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1 IntrodutionD-branes in Calabi-Yau manifolds play entral roles in string theory and related �elds.They an be used to onstrut and study models of partile physis and osmology withspontaneously broken or unbroken N = 1 supersymmetry. They also determine extremalblak holes in four-dimensional N = 2 supergravity or BPS states in N = 2 �eld theory.A lot of e�orts have been devoted to this subjet in the past twelve years. Most aredone in large volume regimes where the �0 orretions are small or negligible and theten-dimensional supergravity an be used. There are also studies of D-branes at speialnon-geometri bakgrounds with exatly solvable worldsheet onformal �eld theories, suhas Gepner models and free orbifolds. Furthermore, some works probe singular points ofthe moduli spae where the worldsheet desription breaks down. Although there are stillmany things to be understood, a body of solid knowledge is aumulating at speial pointsof the moduli spae where onvenient desriptions of the theory are available.A natural and important problem is to onnet the information at the speial pointsand to obtain a global piture of D-branes over the entire moduli spae of bakgrounds.For example, this will be neessary to understand the totality of N = 1 vaua. Somequantities are proteted from quantum orretions and are either onstant or holomor-phi as funtions of the moduli �elds. For those, we may be able to glue together theinformation at speial points trivially or by analyti ontinuation. Ramond-Ramond (RR)harges of D-branes are good examples | the onnetion between large volume regimesand Gepner points was suessfully found in the seminal paper [1℄. However, most quan-tities do not possess suh properties. We would like to have at least some hint to studythe vast unexplored regions.For losed strings, linear sigma models [2℄ provide an ultra-violet desription of theworldsheet theories over the entire moduli spae in a large lass of examples. They wereused to �nd a simple and global piture of the stringy moduli spae that had been availableonly via mirror symmetry, and they had also been used to derive mirror symmetry itself.A natural idea is to use them also to study D-branes. The main goal of the present paperis to onstrut an ultra-violet desription of the worldsheet theory with boundary, usinglinear sigma models, that is valid in regions of the moduli spae that enompass variousspeial points of di�erent harater. Just as in the bulk theories, we would like to have aworkable method of onstrution whih is very expliit and transparent.To be preise our fous will be on the desription of B-type D-branes over the bulkof the K�ahler moduli spae. The moduli spae of (2; 2) superonformal �eld theories is1



a produt of two spaes, MC and MK, whih are referred to as the \omplex struturemoduli spae" and the \K�ahler moduli spae" aording to their interpretation in largevolume regimes. It is the K�ahler moduli spae that has speial points with various di�erentdesriptions. Relevant D-branes are those preserving a half of the (2; 2) supersymmetry,and there are two types: A-branes and B-branes. In a large volume regime, A-branes arewrapped on Lagrangian submanifolds and B-branes are wrapped on omplex submani-folds. They have hiral setors that are proteted from renormalization. The hiral setorof B-branes depends holomorphially onMC and is invariant under deformations inMK.Correspondingly, the tree-level spaetime superpotential depends holomorphially on theomplex struture moduli �elds but is independent of the K�ahler moduli �elds. Note thatthis does not mean that B-branes do not depend at all on MK. The spaetime D-termpotential and stability of the branes depend primarily on the K�ahler moduli. These fatsmake it feasible and yet interesting to study B-branes over the K�ahler moduli spae.Linear sigma models are a simple lass of (2,2) supersymmetri gauge theories. Inthis paper, we only onsider models with Abelian gauge groups. Fayet-Iliopoulos (FI)parameters enter into the worldsheet D-term equations and determine the pattern ofgauge symmetry breaking and massless �elds. The pattern deomposes the spae of FIparameters into domains alled \phases". On a \phase boundary", there is a lassialvauum on�guration with an unbroken ontinuous subgroup whih is generially a U(1).The quantum gauge theory also depends on the theta angles, whih are interpreted asthe bakground eletri �elds. The K�ahler moduli spae MK is thus spanned by the FIparameters as well as the theta angles.A part of the data to speify a D-brane in a linear sigma model is the representation ofthe gauge group on the Chan-Paton spae, that is, the harges of the Chan-Paton vetors.The most important result of the present paper is the grade (or band) restrition rule.It provides the neessary and suÆient ondition so that a \parallel family" of D-branesan be de�ned over a region of the moduli spae MK whih overs two adjaent phasesand their phase boundary. The ondition is on the Chan-Paton harges of the brane withrespet to the unbroken U(1) subgroup at the phase boundary, and goes as follows. LetS be the sum of all positive harges under that U(1) of the bulk matter �elds. Then theondition on the Chan-Paton harge q is that� S2 < �2� + q < S2 (1.1)for any value of � at the phase boundary in the region of MK under onsideration.The present work is strongly motivated by reent developments in mathematis. TheD-brane ategory, whih has the same information as the hiral setor of all possible2



boundary interations in a �xed bulk theory, provides ative areas of researh in algebraigeometry and sympleti geometry, after M. Kontsevih's homologial mirror symmetryonjeture [3℄. The ategory of B-branes in a large volume regime is the derived ategoryof the target spae, while in an orbifold theory it is the derived ategory of objetswith orbifold group ation. In a Landau-Ginzburg model it is the ategory of matrixfatorizations of the superpotential. The ategories of B-branes of bulk theories that arerelated by K�ahler deformations must be equivalent, as a onsequene of the invariane ofthe hiral setor. Mathematially, an equivalene of ategories is given by a pair of maps ofobjets and morphisms with ertain isomorphism onditions. Reently, suh equivalenesof D-brane ategories were onstruted. One example is the ategorial version of MKayorrespondene [4℄, that is, the equivalene of the derived ategory of a non-ompattori Calabi-Yau manifold and the derived ategory for the orbifold theory whih sits at adi�erent point of the same K�ahler moduli spae. Also, D. Orlov onstruted equivalenesbetween the derived ategory of the Calabi-Yau hypersurfae de�ned by a polynomial andthe ategory of matrix fatorizations of the same polynomial [5℄. A natural question iswhether these equivalenes are the ones relevant for physis. Our work grew out of anattempt to answer this question.The organization of the rest of the paper is as follows.In Setion 2, we desribe B-type D-branes in non-linear sigma models, Landau-Ginzburgmodels, and their orbifolds. We determine the ondition of N = 2B supersymmetry andU(1) R-symmetry on the N = 1 invariant boundary interations given by Quillen's su-peronnetions. This leads to omplexes of vetor bundles as the data of D-branes innon-linear sigma models and homogeneous matrix fatorizations of the superpotential forLandau-Ginzburg models. We also study the hiral setor of eah system and desribethe orresponding D-brane ategory.In Setion 3, we look into D-term deformations and brane-antibrane annihilation,whih are operations that do not hange the low energy behaviour of the boundary inter-ations. We show that a quasi-isomorphism between omplexes of vetor bundles an beobtained by a hain of D-term deformations and brane-antibrane annihilation. This lari-�es the relevane of quasi-isomorphisms in brane-antibrane systems, whih was disussedearlier in [6℄ from the spaetime point of view. We also study relevant and marginal de-formations of the bulk theory. We study what happens to D-branes when a pair of bulk�elds with F-term mass are integrated out, and �nd the map of D-branes from the highenergy theory to the low energy theory (we all it Kn�orrer's map). We end the setionwith the study of marginal K�ahler deformations whih is the main subjet of this paper.3



We determine the rule of D-brane transport along a path in the K�ahler moduli spae, andshow that it de�nes the notion of a \at onnetion" for the \bundle" of D-branes overMK.In Setion 4, we review bulk linear sigma models and make some new observationsthat play important rôles later in the paper. In partiular, we present a simple way to�nd the phase struture and the symmetry breaking patterns by plotting the harges ofthe �elds in the spae of FI parameters. We also �nd a simple relation of the symmetrybreaking patterns between adjaent phases.In Setion 5, we lassifyN = 2B supersymmetri boundary interations in linear sigmamodels with U(1) R-symmetry. (Earlier works on this subjet an be found in [7{10℄.)We �rst introdue the Wilson line branes as the basi building bloks. Their interationswith the required symmetry are determined by gauge invariant and homogeneous matrixfatorizations of the superpotential. In a system with vanishing superpotential, they aregiven by omplexes of Wilson line branes. We also desribe the hiral setor of the theorywith zero gauge oupling.In Setion 6, we study the boundary ontribution to the energy and harge densityof the ground state of a lass of matter systems. This is to �nd the low energy e�etivetheory on the Coulomb branh of the linear sigma model. One of the most important�ndings is the presene of normalizable modes loalized near the boundary, that beomezero modes in a partiular diretion of the Coulomb branh. In suh a diretion, thee�etive theory in terms of vetor multiplet �elds beomes singular. We also digress tostudy, for later purpose, the vauum energy and harge of the open string system in amassive Landau-Ginzburg model.Setion 7 is the main part in whih we derive the grade restrition rule. The key is theLagrangian boundary ondition on the Coulomb branh. We �rst re-examine the ondi-tion for A-branes in Landau-Ginzburg models and �nd the ondition that the boundarypotential must be bounded below. This is then applied to the e�etive theory on theCoulomb branh. For a brane that violates the grade restrition rule, the Lagrangiansubmanifold must rotate as the phase boundary is rossed. It annot avoid overlapingwith a part of the singular line on whih the e�etive desription breaks down. We expeta non-trivial e�et from suh an overlap. On the other hand, for a brane satisfying thegrade restrition rule, the Lagrangian submanifold is stable and nothing speial happenson the Coulomb branh as the phase boundary is rossed.In Setion 8, we apply the grade restrition rule to models with vanishing superpo-tential. We �rst study the redution of the linear sigma model branes to the low energy4



theory. Worldsheet D-term equations give rise to a tahyon ondensation pattern thatdepends on the respetive phase in MK. The hange of the ondensation pattern arossphase boundaries �ts perfetly with the grade restrition rule. As an appliation, wederive the monodromy along a losed loop in the K�ahler moduli spae MK that enirlesa singular point. We �nd that the e�et is to bind the brane that beomes massless atthe singular point, as expeted from the spaetime piture and mirror symmetry. Wealso demonstrate the power of our onstrution in several key examples, inluding theop of the resolved onifold and MKay orrespondene. We lose the setion with aomment on D-brane transport through the enter of the moduli spae where multiplephase boundaries meet.Setion 9 is a mathematial digression in whih we introdue some important notionsin plain words and prove some key fats used in the previous setion. This also paves theway to disuss ompat models in the next setion where we need elaborate ommutativealgebra at some point. We make a number of mathematial statements that follow fromour onstrution.In Setion 10, we apply the grade restrition rule to models with non-trivial super-potential. The problem of D-brane transport itself is equally simple as in the modelswithout superpotential. An extra ompliation shows up when the superpotential givesmass to some of the bulk �elds: we need to integrate them out to arrive at the low energytheory. To this end, we apply the Kn�orrer map developed in Setion 3 to �nd the lowenergy desription of the D-branes. We exhibit the D-brane transport in some examples,inluding the large volume images of Reknagel-Shomerus branes in the quinti and atwo-parameter model. We also randomly pik some brane at the geometri regime and�nd its Landau-Ginzburg image. We disuss monodromy and again �nd that the e�etis to bind a brane that beomes massless at the singular point. We end by showing therelation of our work to that of Orlov [5℄ in a lass of models. We also inlude a review ofrelevant mathematial bakgrounds [11, 12℄.We inlude an appendix whih summarizes the supersymmetry transformations ofthe bulk �elds and the bulk Lagrangians, in non-linear sigma models, Landau-Ginzburgmodels and linear sigma models.1.1 A guide to read the paperWe tried to write this work in a self-ontained manner, and as a result it turnedout quite omprehensive. In the following ow hart we therefore suggest various routes5



through the paper. We believe though that the most omprehendible way of doing so isto read through all setions, indiated by the bold arrows.Alternatively the reader may take short uts along the dashed arrows without missingthe most important oneptual points in the shaded subsetions. Depending on intereststhe reader may proeed after Setion 7 with D-branes in non-ompat or ompat models.A remark on Setion 6 is in order. It provides the basis for disussing the graderestrition rule in Setion 7. Together these two setions are the heart of the paper.However, for getting the main oneptual ideas Setion 6 may be left out in a �rst reading.
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2 D-branes In N = 2 TheoriesIn this setion, we study D-branes in various (2; 2) supersymmetri �eld theories thatpreserve a diagonal N = 2 supersymmetry. In Setions 2.2, 2.3 and 2.4, we desribe D-branes in non-linear sigma models, in orbifolds and in Landau-Ginzburg models. We payspeial attention to R-symmetry and the ground state setor. We start out in Setion 2.1with the onstrution of N = 1 supersymmetri boundary Lagrangians based on openstring tahyon pro�le, whih will be used throughout this paper.2.1 N = 1 Supersymmetri InterationsWe �rst onstrut N = 1 supersymmetri boundary interations that are marginalor relevant. For simpliity, we onsider a string propagating in at Eulidean spae Rn,whih is desribed by real salar �elds xI and Majorana fermions  I� (I = 1; :::; n), withthe Lagrangian densityL = nXI=1 � 12(�txI)2 � 12(�sxI)2 + i2 I�(�t + �s) I� + i2 I+(�t � �s) I+� : (2.1)The system has N = (1; 1) supersymmetry | the ation is invariant under the transfor-mations ÆxI = i�1� I+�i�1+ I�; and Æ I� = ��1�(�t��s)xI . If formulated on the worldsheetwith boundary, for instane on the strip S= [0; L℄�R, a diagonal N = 1 subalgebra anbe preserved when a suitable boundary term is added. In partiular, the LagrangianLbulk = Z L0 L ds + "� i2 nXI=1  I+ I� #L0 (2.2)is invariant under the variation with �1� = ��1+ = �1:ÆxI = i�1 I ; Æ I = �2�1 _xI ; Æ e I = �2�1�sxI ; (2.3)where  I =  I+ +  I� and e I =  I+ �  I�. The boundary term is needed so that Lbulkis supersymmetri without using equations of motion nor boundary onditions. We shallassume this type of term (the \standard boundary term") throughout this paper. In aurved bakground with metri gIJ , the standard boundary term is � i2gIJ I+ J�. If thereis a losed B-�eld, the ation is supplemented byZS 12BIJ(x)(�txI�sxJ � �sxI�txJ)d2s+ i4 Z�SBIJ(x) I J dt: (2.4)There is another N = 1 subalgebra, �1� = �1+, for whih the standard boundary term hasthe opposite sign and the boundary term for the B-�eld is i4BIJ(x) e I e J .8



2.1.1 Brane-Antibrane System And Open String TahyonsWe reall that the vertex operators for the tahyon and the massless vetor boson takethe following form (see, for example, [13℄)VT = k �  eik�x; (k2 = 1); (2.5)V �A = (� � _x� (� �  )(k �  )) eik�x; (k2 = k � � = 0): (2.6)We would like to �nd o�-shell extension of these operators and their �nite version thatan be inluded in the boundary Lagrangian. The o�-shell and �nite version of (2.6) iswell-known: At = _xIAI(x)� i4FIJ(x) I J ; (2.7)where AI is a U(1) gauge �eld on Rn and FIJ is its �eld strength FIJ = �IAJ��JAI . TheN = 1 variation ofAt is a total time derivative, and hene it an be added to the boundaryLagrangian preserving theN = 1 supersymmetry. Note that the full Lagrangian inludingthe boundary term �At is invariant under the simultaneous shift by a one-form �:B ! B + d�; A! A� �: (2.8)Let us next onsider the o�-shell and �nite version of (2.5). We �rst note that VT isfermioni and one annot inlude it in the boundary Lagrangian. This is how the standardGSO projetion eliminates the tahyon. However, one an inlude it by introduing a Z2-graded Chan-Paton spae, a vetor spae of the formV = Vev � Vod; (2.9)where Vev is the even (or bosoni) subspae and Vod is the odd (or fermioni) subspae.We all a linear map between suh vetor spaes even (resp. odd) when it maps even toeven and odd to odd subspaes (resp. even to odd and odd to even subspaes). We de�nethe ation of the fermioni �elds  I� and the fermioni parameters (suh as �1) so thatthey antiommutes with all odd linear maps of V. Then, one an onsider the followingo�-shell version of (2.5) A(1)t = i2 I�IT(x) (2.10)where T(x) is an odd endomorphism of V, mapping Vev to Vod and Vod to Vev. This A(1)tis bosoni and an be inluded in the boundary Lagrangian. Let us see if it is N = 1invariant: ÆA(1)t = i2 ��2�1 _xI� �IT+ i2 Ii�1 I�I�JT = �i�1 _T: (2.11)9



This is a total derivative and it appears good at �rst sight. However, sine the Chan-Patonspae has rank larger than one, the term At is plaed in the path-ordered exponentialU(tf ; ti) = P exp��i Z tfti Atdt� :A variation ÆU(tf ; ti) = �i Z tfti U(tf ; t)ÆAtU(t; ti) dt:is a symmetry only when the whole integrand is a total derivative ddt [U(tf ; t)X(t)U(t; ti)℄,whih holds when ÆAt is a total ovariant derivativeÆAt = _X + i[At; X℄ =: DtX: (2.12)For the �rst trial (2.10), this almost holds with X = �i�1T, see (2.11), but there is anerror term �i[A(1)t ; X℄ = ��1[A(1)t ;T℄. Thus, we would like to modify A(1)t by a termwhose variation anels it. Note that�1[A(1)t ;T℄ = �1 � i2 I�IT �T�T � i2 I�IT�= i2�1 I (�IT �T+T � �IT) = i2�1 I�I(T2) = Æ�12T2� ;where we have used the antiommutativity T I = � IT in the seond equality. Thus, ifwe modify the �rst trial to At = A(1)t + 12T2, we have ÆAt = _X + i[A(1)t ; X℄. Fortunately,12T2 ommutes with X = �i�1T, and hene we have [A(1)t ; X℄ = [At; X℄ whih means thatÆAt = _X + i[At; X℄. The symmetry ondition (2.12) holds. In this way, we �nd thatAt = i2 I�IT(x) + 12T(x)2 (2.13)provides the N = 1 supersymmetri Wilson line P exp ��i R Atdt�. The expression (2.13)is the o�-shell and �nite version of the tahyon vertex operator (2.5). Note that it requiresa Z2-graded Chan-Paton spae V = Vev � Vod. The standard interpretation is that Vevand Vod are the Chan-Paton spaes orresponding to branes and antibranes respetively.When the Chan-Paton spae has rank larger than one, FIJ in (2.7) must be the fullurvature FIJ = �IAJ � �JAI + i[AI ; AJ ℄. The quadrati part i[AI ; AJ ℄ is needed for thesame reason as the tahyon Lagrangian needs 12T2. We an also ombine (2.7) and (2.13).Let E = Eev � Eod be a Z2-graded vetor bundle over Rn. For an odd endomorphism Tof E and an even gauge onnetion A of E, we have an invariant interationAt = _xIAI(x)� i4FIJ(x) I J + i2 IDIT(x) + 12T(x)2; (2.14)10



where FIJ is the urvature of AI and DIT is the ordinary ovariant derivative �IT +i[AI ;T℄. Eev is the Chan-Paton vetor bundle suppoerted by branes and Eod is theone supported by antibranes. The expression (2.14) was �rst obtained in [9, 14, 15℄using boundary fermions. The part other than _xIAI is the urvature of Quillen's super-onnetion [16℄, and provides a onise expression for the Ramond-Ramond harge of abrane-antibrane system [14, 15℄.We obtained boundary interations that are o�-shell extensions of the ones generatedby tahyon and gauge boson vertex operators, whih are relevant and marginal operatorsof the free theory. Here we omment on those generated by a lass of operators withhigher dimensions that have higher powers in the fermions  . (Other possibilities arethose with higher derivatives �x, d3x=dt3,..., _ , � ,..., whih we do not disuss here.) Theidea is to allow T to depend not only on x but also on  . It turns out that modifying(2.13) by giving  -dependene to T and adding one simple term does the job. Namely,for At = � _xI �� IT(x;  ) + i2 I ��xIT(x;  ) + 12T(x;  )2; (2.15)we �nd ÆAt = Dt (�i�1T) :In fat, the one inluding the non-Abelian gauge �eld (2.14) an be regarded as a speialase of this: For T(x;  ) = T(x)�  IAI(x) we �nd that (2.15) reprodues (2.14).The Landau-Ginzburg CaseFinally, we omment on the ase where the bulk theory has a superpotential termLh = �12 nXI=1(�Ih(x))2 � i I+ J��I�Jh(x): (2.16)In this ase, the N = 1 supersymmetry variation for e I is modi�ed to Æ e I = �2�1�sxI �2�1�Ih(x) while the variation for xI and  I are intat. Under this, the ation varies asÆ "ZS(L+ Lh) d2s+ Z�S"� i2 nXI=1  I+ I�# dt# = Z�S�i�1 I�Ih(x)�dt: (2.17)The right hand side is the same as the variation of R h(x) dt, and thus the ation is N = 1invariant provided that the following boundary term is added to the Lagrangian�L = h�h(x) i�S: (2.18)11



Sine the variation of xI and  I are not modi�ed, the boundary interations onsideredabove, suh as (2.13) and (2.14), remain invariant.We next onsider various (2; 2) supersymmetri bulk theories and determine the on-dition for the gauge onnetion A and the tahyon T to preserve a diagonal N = 2supersymmetry of B-type, or N = 2B supersymmetry. The latter is a symmetry gener-ated by a linear ombination of Q+ and Q� and its omplex onjugate, suh asQ = Q+ +Q�; (2.19)and its omplex onjugate,Qy = Q++Q�. These superharges obey the antiommutationrelations Q2 = Qy2 = 0 and fQ;Qyg = 2H, where H is the Hamiltonian.2.2 Non-Linear Sigma Models: Complex Of Vetor BundlesLet us �rst onsider the non-linear sigma model on a K�ahler manifold (X; g). Ifformulated on the worldsheet with boundary, a diagonal N = 2 subalgebra of the (2; 2)supersymmetry an be preserved. If we add the standard boundary term as in (2.2),L(0)bdry = �� i2gi|( i+ |� +  |+ i�)��S; (2.20)the ation is invariant under the N = 2B supersymmetryÆxi = � i; Æ i = �2i� _xi; Æ e i = �2i��sxi � ��ijk j+ k�: (2.21)In this expression, i; j; k; ::: are indies of omplex oordinates, � is a omplex variationparameter, � = i(�1 + i�2), and � is its omplex onjugate, � = �i(�1 � i�2). The B-�eldterm (2.4) is N = 2B invariant if B obeys B(Jv; Jw) = B(v; w), that is, if B is a (1; 1)-form. We stress again that the N = 2B invariane holds using neither equations of motionnor boundary onditions, provided that the standard boundary term is added.2.2.1 Condition Of N = 2 SupersymmetryWe now determine the ondition on the superonnetion (A;T) of a Z2 graded vetorbundle E = Eev�Eod so that the orresponding boundary interation (2.14) has N = 2Bsupersymmetry. Let us �rst provide the answer. The ondition on the gauge onnetionA is that its urvature is a (1; 1)-form, namely vanishing of the (0; 2) (and therefore (2; 0))omponents F (0;2)A = 0: (2.22)12



Holomorphi strutures are then de�ned on Eev and Eod by the Cauhy-Riemann operator�A, whih obeys the integrability ondition (�A)2 = F (0;2)A = 0. The ondition on thetahyon T is that it an be deomposed asT = iQ� iQy; (2.23)where Q is holomorphi D{Q = 0; (2.24)and its square is proportional to the identityQ2 =  � idE; (2.25)in whih  is a numerial (�eld independent) onstant. The ondition of the gauge on-netion (2.22) is well-known [17℄, and the proof is omitted here. The ondition for T wasderived in [9℄ for those based on boundary fermions. We provide a general derivationbelow.We start for simpliity with the ase with trival gauge onnetion A = 0. We �rstnote that the additional supersymmetry variation an be expressed in terms of the realoordiantes as Æ2xI = i�2JIK K; Æ2 I = 2�2JIK _xK ; (2.26)where J is the omplex struture of X. Aording to this, At varies asÆ2At = i�2 _xKJIK�IT+ � � �where the ellipsis refers to terms without time derivative. In order for this to be a totaltime derivative, we would like JIK�IT to be �KY for some Y whih should be a linearreombination of T. Sine J is a omplex struture, J2 = �1, the only possibility isthat T is a sum of two terms T+ and T� suh that JIK�IT� = �i�KT�, for whihY = iT+ � iT� does the job. Writing T+ = iQ and using the hermitiity of T, one anwrite T = iQ� iQy where �{Q = 0. The boundary interation then takes the formAt = �12 i�iQ+ 12 |�|Qy + 12fQ;Qyg � 12Q2 � 12Qy2:Let us ompute the full N = 2B variation of At. As in the N = 1 ase, we would like the
13



variation to be the total ovariant derivative DtZ = _Z + i[At; Z℄ for some Z:ÆAt = i� _xi�iQ+ 12fQ;�� |�|Qyg � 12� i�iQ2 + h::= i� ddt(�Q) + i �12 |�|Qy; �Q��� 12� i�iQ2 + h::= i� ddt(�Q) + i[At; �Q℄�+ ��12 i�iQ + 12fQ;Qyg � 12Q2 � 12Qy2; �Q��12� i�iQ2 + h::= iDt(�Q)� 12(�+ �) i�iQ2 � 12(� + �)[Q2; Qy℄ + h::= iDt(�Q+ �Qy) + 2Re ��2 i�iQ2 � [�2Qy; Q2℄� : (2.27)We would like the seond term to vanish so that we are left with iDt(�Q+ �Qy). This is soif and only if Q2 is �eld independent and proportional to the identity matrix. When thegauge onnetion is non-trivial A 6= 0, the above onsideration goes through with only aslight modi�ation, and we obtain the onditions (2.23), (2.24) and (2.25).If we require Q2 =  � idE with a onstant , the term �12Q2� 12Qy2 in At is a onstantmultiple of the identity and we may omit it. From now on, we use the following versionof the boundary interation without �Re(Q2)At = AI _xI � i4FIJ I J � 12 iDiQ+ 12 {D{Qy + 12fQ;Qyg: (2.28)Under the holomorphiity onditions (2.22) and (2.24), its N = 2B supersymmetry vari-ation with time dependent parameters �(t); �(t) is given byÆAt = iDt��(Q�  |A|) + �(Qy �  iAi)��Re� � iDiQ2 � [�Qy; Q2℄��i�_�Q+ _�Qy�: (2.29)where Dt is the ovariant derivative with respet to the new At in (2.28). Under theadditional ondition (2.25), the variantion ÆAt is a total ovariant derivative up to _�terms. The _�, _� terms in (2.29) show that Q and Qy provide the boundary ontributionto the superharges Q and Qy. On the strip S = [0; L℄ �R with boundary interations(E1; A1; Q1) and (E2; A2; Q2), the superhargeQ found by the standard Noether proedureis given by Q = Qbulk +Qbdry;Qbulk = Z L0 dsngi|( |+ +  |�)�txi + gi|( |+ �  |+)�sxio (2.30)Qbdry = �iQ2���s=L+ iQ1���s=0: (2.31)14



The boundary part ats only on the Chan-Paton fator,iQbdry(	CP 
 	internal) = �Q2��L	CP � (�1)j	CPj	CPQ1��0�
	internal;where (�1)j	CPj is +1 or �1 depending on whether 	CP is even or odd. The superhargeQ squares to zero as required by the N = 2 supersymmetry algebra, as long as Q21 andQ22 are the same onstants.More General InterationsLet us next onsider the tahyon pro�le T that depends also on the fermions  ;  . Wehave seen that the boundary interationAt = � _xI �� IT+ i2 I ��xIT+ 12T2is N = 1 supersymmetri. We would like to see the ondition for N = 2 invariane.Assuming again the form T = iQ� iQy, where Q is independent of  i's,�� iQ = 0; (2.32)we �nd the following supersymmetry variation of the above AtÆAt = Dt �i�Q+ i�Qy�� i2(� + �)ÆQ� |�|Q +Q2� + i2(�+ �)ÆQ�� i�iQy +Qy2��i_� Q�  { �� {Q!� i _��Qy �  i �� iQy� (2.33)where iÆQY :=  |�|Y +QY � (�1)jY jY Q+ 2i _xi �� iY; (2.34)iÆQY :=  i�iY �QyY + (�1)jY jY Qy + 2i _x{ �� {Y: (2.35)We see that the interation preserves the N = 2 supersymmetry if and only if Q satis�es,in addition to (2.32),  |�|Q+Q2 =  � idE (2.36)where  is a �eld independent onstant. Under these onditions, the boundary interationtakes the following form up to an additive onstantAt = �i _x| �� |Q + i _xi �� iQy � 12 i�iQ+ 12 |�|Qy + 12fQ;Qyg: (2.37)15



For the ase where Q(x;  ) is at most linear in  , i.e., Q(x;  ) = Q(x) �  |A|(x), theequation (2.36) splits into two equations, D|Q(x) = 0 and Q(x)2 =  � idE, whih arenothing but the ondition obtained previously.For the most part of this paper, we will not onsider suh higher dimensional boundaryinterations, exept for Setion 3 where we disuss D-term deformations.2.2.2 R-SymmetryThe bulk non-linear sigma model always has vetor U(1) R-symmetry that ats triv-ially on the target spae oordinates. If preserved by the boundary interation, the bulkvetor U(1) R-symmetry beomes an R-symmetry of the N = 2B superalgebra underwhih the superharge Q transforms as Q! �Q for some phase � = ei�. We restrit ourattention to D-branes with suh U(1) R-symmetry.Sine the holomorphi part of the tahyon Q enters into the superharge Q, whih hasR-harge 1, Q must also have R-harge 1. Namely, the Chan-Paton bundle E must admita U(1) ation R( ei�) : E ! E suh thatR(�)Q(x)R(�)�1 = �Q(x): (2.38)This in partiular requires  = 0 in (2.25), so thatQ2 = 0: (2.39)We of ourse require that the onnetion A is invariant under the same ationR(�)AI(x)R(�)�1 = AI(x): (2.40)Let us denote the subbundle of E of R-harge j by Ej. That is, Ej is the R(�) =�j eigenbundle. Eah Ej has a holomorphi struture determined by the onnetion Arestrited to Ej. We denote the orresponding holomorphi vetor bundle by E j. Then,by (2.38) the Q ation on E = �jE j is deomposed as� � � Q�! E j�1 Q�! E j Q�! E j+1 Q�! � � � : (2.41)The ondition (2.39) means that this is a omplex of holomorphi vetor bundles whereQ plays the rôle of a boundary operator. We shall sometimes denote this omplex byC = C(E ; Q). We may assume that the R-harges j are all integers, or equivalently,that � 7! R(�) is an honest U(1) ation | one an always rede�ne R(�) by multiplyingsome phase �Æj in eah irreduible fator. Sine Q is odd, the mod 2 redution of the16



grading by suh integral R-harges mathes with or is opposite to the original Z2-grading,E = Eev � Eod, or mixture of the two ases. We hoose R( ei�) so that they math:Eev = Mj: evenEj; Eod = Mj: oddEj: (2.42)The reason is the harge integrality that is present in the bulk non-linear sigma model,i.e., any bulk operator has integral vetor R-harge whih agrees modulo 2 with thestatistis of the operator. By the requirement (2.42) we extend this harge integrality tothe boundary.Let us onsider two branes with suh R-symmetry, say, B1 = (E1; A1; Q1) with symme-try R1 and B2 = (E2; A2; Q2) with symmetry R2. Then, there is an ation of R-symmetryon the spae of open string states H(B1;B2). The ation on the Chan-Paton fator isgoverned by R1 and R2;R(�) : 	CP 
 	internal 7�! R2(�)	CPR1(�)�1 
 Rinternal(�)	internal: (2.43)This introdues a grading on the spae of open string states, H(B1;B2) = �pHp(B1;B2),with Hp(B1;B2) = n	 2 H(B1;B2) ��� R(�)	 = �p	o : (2.44)The R-harges p of states are not neessarily integers sine the R-ation on the internalpart may not be integral.There is an ambiguity in the hoie of R(�) | the uniform shift j ! j + 2m doesnot violate the ondition (2.38) and (2.42). This shift of R-harges does not hange thephysial property of the brane. However, for a given ation Rinternal(�) on the internalpart, di�erent shifts of R1 and R2 will shift the grading of the spae of states (2.44). Wesometimes keep this grading as a part of the information of the D-brane. We all suhbranes with additional information graded D-branes.Let us briey omment on the more general interation (2.37) for  -dependent Q thatobeys the equation (2.36). The R-symmetry ondition isR(�)Q(x; � )R(�)�1 = �Q(x;  ):This again requires  = 0 in (2.36). If we write Q = Q0 +Q1 + � � � where Qm is the partthat has power m in  , then the ondition is R(�)QmR(�)�1 = �1�mQm. Thus, if wereplae  { by the one form dx{ one an interpret Qm as a (0; m) form that sends Ej toEj+1�m. Then the supersymmetry ondition (2.36) beomes�Q+Q2 = 0: (2.45)17



for the total sum Q = Pnm=0Qm of forms. This data for D-branes is alled a twistedomplex. It is found from the point of view of string �eld theory in [18, 19℄ as a physialrealization of an objet of the \enhaned triangulated ategory" of Bondal and Kapranov[20℄. Here we showed its realization as an ordinary N = 2 supersymmetri boundaryinteration. This generalization is not neessary when X is algebrai, in the sense thatwill be explained at the end of Setion 2.2.3 and in Setion 3.If the target spae X is a Calabi-Yau manifold, the bulk theory ows to a non-trivial�xed point in the infra-red limit, where vetor and axial R-symmetries of the lassialLagrangian beome parts of the (2; 2) superonformal symmetry. If it has a large volumelimit, the orret R-symmetries are the ones suh that the target spae oordinates havezero R-harges. This is so even if X has a non-trivial U(1) symmetry by whih theR-symmetries ould be modi�ed [21℄. The superonformal �eld theory obtained thisway is of speial type | the R-harges in the NS-NS setor are all integers and reduemodulo 2 to the Z2-grading that determines the spin and statistis. Also, there existhiral spetral ow operators O 12 ;0 and O0; 12 in the NS-R and R-NS setors, whih areresponsible for spaetime supersymmetry [22℄ in the ontext of string ompati�ations.In superonformal �eld theories of this type, BPS D-branes are those suh that the twospetral ow operators are related by O 12 ;0 = ei'O0; 12 for some phase ei' [23℄. In theontext of string theory, this phase determines the spaetime supersymmetry preservedby the D-branes. For an open string strethed bewteen BPS branes with phases ei'1and ei'2 , the R-harges of the states in the NS-setor are '1 � '2 plus integers [6℄. Thebrane de�ned by a boundary interation (E;A;Q) may or may not ow to suh a BPSD-brane. If it does, then the R-symmetry of (E;A;Q) is expeted to beome a part ofthe superonformal symmetry of the infra-red brane. Often the brane (E;A;Q) owsto the deoupled sum of several BPS branes with di�erent phases ei'. In that ase theR-symmetry of (E;A;Q) may not orrespond to the infra-red R-symmetry.2.2.3 Chiral SetorIn a supersymmetri �eld theory with a superharge Q that squares to zero, suh as 4dN = 1 and 2d (2; 2) theories, the hiral ring is de�ned as the ring ofQ-ohomology lassesof loal operators. It arries an important information of the theory that is proteted fromrenormalization. This is the ase also in 2d (2; 2) theories with boundary interationsthat preserve N = 2 supersymmetry. In this ontext, a loal operator is inserted on theboundary of the worldsheet, say, at the point z = 0 of the upper-half plane Imz � 0.Note that a boundary ondition or a boundary interation must be spei�ed. Suppose18



the boundary interations on the left (z < 0) and the right (z > 0) of the insertionpoint are B1 and B2 respetively. Then the spae of Q-ohomology lasses of operatorsis denoted by H(B1;B2). If the two are the same brane, the spae H(B;B) by itselfforms a ring by the produt of operators. For di�erent branes, the produt is of the formH(B1;B2) �H(B2;B3) ! H(B1;B3). If we �x a set of branes fBigi2I, the diret sum ofspaes H(Bi;Bj) (i; j 2 I) forms a ring | we may all it the hiral ring orrespondingto the set fBigi2I . If we onsider all possible branes, it would be mathematially moreappropriate to use the language of ategory | objets are D-branes B and morphisms areelements ofH(B;B0). This is how the D-brane ategory (in the hiral setor) is de�ned. Inthis paper, however, we shall loosely refer to elements of H(B;B0) as hiral ring elements.If the bulk theory has an axial R-symmetry with integral R-harges, suh as a Calabi-Yau sigma model, one an use B-twist to obtain a topologial �eld theory in whih hiralring elements play the rôle of physial observables. In this ontext the D-brane ategoryin the hiral setor is alled \the ategory of topologial D-branes". Also, the B-twistan be used to �nd a one-to-one orrespondene between the hiral ring elements in theB1-B2 setor and supersymmetri ground states of the open string strethed from B1 toB2. Therefore, the terms \hiral ring elements" and \supersymmetri ground states" anbe used interhangeably in suh a ase.In what follows, we determine the spae H(B1;B2) for a pair of D-branes, B1 =(E1; A1; Q1) and B2 = (E2; A2; Q2), in the non-linear sigma model on a K�ahler manifoldX. We �rst realize it as a Dolbeault type ohomology, and then try to translate it into apurely holomorphi desription. This leads us to the derived ategory of X.The �elds  i� and �zxi, �zxi are Q-partners of eah other and thus an be eliminated.Also,  {+�  {� are set equal to zero by the boundary ondition. Thus, we may work onlywith the zero modes of xi, x{ and  { =  {+ +  {�. In this zero mode setor,1 the spae ofoperators is identi�ed as the spae of antiholomorphi forms with values in the bundle oflinear maps Hom(E1; E2);Hzero(B1;B2) = nMi=1 
0;i(X;Hom(E1; E2)): (2.46)On this spae,  | is represented as the one-form dx| while gi| _xi ats as the di�erentiation1The meaning of \zero mode" may require lari�ation. It means \onstant (or more preisely parallel)mode on the at worldsheet with straight boundary (at whih the operators are inserted)". It shouldnot be onfused with the \zero mode" in the open string NS setor to whih the spae of loal operatorsnaturally orresponds to: there is in fat no parallel mode for spinors in the NS setor. However, whenB-twist is possible, it literally orresponds to \zero mode" in the open string Ramond setor.19



�i�| +A|. Therefore the superharge Q, as shown in (2.30) and (2.31), is represented asiQzero� = �A1;2�+Q2�� (�1)j�j�Q1: (2.47)�A1;2 is the Cauhy-Riemann operator determined by the onnetions A1 and A2, whihis expressed loally as �A1;2� = dz| ^ (�|� + iA2;|� � i�A1;|). The Z2-grading (�1)j�j isthe ombination of the one for Hom(E1; E2) and the one by the form degree. If both B1and B2 have R-symmetry, the spae (2.46) has a �ner grading. It is graded by the sumof the form degree and the grading of Hom(E1; E2) determined by the R-harges of thebundles E1 and E2, where the degree j elements of Hom(E1; E2) inrease the R-hargeby j, Homj(E1; E2) = �j0Hom(Ej01 ; Ej0+j2 ). The R-harge p subspae of (2.46) hene isHpzero(B1;B2) = Mi+j=p
0;i(X;Homj(E1; E2)): (2.48)The superharge Qzero is a degree one operator that squares to zero, and hene de�nesa Z-graded omplex. The spae of hiral ring elements is isomorphi to the ohomologygroup of this omplex Hp(B1;B2) �= HpQzero(H�zero(B1;B2)): (2.49)The ring struture H(B1;B2) �H(B2;B3) ! H(B1;B3) is simply realized as the wedgeprodut of forms ombined with the omposition of homomorphisms. In partiular, itpreserves the grading by the R-symmetry.Note that the degree p here is not neessarily the same as the R-harge of the quantum�elds that inludes the ontribution from the internal part (suh as the sum of the zeropoint harges). For distintion, we all it the R-degree or \R-harge in the zero modeapproximation". If B1 and B2 ow to BPS D-branes with phases ei'1 and ei'2 , the trueR-harge is p+ '1 � '2 for a suitably hosen integral part of 'i.Flat Spae X = Cn | Homotopy CategoryAs the simplest example, let us onsider the Eulidean spae X = Cn and omplexesbased on vetor bundles with trivial at onnetions. Namely, we onsider omplexes ofthe form (2.41) where E j are all trivial bundles O�kj over Cn. A brane is represented by anodd square matrix Q(x) whih is holomorphi in the omplex oordinates x = (x1; :::; xn)and squares to zero. For two branes of this kind, B1 = (E1; Q1) and B2 = (E2; Q2), thespae of hiral ring elements is realized as the ohomology group (2.49) but there is amore onvenient realization. Let Hom(E1; E2) be the spae of global holomorphi bundle20



maps from E1 to E2, whih is a graded subspae of the i = 0 part of (2.48). The operatorQzero ats on this subspae as iQhol� = Q2�� (�1)j�j�Q1and de�nes a omplex � � � ! Homp(E1; E2) ! Homp+1(E1; E2) ! � � � . We laim that thespae (2.49) is isomorphi to the ohomology group of this omplex,Hp(B1;B2) �= HpQhol (Hom�(E1; E2)): (2.50)This an be shown as follows. Let us pik a degree zero element � 2 H0zero(B1;B2)annihilated by Qzero. We deompose it with respet to its form-degree, � = �0 + �1 +� � �+�n where �i belongs to 
0;i(Cn; Hom�i(E1; E2)). Then the equation Qzero� = 0 anbe deomposed as follows ��n�1 +Q2�n � �nQ1 = 0;��n�2 +Q2�n�1 � �n�1Q1 = 0;... (2.51)��0 +Q2�1 � �1Q1 = 0;Q2�0 � �0Q1 = 0:Sine any (0; n) form on Cn is �-exat, there is an (0; n � 1)-form �n�1 suh that �n =��n�1. Then the �rst equation means that �n�1 � Q2�n�1 � �n�1Q1 is �-losed. Heneit an be written as ��n�2 for some (0; n � 2)-form �n�2. Then the seond equationmeans that �n�2 � Q2�n�2 � �n�2Q1 is �-losed and hene an be written as ��n�3 forsome (0; n � 3)-form �n�3. Repeating this proedure, using the fat that any �-losed(0; i)-form on Cn is �-exat if i > 0, we reursively �nd a sequene of forms, �i 2
0;i(Hom�i�1(E1; E2)) suh that �i�Q2�i��iQ1 = ��i�1 at every i = n� 1; n� 2; :::; 1.The last two equations of (2.51) mean that �0�Q2�0��0Q1 =: e� is a holomorphi 0-formthat is Qhol -losed. Summarizing, we found� = e�+ iQzero�; �e� = Qhol e� = 0; (2.52)where � = �0 + �1 + � � �+ �n�1. Namely, every Qzero-losed element has a holomorphirepresentative. This proves the laim (2.50) for the ase p = 0. Proof for higher p issimilar. The only non-trivial property of Cn we have used in the above argument is thatany �-losed form of positive degree is �-exat. This holds more generally in a lass ofspaes alled Stein manifolds. 21



Let us restate the laim (2.50) in a more onventional mathematial language. Forthis we need to introdue some terminology. Here everything is stated in the ontext ofomplexes of trivial vetor bundles where maps are holomorphi bundle maps, but theterminology an be applied straightforwardly to more general ontext. By de�nition, aohain map of a omplex � � � ! E j ! E j+1 ! � � � to another � � � ! F j ! F j+1 ! � � � isa sequene of maps E j ! F j suh that the following diagram ommutes� � � ! E j�1 �! E j �! E j+1 ! � � �# # #� � � ! F j�1 �! F j �! F j+1 ! � � �A homotopy between these omplexes is a ohain map of the form hQE +QFh where his a degree �1 map of E to F , that is, a olletion of maps E j ! F j�1. For a omplexC = C(E ; Q), we denote by C[p℄ the same omplex C shifted p steps to the left with theoboundary operator given by (�1)pQ. In these terms, the laim (2.50) means that thespae of degree p hiral ring elements is isomorphi to the spae of ohain maps C1 ! C2[p℄modulo homotopies, where C1 and C2 are the omplexes assoiated with (E1; Q1) and(E2; Q2). Suh a spae is simply denoted by HomHo(C1; C2[p℄). Thus, we may sayHp(B1;B2) �= HomHo(C1; C2[p℄): (2.53)The ring struture is given by omposition of ohain maps. The D-brane ategory weobtained, where the objets are omplexes of trivial vetor bundles overCn and morphismsare ohain maps modulo homotopies (2.53), is what is known as homotopy ategory ofthe ategory of omplexes of vetor bundles over Cn. This is in fat the same as thederived ategory of Cn, whih we will disuss momentarily in more general ontext. Thispoint will be disussed further in Setion 9.ExtensionsWe would like to have a holomorphi or algebrai desription of the hiral ring, like(2.53), in more general spaes. Here we present suh a desription for branes whih arevetor bundles, namely omplexes where E j is non-zero only for j = 0. Let (E1; A1) and(E2; A2) be vetor bundles with onnetion whih determine holomorphi vetor bundlesE1 and E2. The spae (2.49) is simply the Dolbeault ohomology group whih is linearlyisomorphi to the �Ceh ohomology group of (the sheaf of holomorphi setions of) theholomorphi bundle Hom(E1; E2) �= E�1 
 E2;Hp(B1;B2) �= H0;p�A1;2 (X;Hom(E1; E2)) �= Hp(X;Hom(E1; E2)): (2.54)22



For p = 0, this is equal to the spae of global holomorphi setions ofHom(E1; E2), namelythe spae of global holomorphi bundles maps,H0(B1;B2) �= Hom(E1; E2): (2.55)Indeed this is nothing but the answer obtained in (2.53). However, for p > 0, (2.53)would tell us that there is no hiral ring elements in the present situation, where bothB1 and B2 are vetor bundles. That is, however, not true in general sine we may haveH0;p�A1;2 (X;Hom(E1; E2)) 6= 0 for p > 0.The p = 1 subspae H1(B1;B2) has the following algebrai haraterization. Let� 2 
0;1(X;Hom(E1; E2)) represent an element of H0;1�A1;2 (X;Hom(E1; E2)). It obeys�A1;2� = 0. Then one an de�ne a holomorphi struture F� on E1 � E2 by the operator�A1;2;� =  �A1 0� �A2 ! : (2.56)Indeed it squares to zero under the ondition �A1;2� = 0. The exat sequene 0! E2 !E1 � E2 ! E1 ! 0 given by the trivial maps e2 7! (0; e2) and (e1; e2) 7! e1 de�nes anexat sequene of holomorphi bundles0 �! E2 �! F� �! E1 �! 0: (2.57)Suh a sequene is alled an extension of E1 by E2. If � is shifted by �A1;2-exat form,�! �+ �A1;2�, where � 2 �(X;Hom(E1; E2)), there is an isomorphism of the extension(2.57) to the new one. Namely, there is a ohain map from (2.57) to the new one, whih isidentity at E1 and E2. The map in the middle is neessarily an isomorphism| expliitly itis given by (e1; e2)! (e1; e2��e1). The set of isomorphism lasses of extensions, denotedby Ext1(E1; E2), is thus bijetive to the ohomology group H0;1�A1;2 (X;Hom(E1; E2)). Thus,the spae of p = 1 hiral ring elements isH1(B1;B2) �= Ext1(E1; E2): (2.58)A struture of omplex vetor spae an be de�ned on the set Ext1(E1; E2) and (2.58) is alinear isomorphism. An extension (2.57) is a zero element if � itself is exat, � = �A1;2�.In that ase, there is a holomorphi map E1 ! F� (resp. F� ! E2) whih gives theidentity on E1 (resp. on E2) if it is followed by the map F� ! E1 of (2.57) (resp. preededby the map E2 ! F� of (2.57)). Expliitly, the map is given by e1 ! (e1;��e1) (resp.(e1; e2) 7! e2 + �e1). Suh a map is alled a splitting, and an exat sequene with a23



splitting is alled split exat. An exat sequene represents the zero element of the groupExt1(E1; E2) when it is split exat.For higher p, algebrai haraterization is not as simply derived as in the p = 1 ase.We just quote the fat that Hp(X;Hom(E1; E2)) is linearly isomorphi to the group ofequivalene lasses of p-extensions of E1 by E2, Extp(E1; E2). A p-extension of E1 by E2 isan exat sequene of the form0 �! E2 �! F1 �! � � � �! Fp �! E1 �! 0:Equivalenes of p-extensions are de�ned in a similar but slightly more involved way thanin the p = 1 ase. The extension de�nes the zero element of the group Extp(E1; E2) ifthere is a splitting E1 ! Fp or F1 ! E2. We refer the reader to [24℄ as well as Setion 9for more details.Derived CategoryWhat is the algebrai desription of the spae of hiral ring elements (2.49)? We haveseen partial answers: For X = Cn it is the spae of homotopy lasses of ohain maps(2.53). For vetor bundles it is the extension group Extp(E1; E2). In general, the answeris provided by the formalism of the derived ategory2 | It is the spae of morphisms ofthe derived ategory D: Hp(B1;B2) �= HomD(C1; C2[p℄): (2.59)Here Ca is the omplex of vetor bundles assoiated with Ba = (Ea; Qa) and C2[p℄ is theomplex C2 shifted p-steps to the left. Let us sketh the de�nition of the right hand sideof (2.59).First we need to make a tehnial remark. A disadvantage in working with omplexesof vetor bundles is that the kernel and okernel of a bundle map are not in generalvetor bundles. To remedy this problem, we introdue some mathematial objets alledsheaves (of OX-modules) as generalization of vetor bundles. Basially, we onsider thespae of loal holomorphi setions of a vetor bundle as a module over the ring of loalholomorphi funtions, and we generalize it by inluding any module of that ring. A mapof sheaves is given by linear maps of the modules de�ned loally whih satisfy ertainompatibility ondition. Setion 9 provides a slightly more detailed explanation. Themain point is that we an freely talk about the kernel and okernel of a map of sheaves.2Possible relevane of the derived ategory for brane-antibrane systems was �rst emphasized in [25℄.24



We emphasize that this generalization is just to desribe HomD(�;�). Our branes arestill omplexes of vetor bundles.Of most importane is the notion of a quasi-isomorphism. A quasi-isomorphism froma omplex of sheaves � � � ! E j ! E j+1 ! � � � to another one � � � ! F j ! F j+1 ! � � �is a ohain map that desends to an isomorphism at the ohomology level. Namely,eah map E j ! F j indues an isomoprphism from the ohomology sheaf Ker(E j !E j+1)=Im(E j�1 ! E j) to the ohomology sheaf Ker(F j ! F j+1)=Im(F j�1 ! F j). Notethat a shift of a ohain map by a homotopy does not hange the map at the ohomologylevel. Thus, a hain map that is homotpy equivalent to a quasi-isomorphism is again aquasi-isomorphism.Let us now desribe the spae of morphisms in the derived ategory D. The homotopylasses of ohain maps de�ne morphisms. In addition, we inlude the formal inversesof the homotopy lasses of quasi-isomorphisms. Namely, if q : C1 ! C2 is a quasi-isomorphism, we inlude its formal inverse q�1 as a morphism from C2 to C1 whih obeysthe property that q Æ q�1 = idC2 and q�1 Æ q = idC1 . Then HomD(C1; C2) is de�ned asthe set of all sequenes of suh extended morphisms starting from C1 and ending at C2,modulo the obvious identi�ation�C1 ! � � � ! C f! C 0 g! C 00 ! � � � ! C2� � �C1 ! � � � ! C gÆf�! C 00 ! � � � ! C2�:One an show that eah morphism from C1 to C2 have presentations of the following formsC1 q�1�! C f�! C2; and C1 g�! C 0 q0�1�! C2;where f and g are (the homotopy lasses of) ordinary ohain maps and q�1 and q0�1 arethe inverses of (the homotopy lasses of) quasi-isomorphisms.If there is a quasi-isomorphism q : C1 ! C2, then for any omplex C there are linearisomorphisms, HomD(C; C1) �= HomD(C; C2) and HomD(C1; C) �= HomD(C2; C), given byomposition with q or q�1 on the left and on the right. This means that two objetsrelated by a hain of quasi-isomorphisms are isomorphi in the derived ategory.Let us onsider a omplex C given by an exat sequene� � � ! E i Qi�! E i+1 Qi+1�! E i+2 ! � � � (2.60)By de�nition of exatness, Ker(Qi) = Im(Qi�1), the ohomology sheaves are all zero.Hene the zero map from C to the zero sequene� � � �! 0 �! 0 �! 0 �! 0 �! � � �25



(or bak) is a quasi-isomorphism. In partiular, the morphism spae to and from anyomplex C 0 vanishes, HomD(C; C 0) = HomD(C 0; C) = 0. Namely, C is a zero objet inthe derived ategory. Another important observation is that the exat omplex C an bebroken at any position j to obtain a pair of quasi-isomorphi omplexes� � � ! E j�2 �Qj�2�! E j�1 �Qj�1�! E j �! 0 �! 0 ! � � �# # # Qj # #� � � ! 0 �! 0 �! E j+1 Qj+1�! E j+2 Qj+2�! E j+3 ! � � � (2.61)That this is a quasi-isomorphism an be see easily by the exatness of C. Conversely, ifthis is a quasi-isomorphism, the omplex (2.60) is exat.Let us omment on how (2.59) may be related to the results obtained earlier for speialases. First, for X = Cn we must show that the derived ategory is equivalent to thehomotopy ategory. It is equal to the statement that a quasi-isomorphism is a hainisomorphism up to homotopy. In partiular, there is no non-trivial extension betweentrivial vetor bundles. This point has a partiular importane in our paper and willbe explained in Setion 9. Next, let us onsider vetor bundles E1 and E2 on a moregeneral spae X and ask whether HomD(E1; E2[p℄) is isomorphi to the extension groupExtp(E1; E2). Let us demonstrate the map from the latter to the former for the p = 1 ase.Take an element of Ext1(E1; E2) represented by an exat sequene0 �! E2 a�! F b�! E1 �! 0:Then we �nd the following morphism E1 ! E2[1℄ in the derived ategory! 0 �! 0 �! E1 �! 0 !" " "a "! 0 �! E2 b�! F �! 0 !# # id # #! 0 �! E2 �! 0 �! 0 !From the �rst line to the seond is the inverse of a quasi-isomorphism of the type (2.61).Alternatively, we ould onsider the morphism with 0! F ! E1 ! 0 in the seond lineand an inverse quasi-isomorphism from the seond line to the third, but that is homotopyequivalent to the above one. The generalization to p > 1 is obvious.Let us end the desription of the derived ategory with another tehnial remark.3 Ageneral sheaf of OX -modules is in some way too general and, if possible, we would like3We thank A. Bondal for everything that is said in this remark.26



to work with something lose to vetor bundles. This motivates us to onsider oherentsheaves. A oherent sheaf is realized loally as the okernel of a map of sheaves of holo-morphi setions of vetor bundles. When X is algebrai, namely, if it is overed by openaÆne varieties, then it is known that the intermediate omplexes of sheaves that appearin the de�nition of HomD(C1; C2) an be taken from omplexes of oherent sheaves. Also,any omplex of oherent sheaves is known to be quasi-isomorphi to a omplex of vetorbundles. Thus, if X is algebrai, we an desribe D-branes entirely by omplexes of oher-ent sheaves, and the ategoryD an be identi�ed as what is known as the derived ategoryof oherent sheaves of X. If X is not algebrai, we may need more general sheaves thanoherent sheaves in the intermediate omplexes to de�ne HomD(C1; C2). As the D-branesthemselves, it is more natural to onsider omplexes of sheaves whose ohomology sheavesare oherent. They are slightly more general than omplexes of vetor bundles, but arenot more general than twisted omplexes (2.45). Namely, a twisted omplex determines aomplex of sheaves with oherent ohomology sheaves and any omplex with oherent o-homologies is quasi-isomorphi to a omplex oming from a twisted omplex [26℄. (Thereis also a work whih studies this point [27℄.) In tehnial terms, the relevant ategory D isthe full subategory of the derived ategory of sheaves of OX-modules onsisting of om-plexes with oherent ohomologies. When X is algebrai, this subategory is equivalentto the derived ategory of oherent sheaves. In the rest of this paper, we only onsideralgebraiX's where we an entirely work with omplexes of oherent sheaves. Fortunatelyenough, Calabi-Yau manifolds with h2;0 = 0 are all algebrai.2.3 OrbifoldsWhen a quantum �eld theory in 1+1 dimensions has a �nite group of symmetries, onemay onsider gauging it. This is the operation known as orbifold. We remove all the statesand operators that are not invariant under the group ation, and at the same time, weinlude �eld on�gurations on a irle with preiodoity twisted by group elements, thusadding new setors (twisted setors) to the spae of states and operators [28℄. D-branesin an orbifold theory are simply boundary onditions and interations that are invariantunder the orbifold group ation. The orbifold ation on the Chan-Paton vetors must beinluded as a part of the data, in order to speify the ation on the open string states sothat one an selet only the invariant states.For the non-linear sigma model on a Riemannian manifold (X; g), a typial orbifoldis assoiated with a group � of isometries of (X; g). A D-brane of the type (E;A;T)is �-invariant when there is a lift of the �-ation to the vetor bundle E that preserves27



the Z2-grading, the gauge �eld A and the tahyon pro�le T. In partiular, there is aneven linear bundle map �() : E ! E over eah element  2 � suh that the pull bakonnetion of A is A itself and �()�1T(x)�() = T(x):Note that the maps �() enode the information of the �-ation on Chan-Paton fators:For the open string strethed from a brane (E1; A1;T1; �1) to another brane (E2; A2;T2; �2),the  2 � ation on open string wavefuntions is : 	(x) 7�! �2()�1	(x)�1():We are interested only in wavefuntions that are invariant under this orbifold ation.If (X; g) is a K�ahler manifold and if the isometry group � preserves also the omplexstruture, the orbifold theory has (2; 2) supersymmetry. An N = 2B invariant D-brane inthe orbifold theory an be provided by the usual data (E;A;Q) together with a �-ation,�() : E ! E, with the obvious invariane ondition inluding�()�1Q(x)�() = Q(x):A U(1) R-symmetry of suh a brane is an R-symmetry R of (E;A;Q) that preserves the�-invariane ondition of open string wavefuntions. It is easy to see that it requiresR(�)�() = �; � �()R(�)where �; is a omplex number whih is independent of the brane. Setting � = 1 or = 1 we �nd 1; = �;1 = 1. Also, by group property R(�1�2) = R(�1)R(�2) and�(12) = �(1)�(2), we �nd �1�2; = �1;�2; and �;12 = �;1�;2 . By the �rstequation, one an write �; = �f() for some omplex valued funtion f of � and thenthe seond equation says f(12) = f(1) + f(2). Also, �;1 = 1 means f(1) = 0. Sine� is a �nite group, say with order d, we have d = 1 for any  2 �. Thus, we �nd0 = f(1) = f(d) = d � f(), namely, f() = 0 for any  2 �. This means �; = 1 for any� and . Thus, we onlude that the R-symmetry in the orbifold theory must satisfyR(�)�() = �()R(�):We �nd that the data to speify an R-graded D-brane in the orbifold theory is the quin-tuple (E;A;Q;R; �) and orresponds to a omplex of �-equivariant vetor bundles.Of partiular importane is the orbifold of the Eulidean spae X = Cn with a �nitegroup � of linear transformations. For eah representation of the orbifold group, � : �!28



GL(V ), we have a D-brane assoiated with the trival vetor bundle with �bre V and trivialgauge onnetion A = 0 with the natural �-ation. We denote it by O(�). If the group isisomorphi to the yli group � �= Zd, its irreduible representation is one-dimensionaland is spei�ed by a mod d integer, m 2 Zd, with �m : l 2 Zd 7! e2�iml 2 U(1). We oftenwrite O(�m) simply by O(m). Note that all these branes O(�) are extending in the entirespae Cn=�. A general D-brane may be \represented" as a omplex of these branes inthe sense that is spei�ed in the next setion. For example, in Setion 3.2 we will �ndsuh a representation for D0-branes stuk at the orbifold �xed point 0 2 Cn. These areknown as the frational branes [29{31℄.The losed string setor of the orbifold theory on Cn=� has a harge integrality |any NS-NS operator has integral vetor R-harge that mathes modulo 2 to the statistis.(The axial R-harges are not neessarily integral unless the Calabi-Yau ondition det  = 1is met.) In order to preserve this integrality, we require the R-harge of the even (resp.odd) Chan-Paton vetor to be even (resp. odd) integer.2.4 Landau-Ginzburg Models: Matrix FatorizationsLet us onsider the (2; 2) supersymmetri Landau-Ginzburg model of N variablesX1; :::; XN with a polynomial superpotential W (X) = W (X1; :::; XN). The Lagrangiandensity is given byL = Z NXi=1 XiXi d4� + � i2 Z W (X) d2� + ::� + total derivative= NXi=1  j�txij2 � j�sxij2 + i i�( ���!t + ���!s) i� + i i+( ���!t � ���!s) i+ � 14 �����W (x)�xi ����2!+ � i2 NXi;j=1 i+ j��2W (x)�xi�xj + :! ; (2.62)where the auxiliary �eld is eliminated in the seond equality. We would like to formulatethis theory on the worldsheet S with boundary, and �nd boundary interations thatrespet the N = 2B supersymmetryÆxi = � i; Æ i� = �i�(�0 � �1)xi � i2��W (x)�xi : (2.63)With the addition of the standard boundary termL(0)bdry = "� i2 NXi=1 ( i+ i� +  i+ i�)#�S ; (2.64)29



the bulk ation varies asÆ �ZSL d2s+ Z�SL(0)bdrydt � = �Re Z�S NXi=1 �� i�W (x)�xi � dt: (2.65)This is known as the \Warner term" after [32℄. (See [9℄ for a simple super�eld derivation.)The main task is to anel the Warner term (2.65) by adding a suitable boundaryterm to the ation [10, 33℄. Let us try our friendAt = �12 NXi=1  i ��xiQ(x) + 12 NXi=1  i ��xiQ(x)y + 12fQ(x); Q(x)yg; (2.66)where Q(x) is an odd operator on a Z2-graded vetor spae V whih depends holomor-phially on x. Its N = 2B variation, omputed in (2.29), readsÆAt = �Re( NXi=1 �� i ��xiQ2�� [�Qy; Q2℄)+ iDt��Q+ �Qy�� i�_�Q+ _�Qy�: (2.67)The �rst term anels the Warner term (2.65) provided that Q satis�es1Q2 = W � idV: (2.68)The remaining terms in (2.67) are as in non-linear sigma models: The seond term, whereDtX = _X + i[At; X℄, leads to a total derivative when inserted between the Wilson linesP exp ��i R�SAtdt� with the right time-ordering. The third term shows that Q and Qyenter into the N = 2B superharges Q and Qy. For the open string strethed between(V1; Q1) and (V2; Q2), the superharge Q is expressed as the sum Qbulk +Qbdry whereQbulk = Z L0 ds NXi=1 � i�txi + e i�sxi + e i�W�xi �Qbdry = �iQ2���s=L+ iQ1���s=0:The anonial ommutation relation yields the supersymmetry relation Q2 = 0; Q2bulkgives a boundary term W jL �W j0 that is aned by Q2bdry as a onsequene of (2.68).An odd holomorphi operator Q(x) of a Z2-graded vetor spae V = Vev�Vod an berepresented by a holomorphi matrix of the formQ(x) =  0 f(x)g(x) 0 ! :1Q2 = (W + ) � idV for some onstant  is also allowed. However, sine we will onsider branes withR-symmetry, whih require  = 0, we restrit our attention to those with  = 0.30



