dx3x3 Æ(2� x1 � x2 � x3)� [F (x1; x3) + perm:℄; (5)where xi, with 0 � xi � 1, is the energy of photon i in the o-Ps rest frame normalized byits maximum value, the delta funtion ensures energy onservation, and perm. stands forthe other �ve permutations of x1; x2; x3. The funtion F (x1; x3) is given byF (x1; x3) = g0(x1; x3) + 7Xi=1 gi(x1; x3)hi(x1; x3); (6)where gi are ratios of polynomials, whih are listed in Eqs. (A5a){(A5h) of Ref. [16℄, andh1(x1) = ln(2x1); h2(x1) = sx1x1 �1;h3(x1) = 12x1 [�2 � Li2(1� 2x1)℄;h4(x1) = 14x1 h3�2 � 2�21i ; h5(x1) = 12x1 �21;h6(x1; x3) = 1px1x1x3x3 hLi2(r+A; �1)� Li2(r�A ; �1)i ;h7(x1; x3) = 12px1x1x3x3 h2 Li2(r+B ; �1)� 2 Li2(r�B; �1)� Li2(r+C ; 0) + Li2(r�C ; 0)i ; (7)with xi = 1� xi and�1 = artan(qx1=x1); �1 = artan(qx1=x1);r�A =px1  1�sx1x3x1x3! ; r�B = px1  1�sx1x3x1x3! ;r�C = r�B=px1: (8)Here, �2 = �2=6 and Li2(r; �) = �12 1Z0 dtt ln(1� 2rt os � + r2t2) (9)is the real part of the dilogarithm [see line below Eq. (20)℄ of omplex argument z = rei�[20℄. Sine we are dealing here with a single-sale problem, Eq. (5) yields just one number.Although Bose symmetry is manifest in Eq. (5), its evaluation is ompliated bythe fat that, for a given order of integration, individual permutations yield divergent4



integrals, whih have to anel in their ombination. In order to avoid suh a proliferationof terms, we introdue a regularization parameter, Æ, in suh a way that the symmetryunter xi $ xj for any pair i 6= j is retained. In this way, Eq. (5) ollapses to�1 = m�76�2 1�ÆZ2Æ dx1 1�ÆZ1�x1+Æ dx2x1x2x3F (x1; x3); (10)where x3 = 2� x1� x2. Note that we may now exploit the freedom to hoose any pair ofvariables xi and xj (i 6= j) as the arguments of F and as the integration variables.The analytial integration of Eq. (10) is rather tedious and requires a number of triksto be oneived of. For lak of spae, we an only outline here a few examples. Spei�-ally, we onsider the last two funtions of Eq. (7), whih are most ompliated. UsingEq. (9) and after some manipulations, we obtain the following integral representation forh7(x1; x3): h7(x1; x3) =�14 1Z0 dtpt(x1x3 � x1x3t) �ln x1x3x1x3+ 2 ln(x3 + x3t)� ln t� : (11)Exploiting the x1 $ x3 symmetry of the oeÆient g7(x1; x3) multiplying h7(x1; x3), thisan be simpli�ed ash7(x1; x3) = �14 1Z0 dtpt(x1x3 � x1x3t) [2 ln(x3 + x3t)� ln t℄: (12)At this point, it is useful to hange the order of integrations. Observing that the log-arithmi terms in Eq. (12) are x1 independent, we �rst integrate over x1 (for a similarapproah, see Ref. [21℄). In order to avoid the appearane of ompliated funtions in theintermediate results, the integration over t in Eq. (12) is performed last.Analogously, h6(x1; x3) an be rewritten ash6(x1; x3) =�12 1Z0 dtpt(x1x3 � x1x3t) [lnx1 � lnx3+ ln(x3 + x3t)℄; (13)in whih the part proportional to lnx1 and the omplementary part are �rst integratedover x3 and x1, respetively. The t integration is again performed last.Let us now onsider a typial integral that arises upon the �rst integration:I = 1Z0 dtt 1Z0 dxx ln[1� 4t(1� t)(1� x)℄ ln(1� x): (14)5