It satis�es the ondition (2.68) if and only if the even and the odd parts of V have thesame rank, say r, and f(x)g(x) = g(x)f(x) = W (x)1r: (2.69)Suh a matrix Q, or a pair of matries (f; g), is alled a matrix fatorization of W .Let us briey omment on the relation of this to the tahyon T in N = 1 Landau-Ginzburg model with the real superpotential h(x). By omparison of the potential andYukawa-type terms, we see that the N = (2; 2) Landau-Ginzburg model with superpo-tential W is equal to the N = (1; 1) Landau-Ginzburg model with h = W2 + W2 = Re(W ).The variation (2.65) is of ourse the same as (2.17) as far as the N = 1 part is onerned.We have seen that the system is N = 1 supersymmetri with the additional boundaryterm (2.18), �L(0)bdry = � �12W + 12W��S : (2.70)Also, the boundary interation of the form (2.13) is N = 1 invariant by itself for anytahyon pro�le T(x). If we inlude it with T = iQ(x) � iQ(x)y, we obtain preisely theabove system (2.66) provided Q(x) obeys (2.68). Indeed the interation (2.13) inludesextra terms �12Q2� 12Qy2 ompared to (2.66) but those are anelled by the term ��L(0)bdryfrom (2.70) provided Q2 =W � id.Chiral SetorThe spae of hiral ring elements for a pair of branes B1 = (V1; Q1) and B2 = (V2; Q2)an be studied, as before, by the zero mode approximation where the superharge iQ atson the spae 
0;�(CN ; Hom(V1;V2)) as a Dolbeault-like operator ��+Q2�� (�1)j�j�Q1.Sine any �-losed form of positive degree is �-exat on CN , one an further trunateto the subspae onsisting of holomorphi funtions of CN with values in Hom(V1;V2).Thus, we have a relation similar to (2.50). In this paper, as we will explain momen-tarily, we onsider matrix fatorizations that are polynomials of x1; ::; xN . Then, onean further trunate to the spae of polynomial funtions of x1; :::; xN with values inHom(V1;V2). In this situation, it turns out to be onvenient to use algebrai terminol-ogy assoiated with the polynomial ring R = C[x1; :::; xN ℄. For eah Z2-graded Chan-Paton spae V = Vev � Vod we introdue the Z2-graded R-module M = V 
C R =M ev � Mod. The spae of polynomial funtions with values in Hom(V1; V2) is equalto the spae HomR(M1;M2) of homomorphisms of the R-module M1 to the R-moduleM2. It is of ourse Z2-graded, HomevR (M1;M2) = HomR(M ev1 ;M ev2 ) � HomR(Mod1 ;Mod2 )and HomodR (M1;M2) = HomR(M ev1 ;Mod2 )�HomR(M ev1 ;Mod2 ). The relation analogous to31



(2.50) an be written asHp(B1;B2) �= HpQpol (Hom�R(M1;M2)) p = ev=od; (2.71)where Qpol is given by iQpol� = Q2�� (�1)j�j�Q1:There is an alternative way to desribe these ohomology groups. Let us introdue anin�nite sequene of maps whih is 2-periodiCQ : � � � f�!M ev g�!Mod f�!M ev g�!Mod f�! � � � (2.72)Over the ring B = C[x1; : : : ; xN ℄=(W ), where any multiple of W is regarded zero, this isa omplex of B-modules due to the matrix fatorization ondition f � g = g � f = W id. Infat it is exat everywhere. (We will show this later in Setion 10.3 where we will revisitsuh in�nite omplexes.) Suh a omplex is alled a totally ayli omplex of B-modules.Then, the spae of hiral ring elements for a pair of branes is isomorphi to the spae ofohain maps from CQ1 to CQ2 modulo homotopies,Hp(B1;B2) �= HomHo(CQ1 ; CQ1[p℄) for p = ev=od; (2.73)where C[ev℄ is C itself while C[od℄ is the omplex C shifted by one with Q replaed by �Q.R-SymmetryIf the superpotentialW (x1; :::; xN) is quasi-homogeneous of degree (d1; :::; dN), suh asthe Fermat polynomialW = xd11 + � � �+xdNN , the bulk theory has vetor U(1) R-symmetrywhere xi has R-harge 2=di:W (�2=d1x1; :::; �2=dNxN ) = �2W (x1; :::; xN): (2.74)The bulk LG model is believed to ow in the infra-red limit to a (2; 2) superonformal�eld theory with entral harge ̂ = PNi=1(1 � 2=di), where this R-symmetry beomes apart of the superonformal algebra. The R-harges of NS-NS states are in general notintegral.This vetor R-symmetry is preserved by the D-brane (V; Q) if the matrix fatorizationis quasi-homogeneous [34℄. Namely,R(�)Q(�2=d1x1; :::; �2=dNxN )R(�)�1 = �Q(x1; :::; xN ): (2.75)32



R(�) is a one parameter group of operators on V | it depends on � = ei� in suh a waythat R(�1�2) = R(�1)R(�2). We do not require that it is invariant under � ! � + 2�,i.e., R(�) may ontain frational powers of �. Notie that the ondition (2.75) requiresthat Q(x) must be a polynomial in x1; :::; xN .For two R-symmetri branes, (V1; Q1) with R1 and (V2; Q2) with R2, the R-symmetryats on the open string states. In the holomorphi setor,2 the ation isR(�) : �(x1; :::; xN) 7�! R2(�)�(�2=d1x1; :::�2=dNxN )R1(�)�1: (2.76)It introdues a new grading in the spae of open string states. Note that a state ofde�nite R-degree is neessarily a polynomial. The R-degree is not in general integral. Inpartiular, the R-grading and the Z2-grading an be ompletely independent.As an example, let us onsider the LG model of single variable X with superpotentialW = Xd. The bulk theory ows to a rational onformal �eld theory (RCFT) alled theA-type minimal model at level k = d�2. An obvious matrix fatorization isW = xn �xd�n,that is, Qn(x) =  0 xnxd�n 0 ! : (2.77)If 1 � n � d � 1, this brane is believed to ow to the onformally invariant boundaryondition in the minimal model known as the Cardy brane with L = (n � 1) (see forexample [35℄ for Cardy branes in RCFTs, [36, 37℄ for D-branes in (2; 2) minimal modelsand [38, 39℄ for relation to LG branes). It has the property (2.75) withRn(�) =  � 12�nd 00 �� 12+nd ! : (2.78)The n-dependene in the overall phase of Rn(�) is hosen so that it agrees with the R-symmetry of the infra-red �xed point [34, 40℄. Indeed, for the Qn1-Qn2 string, the spaeof hiral ring elements is spanned by�evj (x) =  xj�n1�n22 00 xj+n1�n22 ! ; �odj (x) =  0 xn1+n22 �j�1�xd�n1+n22 �j�1 0 !(2.79)where j runs over jn1�n2j2 ; jn1�n2j2 +1; : : : ;min�n1+n22 � 1; d� n1+n22 � 1	. With the hoie(2.78), the R-harges of these elements are 2jd for �evj and 1 � 2j+2d for �odj whih arethe right R-harges for open string NS-states between the orresponding minimal modelbranes [37℄.2Somewhat loosely, we use the terms \loal operators" and \open string states" interhangeably. Notethat loal operators naturally orrespond to open string states in the NS setor and, if B-twist is possible,also to open string states in the Ramond setor. 33



2.4.1 Landau-Ginzburg OrbifoldThe Landau-Ginzburg model with quasi-homogeneous superpotential W (x) of degree(d1; :::; dN) has symmetry(x1; :::; xN) 7�! ( e2�i=d1x1; :::; e2�i=dNxN): (2.80)This generates the yli group of order d = l::m:(d1; :::; dN), whih we all �0. Gaugingthis symmetry group, we obtain a Landau-Ginzburg orbifold theory. This orbifold theoryhas a harge integrality | the vetor R-harges of NS-NS states are integers whose mod 2redution mathes with the statistis of the orresponding operators. In partiular, thereis a one-to-one orrespondene between R-R ground states and a-primary operators.3A D-brane in this LG orbifold is spei�ed by the triple (V; Q; �) where (V; Q) is amatrix fatorization and � is a representation of the group �0 suh that�(!)�1Q(! � x)�(!) = Q(x); 8! 2 �0: (2.81)� determines the ation of the orbifold group on the Chan-Paton fator in the theorybefore orbifolding, and the equation (2.81) means that the tahyon pro�le is invariantunder that orbifold group ation. For the brane pair (V1; Q1; �1), (V2; Q2; �2), the openstring states in the orbifold theory are �0-invariant states. In the polynomial setor, theondition of �0-invariane is �2(!)�1�(! � x)�1(!) = �(x): (2.82)Sine the bulk theory has vetor R-symmetry with integrality, we would like the branes torespet that as well [34, 41℄. Namely, we would like that the branes are quasihomogeneous,that is, equation (2.75) is satis�ed, and that the R-grading in the NS setor is integral andredues modulo 2 to the original Z2-grading. The R-symmetry ation (2.76) preserves the�0-invariane ondition when R(�)�(!) = �;!�(!)R(�) for a brane independent salar�;!. As in the ase of orbifolds of non-linear sigma models, one an show �;! = 1. Thus,we require R(�)�(!) = �(!)R(�): (2.83)The harge integrality requires thatR2( e�i)�( e 2�id1 x1; :::; e 2�idN xN)R1( e�i)�1 = (�1)j�j�(x1; :::; xN):3If the degrees obey the \Calabi-Yau ondition" 1=d1 + � � �+ 1=dN = 1, then the axial R-harges arealso integral and there is a spetral ow between R-R ground states and -primary operators.34



Using the orbifold invariane (2.82), this is equivalent toR2( e�i)�2( e 2�id )�(x)�1( e 2�id )�1R1( e�i)�1 = (�1)j�j�(x); (2.84)where ! = e 2�id is the generator (2.80) of �0. Let �1 and �2 be the Z2-grading operatorson V1 and V2, ating as 1 on even elements and �1 on odd elements. Then, we have(�1)j�j� = �2���11 . Thus the integrality ondition (2.84) is satis�ed if Ri( e�i)�i( e 2�id ) = � �i for i = 1; 2 for some ommon onstant . We simply hoose  = 1. Thus, we restritour attention to branes (V; Q; �) with R-symmetry R that obeysR( e�i)�( e 2�id ) = �V; (2.85)where �V is the Z2-grading operator on V. As in non-linear sigma models, there is anambiguity R(�) ! �2R(�) that does not hange the physial property of the brane buthanges the R-grading. We again all the brane with this additional data (V; Q; �; R) agraded D-brane. By the ondition (2.85), a graded D-brane in the theory with the orbifoldgroup �0 is spei�ed simply by (V; Q;R) suh that R( e�i)�V obeys (R( e�i)�V)d = 1. Forthis reason, in some literature, suh as [5℄, only the R-symmetry ation is used to speifya data for a graded D-brane in this lass of LG orbifolds.The superpotentialW may have a larger symmetry group � by whih we an de�ne theorbifold theory. As long as � inludes �0, the losed string setor has a harge integrality,and we require that it is extended to the boundary or open string setor. The requirementis just like (2.85), R( e�i)�(!�1) = �V , where !�1 is the element of � that ats on xi inthe same way as the R-symmetry ation for � = e�i. Suh an element exists in � sine itinludes �0 by assumption.Reknagel-Shomerus BranesAs examples, let us onsider tensor produts of minimal model branes (2.77) in themodel with Fermat type superpotential W = Xd11 + � � �+XdNN . They are known as RS-branes after Reknagel and Shomerus who �rst studied these branes in the framework ofRCFT [42℄. They are most onveniently desribed in terms of the Cli�ord algebraf�i; �jg = Æi;j; f�i; �jg = f�i; �jg = 0: (2.86)The latter is represented on the 2N -dimensional spae VN (the Cli�ord module), whih isgenerated by a vetor j0i annihilated by all �i's. There are two Z2-gradings on VN : the35



�rst is suh that even and odd multiples of �i's on j0i are even and odd, and the seondis the opposite one. The sum of minimal model branes is written asQL = NXi=1 �xLi+1i �i + xdi�Li�1i �i� : (2.87)This is invariant under the orbifold group �0 �= Zd as well as the R-symmetry, with thetransformations �i ! !�Li�1�i and �i ! �1� 2(Li+1)di �i (with onjugate ation on �i's).The representations of the orbifold and R-symmetry groups on the Chan-Paton spae arespei�ed by the ation on the vetor j0i| ation on other vetors are determined by thetransformations of the �i's. The orbifold representation is labeled by a mod d integer �q:��q(!) : j0i 7! !�qj0i:The ondition of integrality (2.85) requires that the R-harge Rj0i of the state j0i mustbe of the form Rj0i = �2qd + rwhere q is an integer representing �q mod d, while r is an even integer for the �rst Z2-gradingand an odd interger for the seond one. We shall denote the D-brane that orresponds tothe above data by BL;q;r. The label is a little redundant: obviously (L; q; r)! (L; q+d; r+2) does not hange the brane. Also, the exhange xLi+1i $ xdi�L�1i is ompensated by theexhange �i $ �i, and this leads to the identi�ation of branes under Li ! di � Li � 1(for one i), q ! q � d(Li+1)di , r ! r � 1. The translation to the standard notation forthe RS-branes BL;M;S (see e.g. [43℄) is 2q = M +PNi=1 d(Li+1)di = PNi=1 d(Mi+Li+1)di (mod2d) and 2r = S (mod 4) up to an overall shift. Matrix fatorization realizations of thesebranes were �rst disussed in [43, 44℄.These branes are indeomposable exept for the ase where there are two or more i'swith Li + 1 = di2 (whih neessarily requires that di is even for suh i). In the latterase, it splits into a sum of indeomposable ones known as short orbit branes bB(�)L;q;r. Forexample, if there are exatly two or three suh i's the RS-brane BL;q;r splits into two:BL;q;r �= bB(+)L;q;r � bB(�)L;q;r: (2.88)To de�ne short orbit branes, we denote by S the set of i's suh that Li + 1 = di2 andonsider Q =Xi2S x di2i �i +Xj 62S�xLj+1j �j + xdj�Lj�1j �j�; (2.89)where �i are real Cli�ord generatorsf�i; �jg = 2Æi;j; f�i; �kg = f�i; �kg = 0:36



If the number of elements jSj is odd, we introdue one extra real Cli�ord generator �0. Wehoose an orientation in the spae of �i's. We then introdue omplex generators �i1j1 =12(�i1 + i�j1),..., �isjs = 12(�is + i�js), and their omplex onjugates �i1j1 = 12(�i1 � i�j1),...,�isjs = 12(�is � i�js), where (�i1; �j1; :::; �is; �js) is positively oriented. They form a omplexCli�ord algebra together with �j and �j. The expression (2.89) then beomes a matrixfatorization on the Cli�ord module. As before we denote the element annihilated by all�ij and �k by j0i. De�ning the label (q; r) in the same way as the RS-branes, we have abrane in the LG orbifold whih we denote by bB(+)L;q;r. One an see that it depends only onthe orientation of �i's. The key point is that �i is invariant under the R-symmetry andtransforms as �i ! ��i under the orbifold group generator (xdi=2i already has R-harge1 and transforms by sign under the orbifold generator). The one assoiated with theopposite orientation is denoted as bB(�)L;q;r. Thus, (+) versus (�) is de�ned with respet tothe orientation of �i's. Using the key point again, we �nd the relation bB(�)L;q;r �= bB(+)L;q+ d2 ;r+1.If jSj is odd, the (+) and (�) branes are isomorphi and we shall simply write bBL;q;rfor bB(+)L;q;r �= bB(�)L;q;r. For the ase jSj = 1, it is the same as the standard RS-brane,bBL;q;r �= BL;q;r. A matrix fatorization realization of short orbit branes, whih is equivalentto the above, was �rst notied in [45℄ based on the analysis of R-R harge. A derivationfrom the short orbit branes in minimal models will be given in Setion 3.4.The Fermat potential Xd11 + � � �+XdNN has a larger symmetry group Zd1 � � � � � ZdNand the brane QL is invariant under all the elements of that group. If we take the orbifoldgroup � to be larger than �0 �= Zd, then we need more labels to speify the orbifold ationon the Chan-Paton fator. For example, we may use ~q = (q1; :::; qN) with�~q(!) = !�q11 � � �!�qNN on j0i;for the orbifold element ! whih maps xi 7! !ixi. The translation to the standard notationis then 2qi =Mi + Li + 1 (again up to a universal shift).3 Renormalization Group FlowsGiven a D-brane realized as a boundary Lagrangian, we are interested in how it behavesat low energies, or equivalently, at long distanes on the worldsheet. In this setion, wedisuss two lasses of operations on D-branes that do not hange the low energy behaviour:boundary D-term deformations and brane-antibrane annihilation. We shall all them D-isomorphisms. Our main interest in this paper is the entire set of all possible D-branesup to D-isomorphisms. We start our disussion with D-branes in non-linear sigma models37



as desribed in Setion 2.2. We show, in partiular, that D-isomorphisms of D-branes arenothing else but quasi-isomorphisms of omplexes. The argument is appliable to a moregeneral lass of theories inluding those disussed in other parts of Setion 2 as well asthose for linear sigma models that we will study later in this paper. As an example, wedisuss Landau-Ginzburg models in Setion 3.3.Subsequently, in Setion 3.4, we study the e�et on D-branes of bulk RG ows asso-iated with integrating out �elds with F-term masses.We end with Setion 3.5 where we disuss parallel transport of B-type D-branes overmarginal K�ahler deformations of the bulk theory.3.1 D-Term Deformations And Brane-Antibrane AnnihilationIn N = 2 supersymmetri systems, there are two kinds of invariant Lagrangians |D-terms and F-terms. In terms of superspae integrals these are respetively of the formR V d�d� and R Wd� where � and � are fermioni oordinates of the N = 2 superspae,V is any super�eld and W is any hiral super�eld. For N = 2B supersymmetri D-banes(E;A;Q) on a K�ahler manifold X, the hoie of a �bre metri of E de�nes the D-termand the hoie of omplex struture of E together with the holomorphi part Q of thetahyon determines the F-term. In other words, the F-term is �xed when the omplex ofholomorphi vetor bundles C = C(E ; Q) is �xed and then the D-term is �xed when the�bre metri of eah bundle (and therefore the hermitian onnetion) is �xed. This anbe seen expliitily when the brane is realized using fermioni boundary hiral super�elds[9℄. As in the bulk theory (for example, with 4d N = 1 or 2d (2; 2) supersymmetry) thereis a non-renormalization theorem: the F-term does not hange under the renormalizationgroup ow. On the other hand, the D-term does get renormalized and adjust itself to aunique form in the deep infra-red limit. For this reason, one an say that deformations ofthe D-term do not a�et the low energy behaviour and it is the F-term whih uniquelydetermines the infra-red �xed point.Let us expliitly see how deformations of the �bre metri orrespond to D-term defor-mations. For a brane (E;A;T), we hoose some loal unitary frame feag and loal holo-morphi frame f"ag of E, whih are related by, say "a = ebHba. The �bre metri of E isrepresented with respet to the holomorphi frame by h("a; "b) =P(Ha)�Hb = (HyH)�ab.Let Q be the matrix expression of the holomorphi part Q of the tahyon with respetto the holomorphi frame. With respet to the unitary frame, the onnetion and the38



tahyon is expressed asiA = Hy�1�Hy � �HH�1; Q = HQH�1; Qy = Hy�1QyHy:Sine we are going to deform the �bre metri for a �xed holomorphi struture (E ;Q), itis more onvenient to use the holomorphi frame. The expression readsiA = h�1�h; Q = Q; Qy = h�1Qyh:Let us now deform the �bre metri h ! h + Æh = h(1 + �) and see how the boundaryinteration (2.28) hanges. By a straightforward omputation, we �ndÆAt = Dt(�i�)� 12QyQ� (3.1)where iQ� =  {�{� + [Q; �℄; iQy� =  iDi�� fQy; �g: (3.2)Up to a total ovariant derivative, it is indeed a D-term QyQ(�). This exerise lets usnotie that D-term deformations are not limited to deformations of the �bre metri. Anydeformation of the form QyQ� (3.3)is a D-term deformation. If � is a funtion of x only, it is equivalent up to total ovariantderivative to a deformation of the �bre metri, as we have just seen. However, we an takea more general � suh as a matrix that depends also on bulk fermions. This generalizationwill play an important rôle later on.Let us next disuss brane-antibrane annihilation. Ashoke Sen proposed in [46℄ thatin a system of an equal number of oinident branes and antibranes in Type I or TypeII string theory, the lassial minimum of the tahyon potential has zero energy andan be identi�ed with the supersymmetri vauum state orresponding to the spaetimewithout branes. What is relevant for us is a version of his onjeture desribed in termsof renormalization group ow of the worldsheet quantum �eld theory. See, for example,[47, 48℄ for works in this diretion. The idea is very simple. Let us look at the boundaryinteration (2.13) or (2.14). It inludes the boundary potential termU(x) = 12T(x)2 (3.4)for a hermitian tahyon pro�le T(x). It is natural to expet that, at low energies, x wouldlike to be near the minimum of this potential. In fat only the zeromatters: The dynamisonentrates at the lous where T(x) has zero eigenvalues. A blok of T(x) that has non-zero eigenvalues everywhere \an be ignored" in the low energy dynamis. These laims39



are understood as follows. If detT(x) is nowhere vanishing, the potential U(x) is stritlypositive everywhere on the target spae. In suh a ase, the Eulidean path-integralweight, P exp �� R�SU(x)phd��, vanishes as the worldsheet metri h is sent to in�nity.As a onsequene, the partition funtion and all (unnormalized) orrelation funtionsvanish in the infra-red limit. In other words, the renormalization group sends T(x) toin�nity. From the spaetime point of view, this is interpreted to mean that the minimumof the tahyon potential is loated at in�nity. If there is no topologial obstrution, atahyon on�guration stabilizes at the vauum T ! 1. If T(x) is of blok-diagonalform, diag(T0(x);T1(x); :::), and one of the bloks, say T0(x), is everywhere invertible,that part of the potential blows up and the orresponding weight vanishes in the infra-redlimit: P exp�� Z�SU(x)phd�� = 0B� P e� R U0(x)phd� 0 00 P e� R U1(x)phd� 00 0 . . . 1CA�! 0B� 0 0 00 P e� R U1(x)phd� 00 0 . . . 1CA :As a result the partition funtion and all orrelation funtions reeive ontributions onlyfrom the remaining bloks. In this sense a blok with stritly positive boundary potentialan be ignored in the infra-red limit. Namely, the full theory is infra-red equivalent tothe theory without suh a blok. Let us desribe the ondition of postitivity T2 > 0 inthe N = 2 supersymmetri system, where the tahyon is expressed as T = iQ � iQy.Positivity of T2 = fQ;Qyg is equivalent to KerQ \KerQy = f0g. Sine KerQy = (ImQ)?and ImQ � KerQ, it simply means that KerQ = ImQ. Namely, invertibility of T(x) atevery point x is equivalent to the statement that the omplex C(E ; Q) is exat. Thus, theD-brane orresponding to an exat omplex an be ignored in the infra-red limit. Reallthat an exat omplex is quasi-isomorphi to the zero omplex in the derived ategory.Later in this subsetion, we will understand the relation of quasi-isomorphism and brane-antibrane annihilation in more generality.The operation of brane-antibrane annihilation is analogous to integrating out massive�elds in the bulk theory. In the bulk, if there is a �eld of mass m it is appropriate tointegrate it out in the e�etive theory at energies below m. Similarly, in the boundarytheory, if there is a blok in the Chan-Paton fator with everywhere invertible T0, it isappropriate to \eliminate" that fator at energies below � jT20j. In the bulk, we knowthat integrating out a massive �eld may indue a new term in the superpotential when it40



is interating with other �elds. For example, onsider a Landau-Ginzburg model of twovariables X and Y with the superpotentialW = Xn +X2Y + m2 Y 2: (3.5)Y has a mass m but it is interating with X via the term X2Y . At energies below m it isappropriate to integrate out the �eld Y . This is done simply by solving the equation ofmotion for Y and plugging the result bak in, or equivalently, by ompleting the squarefor Y and eliminating the square [49℄. In any ase, the outome isWlow = Xn � 12mX4: (3.6)A term � 12mX4 has emerged in this proess.Likewise, the brane-antibrane annihilation may produe a non-trivial e�et, when theeliminated setor is interating with the rest of the system. Suppose there is a blok inthe Chan-Paton fator with everywhere invertible T0:T = 0B� T0 �� T0 1CAThis blok is interating with the other setor if the o�-diagonal parts, denoted by aster-isks, are non-zero. We may onsider erasing the o�-diagonal parts by the standard linearalgebra operation | addition/subtration of raws and olumns inluding the maximalrank T0. If that is possible and if that is done, then the T0(x) blok is deoupled fromthe rest and an be ignored. But this may have indued new terms in the remaining part,thus shifting T0. This operation is analogous to the proess of ompleting the square inthe bulk theory. This is exatly what we will often do in this paper. For illustration, letus onsider the boundary interation given by the following omplex:
aj�2- E j�1 aj�1 -������3j�1 F j�E j

bj -QQQQQQsm������3j -aj
F j+1�E j+1

bj+1 -������3j+1 F j+2 bj+2-
(3.7)where F j m�! E j+1 is an isomorphism of vetor bundles, that is, there is an inversem�1 : E j+1 �! F j:41



This invertible part is the analog of the massive �eld Y in the bulk theory and we wouldlike to eliminate it. This setor is interating with the rest of the system via the termsj�1, bj aj, and j+1. Let us order the even and odd vetor bundles (assuming j is even)as Eev = F j � E j � F j+2 � � � � ; Eod = E j+1 �F j+1 � E j�1 � � � �Then, the operator Q for the above omplex is written asQ =  0 fg 0 !where g = 0BBBBBB� m aj 0 0 � � �bj j 0 0 � � �0 0 0 � � � �0 0 �... ... ...
1CCCCCCA ; f = 0BBBBBB� 0 0 j�1 0 � � �0 0 aj�1 0 � � �j+1 bj+1 0 0 � � �0 0 0... ... ...

1CCCCCCA :
We wish to erase the o�-diagonal terms by moving around the invertible map m. Thefollowing does the job for g:
g �! 0BBBB� 1 0�bjm�1 1 . . . 1

1CCCCA g0BBBB� 1 �m�1aj0 1 . . . 1
1CCCCA = 0BBBBBB� m 0 0 0 � � �0 j � bjm�1aj 0 0 � � �0 0 0 � � � �0 0 �... ... ...

1CCCCCCA :
Note that the map j is modi�ed by �bjm�1aj. For f , the same basis hange works aswell,

f �! 0BBBB� 1 m�1aj0 1 . . . 1
1CCCCA f 0BBBB� 1 0bjm�1 1 . . . 1

1CCCCA = 0BBBBBB� 0 0 0 0 � � �0 0 aj�1 0 � � �0 bj+1 0 0 � � �0 0 0... ... ...
1CCCCCCA :

The two o�-diagonal entries are erased, thanks to the equations mj�1 + ajaj�1 = 0 andj+1m + bj+1bj = 0 that are part of the ondition that (3.7) is a omplex. Changingthe �bre metri so that the new frame is orthogonal, whih is a D-term deformation, thesetor F j m�! E j+1 is deoupled from the rest and thus an be ignored. The remaining42



part is, however, not the one obtained by just ignoring all the maps involving F j andE j+1. The original interation between the two setors has a non-trivial e�et: A zigzagmap, �bjm�1aj, is added to j. This is the analog of the new term �X4=2m in (3.6) thatresults from integrating out Y . To onlude, the boundary theory based on the omplex(3.7) is equivalent up to D-term deformations and brane-antibrane annihilation, and inpartiular infra-red equivalent, to the brane based on the omplexaj�2- E j�1 aj�1 - E j j�bjm�1aj- F j+1 bj+1 - F j+2 bj+2-(3.8)Note that, without the modi�ation j ! j � bjm�1aj, this (3.8) is not even a omplexin general. In fat the new omplex (3.8) is quasi-isomorphi to the original one (3.7).Now, let us turn to the general relation of quasi-isomorphisms to D-term deformationsand brane-antibrane annihilation. We start with introduing the one onstrution.3.1.1 Binding D-Branes: Cone ConstrutionCone is an operation whih \binds" two D-branes together using a hiral ring element.Let us hoose two D-branes (E ; QE) and (F ; QF ). Let ' : E ! F be a degree zerobundle map obeying QF' � 'QE = 0, or equivalently, a ohain map ' : CE ! CF ofthe assoiated omplexes. Then, one an onstrut a new brane, alled the one of ',whih is denoted by C(') = C(' : CE ! CF ). It is based on the graded vetor bundleEC(') = E [1℄� F , and the holomorphi part of the tahyon is given byQC(') =  �QE 0' QF ! : (3.9)The assoiated omplex, the one omplex, looks like this:� � � ! E j �! E j+1 �! E j+2 �! E j+3 ! � � �& � & � & � & � &� � � ! F j�1 �! F j �! F j+1 �! F j+2 ! � � � : (3.10)The horizontal arrows on the �rst line are �QE , the southeast arrows are ', and thehorizontal arrows on the seond line are QF . A very important fat is:If ' is a quasi-isomorphism, the one omplex is exat. Let us provide a proof of thisstatment sine it plays an important rôle in our paper. Suppose (ej+1; f j) is in the kernelof the one omplex (3.10) at degree j,QEej+1 = 0; 'ej+1 +QFf j = 0:43



The �rst equation means that ej+1 represents an element of the ohomology lass of CE,and by the seond equation we see that the ohomology lass [ej+1℄ is mapped by '� tothe zero element of the ohomology of CF . By the fat that ' is a quasi-isomorphism,this means that the lass [ej+1℄ is zero, namely, ej+1 an be written as �QEej1 for someelement ej1 of E j. Using the seond equation again, we �nd �'QEej1 + QFf j = 0. Sine' is a ohain map, 'QE = QF', this means that QF (f j � 'ej1) = 0 and therefore wehave a ohomology lass [f j � 'ej1℄ of CF at degree j. Again using the fat that ' is aquasi-isomorphism, this lass an be written as '�[ej2℄ for some element ej2 2 E j that obeysQEej2 = 0. In other words, [f j � '(ej1 + ej2)℄ = 0. Thus, f j � '(ej1 + ej2) an be written asQFf j�1 for some element f j�1 of F j�1. Writing ej = ej1 + ej2, we �ndej+1 = �QEej; f j = 'ej +QFf j�1:Namely, (ej+1; f j) is in the image of the omplex (3.10) at degree j. This proves that theone omplex is exat. The onverse, ' is a quasi-isomorphism if its one is exat, alsoholds and an be proved easily.We have already seen an example of this fat. Reall that a ohain map (2.61) anbe obtained by breaking a omplex (2.60). Its one is the original omplex itself, (2.60),and it is exat if and only if the map (2.61) is a quasi-isomorphism.3.1.2 D-Isomorphisms Versus Quasi-IsomorphismsWe laim that two quasi-isomorphi branes are related by a hain of D-term deforma-tions and brane-antibrane annihilation. Let A and B be two D-branes and suppose thereis a quasi-isomorphism ' : CA ! CB between the orresponding omplexes. Let C be theone of '. As we have seen, the one omplex is exat and hene an be ignored in theinfra-red limit. However, does this mean that A and B are equivalent at low energies?One possible way to show this is to use the following line of arguments:A �= A + (B +B)idB ?�= (A +B)' +B �= B; (3.11)where (B + B)idB is the brane-antibrane system with the tahyon idB turned on, and(A+B)' is the one C.1 The �rst and the last equivalene relations are assoiated withbrane-antibrane annihilation| both (B+B)idB and of C = (A+B)' an be ignored in theinfra-red limit. But what about the equivalene in the middle? One may try to prove it by1To be very preise C is the one of �' shifted by one to the right and reversing the sign of thetahyon. Anyway the omplex for C is exat and thus C an be ignored in the IR limit.44



onsidering an alternative brane based on the graded vetor bundle eE = EA�EB[�1℄�EBwhere ' and idB are turned on at the same time:eQ = 0B� QA 0 0' �QB idB0 0 QB 1CA : (3.12)We wish to �nd two similarity transformations of eQ, one erasing ' and the other erasingidB. That would show that (eE; eQ) is related to both A + (B + B)idB and (A + B)' + Bby hanges of the �bre metri. It is easy to �nd a transformation of the �rst type:0B� idA 0 00 idB 0' 0 idB 1CA0B� QA 0 0' �QB idB0 0 QB 1CA0B� idA 0 00 idB 0�' 0 idB 1CA = 0B� QA 0 00 �QB idB0 0 QB 1CA ;(3.13)where we have used QB' = 'QA to see that the lower left orner is zero. However,a transformation of the seond kind does not always exist. Let us try the similaritytransformation eQ!M eQM�1 of the following form,M = 0B� idA 0  0 idB q0 0 idB 1CA : (3.14)We �nd that it eliminates idB in (3.12) if and only if QB = QA ; (3.15)' = idB + qQB +QBq: (3.16)The �rst equation means that  : CB ! CA is a ohain map, and the seond is theondition that ' and  are inverse to eah other at the level of the ohomology sheaves.This is atually a very speial situation. For example, if 0 ! E ! F ! G ! 0 is anexat sequene, then there is a quasi-isomorphism of the type (2.61)CA : � � � ! 0 ! E ! F ! 0 ! � � �' # # # # #CB : � � � ! 0 ! 0 ! G ! 0 ! � � � (3.17)However, there is no inverse  from CB to CA satisfying the above ondition unless thesequene 0 ! E ! F ! G ! 0 is split-exat. We onlude that (eE; eQ) is not in generalholomorphially isomorphi to the deoupled sum C +B.45



We have thus seen that the proof is not straightforward. It is this point where a moregeneral D-term deformation omes to the resue. Let us onsider a one parameter familyof theories given by Qs = 0B� QA 0 0' �QB s � idB0 0 QB 1CA : (3.18)At s = 0 the theory is the deoupled sum of C and B. For any non-zero s 6= 0 thetheory is equivalent up to deformations of �bre metri to the deoupled sum of A and(B + B)idB . We have seen that Qs with non-zero s, no matter how small it is, is not ingeneral related to Q0 by a hange of �bre metri. Atually, turning on s is a more generalD-term deformation. The variation of the boundary interation is given by��sAt����s=0 = 12fQy0; �g = � i2Qy� (3.19)where � = 0B� 0 0 00 0 idB0 0 0 1CA =: 0B� 0 00 0 u0 0 0 1CA :Note that � antiommutes with Q0, or equivalently, u : EB ! EC satis�es QCu+uQB = 0.In partiular, u determines a hiral ring element for the open string fromB to C. However,sine the one omplex CC is exat, the spae of hiral ring elements is zero,Hp(B;C) �= HpQzero(H�zero(B;C)) �= HomD(CB; CC [p℄) = f0g:This in partiular means that u is Qzero-exat, that is, there is some di�erential form� 2 Hzero(B;C) = �ni=0
0;i(X;Hom�i(EB; EC)) suh thatu = iQzero�: (3.20)Note that � is not neessarily a holomorphi zero-form; that would be the ase when Q0and Qs 6=0 are related by a similarity transformation. As remarked earlier, that is a veryspeial ase. The point is that, even if that fails, there is a di�erential form � with higherdegree omponents suh that u = iQzero�.Let us digress for a moment to see how it works in the example (3.17) assoiated with anon-split exat sequene 0! E ! F ! G ! 0. We suppose that the holomorphi bundlesE and G are realized as the smooth bundles with hermitian onnetions, (E2; �A2) and(E1; �A1), and F is the extension by a non-zero element � 2 H0;1�A1;2 (X;Hom(E1:E2)). Wereall that F orresponds to the vetor bundle E1�E2 with the onnetion �A1;2;� given in46



(2.56), and the maps E ! F and F ! G are e2 7! (0; e2) and (e1; e2) 7! e1. We would liketo �nd � = �0+�1, with �0 2 
0(X;Hom(E1; E1�E2)) and �1 2 
0;1(X;Hom(E1; E2)),suh that u = iQzero�. Here, u is the identity map of E1 that sends G of B to therightmost G in the one C.C : - 0 - E2  0idE2!- E1 � E2 ( idE1 ; 0 )- E1 - 0 -�1QQk . . . . . . �06...... �����3u = idE1B : - 0 - 0 - E1 - 0 - 0 - (3.21)In fat, �0(e1) = (e1; 0) and �1(e1) = ��(e1) does the job:QC�0 = idE1 ;�A1;2;��0 � �0�A1 =  �A1� !� �A10 ! =  0� ! ;QC�1 =  0� ! ;�A2�1 � �1�A1 = 0:We indeed have �A(�) +QC� � �QB = idE1 . (End of digression.)Let us plae � into the 3 � 3 blok matrix, just as u �ts into �, and replae thedi�erential form dx{ by the fermion  {. We denote the resulting matrix by e�.e� := 0B� 0 00 0 �0 0 0 1CA�������dx{ !  { :Then u = iQzero� means � = iQe�. Thus, we �nd that the variation of the boundaryinteration is a D-term ��sAt����s=0 = 12QyQe�: (3.22)We have shown that turning on s is indeed a D-term deformation. One s is turned on, thesystem is equivalent to the deoupled sum of A and (B+B)id. In this way, the middle partof (3.11) is shown to hold. This ompletes the proof that quasi-isomorphi D-branes arerelated by a hain of D-term deformations and brane-antibrane annihilation. In partiularwe proved that quasi-isomorphi branes ow to the same infra-red �xed point.47



Conversely, one an also show that D-branes that are related by D-isomorphisms arerelated by a hain of quasi-isomorphisms. Firstly, brane-antibrane annihilation is a trivialexample of a quasi-isomorphism. Seondly, D-term deformations do not hange the D-brane ategory in the hiral setor [50℄. On the other hand, the D-brane ategory in thehiral setor is equivalent to the derived ategory, and two omplexes are isomorphi inthe derived ategory if and only if they are related by a hain of quasi-isomorphisms.Thus, two D-branes related by a D-term deformation are related by a hain of quasi-isomorphisms.To summarize, we have seen thatD-isomorphisms are equivalent to quasi-isomorphisms.When a B-twist to a topologial �eld theory is possible, our result an also be statedas follows: two D-branes are D-isomorphi if and only if they determine isomorphi D-branes in topologial �eld theory. Thus, in a �xed losed string bakground, our maintarget of study | D-branes up to D-isomorphisms | is nothing but the isomorphismlass of objets in the ategory of topologial D-branes. Nevertheless, we deide not touse the term \topologial D-branes" sine our ultimate motivation is to study the fullphysis of D-branes, rather than the property of D-branes in topologial �eld theory andtopologial strings. In partiular, we pay attention to the dependene of the boundaryRG ow on the bulk parameter orresponding to the omplexi�ed K�ahler lass, whereastopologial �eld/string theory is insensitive to suh a dependene.The relevane of quasi-isomorphisms onerning identi�ation of D-branes was arguedin [6℄ employing the spaetime piture (rossing symmetry). We have �nally managed tolarify their preise relevane in the general ase from the worldsheet view point.3.2 Lower-Dimesional Branes As Complexes Of Vetor BundlesThe fat that a brane is infra-red empty in the region of x where T(x) is non-vanishingsuggests a way to represent a D-brane wrapped on a submanifold of X as a omplex ofvetor bundles of the entire spae X [46, 51℄. For example, onsider a holomorphi linebundle L with a setion f . A D-brane wrapped on the zero lous of f , the divisor Df ,may be represented by the omplex L�1 f�! O;where O is at R-degree 0. In this paper, we do not attempt to onstrut and analyzeworldsheet boundary onditions for B-type D-branes wrapped on submanifolds nor dowe show that the D-branes assoiated with omplexes of vetor bundles are really D-isomorphi to suh lower dimensional branes. Rather, we take the following indiret48



route. For eah omplex submanifold there is a oherent sheaf supported on it, and wetake a omplex of vetor bundles that is quasi-isomorphi to that sheaf as the worldsheetde�nition of the D-brane wrapped on that submanifold. For example, the above omplexis indeed quasi-isomorphi to the oherent sheaf ODf supported on the divisor Df . To bepreise, a general D-brane an be represented as a omplex of oherent sheaves and it isknown that there exists a omplex of vetor bundles on X that is quasi-isomorphi to it(f Setion 9). Thus, we still have a `de�nition' that applies to the most general D-brane.Consisteny of this proposal is provided by our results of the previous subsetion: aslong as omplexes of vetor bundles are onerned, D-isomorphisms are nothing else butquasi-isomorphisms.As another example, and as the example that plays a key rôle in this paper, weintrodue a omplex that represents a point on X. For onretness we onsider Eulideanspae X = Cn with oordinates x1; :::; xn and a D0-brane at the origin p = fx1 = � � � =xn = 0g. Let us reall the Cli�ord algebra (2.86) for �i and �i and its representationVn, the Cli�ord module, generated by the vetor j0i that is annihilated by all �i's. Weonsider the brane with the Chan-Paton spae Vn and the tahyon pro�le given byQ(x) = nXi=1 xi�i: (3.23)This de�nes a sequene of linear maps of the subspaes of Vn:C�1 � � ��nj0i Q�! � � � Q�!Mi<j C�i�jj0i Q�! nMi=1 C�ij0i Q�! Cj0isuh that Q2 = 0. Namely, we have a omplex of trivial vetor bundles,K : O Q�! O�n Q�! O�(n2) ! � � � ! O�(n2) Q�! O�n Q�! O: (3.24)A omplex of the form (3.24) is alled a Koszul omplex. Note that the boundary potentialis fQ;Qyg =  nXi=1 jxij2! � idVn : (3.25)It vanishes preisely at the origin p, and therefore represents a D0-brane at the origin.Indeed, the tahyon pro�le T = iQ � iQy is nothing but the \Atiyah-Bott-Shapiro on-strution for the D0-brane" [51℄ (see for eaxmple [9℄). In partiular, it has the properRamond-Ramond harge as well as the orret spae of hiral ring elements with otherbranes. 49



If we onsidered a theory in whih the point x = 0 is exised in some way, then theboundary potential (3.25) would be nowhere vanishing, and hene the Koszul omplex Kmust represent a brane that is empty in the infra-red limit. In partiular, a brane an bemodi�ed by binding suh K's without hanging its low energy behaviour. This operationwill be used frequently later in this paper.A Koszul omplex an also be used to onstrut the frational branes in an orbifoldtheory | D0-branes stuk at the orbifold �xed points. We onsider the orbifold of theEulidean spae Cn by a �nite group � of linear transformations, � 3  : xi 7!Pnj=1 ijxj.We would like to �nd a representation � of � on the Cli�ord module Vn suh that thebrane (Vn; Q) obeys the invariane ondition�()�1 nXi;j=1 ijxj�i! �() = nXj=1 xj�j;that is, �()�j�()�1 = Pni=1 �iij. In order to preserve the Cli�ord algebra relations,we �nd that the �i's must transform as �()�i�()�1 =Pnj=1(�1)ij�j. If we deide thatj0i 2 Vn is a �-invariant vetor, we �nd that the vetors f�ij0ig transform as�() : �ij0i 7�! nXj=1 �jj0i(�1)ij:Let R be the de�ning representation of �, that is, the spae Cn regarded as a represen-tation of �. The basis elements ei of R transforms under  2 � as ei 7! Pnj=1 ejji.Then, we �nd that the elements �ij0i transform in the same way as the dual basis to feig.Namely, the spae spanned by f�ij0ig an be identi�ed with R� as a representation of �.Similarly, the spae spanned by f�i1 � � � �ir j0ig an be identi�ed with ^rR�. Thus, we �ndthat the Koszul omplex an be regarded as the omplex of �-modules^n R� Q�! ^n�1R� ! � � � ! ^2R� Q�! R� Q�! C: (3.26)We may also onsider tensoring this with any representation � of �. We shall denote thebrane assoiated with that omplex by Op(�). For an Abelian group, suh as � �= Zd, weuse the additive notation Op(�m) = Op(m). For irreduible representations, these are thefrational branes stuk at the orbifold point p. As a side remark and for later onveniene,we note that Op(^nR) an also be written asC Q�! R Q�! ^2R! � � � ! ^n�1R Q�! ^nR: (3.27)This is what we would diretly �nd if we span the Cli�ord module Vn by the even andodd multiples of the �i's on the state j0i0 that is annihilated by all �i's.50



3.3 The Landau-Ginzburg CaseWe next disuss D-isomorphisms in Landau-Ginzburg models. We reall that theboundary interation for a B-brane is given by the formula (2.66) for a matrix fatorizationQ(x) of the superpotential W (x).D-term deformations inlude deformations of the �bre metri of the Chan-Paton spae.In partiular, a similarity transformation by an even (or R-symmetry preserving) matrixQ(x)! U(x)�1Q(x)U(x) (3.28)is of this type. The D-brane is empty at low energies if and only if the potential U(x) =12fQ(x); Q(x)yg is positive de�nite for all x. For example, a matrix fatorization of theform Q(x) =  0 1rW (x)1r 0 ! or  0 W (x)1r1r 0 ! (3.29)has a positive de�nite boundary potential, fQ(x); Q(x)yg = (1+jW (x)j2)idV > 0, and anbe ignored at low energies. In the ase where W (x) is a quasi-homegeneous polynomialand eah variable xi has a positive degree, any quasi-homogeneous matrix fatorizationwith fQ(x); Q(x)yg > 0 is holomorphially isomorphi to the diret sum of those of thetype (3.29).Let us prove the last statement. We take a matrix fatorization of size 2r by 2r,Q(x) =  0 f(x)g(x) 0 ! :Suppose f(x) has rank s at x = 0. Then, with a hange of basis, that is, with a similaritytransformation (3.28), it an be written asf(0) =  1s 00 0 ! :If we move away from x = 0, polynomials appear in the entries of f(x) exept at the �rsts diagonals where \1" are. This is beause eah entry must be quasi-homogeneous and1 is the only polynomial of degree zero. By standard linear algebra operations, one anerase all the entries in the same raws and olums as these 1's, and one may assume theform f(x) =  1s 00 A(x) ! :51



Then, f(x)g(x) = g(x)f(x) =W (x)1r shows that g(x) an be written asg(x) =  W (x)1s 00 B(x) ! ;where A(x)B(x) = B(x)A(x) = W (x)1r�s. The ondition fQ;Qyg > 0 at x = 0 requiresthat B(0)B(0)y > 0 and B(0)yB(0) > 0. Thus, again by raw and olumn operations, onemay assume B(x) = 1r�s whih in turn requires A(x) = W (x)1r�s. In this way, we haveseen that Q(x) is equivalent up to similarity transformations to the sum of (1;W )'s and(W; 1)'s; Q(x) �=  0 1sW (x)1s 0 !� 0 W (x)1r�s1r�s 0 ! : (3.30)This proves our laim.We have learned that \brane-antibrane annihilation" in a LG model means annihila-tion of (1;W )'s and (W; 1)'s. Using the same argument as in the non-linear sigma models,we an show that two D-branes are related by a hain of D-term deformations and brane-antibrane annihilations if there is a degree zero state whose one has positive potentialfQ;Qyg > 0. Two suh D-branes ow to the same �xed point in the infra-red limit.3.4 Kn�orrer PeriodiitySo far, our fous was renormalization group ows of boundary interations. However,bulk interations generially ow as well, and the interplay of bulk and boundary RGows is expeted to have some important onsequenes. For reent works on this subjetin systems with N = 2 supersymmetry, see [52℄ and referenes therein. Here, we wouldlike to fous on the most primitive among bulk RG ows | integrating out massive �elds.As far as we know, this has not been onsidered in full detail in the literature.Let us onsider a Landau-Ginzburg model of n + 2 variables, X1; : : : ; Xn; U; V withsuperpotential of the form W = WL(X1; :::; Xn) + UV: (3.31)We see that the �elds U and V are massive and must be integrated out at an appropriateenergy sale. (We assume thatX1; :::; Xn are massless or have lower masses.) The questionis how the D-branes in the high energy theory inluding the variables U and V are relatedto the ones in the low energy theory where U and V are gone. That is, what is the relationof matrix fatorizations of WL(x) + uv and matrix fatorizations of WL(x)? A similar52



question in a mathematial ontext is solved and is known as Kn�orrer periodiity [53℄,whih states that the ategory of matrix fatorizations of WL(x) and that of WL(x) + uvare equivalent. We show below that this is indeed relevant to our question. Moreover, weonstrut an expliit map of branes whih was not given in [53℄. This onstrution willplay a very important rôle later in this paper.Let us �rst onsider the opposite problem: Given a brane in the low energy theory,does it ome from a brane in the high energy theory? Namely, if QL(x) is a matrixfatorization of WL(x), is there a matrix fatorization Q(x; u; v) of WL(x) + uv suh thatthe brane Q ows to the brane QL as U and V are integrated out? The answer is yes.An important rôle is played by a ertain brane of the theory of variables U and V only,and with superpotential W = UV . For our purpose it is onvenient to use its realizationin terms of boundary fermions �; � with boundary ationS1(�; U; V ) = Z�Sdt�i� _� � 12 jvj2 � 12 juj2 +Re� u� +  v��� ; (3.32)where  u and  v are the boundary values of the fermioni omponents  =  + +  � ofU and V . Upon quantization, � and � obey the antiommutation relations f�; �g = 1,�2 = �2 = 0, whih is represented on the two dimensional vetor spae spanned by j0i and�j0i, where j0i is annihilated by �. With respet to that basis, � and � are representedby the matries � =  0 10 0 ! ; � =  0 01 0 ! ;and we �nd that the boundary interation (3.32) is of the from (2.66), withQ = u� + v� =  0 uv 0 ! :There is a unique supersymmetri ground state in the Ramond setor of the open stringstrethed between two opies of it. Sine the system has a �nite orrelation length, thisimplies that the system formulated on the half-spae also has a unique supersymmetriground state. (See Setion 6 for a more detailed reasoning and an expliit ontrution.)Now, given a brane P exp ��i R�SALt dt� of the low energy theory, we onsider the followingbrane of the high energy theoryP exp��i Z�SALt dt� exp�iS1(�; U; V )�: (3.33)If we integrate out the �elds U; V and �, the fator exp(iS1(U; V; �)) simply drops sinethe (U; V; �) system has a unique ground state of zero energy. As a result, we simply53



get bak the original brane of the low energy theory. Thus, (3.33) is the brane we werelooking for. One an write it in the form (2.66), withQ = QL + u� + v�:If QL is represented by a matrix QL =  0 f(x)g(x) 0 !with respet to a basis b0 = (e0; o0) of the original Chan-Paton spae, then Q is repre-sented by a matrix Q = 0BBBB� 0 f(x) 0 ug(x) 0 �u 00 �v 0 g(x)v 0 f(x) 0
1CCCCA (3.34)with respet to the basis b = (e0 
 j0i; o0 
 j0i; o0 
 �j0i; e0 
 �j0i) of the Chan-Patonspae of the brane (3.33). This map QL 7�! Q is indeed the funtor given in [53℄ thatmakes the equivalene of the two ategories.Now we ome to our main problem: Given a brane in the high energy theory, whathappens when U and V are integrated out? We already know the answer if the givenbrane is of the form (3.33): it is P exp ��i R ALt dt�. Note that this is not the same as justsetting u = v = 0 in the matrix fatorization Q(x; u; v). If we simply did that, we wouldobtainQju=v=0 = 0BBBB� 0 f(x) 0 0g(x) 0 0 00 0 0 g(x)0 0 f(x) 0

1CCCCA =  0 f(x)g(x) 0 !� 0 g(x)f(x) 0 !
whih is twie as muh in size as the orret answer. Rather, we should extrat the �rsthalf blok of it. What happens to more general branes? The key is the fat, shown inKn�orrer's paper [53℄, that any matrix fatorization ofW = WL(x)+uv is holomorphiallyisomorphi to the one of the form (3.34) up to a deoupled sum of empty branes (W; 1),(1;W ). Thus, the proedure is �rst to �nd suh a presentation and then take out therelevant blok of Qju=v=0. However, this is not systemati and requires a lot of work inthe indivisual ase.Here, we present a general proedure to �nd the low energy brane without expliitly�nding a speial presentation. Let Q be the matrix fatorization of W = WL(x) + uv54



represented on a Chan-Paton vetor spae V. We set v = 0 but keep u in Q,bQ = Qjv=0; (3.35)and regard bQ as a matrix fatorization of WL(x) represented on the in�nite dimensionalChan-Paton spae bV = V� uV� u2V� u3V� � � � : (3.36)Then, ( bQ; bV) is the matrix fatorization determining the low energy brane. It is in�nitein size, but the boundary potential f bQ; bQyg is mostly positive and has zero only in a �nitedimensional subspae of bV.Let us see how it works. First, onsider the ase where Q is already of the form (3.34).With respet to the basis (b; ub; u2b; : : :) of bV, bQ is represented by the matrix
bQ =

0BBBBBBBBBBBBBBBBBBBBB�

0 fg 0 0 gf 00 1 0 f�1 0 g 0 0 gf 00 1 0 f�1 0 g 0 . . .

1CCCCCCCCCCCCCCCCCCCCCA
; (3.37)

where unwritten entries are all zero. We �nd that bQ onsists mostly of the diret sum ofin�nite opies of the blok Q1 = 0BBBB� 0 gf 00 1 0 f�1 0 g 0
1CCCCA :The potential of this blok isfQ1; Qy1g = 0BBBB� 1 + ggy + f yf 00 1 + ff y + gyg 1 + ff y + gyg 00 1 + ggy + f yf

1CCCCA ;55



whih is everywhere positive. (Equivalently, there is a similarity transformation thatmakes Q1 into a diret sum of (1;WL)'s and (WL; 1)'s.) Thus, eah of suh bloks isempty in the infra-red limit. Therefore, only the �rst blok � 0 fg 0 � of bQ remains, and thisis indeed the right answer. Next, onsider the empty branesQ2 =  0 W1 0 ! ; Q3 =  0 1W 0 ! :bQ2; bQ3 are diret sums of in�nite opies ofQ2jv=0; Q3jv=0 and in partiular have everywherepositive potentials. Thus, bQ2 and bQ3 are also empty. Sine any matrix fatorization isholomorphially isomorphi to the sum of matries of the form (3.34), Q2 and Q3 [53℄,we �nd that the above proedure gives the right answer to the low energy brane in thegeneral ase.Some remarks are in order:(i) One may notie the asymmetry in the rôle of u and v. We ould have applied theabove proedure by swapping the two variables. If we did so, the resulting low energybrane would have the opposite Z2-grading. This asymmetry or ambiguity ame from thefat that the Z2-grading of branes in the high energy theory is not given separately forthe x-part and for the (u; v)-part. What we have done above is to make a hoie of theZ2-grading in the (u; v)-part | we delared that j0i is even and �j0i is odd. The oppositehoie, or equivalently, the swap of u and v, results in the opposite Z2-grading of the lowenergy D-brane. One should remember that there is this hoie dependene in the mapof branes from the high energy theory to low energy theory. If we want to be systemati,we need to �x one hoie and use it for all branes.(ii) The above proedure will turn out to be extremely powerful and have a wide rangeof appliations, despite the fat that we need to invoke in�nite size Chan-Paton fators.The partiularly important ase is where the Landau-Ginzburg superpotential is �bredover some base manifold (the ase of non-linear sigma model with superpotential). Insuh a situation, it is in general impossible to �nd a presentation of Q as (3.34) globally,and it is also very diÆult to �nd suh a presentation loally and to path them together.However, the above proedure (V; Q) 7! (bV; bQ) an be applied without diÆulty to suh�bred situation and provides a one-shot answer. We will use this �bre-wise onstrutionin Setion 10.(iii) In�nite size Chan-Paton fators whih are e�etively �nite for the same reason asabove had been disussed earlier in [54, 55℄.56



Note on Short Orbit BranesIt is a good point to digress for a moment to explain the matrix fatorization realizationof the short orbit RS-branes given in Setion 2.4.1. The N = 2 minimal model at levelk is realized as the infra-red limit of the single variable LG model with superpotentialW = Xd with d = k+2. Alternatively, it an also be identi�ed with the IR �xed point ofthe model with two variables W = Xd� Y 2. The minimal model with even level has twolasses of Cardy branes, ordinary branes and short orbit branes [36℄. Ordinary branes arerealized by matrix fatorizations of W = xd orreponding to xL+1 �xd�L�1 while the shortorbit branes orrespond to the matrix fatorizationQ =  0 x d2 � yx d2 + y 0 !of W = xd � y2 [50℄ (see also [39℄). It was found in [37℄ that there are an odd numberof fermioni zero modes in the open string strethed between ordinary and short orbitbranes. For that reason, short orbit branes annot oexist with ordinary branes if we wantto de�ne a Z2-grading operator (�1)F . This problem disappears for a produt branes witheven number of short orbit fators in a produt of minimal models. This is why we allowsuh short orbit branes in Gepner models [43℄.Consider the produt of two minimal models with even levels, d1 = 2m1 and d2 = 2m2.A produt of two short-orbit branes is realized by the matrix fatorizationQ = �xm11 � y1��1 + �xm11 + y1��1 + �xm22 � y2��2 + �xm22 + y2��2of W = x2m11 � y21 + x2m22 � y22. We write �1 = 12(�1 + i�01), �2 = 12(�2 + i�02) for real �i, �0iand then introdue � = 12(�01+ i�02). Writing u = �y2� iy1, v = y2� iy1, the above matrixan be written as Q = xm11 �1 + xm22 �2 + u� + v�;whih is a matrix fatorization of W = x2m11 + x2m22 + uv. In this form, one an readilyintegrate out the U; V; � system. The result is the matrix fatorizationQL = xm11 �1+xm22 �2ofWL = x2m11 +x2m22 . This is why (2.89) represents a short orbit brane in a Gepner model.3.5 D-brane Transport On The K�ahler Moduli SpaeBulk (2; 2) supersymmetri quantum �eld theories have two kinds of distinguisheddeformation parameters | hiral and twisted hiral parameters. For non-linear sigma57



models, hiral parameters orrespond to the omplex struture of the target spae whiletwisted hiral parameters determine the omplexi�ed K�ahler lass. The moduli spae of(2; 2) theories up to bulk D-term deformations is a diret produt MC �MK, where MCand MK are parametrized by hiral and twisted hiral parameters respetively. We shallrefer toMK and MC as the K�ahler moduli spae and the omplex struture moduli spaerespetively, although the geometri interpretation is present only around speial ornersofMK, alled the large volume limits. Moving away from suh a orner, the �0 orretionsgrow and the sigma model desription eventually beomes totally inadequate. There analso be orners of di�erent type whih are desribed in terms of Landau-Ginzburg modelsor orbifolds thereof. In general, a single K�ahler moduli spae may have multiple regionswith quite di�erent desriptions. For example, the non-linear sigma model on the quintihypersurfae XG = fG(x) = 0g in CP4 and the Landau-Ginzburg orbifoldW = G(x)=Z5are at two opposite orners of the same one dimensional K�ahler moduli spae. There arealso examples ofMK with several large volume limits orresponding to K�ahler manifoldsof di�erent topology. As disussed in the introdution, the main purpose of the paperis to onstrut a family of boundary interations in a family of bulk theories de�ned ina region of MK that enompass various orners with di�erent interpretations. We showbelow that there is a natural notion of \parallel families" of B-branes.We �rst desribe the \parallel transport" of D-branes along a path inMK. Deforma-tions of the (2; 2) bulk theory inside MK are generated by bulk twisted F-terms whihare lassi�ed as D-terms from the point of view of the N = 2B supersymmetry. Namely,they are of the form QQy(� � � ) where Q and Qy are the N = 2B generators. Also, we areinterested in properties of D-branes that do not hange under N = 2B boundary D-termdeformations. This motivates us to take the following rule of D-brane transport: The bulkand boundary interations must vary by N = 2B D-terms only. To be more expliit, ifS(�) = Sbulk(�)+Sbdry(�) is a one parameter family of ations that realizes the transport,its variation must be a D-term dd� S(�) = QQy(� � � ): (3.38)The hiral setor of B-type D-branes does not hange under the bulk and boundaryN = 2B D-term deformations. Therefore, the rule is de�ned so that the hiral setorremains onstant under the transport. When B-twist is possible, this means that theassoiated open topologial �eld theory remains invariant under the transport.We assert that the rule (3.38) de�nes a \at onnetion" on the \bundle of D-branes"over the K�ahler moduli spae MK in a ertain sense. Let us �rst show that the D-branetransport obeying our rule is unique up to boundary N = 2B D-term and bulk (2; 2)58



D-term deformations. Let us onsider two admissible transports of a given interationS(0) over the same path. In�nitesimally, the transports an be written as Si(�) = S(0) +�QQyAi, i = 1; 2. Then, S2(�) an be regarded as the deformation of S1(�) by the term�QQy(A2�A1). Sine S1(�) and S2(�) represents the same point ofMK, the deformationtermmust have no twisted F-term omponent. Thus, it is a boundary D-term plus possiblya bulk (2; 2) D-term. By omposition of this elementary proess, we �nd that admissibletransports over the same path are related by a hain of boundary D-term deformations,possibly with bulk (2; 2) D-term deformations. One important point whih is impliitlyassumed in this argument is that we an use a set of �eld variables whose supersymmetrytransformations do not depend on the twisted hiral parameters, at least inside the regionof MK we are onsidering. This is to ensure that �QQy(A2 � A1), whih is a D-termin the initial theory S(0), is also a D-term with respet to the N = 2B supersymmetryof the deformed theory S1(�). In the non-linear sigma model, this is indeed the asesine the sets of �elds as well as their supersymmetry transformation are �xed when theomplex struture of the target spae is �xed. By a similar argument, we �nd that the\onnetion" is at: under a deformation of the path in MK with �xed initial and �nalpoints, the result of D-brane transport hanges only by boundary N = 2B D-terms andbulk (2; 2) D-terms. Note that this holds only for ontinuous deformations of the paths.There an be non-trivial monodromies for topologially non-trivial loops in MK. In fatsuh monodromies are known to exist even at the level of D-brane harge.As we have disussed earlier in this setion, our main interest is in the properties of D-branes that do not hange not only under boundary D-term deformations but also underbrane-antibrane annihilation. A natural question is whether brane-antibrane annihilationat one point of the K�ahler moduli spae is sent to brane-antibrane annihilation at anotherpoint under the parallel transport. Formally, that must be the ase. Otherwise thehiral setor would hange, but the transport is de�ned so that it remains onstant. Andthis indeed appears plausible as long as the path stays inside a large volume regime| positivity of the boundary potential fQ;Qyg is una�eted under deformations of theK�ahler lass. However, it is not at all obvious whether this ontinues to be the ase ifthe path goes out of one large volume regime and the size of the target spae beomesvanishingly small.That the hiral setor does not hange under D-brane transport does not mean thatthe full theory remains onstant. In partiular, the infra-red limit must depend on wherewe are onMK, sine it de�nes a N = 2B superonformal boundary ondition in the (2; 2)superonformal �eld theory that really depends both on MK and MC . We expet a rihpattern of renormalization group ows that hange along the transport. For example, let59



us onsider a omplex of two vetor bundles,E1 Q�! E2;whih de�nes a parallel family of boundary interations over a region ofMK. The regionmay be separated into two by a wall of marginal stability. On one side of the wall the mapQ is tahyoni so that the brane ows to a single indeomposable N = 2B superonformalboundary ondition. On the other side of the wall, Q is irrelevant and vanishes in the infra-red limit. Then the brane splits into two N = 2B superonformal boundary onditions,one orresponding to E1 and another orresponding to E2. Note that in the latter ase theabove brane and the brane E1[1℄� E2 are not D-isomorphi to eah other but still ow tothe same superonformal boundary interation.Other quantities that show dependene on MK are the overlap of the boundary statewith the R-R ground states hijBi: These are de�ned as the path integrals over an A-twistedsemi-in�nite igar S with an operator orresponding to the ground state hij inserted atthe tip, see[7℄. This quantity does not depend on boundary D-term deformations as theywould insert an N = 2B D-term at the boundary whih is annihilated by the supersym-metri ground state: ÆhijBi = hij Z�SQQy(� � � )jBi = 0:On the other hand, as argued in [7, 23℄, they do depend on the twisted hiral param-eters and satisfy a ertain system of di�erential equations. The overlaps are alled thegeneralized entral harges and play important roles in the study of D-brane stability.When the infra-red limits of the (2; 2) quantum �eld theories are used as the bak-grounds for string ompati�ation, the family of boundary interations obeying the rule(3.38) plays an important rôle in spaetime physis. Open string states for suh families ofboundary interations de�ne open string �elds that an be used everywhere on the regionof MK under onsideration. This provides us with a basis to study spaetime D-termpotentials as a funtion of those open string �eld variables as well as of losed string �eldsassoiated to MK parameters.An ideal framework to study the above issues is provided by linear sigma models. Theyare (2; 2) supersymmetri gauge theories in 1+1 dimensions de�ned over the moduli spaeMK �MC , whih inludes large volume limits, Landau-Ginzburg orbifold points as wellas regions in between where neither a geometrial nor a Landau-Ginzburg interpretationis totally absent. It uses a single set of �eld variables with a �xed supersymmetry trans-formation rule and the dependene on the MK �MC moduli parameters appears only inthe (twisted) F-term interations of the ation. In this paper, we study parallel families60



of boundary interations using linear sigma models. We will in fat enounter a sharpproblem assoiated with brane-antibrane annihilation, and will �nd a rather surprizingsolution. Also, our onstrution provides a starting point for the study of D-brane sta-bility and spaetime D-term potentials in intermediate regimes of MK where no usefuldesription of the low energy theory is available.4 Linear Sigma ModelsIn this setion, we review the basi aspets of (2; 2) supersymmetri linear sigmamodels in 1 + 1 dimensions [2℄. The main purpose is to �x notations and to introduea lass of examples that will be used in this paper. We will also obtain a new result ongeneral multiparameter models (Setion 4.5) that will play an important rôle.4.1 The LagrangianLet us onsider a 2d (2; 2) supersymmetri gauge theory with a ompat Abelian gaugegroup T �= U(1)1 � U(1)2 � � � � � U(1)k and matter hiral super�elds � = (�1; :::;�N),where �i has harge Qai with respet to the ath gauge group U(1)a (a = 1; :::; k is the gaugeindex and i = 1; :::; N is the `avor' index). We denote the vetor super�eld for U(1)aby Va, and its urvature by �a = D+D�Va (a twisted hiral super�eld). The Lagrangiantakes the following formL = Z d4� �12 kXa;b=1(e�2)ab�a�b + NXi=1 �i eQi�V�i!+Re Z d2e� � kXa=1 ta�a!+Re Z d2�W (�) (4.1)The �rst term on the right hand side is the gauge kineti term where e is the gaugeoupling onstant. The seond term is the matter kineti term with the minimal ouplingto the gauge �elds, where Qi � V is a short hand notation for Pka=1Qai Va. The third is atwisted superpotential term, where ta = ra � i�a (4.2)is a omplex ombination of the Fayet-Iliopoulos (FI) parameter ra and the theta angle�a for the ath gauge group U(1)a. The last term exists if there is a gauge invariantholomorphi polynomial W (�) of �1; :::;�N , the superpotential.61



Let us write down the Lagrangian in terms of the omponent �elds. We reall that avetor multiplet onsists of a gauge �eld v�, a omplex salar �, a Dira fermion �� anda real auxilary �eld D. A hiral multiplet onsists of a omplex salar �, a Dira fermion � and a omplex auxiliary �eld F . The omponent expressions for the gauge kinetiterm, the matter kineti term, and the twisted superpotential term are given belowLg = Z d4��� 12e2��� + total derivative= 12e2 hj�0�j2 � j�1�j2 + i��( ���!0 + ���!1)�� + i�+( ���!0 � ���!1)�+ + v201 +D2i ;(4.3)Lm = Z d4� � eV � + total derivative= jD0�j2 � jD1�j2 + i �( �D�!0 + �D�!1) � + i +( �D�!0 � �D�!1) + + �D�+ jF j2�j��j2 �  �� + �  +� � � i��� + + i��+ � + i +���� i ��+�; (4.4)LFI � = Re Z d2e���t�� = �rD + �v01: (4.5)Only the speial ase of T = U(1) and with just one harge 1 matter �eld is presented,sine the generalization is obvious. The superpotential term isLW = Re Z d2�W (�) = Re" NXi=1 Fi�W��i (�)� NXi;j=1 �2W��i��j (�) i+ j� # : (4.6)In the above expressions,  ���!� and  �D�!� are de�ned as 1 ���!� 2 := 12 1(�� 2)� 12(�� 1) 2: (4.7)If the worldsheet has no boundary, whih is the ase within this setion, a total deriva-tive an be ignored and hene there is no need to distinguish  1(�� 2) and �(�� 1) 2.However, later in this paper, we will onsider worldsheets with boundary. Then a totalderivative is non-zero in general and the distintion is important. The above hoie ofLagrangian is the one that will be used throughout this paper.4.2 PhasesThe lassial potential for the salar �elds �i and �a is obtained after integrating outthe auxiliary �elds Da and Fi:U = NXi=1 ����� kXa=1 Qai �a�i�����2 + e22 kXa=1  NXi=1 Qai j�ij2 � ra!2 + NXi=1 �����W��i (�)����2 : (4.8)62



Here we assume e2ab = Æabe2 for simpliity. One obtains some idea of the low energy theoryby looking at the vauum lous, U = 0. It depends very muh on the value of the FIparameters ra whih enter into the middle term, the D-term potential. If r = (r1; :::; rk)is in a ertain domain, the D-term equationsNXi=1 Qai j�ij2 � ra = 0 8a = 1; : : : ; k; (4.9)may require that the �i are non-zero and the matrix Mab =PNi=1QaiQbi j�ij2 has maximalrank k. This means that the gauge group T is ompletely broken, or broken to a �nitesubgroup. In partiular, U = 0 requires all �a to be zero by the �rst term in (4.8).However, this may fail at speial values of r = (r1; :::; rk). Also, it is possible that theequation U = 0 has no solution in some domain. Thus, the spae RkFI spanned by FIparameters is divided into a �nite number of hambers. There are loi in whih the rankofMab for generi solutions to (4.9) are less than k. They are parts of linear hypersurfaesand form walls that divide RkFI into hambers. The hambers that admit solutions to thevauum equation U = 0 are alled the phases and the walls separating them are alledthe phase boundaries. At a point r in the interior of eah phase, the ontinuous part ofthe gauge group T is broken everywhere on the vauum lous U = 0.A geometri phase is a phase in whih T is ompletely broken at any solution of U = 0and all modes transverse to U = 0 are massive. In that ase, the low energy theory is anon-linear sigma model whose target spae is the quotient (U = 0)=T . If the model haszero superpotential W = 0, the spae (U = 0)=T is the sympleti quotient of CN by Twith the moment map equation (4.9). As a omplex manifold, it is the quotient by theomplexi�ed gauge group TC, Xr = (CN ��r)=TC; (4.10)where �r onsists of points whose TC orbits do not pass through solutions to (4.9). �ris a union of linear subspaes of CN and depends only on the phase that r belongs to.We shall all it the deleted set of the respetive phase. Xr is a so alled tori manifold.If the superpotential is non-trivival, the vauum lous is a submanifold Mr of this torimanifold Xr, whih is de�ned by the F-term equations�W��i = 0 8i = 1; : : : ; N: (4.11)In the e�2 ! 0 limit, the gauge �eld v� and the salar �eld � are expressed in terms of63



the matter �elds asva0 = Xb;i M�1ab Qbi �i�i ���!0�i + 12( i+ i+ +  i� i�)� ; (4.12)va1 = Xb;i M�1ab Qbi �i�i ���!1�i + 12( i+ i+ �  i� i�)� ; (4.13)�a = �Xb;i M�1ab Qbi i+ i�: (4.14)The gauge �eld is the pull-bak of the onnetion of the omplex line bundle O(ea) overXr (or its restrition to Mr) assoiated with the harge 1 representation for the ath U(1).If W = 0, all phases are almost geometri in the sense that all modes transverse toU = 0 are massive and the quotient Xr = (U = 0)=T has at most orbifold singularities.When it an be realized as a global orbifold by an unbroken gauge group, Xr = X 0r=�,the low energy theory is the orbifold theory in the standard sense [28℄: the �-gaugedsigma model on X 0r. Otherwise, no onvenient desription of the low energy theory isavailable today. See for example [56℄ and referenes therein. A singular Xr makes aperfet sense as an algebrai variety, but that has no useful suggestion to the desriptionof the theory. It makes sense also as something alled a quotient stak, and that seemsto arry onvenient strutures, espeially when we onsider D-branes. (See Setion 9.) Inthis paper, somewhat loosely, we simply refer to the low energy theory as \the non-linearsigma model on the tori variety Xr", having this subtlety in mind.If the superpotential W is non-trivial, there are various phases in whih some of thetransverse modes to U = 0 are massless. The extreme ases are the so alled Landau-Ginzburg phases. A Landau-Ginzburg phase is a phase in whih the vauum lous (U =0)=T is one point and all modes transverse to the TC orbit do not aquire mass fromthe D-term potential. In the limit where r is saled up to in�nity, the modes tangentto the TC orbit deouple and the theory redues to the Landau-Ginzburg model for thetransverse modes, possibly with a residual disrete gauge symmetry (Landau-Ginzburgorbifold).RG Flows And Calabi-Yau ConditionsUnder the renormalization group (RG) the FI parameters r1; :::; rk ow as ra(�) =ra(�0) +PNi=1Qai log(�=�0), so that r(�) runs along a straight line in RkFI. In general,this indues a ow between di�erent phases or domains without solution to the vauum64



equation U = 0. However, under the onditionNXi=1 Qai = 0 8a = 1; : : : ; k; (4.15)the FI parameters do not run and are genuine parameters of the theory. A related e�etis the axial anomaly. The lassial ation (4.1) has axial U(1) R-symmetry but this isanomalously broken if the ondition (4.15) is violated. As a onsequene, the shift oftheta angles, �a ! �a +PNi=1Qai�, is physially irrelevant as that an be absorbed by a�eld rede�nition using an axial rotation. If the ondition (4.15) is indeed met, there is nosuh anomaly and all the k theta angles �a are genuine parameters of the theory. If thesuperpotential is quasi-homogeneous, namely if it obeysW (�R1�1; : : : ; �RN�N ) = �2W (�1; : : : ;�N); (4.16)for ertain R1; :::; RN (alled the R-harges of the �elds �1; :::;�N ), there is also a vetorU(1) R-symmetry.If the two onditions (4.15) and (4.16) are met, we have both axial and vetor U(1)R-symmetries. They are expeted to beome a part of the superonformal symmetry ofthe non-trivial infra-red �xed point of the RG ow. In suh a ase, we have a family ofsuperonformal �eld theories parametrized by the FI-theta parameters ta = ra � i�a aswell as the parameters that enter into the superpotential W (�). In many ases these arethe entire set of exatly marginal parameters, but in many other ases there are extraparameters.4.3 SingularityLet us assume that the Calabi-Yau onditions (4.15) and (4.16) are met and hene allta's are genuine parameters of the theory.On a phase boundary, a non-ompat Coulomb branh emerges | the vauum lousU = 0 inludes a point at whih there is an unbroken ontinuous subgroup of T and theorresponding �a is unonstrained. This implies a singularity of the theory. The storymust be modi�ed in the quantum theory sine it depends also on the theta angles �a.Atual existene of the Coulomb branh an be examined by omputing the quantumground state energy at large values of �'s. The result isUe� = 12 kXa;b=1 e2ab(�)�fW e���a �fWe���b : (4.17)65



e2ab(�) are the e�etive gauge oupling onstants. They approah their lassial values asj�j ! 1. fWe�(�) is the e�etive twisted superpotential whih is obtained by integratingout the harged hiral multiplet �elds. Its �rst derivatives are given by�fWe���a (�) = �ta � NXi=1 Qai log kXb=1 Qbi�b! : (4.18)The imaginary part of these are the e�etive bakground eletri �elds and enter into(4.17) as the eletrostati energy [57℄. To be preise, the potential (4.17) hanges if �a isshifted by 2�, and the lowest among all is the atual ground state energy. In partiular,the potential is zero if the derivatives (4.18) vanish modulo 2�i times integers [2, 57℄.Namely, the vauum equation isNYi=1 kXb=1 Qbi�b!Qai = e�ta : (4.19)Under the ondition (4.15), this equation is invariant under the uniform resaling of �a's,so that existene of one solution means existene of a non-ompat Coulomb branh.Eliminating �a's we obtain an equation for e�ta 's that de�nes the lous where there is aquantum Coulomb branh. The theory is singular there sine the wavefuntions spreadover the Coulomb branh and are not normalizable. In general, there are additionalsingular loi oming from mixed Coulomb-Higgs branhes [58℄.Let us denote the set of singular points by S. It is a union of hypersurfaes in theset (C�)k of all FI-theta parameters f( et1 ; :::; etk)g. The K�ahler moduli spae is theomplement MK = (C�)k nS:In order to get some idea of how MK looks like, it is useful to introdue two projetionsof (C�)k | the projetion to the FI parameters (Log) and the projetion to the thetaparameters (Arg): (C�)kLog Arg����	 ����RRkFI (S1)k� (4.20)The image of the singular loi S under the map Log is alled the Amoeba of S [59℄. Itis a domain on RkFI with tentales whih asymptote to the lassial phase boundaries atlarge jrj, possibly shifted by some �nite amount. The image of S under the map Arg isalled the o-Amoeba or the Alga of S [60, 61℄. We will see in some examples that the66



Alga of S has a non-empty omplement, whih has an important onsequene for D-branetransport at the enter of the moduli spae MK.4.4 ExamplesIn what follows, we introdue some examples whih will aompany us throughout thispaper. We plae emphasis on the phase struture and the deleted sets �r. In Example (C),we introdue a method to �nd the deleted sets whih turns out to be useful for desribingoherent sheaves on tori varieties. In Examples (A) and (C), one an onsider a ompattheory with a non-trivial superpotential W , but one may also onsider a non-ompattheory with W = 0.(A) Calabi-Yau Hypersurfae In CPN�1The �rst example has gauge group U(1) and (N +1) �elds P;X1; : : : ; XN with harge�N; 1; : : : ; 1. We onsider the superpotential W = PG(X1; : : : ; XN) where G(X) is ahomogeneous polynomial of degree N . There are two phases as shown in Fig. 1. We plot
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<0 Phase Phase>0=0r rrFigure 1: The Phases of the model (A) for N = 5.the lattie of gauge harges (alled the Piard lattie) inside RkFI, for a reason that willbeome lear later. The deleted sets are�+ = fx1 = x2 = � � � = xN = 0g for r > 0;�� = fp = 0g for r < 0:The exat loation of the singularity is et = (�N)N . In the r � 0 phase, the theoryredues to the non-linear sigma model on the Calabi-Yau hypersurfae XG = fG = 0g inthe projetive spae CPN�1. In the r � 0 phase, the vauum manifold (U = 0)=U(1) isa one point with p 6= 0 and x = 0 whih breaks the gauge group to � = f! 2 U(1)j!N =1g �= ZN . All the Xi's are massless there. At r ! �1, the theory redues to the Landau-Ginzburg orbifold of the N variables X1; : : : ; XN with the superpotential W = G(X) andthe orbifold group �. If there is no superpotential, r � 0 is the geometri phase on thetotal spae of O(�N) (the anonial bundle) over CPN�1, while the r ! �1 limit yieldsthe free orbifold CN=�. 67



(B) The Resolved Conifold, O(�1)�O(�1)! CP1
X

<0 Phase Phase>0=0

1,2
X3,4

rr rFigure 2: The Phases of the model (B).The seond example has U(1) gauge group and four �elds X1; X2; X3; X4 with harge1; 1;�1;�1. There are two phases as shown in Fig. 2. The deleted sets are�+ = fx1 = x2 = 0g for r > 0;�� = fx3 = x4 = 0g for r < 0:The exat loation of the singularity is et = 1. The r � 0 phase is the non-linear sigmamodel on the total spae of O(�1) � O(�1) over CP1 (a resolved onifold), while ther � 0 phase is that of another resolved onifold. The di�erene is that in the r � 0 pase,x1; x2 span the base CP1 and x3; x4 span �bres, while in the r � 0 phase CP1 is spannedby x3; x4 and the �bres are spanned by x1; x2. They are both geometri phases and thetransition between them is alled the op.(C) A two parameter modelThe third example has two K�ahler parameters. It has U(1)2 gauge group and sevenharged �elds as shown below: P X1 X2 X3 X4 X5 X6U(1)1 �4 0 0 1 1 1 1U(1)2 0 1 1 0 0 0 �2Using this example, we introdue a method to �nd the phases and the deleted sets,without writing down the D-term equations, but by looking at the harge lattie embeddedinto RkFI. Not only failitating the problem with a geometri piture, this method turnsout to be useful also when we desribe oherent sheaves on tori varieties (see Setion 9).First of all, the phase boundaries are domains of the hypersurfaes whih are in positivelinear spans of (k�1) harge vetors of some of the �elds. In the present example there arefour boundaries orrespnding to four harge vetors. Aordingly, there are four phasesas shown in Fig. 3. 68
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Figure 3: The Phases of the two parameter model (C).Next we desribe how to �nd the deleted set, say in Phase I. Let us take any hyperplanethrough the origin suh that Phase I is in one of the two halves of RkFI separated by theplane. Then we forbid the ommon zero of those xi's that are on the same side asPhase I. This is required by the D-term equation for the U(1) subgroup with respetto whih the harge vetors in that hyperplane is neutral. For the vertial hyperplanein Fig. 3, the harge vetors on the same side as Phase I are those of X3; X4; X5; X6.Thus fx3 = x4 = x5 = x6 = 0g is deleted. (The relevant subgroup is U(1)1 and theequation is jx3j2 + jx4j2 + jx5j2 + jx6j2 � 4jpj2 = r1. Sine r1 is positive in Phase I,x3 = x4 = x5 = x6 = 0 is indeed forbidden.) By other hoies of the hyperplane, we �ndthat we also delete fx1 = : : : = x6 = 0g and fx1 = : : : = x5 = 0g as well as fx1 = x2 = 0g.But the latter subspae ontains the previous two, so that the deleted set for Phase I isthe union of fx1 = x2 = 0g and fx3 = x4 = x5 = x6 = 0g. Repeating this proedureprovides the deleted sets for the other phases as well:�I = fx1 = x2 = 0g [ fx3 = x4 = x5 = x6 = 0g;�II = fx1 = x2 = x3 = x4 = x5 = 0g [ fx6 = 0g;�III = fp = 0g [ fx6 = 0g;�IV = fp = 0g [ fx1 = x2 = 0g:The exat loation of the singularity S is the union ofe�t1 = 4�4(1� 2u); e�t2 = u2(1� 2u)2 ;69
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where G(X) is a homogeneous polynomial of bidegree (4; 0), suh as G(X) = X81X46 +X82X46 + X43 + X44 + X45 . In Phase I and Phase II the low energy theory is the non-linear sigma model on the hypersurfae fG= 0g of Br and WCP4[11222℄ respetively. InPhase III it is the Z8 orbifold of the Landau-Ginzburg model with superpotential W =G(X1; :::; X5; 1). In Phase IV it is a non-linear Landau-Ginburg orbifold.(D) Resolution Of AN�1 SingularityAs the �nal example, we take the U(1)N�1 gauge theory with the following matterontent: X1 X2 X3 X4 � � � XN�2XN�1 XN XN+1U(1)1 1 �2 1 0 � � � 0 0 0 0U(1)2 0 1 �2 1 � � � 0 0 0 0... . . . . . . . . .... . . . . . . . . .U(1)N�2 0 0 0 0 � � � 1 �2 1 0U(1)N�1 0 0 0 0 � � � 0 1 �2 1 (4.21)
This theory desribes the AN�1 singularity and its various resolutions. The ase N = 2is idential to the ase N = 2 in Example (A).There is a phase, the orbifold phase, where the deleted set �orb is the union of fxi = 0gfor i = 2; :::; N . The non-zero values of these xi's breaks the gauge group to a disretesubgroup f(!; !2; :::; !N�1);!N = 1g whih is isomorphi to ZN . In the limit ra ! �1,the low energy theory is the free orbifold Xorb = C2=ZN where C2 is spanned by x1; xN+1and the group ZN ats on it by (x1; xN+1)! (!x1; !�1xN+1). If we introdue the orbifoldinvariants by x = xN1 , y = xNN+1 and z = x1xN+1, they satisfy the equationxy = zN :The singularity at the origin is alled the AN�1 singularity. The opposite limit is the largevolume phase where all ra are positive. The deleted set �res is a union of fxi = xj = 0gfor all i; j suh that ji � jj � 2. The low energy theory is the sigma model on the fullresolution Xres of the AN�1 singularity. The projetion map � : Xres ! Xorb is desribedby x = xN1 xN�12 xN�33 � � �xN , y = x2x23 � � �xN�1N xNN+1, z = x1x2 � � �xN+1. The pre-image ofthe singular point x = y = z = 0 is the exeptional divisor whih is a hain of 2-spheresC1; : : : ; CN�1, where Ci is de�ned by the equation xN�i+1 = 0. They interset aordingto the AN�1 Dynkin diagram as in Figure 5.71
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C1 C2 C3 CN�2 CN�1Figure 5: The exeptional divisor of the resolved AN�1 singularity.In between, there are other phases orresponding to partial resolutions. A onvenientway to label the phases is to asign 0 or 1 to eah node of the AN�1 Dynkin diagram,depending on whether the node is resolved or not. For example, the orbifold phase is(11 � � �1) and the fully resolved phase is (00 � � �0). The phase where only C1 is resolvedis (011 � � �1) and the phase where only C2 is unresolved is (010 � � �0). In total, there are2N�1 phases. If there is a sequene of m 1's in the label, that means that there is an Amsingularity in that phase. For example, the phase (1101) in the N = 5 model has one A2singularity and one A1 singularity.A phase boundary orresponds to a blow down or blow up of one Ci. In the abovelabelling system, that is the boundary between the phases where the i-th node ipsbetween 0 and 1. Let us desribe where it sits inside the spae RN�1FI . We know thatit is a part of the hyperplane spanned by the harge vetors of a subset of (N � 1) � 1variables, but whih subset? It is the set of all xj's exept xN�i+1, xN�i++1 and xN�i�+1where i� < i and i+ > i are the labels of the resolved nodes whih are losest to i on theleft and on the right. When there is no resolved node on the left (resp. right) of i weset i� = 0 (resp. i+ = N). This shows that there is at least one phase boundary in thehyperplane spanned by the harge vetors of any subset of (N � 2) harge vetors.
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phases. As we have learned in Example (C), we an read o� the deleted set at eah phase:�(00) = fx1 = x3 = 0g [ fx1 = x4 = 0g [ fx2 = x4g;�(01) = fx2 = 0g [ fx1 = x4 = 0g;�(10) = fx3 = 0g [ fx1 = x4 = 0g;�(11) = fx2 = 0g [ fx3 = 0g:That x2 = 0 (resp. x3 = 0) is not allowed means that C2 (resp. C1) is not resolved, thusjustifying the labelling of the phases. Note that eah of the phase boundaries is spannedby the harge vetor of a partiular variable, in aord with the general desription givenabove. The singular lous is found in the by-now standard way. Its Alga is shown inFigure 6 (right).For higher N the analysis beomes inreasingly ompliated, and it is not illuminatingto draw the piture of phases on a two-dimensional sheet. Figure 7 shows the labels ofphases and their boundaries in the A3 model. The label (jk) of the phase boundary means
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4.5 Phase Boundary And Deleted SetsTo �nish the review of linear sigma models, we point out a relation between the deletedsets of adjaent phases. This relation will play an important rôle later in this paper.Let us onsider two phases, say, Phase I and Phase II, whih are separated by a phaseboundary. Let T u be the unbroken subgroup at that phase boundary, and we hoosebasis elements (e1; :::; ek) of the Lie algebra of T so that the �rst element e1 generatesT u. We hoose its sign so that r1 is positive in Phase I and negative in Phase II. Wedenote by �I;II+ the ommon zeroes of �i's that are positively harged under the subgroupT u, Q1i > 0. Similarly, we denote by �I;II� the ommon zeroes of �i's that are negativelyharged, Q1i < 0. Obviously �I;II+ is in �I, and �I;II� is in �II. We laim that�I = �I;II+ [ (�I \�II);�II = �I;II� [ (�I \�II): (4.22)It is straightforward to hek suh a relation in examples. Let us take, say, Example(C), and look at the boundary between Phase I and Phase IV. The basis of the gauge groupis already hosen in the way just mentioned, and we �nd �I;IV+ = fx3 = x4 = x5 = x6 = 0gand �I;IV� = fp = 0g. On the other hand, we have �I \�IV = fx1 = x2 = 0g. Indeed therelation (4.22) holds for Phase I and Phase IV. It is very easy to hek it for other phaseboundaries.In general, the relation (4.22) an be proved as follows. Let � be an element of �I thatis not in �II. This means that the TC orbit of � does not inlude a solution of the D-termequation at any point in Phase I, and also, at any point in Phase II there is some elementg 2 TC suh that g� solves the D-term equation there. Namely, the D-term image ofthe TC-orbit of � inludes the Phase II entirely but does not meet Phase I. This D-termimage is known to be onvex in RkFI [62℄, and hene is entirely on the same side as PhaseII with respet to the hyperplane spanned by the I-II boundary. In partiular, we haveXi Q1i jzQ1i�ij2 < 0 8z 2 C�:This is possible only if �i = 0 for eah i suh that Q1i > 0. Namely, � must be in the set�I;II+ . This shows �I n (�I \�II) � �I;II+ , whih is equivalent to �I = �I;II+ [ (�I \�II).The proof of the other relation is similar.
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5 D-branes In Linear Sigma ModelsIn this setion, we write down boundary interations in linear sigma models thatpreserve N = 2B supersymmetry as well as vetor U(1) R-symmetry. The building blokis the Wilson line brane that arries a de�nite gauge harge. Interations of Wilsonlines an also be introdued just as in the systems onsidered in Setion 2. In a systemwith vanishing superpotential, they are given by omplexes of Wilson line branes. If thesuperpotential W is non-vanishing, they are given by gauge invariant and homogeneousmatrix fatorizations of W . We take a �rst look at the boundary onditions on the bulk�elds, postponing the full onsideration to Setion 7. We end the setion by desribingthe hiral setor in the theory with vanishing gauge oupling e = 0.5.1 The Bulk Ation And Boundary Counter TermsN = 2B supersymmetry variation of the bulk ation is a boundary term whih isin general non-vanishing unless a boundary ondition is used. We would like to �nd aboundary ounter term whose variation anels it. First, we fous on the gauge kinetiterm, matter kineti term and the FI-theta term. The ounter term for the superpotentialF-term is written using boundary degrees of freedom and will be fully onsidered inSetion 5.4. The kineti terms and FI-theta terms are (2; 2) D-terms and twisted F-terms. As explained in Setion 3.5, they are lassi�ed as D-terms with respet to theN = 2B supersymmetry. Thus, we should be able to write the invariant ation in theform R dtQQy(� � � ), where Q = Q+ +Q�, Qy = Q+ +Q� are the N = 2B generators.Ation of suh a form would be manifestly N = 2B invariant and automatially lead usto �nd the needed boundary ounter term.A hint to �nd suh a form lies in the original manifestly (2; 2) invariant ation writtenin terms of the superspae intergals (4.1). Up to a total derivative, bulk D-term R d4�Kis equal to Q+Q�Q�Q+k � 12QQy[Q+;Q+℄k, where k is the lowest omponent of thesuper�eld K. Similarly, for a twisted hiral super�eld fW , the twisted F-term R d2e�fW anbe written as QQy �fW jlowest� again up to a total derivative. This motivates us to takethe following as the manifestly N = 2B invariant ation:Sg + Sm + SFI � = 14� ZSd2sQQy[Q+;Q+℄ � 12e2 kXa=1 j�aj2 + NXi=1 j�ij2!+ 12�Re ZSd2sQQy � kXa=1 ta�a! : (5.1)75



Despite its appearane, it inludes the boundary ounter term. Let us write it down moreexpliitly. For the ase of the U(1) gauge theory with a single harge 1 matter, we �ndSg = 12� ZSd2sLg + 14�e2 Z�Sdt �12�1j�j2 + Im(�)D +Re(�)v01� ; (5.2)Sm = 12� ZSd2sLm + 12� Z�Sdt � i2( � + �  + �) + Im(�)j�j2� ; (5.3)SFI � = 12� ZSd2sLFI � + 12� Z�Sdt Im��t� �; (5.4)where Lg, Lm, LFI � are the expressions given in (4.3), (4.4), (4.5) respetively. Theounter term in (5.3) is the gauge theory version of the \standard boundary term" (2.20)in non-linear sigma models and LG models. For the general ase, the total boundaryounter term is expressed asS:t:tot = 12� Z�Sdt ( 12e2 kXa=1 �12�1j�aj2 + Im(�a)Da +Re(�a)(va)01�+ i2 NXi=1� i� i+ �  i+ i��+ Im kXa=1 " NXi=1 Qai j�ij2 � ta!�a#) : (5.5)This ounter term had been found earlier in [9, 10℄.As always, there is a freedom to add boundary D-terms,�Sbdry = Z�SdtQQy�:This would have no e�et to the low energy theory as long as � is small enough at in�nityin the �eld spae. But addition of suh a term will alter the theory if � is large at in�nity.In what follows, we will not onsider suh \large D-terms".5.2 The Wilson LineNext, we onsider boundary interations that are by themselves N = 2B invariant butthat are not D-terms. The simplest one is12 ZB d�d� V = �h v0 � Re(�) i: (5.6)This is manifestly N = 2B invariant, but is not invariant under the U(1) gauge transfor-mation iv0 ! iv0 + g�0g�1. However, the exponentiated ation, the Wilson lineWq(tf ; ti) = exp��i Z tfti qh v0 � Re(�) idt�76



transforms as Wq(tf ; ti) �! g(tf)q �Wq(tf ; ti) � g(ti)�qand hene is gauge ovariant whenever the number q is an integer. We denote the branesupporting this Wilson line by W(q):The simple interpretation is that the Chan-Paton spae V arries harge q under thegauge group. Sine the super�eld V is not gauge invariant, the Wilson line is not aD-term despite its appearane (5.6).For a U(1)k theory, a hoie of k-tuple of integers de�nes the Wilson line braneW(q1; :::; qk) in the same way. Note that the bulk theta term an be onverted into aboundary term by Stokes theorem:ZS� v01 d2s = � Z�S� v0 dt;Inluding this into the ounter term (5.5) and the Wilson line term, we have the followingboundary LagrangianSbdry = S:t:g + 12� Z�Sdt ( i2 NXi=1� i� i+ �  i+ i��+ kXa=1  NXi=1 Qai j�ij2 � ra! Im(�a)� kXa=1(�a + 2�qa)h (va)0 � Re(�a) i) :(5.7)The expression (5.7) makes it manifest that the theory depends only on the ombination�a + 2�qa, or equivalently, that the theory does not hange under�a ! �a + 2�ma; and qa ! qa �ma; (5.8)for integers m1; :::; mk.The 2� periodiity in the theta parameters may be lost if the worldsheet S has aboundary. One way to see this is to note that the integral12� ZSv12 d2sis not neessarily an integer unless a boundary ondition like vj�S= 0 is imposed. In thepresent system, we deide not to impose suh a boundary ondition nor (v0�Re(�))j�S= 0,and hene the theta parameters indeed do not have the 2� periodiity. We will disuss77



more on the boundary onditions in later setions. Thus, �a ! �a+2�ma with no hangein qa is a non-trivial operation. In partiular, the Wilson line brane W(q1; :::; qk) makesan invariant sense only when the theta parameters are spei�ed as a real number (notjust modulo 2�Z).5.3 Interation Of Wilson LinesIt turns out that the Wilson line branes serve as the building bloks of more generalsupersymmetri boundary interations. The �rst step of the generalization is to take thediret sum W = nMi=1 W(qi): (5.9)Namely, instead of just At =Pka=1 qa(va0�Re(�a)) we onsider the matrix valued bound-ary interation At = kXa=10B� qa1 . . . qan 1CAh (va)0 � Re(�a) i: (5.10)Under the gauge transformation by a U(1)k valued funtion g = (g1; :::; gk), it transformsas iAt ! iAt + �(g)�t�(g)�1 with�(g) = 0B� gq1 . . . gqn 1CA ; (5.11)where gq := gq11 � � � gqkk . Simply put, the Chan-Paton spae V of the brane �ki=1W(qi)arries the representation � of the gauge group T �= U(1)k. Note that the At an bewritten suintly asAt = kXa=1 ��(ea)h (va)0 � Re(�a) i = ���v0 � Re(�)�;where �� is the in�nitesimal form of �, de�ned by ��(X) = �i ddt�( eitX)���t=0 for an elementiX of the Lie algebra of the gauge group.Just as in various (2; 2) theories onsidered in Setion 2, we may also introdue aZ2 graded sum of Wilson line branes W = Wev �Wod along with a tahyon pro�le Qthat represents an interation between Wilson lines. Namely we introdue a Z2 gradedChan-Paton spae V = Vev � Vod;78



arrying a representation � of the gauge group, with an odd operator Q on V that dependsholomorphially on the �elds �1; ::; �N . Then one an write the boundary interationAt = ���v0 � Re(�)�+ 12fQ;Qyg � 12 NXi=1  i ���iQ+ 12 NXi=1  i ���iQy (5.12)First of all, we would like At to transform under the gauge transformation asiAt �! �(g)iAt�(g)�1 + �(g)�t�(g)�1: (5.13)This is the ase if and only if Q satis�es�(g)�1Q(g � �)�(g) = Q(�); (5.14)where g �� is the gauge transform of � = (�1; :::; �N), given by (gQ1�1; :::; gQN�N). Underthis ondition, At is N = 2B supersymmetri if and only if Q squares to the identitytimes a onstant, Q2 =  � idV.R-symmetryThe linear sigma model without superpotential has a vetor U(1) R-symmetry. Weonsider the R-symmetry that ats trivially on �i's even though the model usually hasother symmetries with whih the R-symmetry ould be dressed. This is motivated by thefat that the bulk theory generially redues to a large volume sigma model for whih wedeided to respet the R-symmetry suh that the target oordinates have R-harge zero.(See Setion 2.2.2.) We restrit our attention to branes that preserve this vetor U(1)R-symmetry.Sine Q enters into the superharge Q, we would like Q to have R-harge 1. Namely,we would like to have an ation of U(1) R-symmetry on the Chan-Paton spae V, givenby a matrix R(�) suh that R(�)Q(�)R(�)�1 = �Q(�): (5.15)This together with Q2 =  � idV requires Q2 = 0: (5.16)We would like the R-ation to ommute with the gauge group ation,R(�)�(g) = �(g)R(�): (5.17)79



Under the ondition (5.15), the Q-dependent part ofAt is invariant under the R-symmetrywhen ombined with the onjugation by R(�), and under the ondition (5.17), the re-manining part ��(v0�Re(�)) is also invariant. As in the ase of non-linear sigma models(see Setion 2.2.2), we may assume that R(�) is a genuine representation of U(1) and isompatible with the Z2 grading, so that the eigenvalues are �j for some integer j whih iseven (resp. odd) for elements of Vev (resp. Vod). If we denote by Vj the R(�) = �j partof V, we have V = jmaxMj=jmin Vj: (5.18)with Vev = Mj: evenVj; and Vod = Mj: oddVj:By the ommutativity with gauge group (5.17), eah Vj orresponds to a diret sumWj ofWilson line branes. If we order the subspaes Wj by inreasing R-harge the interationQ has the blok-o� diagonal form:
Q = 0BBBBBB� 0 djmax 0 : : : 0 00 0 djmax�1 : : : 0 0... . . . . . . ...0 0 0 : : : 0 djmin+10 0 0 : : : 0 0

1CCCCCCA ; (5.19)
where dj denotes the interation term between Wj�1 and Wj.As usual, there is an ambiguity in the hoie of R(�) | it an be replaed by �2R(�)without violating any of the above ondition. However, this of ourse does not hange thephysial property of the brane. Nevertheless it is sometimes useful to keep this informationof the R-symmetry ation. An R-graded D-braneB, a brane with this additional informa-tion, is determined by the triple (W; Q;R) or equivalently by the quartuple (V; Q; �; R).Note that the information on B an niely be enoded as a omplexC(B) : � � � dj�1�!Wj�1 dj�!Wj dj+1�!Wj+1 dj+2�! � � � : (5.20)Eah Wj is a diret sum of Wilson line branes.
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5.4 Matrix FatorizationsLet us now disuss D-branes in the linear sigma model with a non-zero superpotentialW . The supersymmetry transformation of the bulk F-term is given by the Warner term:Æ ZSd2sLW = �Re Z�Sdt NXi=1 � i�W��i (5.21)As in LG models, the anellation is done by a matrix fatorization of W . Let us onsidera Z2 graded sum of Wilson line branes with a polynomial tahyon pro�le. Namely, a Z2graded Chan-Paton spae, V = Vev �Vod, an odd operator Q on V whih is a polynomialin � = (�1; :::; �N), and a representation � of the gauge group T �= U(1)k on V, whihobey the gauge invariane ondition�(g)�1Q(g � �)�(g) = Q(�): (5.22)Then the orresponding boundary interationAt = ���v0 � Re(�)� + 12fQ;Qyg � 12 NXi=1  i ���iQ + 12 NXi=1  i ���iQytransforms under the N = 2B supersymmetry asÆAt = �Re( NXi=1 �� i ���iQ2�� [�Qy; Q2℄)+ iDt��Q+ �Qy�� i�_�Q+ _�Qy�: (5.23)The �rst term anels the Warner term if and only if Q is a matrix fatorization of W ,Q2 = W � idV: (5.24)(The seond and the third terms of (5.23) are as before.)We fous our attention to bulk theories with a vetor U(1) R-symmetry with anintegrality that is ompatible with the statistis of operators. Vetor R-symmetry requiresthat the superpotentialW is quasi-homogeneous. Namely, there is a one-parameter groupof linear transformations of the variables � 7! R�(�) ommuting with the gauge symmetryR�(g � �) = g �R�(�); (5.25)suh that W (R�(�)) = �2W (�): (5.26)Note that there is an ambiguity in R� | it an be modi�ed by the gauge symmetry.Integrality ompatible with statistis means that the R-harges of operators or of NS-NS81



states are integral and are onguruent modulo 2 to their spins. This is the ase when R�for � = e�i is trivial, R e�i(�) = �; (5.27)or an be made trivial with the help of modi�ation by a gauge transformation, in thephase where the theory redues to a sigma model with large volume limit. Thus, weassume both (5.26) and (5.27) in the rest of this paper. This is ertainly the ase whenthe superpotential is designed to engineer a hypersurfae W = PG(X) or a ompleteintersetion of hypersurfaes W =Pl�=1 P�G�(X) in a tori variety: R�(p; x) = (�2p; x)satis�es the ondition.We would like the branes to respet this R-symmetry and integrality. The onditionof R-symmetry is that Q has R-harge 1. Namely, there is a one parameter group of linearoperators R(�) on the Chan-Paton spae V ommuting with the gauge symmetryR(�)�(g) = �(g)R(�); (5.28)suh that R(�)Q(R�(�))R(�)�1 = �Q(�): (5.29)Integrality means that the R-grading of NS-states and operators is integral and reduesmodulo 2 to the original Z2 grading. Let us take two branes with R-symmetry, (Vi; Qi; �i)with Ri, i = 1; 2. The requirement in the polynomial setor isR2( e�i)'(R e�i(�))R1( e�i)�1 = (�1)j'j'(�) (5.30)for any polynomial ' of �1; :::; �N with values in Hom(V1;V2) whih is gauge invariant.In the frame where (5.27) holds, this means that R1( e�i) and R2( e�i) are equal to the Z2grading operators �1 and �2 of V1 and V2 (up to a ommon onstant whih an be setequal to 1). Thus, we require thatR( e�i) = �V (the Z2-grading of V); (5.31)in the frame where (5.27) holds. In partiular, this means R( e2�i) = (�V)2 = idV. Namely,the eigenvalues of R(�) are �j where j is an integer whih is even (resp. odd) on Vev (resp.Vod). As usual, the replaement R(�) ! �2R(�) does not hange the physial propertyof the branes, and we all a brane with the additional information R(�) an R-gradedD-brane.As an example, let us expliitly write down the data of an R-graded D-brane inthe U(1) gauge theory with the �elds P;X1; :::; XN of harge �N; 1; : : : ; 1 having the82



superpotential W = PG(X1; :::; XN) where G(X) is a homogeneous polynomial of degreeN . Choosing a basis of the Chan-Paton spae where the �rst half are even and the latterhalf are odd, it is given by (Q; �; R)Q(p; x) =  0 f(p; x)g(p; x) 0 ! ; Q(p; x)2 = pG(x)12` (5.32)�(g) = 0B� gq1 0. . .0 gq2` 1CA ; (5.33)R(�) = 0B� �j1 0. . .0 �j2` 1CA ; R( e�i) =  1` 00 �1` ! ; (5.34)suh that �(g)�1Q(g�Np; gx)�(g) = Q(p; x); (5.35)and R(�)Q(�2p; x)R(�)�1 = �Q(p; x): (5.36)5.5 A First Look At The Boundary ConditionLet us take a �rst look at the boundary ondition of the bulk �elds. We postpone thedisussion of the vetor multiplet �elds to Setion 7, as that requires some understandingof the quantum theory. Here we fous on the ondition on the matter hiral multiplet�elds, treating the vetor multiplet �elds as bakgrounds.It is straightforward to hek that the following set of boundary onditions are invariantunder the N = 2B supersymmetry:D1�� Im(�)� = 0; + =  �;D1( + +  �)� (�+ + ��)�� Im(�)( + +  �) = 0;F = 0: (5.37)Here we onsidered harge 1 �elds in a U(1) gauge theory. The generalization is obvious.If there is no superpotential W and no boundary interation Q, this is also ompatiblewith the variational equation of the ation: The Im(�)j�j2 term in the boundary ounterterm (5.5) deforms the ordinary Neumann ondition D1� = 0 to D1� = Im(�)�.83



If there is a superpotential W or a boundary interation Q, the variational equationhanges and the boundary onditions will be modi�ed. However, as long as we an treatthe interations W and Q as perturbation, we an still use the onditions (5.37) withoutmodi�ations. In partiular, when we disuss the e�etive theory on the Coulomb branhin Setion 6, the harged matter multiplets are heavy and hene W and Q, whih aregenerially of high powers in the matter �elds, an be treated as perturbation. In theliterature, perturbative treatment of boundary interation is widely used. In studyingthe renormalization group ow of the spaetime eletromagneti potential, one an useeither the \orret" (mixed Dirihlet-Neumann) boundary ondition or the \inorret"Neumann ondition [63℄. For a non-Abelian gauge group, the latter approah turns outto be more eÆient and leads us quikly to the Yang-Mills equation at leading order inthe �0 expansion [64℄.The treatment of the auxiliary �eld needs some are in this approah. The boundaryondition F = 0 from (5.37) may appear too strong in the presene of the superpotentialW : It appears to require W 0 = 0 at the boundary sine the bulk equation of motionreads W 0 = �F . But that would be inonsistent with the free boundary ondition for� and would ompletely hange our piture of boundary interation based on matrixfatorization. However, if we arefuly think about the meaning of the equation of motionand the boundary ondition, we immediately �nd that there is no need to requireW 0 = 0.To illustrate it, we onsider the following toy model:Z dF1 � � �dFn exp �12 nXi;j=1AijFiFj + nXi=1 BiFi! :The equations of motion for Fi's are Fi = Pnj=1(A�1)ijBj. If we impose the onditionF1 = 0, we simply loose the F1 integral and obtain a di�erent answer as a funtion ofBj's. But we never require Bj's to satisfy Pnj=1(A�1)1jBj = 0. However, there is stillsome subtlety we may need to be aware of. It onerns the supersymmetry variationin the version when the auxiliary �elds are eliminated. To show the essential point, wedesribe it in a LG model without gauge interation. The auxiliary �eld F appears in the�-variation of the fermion  �: Æ � = ��F :In the bulk theory after the auxiliary �elds are integrated, we simply set F = �W 0 inthis variation. However, in the presene of a boundary and with the above boundaryondition, we need to set Æ � = ( ��W 0 in the interior0 at the boundary:84



Therefore the variation is in general disontinuous at the boundary. In partiular, thevariation of the bulk Lagrangian density will have a delta funtion supported at theboundary. In fat, this delta funtion is ruial in obtaining the Warner termÆSbulk = � Z�Sdt�12� W 0� ;with the orret normalization. Without the disontinuity in Æ �, that would be o� by afator of 12 . In the previous treatment where we did not speify the boundary onditionand we used the variation Æ � without disontinuity, the orret Warner term resultswith additional ontribution from the variation of the standard boundary term (S:t:matter inthe gauge theory version). With the boundary ondition, that term is absent.5.6 The Ultra-Violet Limit: e = 0In the strit limit of vanishing gauge oupling e! 0, whih orresponds to the ultra-violet limit, the linear sigma model beomes partiularly simple. With the standard �eldrede�nition, V ! eV , we see that the vetor multiplet �elds deouple from the rest ofthe system in the limit e ! 0. Alternatively, the in�nite kineti terms simply freeze thegauge multiplet �elds, and we are left with the matter setor. The boundary ondition(5.37) then beomes the standard Neumann ondition�1� = 0; + =  �;�1( + +  �) = 0;F = 0: (5.38)The D-term potential is turned o� and the matter setor is ompletely independent ofthe K�ahler moduli. The remnant of the gauge theory is that we respet the gauge sym-metry and require that physial observables must be gauge invariant. For example, theboundary interation Q must respet the gauge invariane ondition, (5.14) or (5.22). Inthe following we study the hiral ring of D-branes in the matter setor in this limit.We emphasize that the limit e2 ! 0 is not smooth even in the hiral setor. In fat,we turned o� the D-term potential and altered the theory at in�nity in �eld spae, so thateven quantities like the Witten index may jump. Nevertheless, we study the hiral ringin this limit as it plays an important rôle, as we will see later, in desribing the theorywith �nite gauge oupling.We �rst onsider the theory with vanishing superpotential. Let us take two D-branesBi = (Vi; Qi; �i; Ri), i = 1; 2. To �nd the spae of hiral ring elements in the B1-B285



setor, we use the zero mode approximation. Namely, the operators in this setor areantiholomorphi forms with values in Hom(V1;V2) that are gauge invariant,Hzero(B1;B2) = �
0;�(CN ; Hom(V1;V2))�T (5.39)and the superharge ats as the Dolbeault-like operator iQzero' = �'+Q2'�(�1)j'j'Q1.Here, the gauge group ation is determined by the ation of T on CN as well as onHom(V1;V2) via �1 and �2. Note thatR1 andR2 together with the form-degree determinesa Z-grading on the spae under whihQzero has degree 1. The spae of hiral ring elementsof R-degree p is the p-th ohomology group Hp(B1;B2) = HpQzero(H�zero(B1;B2)).As before, using the property that any �-losed form of positive degree is �-exaton CN , we an use the holomorphi or polynomial trunation where the spae (5.39) isreplaed by the spae of T -invariant holomorphi or polynomial funtions with values inHom(V1;V2) and the superharge ation is simply iQpol' = Q2' � (�1)j'j'Q1. In thisontext, it is onvenient to introdue the notion of graded rings and graded modules. Thegauge group ation introdues a grading by k-integers, or Zk-grading, in the polynomialring R = C[�1; :::; �N ℄:An element of R has degree (n1; :::; nk) if it has harge (n1; :::; nk) under the gauge groupT . For example, the variable �i, whih has gauge harge Qai under the a-th U(1) fator ofT �= U(1)k, has degree (Q1i ; :::; Qki ). The degree is additive with respet to the produt,and in this sense it is a graded ring. (More on mathematis will be disussed in Setion 9.)For eah representation (V; �) of the gauge group T , we introdue an R-moduleM = R
C V:It is a graded R-module: an element of M has degree (n1; :::; nk) if it has gauge harge(n1; :::; nk). For example, if v 2 V transforms as �(g)v = gqv = gq11 � � � gqkk �v, then 1
v 2Mhas degree q = (q1; :::; qk). A homomorphism of graded R-modules f : M1 ! M2 is ahomomorphism ofR-modules that preserves the Zk-grading information. Namely, it sendsan element of M1 of a ertain degree to an element of M2 of the same degree. For theMi that ome from representations (Vi; �i) of T , this is equivalent to f(b 
 �(g)v1) =(b 
 �2(g))f(1 
 v1) for b 2 R and v1 2 V1. In this language, the spae of T -invariantpolynomial funtions with values in Hom(V1;V2) is linearly isomorphi to the spae ofhomomorphisms of graded R-modules,��pol (CN ; Hom(V1;V2))�T �= Homgr-R(M1;M2): (5.40)86



Sine Vi are Z-graded by the R-symmetry Ri ommuting with T , Vi = �jVji , the R-modules Mi are also Z-graded, Mi = �jM ji , where M ji = R
 Vji . Thus the above spaeis also Z-graded Hompgr-R(M1;M2) = �jHomgr-R(M j1 ;M j+p2 ). This of ourse orrespondsto the R-grading of Hzero(B1;B2) restrited to the polynomial setor. In partiular, thespae of hiral ring elements with R-degree p is given by the p-th ohomology groupHp(B1;B2) = HpQpol (Hom�gr-R(M1;M2)):For a brane (V; Q; �; R) or (W; Q;R), the omplex of Wilson line branes (5.20) an alter-natively be represented as the omplex of graded R-modulesC : : : : dj�1�!M j�1 dj�!M j dj+1�!M j+1 dj+2�! : : : : (5.41)Note that the information of the gauge harge (or Wilson line) is enoded in the Zk-grading information of eah M j. In this language, the spae of hiral ring elements isgiven by the spae of hain maps of the omplexes C1 and C2 of graded R-modules up tohomotopy Hp(B1;B2) �= HomHo-gr-R(C1; C2[p℄): (5.42)Here [p℄ is the shift in the R-grading whih involves the sign ip of Q2 if p is odd. Inshort, the D-brane ategory in the hiral setor for the linear sigma model at e2 = 0 is thehomotopy ategory of the ategory of omplexes of graded R-modules. We will revisitthe latter in Setion 9.Let us onsider the theory with non-zero superpotential. The data of a D-brane(V; Q; �; R) an be enoded in a two-periodi sequene of maps of graded R-modulesC : � � � Q�!M ev Q�!Mod Q�!M ev Q�!Mod Q�! � � � (5.43)The R-module M ev=od := R
C Vev=od an also be regarded as a module over the gradedring S = R=(W ) in whih any multiple of the superpotential W is equal to zero. Then,it is a omplex of graded S-modules. Let us take two suh omplexes Ci orresponding totwo branes (Vi; Qi; �i), i = 1; 2. The spae of hiral ring elements for this setor is thespae of ohain maps of the omplexes of graded S-modules up to homotopiesHev(B1;B2) = HomHo-gr-S (C1; C2);Hod(B1;B2) = HomHo-gr-S (C1; C2[1℄);where C2[1℄ is the shift of C2 by one (with the sign ip of Q2). When the two branes areR-graded, these spaes are also Z-gradedHev(B1;B2) = �p:evenHp(B1;B2); Hod(B1;B2) = �p:oddHp(B1;B2):The produt struture is given by the omposition of hain maps.87



6 The Vauum Energy/Charge On The IntervalIn this setion, we study properties of the quantum vauum of ertain massive �eldtheories formulated on an interval and on the half-spae. The fous is the energy andharge densities of the vauum state. For the most part, in Setions 6.1 through 6.9, westudy theories that appear in the Coulomb branh with large values of � in linear sigmamodels. In Setion 6.10, we onsider a di�erent type of theories | theories at � = 0with superpotential mass terms. This setion has an independent avor and an be readindependently of the rest of the paper. The reader an skip this setion in the �rst readingas the result will be quoted when it is used.Notation and onvention: In this setion alone, we shall use x for the spatial oordiateof the worldsheet (instead of s that is used in other setions). Also, we take the onventionthat the Lagrangian enters into the path-integral weight as exp �i R Ldt�, unlike in othersetions where it enters as exp � i2� R Ldt�.6.1 The System At Large �In Setion 7, we will study the boundary onditions on the Coulomb branh, and forthat we need to know the e�etive potential for � in the presene of a boundary. Forthis purpose, we ompute the energy and harge of the ground state in the matter setorde�ned on the interval, 0 � x � L, for a �xed large value of �. The bulk Lagrangian forthe ase of a single harge 1 �eld isLbulk = Z L0 (jD0�j2 � jD1�j2 + i �� �D�!0 + �D�!1� � + i +� �D�!0 � �D�!1� +�j�j2j�j2 +Dj�j2 �  �� + �  +� �)dx: (6.1)We are interested in the boundary ondition preserving an N = 2B supersymmetry.We onsider both Ramond and Neveu-Shwarz (NS) setors. In Ramond setor the twoboundaries preserve the same superharge (say Q++Q� both at x = 0 and x = L), whilein NS setor the preserved superharges are opposite (say Q++Q� at x = L and Q+�Q�at x = 0). The boundary interation that preserves the supersymmetry Q+ +Q� at theright boundary x = L isL+right bdry = � Im(�)j�j2 + i2 � + � i2 + � �x=L (6.2)88



with boundary onditionD1� = Im(�)�;  + =  �; D1( � +  +) = Im(�)( � +  +): (6.3)At the left boundary, x = 0, the interation preserving Q+ �Q� isL�left bdry = � � Im(�)j�j2 + i2 � + � i2 + � �x=0 (6.4)with boundary onditionD1� = �Im(�)�;  + = � �; D1( � �  +) = �Im(�)( � �  +): (6.5)We �rst turn o� the gauge �eld and auxiliary �eld, v� = D = 0, and assume that � islarge and onstant. We often use the notaionM = j�j; S = Im(�); pM2 � S2 = jRe(�)j:6.2 Mode ExpansionsWe denote b = ( + +  �)=p2 and  = ( � �  +)=p2. The boundary ondition onthe �elds �; b;  in Ramond and NS setors are(R) : �1� = S�;�1b = Sb; = 0 9>=>; both at x = 0; L; (6.6)(NS) : �1� = �S�b = 0;�1 = �S; 9>=>; at x = 0; �1� = S��1b = Sb; = 0 9>=>; at x = L; (6.7)If we use these onditions, the total Lagrangian an be written asLbulk + Lbdry = Z L0 " j _�j2 � ����21 + j�j2��+ i	y _	� 	yD	#dx1;where 	 :=  b ! ; D :=  Re(�) �i�1 � iIm(�)�i�1 + iIm(�) �Re(�) !In both Ramond and NS setors, the kineti operators, ��21 for � and D for 	, arehermitian with respet to the standard inner produt. Thus, we an expand the �elds byeigenvetors of these operators. 89



6.2.1 Ramond SetorWe �rst onsider the Ramond setor (6.6). For the salar �eld �, the boundaryonditions on the plane wave f(x) = a sin(kx) + b os(kx) readka = Sb; ka os(kL)� kb sin(kL) = Sa sin(kL) + Sb os(kL):Using the �rst equation, the seond equation simpli�es to (k2 + S2) sin(kL) = 0 and we�nd k = �n=L, n = 1; 2; 3; :::. Thus, the plane waves obeying the boundary ondition arefn(x) = kn os(knx) + S sin(knx)pk2n + S2 ; kn = �nL : (6.8)There is also a single non-osillating mode:f0(x) =r SLe2SL � 1 eSx: (6.9)For S � 1=L (resp. S � �1=L), this mode is loalized near the right (resp. left)boundary. It is a onstant mode for S = 0.The funtions fn(x), n = 0; 1; 2; ::: are normalized asZ L0 fn(x)fm(x)dx = L2 Æn;m:Sine fn(x) are eigenfuntions for the kineti operator ��21 , we an expand the �eld � as�(x) = 1Xn=0r 2L�nfn(x);so that the Lagrangian is written asLboson = 1Xn=0 � j _�nj2 � (M2 + k2n)j�nj2 � ; (6.10)where it is understood that k20 = �S2.Let us next study the mode expansion of fermions. The boundary ondition for b isexatly the same as for the salar � and thus it an be expanded by fn(x), n = 0; 1; 2; :::.The ondition of  is easier to solve:gn(x) = sin(knx); kn = �nL (n = 1; 2; 3:::): (6.11)90



On the subspae b / fn(x) and  / gn(x), for n = 1; 2; 3; :::, the kineti operator is writtenas D =  Re(�) �ipk2n + S2ipk2n + S2 �Re(�) ! ;and it is diagonalized by	n;�(x) = 0BB� rpM2+k2n�Re(�)LpM2+k2n fn(x)�irpM2+k2n�Re(�)LpM2+k2n gn(x) 1CCA ; D = �pM2 + k2n: (6.12)The n = 0 mode is non-osillating,	0(x) =  q 2Lf0(x)0 ! ; D = Re(�): (6.13)If we expand the �eld 	 as	(x) = b0	0(x) + 1Xn=1 �bn;+	n;+(x) + byn;�	n;�(x)�the Lagrangian is expressed asLfermion = iby0 _b0 � Re(�)by0b0+ 1Xn=1 � ibyn;+ _bn;+ + ibyn;� _bn;� �pM2 + k2n byn;+bn;+ +pM2 + k2n bn;�byn;� � : (6.14)6.2.2 Neveu-Shwarz SetorLet us now onsider the NS setor (6.7). For the plane-wave h(x) = a sin(kx) +b os(kx), the boundary ondition for � readska = �Sb; ka os(kL)� kb sin(kL) = Sa sin(kL) + Sb os(kL):We �nd that the allowed wavenumbers k areot(kL) = S2k � k2S : (6.15)There are solutions kn labelled by an integer n suh thatkn ! �nL as n!1;91



0

1

2
1

< 0S 0 < < S >

2

3

4

5
4

3

6
5

4

2

3

S 2 /2 / L LFigure 8: Flow of modes as S is varied | the salar �eld (NS-setor).but the preise value of kn deviates from �n=L for small n. Also, the starting number ndepends on the value of S (See Fig. 8):S < 0 n = 0; 1; 2; 3; 4; : : :0 � S < 2=L n = 1; 2; 3; 4; : : :S � 2=L n = 2; 3; 4; : : :For eah suh kn we have the plane wavehn(x) = kn os(knx)� S sin(knx)pk2n + S2 �1� 2SL(k2n+S2)��1=2 : (6.16)There may also be a non-osillating mode spanned by exponential funtions h(x) = a e�x+b e��x. The ondition reads�(a� b) = �S(a+ b); �( e�La� e��Lb) = S( e�La+ e��Lb);from whih we �nd that the allowed value of � isoth(�L) = S2� + �2S : (6.17)See Fig. 9 for the pattern of solutions to this equation. For S < 0, there is no solutionother than � = 0 for whih the funtion h(x) is zero. At S = 0, there is one solution� = �0 = 0 for whih h(x) is a onstant mode. For 0 < S < 2=L, the solution is at� = �0 > S. For S � 2=L, there are two solutions, one at � = �0 > S and another at� = �1 < S. These two values of � onverge to S rapidly as SL grows;�0;1 � S tanh�1(SL=2); SL� 1:92