Diret integration over t or x would lead to rather ompliated funtions in the remainingvariable. Instead, we Taylor expand the �rst logarithm using ln(1� x) = �P1n=1 xn=n toobtain I = � 1Xn=1 4nn 1Z0 dtt [t(1� t)℄n 1Z0 dxx (1� x)n ln(1� x): (15)Now the two integrals are separated and an be solved in terms of Euler's Gamma funtion,�(x) = R10 dt e�ttx�1. Using1Z0 dxx (1� x)n ln(1� x) = � 0(n+ 1); (16)where  (x) = d ln�(x)=dx is the digamma funtion, we �nally haveI = 1Xn=1 4n2n �2(n)�(2n) 0(n + 1): (17)Another lass of typial integrals yields sums involving digamma funtions of half-integer arguments, e.g.J = 1Z0 dtt 1Z0 dx ln[1 + 4t(1� t)(1� x)℄ ln(1� x)x� 2= 1Xn=1 (�4)n8n �2(n)�(2n) � 0 �n+ 22 ��  0 �n+ 12 �� : (18)I and J belong to the lass of so-alled inverse entral binomial sums [22,23℄, and methodsfor their summation are elaborated in Ref. [23℄. With their help, I and J an be expressedin terms of known irrational onstants, asI =�4�2l22 � l423 � 8 Li4 �12�+ 172 �4;J =�32�2l22 + l424 � 3�2l2lr + l22l2r + 1112 l2l3r + 47288 l4r+ 4l2lr Li2(r) + 76 l2r Li2(r)� 6l2 Li3(�r)� 2lr Li3(�r) + 5l2 Li3(r) + 43 lr Li3(r) + 6Li4 �12�+ 4Li4(�r)� 5 Li4(r)� 133 lr S1;2(r) + 23 S1;2(r2)� 4 S2;2(�r) + 5 S2;2(r) + �3l2 + 196 �3lr; (19)where r = (p2� 1)=(p2 + 1), lx = lnx,Sn;p(x) = (�1)n+p�1(n� 1)! p! Z 10 dtt lnn�1 t lnp(1� tx) (20)6



is the generalized poly-logarithm, Lin(x) = Sn�1;1(x) is the poly-logarithm of order n, and�n = �(n) = Lin(1), with �(x) being Riemann's zeta funtion [20,25℄.Unfortunately, not all integrals an be omputed so straightforwardly. In more om-pliated ases, the integrations are not separated after expansion into in�nite series. Wethen rely on the PSLQ algorithm [24℄, whih allows one to reonstrut the representationof a numerial result known to very high preision in terms of a linear ombination of aset of irrational onstants with rational oeÆients, if that set is known beforehand. Theexperiene gained with the expliit solution of the simpler integrals helps us to exhaustthe relevant sets. In order for PSLQ to work in our appliations, the numerial values ofthe integrals must be known up to typially 150 deimal �gures.After a laborious alulation, we obtain29(�2 � 9)A = 5627 � 901216�2 � 11303192 �4 + 196 l2 � 2701108 �2l2+ 25324 �2l22 + 251144 l42 + 91364 �2l23 + 83256 l43 � 214 �2l2lr� 4916�2l2r + 716 l2l3r + 35384 l4r + 58116 �2 Li2 �13�� 212 l2 Li3(�r)� 72 lr Li3(�r) + 634 l2 Li3(r)+ 638 lr Li3(r)� 24932 Li4 ��13�+ 24916 Li4 �13�+ 2516 Li4 �12�+ 7Li4(�r)� 7S2;2(�r)� 634 Li4(r) + 634 S2;2(r) + 11449432 �3 � 916 �3l2� 358 �3lr + 1p2 �492 �2lr � 772 l3r � 356 lr Li2(r)+ 356 Li3(r)� 1753 S1;2(r) + 143 S1;2(r2) + 1193 �3� : (21)The onstant C in Eq. (3) is related to A through [17℄C = A3 � 22930 + 8l2: (22)From Eqs. (21) and (22), A and C an be numerially evaluated with arbitrary prei-sion, A =�10:28661 48086 28262 24015 01692 10991 : : : ;C =�5:51702 74917 29858 27137 88660 98665 : : : : (23)These numbers agree with the best existing numerial evaluations [16,15℄ within thequoted errors.In onlusion, we obtained the O(�) and O(�3 ln�) orretions to the total deaywidth of o-Ps, i.e. the oeÆients A and C in Eq. (3), respetively, in losed analyti7
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