S > 2 2/ L / L< S <0
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SS κ κFigure 11: Solving (6.23), i.e., e2�L = S+�S�� .There may also be eigenmodes spanned by exponential funtions e��x | there is indeedsuh a mode for � solving tanh(�L) = S� : (6.23)There is no non-zero solution if S < 1=L, and there is a single non-zero solution whenS > 1=L (see Fig. 11). It approahes S rapidly as SL grows,� � S tanh(SL); SL� 1:Thus, this exponential mode an be regarded as the replaement of the r = 12 osillatingmode that is missing for S � 1=L. The modes are obtained by simply replaing k 12 by i�in 	 12 ;�(x), expliitly,	 12 ;�(x) = 2p� e��Lp1� e�4�L � 4�L e�2�L 0� qpM2��2�Re(�)pM2��2 sinh(�x)�iqpM2��2�Re(�)pM2��2 sinh(�(x� L)) 1A ;D = �pM2 � �2: (6.24)In the limit S & 1=L, � approahes zero but 	 12 ;� approahes a non-zero linear funtion.Thus, for any value of S the modes are parametrized by positive half-integers r = 12 ; 32 ; ::::.If we expand the �eld 	 as	(x) = Xr= 12 : 32 ;:::�br;+	r;+(x) + byr;�	r;�(x)� ;the Lagrangian is expressed asLfermion = Xr= 12 ; 32 ;:::� ibyr;+ _br;+ + ibyr;� _br;� �pM2 + k2r byr;+br;+ +pM2 + k2r br;�byr;� � ;(6.25)where it is understood that k212 = ��2 if S � 1=L.95



6.3 The Ground StateLet us next quantize the system. Looking at the Lagrangian, (6.10) and (6.14) in theRamond setor, (6.20) and (6.25) in the NS setor, it is lear what to do.The bosoni system is simply the sum of harmoni osillators. For eah mode n weintrodue reation and annihilation operators[ain; (ajm)y℄ = Æi;jÆn;m; [ain; ajm℄ = [(ain)y; (ajm)y℄ = 0; (6.26)where we need two sets, i; j = 1; 2, sine we have omplex (two real) osillators. Thevariables �n = (�1n + i�2n)=p2 and their onjugate momenta an be written as�in = 1q2pM2 + k2n (ain + (ain)y); _�in =spM2 + k2n2 (�iain + i(ain)y);or equivalently, for � = (�1 + i�2)=p2,�i(x) =Xn s 1LpM2 + k2n (ain + (ain)y)Fn(x);_�i(x) =Xn spM2 + k2nL (�iain + i(ain)y)Fn(x);where Fn(x) = fn(x) (resp. hn(x)) in the Ramond setor (resp. NS setor). The Hamil-tonian of the system is the standard oneHboson = 1Xn=0 Xi=1;2pM2 + k2n�(ain)yain + 12� : (6.27)For the fermion system, it is simply to require the antiommutation relations to themode oeÆientsfbn;�; bym;�g = Æn;mÆ�;�; fbn;�; bm;�g = fbyn;�; bym;�g = 0; (6.28)where the indies �; � are for �. In the Ramond setor, we also have the non-osillatingmodes, b0 and by0, whih obey fb0; by0g = 1; b20 = (by0)2 = 0; (6.29)and antiommute with all others, bn;� and byn;�. The Hamiltonian is given byHfermion =Xn;� pM2 + k2n�byn;�bn;� � 12� ; (6.30)96



with the addition of Hfermion 0 = Re(�)�by0b0 � 12� ; (6.31)in the Ramond setor. Here, we have hosen the standard operator ordering byb !12 [by; b℄ = byb� 12 .The ground state of the system is the state j0i annihilated by all annihilation operatorsainj0i = bn;�j0i = 0: (6.32)In the Ramond setor, we need an additional ondition | if Re(�) > 0, the ground statemust be annihilated by b0 while it must be annihilated by by0 if Re(�) < 0:b0j0i = 0; Re(�) > 0;by0j0i = 0; Re(�) < 0: (6.33)The energy gap to the �rst exited state is pM2 + k20. In the Ramond setor k20is understood as �S2 and thus the gap is pM2 � S2 = jRe(�)j. For Re(�) = 0, thegap vanishes. In this ase, the n = 0 exponential modes for the salars have vanishingpotential, see (6.10), and the ground state wavefuntion is not normalizable in the �0diretions. In addition, there is a two-fold degeneray from the exponential mode fromthe fermion. In the NS setor, k20 is non-negative for S � 0 but is negative, k20 = ��20, forS > 0. As Re(�) approahes zero while S is positive, M2 + k20 =M2 � �20 turns negative(this ours when jRe(�)j � 2S e�SL=2 provided SL � 1). In suh a ase, the potentialfor the n = 0 exponential mode is unbounded below, see (6.20), and there is no groundstate in the system. The appearane of the zero mode or unstable mode at speial valuesof � is extremely important and plays a ruial rôle later in this paper. For now, we fouson the ases where there is a unique normalizable ground state and study its energy andharge.6.4 The EnergyLet us ompute the energy and its density of the ground state.
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6.4.1 Total EnergyR setorThe omputation in the Ramond setor is extremely simple: For eah non-zero mode,the positive energy from the boson and the negative energy from the fermion anel out;pM2 + k2n�12 + 12� +pM2 + k2n��12 � 12� = 0:The ground state energy from the bosoni zero mode ispM2 + k20 �12 + 12� = pM2 � S2 =jRe(�)j. The ground state energy from the fermioni zero mode is Re(�) ��12� if Re(�) > 0and Re(�) �12� if Re(�) < 0 (see (6.33)), that is, �12 jRe(�)j for any ase. They fail toanel against eah other, jRe(�)j � 12 jRe(�)j = 12 jRe(�)j: Thus, the gound state energyin the Ramond setor is Eva = 12 jRe(�)j (6.34)NS SetorThe energy of the ground state in the NS setor is less straightforward to ompute,but it is possible to �nd the answer in the limit L!1.Let us �rst start with the S = 0 ase where the bosons have integer modes kn = �nL ,n = 0; 1; 2; ::: and fermions have half-integer modes kr = �rL , r = 12 ; 32 ; 52 ; :::. The groundstate energy is Eva = 1Xn=0pM2 + k2n � Xr= 12 ; 32 ;:::pM2 + k2r (6.35)This is in�nity minus in�nity and we need an appropriate regularization to de�ne thesum. We do this using the fat that the sum overIn := rM2 + ��nL �2 � 12vuutM2 + � �n� 12�L !2 � 12vuutM2 + � �n+ 12�L !2= �M22 � �2L�2�M2 + ��nL �2�� 32 + 1L3O 1��nL �2!
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is �nite. Namely, we evaluate the sum (6.35) asEva = 12 1Xn=00B�rM2 + ��nL �2 �vuutM2 + � �n + 12�L !21CA+128><>:M + 1Xn=10B�rM2 + ��nL �2 �vuutM2 + � �n� 12�L !21CA9>=>;= M2 + 12  M �rM2 + � �2L�2!+ 1Xn=1 In= M2 +O� 1ML2� +O� 1L�Thus, in the limit L!1 we havelimL!1Eva = M2 = 12 jRe(�)j: (6.36)The validity of this regularization will be examined momentarily.Let us move on to the ase with non-zero S. We are interested in the limit of largeL for a �xed S, so that we may assume jSj � 1=L. We divide the total energy into twoparts, the part E 0va oming from the osillating or onstant modes and the part omingfrom the exponential modes. The latter part is present for S > 0 but is absent for S � 0.To �nd E 0va, we �rst ompute the derivative ��SE 0va and then integrate,�E 0va�S =Xn 0 knpM2 + k2n �kn�S �Xr 0 krpM2 + k2r �kr�S :The sum is over n = 0; 1; 2; :::, r = 12 ; 32 ; ::: if S � 0 while it omits n = 0; 1 and r = 12if S � 1=L. The equations determining kn and kr are in (6.15) and (6.21) respetively,from whih it follows�kn�S = � 1L 2knk2n + S2 (1 + � � � ); �kr�S = � 1L krk2r + S2 (1 + � � � );where + � � � are terms that vanish as L ! 1 (in what follows suh terms will not bementioned). Thus we �nd�E 0va�S = �2Xn 0 1L k2npM2 + k2n(k2n + S2) +Xr 0 1L k2rpM2 + k2r(k2r + S2)L!1�! � Z 10 dk� k2pM2 + k2(k2 + S2)99



This is logarithmially divergent and we introdue a ut-o� ��M :�E 0va�S = � Z �0 dk� � 1pM2 + k2 � S2pM2 + k2(k2 + S2)�= � 1� log�2�M �+ Z �0 dk� S2pM2 + k2(k2 + S2)= � 1� log�2�M �+ 1� tan � ���2 � �� ; S >< 0:where S =M sin �, with 0 < � < � or �� < � < 0. Integrating, we �nd for �S > 0E 0va(S)� E 0va(0�)= �S� �log�2�M �+ 1�� pM2 � S22 � M2 + pM2 � S2� artan� SpM2 � S2� :Here, artangent is assumed to take values between ��2 and �2 . Let us now deter-mine E 0va(0�). We reall that the spetrum of osillating modes is ontinuous as Sapproahes 0 from below (the lowest mode onverges to the zero mode). Thus we haveE 0va(0�) = E 0va(0) = Eva(0) = M2 . On the other hand, we loose two bosoni and onefermioni osillating modes as S is inreased beyon 2=L. Sine eah mode omes with apair (omplex for boson and � for fermion), we haveE 0va(0+) = �2M +M + E 0va(0) = �M2 :Using these we �ndE 0va(S) = �S� �log�2�M �+ 1�� pM2 � S22 + pM2 � S2� artan� SpM2 � S2� ;for S > 0S � 0:If S > 0, whih atually means S � 2=L, we need to add the ontribution from theexponential modes,qM2 � �20 +qM2 � �21 �pM2 � �2 ' pM2 � S2:After the addition, the term �pM2�S22 in E 0va beomes just +pM2�S22 for any value of S.In this way, we �nd that the total energy isEva = �Im(�)� �log�2�j�j� + 1�+ jRe(�)j2 + jRe(�)j� artan� Im(�)jRe(�)j� : (6.37)100



6.4.2 Energy DensityLet us next ompute the vauum energy density, de�ned as the vauum expetationvalue E(x) = h0jH(x)j0i (6.38)of the Hamiltonian densityH(x) = j _�(x)j2 + �(x)(��2x +M2)�(x) + 12[	(x)y;D	(x)℄:R SetorIn the Ramond setor it isER(x) = 2 1Xn=0 pM2 + k2nL fn(x)2 � 1Xn=0 pM2 + k2nL (fn(x)2 + gn(x)2)= 1Xn=0 pM2 + k2nL (fn(x)2 � gn(x)2)= 1Xn=1 pM2 + k2nL k2n os(2knx) + knS sin(2knx)k2n + S2 + pM2 � S2L SLe2SL � 1 e2SxLet us fous on the region near the left boundary x = 0, and take the L ! 1 limit. Inthis limit, the last term beomespM2 � S2L SLe2SL � 1 e2Sx �! 8><>: 0 S > 0M2L ! 0 S = 0�pM2 � S2S e2Sx S < 0:Thus, the density an be written in the limit aslimL!1 ER(x) = Z 10 dk� pM2 + k2k2 os(2kx) + kS sin(2kx)k2 + S2 � �S<0jRe(�)jS e2Sx: (6.39)If x is stritly away from the boundary, x > 0, one may proeed the omputation asfollows:
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−iFigure 12: Deformed ontour.limL!1ER(x) = Z 10 dk� pM2 + k2k2 � k � iSk2 + S2 e2ikx + k + iSk2 + S2 e�2ikx�� �S<0jRe(�)jS e2Sx= Z 1�1 dk2�pM2 + k2 kk + iS e2ikx � �S<0jRe(�)jS e2Sx= Z 1M diK2� �ipK2 �M2 � (�ipK2 �M2)� iKiK + iS e�2Kx+�S<02�i2� pM2 � S2(�iS) e2Sx � �S<0jRe(�)jS e2Sx= � Z 1M dK� pK2 �M2 KK + S e�2Kx: (6.40)From the seond to the third line, the ontour is deformed as in Fig. 12 using the fatthat x is stritly positive. Note that there is a simple pole at k = �iS only when S isnegative, whih produes the additional term �S<0(� � � ), whih in turn is aneled againstthe ontribution from the exponential mode.We see that the density is loalized near the boundary x = 0 with widths 1=M . Letus ompute the total of this loalized energy by integrating the density after the limitL!1. (This is di�erent from integration before the limit, whih simply reprodues thetotal energy given in (6.34).) Sine the integration domain inludes x = 0, we must gobak to the expression (6.39) before the ontour deformation of Fig. 12. Also, we need to
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ut o� the momentum integral at k = �:Ex�0 = limR!1Z R0 dx limL!1 ER(x)���ut o� �= limR!1Z R0 dx �Z �0 dk� pM2 + k2k2 os(2kx) + kS sin(2kx)k2 + S2 � �S<0jRe(�)jS e2Sx�= limR!1Z �0 dk� pM2 + k2k2 + S2 �k2 sin(2kR)2k + S� os(2kR) + 12 �+ �S<0 jRe(�)j2 :At this stage we use limR!1 sin(2kR)2k = �2 Æ(k);and also the fat that Z 10 dk� pM2 + k2k2 + S2 os(2kR)deays exponentially as RM;RS ! 1 | as an be shown by deforming the ontour asin (6.40). Then we �ndEx�0 = S Z �0 dk2� pM2 + k2k2 + S2 + ÆS;0M4 + �S<0 jRe(�)j2 : (6.41)The integral on the right hand side is de�ned to be zero for S = 0. For S 6= 0, it an beevaluated;S Z �0 dk2� pM2 + k2k2 + S2= S2� �log�2�M �+ 1�� pM2 � S22� artan� SpM2 � S2� + 14sgn(S)pM2 � S2:Thus the loalized energy at x = 0 isEx�0 = Im(�)2� �log�2�j�j�+ 1�� jRe(�)j2� artan� Im(�)jRe(�)j� + 14 jRe(�)j: (6.42)Let us next ompute the energy loalized near the right boundary x = L, where weuse the oordinate y = x� L � 0. Namely, we take the limit L!1 of ER(x) keeping y�nite. Sine the wavenumbers are kn = �n=L, we have equations sin(2knx) = sin(2kny)and os(2knx) = os(2kny) that allow us to write the energy density in the y oordinate:ER(x) = 1Xn=1 pM2 + k2nL k2n os(2kny) + knS sin(2kny)k2n + S2 + pM2 � S2L SL1� e�2SL e2SyThe limit an now be taken straightforwardly:limL!1ER(x) = Z 10 dk� pM2 + k2k2 os(2ky) + kS sin(2ky)k2 + S2 + �S>0jRe(�)jS e2Sy: (6.43)103



Proeeding as before, we �ndlimL!1ER(x) = � Z 1M dK� pK2 �M2 KK � S e2Ky for y < 0 stritly; (6.44)andEx�L = limR!1 Z 0�R dy �Z �0 dk� pM2 + k2k2 os(2ky) + kS sin(2ky)k2 + S2 + �S>0jRe(�)jS e2Sy�= �S Z �0 dk2�pM2 + k2k2 + S2 + ÆS;0M4 + �S>0 jRe(�)j2= �Im(�)2� �log�2�j�j� + 1�+ jRe(�)j2� artan� Im(�)jRe(�)j� + 14 jRe(�)j (6.45)Note that Ex�0 + Ex�L = jRe(�)j2 = Eva;see (6.34). This means that the total energy omes purely from the energies loalized atthe two boundaries. This is onsistent with the fat that the energy density vanishes inthe bulk of the interval 1M � x� L� 1M .NS SetorLet us next disuss the energy density of the ground state in the NS setor (6.7).Atually, we know what to expet: At the right boundary x = L, the boundary onditionis exatly the same as the Ramond boundary ondition and thus we should obtain thesame answer as ER(x). The NS ondition at the left boundary x = 0 is obtained fromthe Ramond ondition at the right boundary x = L, by  �(x) ! � �(L � x), �(x) !�(L � x). Therfore we expet that ENS(x) for x lose to 0 is obtained from ER(x) at xlose to L, by the replaement x! L� x. To summarize, the expetation is
limL!1 ENS(x) =

8>>>>>>>>><>>>>>>>>>:
Z 10 dk� pM2 + k2k2 os(2ky) + kS sin(2ky)k2 + S2 + �S>0jRe(�)jS e2Syx <� L;Z 10 dk� pM2 + k2k2 os(2kx)� kS sin(2kx)k2 + S2 + �S>0jRe(�)jS e�2Sxx >� 0; (6.46)

= 8>><>>: � Z 1M dK� pK2 �M2 KK � S e2Ky x < L stritly;� Z 1M dK� pK2 �M2 KK � S e�2Kx x > 0 stritly;104



and Ex�0 = Ex�L = �S Z �0 dk2�pM2 + k2k2 + S2 + ÆS;0M4 + �S>0 jRe(�)j2= �Im(�)2� �log�2�j�j�+ 1�+ jRe(�)j2� artan� Im(�)jRe(�)j�+ 14 jRe(�)j (6.47)The sum of the two is is nothing but the total energy (6.37) of the NS vauum.One an indeed verify the above expetations. We split the density into two parts,the part E 0NS(x) from the osilating or onstant modes, and the part EexpNS (x) from theexponential modes that are present only for S > 0. We �rst onsider the ontributionfrom the osillating/onstant modes. By de�nition we haveE 0NS(x) = 2Xn 0pM2 + k2nL hn(x)2 �Xr 0pM2 + k2rL (gr(x)2 + hr(x)2):See Setion 6.2.2 for the quantities that appears here. In partiular, kn and kr are de�nedby the equations (6.15) and (6.21). Let us look at the behaviour near the left boundaryx >� 0, taking the limit L ! 1 for a �nite x. In this limit, the di�erene betweenneighboring wavenumbers disappears jkn� kr=n� 12 j < �L ! 0, and we have hn(x) � hr(x)for a �nite kn � kr. Thus we haveE 0NS(x) = Xn 0pM2 + k2nL (hn(x)2 � gn� 12 (x)2) + � � �= Xn 0pM2 + k2nL k2n os(2knx)� knS sin(2knx)k2n + S2 + � � �L!1�! Z 10 dk� pM2 + k2k2 os(2kx)� kS sin(2kx)k2 + S2 ; x >� 0;where + � � � are terms that vanish in the L ! 1 limit. Let us now look near the rightboundary x <� L: take the limit L!1 with y = x� L kept �nite. To do this, we writeeverything as a funtion of y. Using the de�ning equation of kn and kr we �ndhn(x) = �kn os(kny) + S sin(kny)pk2n + S2 (1 + � � � )gr(x) = �kr os(kry) + S sin(kry)pk2r + S2 (1 + � � � )hr(x) = � sin(kry)(1 + � � � ):In the limit L ! 1 the sum over the modes beomes an integral over k where thedi�erene of kn and kr disappears. Noting that hn(x)2 � gr(x)2 6= hr(x)2 for kn � kr, we105



�nd E 0NS(x) = Xn 0pM2 + k2nL (hn(x)2 � hn� 12 (x)2) + � � �= Xn 0pM2 + k2nL k2n os(2kny) + knS sin(2kny)k2n + S2 + � � �L!1�! Z 10 dk� pM2 + k2k2 os(2ky) + kS sin(2ky)k2 + S2 ; x <� L:We next onsider the ontribution from the exponential modes, whih are given by (6.18),(6.19) and (6.24). These funtions behave as follows, in the limit L!1 for �nite x and�nite y = x� L,
(�nite x) : 8>>>>>>><>>>>>>>:

h0(x); h1(x)!qSL2 e�Sx;qSL2 e�Sx	 12 ;+(x);	 12 ;�(x)! 8>>>><>>>>:
 00 ! ; 0ip2S e�Sx ! Re(�) > 0 0�ip2S e�Sx ! ; 00 ! Re(�) < 0

(�nite y) : 8>>>>>>><>>>>>>>:
h0(x); h1(x)!qSL2 eSy;�qSL2 eSy	 12 ;+(x);	 12 ;�(x)! 8>>>><>>>>:

 p2S eSy0 ! ; 00 ! Re(�) > 0 00 ! ; p2S eSy0 ! Re(�) < 0The ontribution to the energy density isEexpNS (x) = qM2 � �20 2Lh0(x)2 +qM2 � �21 2Lh1(x)2�pM2 � �22 �	 12 ;+(x)y	 12 ;+(x) + 	 12 ;�(x)y	 12 ;�(x)�x�nite�! jRe(�)jS e�2Sx + jRe(�)jS e�2Sx � jRe(�)j2 2S e�2Sx = jRe(�)jS e�2Sxy �nite�! jRe(�)jS e2Sy + jRe(�)jS e2Sy � jRe(�)j2 2S e2Sy = jRe(�)jS e2Sy:The sum E 0NS(x) + EexpNS (x) leads to the expeted answer (6.46) in the limit L!1.
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6.5 The ChargeLet us ompute the harge of the ground state. The harge density operator is de�nedby j0 = i2f�; _�g � i2f�; _�g+ 12[	y;	℄ (6.48)and we want to ompute the eigenvalue of the total hargeQ = Z L0 j0(x)dxof the ground state j0i and the vauum expetation value of the density�(x) = h0jj0(x)j0i:R SetorUsing the mode expansion, we �nd that the density operator is expressed asj0(x) = 1Xn;m=0 iL �M2 + k2mM2 + k2n � 14fn(x)fm(x) �(a1n + a1yn )(a2m � a2ym)� (a2n + a2yn )(a1m � a1ym)�+ 1Xn;m=0 12 hbyn;+; bm;+i	n;+(x)y	m;+(x)� 12 hbym;�; bn;�i	n;�(x)y	m;�(x)+bn;�bm;+	n;�(x)y	m;+(x) + byn;+bym;�	n;+(x)y	m;�(x)!; (6.49)in whih we set 	0;+(x) = 	0(x) and 	0;�(x) = 0, and the total harge isQ = 1Xn=1 h i �a1yn a2n � a2yn a1n�+ byn;+bn;+ � byn;�bn;� i+ � i�a1y0 a20 � a2y0 a10� + by0b0 � 12 � :(6.50)The ground state j0i is annihilated by b0 if Re(�) > 0 and by by0 if Re(�) < 0. Thus, ithas harge Qva = ( �12 Re(�) > 012 Re(�) < 0 = �12sgnRe(�): (6.51)
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The harge density is�R(x) = 1Xn=1 � �12	n;+(x)y	n;+(x) + 12	n;�(x)y	n;�(x) �� 12sgnRe(�)	0(x)y	0(x)= � 1Xn=1 Re(�)LpM2 + k2n (fn(x)2 � gn(x)2)� 12sgnRe(�) 2S e2Sxe2SL � 1= � 1Xn=1 Re(�)LpM2 + k2n k2n os(2knx) + knS sin(2knx)k2n + S2 � sgnRe(�) S e2Sxe2SL � 1 : (6.52)Let us look at the neighborhood of the left boundary x = 0 by taking the limit L ! 1for a �nite x. In this limit we havelimL!1�R(x) = � Z 10 dk� Re(�)pM2 + k2 k2 os(2kx) + kS sin(2kx)k2 + S2 + �S<0sgnRe(�)S e2Sx:(6.53)If x is stritly away from the boundary x > 0, it islimL!1 �R(x) = � Z 1M dK� Re(�)KpK2 �M2(K + S) e�2Kx: (6.54)We see that the harge is loalized near the boundary with width 1=M . The total loalizedharge is Qx�0 = limR!1 Z R0 limL!1 �R(x)dx= sgn(Re(�)) � 12� artan� Im(�)jRe(�)j�� 14 � : (6.55)Let us next look at the neighborhood of the right boundary x = L. In the limit L!1for a �nite y = x� L, we havelimL!1 �R(x) = � Z 10 dk� Re(�)pM2 + k2 k2 os(2ky) + kS sin(2ky)k2 + S2 � �S>0sgnRe(�)S e2Sy:(6.56)If x is stritly away from the boundary x < L, i.e. y < 0, it islimL!1 �R(x) = � Z 1M dK� Re(�)KpK2 �M2(K � S) e2Ky: (6.57)Again, the harge is loalized near the boundary. The total isQx�L = limR!1Z 0�R limL!1�R(x)dy= sgn(Re(�)) �� 12� artan� Im(�)jRe(�)j�� 14 � : (6.58)We note that the sum of the loalized harges Qx�0 + Qx�L reprodues the total hargegiven by (6.51). 108



NS SetorThe harge density operator j0(x) an be expanded in terms of the modes as in (6.49),from whih it follows thatQ =Xn i � a1yn a2n � a2yn a1n �+Xr � byr;+br;+ � byr;�br;� � : (6.59)In partiular, the vauum has zero total harge,Qva = 0: (6.60)The harge density of the ground state an be determined either diretly or by employingthe symmetry argument as in the omputation of the energy density. In the latter method,we onsider the transformation  �(x) ! � �(L � x), �(x) ! �(L � x) that maps theRamond boundary ondition at x = L to the NS boundary ondition at x = 0. Note thatit ips the sign of the harge density, j0(x)! �j0(x� L). In either way we �nd�NS(x) = �Xr 0 Re(�)LpM2 + k2r (gr(x)2 � hr(x)2)� 12�S>0 �jj	 12 ;+(x)jj2 � jj	 12 ;�(x)jj2�
L!1�! 8>>>>>>>>><>>>>>>>>>:

� Z 10 dk� Re(�)pM2 + k2 k2 os(2ky) + kS sin(2ky)k2 + S2 � �S>0sgnRe(�)S e2Syx <� L;Z 10 dk� Re(�)pM2 + k2 k2 os(2kx)� kS sin(2kx)k2 + S2 + �S>0sgnRe(�)S e�2Sxx >� 0;= 8>><>>: � Z 1M dK� Re(�)KpK2 �M2(K � S) e2Ky x < L stritly;Z 1M dK� Re(�)pK2 �M2(K � S) e�2Kx x > 0 stritly;and Qx�L = �Qx�0 = sgn(Re(�)) �� 12� artan� Im(�)jRe(�)j�� 14 � (6.61)In Fig. 13, we plot the graph of the funtion (6.58)=(6.61) that shows the harge loalizedat the right boundary, for both Ramond and NS setors.
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Figure 13: Charge loalized near the right boundary of an interval6.6 Note On SupersymmetryLet us omment on the supersymmetry of the states. The system in the Ramondsetor has an N = 2B supersymmetry whih transforms the �elds asÆ� = p2�b;Æb = �p2�(i�t�+Re(�)�);Æ = ip2�(�x�� Im(�)�):By Noether proedure we �nd the superharges generating them;Q = Q0 + 1Xn=1Qn (6.62)whereQ0 = ip2��i _�0 +Re(�)�0� b0= 8<: ip2jRe(�)j�a1y0 � ia2y0 �b0 Re(�) > 0;�ip2jRe(�)j�a10 � ia20�b0 Re(�) < 0; (6.63)Qn = ispM2 + k2n +Re(�)pM2 + k2n ��i _�n +pM2 + k2n�n� bn;"+ispM2 + k2n � Re(�)pM2 + k2n ��i _�n �pM2 + k2n�n� byn;#= iqpM2 + k2n +Re(�)bn;+ �a1yn � ia2yn �� iqpM2 + k2n � Re(�)byn;� �a1n � ia2n�(6.64)110



The superharges obey the supersymmetry relations with equivariant parameter Re(�);12fQ;Qyg = H +Re(�)Q; (6.65)Q2 = Qy2 = 0: (6.66)The operator Q on the right hand side of the �rst equation is the total harge operator(6.50) (not a superharge).We note that eah term of Q and Qy has an annihilation operator. This is obviousfor the n 6= 0 modes but is true also for the n = 0 mode; see the property (6.33) of theground state. Therefore, the ground state is supersymmetri, i.e., annihilated by both ofthe superharges Qj0i = Qyj0i = 0:The energy and the harge of the Ramond ground state is omputed in (6.34) and (6.51);The energy is Eva = jRe(�)j=2 while the harge is Qva = �sgn(Re(�))=2. These areperfetly onsistent with the supersymmetry algebra (6.65) and the fat that the stateis supersymmetri. The ground state has positive energy but it does not mean thatsupersymmetry is broken in this matter setor.6.7 The Case Of The Half-SpaeLet us omment on the theory formulated on the half-spae, say,x � 0: (6.67)To be spei�, we onsider the boundary onditions whih are the same as in the \rightboundary x = L" of the �nite interval. Namely we add the term (6.2) at the boundaryx = 0 and impose the assoiated boundary onditions (6.3) there:�1� = S�;  + =  �; �1( + +  �) = S( + +  �):As in the �nite interval there are osillating modes and exponential modes. Osillatingmodes for the �elds � and b = ( + +  �)=p2, or  = ( � �  +)=p2 arefk(x) = k os(kx) + S sin(kx)k2 + S2 ; or gk(x) = sin(kx); (6.68)for any positive k. In addition, � and b may have exponential modes, proportional toeSx: (6.69)111



They are normalizable when S is positive. Sine they deay rapidly as x! �1, we shallall them deaying modes. They have a frequeny pM2 � S2 = jRe(�)j and beome zeromodes when S = M , that is, when � = ij�j. If S is negative, the funtion eSx growsexponentially and will not be onsidered.Mode expansion and quantization is straightforward. It is simply to onsider theL ! 1 limit of the �nite interval theory | we only have to disard the modes thatvanishes in that limit (suh as the exponential mode in the Ramond setor of the S < 0theory, and a linear ombination of the two exponential modes of the NS setor in theS > 1=L and S > 2=L theory). The �elds are expanded as�i(x) = Z 10 dkp� 14pk2 +M2�ai(k) + ai(k)y�fk(x)+�S 14pM2 � S2�aiD + aiyD�pS eSx; (6.70)��i(x) = Z 10 dkp� 4pk2 +M2��iai(k) + iai(k)y�fk(x)+�S 4pM2 � S2��iaiD + iaiyD�pS eSx; (6.71)	(x) = Z 10 dkp�pk2 +M2 �	";k(x)b"(k) + 	#;k(x)b#(k)y�+ �Sp2SbD	D(x);(6.72)where 	�;k(x) and 	D(x) are the eigen modes of the kineti operator D de�ned by	";k = 0� qpk2 +M2 +Re(�)fk(x)iqpk2 +M2 � Re(�)gk(x) 1A ; D = pk2 +M2 (6.73)	#;k = 0� qpk2 +M2 � Re(�)fk(x)�iqpk2 +M2 +Re(�)gk(x) 1A ; D = �pk2 +M2: (6.74)	D =  eSx0 ! ; D = Re(�): (6.75)The mode operators obey the (anti-)ommutation relations[ai(k1); aj(k2)y℄ = Æi;jÆ(k1 � k2);([aiD; ajyD ℄ = Æi;j; [aiD; aj(k)y℄ = 0 et);fb�(k1); b�(k2)yg = Æ��Æ(k1 � k2); fb�(k1); b�(k2)g = 0;( fbD; byDg = 1; fbD; b�(k)yg = 0 et);112



so that the �elds obey the anonial (anti-)ommutation relations[�i(x1);��j (x2)℄ = iÆijÆ(x1 � x2);[�i(x1); �j(x2)℄ = [��i(x1);��j (x2)℄ = 0:fb(x1); b(x2)yg = Æ(x1 � x2); fb(x1); b(x2)g = 0;f(x1); (x2)yg = Æ(x1 � x2); f(x1); (x2)g = 0;fb(x1); (x2)yg = 0; :::Note that we need the deaying mode (in the ase S > 0) for this to work.The ground state is the state annihilated by all the annihilation operators ai(k); b�(k)and, in the ase S > 0, bDj0i = 0 if Re(�) > 0;byDj0i = 0 if Re(�) < 0: (6.76)This is beause the deaying mode ontributes to the total Hamiltonian byHD = 12Re(�)[byD; bD℄:whih has value �12Re(�) (resp. +12Re(�)) for the state annihilated by bD (resp. byD).The energy gap to the �rst exited state is M for S � 0 and is jRe(�)j for S > 0 from thedeaying modes of � and b. It vanishes at � = ij�j where the deaying modes beome zeromodes. In partiular, the ground states are two-fold degenerate and non-normalizable.We an easily obtain the energy (density) and the harge (density) of the vauum |we simply use the result of the L!1 limit of the �nite interval theory:E = �Im(�)2� �log�2�j�j� + 1�+ jRe(�)j � 14 + 12� artan� Im(�)jRe(�)j�� (6.77) E(x) = � 1� Z 1M dKpK2 �M2 KK � S e2Kx x < 0 stritly!;Q = �sgn(Re(�)) � 14 + 12� artan� Im(�)jRe(�)j�� (6.78) �(x) = �Re(�)� Z 1M dKpK2 �M2 KK � S e2Kx x < 0 stritly!:The formula (6.77) agrees with the result obtained in [65℄. Alternatively, one an �ndthese results independently of the �nite interval omputation, diretly from the abovemode expansions. Then, we an learn about the �nite interval theory. In partiular, wean reprodue all of the results on the energy (density) and harge (density) at least forthe ase L is very large. 113



6.8 Cases With Several MattersLet us reord the results for the ase where we have n matter �elds with hargesQ1; :::; Qn. We just have to sum the results for the single �eld ases with M = jQi�j,S = Im(Qi�).If the theory is formulated on the half spae (6.67), the energy and the harge areloalized near the boundary, and the totals areE = 12� nXi=1 �QiIm(�) �log� jQi�j2� �� 1�+QijRe(�)j artan� Im(�)jRe(�)j�+ jQij4 jRe(�)j�= 12� Im( nXi=1 Qi� �log�Qi�2� �� 1�)+ nXi=1 jQij4 jRe(�)j; (6.79)Q = �sgnRe(�)2� nXi=1 Qi artan� Im(�)jRe(�)j�� nXi=1 jQij4 sgnRe(�); (6.80)where \artan" is assumed to take values between ��2 and �2 .If formulated on the interval, the energy and the harge are loalized near the twoboundaries. The ones at the right boundary, x = L, are the same as on the half spae,(6.79) and (6.80), for both NS and Ramond setors. The ones at the left boundary, x = 0,depend on the setor. In the NS setor, the energy is the same while the harge is opposite,in omparison to (6.79) and (6.80). In the Ramond setor, the energy and the harge areopposite to (6.79) and (6.80) exept the last terms involving the jQij's. The total energyand harge are the sum of those loalized ones:ERva = nXi=1 jQij2 jRe(�)j; QRva = � nXi=1 jQij2 sgn(Re(�)); (6.81)ENSva = 2E; QNSva = 0: (6.82)Assuming the Calabi-Yau onditionXQi>0Qi = �XQi<0Qi =: S;the above formulae simplify, in partiularE = 12� nXi=1 Qi log jQijIm(�) + S2 jRe(�)j; (6.83)Q = �sgnRe(�)S2 : (6.84)114



6.9 Gauge DynamisSo far, we have set all the �elds in the gauge multiplet zero, exept the onstant modeof the salar omponent �. If we want to obtain the e�etive potential for � we need tointegrate out the gauge �eld and the auxiliary �eld.Let us onsider the system on the interval 0 � x � L with harges ql and qr on theleft and the right boundaries respetively. The Lagrangian is given byL = Z L0 dx � 12e2 (v201 +D2) + �2�v01�� qrv0���x=L + qlv0���x=0 + Lmatter (6.85)where Lmatter is the matter setor Lagrangian | in the ase of a single hiral multipletwith harge 1, it is the sum of the bulk part (6.1) and the boundary parts (6.2), (6.4).Integrating out the auxiliary �eld D simply produes the D-term potentialUD = e22 �j�j2 � r�2 :When we quantize a gauge theory in operator formalism, it is best to swith to theanonial formulation. The ation in the anonial formulation is given by (see e.g. [66℄)S = Z dt Z L0 dx� 1e2 (�0v1 � �1v0)E1 � 12e2 (E1)2 � v0j0 + �2� (�0v1 � �1v0)�� Z �qrv0���x=L � qlv0���x=0� dt+ Smatter; (6.86)where j0 is the harge densityj0 = i��� � i��� +  � � +  + +; (6.87)and Smatter is the matter ationSmatter = Z dt Z L0 dx(�� _�+ �� _�� j��j2 � jD1�j2 � j�j2j�j2 � UD+i �(�0 � �D�!1) � + i +(�0 � �D�!1) + �  �� + �  +� �)+ boundary terms, (6.2) + (6.4). (6.88)It is easy to see that we get bak the system with the Lagrangian (6.85) after integratingout E1, ��, ��. On the other hand, in the Hamiltonian formulation, they play the roleof onjugate momenta for v1, � and �. (i � are onjugate momenta for  �). v0 is anon-dynamial variable and imposes the Gauss law onstraints.115



We hoose the boundary ondition suh that v0 is allowed to vary at the boundary.The Gauss law onstraints are then1e2�1E1 = j0 (in the bulk); (6.89)1e2E1 + �2� + qr = 0 (on the right boundary) and; (6.90)1e2E1 + �2� + ql = 0 (on the left boundary): (6.91)They an be solved by1e2E1(x) = �� �2� + ql� + Z x0 j0(x0)dx0 or= �� �2� + qr�+ Z xL j0(x0)dx0whih is onsistent if and only if the following ondition is satis�ed:Q = Z L0 j0(x0)dx0 = ql � qr: (6.92)For a given pair of Chan-Paton harges, this is the ondition on the state of the mattersystem: the harge of that state must agree with the di�erene of the Chan-Paton hargesat the left and the right boundaries.The Hamiltonian density of the total system, with the gauge ondition v1 = 0, is givenby H(x) = 12e2E1(x)2 + UD(�) +Hmatter(x)= e22 � �2� + ql � Z x0 j0(x0)dx0�2 + e22 �j�(x)j2 � r�2 +Hmatter(x) (6.93)where Hmatter is the Hamiltonian density of the matter setor. The task is to �nd theground state of the Hamiltonian R L0 H(x)dx and its energy. This is a hard problem.An exeption is the ase of a Dira fermion with � = 0 (massless Shwinger model)where the diagonalization an be done exatly. For the massive model, there are variousapproximation methods to treat this problem depending on the range of parameters, suhas the relation of the gauge oupling onstant e and the mass j�j of the matter �elds. Seefor example [57℄. Although this is a very interesting problem in its own right, we do notdevelop a thorough study in the present paper.Instead, we take just one approximation method, whih leads to the following answerfor the energy density of the ground state:Eva(x) = e22 � �2� + ql � Z x0 hj0(x0)idx0�2 + e22 �hj�(x)j2i � r�2 + Ematterva (x): (6.94)116



In the above expression, hO(x)i stands for the expetation value with respet to theground state j0i of the matter setor, h0jO(x)j0i. Note that hj0(x)i is the harge density�(x) whih we have omputed in Setion 6.5. Also, Ematterva (x) in (6.94) is the energydensity of the ground state in the matter setor, whih was obtained in Setions 6.4.2 and6.7.Let us desribe the origin of (6.94) and estimate the error. The exat answer wouldbe obtained by integrating out the matter �elds as well as the �elds v� and D, in a �xedbakground of �. One way to perform this is to �rst integrate out the matter �elds fora �xed general pro�le for v�(x) and D(x), and then integrate out the latter. At the �rststep, we may treat the oupling �v0(x)j0(x) +D(x)j�(x)j2 perturbatively and keep onlythe �rst order terms, that is, repae it with �v0(x)hj0(x)i + D(x)hj�(x)j2i. This is theapproximation that leads to (6.94). The disarded part starts with terms of the formL v201�E ; L D2�E ;where �E is the energy gap between the ground state and the �rst exited state. Therest are of higher order in v01 and D. These errrors shift the gauge oupling as1e2 �! 1e2 + onstant � L�E :As long as the shift is small ompared to 1=e2, we may say that (6.94) is a valid ap-proximation, with an error given by power series in e2L�E . Reall that the energy gap is ofthe order of the real part of �, �E � jRe(�)j, provided the imaginary part is positive,Im(�) > 0, in the NS setor, and for any ase in the Ramond setor. In suh a ase, theondition for the validity of (6.94) is jRe(�)j � e2L: (6.95)This is in addition to the ondition j�j � e whih is already assumed in the bulk theory.In Setion 7.4, we will obtain the same ondition from a di�erent perspetive.The gap �E � jRe(�)j in the matter setor omes from the exponential modes (thedeaying modes) loalized near the boundary. Reall that they beome the zero modesor unstable modes when Re(�) vanishes. In suh a ase, the whole idea of the e�etiveation for the vetor multiplet breaks down. We must treat those modes on the samefooting as the vetor multiplet �elds. For example, we may integrate out the osillatingmodes only, leaving the deaying modes dynamial. Then (6.94) is a Hamiltonian densityoperator that involves the deaying modes and the � �elds. Note that we no longer have117



an unstable potential for the deaying modes in suh a treatment. Although this problemis important and interesting on its own right, we do not attempt to solve it here.Thus, let us assume (6.95). Even in suh a ase, one may still wonder if the expression(6.94) makes sense, sine �(x) = hj0(x)i as well as hj�(x)j2i diverges at the boundary andtheir squares may be dangerous. To examine this and also to �nd how the answer bahavesas a funtion of �, let us ompute the total of the eletrostati and D-term energies. Thisis enough to see whether there is a problem loally, sine these two terms are positivesemi-de�nite.Let us �rst ompute it in the Ramond setor. The mode expansion leads to theexpression hj�(x)j2i =Xn 1L fn(x)2pM2 + kn2 :Using this we �nd that the energy from the D-term potential isED = e22 L 1Xn=0 12LpM2 + k2n � r(�)!2+e24 1Xn=1 14L(M2 + k2n) � S2LjRe(�)jpM2 + k2n(k2n + S2)!+ e2S8Re(�)2 � 1tanh(SL) � 1SL� ; (6.96)where it is understood that k20 = �S2 so that pM2 + k20 = jRe(�)j. Also, using theexpression (6.52) for hj0(x0)i = �R(x0), we �nd that the eletrostati energy isEes = e22 L �2� + ql + 1Xn=1 Re(�)S2LpM2 + k2n(k2n + S2) + sgnRe(�)4 � 21� e2SL + 1SL�!2e28 1Xn=1 Re(�)22L(M2 + k2n)(k2n + S2) � jRe(�)jLpM2 + k2n(k2n + S2)!+ e232S � 1tanh(SL) � 1SL� : (6.97)Despite its appearane, this is ontinuous at S = 0, withED S=0= e22 L 1Xn=0 12LpM2 + k2n � r(�)!2 + e216 1Xn=1 1L(M2 + k2n) ;Ees S=0= e22 L� �2� + ql + 14sgnRe(�)�2 + e216 1Xn=1 k2nL(k2n +M2)(pM2 + k2n +M)2 :118



To obtain the last expression, we have used the formula1Xn=1 1n2 = �26 :The behaviour at large L isED = e22 L� 12� log�2�j�j�� r(�)�2 + e232j�j + e2Im(�)4�Re(�)2 artan� Im(�)jRe(�)j� ;Ees = e22 L� �2� + ql �Qx�0�2 � e232j�j + e28�Im(�) artan� Im(�)jRe(�)j� :Here Qx�0 is the harge loalized near the left boundary (6.55). The result is regulareverywhere away from the lous Re(�) = 0 whih we exluded by (6.95). The quantityinside the parenthesis in the extensive part e22 L(� � � )2 should be de�ned as the seriesthat appears in the �rst expressions (6.96), (6.97) | an error of order 1=L there woulda�et the non-extensive part. Note that it is �nite as the ut-o� is removed, sine theFI parameter depends on it as r(�) = r(�) + 12� log����. The sum of the D-term andeletrostati energies, ED;es = Ees + ED, is thusED;es = e22 Ljte� j2 + e28� �2Im(�)Re(�)2 + 1Im(�)� artan� Im(�)jRe(�)j� ; (6.98)where te� = r(�)� 12� log�2�j�j�� i � �2� + ql �Qx�0�+O(1=L):Let us next write down the result for the NS setor. We have to treat the three ases,S > 0, S = 0 and S < 0, separately. The main point is that it is ontinuous at S = 0,withED S=0= e22 L 1Xn=0 12LpM2 + k2n � r(�)!2 + e216 1Xn=0 1L(M2 + k2n)Ees S=0= e22 L� �2� + ql � sgnRe(�) �14 � 1LI��2 + e216 1Xr k2rL(k2r +M2)(pM2 + k2r +M)2with I :=Xr 12LpM2 + k2r(pM2 + k2r +M) :To obtain this, we used the formula Xr= 12 ; 32 ;::: 1r2 = �22 :119



The behaviour at large L for the general value of S = Im(�) isED = e22 L� 12� log�2�j�j�� r(�)�2 + e232j�j + e2Im(�)Re(�)2 Q2x�0;Ees = e22 L� �2� + ql �Qx�0�2 � e232j�j + e22Im(�) �Q2x�0 � 116� ;where Q�0 is the loalized harge given now by (6.61). The result is regular everywhereaway from the exluded lous Re(�) = 0. The sum of them isED;es = e22 Ljte� j2 + e22 ��2Im(�)Re(�)2 + 1Im(�)�Q2x�0 � 116Im(�)� ; (6.99)where te� is as in the Ramond setor, with Qx�0 from (6.61).The main onlusion of these omputations is that, in both R and NS setors, theD-term and eletrostati energy of the ground state behaves asED;es = e22 Ljte� j2 + e2j�jA: (6.100)A is a funtion of Im(�)=Re(�), independent of L, whih is regular everywhere exeptRe(�)! 0. This also holds in the theory with multiple �elds of various harges.This onludes that there is no danger from taking the square of a quantity thatdiverges at the boundary. Furthermore, we see that the dominant part of the vauum en-ergy, for large � with a �xed L, is the loalized energy from the matter setor whih growslinearly with �. Compare (6.100) with the expressions obtained in earlier subsetions, forexample (6.79).An AnomalyAlthough it is not diretly relevant for the main disussion of this paper, we wouldlike to omment on an anomaly in the Ramond setor that omes from the Gauss lawonstraint. We onsider a U(1) gauge theory with n matter �elds of harges Q1; : : : ; Qn,whih we assume integers with q..d.(Qi) = 1.The Gauss law implies that the total harge Q of the state in the matter setor mustmath the di�erene of the harges ql and qr whih we plae on the two boundaries, (6.92).We usually take both ql and qr to be integers, and hene Q must be an integer. The totalharge of a state in the matter setor is an integer plus the harge of the ground state. Inthe NS setor, we found that the harge of the ground state vanishes, see (6.82). Thus,120



the harges of all states are integers. In the Ramond setor, on the other hand, the hargeof the ground state is obtained in (6.82), from whih we onlude that the harges of allstates are Pni=1Qi=2 modulo integers. Thus, we �nd a onit with the Gauss law whennXi=1 Qi is odd. (6.101)In the ontext of linear sigma models, this is preisely the ase when the orrespondingtori variety is not a spin manifold. In an open string Ramond setor of the non-linearsigma model, we need to have a spin struture of the target spae in order to quantizethe fermioni zero modes. The above anomaly is understood as the Coulomb branhounterpart of this. There is of ourse no problem when the Calabi-Yau ondition isassumed, Pni=1Qi = 0.6.10 Mass From SuperpotentialWe now turn to a di�erent system: the LG model of two variables U; V with super-potential W = 2MUVwhere M is taken to be real positive. We also onsider a D-brane orreponding to thematrix fatorization Q =  0 p2Mup2Mv 0 ! :We may regard this as a part of the matter setor of a U(1) gauge theory in whih U andV have harges �1 and 1. If we write the matrix as Q = p2M(u� + v�), then � and �have gauge harges 1 and �1 respetively. In this setion we study the property of theground state of the open string whose both ends have the brane Q. In partiular, we areinterested in the energy and harge density of the ground state, espeially in the limitwhere the length L of the string is taken to be very large.Before doing any omputation, we already know quite a lot about the ground state.First of all, there is just one hiral ring element proportional to the identity 1 00 1 ! : (6.102)Thus, by the spetral ow, we know that there is a unique supersymmetri ground state.In partiular the ground state energy is zeroEva = 0:121



At this point we reall that any quantum �eld theory formulated on a ompat spae, suhas the interval [0; L℄ we are onsidering, behaves like quantum mehanis. In partiular,any symmetry present in the system annot be spontaneously broken by the ground statej0i. In the present open string system, there are two symmeties in sight. One is the U(1)harge symmetry (under whih U; V has harge �1; 1). The other is the parity symmetryx ! L � x that swaps the left and the right boundaries. That the U(1) symmetry isunbroken means that the ground state has harge zero:Qva = 0:That the parity symmetry is unbroken means that the energy and harge density of theground state is symmetri under x! L� x:E(x) = E(L� x); �(x) = �(L� x):Finally, one more important fat is that the bulk theory has a mass gap. This in partiularmeans that any loal observable O(x) approahes the value of the bulk vauum when itis far enough from the boundary, that is, when 1=M � x � L � 1=M . In partiular weexpet E(x) �! 0; �(x) �! 0in that regime. Namely E(x) and �(x) might have a non-trivial pro�le but that is on�nedin a region of width 1=M near the two boundaries. Moreover, the parity symmetry as wellas Eva = Qva = 0 tell us that the total energy and the harge aumulated near eah ofthe boundaries vanish. Thus, for a long distane observer, it looks as if the energy and theharge density identially vanishes without any delta funtion support at the boundaries.In what follows, we on�rm this expetation by an expliit omputation.The system (6.1) we onsidered in the bulk part of this setion does not have theparity symmetry x! L� x. To be preise, there would be a parity symmetry only whenit is ombined with a sign ip of of � and a omplex onjugation of � and  . Thus, theenergy and harge densities are not symmetri under the parity but only so when theappropriate operation is applied.Explit quantization of a related system had been done in [50℄ and later also in [33℄.These works studied the Dirihlet boundary ondition U = 0 in the same bulk theory.That brane an be obtained from the above matrix fatorization by replaing p2Mu,p2Mv by �p2Mu, ��1p2Mv and taking the limit � !1.
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6.10.1 The Ground StateThe Lagrangian of the open string system reads asL = Z L0 " j _uj2 � ju0j2 + j _vj2 � jv0j2 �M2juj2 �M2jvj2+i u�( ���!t + ���!x) u� + i u+( ���!t � ���!x) u++i v�( ���!t + ���!x) v� + i v+( ���!t � ���!x) v+�iM( u+ v� +  v+ u�) + iM( v� u+ +  u� v+) #dx+"� i2( u+ u� +  u+ u�)� i2( v+ v� +  v+ v�)#L0+" i�L _�L +p2MRe( u�L +  v�L)�M juj2 �M jvj2 #x=L�" i�0 _�0 +p2MRe( u�0 +  v�0) +M juj2 +M jvj2 #x=0 (6.103)Note that the boundary fermions �0; �0 have the opposite orientation of time. In par-tiular, they have the \wrong" sign kineti term and obey the non-standard hermitiityrelation �y0 = ��0;with respet to the standard orientation of time.We take the standard supersymmetri Neumann ondition for the bulk �elds:�1u = �1v = 0; u+ �  u� =  v+ �  v� = 0;�1( u+ +  u�) = �1( v+ +  v�) = 0; 9>=>; at both x = 0; L: (6.104)Note that this does not agree with the one oming from the variational priniple. Forexample, the ondition on u from the variational priniple would be�1u+Mu = 0 at x = L; �1u�Mu = 0 at x = 0;but we take the Neumann ondition �1u = 0 at both boundaries. However, we will �nd noproblem in quantization. In fat, the boundary onditions from the variational priniplewill show up in an interesting way. 123



This system has U(1) symmetry: u;  u�; �L; �0 has harge �1 and v;  v�; �L; �0 hasharge 1. There is also a parity symmetryu(x)! iu(L� x); v(x)! iv(L� x); u�(x)! i u�(L� x);  v�(x)! i v�(L� x);�L ! i�0; �L ! i�0; �0 ! i�L; �0 ! i�L;that ommutes with the U(1) symmetry.The ation is quadrati in all �elds and the quantization is straightforward providedwe �nd a lever hoie of variables. The bosoni part is a deoupled sum of four opies(two from u and two from v) of the real salar �eld � with LagrangianLB = 12( _�; _�)� 12(�;DB�)where (�1; �2) := R L0 dx�1(x)��2(x) andDB = ��21 +M2 +MÆ(x� L) +MÆ(x): (6.105)The fermioni system deomposes into two setors. Let us take the linear ombination �� = ( v� �  u�)=p2 where � = � is the spinor index and then introdue	+ = 0B� b++�0 1CA ; 	� = 0B� b���L 1CA ;for b� := ( �� +  �+)=p2, � := ( �� �  �+)=p2. The Lagrangian an be written asLF = i(	+; _	+) + i(	�; _	�)� (	+;D+	+)� (	�;D�	�)where (	1;	2) := R L0 dx(b1(x)yb2(x) + 1(x)y2(x)) + �y1�2 andD+ = 0B� 0 �i�1 + iM p2MÆ(x)�i�1 � iM 0 0p2Mev0 0 0 1CA ; (6.106)D� = 0B� 0 �i�1 � iM p2MÆ(x� L)�i�1 + iM 0 0p2MevL 0 0 1CA : (6.107)Here ev� is the evaluation map, evLb = b(L) and ev0b = b(0).124



The kineti operators DB, D� are hermitian operators in the spae of funtions de�nedby (6.104): Neumann for u; v; b� and Dirihlet for �. Thus, they have eigenvetors withreal eingenvalues. Let us diagonalize these operators. To this end, we introdue projetionoperators onto Neumann and Dirihlet funtions(Pf)(x) = 1Xn=0 n(x)(n; f); (Psf)(x) = 1Xn=1 sn(x)(sn; f);where 0(x) = 1pL , n(x) = q 2L os(�nxL ) and sn(x) = q 2L sin(�nxL ). They obey thefollowing relations (Pf)0(x) = (Psf 0)(x); (6.108)(Psf)0(x) = (Pf 0)(x)� Æ(x� L)f(L) + Æ(x)f(0); (6.109)PPsP = P: (6.110)Using the �rst two, we �ndDBPf = P(�f 00 +M2f) + Æ(x� L)(f 0 +Mf)� Æ(x)(f 0 �Mf):Thus, if f obeys the boundary onditionf 0(x) +Mf(x) = 0 at x = Lf 0(x)�Mf(x) = 0 at x = 0; (6.111)DB is simply represented by �f 00 +M2f . At this point, we notie that this boundaryondition for f is preisely the same as the boundary ondition for the boson in thesystem onsidered earlier: the NS ondition (6.7) for � with S = �M . In partiular, for aplane wave f(x) = a sin(kx)+b os(kx) the allowed wavenumbers k are determined by theequation (6.15) with S = �M . As before we denote the solutions by kn, n = 0; 1; 2; :::,whih approah �nL as n!1.For the fermion 	 = (Pf; Psg; �), the equations D�	 = �	 both lead toP(�f 00 +M2f) + Æ(x� L)(f 0 +Mf)� Æ(x)(f 0 �Mf) = �2Pf:This an be obtained by eliminating Psg and � from the three equations and using (6.108)(6.109) and (6.110). Again we �nd the standard eingenvalue problem �f 00 +M2f = �2fprovided f obeys the boundary ondition (6.111). In partiular, we have plane wavesolutions with eigenvalue � = �pk2n +M2, where kn solves (6.15) with S = �M .Normalized modes are given as follows: For bosons, we havehn(x) = �n(Pfn)(x); DB = k2n +M2 (6.112)125



and for fermions	+n;�(x) = �npL 0B� (Pfn)(x)�i(�1)n(Psgn)(x� L)�p2Mknk2n+M2 1CA ; D+ = �pk2n +M2; (6.113)	�n;�(x) = �npL 0B� (Pfn)(x)�i(Psgn)(x)�(�1)np2Mknk2n+M2 1CA ; D� = �pk2n +M2; (6.114)where�n = �1 + 2ML(k2n+M2)�� 12 ; fn(x) = kn os(knx) +M sin(knx)pk2n +M2 ; gn(x) = sin(knx):Expanding the �elds as �i(x) = 1Xn=0 �inr 2Lhn(x); i = 1; 2; 3; 4;	�(x) = 1Xn=0 �b�n;+	�n;+(x) + b� yn;�	�n;�(x)� ;the Lagrangian an be written asL = 1Xn=1 " 4Xi=1 �12( _�in)2 � k2n+M22 (�in)2�+X�=� �ib� yn;+ _b�n;+ + ib� yn;� _b�n;� �pk2n+M2b� yn;+b�n;+ +pk2n+M2b�n;�b� yn;�� # :The Hamiltonian isH = 1Xn=0 " 4Xi=1 pk2n +M2 �ai yn ain + 12�+X�;� pk2n +M2 �b� yn;�b�n;� � 12� # ; (6.115)where ai yn , ain, b� yn;�, b�n;� are the reation and annihilation operators obeying the standard(anti-)ommutation relations. There is a unique ground state j0i haraterized byainj0i = b�n;�j0i = 0:Let us disuss the energy and its density of the ground state j0i. The bosoni andfermioni ontributions to the energy anel at eah level: 4pk2n+M22 � 4pk2n+M22 = 0.Therefore the total energy of the ground state vanishes:Eva = 0 (6.116)126



This is of ourse a onsequene of supersymmetry. To �nd the energy density, let usintrodue the notation�	1(x)y x�; 	2(x)� := [b1(x)y; b2(x)℄ + [1(x)y; 2(x)℄ + Æ(x� x�)[�y1; �2℄:Then, the energy density operator an be written asH(x) = 4Xi=1 �12 _�i(x) + 12�i(x)DB�i(x)�+12 �	�(x)y L; D�	�(x)�+ 12 �	+(x)y 0; D+	+(x)� (6.117)The energy density of the ground state isE(x) := h0jH(x)j0i = (6.118)1Xn=0 pk2n +M2L �2n 2fn(x)2 � gn(x)2 � gn(x�L)2 � 2Mk2n(k2n +M2)2 (Æ(x�L) + Æ(x))!:It is indeed symmetri under x! L�x, as one an see by using fn(L�x) = (�1)nfn(x).Let us next disuss the U(1) harge of the ground state. The harge density operatoris de�ned by j0(x) = i2fv; _vg � i2fv; _vg � i2fu; _ug+ i2fu; _ug+12 �	�(x)y L; 	�(x)�+ 12 �	+(x)y 0; 	+(x)� :The total harge as well as its density of the ground state vanishQva = 0; (6.119)�(x) := h0jj0(x)j0i = 0: (6.120)This mathes with the expetation.6.10.2 L!1 LimitLet us look at the energy density in the limit where L is very large ompared to 1=M .We �rst look at the region lose to the left boundary x = 0, that is, 0 � x � L. Theformula (6.118) an be rewritten asE(x) = 1Xn=0 pk2n +M2L 2k2n�2n(k2n +M2)2 (k2n �M2) os(2knx) + 2knM sin(2knx)�M(Æ(x�L) + Æ(x))!:127



In the limit L!1 the sum over n turns into integral over the momentum k. If x is loseto but stritly away from x = 0, the ontour of the integral an be deformed and we haveE(x) = �2 Z 1M dK� pK2 �M2K2(K +M)2 e�2Kx (6.121)We see that it deays exponentially as e�2Mx or faster. This is of ourse a onsequeneof the mass gap of the bulk theory. By the symmetry x ! L � x, we �nd the samebehaviour near the right boundary x = L. Namely, the energy density is non-trivial onlyin the region of width 1=M near the two boundaries. Sine the total energy vanishes(6.116), we learn that the energies loalized near the left and the right boundaries vanishindivisually. Indeed that an be on�rmed by a diret omputation:Ex�0 := limR!1Z R0 E(x)dx= limR!1Z �0 dk� pk2 +M2 k(k2 +M2)2�(k2�M2) sin(2kR) + 2kM(1� os(2kR)�� Z �0 dk� pk2 +M2 2Mk2(k2 +M2)2 :The last term omes from the delta funtion at x = 0 | the one at x = L of ourse doesnot ontribute. The two lines anel out and we have Ex�0 = 0.6.10.3 L! 0 LimitFor ompleteness, let us onsider the opposite regime,ML� 1. In the limitML! 0,the momenta kn approah the standard valueknL! �n; n = 0; 1; 2; 3; : : : :In partiular, the n = 0 mode approahes the onstant mode while the n � 1 modesapproah the standard plane wave modes os(�nL x); sin(�nL x), for 0 � x � L. To be morepreise, using the de�ning equation (6.15), we �nd that k0 diverges ask20 ! 2ML ;but it is still true that the mode approhes a onstant, os(k0x) ! 1 and sin(k0x) ! 0,as long as x is in the interval [0; L℄. Let us look at the ground state j0i in this zero modesetor. 128



In the limit ML� 1, the fermioni zero mode beomes	+0;�(x);	�0;�(x) �! 1p2L 0B� 10�pL 1CA :Thus, we an write b� = 1p2L(b�0;++ b� y0;�), �L = 1p2(b�0;+� b�y0;�), �0 = 1p2(b+0;+� b+ y0;�), Sinethe ground state j0i is annihilated by b�n;�, it is annihilated byb� + 1pL�L; b�y � 1pL�yL; b+ + 1pL�0; b+y � 1pL�y0:It follows that the zero mode ground state is of the formj0izero / �b+y � 1pL�y0��b�y � 1pL�yL� j0i1;where j0i1 is the state annihilated by �0; �L; b+; b� as well as the bosoni annihilationoperators. (Note the normalization fb�1 ; b�2yg = Æ�1;�2=pL.) Realling the de�nition of b�,and using the matrix representation of �L, �0, et,�L a b d ! =  0 10 0 ! a b d ! ;�0 a b d ! =  (�1)aa �(�1)bb�(�1) (�1)dd ! 0 10 0 ! ;we �nd that the ground state is given byj0izero = 0� j0i0 � L2 v uj0i0 �pL vj0i0pL uj0i0 j0i0 + L2 v uj0i0 1A : (6.122)Here, j0i0 is the state of the bulk zero mode setor that is annihilated by  u;  v as wellas the bosoni annihilation operators. As a wave funtion of u; v, it is proportional toe�p2ML(juj2+jvj2). The state (6.122) is indeed annihilated by the zero mode superhargeiQzero =  u�u +  v�v +p2M(�Lu+ �Lv)�p2M(�0u+ �0v);iQzeroy =  u�u +  v�v �p2M(�Lu+ �Lv)�p2M(�0u+ �0v):Note the normalization f u;  ug = f v;  vg = 2=L. It indeed orresponds to (6.102):j0ihol =  1 00 1 !in the holomorphi trunation. 129



7 The Grade Restrition RuleWe now disuss the �rst main quantum e�et of the linear sigma model with bound-ary. The goal of the paper is to onstrut parallel families of boundary interations overthe bulk of the K�ahler moduli spae, inluding in partiular the boundaries between dif-ferent phases. At eah phase boundary, at least one U(1) subgroup of the gauge groupis unbroken, and the orresponding Coulomb branh has a bounded bulk potential whihvanishes exatly at the singular point. The fous of study will be the behaviour of bound-ary interations and boundary onditions on that Coulomb branh. This leads us to thegrade restrition rule (or the band restrition rule), whih lassi�es the Chan-Paton rep-resentation of the gauge group for the D-brane that an be transported aross the phaseboundary. This is the main result of this paper.7.1 A-branes In LG-ModelsThe theory on the Coulomb branh is desribed in terms of the twisted hiral super�eld� = D+D�V and has a superpotential whih is lassiallyfW (�) = �t�. Note that B-typeboundary onditions on twisted hiral super�elds are like A-type boundary onditions onhiral super�elds. To pave the way to disuss the boundary ondition of bulk �elds on theCoulomb branh, we briey digress to reexamine the general requirement for A-branes inLandau-Ginzburg models. For simpliity, we onsider the LG model of n hiral super�eldsspanning a at Eulidean spae Cn, with some polynomial superpotential W .It was argued in [7, 67℄ that an A-brane in a LG model is a Lagrangian submanifoldwhose image in the W -plane must be parallel to the real line, or equivalentlyImW = onstant (7.1)on the brane. It is de�nitely true that (7.1) must be satis�ed as long as we use the stan-dard bulk ation without a boundary term and impose the standard D-brane boundaryondition. By the standard D-brane boundary ondition we mean Dirihlet on normal andNeumann on tangent oordinates along with the ondition on fermions that follows fromsupersymmetry. However, the requirement (7.1) is relaxed if we modify the ation by asuitable boundary interation whih leads to a non-standard boundary ondition.Let us �rst examine the N = 2A supersymmetry of the boundary onditions them-selves, whih does not depend on the detail of the ation. It is onvenient to use the realomponents of the hiral super�elds, xI ;  I�; f I (I = 1; :::; 2n), whih are related to the130



omplex ones as �i = x2i�1 + ix2i,  i� =  2i�1� + i 2i� , F i = �i(f 2i�1 + if 2i). We alsointrodue N I := �1xI � f I I = 1; : : : ; 2n;in additon to  I =  I++ I�; e I =  I+� I�. The variation of these omponent �elds readsÆxI = i�1 I + i�2J IJ e J ;Æ I = �2�1 _xI + 2�2J IJNJ ;Æ e I = �2�1N I + 2�2J IJ _xJ ;ÆN I = i�1 _e I + i�2J IJ _ J ; (7.2)
where J IJ is the omplex struture (multipliation by i = p�1 written in real oordinate):J 2i2i�1 = �J 2i�12i = 1 and all other entries are zero. �1 is the parameter of the N = 1supersymmetry while �2 is the extension to N = 2A. We �nd an invariant set of boundaryonditions of the form1x 2 L;  2 TxL; e 2 JxTxL; N 2 JxTxL; (7.3)for some submanifold L of R2n. This is onsistent and omplete when TxL and JxTxLhave no overlap (exept the origin x) and span the whole of TxR2n �= R2n,TxL \ JxTxL = fxg; TxL+ JxTxL = R2n:Suh an L is alled a totally real submanifold of (R2n;J ) = Cn. It must be middledimensional, dimR L = n. To summarize, we have an invariant set of boundary onditions(7.3) for eah totally real submanifold of Cn.Let us next examine the invariane of the ation. We �rst take the standard bulkation Sbulk without a boundary term. Its variation isÆSbulk = Z�Sdt" i2�1 �g( _x; e )� g(N; ) + 2 I�IIm(W )�+ i2�2 �g( _x;J )� g(N;J e ) + 2(J e )I�IIm(W )�#: (7.4)Vanishing of the term �1g( _x; e ) requires that TxL and JxTxL must be orthogonal to eahother, TxL ? JxTxL:1 There are more general boundary onditions whih eventually lead to oisotropi branes [68℄. How-ever, they require at least omplex dimension two, n � 2. Sine we are primarily interested in theCoulomb branh, espeially for U(1) gauge theories, we shall fous on the onditions of the type (7.3).131



For a totally real submanifold L, this is nothing but the ondition that it is a Lagrangiansubmanifold with respet to the sympleti struture !(v; w) = g(J v; w). One that issatis�ed, the only remaining ondition is that  I�IImW = (J e )I�IImW = 0. Sine thevetors  and J e are tangent to L, this means that ImW is loally onstant on L. Thisis how the requirement (7.1) arises. It is easy to see that the boundary ondition (7.3) isonsistent with the variational equation from the standard ation: Sine the ation has noboundary term, the variational equation requires that �1x must be normal to the brane.Sine N = �1x� f 2 JTL is normal to L we �nd that �1x and f must be independentlynormal to L. If we use the bulk equation for the auxiliary �eldf I = �gIJ�J ImW; (7.5)the ondition that f is normal to L is automatially satis�ed provided ImW is onstanton L. This is the basi story of [7℄.The standard bulk ation Sbulk an be modi�ed by a boundary term so that it isN = 2A invariant without use of any boundary ondition. In fat one an write down amanifestly N = 2A invariant ation as follows:Stot = 12 ZSd2sQAQyA[Q+;Q+℄K(�; �)� ReZSd2sQAQyAW (�)= Sbulk + Z�Sdt  12 2nXI;J=1 gIJxIN I � ImW ! (7.6)Here we used the K�ahler potential K = 12P2nI;J=1 gIJxIxJ . If we use this ation, obviously,no requirement should arise from the NA = 2 invariane. This time, however, a onditionomes from the onsisteny of the boundary ondition (7.3) and the variational equationfrom (7.6), whih reads12gIJ(ÆxINJ + xIÆNJ)� ÆxI(gIJ�1xJ + �IImW ) + i4gIJ(Æ I e J + Æ e I J) = 0:From the fermion terms, we �nd again the ondition that JxTxL must be orthogonal toTxL, that is, L must be a Lagrangian submanifold. If we use the bulk equation for theauxiliary �eld (7.5), the ÆxI-terms ombine to give gIJÆxINJ = 0, whih is again satis�edunder JxTxL ? TxL. This leaves us with the equationP2nI;J=1 gIJxIÆNJ = 0. This is notsatis�ed for an arbitrary Lagrangian submanifold L | it has to be a Lagrangian planethat goes through the origin x = 0, that is, a linear Lagrangian subspae of R2n. Notethat we have the modi�ed Neumann ondition�1xIt + gItJ�J ImW = 0; (7.7)132



in the diretion tangent to the brane.We have found that the manifestly invariant ation (7.6) admits only a very spaiallass of D-branes | linear Lagrangian subspaes. In fat, one an modify the ation byadding a boundary term that is by itself NA = 2 invariant. For example, we may add aboundary D-term �Sbdry = Z�SdtQAQyAh (7.8)= Z�Sdt �J IJNJ�Ih + i2(J e )I J�I�Jh�for some funtion h of R2n. We see that this hanges the boundary term of (7.6) asgIJxINJ ! gIJ �xI � 2!IK�Kh�NJwhih orresponds to a Hamiltonian deformation of the brane L. Thus, D-term defor-mations on the boundary generate Hamiltonian deformations of the brane. If h is linearin xI 's then this simply orrsponds to a parallel displaement of L. If h is quadrati itorresponds to a sympleti rotation of L. For a more general funtion, we obtain a moregeneral Lagrangian submanifold. This is one way to obtain more general D-branes thanjust linear Lagrangian subspaes. Alternatively, we may simply takeStot = Sbulk + Z�Sdt��ImW �: (7.9)It is not automatially NA = 2 invariant but the invariane requires only the Lagrangianondition TxL ? JxTxL. The variational equation is then solved again by (7.3) thatinludes the modi�ed Neumann ondition (7.7). Thus, we �nd an A-brane for any Lan-grangian submanifold L. The imaginary part of W does not have to be a onstatnt onL. In the new formulation, with the ation (7.6) or (7.9), the system has a potentialenergy at the boundary Vbdry = ImW: (7.10)The imaginary part of a holomorphi funtion is unbounded below and above on R2n.Thus, depending on the asymptoti diretion of the brane L, the boundary potential anbe unbounded below. To avoid any problem assoiated with it, we propose to require thatImW must be bounded below on the brane L. Neessity of suh a onstraint is not soobvious sine there is also a bulk potential Ubulk = 14gi|�iW�|W: An exeption is the asewhere W is linear, whih is the main fous of the present setion: the bulk potential is133



onstant whereas the boundary potential is linear. In this ase, it is absolutely neessaryto require that ImW is bounded below at every in�nity of the brane L. When W isquadrati or higher, it is less lear whether we need the onstraint. However, as we shallsee below, it is preferable to keep this requirement also in the general ase.If we loose the requirement (7.1), the set of allowed D-branes is onsiderably expanded.However, we may identify the branes that are related by boundary D-term deformations.We have seen that a Hamiltonian deformation of the brane orresponds to the boundary D-term of the form (7.8). Here we must be areful | (7.8) an be regarded as a deformationonly when its e�et is small at in�nity in the �eld spae. In the absene of a superpotential,we need to assume that the funtion h approahes a onstant at in�nity or a linear funtionat most. For example, a quadrati funtion h orresponds to a rotation of the brane andannot be regarded as a \deformation" sine it results in an inde�nitely large move atin�nity. The parallel displaement, orresponding to a linear h, is the marginal ase whereone may or may not regard it as a deformation. In the presene of bulk and boundarypotentials, a higher power of h is allowed as long as the e�et is small relative to thee�et of the potentials. In fat, as long as the potentials grow fast enough along thebrane L, the wavefuntion in that in�nity diretion is damped exponentially, so that theHamiltonian deformation for almost any funtion h an be safely regarded as a boundaryD-term deformation.An important invariant under the boundary D-term deformation is the overlap ofthe boundary state jBLi with a R-R ground state jii, known as the generalized entralharge. (Here we assume that the polynomial W is quadrati or higher so that there aresupersymmetri ground states as many as degW � 1.) It is realized as the path integralon a semi-in�nite igar and is represented as the integral:hijBLi = ZL e�� ImW!i(�): (7.11)Here � is the irumfereme of the boundary irle of the igar and !i(�) is the di�erentialform on R2n of middle degree that orresponds to the ground state jii. To be preise, theform !i(�) realizes the ground state of the supersymmetri quantum mehanis obtainedby ompati�ation on the irle of irumferene �. See [50℄ for details. It is normal-izable and has the asymptoti behaviour jj!i(�)jj � e��jW j. Although it indeed deaysexponentially at in�nity, the fator e�� ImW oming from the boundary potential (7.10)an be dangerous if L extends to the diretion with ImW = �jW j. Thus, Hamiltoniandeformations of L aross that dangerous hypersurfae annot be regarded as boundaryD-term deformations. Therefore, we should better avoid that hypersurfae. Given thefreedom to use boundary D-term deformation, we may even require that ImW grows at134
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Figure 14: Some A-branes in LG model with W = �6.every asymptoti diretion of L. In that ase the integral (7.11) an be reast into anintegral of a holomorphi di�erential RL ei�W
i(�) [50℄.This piture of A-branes in LG models is onsistent with all known results based on(7.1) and also on other methods. It atually explains some of the puzzles in the old piture.For example, in [7℄ only branes with ImW = onstant and ReW ! +1 were onsidered,and those with ReW ! �1 were ompletely ignored. In the new piture, those braneswith ReW ! +1 and those with ReW ! �1 are onneted via D-term deformationsthrough the region with large positive ImW . There is a one to one orrespondene betweenthe D-isomorphism lasses in suh two sets of branes. For illustration, let us onsider theLG model for the minimal modelW = �k+2. If we require ImW = 0, a brane is a union oftwo rays in the diretions e�mi=(k+2), m = 0; :::; 2k+3. However, only rays in the diretionse2�mi=(k+2), m = 0; :::; k + 1 were onsidered in [7℄. In the new piture, eah ray an be inany diretion bewteen e2�mi=(k+2) and e�(2m+1)i=(k+2) so that ImW is bounded below atin�nity. Fig. 14 shows the ase k = 4. The dashed line is an example of a brane taken in[7℄ while the entipede line satis�es ImW = 0 but was ignored. In the new piture anybrane is allowed as long as it has asymptoti region with positive ImW . The solid line issuh an example and it indeed onnets the dashed line and the entipede line. For thebranes preserving the opposite superharge Q0A = Q+�Q� (or for the branes preservingthe same superharge but on the left boundary), the boundary potential has the oppositesign, V bdry = �ImW , and thus the requirement is that ImW is bounded above on L.Then, the rays must be between e�(2m�1)i=(k+2) and e2�mi=(k+2). This alternation patternhas been observed in the geometrial piture of D-branes in the U(1) gauged SU(2) WZWmodel (Kazama-Suzuki model) that realizes the minimal model [36℄.135



7.2 Asymptoti Condition In The Coulomb BranhWe now ome bak to the study of boundary linear sigma models. Our fous will bethe boundary ondition on the Coulomb branh. As disussed in the previous setion, weneed to speify a Lagrangian submanifold L on whih the boundary potential is boundedbelow. We �rst onsider a model with U(1) gauge group and assume the Calabi-Yauondition nXi=1 Qi = 0:In the region with large �, it is appropriate to integrate out the harged matter �elds.This yields orretions to the potential and kineti terms and also produes higher deriva-tive terms. Corretions to the kineti term and higher derivative terms are written aspower series in e=j�j and k�=j�j and are negligible in the low energy limit in the regionj�j � e. Therefore, we an use the lassial kineti term (5.2) in that regime. Sineit is written in the manifestly supersymmetri form with quadrati K�ahler potential, asdisussed in the previous setion, the Lagrangian L must be a linear Lagrangian subspae.Namely, it must be asymptotially a straight line in the Coulomb branh. Of ourse theorretion will be large in the region j�j < e, and there is no reason for L to be straightthere. Thus, the Lagrangian L is a bent line, oming in toward the origin from one asymp-toti diretion and going out to in�nity in another diretion. In order for the brane to beoupled to the Higgs branh theory, L should better go through the region j�j � e.The orretion to the potential an be non-zero even in the asymptoti region. In thebulk, the twisted superpotential is orreted simply by the shift of the FI-theta parameter,fW = �t�!fWe� = �te��te� = t+ nXi=1 Qi log(Qi) mod 2�iZ:The 2�Z ambiguity of the imaginary part is �xed by the boundary harge. Quantumorretions to the boundary potential and the boundary harge were analyzed in Setion 6.For the Wilson line brane with harge q, the e�etive boundary potential isV bdrye� = 12�  r + nXi=1 Qi log jQij! Im(�)� � �2� + q�Re(�) + 14 nXi=1 jQiRe(�)j;(7.12)and the e�etive harge is qe� = q � sgnRe(�) nXi=1 jQij4 : (7.13)136



The potential an indeed be written as V bdrye� = � 12� ImfWe� with te� = re� � i(�+2�qe� )where re� = r +Pni=1Qi log jQij. (In omparison with (7.10), the fator of 12� is just aonvention and the sign is the di�erene between hiral and twisted hiral superpotentials.)Note that there is a disontinuity in the e�etive harge and singularity in the potentialat Re(�) = 0, that is, on the imaginary line. This is due to the appearane of zero modesfrom the harged matter setor: The deaying modes loalized at the boundary beomezero modes exatly at � = ij�j for positively harged �elds and at � = �ij�j for negativelyharged �elds. In those diretions, no matter how large j�j is, the matter �elds are notreally deoupled from the low energy dynamis. The e�etive desription purely in termsof � breaks down at � = �ij�j. In this sense we shall sometimes all the imaginary � linea singular line.The asymptoti lines for L must be suh that the boundary potential (7.12) is boundedbelow. Let us depit the region of positive boundary potential, for various values of r anda �xed �2� + q. The behaviour depends very muh on the relation of �2� + q and the hargeshift �12S, S := 12Xi=1 jQij = XQi>0Qi: (7.14)We onsider three ases separately.PSfrag replaements
re� � 0 re� > 0 re� = 0 re� < 0 re� � 0Figure 15: �2� + q > 12SPSfrag replaements
re� � 0 re� > 0 re� = 0 re� < 0 re� � 0Figure 16: �12S < �2� + q < 12SThe boundary potential is positive in the shaded regions. If �2� + q is larger than S2 orsmaller than �S2 , the positive potential region rotates roughly by 180 degrees as r ishanged from +1 to �1. Not a single Lagrangian an stay inside the region for all137
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re� � 0 re� > 0 re� = 0 re� < 0 re� � 0Figure 17: �2� + q < �12Svalues of r. On the other hand, if �12S < �2� + q < 12S, the region does not rotate. Inpartiular, the real line is always inside.As disussed in the previous setion, we an deform the brane L as long as they stayinside the admissible region | that would be a boundary D-term deformation. If we usethis freedom we notie that some of the on�gurations should be regarded as trivial. Forexample, we an onsider deformations as shown in Figure 18. When the two rays are

orFigure 18: Annihilation of the brane.deformed to oinide, brane-antibrane annihilation takes plae. Alternatively, the branemay be detahed from the enter of the Coulomb branh. Then, it is deoupled fromthe Higgs branh theory and will eventually disappear to in�nity. The existene of suhdeformations means that the starting on�guration (left) should be regarded as trivial.This does not apply if the two rays of L are on the opposite side of the singular line at� = �ij�j. In order to move the two rays until they oinide, either one or both of themmust hit the singular line. Also, even if the brane is detahed from the origin, it will stillinterset with the singular line and ontinue to be oupled to the matter setor.7.3 Rules Of D-Brane TransportWe now desribe rules of D-brane transport. We �rst onsider models with U(1) gaugegroup and next the ases of higher rank gauge groups.
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7.3.1 U(1) Gauge Group |The Grade RestritionWe are interested in transporting branes along a path that goes from the large volumephase r � 0 to the small volume phase r � 0, or in the opposite diretion. The pathshould better avoid the singular points at re� = 0 and � 2 2�Z + �S. Thus, it must go
π−π−5π 3π−3π

r

θ

Figure 19: A path through one of the windows.through the windows between the singular points. For simpliity, we onsider paths thatgoes just one through one of the windows, as shown in Figure 19. (The Figure is for thease where S is odd. For even S, the windows are at 2�n < � < 2�(n+ 1), n 2 Z). Moreompliated paths are just some ombinations of suh simple paths. We laimThe Grade Restrition Rule:The Wilson line brane W(q) an be transported smoothly between the two phases if andonly if the inequality � S2 < �2� + q < S2 (7.15)holds in the window. The same an be said on a omplex of Wilson line branes W(qi) ora matrix fatorization of the superpotential: eah qi must obey the inequality (7.15) in thewindow in order for the brane to be transported smoothly.For a given hoie of window, this rule selets S onsequtive integers as the allowed setof boundary harges q. For example, in a theory with S = 3, the allowed set is f�1; 0; 1g139



if the window is at �� < � < �. If we hange the window to �3� < � < ��, the sethanges to f0; 1; 2g. Below, we provide a derivation of this rule.Suppose the inequality (7.15) is not satis�ed on the window. To be onerete, supposethat q is too large for that. As we move along the path, say from r � 0 to r � 0, theregion of positive boundary potential rotates ounter-lokwise as in Figure 15. The raysof L must be rotated so that they are always inside that region. We depit an exampleof suh a rotation in Figure 20. The starting on�guration (left) is hosen so that the
Figure 20: Rotation of L in the ase where q is too large for (7.15).two rays are on the opposite side of the singular line � = �ij�j. As we have disussedabove, this is required for the brane to be non-trivial. At some moment before we gothrough the window, the ray that was on the right of the singular line must overlap withthe singular line on � = ij�j (seond from left). At that moment, something non-trivialmust happen to the brane. If nothing had happened, then after that we would have aon�guration where both of the rays are on the left of the singular line (enter). But thaton�guration is trivial as the brane would annihilate by admissible deformations. This isin ontradition to the fat that the starting on�guration was non-trivial. Somthing non-trivial must also happen when the other ray overlaps with the singular line on � = �ij�j(seond from right). At this stage, we annot exatly tell what really happens exept thatit has to do with the zero modes from the matter setor. Later in this paper, we willdisuss this point from a di�erent perspetive.Let us now onsider the ase where the inequality (7.15) is satis�ed. If the path is astraight line at a onstant � obeying (7.15), then there is no need to move L as the realline Im(�) = 0 (7.16)is always inside the admissible region. If the path is urved as in Figure 19, then it mayhappen that the inequality is not satis�ed along a part of the path. Then, we may needto deform L away from the real line. However, as long as the inequality is satis�ed onthe window at re� = 0, the admissible region is always on both sides of the singular line� = �ij�j, and the two rays do not have to overlap with the line, never at any point ofthe path. Thus, the brane an be ontinuously deformed from one phase to another.140



To summarize, we an onsider branes for arbitrary boundary harges qi. They arenon-trivial as long as the two rays of L are on opposite sides of the singular line � = �ij�j.However, only those obeying the grade restrition rule an be ontinuously transportedbetween the two phases through the window. For a omponent of a brane whih doesnot satisfy the grade restrition rule, the asymptoti ondition on the Coulomb branh Lmust overlap with the singular line � = �ij�j along the way, and something non-trivial isexpeted to happen. This is the meaning of the grade restrition rule.7.3.2 Higher Rank Gauge Group | The Band RestritionWe now onsider the model with higher rank gauge group T �= U(1)k (k � 2). We areinterested in transporting branes along a path that goes from one phase to another in themulti-dimensional K�ahler moduli spae MK. Here we fous on paths that go from onephase to an adjaent phase through the phase boundary in the asymptoti region, thatis, the region with large values of FI parameters. Any two phases an be onneted by aombination of suh paths.In the asymptoti region, there is exatly one U(1) subgroup of the gauge group T thatan be unbroken at the phase boundary. The remaining gauge group is ompletely Higgsedand an be ignored. Repeating what we have done before for the unbroken U(1) subgroup,we �nd a rule of D-brane transport. Let us arrange the basis of the Lie algebra of T sothat the �rst fator is the unbroken U(1). Then, the oordinate r1 is transverse to thephase boundary. The singular lous is asymptotially at r1e� = r1 +Pni=1Q1i log jQ1i j = 0and �1 2 2�Z+ �S1 where S1 := XQ1i>0Q1i : (7.17)We �x one of the windows at r1e� = 0 and onsider a path that goes though it. We haveThe Band Restrition Rule:The Wilson line braneW(q1; :::; qk) an be transported smoothly aross the phase boundaryif and only if the inequality � S12 < �12� + q1 < S12 (7.18)holds in the window. The same an be said for a omplex of Wilson line branes W(~qi)or a matrix fatorization of the superpotential: eah q1i must obey the inequality (7.18) inthe window.There is no ondition on q2; :::; qn. For a hoie of window, this selets a band of width141



S1 in the lattie of harge vetors. For example, let us onsider the two parameter model(Example (C) in Setion 4.4), and look at the boundary between Phase I and Phase IV.The unbroken subgroup is the original U(1)1, with the number S1 = 4. If we hoose thewindow 0 < �1 < 2� at r1e� = r1 � 4 log 4 = 0, r2 � 0, then the band is f(q1; q2) j q1 =�2;�1; 0; 1g as shown in Figure 21 (left). The Figure also shows a sample of bands at
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Figure 21: Examples of bands in the two parameter model.other phase boundaries; the I-II or III-IV boundary (middle) and the II-III boundary(right).7.4 The Nature Of The RuleThe above derivation of the grade/band restrition rule is ertainly onerned withthe transport of D-branes in a linear sigma model with �nite gauge oupling e whih isformulated on a worldsheet of �nite (spatial) volume.In fat, the e�etive boundary potential (7.12) as well as the e�etive boundary harge(7.13) eases to be valid if we take the in�nite oupling or in�nite volume limit. Thevalidity of a perturbative treatment of the gauge interation that leads to these expressionshad been analyzed in Setion 6.9. Here we would like to disuss it from a di�erentperspetive. As before, we onsider the strip of width L. There is a bulk ontribution tothe total energy Ebulk = e2L2 r2e� + e2L2 � �2� + qb�2 : (7.19)The seond term is the eletrostati energy: qb is the harge at the (right) boundarythat determines the value of the eletri �eld via the Gauss law. The boundary hargeqb an be hanged if we hoose a di�erent state from the matter setor. Suh a hangemay redue the eletrostati energy Ees , but it may inrease the energy of the matter142



setor at the same time. The e�etive potential and harge are obtained by �nding theon�guration that minimizes the total energy. The results (7.12) and (7.13) are obtainedby ignoring the ontribution of Ees in the minimization problem. That is valid when theexitation energy in the matter setor is muh larger than the possible hange in Ees bythe hange of boundary harge. The separation of the energy levels is of order j�j forosillating modes and jRe(�)j for deaying modes. Thus, the region of validity isjRe(�)j � e2L: (7.20)This is indeed the same as the ondition (6.95) we obtained earlier. In the opposite regime,jRe(�)j � e2L, while j�j is still muh larger than the gauge oupling e, the eletrostatibulk energy Ees is muh more important than the boundary potential. Then, the state inthe matter setor must be suh that the boundary harge qb minimizes the eletrostatienergy. Thus, \the singular line" of purely imaginary �, whih played the ruial rôle forthe grade/band restrition rule, is atually a singular band of width � e2L. This bandspreads over the entire �-plane if we take the in�nite volume limit L ! 1 or in�nitegauge oupling limit e!1, or any limit that sends e2L to in�nity.The key question is what is the rule of D-brane transport in a theory formulated on aworldsheet of in�nite volume, or in the onformal �eld theory to whih the linear sigmamodel ows to in the infra-red limit. Does the grade restrition rule still hold? Is theresome phase transition that is not visible at �nite volume and �nite gauge oupling?A similar issue was disussed in the bulk theory [2℄ onerning the meaning of theCoulomb branh analysis to the phase transition in the in�nite volume system. It was�rst noted that the existene of a phase transition depends on the partiular path inthe multi-parameter spae of theories. Then the fous was onentrated on the pathsinside onformal �eld theories for whih we know the answer from mirror symmetry. Itwas argued that the �nite volume and �nite oupling theory is enough to �nd all possiblesingularities of the onformal �eld theories: if the singularity is purely due to the vanishingof the Coulomb branh potential (Ebulk above), then the potential only seems to grow inthe infra-red limit e!1 if that was non-zero for �nite e and �nite L. The only possibleproblem in this argument was the onit of the ondition j�j � e for the Coulomb branhanalysis and the infra-red limit e!1.The situation is muh more subtle in the boundary theory. It is ertainly the ase thatthe existene of a singularity depends on the partiular path in the multi-parameter spaeof theories. The grade/band restrition rule is derived for the path in the (r; �) spae at�xed, �nite values of e and L: there is no singularity in the transport of the brane if andonly if any of the boundary harges of the brane is inside the grade/band restrition range143



(7.15) or (7.18). Does it tell something about transport of the orresponding onformallyinvariant brane in the orresponding family of onformal �eld theories? For branes withharges outside the grade/band restrition range, the answer is simple. We do not evenhave a family of boundary onformal �eld theories from suh a family of linear sigmamodel branes. This is so as long as they are de�ned as the infra-red limit of boundaryQFTs with �nite e and �nite L. The grade restrition rule is valid as long as e2L is �nite,no matter how large it is. There is a problem already at �nite volume and �nite oupling,and hene there is nothing to study.Things are non-trivial for branes with harges inside the grade/band restrition range.First of all, we do have a family of boundary onformal �eld theories from suh a linearsigma model brane. The question is then whether there is a singularity along the way.There is no ompelling argument like the one for the bulk theory that shows the non-existene of a singularity. On the ontrary, it is expeted that there are singularities ormore appropriately transition points. We know many examples of D-brane deays whenthe losed string bakground is dialed through walls of marginal stability: on one side ofthe wall the brane is stable and on the other side it deays to, say, two stable D-branes.From the worldsheet point of view, the point of marginal stability an be regarded as atransition point in the family of boundary onformal �eld theories. Thus, it is not thatthere is no singularity if the grade/band restrition rule is obeyed. But it is that a graderestrited brane provides a family of boundary onformal �eld theories. It provides uswith a starting point to study stability and D-brane deay.7.5 The Full Boundary ConditionsLet us expliitly write down the boundary onditions on the bulk �elds. For the Wilsonline brane W(q) in a U(1) gauge theory, the Lagrangian submanifoldIm(�) = 0is in the admissible region as long as (r; �) is in the strip domain �S2 < �2� + q < S2 ,�1 < r <1. Thus, we take it as a part of the boundary ondition of the vetor multiplet�elds. The boundary onditions on other omponent �elds, (7.3), read �+ + �� = 0 and�1Re(�) + v01 = 0. Atually, we may take v1 = 0 as an extra ondition sine its N = 2Bvariation is proportional to that of Im(�). In this way, we �nd the following set of
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boundary onditions Im(�) = 0;�+ + �� = 0;�1(v0 � Re(�)) = 0;v1 = 0: (7.21)Another set of onditions follows from the Gauss law onstraint:� 1e2 v01 = � + 2�q;�1(�+ � ��) = 0;�1(D + �1Im(�)) = 0: (7.22)If we use (7.21), the onditions on the matter hiral multiplet �elds (5.37) simplify to�1� = 0; + =  �;�1( + +  �) = 0;F = 0: (7.23)These are the full set of boundary onditions on the bulk �elds. These are invariant underthe N = 2B supersymmetry and are ompatible with the variational equation.At a point (r; �) away from the strip domain, only one half of the line Im(�) = 0 is inthe admissible region. As we have disussed, the two asymptoti lines of L must be onthe opposite sides of the singular line � = �ij�j. Thus, we take L to be the one obtainedfrom Im(�) = 0 by rotating one of the asymptoti lines so that it is in the admissibleregion. This is possible as long as re� 6= 0. In partiular, for r � 0 or r � 0, we an takeL to be very lose to the real line Im(�) = 0. The other set of onditions (7.22) an stillbe imposed. For the matter setor, we need to use the original ondition (5.37) for thepart of L away from Im(�) = 0.Remarks(i) The ondition on the matter �elds (7.23) is idential to the ultra-violet boundaryondition (5.38). At this moment we do not know the signi�ane of this observation.One possibility is that the e = 0 ultra-violet theory an be used to study some of theproperties of the grade restrited branes. Indeed, as we will see in later setions, the e = 0theory provides orret results for the spae of hiral ring elements for any pair of graderestrited branes. 145



(ii) When there are bulk and boundary interations from the superpotential W andthe tahyon pro�le Q, the variational equation is hanged and the boundary onditionsshould be modi�ed. However, we an still use the above boundary onditions as long aswe treat these interations as perturbations. Reall the remark on this approah given inSetion 5.5. Here, we would like to omment on the treatment of the Gauss law. Supposea brane onsists of more than one Wilson lines with various di�erent harges qi. TheGauss law onstraint shows that the bulk �elds obey di�erent boundary onditions fordi�erent Chan-Paton omponents of the same brane. This may look strange at �rst sightbut a moment of reetion reveals that there is nothing wrong, at least in perturbationtheory. In the path-intergal formalism, we expand the path ordered exponential into aDyson series. Eah term of the series is a produt of matries of the form ��(v0�Re(�)), i�iQ, fQ;Qyg, et, whih are inserted at points of the worldsheet boundary. These pointsseparate the boundary into segments | eah segment orresponds to one of the Chan-Paton omponents. Then, it is simply that we impose di�erent onditions on di�erentparts of the worldsheet boundary. In the operator formalism, the situation is even learer.The Chan-Paton spae is already a part of the quantum Hilbert spae | an open stringwavefuntion is a produt of the bulk part and the Chan-Paton fator. It is simply thatthe bulk �elds obey boundary onditions that depend on the Chan-Paton fator.(iii) That one an take an extra ondition v1 = 0 is a speial feature of the Lagrangiansubmanifold Im(�) = 0. In fat a similar property is possessed by the singular lineRe(�) = 0on whih the deaying modes from the matter setor beome zero modes. One an takean extra ondition v0 = 0, sine its N = 2B variation is idential to that of Re(�) (thatis why the ombination v0 � Re(�) is supersymmetri). The N = 2B invariant set ofonditions inluding these is Re(�) = 0;�+ � �� = 0;D + �1Im(�) = 0;v0 = 0: (7.24)This may be ompleted by another set of onditions:�1(�+ + ��) = 0;�1(v01 + �1Re(�)) = 0;�1Im(�) = 0: (7.25)In fat, (7.21) and (7.24) are the only possible N = 2B invariant sets that inlude two146



independent equations of the form f = 0 and gv0 + hv1 = 0 where f; g; h are real valuedfuntions of � and �. We do not yet understand the signi�ane of this observation.8 Non-Compat ModelsIn this setion, we ahieve our main goal of the paper: using linear sigma models, weonstrut parallel families of D-branes over regions of the K�ahler moduli spae MK thatenompass various di�erent phases. The key result of the previous setion, the grade (orband) restrition rule, plays the most important role in the onstrution. This setionfouses on models without superpotential, whose low energy theories are non-linear sigmamodels on tori Calabi-Yau varieties, possibly with orbifold singularities.In Setion 8.1 we study how D-branes of the linear sigma model desend to the lowenergy theories deep inside the phases of the K�ahler moduli spae. We proeed in twosteps: First, we determine the low energy boundary interation of a given omplex ofWilson line branes (5.20). Seond, we take into aount D-term deformations and brane-antibrane annihiliation, named D-isomorphisms in Setion 3, whih do not hange thelow energy behaviour of boundary interations.In Setion 8.2, we apply the grade (or band) restrition rule and transport D-branesalong paths that onnet adjaent phases, ahieving our main goal of the paper. As aonsequene, this leads to one to one orrespondenes between D-isomorphism lasses ofD-branes at di�erent phases. Mathematially, this results in equivalenes of the derivedategories of di�erent tori varieties.As an appliation, we obtain an honest understanding of D-brane monodromies asso-iated to losed loops in K�ahler moduli spae, whih we shall onsider in Setion 8.3. InSetion 8.4, we demonstrate the power of onstrution in typial examples: the (loal) optransition and the MKay orrespondene. In Setion 8.5, we disuss families of D-branesover the entral region of the moduli spae where multiple phase boundaries meet. We�nd a simple onstrution whih works under a ertain ondition.8.1 Low Energy Boundary ConditionsWe �rst study the low energy behaviour of D-branes of the linear sigma model, assum-ing that we are deep in some phase in the K�ahler moduli spae where the gauge groupis broken either ompletely or to its disrete subgroup. At energies well below the gauge147



oupling e, the theory redues to the bottom of the salar potential, the vauum manifoldXr = (CN � �r)=TC, possibly with orbifold points. Thus, we are interested in how thelinear sigma model branes desend to D-branes in the non-linear sigma model on Xr.The low energy limit is ahieved by the limit e!1, in whih the vetor multiplet losesthe kineti term in the bulk. The auxiliary �eld D beomes a Lagrange multiplier �eldthat imposes the D-term equation stritly. The omponents v� and � beome auxiliary�elds and the e�et of elimination is to set them equal to their lassial values, see (4.12)-(4.14). We laim that, under appropriate boundary ondition on the vetor multiplet,this piture remains the same also in the presene of a boundary with the boundaryinteration (5.5) or (5.7) that inludes D, v� and �. For onreteness, we onsider a U(1)gauge theory formulated on the left-half plane, S = f(t; s)js � 0g, and put the Wilsonline brane W(q) at the boundary.We �rst note that D and v1 appear only in the boundary ounter term S:t:g for thegauge kineti terms, see (5.2) and (5.7). As we have disussed in Setion 7.1, the boundaryondition for the gauge multiplet �elds are hosen so that this ounter term vanishes.Thus, D and v1 do not appear in the boundary interation. In partiular, the e�et ofintegrating them out remains the same as in the bulk: impose the D-term equation asa onstraint and set v1 equal to the lassial value (4.13). The part of the ation thatdepends on v0 is12� ZS�v20j�j2 � 2iv0  ���!t�� v0( + + +  � �)� dtds� 12� Z�S(� + 2�q)v0dt= 12� ZS�v20j�j2 � 2iv0  ���!t�� v0( + + +  � �)� (� + 2�q)v0Æ(s)�dtds:For simpliity of notation, we onsider only a single harge 1 matter �eld. Completingthe square and integrating out v0, we are left with� 12� ZS 1j�j2 �i� ���!t�+ 12( + + +  � �) + 12(� + 2�q)Æ(s)�2 dtds= � 12� ZS 1j�j2 �i� ���!t�+ 12( + + +  � �)�2 dtds� 12� Z�S�(� + 2�q)�i� ���!t�+ 12( + + +  � �)�+ 14(� + 2�q)2Æ(0)�dt:The e�et is simply to set v0 equal to the lassial value of the bulk theory (4.12), exeptthat we aquire the boundary term that involves Æ(0). This looks problemati. For �
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integration, we �nd12� ZS��j�j2j�j2 �  �� + �  +� � + (� + 2�q)Re(�)Æ(s)�dtds�! 12� ZS 1j�j2 j + �j2dtds� 12� Z�S�(� + 2�q)12( � + +  � +)� 14(� + 2�q)2Æ(0)�dtAgain, we �nd the unwanted Æ(0) at the boundary. However, we notie that it has theopposite sign and exatly the same absolute value ompared to the Æ(0) term from thev0-integration. Thus, they ompletely anel out. This anellation ours preisely whenboth v0 and Re(�) are unonstrained at the boundary. And this is indeed the type ofboundary onditions we impose, as we have disussed in Setions 7.2 and 7.5. Otherwise,we may need to keep an unanelled Æ(0) in the low energy theory. Our hoie of boundaryonditions saves us from suh a ompliation. The appearane of Æ(0) at the boundaryfrom elimination of auxiliary �elds was found earlier in [69℄ where the signi�ane of suha term to supersymmetry is disussed.To summarize, the e�et of intergrating out v0 and � also remains the same as in thebulk: set them equal to their lassial values (4.12), (4.14). Aordingly, the boundaryinteration for the Wilson line brane W(q) =W(q1 : : : qk) is expressed asAt = kXa=1 qa�(va)0 � Re(�a)� = _xIA(q)I (x)� i4F (q)IJ (x) I J ;where the term _xIA(q)I (x) is the pull-bak of the onnetion on the holomorphi line bundleO(q) = O(q1; : : : ; qk) over Xr. This is nothing but the boundary interation for the D-brane in the non-linear sigma model supporting the line bundle O(q), see (2.7). Thus, we�nd that the Wilson line brane desends to the brane supporting the line bundleW(q1; : : : ; qk) �! O(q1; : : : ; qk):Things are as simple as this also for more general branes, diret sums of Wilson line branesW = �iW(qi) with interation Q. The orresponding boundary interation (5.12) diretlydesends to the boundary interation (2.28) of a D-brane in the non-linear sigma model,assoiated with the vetor bundle E = �iO(qi) with onnetion A = diag(A(qi)) andtahyonT = iQ�iQy. The R-symmetry also desends straightforwardly. Thus, the gradedD-brane B = (V; Q; �; R) diretly desends to the graded D-brane B = (E;A;Q;R). Inother words, a omplex of Wilson line branes,C(B) : � � � dj�1�!Wj�1 dj�!Wj dj+1�!Wj+1 dj+2�! � � �149



withWj = �nji=1W(qij), beomes a omplex of holomorphi vetor bundles over the targetspae Xr, C(B) : � � � dj�1�! E j�1 dj�! E j dj+1�! E j+1 dj+2�! � � � ; (8.1)where the omponent of R-degree j is a diret sum of line bundles, E j = �nji=1O(qij).In the above disussion, we have assumed that Xr is smooth, but everything goesthrough in the presene of orbifold loi as well, provided we onsider a part of the gaugeharges (q1; :::; qk) as the data of the orbifold group ation on the Chan-Paton fatorsrather than the data determining the vetor bundle with onnetion. When Xr an berealized as a global orbifold of a spae X 0r, we may regard O(q1; :::; qk) as an equivariantline bundle over X 0r. In general, the orret mathematial name for it is a line bundleover the quotient stak [(CN ��r)=TC℄, but not a sheaf over the algebrai varity Xr (see[70℄ and Setion 9). In what follows, somewhat loosely we all suh objets simply \linebundles or vetor bundles over the tori variety Xr".Let us introdue some notation. We denote by D(CN ; T ) the set of graded D-branesin the linear sigma model. We denote by D(Xr) the set of graded D-branes in the lowenergy theory with target spae Xr. The map of D-branes obtained above is denoted by�r : D(CN ; T ) �! D(Xr): (8.2)In the following, we shall indiate the degree 0 omponent of a omplex by underlining it,E0 = E , when there is a room of onfusion. Also, a omplex onsisting of a single vetorbundle E at R-degree j will be denoted by E [�j℄. For the one at degree 0, we may simplydenote it by E when there is no room of onfusion.D-isomorphismsLet us now apply the onepts that are introdued in Setion 3 to D-branes in thelow energy theory. Namely, we regard D-branes to be isomorphi in D(Xr) (or simplyD-isomorphi) if they are related by a ombination of D-term deformations and brane-antibrane annihilation. Isomorphi D-branes in D(Xr) ow to the same infra-red �xedpoint, although the onverse is not true in general. The map (8.2) is therefore the op-eration of modding out D-branes of the linear sigma model by D-isomorphism relations.In what follows, we study suh isomorphism relations and see how they depend on thephases of the K�ahler moduli spae.Reall from Setion 3 that D-isomorphisms an be haraterized as follows. For twoD-branes in the linear sigma model, B1 and B2, a D-isomorphism of the image D-brane150



in D(Xr) may be represented by a degree 0 map ' in the linear sigma model whose oneQC(') =  �Q1 0' Q2 !has positive de�nite boundary potential, fQC('); QyC(')g > 0, everywhere on Xr. Notiethat everywhere-positivity of the boundary potential depends heavily on the deleted set�r, whih is determined by the bulk D-term equation. This is how the D-isomorphismrelations of linear sigma model branes depend on the phase that we are in.Let us illustrate the dependene in Example (A) with N = 3, namely, U(1) gaugetheory with �elds P;X1; X2; X3 of harge �3; 1; 1; 1 respetively. The model has twophases, r � 0 and r � 0. The deleted sets are�+ = fx1 = x2 = x3 = 0g; in the r � 0 phase;�� = fp = 0g; in the r � 0 phase:Let us onsider the D-brane, B+, given by the omplex1C(B+) : W(�1)  x1x2x3!�����!W(0)�3  0 �x3 x2x3 0 �x1�x2 x1 0 !�����! W(1)�3 (x1;x2;x3)�����!W(2): (8.3)The boundary potential isfQ+; Qy+g = �jx1j2 + jx2j2 + jx3j2� � idV+: (8.4)In the low energy theory of the positive volume phase r � 0, the potential is stritlypositive sine the point x1 = x2 = x3 = 0 is deleted. As a onsequene omplete brane-antibrane annihilation takes plae: B+ is D-isomorphi to the empty brane,�+(B+) �= 0:On the other hand, we may view B+ as a result of binding two D-branes,C(B1) : W(�1) X�!W(0)�3 X�!W(1)�3 and C(B2) =W(2);by the right-most map ' = (x1; x2; x3) in (8.3), via the one onstrution. Then, thepositivity of fQ+; Qy+g tells us thatB1 andB2 determine isomorphi low energy D-branesin D(Xr): �+(B1) �= �+(B2):1In the following we use the short-hand notation W(�1) X�! W(0)�3 X�! W(1)�3 X�! W(2) forKoszul-like omplexes (8.3). 151



Let us next study these branes in the negative volume phase r � 0, where the deletedset is �� = fp = 0g and the low energy theory is the free orbifold X� = C3=Z3.Now the xi's are allowed to vanish at the same time, and hene the boundary potentialfor B+ is no longer positive everywhere. In fat, the D-brane B+ desends diretly tothe frational D-brane (see Setion 3.2), Op(2), whih is loalized at the orbifold pointp = fx1 = x2 = x3 = 0g, ��(B+) �= Op(2):Moreover, we �nd that ��(B1) and ��(B2) are not isomorphi in D(X�).A omplementary example is provided by the omplexC(B�) : W(q+3) p�!W(q);for some q 2 Z. The assoiated boundary potential is fQ�; Qy�g = jpj2 � idV�. In theorbifold phase, r � 0, it is positive everywhere, and hene the image ��(B�) is empty inthe infra-red limit. This an also be interpreted as the D-isomorphism��(W(q+3)) �= ��(W(q)); (8.5)whih reets the breaking of the gauge group U(1) to the disrete subgroup Z3. On theother hand, at large volume the boundary potential fQ�; Qy�g vanishes at the p = 0 lous| the exeptional divisor E �= CP2, so that we �nd�+(B�) �= OE(q);where OE(q) is the line bundle supported on E equipped with the restrition of the gaugeonnetion of the line bundle O(q) over X+. Of ourse, the D-branes �+(W(q+3)) = O(q+3) and �+(W(q)) = O(q) are not isomorphi in D(X+). The \di�erene" is representedby OE(q).Let us summarize our �ndings on the low energy behaviour of D-branes deep insidethe phases of the linear sigma model. As we have seen expliitly in our examples, thereare phase dependent low energy relations among D-branes. In a general model with gaugegroup T = U(1)k, there are a multitude of phases, and we have a pyramid as depitedbelow. The maps �I; �II; : : : are projetions that mod out the linear sigma model branes bythe low energy D-isomorphism relations. And the D-isomorphism relations are governedby the deleted sets �I;�II; : : : , whih determine the vauum manifolds XI; XII; : : : andhene the tahyon ondensation patterns in the respetive phases.152
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8.2 Crossing Phase Boundaries By Grade (Band) RestritionRuleLet us now onsider the problem of transporting D-branes bak and forth betweendi�erent phases, along paths that ross the phase boundaries. It would be a hard task ifwe tried to do this diretly within the infra-red onformal �eld theory. Going away fromthe large volume limits there are huge perturbative as well as non-perturbative orretionsthat will ompletely blur the geometri piture of D-branes, and we do not really havea good or onvenient desription of the low energy theories near the phase boundaries.Linear sigma models allow us to irumvent this problem: they provide us with a simpleand expliit UV-desription of the bulk theory over regions of the moduli spae inludingthe phase boundaries. The grade restrition rule allows us to extend this advantage todesription of D-branes. Together with the tahyon ondensation pattern that we justfound, it will provide a beautiful solution to the problem of D-brane transport arossphase boundaries.The �rst step is to lift a given D-brane in the low energy theory to a D-brane inthe linear sigma model. Let us denote suh a lift of the boundary interations by !r :D(Xr) ! D(CN ; T ). By de�nition the omposition �r Æ !r has to map a brane to anisomorphi brane, symbolially, �r Æ!r �= idD(Xr). For an arbitrary D-brane in D(Xr), theexistene of a lift to D(CN ; T ) is guaranteed, beause any omplex of vetor bundles isD-isomorphi to a omplex of the form (8.1). (See Setion 9 for this point and extensionto omplexes of oherent sheaves.) In view of the isomorphism relation of D-branes inD(Xr) through D-term deformations and brane-antibrane annihilation, we notie that!r is highly ambiguous, i.e., for any B 2 D(Xr) there are in�nitely many D-branesB 2 D(CN ; T ) with the property that �r(B) �= B. However, as long as we transport theD-brane along a path in K�ahler moduli spae that stays within a given phase, the tahyonondensation pattern does not hange, and any D-brane B suh that �r(B) �= B will doas a lift. 153



However, when we move to another phase, the tahyon ondensation pattern doeshange. Then, a di�erent lift ould result in a di�erent transport. And that is indeed thease! In fat, we already know plenty of examples that learly exhibits the dependeneon the hoie of lift. Let us onsider Example (A) with N = 3. In the positive volumephase r � 0, we may lift an empty brane in D(X+) to an empty brane in the linearsigma model or to the brane B+ that was de�ned in (8.3). In the negative volume phaser � 0, the empty brane of ourse desends to an empty brane in D(X�) but the braneB+ desends to the frational brane Op(2) whih is not empty in the infra-red limit. Asanother example, the brane O(q) 2 D(X�) may be lifted to W(q) or W(q + 3) but theirimages in the positive volume phase are ompletely di�erent, O(q) 6�= O(q + 3) 2 D(X+).We now enounter the problem disussed in Setion 3.5: the parallel transport of D-branes does not seem to preserve the D-isomorphism lasses. What does this mean? Dothe D-isomorphism relations break down somewhere along the way? This is the pointwhere the grade (band) restrition rule omes to the resue: It is simply that some ofthe linear sigma model branes annot be transported to the other phase, in the sensedesribed in Setion 7.3. It is not the D-isomorphism relation but the transport itself thatbreaks down.Suppose that Phase I and Phase II share a phase boundary, and let us �x a window win the spae of FI-theta parameters for paths that onnet the two phases. The window wde�nes the subset T wI;II � D(CN ; T ) onsisting of grade (or band) restrited D-branes, andin fat only the D-branes therein an smoothly get through. Hene, in order to be ableto transport a low energy D-brane B along a path that passes through the window w, wehave to make sure that it is lifted to a grade (or band) restrited D-brane B, i.e., we needa lift !wI;II : D(XI)! T wI;II suh that �I Æ !wI;II �= idD(XI). For the transport in the oppositediretion, we need the orresponding lift with I and II exhanged. Diagramatially, wean assoiate the following hat diagram to the phase boundary with window w:D(CN ; T )[T wI;II
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� JJJJ℄!wI;II !wII;ID(XI) D(XII) (8.6)It is not a priori lear whether the map !wI;II to the subset T wI;II exists for every D-brane inD(XI). And even if it exist, it may not be unique. We will mathematially prove that itindeed exists in the next setion, but for now we illustrate the main point by examples.154



As we will see, for the ase T = U(1), where the grade restrition rule applies, the liftis also unique up to deoupled additon of trivial brane-antibrane pairs with ompletetahyon ondensation. For the higher rank ase, T = U(1)k with k > 1, where the bandrestrition applies, the uniqueness of the lift is lost. However, this is not harmful in thatthe ambiguity does not matter one we ompose the lift with the projetions �II or �I.Namely, the omposite mapsFwI;II : D(XI) !wI;II�! T wI;II �II�! D(XII);FwII;I : D(XII) !wII;I�! T wI;II �I�! D(XI);indue maps of D-isomorphism lasses of branes that do not depend on the hoie of lifts.In partiular, they are inverses of eah other,FwII;I Æ FwI;II �= idD(XI); FwI;II Æ FwII;I �= idD(XII):Let us illustrate the main points using Example (A) with N = 3. The singular pointson the FI-theta parameter spae are (r; �) = (3 log 3; � + 2�n) (n 2 Z). Let us hoosethe window w = f�� < � < �g at the phase boundary r = 3 log 3. The orrespondinggrade restrition rule on the Piard lattie Z is Cw = f�1; 0; 1g and hene the subset T wis generated by W(�1); W(0); W(1):We start at positive volume, r � 0, with the holomorphi line bundle O(2) over X+. Themost na��ve lift to the linear sigma model is the D-brane C(B2) = W(2); but, as we haveseen previously, the D-braneC(B1) : W(�1) X�!W(0)�3 X�!W(1)�3also satis�es �+(B1) �= O(2). In fat, there are in�nitely many D-branesB with �+(B) �=O(2). However, among those the D-brane B1 is speial in that it is an objet in the graderestrited subset T w, whereas, for instane, B2 is not. We onlude that B1 is the rightrepresentative to ross the phase boundary through the window w. After arriving atthe orbifold phase, r � 0, we apply the projetion �� to B1 and obtain the low energyD-brane in D(X�): O(�1) X�! O(0)�3 X�! O(1)�3:This is the result of transporting the D-brane O(2) 2 D(X+) through the window w.We next start at r � 0, with the equivariant line bundle O(2) over C3. Again thisan be lifted to in�nitely many branesW(2+3n), n 2 Z, but only one of them,W(�1), is155



in the grade restrition range. Thus, the transport of O(2) 2 D(X�) through the windoww results in O(�1) 2 D(X+).As another example, let us onsider the frational brane Op(2) 2 D(X�). We havefound in (8.25) that its na��ve lift is the brane B+ given in (8.3). However, the rightmostentry, W(2), is not in the grade restrition range. But we an replae B+ byW(�1) X�!W(0)�3 X�!W(1)�3 pX�!W(�1)using the D-isomorphism relation p : W(2) �=�! W(�1) in the r � 0 phase. This newD-brane an be transported safely through the window w, and we obtain the D-braneO(�1) X�! O(0)�3 X�! O(1)�3 pX�! O(�1) as the large volume image of Op(2).The key step is to �nd a lift of a low energy D-brane to the grade restrited subsetin the phase of the starting point. How an we �nd suh a lift in general? It is alwayspossible to �nd some lift to a omplex of Wilson line branes in D(CN ; T ), but that maynot be grade restrited. The point is that this omplex an always be hanged into a graderestrited one by binding infra-red empty D-branes to it, so that the D-isomorphism lassis preserved. In the r � 0 phase, one an do so using the D-branesW(n) X�!W(n+ 1)�3 X�!W(n+ 2)�3 X�!W(n+ 3) for all n 2 Z: (8.7)By binding these D-branes to the original omplex, we an eliminate the Wilson linebranes W(q) whose harges are too large or too small, and we an repeat this proedureuntil the resulting omplex �ts into the grade restrition range. The omplex (8.7) hasthe right length so that one an make sure that the proess of dereasing or inreasingthe harges does not overshoot. In the r � 0 phase, the same rôle is played byW(n) p�!W(n� 3):Let us desribe the orresponding empty branes in the general one-parameter modelwith the �elds X1; :::; Xl, arrying positive harges Q1; :::; Ql, and the �elds Y1; :::; Yl0,arrying negative harges �Q01; :::;�Q0l0 . In view of the Calabi-Yau ondition (4.15) wehave Pki=1Qi = S = Pl0j=1Q0j. In the r � 0 phase, any D-brane B an be brought intothe grade restrition range by using the Koszul omplexK+ : W(0) X�!W+ X�! ^2W+ X! � � � X! ^l�1W+ X�! ^lW+ =W(S) (8.8)and its shifts K+(n), where W+ := �li=1W(Qi). In the r � 0 phase, this an be doneusing the Koszul omplexK� : W(0) Y�!W� Y�! ^2W� Y! � � � Y! ^l0�1W� Y�! ^l0W� =W(�S) (8.9)156



and its shifts K�(n), where W� := �l0j=1W(�Q0j).In models with higher rank gauge groups, we mentioned that the band restrited liftis not unique but that the non-uniqueness does not matter in the end. Let us illustratethis subtle point using the two-parameter model (C). There are four phases as depitedin Fig. 3. Let us fous on Phases III and IV. We reall the deleted sets there:�III = fx6 = 0g [ fp = 0g;�IV = fx1 = x2 = 0g [ fp = 0g:The unbroken gauge group at the III-IV phase boundary is the subgroup U(1)2 whihhas width S = 2. The asymptoti singular lous in this diretion is at �2 2 2�Z. Let ushoose the window �2� < �2 < 0 for whih the band restrition rule isq2 = 0; 1:Every brane in Phase IV an be lifted to a omplex of Wilson line branes obeying thisband restrition rule. This an be done by reduing or inreasing the harge q2 using theomplex KIII;IV+ : W(0; 0) (x1x2)����!W(0; 1)�W(0; 1) (�x2;x1)����!W(0; 2)or its shifts KIII;IV+ (n;m). They are D-isomorphi to the empty brane in the low energytheory, sine fx1 = x2 = 0g is a part of the deleted set �IV. Similarly, every branein Phase III an be lifted to a omplex of band restrited Wilson line branes using theomplex KIII;IV� : W(0; 0) X6�!W(1;�2);or its shifts KIII;IV� (n;m), whih are empty in the low energy theory sine fx6 = 0g is apart of the deleted set �III. However, in both phases the lift is not unique. The reason isthat there are additional branes that are empty in the low energy theory, i.e.,K : W(0; 0) p�!W(�4; 0)and its shifts K(n;m). One an modify the lift using the latter branes without hangingthe harge q2. From the struture of the deleted sets, this is obviously the only non-trivialambiguity of the lifts in both phases. Now, the point is that this ambiguity is ommonto the two phases. In partiular, it does not matter when the D-brane is projeted downto the low energy theory even after oming to the other side of the phase boundary. (Ofourse, when redued to the low energy theory in a di�erent phase, say Phase I, in whih157



fp = 0g is not a part of the deleted set, modi�ation by K results in a totally di�erentbrane.)This is the general situation. The key point is the relation proved in Setion 4.5:�I = �I;II+ [ (�I \�II)�II = �I;II� [ (�I \�II) (8.10)One an �nd a lift in the band restrition range using the Koszul omplexes assoiatedwith �I;II+ and �I;II� in Phases I and II respetively. There are genuine ambiguities in thelifts but they are from �I \�II and are ommon to both phases. Thus, one an go bakand forth between Phases I and II without worrying about the ambiguity.8.3 MonodromiesNow that we learned a way to transport D-branes aross phase boundaries, we nextstudy transport of D-branes along non-trivial losed loops in the K�ahler moduli spaeMK. This yields an operation known as monodromy.Models With Gauge Group T = U(1)The K�ahler moduli spae of the linear sigma model with a single U(1) gauge group isomplex one-dimensional and has three speial points: the `positive volume limit' r !1,the `negative volume limit' r ! �1, and the singular point te� = 0. We desribe themonodromies around eah of these points.Monodromies around the positive and negative volume limits r ! �1 are ratherstraightforward. They are simple shifts of the theta parameter by �2�. Sine the thetaparameter enters into the boundary interation of the Wilson line brane W(q) in theombination �+2�q, shift of � by �2� is equivalent to the shift of q by �1 while � is keptintat. This shows that the monodromy is a shift in the gauge harge;M�!��2�(E ; Q;R) = (E(�1); Q;R): (8.11)The monodromy around the singular point is less straightforward and hene is moreinteresting. We reall that the simgular point is at et =QiQQii , i.e., at r =PiQi log jQijand � � �S mod 2�Z, where S = PQi>0Qi. Let us onsider a loop that starts from apoint deep inside the negative volume phase r � 0, goes one around the singular pointounter lokwise, and omes bak to the starting point. This an be represented by a158



path in the (r; �) spae as depited in Fig 22 (the �gure is for the ase where S is oddso that the singularity is at � 2 �(2Z + 1)). The path starts at a point in r � 0 and
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Figure 22: A loop around a singular point in MKgoes to r � 0 through a window w0, makes a turn and omes bak to r � 0 throughthe next window w�1. To transport a brane in D(X�) along this path, we �rst lift it toa linear sigma model brane that respets the grade restrition rule of the window w0 andthen move it to r � 0 along the path that goes through w0. One inside the positivevolume phase, using the D-isomorphism relation in D(X+), we swith the linear sigmamodel brane to another one that obeys the grade restrition rule of the window w�1. Andthen we move it bak to the negative volume phase along the path through the windoww�1. This gives the result of the monodromy along the loop around the singular point.Let us illustrate this operation in Example (A) with N = 3. In this example, thewidth S is 3 and the grade restrition rules for some of the windows in Fig 22 areT w�1 = hW(0);W(1);W(2)i;T w0 = hW(�1);W(0);W(1)i;T w1 = hW(�2);W(�1);W(0)i:Let us take a D-brane at the orbifold point in the K�ahler moduli spae, say the Z3-equivariant line bundle O(2) over C3. The lift to the linear sigma model an be givenby W(q) for any q 2 3Z + 2. Sine we �rst go to the positive volume phase through thewindow w0, we must hoose the one in hW(�1);W(0);W(1)i, namely, W(�1). Inside the159



r � 0 phase, we wish to �nd a di�erent linear sigma model brane that is D-isomorphito W(�1) at low energies and lies in the subset hW(0);W(1);W(2)i assoiated with thewindow w�1. In view of the fat that the brane B+ given by (8.3) is D-isomorphi to theempty brane in this phase, we �nd that the omplexW(0)�3 X�!W(1)�3 X�!W(2) (8.12)is the one we wanted. That is, this is the representative that an go through the windoww�1. One we are bak in the r � 0 phase, we an projet it to the low energy theory.In this way, we �nd the monodromy image of O(2) along this loop (let us all it L)ML(O(2)) = O(0)�3 X�! O(1)�3 X�! O(2): (8.13)It is as easy as this in any example.When presented in a slightly di�erent way, the above example leads to a general reipeto determine the monodromy ation. The replaement of W(�1) by the omplex (8.12)in the r � 0 phase an be understood as binding to W(�1) the empty brane B+:W(�1) X�!id& W(0)�3�W(�1) X�!W(1)�3 X�!W(2)One we are bak in the r � 0 phase, we may bind to this the empty brane B�, givenby the omplex W(2) p�!W(�1):W(�1) X�!id& W(0)�3�W(�1) X�! W(2)�W(1)�3 p�!& idX�! W(�1)�W(2)The net result is binding to the original brane W(�1) the brane V given by the omplexW(�1) X�! W(0)�3 X�! W(2)�W(1)�3 p�!& idX�! W(�1)�W(2) (8.14)by the ohain map ' : V!W(�1) that maps the left mostW(�1) identially toW(�1).Collapsing the trivial brane-antibrane pair W(2) id�! W(2), aording to the proedurefrom (3.7) to (3.8), the brane V ould also be presented asV �= W(�1) X�!W(0)�3 X�!W(1)�3 pX�!W(�1):160



Note that the map ' is the only ohain map from V to W(�1), and this is true alsowhen projeted to D(X�). Thus, we �nd that the monodromy image of O(2) 2 D(X�)is simply the bound state with the brane ��(V) via the unique map ��(V)! O(2):ML(O(2)) = Cone���(V)! O(2)�:It is now lear what to do for a general brane B 2 D(X�). We �rst lift it to a braneB in the grade restrited subset hW(�1);W(0);W(1)i and bind a opy of V at eahappearane of the fator W(�1) in B that fails to obey the new grade restrition rulehW(0);W(1);W(2)i. The end result is binding as many opies of ��(V) as the numberof W(�1)'s in B. In fat, for eah W(�1) at R-degree j there is a hiral ring elementHj(��(V);B), and vie versa. (This will beome lear from our onsideration in Se-tion 9.) Thus, we �nd that the monodromy ation is given byML(B) = Cone Mj2ZHj(��(V);B)
 ��(V)[�j℄ �! B! : (8.15)Let us next onsider the monodromy along the same loop but with the opposite orien-tation. The loop goes around the singular point, now lokwise. Let us see what happensto the brane W(�1) again. Sine we �rst go through the window w�1, binding with B�must be done in advane: W(�1)�W(2) & idp�! W(�1):One inside r � 0, we must bind the empty brane B+ before oming bak to r � 0:
W(�1) X�! W(0)�3 X�!

W(�1)�W(2)�W(1)�3 & idp�!& idX�! W(�1)�W(2):The net result is binding the brane V in (8.14) again, but now with an arrow in theopposite diretion | from the given brane W(�1) to V. The monodromy ation on ageneral brane B 2 D(X�) isM�L(B) = Cone B �!Mj2Z Hj(B; ��(V))
 ��(V[j℄))! [�1℄:161



It is obviously the inverse of ML: the ompositions M�L ÆML and ML ÆM�L simply bindan empty brane to a given brane.In the same way, we an study monodromies along loops with a base point in ther � 0 phase, suh as L1 as despited in Fig. 23. The result is again binding the brane V:
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Figure 23: Another loop around the same pointML1(B0) = Cone B0 �!Mj2Z Hj(B0; �+(V))
 �+(V[j℄))! [�1℄;M�L1(B0) = Cone Mj2ZHj(�+(V);B0)
 �+(V)[�j℄ �! B0! :We have seen that the monodromy around the singular point (r; �) = (3 log 3;��) isto bind a ertain number of opies of the brane V. In the r � 0 phase, the brane V (witha shift by 3) redues at low energies toO(2) p�! O(�1) �= OE(�1);the D-brane wrapped on the exeptional divisor E �= CP2 and supporting a non-trivialU(1) gauge onnetion. In the negative volume phase r � 0, it redues toO(�1) X�! O(0)�3 X�! O(1)�3 X�! O(�1) �= Op(2);162



whih is one of the three frational branes. Note also that the monodromies around thesame singular point are desribed more naturally in terms of another brane eV24 W(2)�W(�1) p�!id%X�! W(�1)�W(0)�3 X�!W(1)�3 X�! W(2) 35�= W(2) pX�!W(0)�3 X�!W(1)�3 X�!W(2);if we would like to present the branes using the grade restrited set hW(0);W(1);W(2)irather than hW(�1);W(0);W(1)i. This brane is essentially the same as V, sine �+(V) �=�+(eV[�2℄) and ��(V) �= ��(eV).It is easy to �nd the analogue of V for any model with U(1) gauge group. Considerthe model with �elds X1; :::; Xl and Y1; :::; Yl0 of positive harges Q1; :::; Ql and negativeharges �Q01; :::;�Q0l0. The brane V relevant for the monodromy around the singularpoint is obtained by onatenation of the two Koszul-type omplexes (8.8)-(8.9):V = Cone�K�(S)[�l0℄ �! K+�[�l℄by the identity map of the left-most W(S) of K�(S) to the right-most W(S) of K+. Wemay need to make an appropriate shift in the gauge harge, V(n), depending on thepreise value of the theta parameter. In the positive (resp. negative) volume phase, itredues to a brane wrapped on the lous Y1 = � � � = Yl0 = 0 (resp. X1 = � � � = Xl = 0).In [71℄ it was argued from the spaetime point of view that the monodromy arounda singular point of the moduli spae is governed by binding opies of the D-brane thatbeomes massless at that point. This approah was reast into the language of derivedategory in [72, 73℄ following Kontsevih's suggestion and studied further in [6, 74, 75℄.Our result diretly on�rms a part of this piture: the monodromy around a singular pointis the binding of a brane V. A omparison with Strominger's spaetime piture then tellsus that our brane V is the one that beomes massless at the singular point. In the past,the brane that beomes massless was identi�ed only in the mirror desription | it isthe A-brane wrapped on the vanishing yle. There was not even an attempt to do thisfor B-branes, exept for identi�ation of the Ramond-Ramond harges. This is beausethe usual methods were based on the non-linear sigma model desription, whih ertainlybreaks down near the singularity of the K�ahler moduli spae MK. In the present work,with the input from the spaetime piture, we have diretly identi�ed in the linear sigmamodel desription the B-brane that beomes massless at the singular point. In partiular,the D-brane V in our Example (A) on�rms the results from the mirror omputation ofthe entral harge in [76℄. 163



Our approah to desribe monodromies has a tehnial advantage over the approahthat was previously used in the literature suh as [72, 73, 75℄, whih starts from a formulalike (8.15). From our point of view this formula is a onsequene of a more generalonstrution, i.e., a loop around a singular point must go through two di�erent windows,and hene we must hange the linear sigma model representatives aording to the graderestrition rule. In this proedure, we do not have to ompute the hiral ring spetrumHj(��(V);B) nor to onstrut the one. That is partiularly advantageous in situationswhere Hj(��(V);B) is in�nite dimensional and the formula like (8.15) does not makesense. We will �nd suh examples in models with higher rank gauge group.Multi-parameter ModelsFor models with higher rank gauge groups, T = U(1)k with k > 1, the story isessentially the same, and our approah again provides an eÆient way to �nd monodromiesof loops in the K�aher moduli spae MK.A shift of theta parameters �a ! �a + 2�na at a point deep inside a phase does,as in the U(1) ase, shifts the gauge harges, E ! E(n1; :::; nk). The monodromy of aloop around the singular lous S in an asymptoti diretion an be found as follows. Anasymptoti diretion orresponds to a phase boundary where all but one U(1) subgroupof the gauge group is ompletely Higgsed. The loop an be regarded as a loop in theFI-theta parameter spae of that single U(1) subgroup. Then, we simply apply what wehave done previously in the model with a single U(1) gauge group.Let us illustrate the monodromy around the singular lous S in Example (C). We lookat the asymptoti region orresponding to the III-IV phase boundary, where the unbrokengauge group is the subgroup U(1)2 and the singular lous is at �2 2 2�Z and r2 = 2 log 2.We onsider the loop L as depited in Fig. 24. The band restrition rules at the tworelevant windows are: w�1 : q2 = 0; 1;w0 : q2 = �1; 0:Let us take the brane O(m; 1) in Phase IV. Its lift that obeys the band restrition rule ofthe window w�1 isW(m; 1). Here m ould be replaed by m�4; m�8; et, sine fp = 0gis a part of the deleted set (this applies also to Phase III). This an be moved safelyto Phase III. One inside that phase we swith to a representative that obeys the bandrestrition rule of the next window w0. This is done by binding the omplex KIII;IV� (m; 1)164
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Figure 24: A loop around the singular lous in the two-parameter model (C)introdued in Setion 8.2 to W(m; 1):W(m; 1) x6�!id& W(m+ 1;�1)�W(m; 1) : (8.16)Then, one an move W(m + 1;�1) bak to Phase IV through w0. After doing that, weagain bring it into the form onsisting only of the band restrited Wilson lines W(�; 0)and W(�; 1). This is done by bindingKIII;IV+ (m+ 1;�1) : W(m+ 1;�1) (x1x2)����!W(m+ 1; 0)�W(m+ 1; 0) (�x2;x1)����!W(m+ 1; 1)via the identity map to W(m+ 1;�1). The outome is the total binding ofVm : W(m; 1) x6(x1x2)����!W(m+ 1; 0)�W(m+ 1; 0) (�x2;x1)����!W(m+ 1; 1)to the original brane W(m; 1) via the map Vm !W(m; 1) that sends W(m; 1) in Vm toW(m; 1) by the identity. Thus, we found that the monodromy is given byML(O(m; 1)) = Cone��IV(Vm)! O(m; 1)�:Note that the isomorphism lass of �IV(Vm) depends on m; in fat �IV(Vm) �= �IV(Vm0)if and only if m � m0 modulo 4. This holds in Phase III as well. Thus, for a generalbrane B in Phase IV, the monodromy along the loop L is binding a opy of �IV(Vm) withm = 0; 1; 2 or 3 for eah W(n; 1) in the lift B to T w�1III;IV, where n = m mod 4.165



When we try to write this monodromy ation in the formML(B) = Cone Mm=0;1;2;3Mj2Z Hj(�IV(Vm);B)
 �IV(Vm)[�j℄ �! B! ; (8.17)we run into troubles. This is in view of the fat that in the present situation the D-branes Vm are non-ompat, so that in�nite dimensional spaes of hiral ring elementsappear in (8.17). For instane, H0(�IV(Vm);O(m; 1)) is spanned by the gauge invariantmonomials f1; px43; px33x4; : : :g that map O(m; 1) in �IV(Vm) to O(m; 1), whereas only the�rst element 1 played a rôle in (8.16).This is a quite general feature of multi-parameter models, and the monodromy formula(8.17) is only appliable if the D-branes that indue the monodromy ation are ompatlysupported. As an example the D-branes induing the monodromy at the I-IV phaseboundary of the two-parameter model (C) are of this kind. We want to stress thatour method does not rely on omputing the spetrum, and thus applies to any phaseboundaries in multi-parameter models.8.4 More Examples8.4.1 Flop Transition Of The Resolved ConifoldLet us onsider Example (B), the U(1) gauge theory with four �elds X; Y; U; V whiharry harges 1; 1;�1;�1. It provides a loal model for a op transition. The deleted setsof the two phases r � 0 and r � 0 are�+ = fx = y = 0g; �� = fu = v = 0g:For r � 0 the �elds x; y form the base CP1 and u; v span the �bre, whereas for r � 0 itis the other way around:X+ = 264 O(�1)�2u;v#CP1[x:y℄ 375 op ��! X� = 264 CP1[u:v℄"O(�1)�2x;y 375In view of the deleted sets, we �nd that the branesK+ : W(0) � y�x�����!W(1)�2 (x;y)����!W(2)K� : W(2) � v�u�����!W(1)�2 (u;v)����!W(0)166



are empty at low energies in the r � 0 and r � 0 phases, respetively. The model has asingular point at er�i� = 1.We would like to transport branes bak and forth between the two phases. Let ushoose the window w = f�2� < � < 0g at the phase boundary, for whih the graderestrition rule is given by T w = hW(0);W(1) iIn what follows, we onsider ompatly supported D-branes on one side of the op and�nd what they turn into on the other side.D 2-BranesPhase r � 0: Let us onsider OE+(0) 2 D(X+), the D2-brane wrapped on the zerosetion E+ = fu = v = 0g �= CP1[x:y℄ � X+ and supporting a trivial line bundle. It anbe represented by the omplex of vetor bundlesO(2) � v�u�����! O(1)�2 (u;v)����! O(0): (8.18)A lift to the linear sigma model is obtained by replaing eah line bundle O(q) in thisomplex by the Wilson line brane W(q) | this gives K�. In order to transport it to theother phase r � 0 through the window w, we have to rewrite it as a grade restritedomplex, i.e., we have to replae the Wilson line brane W(2) by something made ofW(0)and W(1). This an be done using the brane K+ whih is empty at low energies in thisphase. Namely, we bind the empty brane K+, written in a di�erent basis, to our braneK� by the ohain map K� ! K+ that sends W(2) to W(2) by the identity:
W(0) (xy)�! W(2)�W(1)�2 ( v�u)�!&id(�y; x)�! W(1)�2�W(2) (u; v)�! W(0) : (8.19)Canelling the trivial pair W(2) id�! W(2) as in (3.7) and (3.8), we obtain the followinggrade restrited representative of OE+(0):C(B1) : W(0) �xy�����!W(1)�2 � yv �xv�yu xu �����! W(1)�2 (u;v)����!W(0) :Another example is provided by the D-brane OE+(�1) 2 D(X+), again wrapped on thezero setion E+, but now supporting a non-tivial line bundle. The na��ve lift is K�(�1),167



but this inludes the Wilson line braneW(�1), whih is outside the grade restrition rule.This time we glue the empty brane K+(�1) by the map K+(�1) ! K�(�1) and thenanel W(�1) id�! W(�1). This leads to the following grade restrited representative ofOE+(�1): C(B2) : W(1) �uv�����!W(0)�2 � yv �uy�vx xu �����! W(0)�2 (x;y)����!W(1) :Phase r � 0: After rossing the phase boundary the tahyon ondensation patternhanged. Now the omplexes K�(n) are trivial branes-antibrane systems, and they anbe eliminated from B1 and B2. For instane, if we restore the identity map in B1 towrite it in the form (8.19) and then eliminate the trivial upper line, we see that one endsup with ��(K+[1℄). This is isomorphi to the D2-brane OE�(2)[1℄ 2 D(X�) wrapped onthe zero setion E� = fx = y = 0g �= CP1[u:v℄. Repeating these arguments for B2 we �ndthe following maps: OE+(0) �+ ��!!w+;� B1 ���! �!w�;+ OE�(2)[1℄ ;and OE+(�1) �+ ��!!w+;� B2 ���! �!w�;+ OE�(1)[�1℄ :We �nd that D2-branes wrapped on the zero setion E+ in one phase are mapped to D2-branes wrapped on the zero setion E� in the other phase. Reall that the R-degree forD-branes redues modulo two to the Z2-degree that distinguishes branes and antibranes.The shifts, by [1℄ resp. [�1℄, of the R-degrees on the right-hand side, therefore, indiatethat the branes on X+ turned into antibranes on X�.D 0-BranesPhase r � 0: Next, we study a D0-brane at a point on E+ � X+, say at p = fu = v =P = 0g, where P = �x+�y and [� :�℄ 2 CP1 parametrizes the loation of the D0-brane.A linear sigma model lift of this D0-brane Op an be realized as the Koszul omplexW(1)  Puv!����! W(2)�W(0)�2  �v 0 Pu �P 00 v �u!�������! W(1)�2�W(�1) (u;v;P )����!W(0) : (8.20)This an be viewed as the D2-brane OE+(0) and the anti-D2-brane OE+(�1)[1℄ oupledby a tahyon proportional to P = �x+ �y:168



W(1) � uv�- W(0)�2 (v;�u)- W(�1)P�����*  0 P�P 0 !����* P�����*� �W(2) ��vu �- W(1)�2 (u; v) - W(0)
We an glue in the trivial Koszul omplexes K+ and K+(�1) in order to anel the WilsonlinesW(2) and W(�1) outside the grade restrition range. For this it is best to write theKoszul omplexes using a new oordinate system (P;Q), where P is as above and Q is anew linear oordinate, so that P and Q annot simultaneously vanish on X+. After thegluing, we have

W(�1) ��QP �- W(0)�2 (P;Q)- W(1).������(0;�id)id����*� �
� 0�id�������W(1) � uv�- W(0)�2 (v;�u)- W(�1)P�����*  0 P�P 0 !����* P�����*� �W(2) ��vu �- W(1)�2 (u; v) - W(0)id����*� �W(0) �PQ�- W(1)�2 (�Q; P )- W(2)

Note that we need to inlude non-zero maps W(1) ! W(1)�2 and W(0)�2 ! W(0) inorder to have a omplex. Eliminating the trivial brane-antibrane pairs W(q) id�! W(q)(there are four of them), we obtain the grade restrited representativeC(Bp) : W(0)  PuQvQ!����! W(1)�W(0)�2  �vQ 0 PuQ �P 00 Qv �Qu!�������! W(1)�2�W(0) (Qu;Qv;P )����! W(1) :Phase r � 0: The transport to the other phase through the window w yields a quiteexoti D-brane in D(X�). There is no way to eliminate trivial brane-antibrane pairs, like(8.18), from Bp by D-term deformations. Moreover, it is not possible to rewrite ��(Bp)as a omplex of ompatly supported D-branes on E�, as one might suspet. The best wean tell about ��(Bp) is that as a omplex of oherent sheaves its non-trivial ohomologyis given by H�1(��(Bp)) �= OE�(2)[1℄ as well as H0(��(Bp)) �= OE�(1), whih is in linewith the result for the D2-branes that we found previously. Atually, we have at handan expliit example of a perverse (point) sheaf. This lass of objets was studied in theontext of op transitions and derived ategories by Bridgeland in [77℄. From the latterpoint of view our example D-brane Bp was investigated in [76℄.169



8.4.2 MKay CorrespondeneSuppose we onsider a linear sigma model whih, in a partiular phase, redues at lowenergies to a free orbifold Xorb �= Cn=� with a �nite subgroup � � SL(n;C). In thepresent ontext of Abelian gauge groups, T = U(1)k, the group � arises as the unbrokensubgroup of T and as suh must be Abelian. In view of the fat that the representation� of T on the Chan-Paton spae desends to a representation of the subgroup �, the lowenergy D-branes on the orbifold are atually given in terms of omplexes of �-equivariantvetor bundles on Cn: D(Xorb) �= D�(Cn):The other phases orrespond to partial or omplete repant1 resolutions, Xres, of the orb-ifold singularity. Transport of branes along a path from Xorb to Xres in the K�ahler modulispae MK leads to a map of low energy boundary onditions up to D-term deformationsand brane-antibrane annihilation:F : D�(Cn) �! D(Xres): (8.21)By onstrution, the hiral setor is preserved under our transports. As remarked ear-lier, the hiral setor of low energy boundary onditions D(Xr) gives rise to the derivedategory of oherent sheaves D(Xr) | the objets are elements in D(Xr) and as themorphisms we only take hiral ring elements. (Note that D(Xr) has smaller informationthan D(Xr). For example, it does not depend on MK at all, while D(Xr) does.) As aonsequene of our map (8.21), we �nd a modern version of MKay orrespondene:Given a �nite Abelian group � � SL(n;C) and a repant resolution Xres of the quotientCn=�, there exists an equivalene of derived ategories:� : D�(Cn) �=�! D(Xres): (8.22)For arbitrary n the equivalene (8.22) was shown (as a speial ase) in [78℄. For n � 3,but � also non-Abelian, it was proven in [4℄. MKay orrespondene was also disussedby physiists in [79, 80℄.We illustrate these maps (8.21) in three examples.1The property `repant' (opposite to `disrepant'), whih says that the anonial line bundle remainstrivial, is ensured by the Calabi-Yau ondition (4.15).
170



(A) Resolution of the orbifold CN=ZNThe simplest example of an orbifold resolution is provided by Example (A), the U(1)gauge theory with the �elds P;X1; : : : ; XN of harge �N; 1; : : : ; 1. The low energy theoryis the orbifold X� �= CN=ZN in the r � 0 phase (the orbifold phase), whereas it is thenon-linear sigma model on the total spae of the line bundle O(�N) over CPN�1 in ther � 0 phase (the large volume phase).We hoose the window w : �N� < � < �N� + 2� at the phase boundary so that thegrade restrition rule is T w = hW(0);W(1); : : : ;W(N � 1) i:We transport branes from the orbifold phase to the large volume phase along a path thatgoes through this window. We �rst onsider the equivariant line bundles O({) 2 D(X�)parametrized by a mod-N integer { 2 ZN . As its lift to the linear sigma model, we takeW(i) where i is the integer in the grade restrition range f0; 1; :::; N � 1g that reduesmodulo N to {. It an be tranported safely to the large volume phase where it desendto the line bundle O(i) 2 D(X+). Thus, we �nd the following transportation rule:Fw�;+ : O({) 7�! O(i); i = 0; 1; : : : ; N � 1: (8.23)Next, let us onsider the frational branes, Op({) 2 D(X�), parametrized again by amod-N integer { 2 ZN . These are D-branes stuk at the ZN -�xed point p = fx1 = � � � =xN = 0g. A lift to the linear sigma model may be realized as the Koszul omplex madeof Wilson line branesB{ : W(i�N) X�! � � � X�!W(i�2)�(N2 ) X�!W(i�1)�N X�!W(i): (8.24)However, for any hoie of i, at least one of the Wilson line branes in this omplex isoutside the grade restrition range. Thus, we must �nd appropriate replaements fromthe subset T w. This is straightforward. In the order of Op(�0),Op(�1), Op(�2),..., Op(N � 1),the grade restrited lifts are given as follows:B0�0 : W(0) X�! � � � X�!W(N�3)�(N3 ) X�!W(N�2)�(N2 ) X�!W(N�1)�N pX�!W(0)B0�1 : W(1) X�! � � � X�!W(N�2)�(N3 ) X�!W(N�1)�(N2 ) pX�!W(0)�N X�!W(1)B0�2 : W(2) X�! � � � X�!W(N�1)�(N3 ) pX�!W(0)�(N2 ) X�!W(1)�N X�!W(2)� � � � � � � � �B0N�1 : W(N�1) pX�!W(0)�N X�! � � � X�!W(N�2)�N X�!W(N�1) (8.25)171



These branes an be transported safely to the large volume. One we are in that phase,we an just redue them to the low energy theory | it is simply to replaeW(q) by O(q).This is essentially the end of the story. We an, however, simplify the result. The pointis that these lifts B0{ an be presented as the bound state of the brane B{ in (8.24) withanother, simpler, brane B00{ that is empty in the low enery theory in the phase r � 0.After being transported to the r � 0 phase, the partB{ in suh a presentation is empty inthe infra-red limit sine fx1 = � � � = xN = 0g is deleted. Thus, we are left with the otherpart B00{ : �+(B0{) �= �+(B00{ ). For example, the last few terms of B0�2 an be presented as:W(0)�(N2 ) X - W(1)�N X - W(2)� �p���* p���* p���*W(N)�(N2 ) �X-W(N+1)�N �X- W(N+2) �� � �idHHHj idHHHj idHHHj� � � X -W(N�1)�(N3 ) X - W(N)�(N2 ) X - W(N+1)�N X- W(N+2)The bottom line is the brane B�2 whih is infra-red empty in the phase r � 0. Theabove two lines form the brane B00�2, whih is infra-red empty in the phase r � 0. Tosee that this is indeed isomorphi to B0�2 (even upstairs in D(CN+1; U(1))), eliminate�rst the leftmost brane-antibrane pair using the standard proedure (from (3.7) to (3.8)).Then the remaining two brane-antibrane pairs simply deouple, thus yielding B0�2. It islear from this example that the attathed brane B00{ for general { 2 ZN is the one ofAi(N) p! Ai, whereAi : W(0)�(Ni ) X�!W(1)�( Ni�1) X�! � � � X�!W(i� 1)�N X�!W(i); (8.26)with i 2 f0; 1; :::; N � 1g. In the low energy theory at r � 0, this brane B00{ beomes thefollowing omplex supported at the exeptional divisor E = fP = 0g �= CPN�1:�+(B00{ ) �= OE(0)�(Ni ) X�! OE(1)�( Ni�1) X�! � � � X�! OE(i� 1)�N X�! OE(i)This is the simpli�ed version of the large volume image of the frational brane Op({).Atually, one an further simplify it using the Euler sequene of CPN�1:0 �! O �! O(1)�N �! TCPN�1 �! 0and its various dual versions, whih show thatO�(Ni ) X�! O(1)�( Ni�1) X�! � � � X�! O(i� 1)�N X�! O(i)is quasi-isomorphi to 
i(i) where 
i is the sheaf of holomorphi i-forms on CPN�1.Therefore, we �nd that the image brane �+(B00{ ) an also be written as 
iE(i)[i℄. To172



summarize, we �nd Fw�;+ : Op({) 7�! 
iE(i)[i℄; i = 0; 1; : : : ; N � 1: (8.27)This is the form that was onjetured to be the large volume image of the frational braneOp({) in the literature [31, 79℄, based on R-R harge, mirror symmetry and mathematialonstrution of the equivalene [4, 81℄. We have �nally proved that onjeture from thepurely worldsheet point of view. Atually, we have proved a preise version: we nowknow that the above orrespondene is with respet to the path through the partiularwindow w. If we had hosen a di�erent homotopy lass of paths, we would have a di�erentorrespondene.(C) A two parameter model

Phase III

Phase IV Phase I

Phase II

Figure 25: Two lasses of route from Phase III to Phase IAs the next example of orbifold resolution, we onsider the two parameter model (C)whih has four phases, inluding an orbifold phase (Phase III) and a large volume phaseof a smooth Calabi-Yau manifold (Phase I). We transport the branes from the orbifoldphase to the large volume phase. The two phases do not share a phase boundary, so thatwe onsider routes through Phase II or Phase IV, rossing two phase boundaries | asdepited in Fig. 25. In either ase, there is an in�nite number of homotopy lasses oming173



from the hoie of a window at eah phase boundary. The unbroken subgroups Tu andthe widths S at the phase boundaries areI-II II-III III-IV IV-ITu f(1; g)g f(g2; g)g f(1; g)g f(g; 1)gS 2 8 2 4At the I-II boundary and the III-IV boundary, we hoose the window w0 : �2� < �2 < 0:At the IV-I boundary we hoose w00 : �4� < �1 < �2�: At the II-III boundary, weonsider two windows w0 : � 10� < 2�1 + �2 < �8�;w1 : � 8� < 2�1 + �2 < �6�:For these windows we �nd the following band restrition rulesCw0I;II = Cw0III;IV = fq2 = 0; 1g;Cw00IV;I = fq1 = 0; 1; 2; 3g;Cw0II;III = f2q1 + q2 = 1; 2; 3; 4; 5; 6; 7; 8gCw1II;III = f2q1 + q2 = 0; 1; 2; 3; 4; 5; 6; 7g:As a �rst exerise, we take the Z8-equivariant line bundle O(�0) in the orbifold phase.It an be lifted to the Wilson-line brane W(a; b) where a and b are any pair of integerssuh that 2a + b = 0 modulo 8. Let us onsider transporting it to Phase III through thewindow w0. The band restrition rule ditates us to hoose a; b suh that 2a + b = 8.Other than that it is arbitrary. Before transporting it to Phase I through w0, we shouldrepresent suh W(a; b) as a omplex of Wilson line branes W(q1; q2) with q2 = 0; 1, usingthe D-isomorphism relations in Phase II. This an be done simply by requiring b = 0 or 1,without using any non-trivial D-isomorphism. In view of the relation 2a + b = 8 it mustbe that b = 0. This uniquely �xes (a; b) = (4; 0). In this way we obtain the transportationrule Fw0II;I Æ Fw0III;II : O(�0) 7�! O(4; 0):If instead we hoose the window w1 at the III-II boundary, we must have 2a + b = 0 inthe �rst step and therefore the transportation isFw0II;I Æ Fw1III;II : O(�0) 7�! O(0; 0):Let us next onsider the route through Phase IV. To ross the III-IV boundary throughwindow w0, we need to band restrit to b = 0 or 1. In the present ase where 2a + b = 0174



mod 8, b must be 0. Before transporting the brane to Phase I through w00, we shouldrepresent it as a omplex of Wilson line branes W(q1; q2) with q1 = 0; 1; 2; 3, using theD-isomorphism relations in Phase IV. Again this is done without any e�ort by simplysetting a = 0 in W(a; 0). This givesFw00IV;I Æ Fw0III;IV : O(�0) 7�! O(0; 0):Notie that Fw0II;I Æ Fw1III;II and Fw00IV;I Æ Fw0III;IV give the same result but Fw0II;I Æ Fw0III;II gives adi�erent one. In fat, this holds for any brane, as an be seen as follows.In the present model, we atually have a grade restrition rule. We notie that theintersetions of the relevant bands are as follows:Cw0III;II \ Cw0II;I = f(0; 1); (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 1); (4; 0)g;Cw1III;II \ Cw0II;I = Cw0III;IV \ Cw00IV;I = f(0; 0); (0; 1); (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 1)g:
q2

q1 q1

q2

Figure 26: The grade restrition rule for the route IIIw0!IIw0!I (Left), IIIw1!IIw0!I (Right),IIIw0!IVw00!I (Right)The key point is that, in any phase, any brane an be written as a omplex of Wilsonline branes with (q1; q2) from either one of the two sets, by using D-isomorphisms in thatphase. For example, in Phase III where the deleted set is �III = fp = 0g [ fx6 = 0g; onean use the D-isomorphismsW(q1; q2) p�!W(q1 � 4; q2); W(q1; q2) x6�!W(q1 + 1; q2 � 2);to bring any (q1; q2) into the �nite set. One that is done, the brane an be transportedsafely along the respetive route. Sine the �nite sets of harges f(q1; q2)g are equal forthe routes IIIw1!IIw0!I and IIIw0!IVw00!I, the transports result in the same brane. The set isdi�erent for the route IIIw0!IIw0!I and hene the map of branes is di�erent.The fat that the two routes, IIIw1!IIw0!I and IIIw0!IVw00!I, give rise to the same map ofbranes may imply that these routes are homopoti to eah other. Indeed they are! To see175



this let us look at the windows w1, w0 and w00 for these routes. Fig. 27 shows the overlapof these windows. Comparing with Fig. 4, we �nd that the overlap preisely mathes
−4π −2π

θ2

θ1
0

−2πFigure 27: Overlap of the windows w1, w0 and w00with the omplement of the Alga of the singular lous S. Note that any point of the algaomplement determines a global setion of the entire plane R2FI of FI parameters (r1; r2)to the K�ahler moduli spae MK = (C�)2 nS. Suh a setion de�nes a homotopy of thetwo routes under onsideration. On the other hand, the overlap of the windows w0, w0and w00 is ontained inside the Alga of S. This means that the attempted homotopy ofthe routes IIIw0!IIw0!I and IIIw0!IVw00!I will interset with the singular lous S and annotreally de�ne a homotopy.These observations have some signi�ane on D-brane transport along paths throughthe entral region of the moduli spae MK, as will be disussed in Setion 8.5.Transport Of The Frational BranesLet us transport the frational branes Op({) of the orbifold C5=Z8 along the routeIIIw1!IIw0!I. As remarked above, we an use the grade restrition rule q1 = 0; 1; 2; 3, q2 = 0; 1for this path. Reall that the frational brane Op(�0) is given byO(�0) X�! R X�! ^2R X�! ^3R X�! ^4R X�! O(�0)where R = O(�1)�2 �O(�2)�3 is the de�ning representation. The other ones Op({) are thetensor produt of this omplex with O({). As a lift of Op(�0) to the linear sigma model,we may take B�0 given by
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W(0; 0) XY���1PPPq W(0; 1)�2�W(1; 0)�3 X YX Y���1PPPq���1PPPqW(0; 2)�W(1; 1)�6�W(2; 0)�3 YXYXY
PPPq���1PPPq���1PPPqW(1; 2)�3�W(2; 1)�6�W(3; 0) YXYXPPPq���1PPPq���1W(2; 2)�3�W(3; 1)�2 YXPPPq���1 W(3; 2)where we use \X" for x1; x2 and \Y " for x3; x4; x5. The lifts of other branes Op({) anbe obtained by tensoring with W(n; 0) if i = 2n and with W(n; 1) if i = 2n + 1, withn = 0; 1; 2; 3. We denote suh lifts by B{.Before transporting it to Phase I, we have to grade restrit the branes. That an bedone simply by multiplying appropriate powers of p and x6 to the arrows. We denotethis grade restrited version of B{ by B0{. For example, for the brane B�0 we replae theupper-right entries W(0; 2),W(1; 2),W(2; 2) by W(1; 0),W(2; 0),W(3; 0) and replae theX's that go into them by x6X. Also, we replae the rightmost entry W(3; 2) by W(0; 0)and substitute the arrows Y , X going into it by pY , px6X. Thus, B0�0 is given byW(0; 0) XY���1PPPq W(0; 1)�2�W(1; 0)�3 x6XYX Y���1PPPq���1PPPqW(1; 0)�W(1; 1)�6�W(2; 0)�3 Yx6XYXY
PPPq���1PPPq���1PPPqW(2; 0)�3�W(2; 1)�6�W(3; 0) Yx6XYXPPPq���1PPPq���1W(3; 0)�3�W(3; 1)�2 pYpx6XPPPq���1 W(0; 0)One that is done and the D-brane is transported into Phase I, we simply go to the lowenergy theory, replaing W(q1; q2) by O(q1; q2). That's all.However, just as in Example (A), we may simplify the image D-branes in the largevolume phase. The strategy is the same: We present the grade restrited liftB0{ as a boundstate of B{ and another brane B00{ that is infra-red empty in Phase III. One transportedinto Phase I, then, this time the part B{ is infra-red empty and we are left with �I(B00{ ).For example, B0�0 desribed in the previous paragraph an be presented as the bound stateof B�0 andB00�0 : W(0; 2) X6Y���1PPPqW(1; 0)�W(1; 2)�3 YX6YPPPq���1PPPqW(2; 0)�3�W(2; 2)�3 YX6YPPPq���1PPPq W(4; 0)�W(3; 0)�3�W(3; 2)

pid-���RYX6PPPq���1 W(0; 0)�W(4; 0)by the mapB00�0 ! B�0 that sends the bottom line of B00�0 with entriesW(�; 2) to the upper-right line of B�0 by the identity maps. Note that B00�0 is infra-red empty in Phase III sineit onsists of x6-Koszul and p-Koszul omplexes. This is why we an replae B0�0 with theabove bound state (whih we denote by eB0�0). On the other hand, B�0 is infra-red empty177



in Phase I with �I = fX = 0g [ fY = x6 = 0g sine it onsists of X-Koszul omplexes.Thus we �nd �I(eB0�0) �= �I(B00�0): Note that B00�0 also inludes a (Y; x6)-Koszul omplex asa part. Dropping them, we are left withO(4; 0) p�! O(0; 0):This is quasi-isomorphi to the sheaf OE(0; 0) supported at the exeptional divisor E =fp = 0g. In this way we �nd that the large volume image of the frational brane Op(�0)is the D-brane wrapped on the divisor E with a trivial line bundle. Repeating the sameproedure we �nd simple representatives of the large volume images of all the frationalbranes Op({): Cone�Ai(4; 0) p�! Ai(0; 0)�where Ai are the omplexes of vetor bundles given below. A0 = O(0; 0);A1 = O(0; 0)�2 X�! O(0; 1);A2 = O(0; 0) ( 0X)�! O(0; 0)�3�O(0; 1)�2 (Y; x6X)�! O(1; 0);A3 = O(0; 0)�6�O(0; 1) �X 0Y x6X��! O(0; 1)�3�O(1; 0)�2 (Y;X)�! O(1; 1);A4 = O(0; 0)�3  0XY !�! O(0; 0)�3�O(0; 1)�6�O(1; 0) �Y x6X 00 Y X��! O(1; 0)�3�O(1; 1)�2 (Y; x6X)�! O(2; 0); (8.28)A5 = O(0; 0)�6�O(0; 1)�3  X 0Y x6X0 Y !�! O(0; 1)�3�O(1; 0)�6�O(1; 1) �Y X 00 Y x6X��! O(1; 1)�3�O(2; 0)�2 (Y;X)�! O(2; 1);
A6 = O(0; 0)�3  0XY !�! O(0; 0)�O(0; 1)�6�O(1; 0)�3  Y x6X 00 Y X0 0 Y !�! O(1; 0)�3�O(1; 1)�6�O(2; 0) �Y x6X 00 Y X��! O(2; 0)�3�O(2; 1)�2 (Y; x6X)�! O(3; 0);
A7 = O(0; 0)�2�O(0; 1)�3  X 0Y x6X0 Y !�! O(0; 1)�O(1; 0)�6�O(1; 1)�3  Y X 00 Y X0 0 Y !�! O(1; 1)�3�O(2; 0)�6�O(2; 1) �Y X 00 Y x6X��! O(2; 1)�3�O(3; 0)�2 (Y;X)�!O(3; 1):
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In partiular, the images are omplexes of sheaves (Ai)E supported at the divisor E (thepushforward of the omplex AijE over E by the embedding map E ,! X).The omplexes Ai for high values of i an be simpli�ed using the X- and the (Y; x6)-Koszul omplexes. In partiular, there is a duality relationAi �= AT7�i(�1; 1)[4℄;where AT is the transpose of the omplex A in whih the dual of the R-degree zeroomponent is de�ned to have R-degree zero. The Chern haraters of AijE areh(A0)jE = 1;h(A1)jE = �1 + L;h(A2)jE = �3 +H � 2L+ 12H2 + 16H3 + 112vE;h(A3)jE = 3�H � 2L� 12H2 +HL� 16H3 + 12H2L + 112vE;h(A4)jE = �3 +H + 2L� 12H2 +HL+ 16H3 � 12H2L + 112vE� e�H+L;h(A5)jE = ��3�H + 2L + 12H2 � 16H3 + 112vE� e�H+L;h(A6)jE = (�1� L) e�H+L;h(A7)jE = e�H+L: (8.29)Here H and L are the �rst Chern lasses of O(1; 0) and O(0; 1) and vE is a volume formof the tori variety E. They obey homology relations L2 = 0, H4 = 2H3L = 2vE, andRE vE = 1.(D) Resolutions Of AN�1 SingularityAs the �nal example, we onsider resolutions of the AN�1 singularity, whih providehistorially the �rst example of MKay orrespondene. We are partiularly interestedin onneting the orbifold phase (11 � � �1) and the fully resolved phase (00 � � �0) via someother phases orresponding to partial resolutions. See Setion 4.4 for the labelling ofphases and remarks on the phase boundaries. We onsider a route that goes through thepartiular sequene of phases:(00 � � �000) ! (00 � � �001) ! (00 � � �011) ! � � �  ! (01 � � �11) ! (11 � � �11)179



We see that there are N phases and (N � 1) phase boundaries. The �rst phase boundaryorresponds to blowing down (up) the right most divisor CN�1 = fx2 = 0g. Applyingthe general rule, we see that the phase boundary in RN�1FI is a domain in the hyperplanespanned by the harge vetors of all xj's but x1; x2; x3. The unbroken subgroup is thereforeT u1 = U(1)1. At the i-th phase boundary, hange ours at CN�i = fxi+1 = 0g and thehyperplane is spanned by all xj's but x1; xi+1; xi+2. The unbroken subgroup isT ui = f(g; g2; g3; : : : ; gi; 1; 1; : : : ; 1) j g 2 U(1) g;whih has width Si = (i+1). Thus, the band restrition rule at the i-th phase boudary is� i + 12 < �1 + 2�2 + � � �+ i�i2� + q1 + 2q2 + � � �+ iqi < i + 12 :There is a non-empty region of the spae of theta parameters suh that the following setof harges are band restrited at all the (N � 1) phase boundaries.C = f 0; e1; e2; : : : ; eN�1 g (8.30)(ei is the harge vetor q where all qj = 0 but qi = 1.) For example hek the value�i = ��=i (i = 1; :::; (N � 1)). At eah of the N phases on the route, any brane isD-isomorphi to a omplex of Wilson line branes with harges in this �nite set C. Forexample, at the orbifold phase, all the equivariant line bundles O({) an be realized asthe low energy images of W(ei), where it is understood that e0 = 0. Thus, we an usethis set to de�ne the grade restrition rule for the transport of D-branes along this route,say from the orbifold phase to the fully resolved phase.Let us see the large volume images of the frational branes Op({):O({) ( x1xN+1)����! O(i + 1)�O(i� 1) (�xN+1;x1)����! O({)Its lift suh that all the harges are from the set (8.30) isW(ei) (ab )����! W(ei+1)�W(ei�1) (�;d)����!W(ei);where a = x1x2 � � �xi+1;  = xi+2 � � �xN+1;b = xi+1 � � �xN+1; d = x1x2 � � �xi:180



For the i = 0 ase, we set e�1 := eN�1 so that b = xN+1 and d = x1x2 � � �xN whilea = x1 and  = x2 � � �xN+1 remains valid. The large volume image is obtained simplyby replaing W(q) by O(q). As before, we an simplify this image by taking out andeliminating infra-red empty omplexes. For the i = 0 ase, we take out and eliminate aKoszul omplex for a pair of variables (x1; xN+1) whih annot vanish in the large volumeregime. This shows that the large volume image of the frational brane Op for the trivialrepresentation is O(e1 + eN�1) x2x3���xN����! O(0): (8.31)This is the struture sheaf of the entire exeptional divisor E = C1 + � � � + CN�1. Fori > 0, we take out three Koszul omplexes assoiated with three pairs of variables,(x1 � � �xi; xi+3 � � �xN+1), (x1 � � �xi; xi+2) and (xi+1; xi+3 � � �xN+1), whih annot vanish inthe large volume phase sine the sets fxj = xl = 0g with jj � lj > 2 are deleted. In thisway, we �nd the following large volume image of the frational brane Op({) for the i-threpresentation O(ei + ei+1 � ei+2) xi+1��! O(ei�1 � ei + 2ei+1 � ei+2)! 0: (8.32)This is a sheaf supported at the omponent CN�i = fxi+1 = 0g of the exeptional divi-sor, shifted by 1 to the left. Thus, we very expliitly reontruted the original MKayorrespondene | one-to-one orrespondene between the non-trivial irreduible represen-tations of ZN and the irreduible omponents of the exeptional divisor of the resolutionof the AN�1 singularity.8.5 Center Of Multiparameter Moduli SpaeIn models with higher rank gauge groups, k > 1, we have so far disussed D-branetransport aross phase boundaries only in the asymptoti regions where all but one U(1)subgroup is ompletely broken. However, it is of ourse an important problem to onstruta parallel family of boundary interations over the entral region of the moduli spae wheremultiple phase boundaries meet. Although we do not attempt to �nd a general solutionin this paper, we have something to say about this problem.We made an interesting observation in the two parameter model (C): There is a �niteset of Wilson line branes whih obeys the band restrition rule at all the phase boundaries,with the following properties;(i) In eah phase the set is maximal generating, that is, there is no low energy D-isomorphism relation among the Wilson line branes in the set and any brane is181



D-isomorphi to a omplex of sums of them.(ii) The overlap Z of windows for whih the set obeys the band restrition rule preiselymathes with a opy of the omplement of the Alga of the singular lous S, that is,the values of the theta parameters that are missed by S.The property (ii) means that the region RkFI�Z in the FI-theta parameter spae does notmeet the singular lous. Due to the atness of our onnetion, the outome of D-branetransport from one phase to another, along any path inside this region, is the same as theresult of transport along paths that stay in the asymptoti region. This tempts us to ask:do the Wilson line branes in this set de�ne smooth families of boundary interations overthe entire region RkFI � Z? Can we use it to onstrut the parallel family of an arbitrarybrane over this entral region? In fat, existene of suh a �nite set of Wilson lines isnot limited to the example (C) but holds in many multiparameter models. Thus, let usdisuss this question in a general ontext of U(1)k gauge theory with matter �elds �i withharge Qai (a = 1; :::; k, i = 1; :::; N).Let us look at the e�etive boundary potential on the Coulomb branh. IntroduingMi(�) :=Pka=1Qai �a, it is written as follows:V bdrye� = 12� kXa=1 raIm(�a)� kXa=1 � �a2� + qa�Re(�a)+ NXi=1 12� ImMi(�)�log jMi(�)j � 1�+ NXi=1 �14 jReMi(�)j+ 12� jReMi(�)j artan� ImMi(�)jReMi(�)j�� :This is not valid on the omplex hyperplanes Mi(�) = 0 where the i-th �eld beomesmassless, and there is also a singularity at the real hyperplanes ReMi(�) = 0, ImMi(�) > 0where the i-th �eld has a normalizable zero mode loalized at the boundary. We shallall the latter the singular hyperplanes. We would like to �nd a Lagrangian submanifoldthat asymptotes to Lagrangian planes on whih the boundary potential is bounded below.Also, we would like the Lagrangian planes to avoid meeting with the singular hyperplanesas we vary the FI and theta parameters. Can we �nd suh a family of Lagrangians?This problem is tehnially ompliated. So let us simplify the problem by hoosing apartiular Lagrangian submanifold Im(�a) = 0; 8a: (8.33)182



Is the boundary potential bounded below on this submanifold ? Note that it has no dangerof meeting the singular hyperplanes. On this Lagrangian plane, the e�etive boundarypotential is given by V bdrye� = � kXa=1 � �a2� + qa� �a + NXi=1 14 jMi(�)j: (8.34)This is a pieewise linear funtion whih has orners at the hyperplanes Mi(�) = 0. Itis bounded below if and only if it is bounded below at eah one dimensional intersetionof (k � 1) hyperplanes Mi1(�) = � � � = Mik�1(�) = 0. Note that suh a one-dimensionalintersetion is the diretion of the U(1) subgroup whih is unbroken by the values of�i1 ; : : : ;�ik�1 , namely the unbroken U(1) at the phase boundary spanned by the hargevetors of these �elds. And the boundary potential (8.34) restrited on that line is thesame as the boundary potential for the theory of that U(1) gauge group only. Therefore,the boundary potential (8.34) is bounded below for some values of the theta parametersif and only if the band restrition rule is satis�ed at all the phase boundaries for thosevalues of the theta parameters. Under suh a irumstane, we have a smooth family ofWilson line branes W(q1; : : : ; qk) over the entire spae of FI-parameters RkFI.This is exatly the situation we had in Example (C). Moreover, we have a set of suhWilson line branes with the property (i). Thus, indeed we an onstrut the parallelfamily of an arbitrary brane over the entral region of the moduli spae, using this setjust like the grade restrited set in one-parameter models.
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Figure 28: Overlap of the windows for the two setsAs mentioned above, there are many other models with suh a �nite set of Wilson linebranes. To see just one, let us take the two parameter model in Example (D) | the A2singularity and its resolutions. In this model, there are two sets of di�erent kinds. Oneis CA = f(0; 0); (1; 0); (0; 1)g and the other is CB = f(1; 0); (0; 1); (1; 1)g. In Figure 28 we183



show the overlaps of the windows at all the phase boundaries for whih the sets obey theband restrition rule. We see that they are non-empty, and moreover oinides with a opyof the omplement of the Alga of the singular lous S whih is shown in Figure 6 (right).In fat, within two parameter models, it is diÆult to ome up with a model whih doesnot have suh a �nite set. This makes us wonder if this is a general phenomenon. Is therealways a �nite set with the property (i) and (ii)? Can we always de�ne D-brane transportaross the enter of the moduli spae, with the simple boundary ondition (8.33)?The �rst ounter example was shown to us by Mikael Passare. It is a U(1)2 theorywith the following matter ontent: X1 X2 X3 X4U(1)1 0 1 2 �3U(1)2 1 0 �4 3 (8.35)It is straightforward to hek that there is no �nite set of Wilson line branes whihsatis�es both of the properties (i) and (ii), and that the Alga indeed has no omplement.This model is atually a trunated version of a model with more parameters | the�ve parameter model of the A5 singularity: the U(1)5 gauge theory with seven �eldsX1; : : : ; X7 as shown in (4.21). If we are in a phase where fx2 = 0g, fx5 = 0g and fx6 = 0gare among the deleted set, then we obtain the same theory as (8.35) by eliminating thethree variables X2; X5 and X6. By a diret omputation, one an show that a set with theproperties (i) and (ii) does not exist in the full U(1)5 gauge theory either. This exampleshows that we annot always de�ne D-brane transport aross the enter of the modulispae with a �nite set of Wilson line branes, at least with the simple boundary ondition(8.33). In suh a model, a more general boundary ondition is needed.However, as an interesting observation, we would like to point out that there is a �niteset of Wilson line branes with just the property (i) in all the examples we onsideredso far. For example, in the model of the AN�1 singularity, the set C given in (8.30) ismaximal generating in all the phases.We emphasize that the problem we have disussed in this subsetion has nothing to dowith �nding a orrespondene between D-branes at di�erent phases |We had establisheda ompletely general ontrution of D-brane transport between arbitrary pair of phases,using paths whih stay in the asymptoti region. The main point of the present disussionwas how to over the entral region of the moduli spae. We found that there is a simpleway to do so, provided that there is a �nite set of Wilson line branes with the properties(i) and (ii). Suh a set exists in many examples, but not always.184



9 Some Mathematial BakgroundBefore taking the next step into models with superpotentials, we would now like topause to explain some mathematial bakground that will shed light on the previousdisussions and failitate the subsequent ones. We shall be exploring the relation ofholomorphi line bundles, or more generally oherent sheaves, to modules and a simpleonstrution of D-brane ategories whih follows. We use the linear sigma model as ourguide throughout. The disussion in this setion is a mixture of review material, somenew approahes to existing results and also some original material.Consider the manifold Y = Cn with oordinates x1; : : : ; xn. The main objet of ourdisussion will be the ring of polynomial funtions on Y , written asR = C[x1; : : : xn℄ : (9.1)Many geometri properties of the spae Y have a natural algebrai desription in termsof the ring R.Points of Y are in one-to-one orrespondene with maximal, prime ideals of R. Forexample, the point p : fx1 = a1; : : : ; xn = ang orresponds to the set of polynomialsIp � R whih vanish at p. This set of polynomials is an ideal of R sine it is losed underaddition and also under multipliation by arbitrary polynomials in R. (It is prime sinemultiplying two polynomials from outside the set stays outside and maximal sine it isnot a subset of any bigger prime ideal | just as a point is indeomposable and minimalamong omplex (algebrai) subspaes.)We are interested in D-branes or sheaves on Y . The simplest example is the spae�lling brane given by the struture sheaf O. On an open set of Y , the loal setions of Oare given by holomorphi funtions with no poles inside the set. (More preisely, in theurrent algebrai ontext we should restrit to rational funtions (ratios of polynomials)with no poles in the open set.)The global setions of this sheaf (or any other sheaf on Y ) form a module over R.This simply says that we an add global setions and multiply them by polynomials. Inthe speial ase of the struture sheaf, O, the global setions are rational funtions on thewhole of Y , i.e., they are just polynomials. Thus the struture sheaf O orresponds tothe module R itself, whih is the simplest example of a module over R.Ideals of R provide a riher lass of R-modules. In partiular the maximal, primeideals Ip, disussed above, give rise to R-modules Ip for eah point of Y . We an alsoonsider the okernel of the map whih embeds Ip in R to form a further lass of modules185



R=Ip. These orrespond to the struture sheaves of points (D0-branes) of Y as an beon�rmed by omparing the ation of R on global setions of the sheaves. (Polynomialsin the ideal Ip annhilitate the module R=Ip just as polynomials vanishing at p at asmultipliation by zero on the D0-brane at p.)There is more to say here | suh as how the loal setions of a sheaf an be reoveredfrom the orresponding module (by loalizing the module on the ring of polynomial fun-tions whih have no zeros on the relevant open set) | but we refer elsewhere for details[82℄.We have touhed on an important point above whih is that given a map betweenmodules, we an always form its okernel and kernel whih are themselves modules. Thisproperty means that the set of R-modules forms an abelian ategory. The same is true(by de�nition) for oherent sheaves on Y .The key result for our purposes is the following: i) the set of oherent sheaves on Y isin one-to-one orrespondene with the set of R-modules and ii) the set of maps betweena pair of sheaves is idential to the set of maps between the orresponding modules.More preisely the ategory of oherent sheaves on Y and the ategory of R-modules areequivalent as abelian ategories.We shall elaborate more on this below but roughly the statement says that on asimple enough spae suh as Y , we an learn everything about sheaves by studying globalsetions. This is an enormous simpli�ation!The lesson of the linear sigma model approah, in this ontext, is that we an go a longway by working with simple spaes. The remaining ingredient whih we need in order togo further is gauge symmetry.9.1 C� Ation On Cn | Grading Of The Coordinate RingIn this setion we will be desribing a onstrution, due to Serre [83℄, of sheaves onCPn�1 in terms of graded R-modules. Consider the C� ation on Yxi ! �xi; i = 1; : : : ; n: (9.2)This indues a Z-grading on the ring R suh that the grading (degree) of a ring elementis given by its representation under C�. Thus the degree zero elements are omplexnumbers, the degree one elements are homogeneous linear polynomials in the xi and soon. 186



To mod out by C�, we simply restrit to graded R-modules and onsider only mapsof degree zero between modules. (A graded module of a graded ring is simply a modulewith a grading suh that multipliation by R respets grading in the obvious way.)To �nd the graded R-module M orresponding to a partiular sheaf M we start asbefore: the degree zero elements of M are given by the global setions ofM. However,this information alone will no longer be enough to reonstrutM as a sheaf. To see this,onsider the struture sheaf O on CPn�1, whose global setions are C-valued onstants.On a loal path, there are further gauge invariant setions whih are rational funtions ofdegree zero, realised as a ratio of homogenous polynomials of degree q. In order to retrievethese extra loal setions it is lear that we will need to keep also `global setions of degreeq' when we onstrut the module M . More preisely, these are the global setions ofMtensored with O(q). These provide the degree q elements of the assoiated module M .In this way it is lear that the struture sheaf O on CPn�1 is one again assoiatedwith the moduleR, onsidered as a graded module over the graded ringR. Other sheavesan be identi�ed with graded modules in the same way.We have given a simple desription of oherent sheaves on Y=C�, as gradedR-modules.The remaining detail to take are of is the deletion of the origin, � = fx1= : : :=xn=0g,so that we move to CPn�1 �= (Y � �)=C�. We would like to think of two sheaves asbeing the same on CPn�1 if they disagree only at the origin of Y . Thus, we would liketo mod out by sheaves with support at the origin of Y .Let us examine the struture sheaf of the origin in a little more detail. This orrespondsto the graded module given by just the degree zero part of R. As a vetor spae thismodule is isomorphi to C and this is how we shall refer to it. The R-module C isannihilated by R+, the set of all positive degree elements of R (the set of all polynomialsthat vanish at the origin.)There are various other modules whih are annihilated by R+, or more subtlely, byhigher powers of R+. In the former lass, we an onsider the module C shifted in degreeso that it lives in degree q. This module is usually labelled C(�q) sine it orrespondsto the struture sheaf of the origin tensored with O(�q). In the latter lass, we ouldonsider for example the module given by all the degree zero and degree one elements ofR. We might label this module as R�1, onsisting of polynomials of degree � 1. Clearlythis module is not annihilated diretly by R+ but is annihilated by (R+)2 and thus shouldalso orrespond to a sheaf whih vanishes away from the origin (otherwise we should beable to onstrut arbitrary degree polynomials in R+ whih do not annihilate the sheaf.)187



In general, it should be lear that graded R-modules whih are loalized at the originorrespond to modules whose grading is bounded above. These modules (and only these)will be annihilated by suÆiently high powers of R+. These form the subategory of(graded) torsion modules and it is these that we should mod out by in order to reoversheaves on CPn�1. Modding out by torsion modules simply means that we onsider twograded modules as being the same if they agree for suÆiently high degree.We are now ready to state Serre's lassi result: the ategory of oherent sheaves onCPn�1 is isomorphi as an abelian ategory to the ategory of graded R-modules modulotorsion modules.9.2 Generalization To Tori ManifoldsThe generalization to tori manifolds is straightfoward. Following the route suggestedby the linear sigma model, we onstrut tori manifolds as quotients of Y ��r by (C�)k,where �r is some deleted set. The (C�)k ation on Y gives rise to k di�erent gradingson R and we onsider modules whih are graded with respet to all k gradings. (Inpartiular, maps between modules should be degree zero with respet to eah grading.)Dealing with the deleted sets in the di�erent phases appears more ompliated butin fat turns out to be just as simple as for CPn�1. First, note that in general we wantto onsider Z-gradings on R rather than just N-gradings as before | in other words,some of our oordinate �elds, x1; : : : ; xn, may have negative harges with respet to anysubgroup C� � (C�)k. Assoiated with a single C� gauge group, we may onsider both(+)-torsion and (�)-torsion modules, i.e., modules with bounded above or bounded belowgrading, respetively.In eah low energy phase of the linear sigma model we shall be deleting the set of points�r where either all positively or all negatively harged �elds under partiular C�'s areset to zero. (Reall the desription of the deleted set �r given in Setion 4.4.) In terms ofmodules this amounts to moding out by either (+)-torsion or (�)-torsion modules underthe orresponding gradings. These are the modules whose supports lie in the deleted set�r.At this point we have reahed a very simple uni�ed desription of sheaves in the variousphases of a linear sigma model. To summarise: the ategory of oherent sheaves in eahphase is equivalent, as an abelian ategory, to the ategory of multi-graded R-modulesmodulo a partiular set of torsion subategories assoiated to �r.188



This generalization of Serre's onstrution was originally given by Cox [84℄ in the asewhere the quotient Xr = (Y ��r)=(C�)k is smooth. When it has (orbifold) singularities,the above desription is simply wrong if we regard Xr as an algebrai variety, as shownin [84℄ with an expliit example. As disussed in Setion 4.2, we do not really have aonvenient desription of the low energy theory unless Xr is a smooth manifold or aglobal orbifold, and there is no physial reason to believe that we should take oherentsheaves of Xr as an algebrai variety as the data for D-branes. Rather, we understandthe theory as the low energy limit of our super-renormalizable gauge theory. As suh, weshould take (C�)k-equivariant oherent sheaves over Y ��r as the D-brane data, and weare indeed doing so in the above disussion. Mathematially, the ategory of suh objetsis known to be equivalent to the ategory of oherent sheaves on the so-alled quotientstak [(Y � �r)=(C�)k℄ [70℄. (This last referene also gives a desription of sheaves asgraded modules mod torsions.) Thus, in the above statement, \oherent sheaves" shouldbe understood as those on the quotient stak.In the next subsetion we will introdue omplexes and a desription of the derivedategory whih turns out to be very simple in this setting. This will lead us to a straight-forward argument that the derived ategories of the di�erent phases are in fat equivalentin the Calabi-Yau ase.9.3 ComplexesSo far we have been disussing branes orresponding to individual sheaves and theirdesription in terms of modules. We now wish to disuss more general brane on�gurationsonsisting of omplexes of sheaves. In fat, sine we already have an equivalene betweensheaves and modules we might as well arry out the disussion in terms of omplexes ofmodules.We start one again with the ase of Y = Cn where things are partiularly simple. Wewill see that by representing arbitrary omplexes in terms of `free resolutions' there is noneed to introdue any of the ompliations of the derived ategory and in partiular noneed for nontrivial quasi-isomorphisms. All branes on Y an be represented as omplexesof free modules and in this representation, the morphisms (hiral ring elements) betweenbranes are just ordinary Q-ohomology lasses where Q represents the operator induedfrom di�erentials of the omplexes.A free R-module, R�a is a diret sum of a opies of R. Every R-module M has asurjetion from a free module R�a onto itself for some a. To produe suh a surjetion189



we simply hoose a generating set for the module and map the unit of a di�erent opyof R onto eah generator, muh as we would do for a vetor spae. The di�erene fromthe ase of vetor spaes is that there will in general be relations between the generators.We an express these relations by writing the kernel K of the surjetion to form a shortexat sequene: 0! K !R�a !M ! 0: (9.3)(Note that to avoid lutter we do not write expliit names of maps on arrows unlessneeded for larity.) We an now start again and take a surjetion from a free module Ra1onto K, with kernel K1 0! K1 ! R�a1 ! K ! 0: (9.4)If we ombine the surjetion from Ra1 onto K and the injetion from K into R�a into asingle step then we form a single exat sequene as the reader should verify0! K1 !R�a1 !R�a !M ! 0: (9.5)Continuing in this way, taking surjetions from free modules onto the suessive kernelswe �nally ahieve a free resolution of M (the fat that this proess terminates in a �nitenumber of steps is a result of Hilbert's syzygy theorem)0!R�aj ! R�aj�1 ! : : :!R�a1 ! R�a !M ! 0: (9.6)Stepping ahead a little, we should think of this as giving a representation of M as aomplex of free modules in the derived ategory of R-modules. We would now like to dothe same for an arbitrary omplex of R-modules0!M0 !M1 ! : : :!Mk ! 0: (9.7)We present the argument for a omplex of lengh two 0! M ! N ! 0 but the general-ization should be lear. We know that for M and N individually we an onstrut freeresolutions 0! P�j ! P�j+1! : : :! P�1 ! P 0 !M ! 0; (9.8)0! Q�j ! Q�j+1 ! : : :! Q�1 ! Q0 ! N ! 0: (9.9)We have hanged notation so that the P 's and Q's are all free modules of the form R�sfor various values of s. We have also assumed that the two resolutions are of the samelength (otherwise we an always pad the shorter one with zeroes at the beginning).So to begin with, let us `turn o�' the map between M and N , allowing us (trivially)to build the following exat sequene in whih all the maps are taken from (9.8) and (9.9)190



above 0! 0 ! Q�j ! Q�1 ! Q0 ! N� � : : : � � �P�j ! P�j+1 ! P 0 ! M ! 0 ! 0: (9.10)Next we would like to turn the map fromM to N bak on. We will need to simultaneouslyturn on some maps from the P 's to the Q's in (9.10) so that we still get a omplex (i.e.,so that the di�erential still squares to zero.)0! 0 ! Q�j ! Q�1 ! Q0 ! N� % � % : : : � % � % �P�j ! P�j+1 ! P 0 ! M ! 0 ! 0: (9.11)To see that extra maps from P to Q will be neessary just inspet the rightmost part ofthe diagram and notie that the two-step map from P 0 to N through M will not be zeroin general. To orret this we introdue a ompensating map from P 0 to N through Q0.As we now explain, the property of P 0 whih allows us to onstrut this ompensatingmap, is that it is a free module. Suppose for simpliity that P 0 is equal to R. Toompletely speify a map from R to another module it is suÆient to speify the imageof the generating element 1R of R.Consider the map P 0 = R ! N and suppose 1R ! n 2 N . Sine Q0 maps surjetivelyonto N , we must have some q 2 Q0 suh that q ! n. Then if we map 1R ! �q as ourmap from P 0 to Q0, we an anel the unwanted ontribution. The generalization toonstrut (9.11) is straightforward using the fat that all P i are free.One again, there is an interpretation of the free resolution (9.11) in the frameworkof the derived ategory. As previously noted, the resolutions of M and N individuallyorrespond to representations of these modules in the derived ategory by omplexes of freemodules P � and Q�. Similarly, we should think of the ombined omplex with P � `bound'to Q� by the additional maps introdued in (9.11) as being an equivalent representationof the objet 0!M ! N ! 0 in the derived ategory.We have now desribed something quite interesting: every objet in the derived ate-gory of R-modules an be represented as a omplex of free modules. This is a nie resulton its own sine it means that to desribe arbitrary D-branes on Cn it is suÆient to useomplexes built only out of opies of the struture sheaf O.To go further, we would like to desribe the spae of hiral ring elements. In fat, thisis where we really bene�t from writing things in terms of free modules. Working withomplexes of free modules, there are no non-trivial quasi-isomorphisms to worry about191



and all morphisms between omplexes are just ordinary Q-ohomology lasses. We shallnow sketh a proof of this statement.First we show that there are no non-trivial exat sequenes built out of free modulesonly, or more preisely that any suh exat sequene is a diret sum of trivial exatsequenes of the form 0!R!R! 0 (9.12)where the map in the diagram above is the identity. To see this it is one again suÆientto look at the generators 1R. Suppose we have an exat sequene of free modules and,for simpliity, suppose that the `rightmost' non-zero module is a single opy of R. Sinethis is the rightmost module in an exat sequene, the map onto it must be a surjetionand in partiular the generator 1R must have a preimage. This preimage an only bethe generator 1R0 of the orresponding preimage module and this assures that the mapis in fat (a C-valued multiple of) the identity as in (9.12). The generalization when therightmost module is Ra is straighforward.Given this property, it then follows by standard arguments1 that all morphisms in thederived ategory between omplexes of free modules are represented by ordinary ohainmaps modulo homotopies (i.e., Q-ohomology lasses.)This result onludes our rather lengthy review of the derived ategory of Cn! Wehave seen that this derived ategory is in fat a very simple beast, being equivalent to theategory of omplexes of freeR-modules with morphisms given by ordinaryQ-ohomologylasses. We would now like to extend some of these results to the graded ase and usethem to desribe branes in more interesting spaes than Cn. We will �nd that some of thenie properties of free modules are lost when we mod out by torsion. The resolution tothese problems is intimately related to the grade restrition phenomenon whih we havealready enountered in the physial setting.9.4 Graded CaseSome parts of the analysis of the previous setion generalize immediately to the gradedase, in whih we treatR as a graded ring and allow only degree zero maps between gradedmodules. It remains true that given a graded module M , there exists a surjetion from afree module onto M . However, in this ase the set of free modules is riher sine we needto take into aount the grading. We label by R(q) the free module whih is isomorphito R exept that the unit 1R is in degree �q . In the ase of CPn�1 this orresponds to1See for example Lemma 1.6 in [85℄. 192



the sheaf O(q). A general free module is a diret sum of one-dimensional modules of thistype. (In the multi-graded ase we have one-dimensional modules R(q1; q2; :::; qk) labelledaording to the degree of 1R for all k gradings.)Whilst swithing to graded modules presents no new diÆulties, modding out bytorsion modules does introdue ompliations. The prime diÆulty arises beause therenow exist non-trivial exat sequenes of free modules. This will invalidate our argumentthat morphisms between omplexes are ordinary Q-ohomology lasses. Furthermore, thenon-trivial exat sequenes whih appear will depend on whih phase we are in, so thatan equivalene between phases might appear unlikely. As we shall see, grade restritionprovides a route around the problem. Before we demonstrate the solution, we should �rsttake a loser look at the problem.As an example, we set n = 4 and onsider the ring R = C[x1; x2; x3; p℄ with degrees(1; 1; 1;�3). (We have hosen an example in whih the harges sum to zero for lateronveniene, but for the urrent disussion this is not important.) We onsider the phasein whih we mod out by modules with bounded above grading. Thus we are deleting theset fx1 = x2 = x3 = 0g and onsidering branes on OCP2(�3).In order to �nd a non-trivial exat sequene of free modules after modding out bytorsion modules, we an proeed as follows. First, take a sheaf whih is supported onthe deleted set (a (+)-torsion module) whih will be identi�ed with zero after moddingout. The simplest example is the struture sheaf of the deleted set, whih orresponds tothe module C[p℄ (i.e., the module onsisting of polynomials of p only). This module isannihilated by ring elements ontaining any of the positively harged �elds xi. We mayalso onsider a version of this module shifted in degree, C[p℄(q). For the moment let ushoose q = 3.The idea is to take a free resolution of this module as we have desribed earlier. Whenwe then mod out by torsion, the original module gets deleted and we are left with anexat sequene of free modules. Here is the (minimal) free resolution:0 �! R(0)  x1x2x3!���! R(1)�3  0 �x3 x2x3 0 �x1�x2 x1 0 !�������! R(2)�3 (x1;x2;x3)����! R(3) �! C[p℄(3) �! 0; (9.13)whih turns into an exat sequene of free modules after modding out by torsion0!R(0)!R(1)�3 !R(2)�3 ! R(3)! 0 (9.14)In the other phase of the model we mod out by (�)-torsion modules, i.e., those withbounded below grading. This orresponds to deleting the set fp = 0g and studying branes193



on C3=Z3. In this ase, the struture sheaf of the deleted set is represented by the moduleC[x1; x2; x3℄, whih has free resolution0!R(3) p!R(0)! C[x1; x2; x3℄! 0 (9.15)leading to the exat sequene of free modules (after modding out by (�)-torsion):0! R(3)! R(0)! 0: (9.16)We have found di�erent `relations' between free modules in the two phases whihwould be expeted to lead to di�erent derived ategories. We shall return to this problemin the next setion but �rst onlude this disussion with a ouple of positive remarks.Objets in the derived ategory modulo torsion modules an be represented as ordinaryomplexes of graded R-modules. In other words we an pik a representative of eahtorsion equivalene lass, whih is an ordinary omplex of modules (by `utting o�' themodules in the sequene below a suÆiently high degree.)Furthermore, the isomorphisms whih we previously used to represent omplexes ofarbitrary modules as omplexes of free modules, are still available to us. We should thinkof the proess of modding out as just adding some new isomorphisms, in whih asewe have not hanged the set of underlying objets or lost any of the original morphisms.Thus, the onlusion that objets of the derived ategory an be represented as omplexesof free modules remains true. This is a remarkable statement and so we repeat it: anyobjet in any of the low energy phases of the linear sigma model an be represented as aomplex of free R-modules.Thus the boundary onditions we onstruted earlier are the most general that weneed to onsider in order to desribe a general brane on�guration. All of the disussionso far applies equally well to the multi-graded U(1)k ase.Next we would like to learn more about the morphisms in the di�erent phases inorder to study equivalenes between phases. In the U(1) ase we will surprisingly �nd aomplete desription of the set of morphisms in terms of an ordinary Q-ohomology ofmaps between omplexes of (a restrited set of) free modules, whilst in the U(1)k asewe will not be able to be so expliit. In either ase, the analysis will be suÆient toprove equivalene of the derived ategory of the di�erent phases under the Calabi-Yauondition. The new ingredient that we shall need is grade restrition.
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9.5 Grade RestritionWe start by examining the origins of grade restrition in the model of the previoussubsetion. The essential ause of our problems is that we have kept too many freemodules of the form R(q). In order to desribe general elements of the derived ategoryin a `nie' way we need to employ a redued set of free modules.The basi problem shows up in terms of relations (exat sequenes) between freemodules. We have seen examples of this, in (9.14), relevant to the OCP2(�3) phase andin (9.16), relevant to the C3=Z3 phase.The existene of these relations is not only an inonveniene, but is also an obstale toproving equivalene between phases. This is beause, as illustrated in the two examplesabove, the available relations depend on the hoie of phase.This is where the grade restrition omes to the resue. In both of the ases de-sibed above we have a relation between R(3) and a omplex of modules from the setfR(0);R(1);R(2)g. If we restrit to the set of free modules fR(0);R(1);R(2)g thenwe laim i) to have no notrivial relations (in the shape of exat sequenes) between thisrestrited set of free modules and ii) to have just enough modules to generate the mostgeneral objet in the derived ategory. These statements are supposed to hold in eitherphase.It is easy to onvine oneself of statement i) - essentially that (9.14) and (9.16) arethe `minimal' relations possible in either phase. A proof an be provided, for example, bythe expliit omputation of Ext groups on projetive spae in arbitrary dimension.So we fous on statement ii). The laim is that an arbitrary element of the derivedategory in either phase an be represented as a omplex of free modules from the setfR(0);R(1);R(2)g: (In general if the sum of positive harges of the oordinate �elds xiis S+ we restrit to the set fR(0);R(1); : : :R(S+ � 1)g.)We have already seen that any objet in the derived ategory an be represented asa omplex of free modules R(q) if q is allowed to take arbitrary values. So roughly,we need to show that any free module an be expressed in terms of the restrited setfR(0);R(1);R(2)g.The idea behind this is quite simple. Suppose we are in the OCP2(�3) phase. We mayuse relation (9.14) to write R(3) in terms of the restrited set. Reall that in the derivedategory this exat sequene should be thought of as an equivalene between R(3) and195



the omplex 0!R(0)!R(1)�3 !R(2)�3 ! 0 (9.17)Next we onsider R(4). We may use (9.14) shifted in degree in order to write R(4) interms of fR(1);R(2);R(3)g0!R(1)!R(2)�3 !R(3)�3 ! 0 (9.18)To write R(4) in terms of the grade restrited set, we may then replae eah of the R(3)'sby modules from the restrited set, as above.To do this expliitly we want to `bind' (9.18) to three opies of (9.14) and then `anni-hilate' pairs of R(3)'s. We show how to bind to the �rst opy of (9.14).Consider the identity map from one of the R(3)'s in (9.18) to R(3) in (9.14). We laimthat this map an be extended to a map between omplexes. (Note that we are talkinghere about an honest ohain map between omplexes of modules rather than some moregeneral morphism in the derived ategory in whih ase the statement would be trivial.)0! 0 ! R(0) ! R(1)�3 ! R(2)�3 ! R(3)� % � % � % � % �100� �0 ! R(1) ! R(2)�3 ! R(3)�3 ! 0 ! 0 (9.19)Every map in this diagram is an honest map between modules and the whole argumentan be arried out even prior to modding out by torsion. However, in that ase, theomplex (9.14) represents a non-zero module and so the objet (9.19) produed afterbinding would not be equivalent to (9.18). One we mod out, the operation beomes anequivalene sine we are binding to an objet with support on the deleted set.To onstrut the ohain map used above, we use a small extension of the argumentwe gave earlier in the onstrution of equation (9.11). That onstrution allowed us tobuild a map from a omplex of free modules to an exat sequene of modules. In theurrent situation, we want to build a map from a omplex of free modules (9.18), but inthis ase the omplex we are mapping to fails to be exat in the rightmost position (asa omplex of modules prior to modding out.) However, the failure of exatness is onlyin the lowest degree and does not ause a problem sine the maps to R(3) in (9.18) areall at least linear in the positively harged �elds. We leave it to the reader to hek thedetails.The `annihilation' step is to remove the trivial pair 0 ! R(3) ! R(3) ! 0 from196



(9.19), to leave an equivalent omplex in whih we have redued the number of R(3)'s0! 0 ! R(0) ! R(1)�3 ! R(2)�3 ! 0� % � % � % � % �0 ! R(1) ! R(2)�3 ! R(3)�2 ! 0 ! 0 (9.20)By repeating twie more for the remaining R(3)'s we �nally write R(4) as a omplex ofmodules from the grade restrited set.It should be lear how to extend this argument for R(q), q > 4 by indution. Moregenerally, given any objet in the derived ategory, represented as a omplex of freemodules, we an remove step-by-step all of the modules R(q) with q � 3 by repeatingthis onstrution many times. (At eah step we remove the remaining free module ofhighest degree whih is positioned furthest to the right in the omplex so that all maps tothis module are at least linear in the positively harged �elds and we an argue as above.)For R(q) with q < 0 there is a similar argument using the sequene (9.14) shifted indegree by �1 and read from left to right as a relation between R(�1) and the restritedset. One again, by shifting degrees and iterating, we may extend this argument to thegeneral ase of q < 0. The binding proess in this ase involves maps from shifted versionsof (9.14) to the omplex that we are grade restriting. To onstrut the relevant maps wean use a trik of `dualizing' to put ourselves in the situation above, applying the bindingproedure above and then dualizing bak. Dualizing in this ontext means replaing allfree modules R(q) by R(�q) and reversing the diretion of all maps.This ompletes the proof that all objets in the derived ategory in the OCP2(�3)phase an be written as omplexes of grade restrited modules. The same argument holdsin the C3=Z3 phase although in this ase it is rather more straightforward to see sineaording to (9.16), every pair R(q) and R(q + 3) are isomorphi and so we an alwaysreplae q with q mod 3. Also, although we treated a spei� example, the same argumentswork just as well for the general U(1) linear sigma model. We are now ready to state ourgeneral result:Suppose we have a U(1) linear sigma model with positively harged �elds xi and neg-atively harged �elds yj, suh that the sum of harges of the xi is S+ and the sum ofharges of the yj is S�. Let R = C[xi; yj℄ be the assoiated graded polynomial ring.The model has two low energy phases. In the �rst phase, whih orresponds to deletingthe lous fxi = 0; 8 ig the branes are given by the derived ategory of graded R-modulesmodulo those with bounded above grading. Every objet of this ategory an be representedas a omplex of free modules from the grade restrited set fR(0);R(1); : : : ;R(S+ � 1)g.197



Furthermore, morphisms in this representation are ordinary ohain maps modulo homo-topies (Q-ohomology lasses) and there are no non-trivial quasi-isomorphisms.Similar statements hold for the seond phase and the general brane in this phase an bewritten as a omplex of free modules from the grade restrited set fR(0);R(1); : : : ;R(S��1)g. In the Calabi-Yau ase, S� = S+, this gives an expliit equivalene between thederived ategories of the two phases.Parts of this result have appeared previously in the literature. For the ase of CPn�1,the desription of an arbitrary brane as a omplex of fR(0);R(1); : : : ;R(n� 1)g followsfrom Beilinson's work [86℄. The equivalene for OCP2(�3) and C3=Z3 is a speial aseof the MKay orrespondene by Bridgeland-King-Reid [4℄, as already mentioned in Se-tion 8.4. Bondal-Orlov [87℄ and Bridgeland [77℄ studied ases where all �elds have degree�1 and proved equivalene between phases under the Calabi-Yau ondition.A. King pointed out to the authors that the result as stated above appeared previouslyin a work by Van den Bergh, see [88℄ Setion 8. Thus, we annot laim it as our ownoriginal result, even though we were not aware of that work at the point we obtained it.Nonetheless, our approah to the problem, based on the physis of linear sigma model,naturally leads to a number of important generalizations. One of them is generalizationto multi-graded ases, whih we disuss next. Another is extension to systems withsuperpotential, whih we will disuss in Setion 10, where we obtain equivalenes of thederived ategory of a Calabi-Yau manifold and di�erent type of triangulated ategories,suh as the ategory of matrix fatorizations. All these equivalenes are uni�ed under thesame priniple | the grade restrition rule.9.6 Multi-Graded CaseWe would like to desribe the e�et of rossing phase boundaries in the general U(1)klinear sigma model. Sine only a single U(1) is unbroken at eah boundary, we alreadyhave all the neessary tools at our disposal.We write the general one-dimensional free module as R(q1; : : : ; qk) to display thegrading under eah U(1). We fous on the �rst U(1) and suppose that the sum of positive(resp. negative) harges of the variables under this U(1) is S+ (resp. S�) as before.Suppose that we are in a phase in whih we need to mod out by the (+)-torsionmodules (those whose grading is bounded above under this U(1)). Aording to ourprevious disussion, we an desribe an arbitrary brane in this phase as a omplex of free198



modules R(q1; : : : ; qk), where q1 an be restrited to lie in the range f0; 1; : : : ; S+ � 1g.We treat phases in whih the D-term for this U(1) takes the opposite sign in a similarway | restriting q1 to lie between 0 and (S��1).Sine we still have to mod out by torsion modules for the remaining U(1)'s, we expetto have relations (in the form of exat sequenes) between the set of free modules forwhih only q1 has been grade restrited, i.e., relations within the band restrited set.Thus, we an no longer laim to have a simple desription of the derived ategory inwhih morphisms are ordinary Q-ohomology lasses (homotopy lasses of ohain maps).However, for the purposes of desribing equivalenes between neighbouring phases this isnot neessary. This is beause when we move between adjaent phases, we only swith thesign of a single D-term and so swith from (+)-torsion to (�)-torsion for a single U(1). Theremaining U(1)'s are not a�eted, and hene modding out by remaining torsion modulesis the same proedure for both phases. This is manifest in the relation (4.22) between thedeleted sets.Thus it beomes lear how we are to ompare branes in di�erent phases. Eah timewe wish to ross a phase boundary we grade restrit with respet to the assoiated U(1).We may then pass freely into the next phase. If the sum of positive and negative hargesof the variables are equal for the U(1) in question, there will be no new relations betweenbranes after rossing the boundary and we will have an equivalene of ategories. If theCalabi-Yau ondition (4.15) holds so that the sum of harges is zero, then it follows, byrossing a boundary at a time, that the derived ategories in all low energy phases areequivalent.We emphasize again that, unlike in the single graded ase, this proof of equivalenedoes not imply nor rely on a simple desription of derived ategories in terms of a �niteset of rank one free modules. In fat, there is a tori variety whih does not admit suha set (the ounter example [89℄ to King's onjeture [90℄). However, as mentioned inSetion 8.5, there is suh a �nite set in all the Calabi-Yau examples we onsidered so far.A di�erent onstrution of derived equivalenes in the general multi-graded ase hadbeen given by Kawamata in [78℄.9.7 GeneralizationsAlthough we shall not develop these here, there are various diretions in whih oneould generalize the preeding analysis. One possibility is to allow a non-Abelian groupation G on Y = Cn and thus deompose R into representations of G. This line of199



development has been initiated by Kapranov [85, 91℄ who generalizes the Belinson resultfor sheaves on CPn to Grassmanians. Clearly, these developments will be relevant fordesribing branes in non-Abelian linear sigma models.Another diretion is to onsider more general hoies of the ring R. Muh of the basitheory an be developed even in the ase of non-ommutative rings [92℄ and it would befasinating to develop a physial interpretation of this work. However, we leave thesediretions to future researh and return now to our main fous whih is the study ofD-branes in Abelian linear sigma models.10 Compat ModelsIn this setion, we onsider the problem of D-brane transport in systems that arisefrom linear sigma models with superpotential. Applying the grade restrition rule, we�nd a rule of D-brane transport along paths on the K�ahler moduli spae. This leads, forexample, to one-to-one orrespondenes between D-isomorphism lasses of D-branes inLandau-Ginzburg orbifolds and those in geometri regimes. The basi idea of transportitself is idential to the one in the non-ompat models of Setion 8. Besides havingmatrix fatorizations instead of omplexes, the main new feature is that, depending onthe phase, some of the bulk �elds may aquire masses from superpotential F-terms andtherefore must be integrated out.10.1 The D-Brane TransportTo start with, let us briey reall the rôle of the superpotential in the bulk theory. Thelassial vauum on�guration in the Higgs branh is govened by the D-term and F-termontributions to the potential (4.8). Away from phase boundaries, the D-term potentialon�nes dynamis to a tori, non-ompat Calabi-Yau variety Xr. The F-term potentialdetermined by the superpotentialW restrits the vauum further to a omplex subvarietyMr � Xr. Depending on the phase, a part of the transverse modes of Mr in Xr mayaquire mass from the superpotential F-terms. In the ase where all transverse modes aremassless, the low energy theory is a Landau-Ginzburg model with superpotential W overthe non-ompat tori variety Xr. In the other extreme where all transverse modes aremassive, we obtain a non-linear sigma model on the vauum manifold Mr. The natureof low energy theory depends very muh on the phase and the pattern is in general veryomplex. 200



However, one ould always hoose to use the desription as a LG model on the non-ompat tori variety Xr. This desription is most natural if the energy sale, epr, setby the D-terms is muh higher than the one, mW , set by the F-terms, and we onsider anintermediate sale, epr � �� mW .Like in the non-ompat situation we are taking the large gauge oupling limit, so thatwe an integrate out the gauge multiplet algebraially (f. (4.12) and (4.14)). The matrixfatorization (V; Q; �; R) in the linear sigma model then beomes a matrix fatorization ofW over the tori variety Xr. Let us denote the set of matrix fatorizations of W over Xrby MFW (Xr), and refer to the set of matrix fatorizations in the linear sigma model asMFW (CN ; T ). Two D-branes in MFW (CN ; T ) that are related by D-isomorphisms willow to the same D-brane in the infra-red limit, so that we de�ne MFW (Xr) as the set ofmatrix fatorizations of the linear sigma model up to D-isomorphisms. Let us introduethe orresponding projetion:�r :MFW (CN ; T )!MFW (Xr):Similarly to Setion 8.1 we have a pyramid of maps:MFW (CN ; T )
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JJJJJĴ�I �II �III �IVMFW (XI)MFW (XII) MFW (XIII)MFW (XIV)PPPPPP ������ DDDDhhhhhhh������p p p p p (10.1)Let us illustrate these projetions in Example (A) with N = 3. We pik the su-perpotential W = p � G(x) with the ubi fermat polynomial G(x) = x31 + x32 + x33. Inthe r ! �1 limit, this gives the LG-model with superpotential G(x) over the orbifoldX� �= C3=Z3, namely, a LG orbifold. At r � 0 and at the intermediate energy sale � wehave a LG-model with potential W = pG(x) over X+, the total spae of the line bundleO(�3) ! CP2. This superpotential gives masses to the �bre oordinate p and to thetransverse mode of x's to the hypersufae G(x) = 0, but we hoose to keep both of them.At lower energies �� mF , it is more appropriate to integrate them out, and we have thesigma model on the ellipti urve, fp=G=0g � X+.)In order to desribe D-isomorphism realtions in the two phases, we �rst onsidermatrix fatorizations that are infra-red empty, i.e., the ones for whih the boundarypotential fQ;Qyg is stritly positive over Xr. They an be onstruted from the Koszul201



omplexes for the deleted sets, and will play the analogous rôle as the latter playedin the non-ompat models. Reall that our R-harge assignment is R�(p; x1; x2; x3) =(�2p; x1; x2; x3).In the r � 0 phase, the deleted set is �� = fp = 0g. Let us onsider the brane B�given by Q =  0 G(x)p 0 ! ; �(g) =  g2 00 g�1 ! ; R(�) =  1 00 ��1 ! :For simpliity, we use the following notation to enode this data:B� :  W(2)0 p -� G W(�1)�1! (10.2)The subsript of eah Wilson line brane labels the R-harge. This brane has stritlypositive potential fQ;Qyg = (jpj2 + jGj2) � id2 over X� where p is non-zero, and thereforeis infra-red empty. Note that this matrix fatorization is obtained from the omplexW(2) p�!W(�1), whih de�ned an empty brane in the non-ompat model with W = 0,by adding the arrow in the opposite diretion, W(2) �G W(�1).Let us next onsider the r � 0 phase where the deleted set is �+ = fx1=x2=x3=0g.Just as above, we onsider adding some arrows to a omplex orresponding to an emptybrane in the non-ompat model, suh as W(�1) X! W(0)�3 X! W(1)�3 X! W(2); whihan be realized as X = P3i=1 xi�i on the Cli�ord module. If we add the arrows pX2 =P3i=1 px2i �i in the opposite diretion, we �nd a matrix fatorization Q = X + pX2 ofW =P3i=1 px3i . With an appropriate hoie of R-harge, say �2 on the Cli�ord vauumj0i, we have a graded matrix fatorization. Presented in the similar way as (10.2), it isB+ :  W(�1)�2�W(1)�30 g+-� f+ W(0)�3�1�W(2)1 !; (10.3)with g+ = 0BBB�x1 0 px23 �px22x2 �px23 0 px21x3 px22 �px21 00 x1 x2 x3
1CCCA ; f+ = 0BBB� px21 px22 px23 00 �x3 x2 px21x3 0 �x1 px22�x2 x1 0 px23

1CCCA :The boundary potential is stritly positive on X+, fQ;Qyg = P3i=1(jxij2 + jpx2i j2) > 0,and the brane is indeed infra-red empty in the r � 0 phase.202



Let us bind these two branes using a map from B� to B+:W(2)0 �p -��G W(�1)�1� X2 ����+QQQQsid �W(�1)�2 X -� pX2 W(0)�3�1 X -� pX2 W(1)�30 X -� pX2 W(2)1 (10.4)Following the proedure from (3.7) to (3.8), whih applies also to matrix fatorizations,we an erase the trivial pair W(2) id!W(2). The result isW(�1)�2 X -� pX2 W(0)�3�1 X -� pX2 W(1)�30 pX-� X2 W(�1)�1 ;or more expliitly B0 :  W(�1)�2�W(1)�30 g0 -� f0 W(0)�3�1�W(�1)�1 !;with g0 = 0BBB�x1 0 px23 �px22x2 �px23 0 px21x3 px22 �px21 00 px1 px2 px3
1CCCA ; f0 = 0BBB� px21 px22 px23 00 �x3 x2 x21x3 0 �x1 x22�x2 x1 0 x23

1CCCA : (10.5)In the r � 0 phase where the brane B� is empty, this proess results in the low energyD-isomorphism ���B+� �= ���B0�; (10.6)whih trades the Wilson line omponent W(2)1 for W(�1)�1. The shift in the R-hargeis due to the fat that the varibale p arries R-harge 2 and that (f0; g0) is obtained from(f+; g+) by reloating p. In general, given a matrix fatorization in the Landau-Ginzburgphase, we an always eliminate the Wilson line omponent with largest hargeW(qmax) infavour of W(qmax�3), as well as the smallest harge omponent W(qmin) by W(qmin+3).This reets the broken gauge symmetry in the Landau-Ginzburg orbifold model, andtells us that we an simply set p = 1 in order to obtain Z3-graded matrix fatorizations.In the next subsetion. we will see how this works in a general model.In the r � 0 phase where the brane B+ is infra-red empty, the above proess resultsin the D-isomorphism �+�B�� �= �+�B0�: (10.7)203



The Wilson line omponentW(2) in B� is traded for othersW(q) with q = �1; 0; 1. Justas in this ase, we an always lower (and inrease) the gauge harges q, by binding withB+ or with its shifts in gauge and R-harges. Eah binding proess hanges the hargeby at most 3.Grade Restriiton RuleWe now transport D-branes aross phase boundaries. Let us onsider two adjaentphases, say Phase I and Phase II, and �x a window w at the phase boundary. The graderestriiton rule (or more generally the band restrition rule) of Setion 7 tells us thatwe annot transport arbitrary matrix fatorizations along a path that goes through w.Only those branes whose Wilson line omponentsW(q1; : : : ; qk) are ontained in the bandrestrition rule an be transported, i.e., (q1; : : : ; qk) must be in the band CwI;II � Zk. Wedenote the set of matrix fatorizations in the band by MFW (T wI;II). Just like (8.6) in thenon-ompat ase, we an assoiate to a given window w, a hat diagram:MFW (CN ; T )[MFW (T wI;II)
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� JJJJ℄!wI;II !wII;IMFW (XI) MFW (XII) (10.8)The lifts and projetions ompose to the mapsFwI;II = �II Æ !wI;II :MFW (XI) �!MFW (XII);FwII;I = �I Æ !wII;I :MFW (XII) �!MFW (XI);whih are inverse to eah other, FwII;I ÆFwI;II �= idMFW (XI) and FwI;II ÆFwII;I �= idMFW (XII). Theyindue a one-to-one orrespondene between D-isomorphisms lasses in MFW (XI) andMFW (XII). The key step in the hat diagram (10.8) is the lift from the low energy matrixfatorizations in a given phase, say MFW (XI), to the grade restrited subsetMFW (T wI;II).A random lift B = (V; Q; �; R) of a matrix fatorization in MFW (XI) to the linear sigmamodel does not omply with the band restrition rule. We an, however, bind trivial D-branes to B in orde to eliminate Wilson line omponentsW(q) outside the band, withouthanging the D-isomorphism lass in MFW (XI).In the example at hand, the trivial branes at small volume, r � 0, are the matrix204



fatorizations  W(q + 3)j+1 p -� G W(q)j!for any q 2 Z and j 2 Z. In the large volume phase, r � 0, the trivial branes are W(q)j�1�W(q + 2)�3j+1 g+-� f+ W(q + 1)�3j�W(q + 3)j+2 !for any q 2 Z and j 2 Z. Note that both D-branes have just the right width in the rangeof gauge harges in order to enable the restrition to Cw for some window w at the phaseboundary. The binding proess (10.4) is an example where the Wilson line omponentW(2) is eliminated in order to �t the matrix fatorization into the grade restrition ruleCw = f�1; 0; 1g assoiated to the window w = f�� < � < �g. Indeed, the matrixfatorization B0 is an objet in MFW (T w), and as a result of relations (10.6) and (10.7)we �nd:Fw+;� : �+�W(2)0 p -� G W(�1)�1� 7�! �� W(�1)�2�W(1)�30 g+-� f+ W(0)�3�1�W(2)1 !: (10.9)Just as in this example, in any model, the trivial matrix fatorizations to be usedfor grade or band restrition proesses are obtained from the trivial omplexes in thenon-ompat version. For the general model with U(1) gauge group (using the notationin Setion 8.2), they are obtained from the X-Koszul and Y -Koszul omplexes by addingarrows in the oppostite diretionsKmf+ = W(0) X-�a W+ X-�a ^2W+ X-�a � � � X-�a ^lW+! ; (10.10)Kmf� = W(0) Y-�b W� Y-�b ^2W� Y-�b � � � Y-�b ^l0 W�! : (10.11)Here a = (a1; :::; al) and b = (b1; :::; bl0) are suh thatW = lXi=1 xiai(x; y) = l0Xj=1 yjbj(x; y):Sine W is gauge invariant, suh ai's and bj's always exist if W is assumed to be reduedwith respet to the non-trivially harged �elds (i.e. W = 0 for x = y = 0). We havenegleted to put the R-harge information in (10.10) and (10.11).205



For a model with higher rank gauge group, T = U(1)k with k > 1, at eah phaseboundary we an onstrut similar matrix fatorizations of the part ofW whih is reduedwith respet to the relevant �elds at that phase boundary. Then, we an take the tensorprodut with any matrix fatorization for the remaining part of W to make a trivial D-brane. As in the non-ompat version, there are amibuities in the grade restrited lifts!wI;II and !wII;I, but they are due to ommon deleted sets of the two pahses and hene donot matter in the end.Integrating Out Heavy FieldsWe have ahieved our goal also in models with superpotential | we have a ompleterule of D-brane transport aross phase boundaries. However, the \low energy" theories inthe above disussion are non-linear LG models on tori verieties Xr, whih are in generaldi�erent from the typial desription, suh as nonilinear sigma models without potentialor LG models on linear spae. In order to have a useful transportation rule, we need to�ll this gap.The main gap exists in large volume phases where all the modes transverse to Mr inXr aquire masses from the F-term superpotential W . For sales below the F-term mass,we an integrate out these massive modes and we obtain the non-linear sigma model onMr. Matrix fatorizations must turn into omplexes of holomorphi vetor bundles overMr. The pyramid (10.1) is then enhaned by maps MFW (Xr)! D(Mr) in suh phases,whih assoiate to eah matrix fatorization at the intermediate sale a geometri D-braneon the subvariety Mr: MFW (CN ; T )
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We will �nd what the mapsMFW (Xr) �! D(Mr) are, and see that they indue a one-to-one orrespondene between geometri D-branes in D(Mr) and matrix fatorizations inMFW (Xr). Unlike in the bulk theory, where integrating out the massive �elds essentially206



orresponds to setting them equal to zero, the presene of a boundary enrihes the storysigni�antly.A gap also exists at Landau-Ginzburg orbifold points where the usual low energydesription is in terms of LG models on linear spaes. This has nothing to do with F-terms but has to do with D-terms. At a LG orbifold point, some of the linear sigma model�elds simply deouple by aquiring in�nite mass from the Higgs mehanism, and we areleft with the LG model for the rest of the �elds. Thus, it is more onvenient to use thedesription that inludes only those massless linear �elds, rather than to work with theset of all �elds and implement the D-isomorphism relation, suh as (10.6), all the time.Before attaking the main problem to �nd the maps MFW (X) �! D(M) in largevolume phases, we �rst �ll this gap at LG orbifold points.10.2 Landau-Ginzburg Orbifold PointWe need to establish the equivalene of the two desriptions at a Landau-Ginzburgpoint, one with the full set of �elds subjet to the D-term relation and the other with theredued set of �elds without any relation. This problem also exists in the model withoutsuperpotentialW = 0, at a free orbifold point, and ould have been disussed in Setion 8.The treatment we will provide below an be easily adapted for that ase as well, and wewill leave that to the reader.We �rst disuss the problem in a spei� lass of examples | Example (A). One thatis done, the generalization is straightforward and will be desribed only briey.10.2.1 The U(1) TheoryEaxmple (A) is a U(1) gauge theory with (N + 1) �elds P;X1; : : : ; XN of harge�N; 1; : : : ; 1. The superpotential is W = PG(X) where G(X) is a degree N polynomialof X1; : : : ; XN . The limit r ! �1 is the Landau-Ginzburg orbifold point where p has avauum expetation value that breaks the gauge group U(1) to the subgroup ZN of N -throots of unity. The P and the gauge multiplets deouple together by aquiring in�niteHiggs mass.
207



Elimination Of PElimination of P is straightforward | simply set it equal to its expetation valuewhih an be hosen to be 1. Of ourse, sine the �eld p arries R-harge 2, we musthange the gauge for the R-symmetry transformation. It is done as follows.Let (V; Q; �; R) be a D-brane in the linear sigma model. We setQ(x) := Q(1; x);�(!) := �(!); with !N = 1; (10.12)R(�) := R(�)�(��2=N):Q(x) is of ourse a matrix fatorization of W = G(x). It is invariant under the orbifoldgroup ation, �(!)Q(! � x)�(!)�1 = Q(x), and has R-harge 1,R(�)Q(�2=Nx)R(�)�1 = R(�)�(�2=N )�1Q(1; �2=Nx)�(�2=N )R(�)�1= R(�)Q(�2; x)R(�)�1= �Q(1; x) = �Q(x):The operators �(!) and R( ei�) of ourse ommute and satisfyR( e�i)�( e2�i=N) = R( e�i)�( e�2�i=N)�( e2�i=N ) = �V;Thus, we obtained a D-brane (V; Q; �; R) in the LG orbifold.Inlusion Of PLet us next �nd the map in the opposite diretion | from a D-brane in the LG orbifoldto a D-brane in MFW (Xorb). Atually, we will be able to �nd a map diretly into thegrade restrited subset MFW (T w) in the linear sigma model, for any window w at thephase boundary. This will be partiularly useful for D-brane transport from the LG pointto the large volume regime. We reall that the set Cw of admissible harges for a windoww is a set of N onsequetive integers. In partiular, it has the propertyq; q0 2 Cw =) jq � q0j � N � 1: (10.13)Let (V; Q; �; R) be a D-brane in the LG orbifold. One an hoose a basis in whihR(�) and �(!) are simultaneously diagionalized, with eigenvalues �Ri and !qi respetively.Here we use the indies i, j; : : : to label the Chan-Paton basis vetors. Ri is a rational208



number and qi is a mod N integer. Sine R( e�i)�( e2�i=N ) = �V, we �nd that e�iRi e2�iqi=Nis 1 or �1 depending on whether the basis element is even (�i = +1) or odd (�i = �1).Namely, Ri + 2qi=N is an even or odd integer depending on �i = +1 or �i = �1. In fat,for suh an Ri the equation Ri = Ri � 2qiN ; (10.14)is uniquely solved by integers (Ri; qi) from the rangeqi 2 Cw;Ri 2 ( 2Z �i = +12Z + 1 �i = �1:Let us now put�(g) := 0B� gq1 0. . .0 gq2` 1CA ; R(�) := 0B� �R1 0. . .0 �R2` 1CA : (10.15)Then we have R(�) = R(�)�(��2=N ) and qi = qi mod N , that is, �(!) = �(!) for an N -throot of unity !. Hene, by the orbifold invariane of Q(x) we have�(!)�1Q(!x)�(!) = Q(x); if !N = 1:This means that �(z)�1Q(zx)�(z) depends on z only though zN . Sine Q(zx) is a poly-nomial of zxi's and sine onjugation by �(z) an hange the power of z only at most byz�(N�1) (see (10.13)), we �nd that �(z)�1Q(zx)�(z) has no negative powers of zN , thatis, it is a polynomial in zN ,�(z)�1Q(zx)�(z) = Q0(x) + zNQ1(x) + z2NQ2(x) + � � � :Qi(x) is the omponent of Q(x) suh that �(z)�1Qi(zx)�(z) = zi NQi(x). Now we de�neQ(p; x) by replaing zN by p:Q(p; x) := Q0(x) + pQ1(x) + p2Q2(x) + � � � : (10.16)Let us perform some heks on this Q(p; x). Using the gauge transformation property ofQi(x), we see that the equation Q(x)2 = G(x) � idV deomposes into the following set ofequations Q0(x)2 = 0;Q0(x)Q1(x) +Q1(x)Q0(x) = G(x)idV;Q0(x)Q2(x) +Q1(x)2 +Q2(x)Q0(x) = 0;� � � � � � 209



These are ompiled into a single equationQ(p; x)2 = pG(x) � idV;whih says that Q(p; x) is indeed a matrix fatorization of pG(x). Gauge invariane andR-symmetry simply follow from the de�nition,�(g)�1Q(g�Np; gx)�(g)= Q0(x) + (g�Np)(gNQ1(x)) + (g�Np)2(g2NQ2(x)) + � � �= Q(p; x);R(�)Q(�2p; x)R(�)�1= R(�)�(�2=N )Q(�2p; x)�(�2=N )�1R(�)�1= R(�)Q(p; �2=Nx)R(�)�1 = �Q(p; x):To summarize, (V; Q; �; R) given by (10.15) and (10.16) has all the properties to de�nea D-brane in the linear sigma model. We have onstruted a map that sends D-branes inthe LG orbifold to grade restrited D-branes in the linear sigma model. It is lear thatthis is the inverse of the map (V; Q; �; R) 7! (V; Q; �; R) whih was obtained by settingp = 1 and modi�ying the R-symmetry by an appropriate gauge transformation.ExampleIf we apply the map (V; Q; �; R) 7! (V; Q; �; R) to the D-branes B�, B+ and B0 thatwere introdued in (10.2), (10.3) and (10.5), we �ndB� 7�!  O(2)� 43 id -� G O(2)� 13!;B+;B0 7�!  O(2)� 43�O(1)�3� 23 g -� f O(0)�3�1�O(2)� 13 !;where (f; g) are obtained from (f+; g+) or (f0; g0) by setting p = 1. The subsripts are theChan-Paton R-harges Ri in the low energy theory. We indeed �nd the empty brane (1; G)as the image of B�. Also, B+ and B0 are mapped to the same D-brane. (The image isequal to the Reknagel-Shomerus brane B(0;0;0);2;1 in the notation of Setion 2.4.1.) If weapply the inverse map to the two LG branes obtained above, with the grade restrition210



rule Cw = f�1; 0; 1g, we �nd respetively W(�1)�2 id -� pG W(�1)�1!;  W(�1)�2�W(1)�30 g0 -� f0 W(0)�3�1�W(�1)�1 !:The latter is B0.10.2.2 General CaseIn a general linear sigma model, a Landau-Ginzburg orbifold phase ours when thegauge group U(1)k is broken to a �nite subgroup � by non-zero values of k �elds, sayY1; : : : ; Yk, and the D-term equation an be solved for arbitrary values of the remaining�elds, X1; : : : ; XN�k. The deleted set is then� = k[i=1 fyi = 0g: (10.17)There is a frational hange of basis of the gauge group that brings the harges into thefollowing form eQaYi = �Æai ; eQaXj � 0:In suh a basis, the orbifold phase is ra < 0. Indeed, the D-term equation an be solvedat ra < 0 for arbitrary xj's by setting jyij2 = Pj eQiXj jxjj2 � ri > 0. In what follows, weuse the original integral basis, with Qaj 2 Z. The only thing we need to know is that thek � k matrix QaYi is invertible over rational numbers and that eQbXj := �[(QY )�1QX ℄bj arenon-negative.The low energy theory is the LG orbifold with variables X = (X1; :::; XN�k) andsuperpotential W (X) = W (X1; : : : ; XN�k; 1; :::; 1):The orbifold group � onsists of elements g = (g1; :::; gk) of U(1)k obeyingkYa=1 gaQaYi = 1; 8i = 1; : : : ; k:Reall from (5.27) that the R-harges RXj ; RYi of the �elds Xj; Yi are even integers. TheR-symmetry ation on Yj's an be trivialized by dressing with the gauge transformationgs(�) = (�s1; : : : ; �sk) where (s1; : : : ; sk) is the unique rational solution to the system ofQ-linear equations kXa=1 saQaYi +RYi = 0; 8i = 1; : : : ; k:211



The R-harges of Xi in the low energy LG model are thusRXj = RXj + kXa=1 saQaXj :The element gs( e�i) = ( e�is1 ; : : : ; e�isk) ats trivially on yi's, Qa e�isaQqYj = e��iRYj = 1,and ats on xi's by the phase Qa e�isaQaXj = e�iRXj e�iPa saQaXj = e�iRXj ; where we usedthe fat that the RYi 's and the RXj 's are even integers. Namely, it belongs to the orbifoldgroup � and ats on the Landau-Ginzburg �elds xj in the same way as the R-symmetryat � = e�i. Therefore, we an identify gs( e�i) = ( e�is1; : : : ; e�isk) as the element !�1 2 �that was de�ned in Setion 2.4.1.Elimination Of Yi'sGiven a brane (V; Q; �; R) in the theory with full set of variables, we setQ(x) := Q(x1; :::; xn�k; 1; :::; 1)�(!) := �(!); with ! 2 �; (10.18)R(�) := R(�)�(gs(�))�1:This (V; Q; �; R) de�nes a D-brane in the LG orbifold.Inlusion Of Yi'sLet (V; Q; �; R) be a D-brane in the LG orbifold. We denote the eigenvalues of R(�)and �(!) as �Ri and Qa !qaia . It follows from R( e�i)�(!�1) = �V that Ri +Pka=1 saqai isan even (odd) integer if i labels an even (odd) Chan-Paton vetor. Analogously to theT = U(1) ase, we would like to �nd an even (odd) integer Ri and a set of integers qai � qaisatisfying the equation Ri = Ri � kXa=1 saqai :There is a unique solution if we require qai to be in a bounded range suh that eqai :=�[Q�1Y q℄ai is in an open interval of width 1. Sine the deleted set is the union of thehypersurfaes yj = 0, (10.17), this bound preisely mathes with a fundamental domainof the Chan-Paton harges with respet to the D-isomorphism relations of the Wilson linebranes. 212



One the solution (qai ; Ri) is found for eah i, we de�ne �(g) and R(�) as in theT = U(1) ase. It follows from the orbifold invariane of Q(x) that �(g)�1Q(gx)�(g)depends on g = (g1; : : : ; gk) only throughhj := kYa=1 ga�QaYj ; i = 1; : : : ; k:It is in fat a polynomial of h1; : : : ; hk, due to the bound on qai , as one an see in thefrational basis of U(1)k mentioned at the beginning. In partiular, one an write Q(x) =P~nQ~n(x) suh that �(g)�1Q~n(gx)�(g) = h~n �Q~n(x) where ~n is a k-tuple of non-negativeintegers n1; :::; nk, and h~n is a short-hand notation for the produt hn11 � � �hnkk . SettingQ(x; y) =X~n yn11 � � � ynkk Q~n(x);we obtain a D-brane data (V; Q; �; R) in the linear sigma model. We have onstrutedthe inverse to the map (V; Q; �; R) 7! (V; Q; �; R) in (10.18).10.3 Geometri PhaseWe now attak the problem of integrating out the bulk �elds that aquire mass fromthe superpotential F-term. In fat, we had already onsidered the same problem in theontext of a simple Landau-Ginzburg model in Setion 3.4, where we integrated out twovariables, U and V , whih enter into the term UV of superpotential. We shall refer toour result of Setion 3.4, (V; Q) 7! (bV; bQ) given in (3.35) and (3.36), as the Kn�orrer map.Our urrent situation an be regarded as a massive LG model �bred over the subvarietyM � X, with a non-degenerate quadrati superpotential as a funtion of the transverseoordinates. Thus, we may simply apply the Kn�orrer map �brewise in this setup.In the �rst part of this subsetion, we diretly apply the Kn�orrer map and obtain themap of matrix fatorizations in MFW (X) to geometri D-branes in D(M). In the seondpart, we reformulate the Kn�orrer map and �nd the inverse map, from geometri D-branesin D(M) to matrix fatorizations in MFW (X).10.3.1 MFW (X)! D(M)We �rst onsider Example (A) with the superpotentialW = PG(X1; : : : ; XN): (10.19)213



The geometri phase is r � 0, and the desription at the intermediate sale is the LGmodel with this superpotential over the total spae X = X+ of the holomorphi linenumdle O(�N) ! CPN�1. The superpotential is ritial at the submanifold fP = G =0g � X, whih is a degree N hypersurfaeM of the projetive spae CPN�1. We may saythat we have a LG model with superpotential W = PG �bred over the hypersurfae M .Thus, we an simply apply the Kn�orrer map �brewise. We obviously have two options,one with the identi�ation U = P and V = G and the other with U = G and V = P .The two must give rise to the same answer provided we do everything orretly. In this�rst part, we take the former option. The latter option turns out to be useful to �nd theinverse map and will be onsidered in the seond part.Let (V; Q; �; R) be a linear sigma model brane representing an element of MFW (X).Following the Kn�orrer map we putbV = V� pV� p2V� p3V� � � � ; (10.20)bQ = QjG(x)=0: (10.21)bQ is regarded as ating on the in�nite dimensional spae bV. The gauge and the R-symmetry ations b�, bR on the new Chan-Paton spae bV are naturally determined by therespetive harges of p, up to an overall shift ambiguity. This ambiguity is �xed by settingb� = � on V � bV; (10.22)bR = R on V � bV: (10.23)As we have disussed in Setion 3.4, we need to make a hoie of the overall R-hargeassignment, and (10.23) is just one hoie. As for the gauge group ation, on the otherhand, there is no suh ambiguity. We will see that (10.22) is the orret identi�ation, aslong as the B-�eld on M is given in terms of the theta parameter byB = � +N�: (10.24)(bV; bQ; b�; bR) is the data of the D-brane in the low energy sigma model. The Chan-Patonspae bV with representations (b�; bR) orresponds to a graded vetor bundle bE over M ; aone-dimensional subspae of bV of gauge harge q and R-harge j orresponds to a rankone subbundle of bE at degree j whih is isomorphi to the line bundle O(q) on M . bQ atson bE as a degree 1 bundle map. Sine we are on the hypersurfae fG(x) = 0g it squaresto zero bQ2 = 0:214



Thus, we have a omplex of vetor bundles. Sine p has R-harge 2 > 0, the subspaepmV � bV for larger m orresponds to a subbundle with larger R-degree. Therefore, if theoriginal Chan-Paton spae V was �nite dimensional, the degree j subbundle E j has �niterank for eah j, and the omplex (bE ; bQ) is bounded from the left, but unbounded to theright; 0! E jm djm�! E jm+1 ! � � � ! E j dj�! E j+1 ! � � � : (10.25)Here jm is the minimum of the R-harges of V. Although it is an unbounded omplex, itis exat at large enough R-degrees. This follows from the orresponding property of theKn�orrer map, see Setion 3.4. Indeed, the infra-red empty bloks of the matrix bQ shownin (3.37) are on subspaes of large R-harges if we assign R-harge 2 to the variable u.There is also an alternative, algebrai proof of the exatness at large degrees, whih willbe given momentarily. In either way, we know that it is quasi-isomorphi to a boundedomplex of oherent sheaves, suh as0! E jm djm�! E jm+1 ! � � � ! E l dl�! Ker dl+1 ! 0;for some large l.Let us illustrate the proedure using the brane B� in the N = 3 ase, whih wasintrodued in (10.2). The original Chan-Paton spae V is two-dimensional, and let usdenote the basis vetors by e2;0, e�1;�1. The basis elements pme2;0, pme�1;�1 of the newChan-Paton spae bV have (gauge,R)-harges (2+3m; 2m), (�1+3m;�1+2m) respetivelyand thus orrespond to the line bundles O(2 + 3m)2m , O(�1 + 3m)�1+2m over the elliptiurve M . bQ maps the basis elements as followspme2;0 7! pm+1e�1;�1; pme�1;�1 7! 0:Thus, we �nd the omplex0! O(�1)�1 0�! O(2)0 id�! O(2)1 0�! O(5)2 id�! O(5)3 0�! � � �We �nd in�nite opies of trivial brane-antibrane pairs. Eliminating them all, we are leftwith the �nite omplex 0! O(�1)�1 ! 0. Hene, the Kn�orrer map yields�+(B�) 7�! O(�1)[1℄:Let us onsider another example, the brane B+ given in (10.3). As above, for eah Wilsonline brane W(q)i we have an in�nite series of line bundles O(q + 3m)i+2m on the elliptiurve. We �rst write the entries in (10.3), from left to right with respet to the R-harge,215



draw the arrows from the p-independent part of (f+; g+), and replae the notation \W"by \O": O(�1)�2 X! O(0)�3�1 &XO(1)�30 X! O(2)1We next write its opies, shifted to the right by two and tensored by O(3), and draw thearrows inluding the p-dependent part of (f+; g+):O(�1)�2 X! O(0)�3�1 X2! O(2)0 X! O(3)�31 X2! O(5)2 X! O(6)�33 X2!&X � X2% � &X � X2% � &XO(1)�30 X! O(2)1 X2! O(4)�32 X! O(5)3 X2! � � �This is the omplex (bE+; bQ+). It is exat. The exatness an be proven algebraially, butone may also prove it by omputing the potential f bQ+; bQy+g and showing that it is positiveeverywhere: The potential is jxj2 + jxj4 =Pi(jxij2 + jxij4) exept at the �rst few terms,O(�1)�2 , O(0)�3�1 , and O(1)�30 , where it is jxj2, jxj2Æi;j + �x2ix2j , and (jxj2 + jxj4)Æi;j � x2i �x2jrespetively. All the eigenvalues are bounded from below by jxj2 and are positive as longas (x1; x2; x3) 6= (0; 0; 0). Therefore, the brane determined by (bE+; bQ+) is infra-red empty,whih is indeed expeted from �+(B+) �= 0.If we apply this proedure to the brane B0 given in (10.5), we immediately �nd theomplex (bE0; bQ0):O(�1)�2 X! O(0)�3�1 X2! O(2)0 X! O(3)�31 X2! O(5)2 X! O(6)�33 X2!� &X � X2% � &X � X2% � &XO(�1)�1 X2! O(1)�30 X! O(2)1 X2! O(4)�32 X! O(5)3 X2! � � �Notie that it is almost the same as (bE+; bQ+) exept for the term O(�1)�1 with a map toO(1)�30 . Namely, it is the one of this map:(bE0; bQ0) = Cone�O(�1) X2�! (bE+; bQ+)�:Sine (bE+; bQ+) is empty, we see that our brane (bE0; bQ0) is D-isomorphi to just O(�1)[1℄whih is the same as the result for B�. This is exatly what is expeted from (10.7).Theta ShiftWe now show that the Chan-Paton gauge harges of the low energy D-brane are givenby (10.22) with theta parameter shift (10.24). To this end, we put the derivation of the216



Kn�orrer map in Setion 3.4 into the ontext of a U(1) gauge theory. Thus, we assume thatthe variables X1; :::; Xn; U; V arry some U(1) gauge harges so that the superpotentialW = WL(X) + UV is gauge invariant. We suppose that U and V have harges Qu and�Qu respetively. Then, the boundary variables � and � of the brane (3.32) must arrygauge harges �Qu and +Qu respetively. Aordingly, the Chan-Paton vetors from the(U; V ) setor have the following gauge harges:vetor j0i �j0iq Qu2 �Qu2 (10.26)Now suppose we have some brane AL in the low energy theory and onsider the brane(3.33) in the high energy theory. If we integrate out the (U; V; �)-system, we get bakexatly the original brane AL sine the ground state of the (U; V; �)-system has zeroe�etive energy and zero e�etive harge, see Setion 6.10. Let us look into the formof Chan-Paton vetors in this ontext. If ei are Chan-Paton vetors of the original lowenergy brane AL, then the Chan-Paton vetors of the high energy brane (3.33) are of theform ei 
 j0i; ei 
 �j0i. If ei's have gauge harge qi, then the latter have gauge hargesqi + Qu2 ; qi � Qu2 . These are the Chan-Paton harges that we see before integrating out Uand V . The Kn�orrer map is the proedure that takes out ei
j0i. However, what we wantas the Chan-Paton vetors in the low energy theory are just ei, but not ei 
 j0i. Thus,to �nd the orret harge of the low energy Chan-Paton vetors we need to subtrat theharge of j0i from the high energy Chan-Paton vetors. This yields the ruleqLi = qHi � Qu2 :Sine the theta parameter ontributes to the boundary harge in the form q+ �2� , one anreloate this shift to a shift of the theta parameter�L = �H �Qu�;now without shifting the qi's. In the urrent set up where U = P and hene Qu = �N ,this rule leads to (10.22) with (10.24).A shift of the theta angle due to integration of massive �elds was �rst found in theontext of losed string topologial A-model by Morrison and Plesser [58℄. There, only theshift modulo 2� matters and indeed their result is onsistent with ours: ei�� = (�1)N . Inthe present ontext of (physial or topologial) open string theoy with B-type boundaryonditions, a shift by an integer multiple of 2� also matters. The above result shows thepreise shift, inluding the integral part. 217



Left Semi-In�nite ComplexesThat the semi-in�nite omplex (10.25) is exat at large enough degrees an also beproven purely algebraially. The essential point is a well known fat in the theory ofmatrix fatorizations (Eisenbud [11℄, Proposition 5.1): LetQ =  0 f(x)g(x) 0 !be a matrix fatorization of some polynomial W (x) = W (x1; :::; xn), of size 2`� 2`. Thisindues an in�nite, 2-periodi omplex of modules over the ring B = C[x1; :::; xn℄=W (x)� � � �g�! B�` �f�! B�` �g�! B�` �f�! � � � : (10.27)Then this omplex is exat. This is proven as follows. Suppose some homomorphism�� : B�k ! B�`, indued by an `� k polynomial matrix �, obeys the equation �f Æ �� = 0.This means that the matrix f Æ� is divisible by W , that is, there is a `� k matrix  suhthat f Æ � = W. Then we have W� = g Æ f Æ � = Wg Æ , whih means � = g Æ . Inpartiular �� = �g Æ �. This shows the exatness at B�` �g�! B�` �f�! B�`. The exatnessat the other position an be shown in the same way.In fat, this in�nite omplex is the totally ayli omplex (2.72) that we met beforein Setion 2.4, where we studied the hiral ring for matrix fatorizations. We reall thatwe denoted it by CQ.If we replae bV byMm2Z pmV = � � � � p�2V� p�1V� V� pV� p2V� � � � (10.28)in the de�nition of (bV; bQ; b�; bR) for B = (V; Q; �; R), then we obtain an in�nite omplexof vetor bundles unbounded both in the left and right. If we regard it as a omplexof modules over the ring B = C[x1; : : : ; xN ℄=G(x), and if we ignore the grading, it is2-periodi and oinides with the totally ayli omplex CQ assoiated with the matrixfatorization Q = Qjp=1 of the polynomial G(x). In partiular, it is exat and an beregarded as a graded version of CQ. We denote it by CB. Our semi-in�nite omplex (10.25)is obtained from this exat omplex by hopping o� the semi-in�nite part orrespondingto the negative power omponents p�mV. This proves that (10.25) is exat at large enoughdegrees.The fat that the omplex (bE; bQ) is a part of the exat omplex CB also shows thatthere is an alternative desription: Take the remaining part (i.e. the negative power part218



�m>0p�mV) and shift it by 1 to the right. This produes a semi-in�nite omplex whihis unbounded to the left, but bounded from the right. Of ourse, this left semi-in�niteomplex is quasi-isomorphi to the right semi-in�nite omplex (bE; bQ). For example, theleft semi-in�nite version of the omplex (bE0; bQ0) that represents �+(B0) is� � � O(�7)�5 X! O(�6)�3�4 X2! O(�4)�3 X! O(�3)�3�2� X2% � &X � X2% � &XO(�8)�3�5 X! O(�7)�4 X2! O(�5)�3�3 X! O(�4)�2 X2! O(�2)�3�1If we attath O(�1)0 to this omplex with the map (x1; x2; x3) from the right-most entry,O(�2)�3�1 , the result is an exat omplex. (This an be seen by showing that the boundaypotential fQ;Qyg is positive, or by noting that it is the omplement of the exat omplex( bE+; bQ+) in the exat omplex CB+.) Namely, there is a quasi-isomorphism from thisomplex to O(�1)[1℄. Thus, we obtain again the same result for �+(B0).Complete Intersetion Of Hypersurfaes In Tori VarietyIt is straighforward to generalize the above onstrution to the ase whereM is a om-plete intersetion of hypersurfaes in a tori variety. Let us onsider a U(1)k gauge theorywhih has (N + l) �elds X1; : : : ; XN , P1; : : : ; Pl with harge Qa1; : : : ; QaN , �da1; : : : ;�dal ,and the superpotential W = lX�=1 P�G�(X1; :::; XN) (10.29)where G(X)� are homogeneous polynomials of degree da� with respet to the a-th gaugegroup. We assign R-harges 0 to Xi's and 2 to P�'s. We suppose that there is a phase inwhih the gauge group is ompletely broken by the values of the Xi's and the non-ompatvariety X is the total spae of the rank l vetor bundle �l�=1O(�~d�) over a ompat torimanifold XB. Then, the low energy theory is the non-linear sigma model on the ritiallous P� = G� = 0 (� = 1; : : : ; l), whih is the omplete intersetion M of hypersurfaesG�(x) = 0 in the tori variety XB. If we have a D-brane (V; Q; �; R) in the linear sigmamodel, then the brane in the low energy sigma model is given bybV = Mm1;:::;ml�0 pm11 � � � pmll V; (10.30)bQ = QjG1=���=Gl=0: (10.31)The gauge and R-symmetry representations b� and bR are determined by the harges ofp�'s and by the initial ondition: b� = �, bR = R in the subspae V � bV, provided the219



B-�eld is given by Ba = �a + lX�=1 da�!�: (10.32)The brane (bV; bQ; b�; bR) de�nes a semi-in�nite omplex (bE ; bQ) of vetor bundles over Mwhih is bounded from the left but unbounded to the right. It is exat at large enoughdegrees and hene is quasi-isomorphi to a �nite omplex. This follows from the propertyof the Kn�orrer map, but also an be shown algebraially. Indeed, if we relax the onditionon the range of the sum in (10.30), for example, if we inlude the sum over negative m1as well, then we have an exat omplex of modules over the omplete intersetion ringB = C[x1; : : : ; xN ℄=(G1; : : : ; Gl). To see that, just regard B as the hypersurfae ring ofA = C[x1; : : : ; xN ℄=(G2; : : : ; Gl) and apply Eisenbud's proof to the matrix fatorization ofG1(x) over the ring A. In partiular, we have various other versions of (bE; bQ) orrespond-ing to various di�erent ranges of the sum (10.30). As an example, onsider the sum whereall mi's run over negative integers. From this, with shift by l to the right, we obtain aleft semi-in�nite omplex that is quasi-isomorphi to (bE; bQ).10.3.2 D(M) �!MFW (X)We now onstrut the inverse map. The key is to onsider the opposite identi�ationin the Kn�orrer map, U = G, V = P . Setting p = 0 is straightforward, but extratingpower series of G from a given matrix fatorization is hardly pratial. This motivates usto reformulate the Kn�orrer map.Reformulation Of The Kn�orrer MapThe reformulation is best desribed using the language of rings and modules that weintrodued in Setion 9. Let us �rst desribe the original formulation of the Kn�orrer mapin that language.A matrix fatorization (V; Q) of the superpotential W =WL(x) + uv an be regardedas the pair (M;Q) where M is a Z2-graded free module over the polynomial ring R =C[x1; :::; xn; u; v℄ and Q is an odd endomorphism of M that squares to the multipliationmap byW . Setting v = 0 orresponds to replaingM by the moduleM=v =M
R(R=(v))over the ring R=(v) whih is isomorphi toA = C[x1; : : : ; xn; u℄:220



The Kn�orrer map image (M; bQ) is then obtained by regarding M=v as a module over thering B = C[x1; :::; xn℄ whih does not inlude the variable u. IfM has rank r over R, thenM has in�nite rank, M = B�r � uB�r � u2B�r � � � � : As we have seen, this in�nite-sizematrix fatorization is isomorphi to a �nite one, whih we denote by (ML; QL).Now let us desribe the new formulation. The key step is to view B as the quotientof A by the ideal (u), B = A=(u);and to regard the B-module ML as an A-module by the rule a �m := [a℄m, for a 2 A and[a℄ 2 B. We denote the result by i�(ML; QL). It is a matrix fatorization of WL(x) overA. By itself, i�ML is not a free A-module but one an �nd its free resolution, using theanonial resolution of B = A=(u),0 �! A u��! A �! B �! 0:Namely, we replae eah B in ML �= B�s by A� A and add the map A u��! A to QL. Inother words, we take the graded tensor produt VL 
C (Cj0i �C�j0i) and onsider thesum QL + u�. This free resolution is nothing but (M=(v); Qjv=0), if Q is obtained fromQL in the way desribed in Setion 3.4. In general, Q is of suh a form up to the trivialmatrix fatorizations (1;W ), (W; 1), and the trivial piees are ertainly trivial even aftersetting v = 0. Thus, we �nd(M=(v); Qjv=0) �= free resolution of i�(ML; QL): (10.33)This is the property that the low energy brane (ML; QL) must have. This an be usedto �nd the inverse map: given a matrix fatorization (ML; QL) of WL(x) over the ring B,we push it forward by i� to a matrix fatorization over the ring A, and then take its freeresolution. The �nal step is to reover the variable v.Hypersurfae In Projetive SpaeLet us apply the above reformulation to Example (A). With the identi�ation u = G(x)and v = p, the rings that appear are R = C[x1; : : : ; xN ; p℄,A = C[x1; : : : ; xN ℄; andB = C[x1; : : : ; xN ℄=G(x):Of ourse, everything is graded with respet to the gauge harge, and we also work inthe large volume phase r � 0 where the lous fx1 = � � � = xN = 0g is deleted. Namely221



instead of graded A-modules (resp. B-modules) we onsider oherent sheaves over theprojetive spae CPN�1 (resp. the hypersurfae fG(x) = 0g). In this ontext, the map i�sending B-modules to A-modules beomes the pushforward of sheaves by the embeddingi : fG(x) = 0g ,! CPN�1. Let (EL; QL) be a bounded omplex of oherent sheaves overthe hypersurfae M = fG = 0g. The �rst step is to push it forward to CPN�1 andtake its free resolution. At this stage, we have a bounded omplex of vetor bundles overCPN�1 of the formC : 0! � � � �! bj�1Mi=1 O(qi;j�1) �! bjMi=1 O(qi;j) �! bj+1Mi=1 O(qi;j+1) �! � � � ! 0This determines the data (V; Q0; �; R) where Q0 is a matrix polynomial of x1; :::; xN obey-ing Q0(x)2 = 0:Of ourse, Q0 is gauge invariant and has R-harge 1 with respet to the representation(�; R) of the gauge and R-symmetry group. The �nal step is to reover the variable p,that is, to �nd the extension of Q0(x) to a matrix fatorization of pG(x),Q(p; x) = Q0(x) + pQ1(x) + p2Q2(x) + � � � ;whih is gauge invariant and has R-harge 1. The ondition Q(p; x)2 = pG(x) � idV anbe deomposed into a set of equationsfQ0; Q1g = G � idV; (10.34)fQ0; Qng = �12 Xl+k=nl;k�1 QlQk; n � 2: (10.35)The (gauge,R)-harge ofQm(x) must be (Nm; 1�2m). We shall �nd suhQm's reursively,starting with Q1. Multipliation by G(x) de�nes a ohain map C ! C(N). Sine C isa resolution of the omplex i�(EL; QL) supported at G(x) = 0, this map has to be nullhomotopi. This shows that there is a mapQ1 : C ! C(N) of degree�1 suh that fQ0; Q1gequals the G(x)-multipliation. Thus, we found Q1(x) of harge (N;�1) obeying (10.34).The rest of Ql(x) are found by indution. Suppose that we found Q2; :::; Qm�1 that solves(10.35) for all n below m. Then[Q0; Xl+k=ml;k�1 fQl; Qkg℄ = Xl+k=ml;k�1 �[fQ0; Qlg; Qk℄� [Ql; fQ0; Qkg℄� = 0This means that PfQl; Qkg : C ! C(Nm) is a ohain map. The degree of this map is2� 2m whih is negative. Sine the Ext group Extj(C; C) is zero for any negative degree222



j, the ohain map PfQl; Qkg has to be null-homotopi. This shows the existene of adegree 1� 2m map Qm : C ! C(Nm) that satis�es (10.35) for n = m.In this way we obtain the data (V; Q; �; R) of a brane in the linear sigma model.Obviously, this is the one that must desend to the omplex (EL; QL) that we startedwith. There is one subtlety though, onerning the value of the theta parameter and theoverall shift of R-harge. The theta parameter must be related to the B-�eld of the lowenergy sigma model by � = B +N�: (10.36)The hoie of R-symmetry is a matter of onvention. However, if we want to be onsistentwith the one in (10.23) that was used in the map MFW (X)! D(M), we need to replaeR(�) by R(�)! R(�)�: (10.37)To see this, let us ome bak to the derivation of the Kn�orrer map and its reformulation.The lift of a low energy brane (VL; QL) to the high energy theory is given by V = VL 
(Cj0i �C�j0i) and Q = QL + u� + v�. In the disussion of the map MFW (X)! D(M)we used the identi�ation u = p; v = G, while we used u = G; v = p for the inverse mapD(M) ! MFW (X). However, to ompare the two stories, it is better to use a ommonframework. We an atually use u = p; v = G also in the disussion of the inverse map |we just have to hange the notation as � = �0; � = �0; j0i = �0j0i0. The harge assignmentfor j0i; �j0i was (q; R) = (�N2 ; 0); (N2 ; 1). The gauge harge is anonial but the R-hargeis a hoie. This hoie is the one orresponding to (10.23). Thus, in the inverse map, wemust use vetor j0i0 �0j0i0(q; R) (N2 ; 1) (�N2 ; 0)In view of this harge assignment, the free resolution of B = A=(v) must bev�0 : A(�N2 )0�!A(N2 )1 ;instead of the standard one A(�N)�1�!A(0)0 whih was used above in obtaining (�; R).Thus, we must shift the harges as(qi; Ri)! (qi + N2 ; Ri + 1): (10.38)The shift of the R-harge is nothing but (10.37). The shift of the gauge harge an betraded for the shift of the B-�eld B ! B +N� whih gives (10.36).As an example we onsider D-branes on the Fermat type ellipti urve, M = fG(x) =x31 + x32 + x33 = 0g � CP2. We �rst onsider the D2-brane with trivial gauge �eld, the223



struture sheaf O of the urve, with some value B� 2 R of the B-�eld. Its pushforwardto CP2 is the sheaf OM supported at M � CP2, and its free resolution is given byC : O(�3) G�! O(0). It is easy to �nd its lift to the linear sigma model: W(�3)0 G -� p W(0)1!; � = B� + 3�:If we apply the map MFW (X) ! D(M) to this brane, we obtain the omplex on theurve M ,O(�3)0 0�! O(0)1 id�! O(0)2 0�! O(3)3 id�! O(3)4 0�! � � � ; B = B� + 6�:This is quasi-isomorphi to O(�3) with B = B� + 6� and that is indeed equivalent toO(0) with the original value B = B� of the B-�eld, the brane we started with. A moreelaborate example is the D0-brane at the point p = fx1 + x2 = x3 = 0g, the skysrapersheaf Op on M . A free resolution of its pushforward i�Op to CP2 is given byO(q � 1) � �x3x1+x2��! O(q)2 (x1+x2;x3)�! O(q + 1)for any q 2 Z. This readily lifts to the matrix fatorizationBp :  W(q)�20 g -� f W(q + 1)1�W(q � 1)�1 !; � � B� + 3�;withg =  x1+x2 x3�px23 p(x21 � x1x2 + x22) ! ; f =  p(x21 � x1x2 + x22) �x3px23 x1+x2 ! : (10.39)Complete Intersetion Of Hypersurfaes In A Tori VarietyThe above onstrution extends straightforwardly to the ase of a omplete intersetionM of hypersurfaes in a tori variety: Given a omplex of sheaves onM , push it forward tothe ambient tori variety, and then take its free resolution. This de�nes a data (V; Q0; �; R)suh that Q20 = 0. The step to �nd its extension to a matrix fatorizationQ = Xn1;:::;nl�0 pn11 � � � pnll Q~n(x)
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of Pl�=1 p�G�(x) is a line by line generalization of the ase of projetive hypersyrfae.The shift of the theta parameter is opposite to (10.32):�a = Ba + lX�=1 da�!�:In order to be onsistent with the map MFW (X)! D(M) given earlier, we also need toshift the R-harge by l.At this point, we would like to aknowledge the work by Avramov and Buhweitz [93℄on the relation between matrix fatorizations and modules on hypersurfae rings, whihfollows earlier works by Shamash [94℄ and Eisenbud [11℄. Later, in [95℄ their results wereturned into omputer algorithms. In the following we ompare our formulations of theKn�orrer map to the latter referene.In the terminology adapted to the urrent ontext, (i) they onstruted a matrixfatorization (V; Q; �; R) from a given module over the omplete intersetion ring B =C[x1; :::; xN ℄=(G1; :::; Gl), (ii) onstruted the left semi-in�nite omplex of graded freeB-modules orresponding to that matrix fatorization, and (iii) proved that that semi-in�nite omplex is quasi-isomorphi to the original B-module. The onstrution of theinverse map D(M) ! MFW (X) presented here is inspired from their work. Espeiallythe reonstrution of Q(p; x) from Q0(x) is a opy of their proof for the part (i). On theother hand, we onstruted the mapMFW (X)! D(M), orresponding to their part (ii),using a ompletely di�erent method, and that was done when we were not aware of theirwork. Finally, we hope that it is lear that we have given an independent derivation oftheir isomorphism (iii) whih is physially transparent | the original B-module and thesemi-in�nite omplex are simply two di�erent ways to desribe the low energy behaviourof the same brane in the linear sigma model.10.4 CY/LG Correspondene | More ExamplesCombining the brane transportation rule desribed in Setion 10.1 with the redutionand lift maps found in Setions 10.2 and 10.3, we obtain a very expliit map betweenD-branes of a LG orbifold point and those in a large volume phase. Given a branein the initial phase, we lift it to the linear sigma model and �nd its grade or bandrestrited representative with respet to the hosen path in the K�ahler moduli spae.After transportation through phase boundaries, we redue it to the low energy theory inthe �nal phase. 225



For example, let us onsider D-brane transport in Example (A) with Fermat-ubipolynomial G = x31 + x32 + x33, along a path in the K�ahler moduli spae through thewindow �� < � < � whih orresponds to the grade restrition rule f�1; 0; 1g. Take theReknagel-Shomerus brane B(0;0;0);2;1 at the orbifold theory. We have seen in Setion 10.2that it lifts to the brane B0 given in (10.5) whih is already grade restrited. In the largevolume phase, we have seen that this redues to O(�1)[1℄. Thus the transportation givesB(0;0;0);2;1 2 MFZ3(G) 7�! O(�1)[1℄ 2 D(M):As another example, let us onsider the D0-brane on the ellipti urve M at the point pgiven by x1 + x2 = 0; x3 = 0. It is given by the skysraper sheaf Op of M and lifts to thebrane Bp given in (10.39) with any value of q. The one with q = 0 is grade restrited andan be transported to the LG phase. By redution, we �nd the brane at the LG orbifoldpoint. This proess givesOp 2 D(M) 7�! 0B�O(0)�20 g -� f O(1) 13�O(2)� 13 1CA 2MFZ3(G)where g and f are obtained by setting p = 1 in (10.39).In what follows, we onsider more examples of D-brane transport.10.4.1 Fermat QuintiWe �rst onsider the Fermat quintiG(x1; :::; x5) = x51 + x52 + x53 + x54 + x55:We will �nd the large volume image of the RS-branes with L = (0; 0; 0; 0; 0) and of a lassof permutation branes at the LG orbifold point, as well as the LG image of the D4-branewrapped on a divisor of the quinti. Throughout, we onsider the paths through thewindow w : �5� < � < �3� with the grade restrition rule Cw = f0; 1; 2; 3; 4g.L = 05 RS-BranesWe �rst onsider the Reknagel-Shomerus branes BL;q;r with L = (0; 0; 0; 0; 0):Q05 = 5Xi=1�xi�i + x4i �i�226



represented on the Cli�ord module V5. Reall from Setion 2.4.1 that the labels q and rspeify the representations of the orbifold group and the R-symmetry group. In partiularthe R-harge of the vetor j0i is Rj0i = �q5 + r:We will only look at those with r = 0, as the others an be reovered by overall shifts ofthe R-degree. The vetor j0i is even for this hoie.We �rst onsider the brane B05;0;0 for whih Rj0i = 0. The R-harges of the other basiselements of V5 an be found by noting that the �i's have R-harge �35 :vetor j0i �ij0i �i�jj0i �i�j�kj0i �i�j�k�lj0i �1 � � ��5j0iRi 0 �35 �65 �95 �125 �3The �rst step is to lift it to a grade restrited brane in the linear sigma model. This isdone by solving the equation (10.14), that is,Ri = Ri � 2qi=5where Ri is an even (odd) integer for an even (odd) Chan-Paton vetor and qi must betaken from the grade restrition range Cw = f0; 1; 2; 3; 4g. For the even vetor j0i withR = 0 the equation is solved by R = 0 and q = 0. This orresponds to the Wilson linebrane W(0)0. For the odd vetors �ij0i with R = �3=5, the solution must have odd Rand is given by R = 1, q = 4, whih yields W(4)1. Sine we have �ve elements �1j0i, ...,�5j0i, we have the sum of �ve opies W(4)�51 . The solutions for all the basis vetors of V5are listed in the following table:vetor j0i �ij0i �i�jj0i �i�j�kj0i �i�j�k�lj0i �1 � � � �5j0iRi 0 1 0 �1 �2 �3qi 0 4 3 2 1 0W(0)0 W(4)�51 W(3)�100 W(2)�10�1 W(1)�5�2 W(0)�3The variable p an be inluded to Q05 simply by multiplying eah entry by the rightpower of p so that the degrees Ri; qi math. For example, the map x4i �i sending W(0)0 toW(4)�51 needs no power of p while the map x4i �i sending W(4)�51 to W(3)�100 needs to bemultiplied by a single power of p. In this way, we �nd the matrix fatorization Q(p; x) ofpG(x). This ompletes the onstrution of grade restrited lift (V5; Q; �; R) of the braneB05;0;0.The next step is to redue (V5; Q; �; R) down to the low energy theory in the largevolume phase, applying the map MFW (X)! D(M) in Setion 10.3.1: We �rst write the227



Wilson line branes in the above table in the order of the R-harges Ri and then write itsopies suessively, shifting the position by 2 and the gauge degree q by 5 at eah step.The arrows are determined by Q(p; x) but they an also be read diretly from the originalmatrix fatroization Q05 with the aid of the gauge degree information. This yields thefollowing semi-in�nite omplex over the quinti hypersurfae M
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latter is empty, we are simply left with O(0) in that box. In other words, we have thequasi-isomorphism relationC = Cone(O(0)[�1℄ �! K[3℄) �= O(0)[0℄:Thus, the large volume image of the brane B05;0;0 is the struture sheaf O of the quintihypersurfae, that is, the D6-brane with trivial gauge bundle on it.The large volume images of the other L = 05 RS-branes B05;q;0 an be found in asimilar way. The semi-in�nite omplexes that we obtain for q = 1; 2; 3; 4 are respetively
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remain. We further notie that they are quasi-isomorphi to the sheaves of setions of thevetor bundles ^q(T �P4(1)) of the ambient spae CP4, at R-degree �q, whih are restritedto the hypersurfaeM . Thus, the large volume images of the L = 05 Reknagel-Shomerusbranes are: B05;q;0 7�! 
qP4(q)[q℄���M ; for q = 0; 1; 2; 3; 4. (10.40)The value of the B-�eld is related to the theta parameter byB = � + 5�:In partiular, it is in the domain 0 < B < 2� for the hosen window.We notie that the images (10.40) are very similar to the results (8.27) of the transportof the frational branes Op(�q) in the non-ompat version of the theory. This observationleads us to an alternative way to derive the same result. We �rst notie that the graderestrited lift of the RS-brane B05 ;q;0 is the same as the grade restrited lift B0�q of thefrational brane Op(�q) shown in (8.25), exept that we need to add the oppositely orientedarrows, either X4 or pX4. We next reall that B0�q is presented as the bound state of theX-Koszul omplex B�q and another omplex B00�q . It is straightforward to �nd the matrixfatorization version of this bound state. It is a bound state of the matrix fatorizationB1, obtained from the X-Koszul omplex B�q by adding the opposite arrows pX4, andthe matrix fatorization B0005;q;0 given byAq(5)[�1℄ p -� G Aq:Here Aq is the omplex de�ned in (8.26). Sine the brane B1 is trivial in the large volumeregime, we an simply take the brane B0005;q;0 as a lift of the large volume image of the RS-brane. At this stage, we apply the seond formulation of the Kn�orrer map: Set p = 0 andask if that is presented as the pushforward of some omplex over the quinti hypersurfaeG = 0. And yes it is! It is the pushforward of the omplex assoiated with Aq(5)[�1℄:O(5)�(5q)�q+1 X�! � � � X�! O(q + 4)�50 X�! O(q + 5)1Applying the R-harge shift (10.38) (bakwards of ourse) and trading the di�erene inthe B-�eld shifts, (10.24) versus (10.36), for a harge shift, we haveO(0)�(5q)�q X�! � � � X�! O(q � 1)�5�1 X�! O(q)0 :This is preisely the result obtained above.The pattern (10.40) was onjeted in [1℄ based on the analysis of R-R harge and usingmirror symmetry. We have given a proof of the onjeture.230



Other RS-BranesWe do not expliitly write down the large volume images of RS-branes for other L's,sine it is very straightforward. However, we do indiate a way to extrat a �nite pieefrom the semi-in�nite omplex. Analogously to B+ for the ellipti urve and to B1 forthe L = 05 RS-branes, we onsider the brane BtrivL given byQtrivL = 5Xi=1�xLi+1i �i + px4�Lii �i�with any onsistent hoie of gauge and R-harge of Chan-Paton vetors. The potentialfQtrivL ; QtrivyL g = 5Xi=1�jxij2(Li+1) + jpj2jxij2(4�Li)�is everywhere positive in the large volume phase. Therefore, the semi-in�nite omplex KLobtained from this brane must be exat. The large volume image of a general RS-braneBL;q;r is �rst given by a semi-in�nite omplex, and this is presented as a bound state of a�nite length omplex FL;q;r and the exat omplex KL possibly with some shifts in gaugeand R-degrees. Thus, one an extrat the �nite piee FL;q;r as the large volume image ofthe RS-brane. Sine it is a omplex of sums of line bundles O(q), we have proved that thelarge volume images of the RS-branes are always restrition of �nite omplexes of vetorbundles of the ambient spae CP4.Permutation BranesNext we onsider some examples of permutation branes of the Gepner model [96℄ whihwere reently studied in terms of matrix fatorizations in [97, 98℄. Take the followingmatrix fatorization of W = G(x);Q = 3Xi=1� ai�i + bi��i �;whih is represented on the Cli�ord module V3, wherea1 = x1 + x2; b1 = x41 � x1x32 + x21x22 � x1x32 + x42;a2 = x3 + x4; b2 = x43 � x3x34 + x23x24 � x3x34 + x44;a3 = x5; b3 = x45:The brane at the Landau-Ginzburg orbifold point is spei�ed by the orbifold ation andthe R-harge of the Cli�ord vauum j0i. Let Pq;r be the brane suh that �(!)j0i = !qj0i231



and Rj0i = �2q=5 + r. Let us start with the brane P0;0. The R-harges Ri of all theChan-Paton vetors in the Landau-Ginzburg model as well as their grade restrited liftsin the linear sigma model are listed in the following table:vetor j0i �ij0i �i�jj0i �1�2�3j0iRi 0 �35 �65 �95Ri 0 1 0 �1qi 0 4 3 2W(0)0 W(4)�31 W(3)�30 W(2)�1More expliitly, the grade restrited lift is given by0BBB� W(0)0 b -� pa W(4)�31� pb ���������*a �W(3)�30 pb-� a W(2)�1
1CCCA ;where a and b orrespond toPi ai�i andPi bi�i. Let us apply the redution map to thisbrane in the large volume phase. This time, we take the left semi-in�nite version:� � � b! O(�6)�3 a! O(�5) b! O(�1)�3 :%a � &b � %ab! O(�3) a! O(�2)�3 (10.41)This is the large volume image of the permutation brane P0;0. The two-periodi part isexat and thus we an ut o� the degree � �2 parts and replae the degree �1 omponentby the okernel of the map from the degree �2 omponent. This is one way to �nd a �niteomplex of oherent sheaves. Alternatively, we may try to proeed as in the RS-branes:Take the matrix fatorization Q = Pi(ai�i + pbi�i) and ompare its geometri image Kwith (10.41). This time, however, the potential for Q is fQ;Qyg =Pi jaij2 for p = 0 andfails to be positive everywhere. As a onsequene the omplex K fails to be exat. Butthe potential is positive exept at a1 = a2 = a3 = 0, whih is a rational urve D on thequinti M . Aordingly, the omplex K an be made exat by adjoining the sheaf ODsupported at D. In this way we obtain the following exat omplex� � � b! O(�6)�3 a! O(�5) b! O(�1)�3 a! O q! OD%a � &b � %ab! O(�3) a! O(�2)�3Here q is the restrition map to D. We see that the omplex (10.41) sits inside it. Inpartiular, there is a quasi-isomorphism of (10.41) to the omplex O q! OD, mapping the232



right-most O(�1)�3 to O by a. Thus, we an take O q! OD as the large volume image ofP0;0.Repeating this proedure, we �nd the following simple images of the permutationbranes Pq;0 for q = 0; 1; 2; 3; 4:P0;0 7�! �O q�! OD�P1;0 7�! �O�3 a�! O(1) q�! OD(1)�P2;0 7�! �O�3 a�! O(1)�3 a�! O(2) q�! OD(2)�P3;0 7�! OD(�2)[1℄P4;0 7�! OD(�1)[1℄Note that the images of P3;0 and P4;0 are the (anti-)D2-branes wrapped on the urve D.The Chern haraters of these omplexes FPq;0 areh(FP0;0) = 1� 15H2 � 15H3;h(FP1;0) = �2 +H + 310H2 � 730H3;h(FP2;0) = 1�H + 310H2 + 730H3;h(FP3;0) = �15H2 + 15H3;h(FP4;0) = �15H2:where we used that h(OD) = 15H2 + 15H3. This reprodues the result of [98℄ on theK-theory harges of the large volume images of the permutation branes (up to an overallsign whih an be traed to the shift Pq;0 ! Pq;1).D4-BraneAs a �nal example for a D-brane on the quinti hypersurfae (not neessarily of Fermattype), let us onsider a D4-brane OH(0) on a hyperplane H, whih is determined by alinear form h(x) = � �X =P5i=1 �ixi with parameters � 2 CP4. We take the B-�eld inthe interval B 2 (0; 2�).We would like to �nd its image at the LG orbifold point. In order to apply the mapD(M) �! MFW (X), we notie that, as an objet on the ambient spae CP4, this D-brane is supported on the omplete intersetion fh(x) = 0g \ fG(x) = 0g and thus anbe realized as Koszul omplex of these two polynomials. For the lift to the linear sigmamodel, we have to �ll in the �eld p to obtain a matrix fatorization. Taking into aount233



the shifts (10.36) and (10.37) of the B-�eld and the R-harge, respetively, the lift issimply W(�1)�1 � h�G�-�(0;�p) W(0)0�W(4)0 (G;h)-� �p0� W(5)1:Here, we shifted the harges so that the theta parameter lies in the window w : �5� <� < �3�, with the grade restrition range Cw = f0; 1; 2; 3; 4g. We see that the Wilson linebranes W(�1)�1 and W(5)1 must be eliminated when we want to transport the D4-branethrough w. This an be done by binding the infra-red empty branes Kmf+ (�1) and Kmf+ ,de�ned in (10.10), to the matrix fatorization. Let us onsider the former proess �rst:W(0)0W(�1)�1 -� � -� W(5)1W(4)0����*id ����*'1 ����*'2W(�1)�2 X -� pG0 W(0)�5�1 X -� pG0 W(1)�100 X -� pG0 W(2)�101 X -� pG0 W(3)�52 � � � :Here, X and G0 are the short-hand notation forPi xi�i and 15Pi �i�iG respetively, where�i and �i are the Cli�ord generators that are used to onstrut Kmf+ . The binding map isgiven by '1 = ���G0 �; '2 = �G0;in whih � =Pi �i�i. Following the proedure from (3.7) to (3.8), we eliminate the trivialbrane-antibrane pair W(�1)�2 id�!W(�1)�1:W(0)0� -� W(5)1W(4)0(0; pX) ���������*'1 ����*'2W(0)�5�1 X -� pG0 W(1)�100 X -� pG0 W(2)�101 X -� pG0 W(3)�52 X -� pG0 W(4)3:Let us next adjoin the matrix fatorizationKmf+ in order to eliminiate theW(5)1. Startingwith the identity toW(5)2 in Kmf+ , we �rst �nd the arrows in the ordinary diretion, fromleft to right, so that we obtain a omplex if we ignore the arrows linear in p that goes inthe opposite way. Unlike in the �rst binding shown above, this does not yet make a matrixfatorization of pG(x) | Q2 has entries other than pG(x) � id. This problem itself an be�xed by introduing arrows linear in p, but the new arrows proude a problem at di�erententries. This proess terminates by �nding arrows whih are ubi in p. The �nal form ofthe grade restrited matrix fatorization, obtained after elimination of W(5)1 id�!W(5)2,is 234
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W(0)�5�1 -� W(1)�100 -� W(2)�101 -� W(3)�52 -� W(4)3To avoid luttering the diagram, we do not inlude the detail of the arrows. It is left asan exerise to the reader.We an now perform the transport to the LG orbifold point, where we set p = 1 andshift the R-symmetry as Ri = Ri � 2qi=5. The �nal result is the matrix fatorization ofG(x) on R-graded Z5-equivariant vetor bundles on C5, E0 g -� f E1! ;E0 = O(�0)0 �O(�4)� 85 �O(�1)�10� 52 �O(�3)�545 �O(�1)�5� 125 �O(�3)�10� 65 ;E1 = O(�0)�5�1 �O(�2)�1015 �O(�4) 75 �O(�0)�3 �O(�2)�10� 95 �O(�4)�5� 35 ;where the matries are

g = 0BBBBBBBB�
0 X G0 0 0 00 0 X G0 0 00 0 0 X 0 00 0 0 � 14!(G00)4� G0 00 0 �12�(G00)2 13(G00)3� X G0�G0 �� G00� 0 0 X

1CCCCCCCCA ;
f = 0BBBBBBBB�

�� 0 0 0 0 �XG0 0 0 0 0 0X G0 0 0 0 00 X G0 0 0 00 � 13!�(G00)3 14!(G00)4� X G0 0��G00 12(G00)2� 0 0 X G0
1CCCCCCCCA :

Here G00 = 15�4Pij �i�j�i�jG in whih �i and �i are the Cli�ord generators to realize theseond Kmf+ as Q = Pi ��ixi + 15�ip�iG�. The X, G0, � in parts of the entries of the235



matries are X =Pi �ixi, G0 = 15Pi �i�iG and � =Pi �i�i, and the remaining parts arethose using the �i's and the �i's. Whih is whih should be obvious.This is a ompletely new result. Unlike the previous examples, there was no attemptin the literature to make an eduated guess for the LG image of the D4-brane OH(0) fromR-R harge and mirror symmetry onsiderations.10.4.2 Two-Parameter ModelLet us onsider the two parameter model | Example (C) | with superpotentialW = PG(X) where G(x1; :::; x6) = x81x46 + x82x46 + x43 + x44 + x45:This model has four phases as depited in Fig. 3. Phase I is the large volume regime wherethe low energy theory is the non-linear sigma model on the hypersurfae M = fG = 0gin a tori variety. At the point e�t1 = e�t2 = 0 in Phase III, the theory redues to theLG model of �ve variables X1; ::; X5 with Fermat type superpotentialW = X81 +X82 +X43 +X44 +X45 ;modulo the Z8 orbifold group Xa 7! !Xa, Xi 7! !2Xi (!8 = 1) for a = 1; 2; i = 3; 4; 5.The R-harges of the variables are R[xa℄ = 14 , R[xi℄ = 12 . We onsider paths in the K�ahlermoduli spae between the LG orbifold point and the large volume phase via Phase II.For a suitable hoie of windows at the two phase boundaries (i.e. window w1 at theIII-II boundary and window w0 at the II-I boundary; see Setion 8.4.2), we have the graderestrition rule: Cw = f(0; 0); (0; 1); (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 1)g: (10.42)L = 05 RS-BranesWe onsider the L = (0; 0; 0; 0; 0) RS-branes B05;q;r at the LG orbifold point given bythe matrix fatorizationQ05 = Xa=1;2 �xa�a + x7a�a�+ Xi=3;4;5 �xi�i + x3i �i� : (10.43)The R-harges of the Cli�ord generators are R[�a℄ = �34 , R[�i℄ = �12 . Using these, we�nd the R-harges of the Chan-Paton vetors in terms of the one Rj0i for the vauum236



vetor j0i. For example, R[�aj0i℄ = Rj0i � 34 , R[�ij0i℄ = Rj0i � 12 . We fous on the branesB05;q;0 where j0i is even.Now let us onsider the lift to the linear sigma model. The �rst step is to solve theequation Ri = Ri � 2(2q1i + q2i )8 (10.44)for eah Chan-Paton vetor. There is a unique solution if we require (q1i ; q2i ) to be in thegrade restrition range (10.42). One (Ri; q1i ; q2i ) are determined, we multiply eah entryof the matrix Q05 by an appropriate power of p and x6 so that the gauge invariane holds.This leads to the matrix fatorization Q(p; x1; ::; x6) of W = pG(x) for the linear sigmamodel brane.Let us �rst onsider the brane B05;0;0 with Rj0i = 0. The solution to the equation(10.44) is listed in the table below.vetor j0i �aj0i �ij0i �1�2j0i �a�ij0i �i�jj0iR 0 �34 �12 �32 �54 �1R 0 1 1 0 0 0(q1; q2) (0,0) (3,1) (3,0) (3,0) (2,1) (2,0)image W(0; 0) W(3; 1)�2 W(3; 0)�3 W(3; 0) W(2; 1)�6 W(2; 0)�3�1�2�ij0i �a�i�jj0i �3�4�5j0i �1�2�i�jj0i �a�3�4�5j0i �1 � � � �5j0i�2 �74 �32 �52 �94 �3�1 �1 �1 �2 �2 �3(2,0) (1,1) (1,0) (1,0) (0,1) (0,0)W(2; 0)�3 W(1; 1)�6 W(1; 1) W(1; 0)�3 W(0; 1)�2 W(0; 0)Applying the redution map in the large volume regime, we �nd the following semi-in�niteomplex of vetor bundles on the hypersurfae M :
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Eah arrow orresponds toX = Xa=1;2 xa�a; X7 = Xa=1;2 x7a�a; Y = Xi=3;4;5 xi�i; Y 3 = Xi=3;4;5x3i �ipossibly with multipliation by a power of x6. The power of x6 an be found by mathingthe gauge harges of the soure and the target. For example, the arrows for the �rst fewparts of the omplex is given as follows:
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XYYY X7x46Xx6 Y 3The part of the omplex other than O in the dashed box is exat. Thus, the wholeomplex is quasi-isomorphi to O at R-degree 0.One may repeat this proedure to �nd the large volume images of the other L = 05 RS-branes. However, as we have done in the quinti ase, we may proeed more eonomially,using what we have done for MKay orrespondene. The grade restrited lift of the RS-brane B05;q;0, obtained by solving (10.44), is the same as the grade restrited lift B0�q ofthe frational brane Op(�q), when we supplement it by extra arrows going in the oppositediretion. For example, ompare the above table with the omplex B0�0 written in page177. As we have seen in Setion 8.4.2, the omplex B0�q is presented as the bound state ofa omplex that is trivial in the large volume regime and another omplex of the formAq(4; 0)[1℄ p�! Aq:Here Aq is the Wilson line ounterpart of the omplexAq of vetor bundles shown in (8.29).There is a omplete parallel in the matrix fatorization version: the grade restrited liftof the RS-brane an be presented as a bound state of a matrix fatorization that is trivialat large volume and another matrix fatorization given byAq(4; 0)[�1℄ p -� G Aq:Applying the seond Kn�orrer map to this omplex, we �nd the large volume image. Theresult is simply the restrition of the large volume image of the frational brane to the238



hypersurfae M = fG = 0g. To summarize, the transport of the L = 05 RS-branes fromthe LG orbifold to the large volume regime results in the mapsB05;q;0 7�! Aq���M ; for q = 0; 1; :::; 7.This an also be obtained from the semi-in�nite omplex by eliminating the exat piees.The Chern harater of these branes are obtained from those of AqjE listed in (8.29) byrestrition to M . It mathes with the one in [79℄, up to a translation of labelling.Short Orbit BranesWe next onsider the short orbit branes in the LG orbifold with Li + 1 = di2 for all i,that is, L = (3; 3; 1; 1; 1) =: k2 . Reall from Setion 2.4.1 that they are denoted by bBk2 ;q;r.The assoiated matrix fatorization isQ = x41 �1 + x42 �2 + x23 �3 + x24 �4 + x25 �5represented on a omplex module V3 over the real Cli�ord algebraf�i; �jg = 2Æi;j for 0 � i; j � 5.The �i's are invariant under the R-symmetry and transform as �i ! ��i under the orbifoldgroup generator. The module V3 is generated by a vetor j0i whih is annihilated by�1 + i�2, �3 + i�4, �5 + i�0. It has dimension 23 = 8. The Z2-grading is suh that evenmultiples of the �i's on j0i are even.Let us �rst onsider bBk2 ;0;0 where all the vetors of V3 have R = 0. The grade restritedlift to the linear sigma model is found by solving Ri = Ri � 2(2q1i + q2i )=8:vetor even oddRi 0 0Ri 0 1qi (0,0) (2,0)W(0; 0)�4 W(2; 0)�4The expliit fatorization is W(0; 0)�40 g -� pg W(2; 0)�41 !
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with g = x41x26 �1 + x42x26 �2 + x23 �3 + x24 �4 + x25 �5:The large volume image is0! O(0; 0)�4 g�! O(2; 0)�4 g�! O(4; 0)�4 g�! � � � :Or, we may simply take the kernel of the �rst map. Repeating the same proedure, we�nd the following transportarion rule for the L = k2 short orbit branesbBk2 ;0;0 7�! Ker�g : O(0; 0)�4 �! O(2; 0)�4�;bBk2 ;1;0 7�! Ker�g : O(0; 1)�4 �! O(2; 1)�4�;bBk2 ;2;0 7�! Ker�g : O(1; 0)�4 �! O(3; 0)�4�;bBk2 ;3;0 7�! Ker�g : O(1; 1)�4 �! O(3; 1)�4�:The images of the remaining branes an be found using bBk2 ;q+4;r �= bBk2 ;q;r�1.10.5 MonodromyLet us now study monodromies in the ompat models, that is, D-brane transportalong non-trivial loops in the moduli spae MK. For this purpose it is best to stay atthe intermediate energy sale �� mW and simply work with the desription of D-branesthrough matrix fatorizations, i.e., study the hat diagram (10.8). Then, the essential ideasarry over from the non-ompat models. When neessary, we an always translate theresult in terms of the low energy desription.Example (A)Let us �rst onsider Example (A) with superpotential W = PG(X1; :::; XN) for adegree N polynomial G(x1; :::; xN). The K�ahler moduli spae is the same as for thetheory without superpotential. It is omplex one dimsnional and has three speial points:the large volume limit r ! +1, the LG orbifold point r ! �1 and a singular pointet = (�N)N .The monodromies around the large volume limit and LG orbifold point ome fromshifting the theta parameter, � ! �+2�. This is equivalent to keeping the theta parameter�xed and shifting the representation of the gauge group:M�!�+2���r(V; Q; �(g); R)� = �r(V; Q; g�(g); R); (10.45)240
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Figure 29: A loop around the singular point in MKi.e., the matrix fatorization is tensored by W(1). In the large volume regime we anexpress the monodromy in terms of D-branes in D(M), so that (10.45) simply beomestensoring by O(1). In the Landau-Ginzburg phase, as enountered in Setion 10.2, thevauum expetation value, p = 1, enfores a shift of the R-symmetry ation, i.e., Ri =Ri � 2qi=N . Therefore, for a loop around the LG orbifold point, the monodromy ation(10.45) on ZN -graded matrix fatorizations beomesMGP (V; �Q; ��(!); �R(�)) = (V; �Q; !��(!); ��2=N �R(�)):This yields the relation (MGP )N �= [2℄;where [2℄ denotes the shift of R-harge by �2. From the linear sigma model point of viewthis is a onsequene of the D-isomorphism ��(V; Q; gN�(g); R) �= ��(V; Q; �(g); ��2R),whih is a onsequene of the fat that the one of the mapVod(N) f -� g Vev(N)?p � idod ?p � idevVod[2℄ f -� g Vev[2℄is an empty D-brane.Next, we onsider the monodromy around the singular point. To be spei�, we takethe example with N = 3 and the Fermat polynomial G = x31 + x32 + x33. Consider the241



loop L as depited in Fig 29 whih is based at large volume and goes around the singularpoint. As we follow L we have to grade restrit �rst aording to the window w0 and thenwith respet to the window w�1. The grade restrition rules for these windows are:Cw0 = f�1; 0; 1g and Cw�1 = f0; 1; 2g:Let us illustrate the monodromy around the singular point by looking at its ation onthe D0-brane, Op 2 D(M), at the point p = fx1 + x2 = x3 = 0g of the ellipti urve. InSetion 10.3.2 we found that it is lifted to the matrix fatorizationBp :  W(0)0�W(0)0 g -� f W(1)1�W(�1)�1 !;where f and g are given in (10.39). Following the loop L we note that Bp indeed �ts intothe grade restrited setMFW (T w0), and thus an be transported to the Landau-Ginzburgphase. When going bak to the large volume phase through the window w�1 we note thatthe Wilson line omponentW(�1) is in onit with Cw�1. So, we have to eliminate it �rstby binding Bp with the brane B� given in (10.2) that is trivial in the Landau-Ginzburgphase. The resulting matrix fatorization isB0p :  W(0)0�W(0)0 g0 -� f 0 W(1)1�W(2)1 !;with g0 =  x1+x2 x3�x23 x21 � x1x2 + x22 ! ; f 0 = p x21 � x1x2 + x22 �x3x23 x1+x2 ! :Bak at the large volume regime, as a geometri D-brane inD(M) this matrix fatorizationbeomes O(1)�2 (x1+x2;x3)����! O(2) �! Opwith the B-�eld in the range B 2 (0; 2�). The monodromy along the loop L is therefore:ML(Op) �= �O(1)�2 (x1+x2;x3)����! O(2) �! Op� :In the spirit of [71℄ let us understand the monodromy ation in terms of bindingmassless D-branes to the original brane. For that let us start with a D-brane inMFW (M)represented via its lift in the grade restrited set MFW (T w0). When we follow the loopwe have to apply grade restrition with respet to the window w�1, whih means that242



we have to eliminate all omponents W(�1) by binding of the matrix fatorization B�given in (10.2). When we are bak to the large volume phase we try to �nd again arepresentative in MFW (T w0). So, we have to eliminate the omponent W(2) in B� interms of binding B+ given in (10.3). In total, to every Wilson line omponent W(�1) atR-degree j in the original D-brane B we have to bind the matrix fatorization,B0 :  W(�1)�2�W(1)�30 g0 -� f0 W(0)�3�1�W(�1)�1 !;with appropriate shifts in R-degree. The matries f0 and g0 are de�ned in (10.5). Chiralring elements in Hj(�+(B); �+(B0)[�1℄) are in one-to-one orrespondene with the num-ber of Wilson line omponent W(�1) at R-degree �j. This lets us write the monodromyation around the singular point asML(�+(B)) = Cone �+(B) �!Mj2Z Hj(�+(B); �+(B0))
 �+(B0)[j℄! [�1℄: (10.46)If we want to express this monodromy ation in terms of objets in D(M), we need tomap B0 to its image as geometri D-brane. We know that the image is the line bundle Owith the B-�eld in the interval (0; 2�). On a general D-brane B 2 D(M) the monodromyation is therefore ML(B) = Cone B �!Mj2Z Hj(B;O)
O[j℄! [�1℄:In the ontext of derived ategories this monodromy ation was �rst suggested by Kont-sevih and further studied in [6, 72{75℄. Indeed, from onsiderations in the mirror dualtheory the D-brane O was found to beome massless at the singular point, see for instane[76℄.Similar arguments show that the monodromy around the singular point following theloop L1 in Fig. 30, whih has its base point at small volume, is given by:ML1(��(B)) = Cone Mj2ZHj(��(B0); ��(B))
 ��(B0)[�j℄ �! ��(B)! : (10.47)This monodromy ation on matrix fatorizations in Landau-Ginzburg orbifold models wasreently suggested in [99℄. In fat, ��(B0) is one of the L = 03 RS-branes of the Gepnermodel assoiated with the LG orbifold. 243
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Figure 30: Another loop around the singular lous inMKFor general N , the brane that plays the rôle of B0 is W(q+N)�1 �p�G-� W(q)�2id���RG0���	W(q)�N XpG0-� W(q+1)�N�N+1 XpG0-� W(q+2)�(N2 )�N+2 XpG0-� � � � XpG0-� W(q+N�1)�N�1 XpG0-� W(q+N)0 :It satis�es the grade restrition for Cw = fq; q + 1; : : : ; q + N � 1g after eliminatingthe trivial pair and, therefore, B0 indues the monodromy around the singular pointr = N logN , �=2� = �q �N=2. In the large volume phase it beomes the D-brane O(q)with B = �+N�, and at the LG orbifold point it beomes one of the Reknagel-ShomerusL = 0N RS-branes if G is the Fermat polynomial.The General CaseIt is straightforward now to �nd \the vanishing yle", the D-brane that indues themonodromy around the singular point, in a general theory with one-dimensional modulispae MK. It is obtained by binding two D-branes that are trivial at r � 0 and r � 0.Suh trivial branes had been written down in (10.11) and (10.10) respetively. The map244



whih binds them together is ' : Kmf� (S)! Kmf+that sends the leftmost W(S) to the rightmost ^kW+ �= W(S) by the identity and sendsW�(S) to ^k�1W+ by the map  assoiated with ij(x; y) satisfying the identitiesai = lXj=1 ij(x; y)yj; bj = kXi=1 xiij(x; y):Suh ij exists sine ai have negative and bj have positive harges. (In partiular, we haveW =Pi;j xiij(x; y)yj.) Here we have de�ned the R-harge of the trivial branes in suha way that W(S) has R-harge zero in both Kmf� and Kmf+ . It is easy to see that ' is thena degree zero map. The vanishing yle is thusVmf = Cone�' : Kmf� (S) �! Kmf+ � (10.48)Monodromies in theories with higher dimensional moduli spae MK are desribed inthe same way as in one-parameter models. Loops around speial points deep inside aK�ahler one orrespond to shifts of the gauge harges: the loop �a ! �a + 2� induesW(q1; : : : ; qa; : : : ; qk) ! W(q1; : : : ; qa+1; : : : ; qk) on every Wilson line omponent of thematrix fatorization. The monodromy around the singular lous S between two phasesis ontrolled by the assoiated band restrition rule, say CwI;II. We start with a D-brane inPhase I and take its representative in the band restrited setMFW (T wI;II). When we irlearound the singular lous the band will be shifted and some Wilson line omponents willfall out of the new band. These omponents must be eliminated through binding matrixfatorizations Kmf�;A assoiated with �I;II� , whih appears in the relation (4.22) betweenthe deleted sets. The subsript \A" stems from the fat that there are a multitude of D-branes Kmf�;A, whih are related by shifts of the gauge harges along the band. Then, bakin Phase I we may band restrit again with respet to CwI;II using the matrix fatorizationKmf+;A that omes with �I;II+ . Altogether we bind D-branes VmfA = Cone(Kmf�;A ! Kmf+;A) tothe original D-brane. For the loop in the opposite diretion, the branes that are bound areV0mfA = Cone(Kmf+;A ! Kmf�;A). One may �nd formulas analogous to (10.46) and (10.47).However, we point out one again that our approah does not rely on determining hiralring spetra between D-branes and, therefore, failidates omputations onsiderably.10.6 Relation To Orlov's FuntorsSuppose a linear sigma model redues in one phase to the non-linear sigma model on aCalabi-Yau manifold MLV and in another phase to the Landau-Ginzburg orbifold with a245



superpotential WLG and an orbifold group �. We know how to transport D-branes alongany path � in the moduli spae MK that passes through phase boundaries and onnetsthese two phases. This leads to a map of low energy D-branesF� :MF�(WLG) �! D(MLV); (10.49)and its inverse. Sine the parallel transport preserves the hiral setor, as the trunatedversion of the above map, we have a funtor between the ategories of D-branes�� :MF�(WLG) �! D(MLV); (10.50)and its inverse, that is, an equivalene of the two ategories. Of ourse, this is just anexample | we have an equivalene of D-brane ategories for any pair of phases. Forexample, if the model has two large volume phases orresponding to di�erent Calabi-Yaumanifolds, M1 and M2, we have an equivalene of the derived ategories, D(M1) �=�!D(M2). If it has two LG phases, we have an equivalene MF�1(W1) �=�!MF�2(W2).Equivalenes of the type (10.50) were onstruted by Dmitri Orlov [5℄ in the ase ofprojetive hypersurfaes. Here we would like to omment on the relation of that workto ours. Thus, we onsider Example (A) with superpotential W = PG(X1; : : : ; XN) forwhih � = ZN andWLG = G(X1; : : : ; XN). We shall denote the orrespinding Calabi-Yauhypersurfae fG = 0g � CPN�1 by MG.Early ConstrutionsAs bakgrounds, we �rst list various di�erent ways to desribe the ategoryMF(G) ofmatrix fatorizations of G(x), that is, the ategory of B-type D-branes in LG model withsuperpotential G(x) (without orb�old for now). The basi referenes for this material areEisenbud [11℄ and Buhweitz [12℄. See also the book [100℄. The main players are �nitelygenerated modules over the ringB = C[x1; : : : ; xN ℄=G(x): (10.51)The grading that exists in this ring, assoiated with the U(1) gauge symmetry, plays norôle in the present disussion.Let us onsider a matrix fatorization of G(x)Q =  0 f(x)g(x) 0 ! ; Q(x)2 = G(x) � 12`:246



To this, we shall assoiated a B-moduleMQ = oker � �f : B�` ! B�`� :This is an example of a maximal Cohen-Maaulay (MCM) module over B. There are sev-eral ways to de�ne the MCM ondition, but for the ring B as above, it is enough to de�neit as a module whih admits suh a presentation. To the trivial matrix fatorizations,(f; g) = (1; G) and (G; 1), we have the trivial module M(1;G) = 0 and the free moduleM(G;1) = B respetively. The ategory MF(G) is equivalent to the ategory of MCMB-modules modulo the subategory of projetive modules.As we have disussed in Setion 2.4 and 10.3.1, we an also assoiate to a matrixfatorization Q a 2-periodi exat sequene of free modulesCQ : � � � �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! � � � : (10.52)As a matter of onvention we plae the target of one of �f 's at degree 0 (the underlinedB�`). This is an example of a totally ayli omplex. In general, a totally ayliomplex of B-modules is an exat omplex of projetive modules of �nite ranks, whose B-dual omplex is also exat. We have seen in Setion 2.4 that hiral ring elements betweenthe D-branes orresponding to two matrix fatorizations, Q1 and Q2, are in one-to-oneorrespondene with homotopy lasses of ohain maps of the orresponding omplexes,CQ1 and CQ2 , see (2.73). In fat, the ategory MF(G) is equivalent to the homotopyategory of totally ayli omplexes of B-modules, denoted by TAC(B).The MCM module MQ \�ts in the middle" of the omplex CQ,� � � �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! � � �& %MQ% &0 0Namely, the two sequenes, one ending at MQ and the other starting with MQ, are bothexat, and the triangle in the middle ommutes. In general, any MCM module �ts in themiddle of a totally ayli omplex. Suh a omplex is alled the omplete resolution ofthe MCM module.As the �nal ingredient, we disuss the rôle of perfet omplexes, that is, bounded om-plexes of projetive modules. Let D(B) be the derived ategory of B-modules onsistingof omplexes with bounded ohomologies. The main laim is that the ategory MF(G)is equivalent to the derived ategory D(B) modulo the subategory P(B) onsisting of247



perfet omplexes. The funtorMF(G)! D(B)=P(B) is straighforward: To eah matrixfatorization Q we assoiate the one-term omplex MQ[0℄. Sine MQ �ts in the middleof the totally ayli omplex CB, this objet is quasi-isomorphi to the left-half of it,C�0B , and also to a shift of the right-half, C�1B [1℄. Sine we are modding out by perfetomplexes, we an take any position to trunate CQ into a half. Namely, as the imageof Q, we an take the left semi-in�nite omplex C�jQ or the right semi-in�nite omplexC�jQ [1℄ for any j 2 Z | they are all isomorphi in D(B)=P(B). The other diretionD(B)=P(B) ! MF(G) is less straighforward, but the idea is simple. To eah omplexC 2 D(B), we �rst �nd a omplex P � of projetive modules, bounded from the right, thatis quasi-isomorphi to it. It is unbounded to the left unless C was perfet. Sine it hasbounded ohomologies, it is exat at low enough degrees, say, at degrees j � �j�. Dis-arding a perfet part, it is isomorphi in D(B)=P(B) to the trunated omplex P ���j��1whih is exat exept at the right-most term P�j��1. In fat, it is a trunated version ofa totally ayli omplex. This gives an objet of TAC(B) and hene of MF(G).To summarize, we have equivalenes of ategoriesMF(G) �= TAC(B) �= MCM(B)projetives �= D(B)=P(B): (10.53)Some of these ategories are naturally triangulated, and these are equivalenes of trian-gulated ategories. The part other than MF(G) holds also for a more general ring than(10.51), see [12℄. The ategory D(B)=P(B) is also disussed more reently in [101℄ whereit is alled the ategory of singulariries.Orlov's ConstrutionLet us now desribe the onstrution of [5℄. The main players are �nitely generatedgraded modules over the graded ringB = C[x1; : : : ; xN ℄=G(x); (10.54)where the xi's have degree 1. They form an Abelian ategory and we denote by D(gr-B)the derived ategory onsisting of omplexes with bounded ohomologies. If we mod outthese ategories by the subategories onsisting of (omplexes of) torsion modules, weobtain the ategory of oherent sheaves on the hypersurfae MG and its derived ategoryD(MG), just as in the ase of tori varieties as desribed in Setion 9. If we mod out thederived ategory D(gr-B) by the subategory P(gr-B) onsisting of perfet omplexes,then we obtain a ategory whih is equivalent to MFZN (G). The last onnetion is the248



graded version of (10.53) (see below for the preise mapping). Thus, we have projetionsto the ategories of our interest: D(gr-B)



� JJJĴperfet torsionMFZN (G) D(MG)The next step is to onsider lifts of the downstairs ategories, MFZN (G) and D(MG),into the derived ategory of modules. To obtain a �nitely generated modules for thelatter, we need to hoose a ut-o� i 2 Z, that is, we restrit our attention to moduleswhih are trivial at (gauge) degree less than i. There is a natural funtor from D(MG)to the subategory D(gr-B�i) of omplexes of suh modules. The image of this funtoris denoted by Di. On the other hand, MFZN (G) is still obtained from D(gr-B�i) bymodding out by a ertain subategory P�i. There is a omplement of P�i in D(gr-B�i),denoted by Ti, whih is equivalent toMFZN (G) under the projetion funtor. The preiseP�i and Ti will be desribed momentarily. The fat is that the two subategroies, Diand Ti, are equal under the Calabi-Yau ondition, i.e., when the degree of G is equal tothe number N of variables. Thus, we have a \hat-diagram"D(gr-B�i)[Ti = Di






� JJJJJJĴperfet torsion



� JJJJ℄�= �=MFZN (G) D(MG) (10.55)whih proves the equivalene. (There is also a simple relation between Ti and Di in thenon-Calabi-Yau ases, whih results in a simple relation between MFZN (G) and D(MG).)The subategories P�i and Ti of D(gr-B�i) are de�ned as follows. P�i is the ategorygenerated by free modules B(�) for � � �i. (Note that the lowest degree element, 1,of B(�) has degree ��, and therefore B(�) belongs to D(gr-B�i) if � � �i.) Ti is the\left-orthogonal" of P�i in D(gr-B�i), that is, the subategory onsisting of all objetsL� suh that HomD(gr-B�i)(L�; P �) = 0 for all P � 2 P�i.In order to use this onstrution, we would better have some understanding of thesubategory Ti. If we were working in the full D(gr-B) without a ut-o�, an example ofan objet in Ti would be B(�) for � > �i sine there are no morphisms from B(a) to B(b)if a > b. Similarly any omplex built out of the B(�) for � > �i would be in Ti. The latter249



remark is useful when the resulting omplex happens to be quasi-isomorphi to an objetin D(gr-B�i) sine this provides a way to onstrut objets in the real Ti � D(gr-B�i).The Funtor MFZN (G)! D(MG)Let us try to expliitly evaluate the funtor �Orlovi : MFZN (G) ! D(MG) induedby the ontrution (10.55). The key step is of ourse to �nd a lift of a given objet inMFZN (G) to the subategory Ti. But �rst we need a lift to D(gr-B), or more preisely,to D(gr-B�i).Let us pik a ZN -equivariant matrix fatorization B = (V; Q; �; R) 2 MZN (G). Tothis we an assoiate a totally ayli omplex CB of graded B-modules:CB : � � � �f�! C�2B �g�! C�1B �f�! C0B �g�! C1B �f�! C2B �g�! C3B �f�! � � � : (10.56)Namely, we �rst onstrut the omplex CQ of ungraded B-modules as before (10.52), andthen provide it with a grading using the information of R-symmetryCjB = M�i=(�1)j B(N2 (j �Ri)); for j 2 Z: (10.57)The numbers N2 (j�Ri) that appear here are all integers, sine e2�i(j�Ri)=2 = �i e��iRi areeigenvalues of �VR( e��i) = �( e2�i=N ) and hene must have order N . The omplex CB is2-periodi up to a shift, Cj+2B = CjB(N). As the objet in D(gr-B)=P(gr-B) orrespondingto B 2MFZN (G) we an take the trunation of CB at any position, that is, the left semi-in�nite C�jB or the right semi-in�nite C�jB [1℄ for any j 2 Z. A representative that landsin D(gr-B�i) is obtained by trunating far enough to the left. For example, take the leftsemi-in�nite omplex C�j0B with suÆiently small j0 so that it inludes only B(�)'s with� < �i.Next, let us �nd an objet L whih lies in Ti and �ts into a distinguished triangleP �! L �! C�j0B (10.58)for some P 2 P�i. As suh an L, we propose to take the left semi-in�nite omplexobtained from CB by keeping all B(�)'s with � � �i and disarding all higher B(�)'s.It is obviously an objet of D(gr-B�i). Also, C�j0B is obtained from L by disarding itssubomplex P onsisting of �nitely many B(�)'s (with � � �i of ourse). Thus, L indeed�ts into a triangle (10.58) with P 2 P�i. What is less obvious is that L lies in Ti.To see this, let us onsider the omplement L of L in CB, whih is a right semi-in�nite250



omplex. Sine CB is exat, L[1℄ is quasi-isomorphi to L 2 D(gr-B�i). Obviously, itonsists of B(�)'s with � > �i. By the remark at the end of the desription of Orlov'sonstrution, the objet L �= L[1℄ belongs to Ti. Thus, L or equivalently L[1℄ is the liftof B 2MFZN (G) that lands in Ti.To �nd its image in D(MG), we just regard the omplex of B-modules as a omplexof vetor bundles on the hypersurfae MG, by the replaement B(�)! O(�).To summarize, we have a simple way to �nd the large volume image of a given branein the LG orbifold, under the funtor �Orlovi indued by (10.55): Take the orrespondingtotally ayli omplex and keep only B(�)'s with � � �i. (Alternatively, keep only B(�)'swith � � �i+ 1 and shift by one to the left.) Then, regard the semi-in�nite omplex as aomplex of vetor bundles on MG.ComparisonThis is essentially the same as the result of our transport for a ertain hoie ofwindow. The key point is that for any linear sigma model lift B = (V; Q; �; R) of a braneB = (V; Q; �; R) of the LG orbifold, the totally ayli omplex CB that was introduedaround Eqn (10.28) preisely mathes with the totally ayli omplex CB de�ned by(10.56) and (10.57). To see this, it is enough to rewrite the equation (10.14) that relatesB and B as qi = N2 (Ri � Ri);and ompare it with (10.57). The atual low energy image (bE; bQ) 2 D(MG) of B isobtained from the truntion of CB that orresponds to the trunationMm2Z pmV 7�! bV =Mm�0 pmV;see (10.28) and (10.20). If the lift B obeys the grade restrition rule fa; : : : ; a+N � 1g,the trunation is to keep all B(�)'s with � � a and to disard all lower B(�)'s. Theresult is preisely the image of B in the subategory Ti with a = �i + 1, shifted by oneto the right. Note that the above grade restrition rule orresponds to to the window,�N2 � a < �2� < �N2 � a + 1. To summarize, the funtor indued by the onstrution(10.55) is related to ours (10.50) by �Orlovi = [1℄ Æ �� (10.59)where � is a path through the window i� N2 � 1 < �2� < i� N2 .251
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A SupersymmetryHere we reord the supersymmetry variation of the bulk ation.A.1 Non-Linear Sigma Models And Landau-Ginzburg ModelsWe onsider the non-linear sigma model on a K�ahler manifold (M; g) with a super-potential W . We suppose that the metri is given in terms of a K�ahler potential K ina oordinate path, gi| = �i�|K. The bulk Lagrangian is the sum of the following twoterms (no partial integration to be used):LK = Z K(�;�)d4� + �+��K(�; �)= 2gi| ��+�i���| + ���i�+�| + i |� �D�!+ i� + i |+ �D�!� i+� +Ri|kl i+ k� |� l++gi| eF i eF | (A.1)= gi| ��0�i�0�| � �1�i�1�| + i |�( �D�!0 + �D�!1) i� + i |+( �D�!0 � �D�!1) i+�+Ri|kl i+ k� |� l+ + gi| eF i eF |LW = 12 Z W (�)d2� + ::= 12 �F i�iW (�)� �i�jW (�) i+ j� + :: �= 12 � eF i�iW (�)�Di�jW (�) i+ j� + ::� (A.2)Here eF i are the ovariantized auxiliary �eldseF i = F i � �ijk j+ k�: (A.3)Under (2; 2) supersymmetry transformation Æ = i�+Q� � i��Q+ � i�+Q� + i��Q+,Æ�i = �+ i� � �� i+; i� = �2i�����i + ��F i; (A.4)ÆF i = �2i�+�� i+ � 2i���+ i�;LK and LW transform asÆLK = �� h�+gi| �2 i��+�| � i eF i |+�i� �+ h��gi| �2 i+���| + i eF i |��i+�+�+ h4gij i����|i� ���� h4gij i+�+�|i + :: (A.5)ÆLW = ��+�� hi {+�{Wi� ���+ hi {��{Wi + :: (A.6)253



We see that the superurrent G��; G�� de�ned byÆS = Z d2x (���+G�� � ����G�+ + ::)is given by G�� : G +� = 4gi| i����|; G �� = i {+�{W; (A.7)G�+ : G ++ = �i {��{W; G �+ = 4gi| i+�+�|: (A.8)Let us formulate this theory on the left half spae S = f(t; s)js � 0g whih has onetimelike boundary line at s = 0. We fous on the N = 2B supersymmetry generated byQ = Q+ +Q, Qy = Q+ +Q. The orresponding variation Æ = i�Qy � i�Q is obtainedfrom the (2; 2) variation by setting�+ = ��� = �; �+ = ��� = �:The bulk ation variation is found from (A.5)-(A.6):ÆSbulk = Re Z�Sdt ��2gi| |��+�i � 2gi| |+���i + igi| eF |( i+ +  i�) + i( i+ +  i�)�iW� :(A.9)The standard boundary term is de�ned byL(0)bdry = � i2gi| � i+ |� +  |+ i�� (A.10)and its N = 2B variation isÆL(0)bdry = Re ���+2gi| |+���i � 2gi| |��+�i � igi| eF |( i+ +  i�)�� (A.11)The sum of (A.9) and (A.11) is simplyÆSbulk + Æ Z�SL(0)bdry = Re Z�Sdt ��i( i+ +  i�)�iW�: (A.12)This is the Warner term [32℄.
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A.2 Linear Sigma ModelThe gauge kineti term, the matter kineti term and the FI-theta term are given byLg = Z d4��� 12e2��� + total derivative= 12e2 hj�0�j2 � j�1�j2 + i��( ���!0 + ���!1)�� + i�+( ���!0 � ���!1)�+ + v201 +D2i ;(A.13)Lm = Z d4� � eV � + total derivative= jD0�j2 � jD1�j2 + i �( �D�!0 + �D�!1) � + i +( �D�!0 � �D�!1) + + �D�+ jF j2�j��j2 �  �� + �  +� � � i��� + + i��+ � + i +���� i ��+�;(A.14)LFI � = Re Z d2e���t�� = �rD + �v01: (A.15)Only the speial ase of T = U(1) and with just one harge 1 matter �eld is presented,sine the generalization is obvious. The superpotential term isLW = Re Z d2�W (�) = Re" NXi=1 Fi�W��i (�)� NXi;j=1 �2W��i��j (�) i+ j� # : (A.16)The (2; 2) supersymmetry transformation of the omponent �elds is given by (wherev� := 12(v0 � v1))Æv� = i2���� + i2����;Æ� = �i�+�� � i���+;ÆD = 12���+(�0 � �1)�+ � ��(�0 + �1)�� + �+(�0 � �1)�+ + ��(�0 + �1)���:Æ�+ = i�+(D + iv01) + ��(�0 + �1)�;Æ�� = i��(D � iv01) + �+(�0 � �1)�; (A.17)and Æ� = �+ � � �� +;Æ + = i��(D0 +D1)�+ �+F � �+��;Æ � = �i�+(D0 �D1)�+ ��F + ����;ÆF = �i�+(D0 �D1) + � i��(D0 +D1) � + (�+� � + ��� +) + i(���+ � �+��)�:(A.18)255



Under this, the Lagrangians vary as follows:ÆLg = �+�+��2ie2������� �����2ie2�+�+�� + ���+� ie2v01�+�� �+��� ie2 v01���+�� h �+2e2 ��2i���+� + �+(D + iv01)�i� �+ h ��2e2 �2i�+��� � ��(D � iv01)�i+:: (A.19)ÆLm = �+�+4D�� � � ����4D+� + + ���+(���+�)� �+������+�� ��+ �2D+� � + ��+�� i�� + � i +F ����+ ��� �2D�� + � ����� i�� � + i �F ��+:: (A.20)ÆLFI;� = ���+(r�+)� �+��(�r��) + �� ��t�+�+�� �+ �t�����+:: (A.21)ÆLW = ���+ �i {+�{W�� �+�� ��i {��{W�+�� ��i�+ {+�{W�� �+ �i�� {��{W�+:: (A.22)This shows that the superurrent is given byG+� = �2ie2����� + 4D�� � (A.23)G�� = �r � j�j2 + ie2 v01��+ + i {+�{W; (A.24)G++ = ��r � j�j2 � ie2v01��� � i {��{W; (A.25)G�+ = 2ie2�+�+� + 4D+� +: (A.26)Let us formulate the model on the left-half spae S and onsider the N = 2B super-
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