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1 Introdu
tionD-branes in Calabi-Yau manifolds play 
entral roles in string theory and related �elds.They 
an be used to 
onstru
t and study models of parti
le physi
s and 
osmology withspontaneously broken or unbroken N = 1 supersymmetry. They also determine extremalbla
k holes in four-dimensional N = 2 supergravity or BPS states in N = 2 �eld theory.A lot of e�orts have been devoted to this subje
t in the past twelve years. Most aredone in large volume regimes where the �0 
orre
tions are small or negligible and theten-dimensional supergravity 
an be used. There are also studies of D-branes at spe
ialnon-geometri
 ba
kgrounds with exa
tly solvable worldsheet 
onformal �eld theories, su
has Gepner models and free orbifolds. Furthermore, some works probe singular points ofthe moduli spa
e where the worldsheet des
ription breaks down. Although there are stillmany things to be understood, a body of solid knowledge is a

umulating at spe
ial pointsof the moduli spa
e where 
onvenient des
riptions of the theory are available.A natural and important problem is to 
onne
t the information at the spe
ial pointsand to obtain a global pi
ture of D-branes over the entire moduli spa
e of ba
kgrounds.For example, this will be ne
essary to understand the totality of N = 1 va
ua. Somequantities are prote
ted from quantum 
orre
tions and are either 
onstant or holomor-phi
 as fun
tions of the moduli �elds. For those, we may be able to glue together theinformation at spe
ial points trivially or by analyti
 
ontinuation. Ramond-Ramond (RR)
harges of D-branes are good examples | the 
onne
tion between large volume regimesand Gepner points was su

essfully found in the seminal paper [1℄. However, most quan-tities do not possess su
h properties. We would like to have at least some hint to studythe vast unexplored regions.For 
losed strings, linear sigma models [2℄ provide an ultra-violet des
ription of theworldsheet theories over the entire moduli spa
e in a large 
lass of examples. They wereused to �nd a simple and global pi
ture of the stringy moduli spa
e that had been availableonly via mirror symmetry, and they had also been used to derive mirror symmetry itself.A natural idea is to use them also to study D-branes. The main goal of the present paperis to 
onstru
t an ultra-violet des
ription of the worldsheet theory with boundary, usinglinear sigma models, that is valid in regions of the moduli spa
e that en
ompass variousspe
ial points of di�erent 
hara
ter. Just as in the bulk theories, we would like to have aworkable method of 
onstru
tion whi
h is very expli
it and transparent.To be pre
ise our fo
us will be on the des
ription of B-type D-branes over the bulkof the K�ahler moduli spa
e. The moduli spa
e of (2; 2) super
onformal �eld theories is1



a produ
t of two spa
es, MC and MK, whi
h are referred to as the \
omplex stru
turemoduli spa
e" and the \K�ahler moduli spa
e" a

ording to their interpretation in largevolume regimes. It is the K�ahler moduli spa
e that has spe
ial points with various di�erentdes
riptions. Relevant D-branes are those preserving a half of the (2; 2) supersymmetry,and there are two types: A-branes and B-branes. In a large volume regime, A-branes arewrapped on Lagrangian submanifolds and B-branes are wrapped on 
omplex submani-folds. They have 
hiral se
tors that are prote
ted from renormalization. The 
hiral se
torof B-branes depends holomorphi
ally onMC and is invariant under deformations inMK.Correspondingly, the tree-level spa
etime superpotential depends holomorphi
ally on the
omplex stru
ture moduli �elds but is independent of the K�ahler moduli �elds. Note thatthis does not mean that B-branes do not depend at all on MK. The spa
etime D-termpotential and stability of the branes depend primarily on the K�ahler moduli. These fa
tsmake it feasible and yet interesting to study B-branes over the K�ahler moduli spa
e.Linear sigma models are a simple 
lass of (2,2) supersymmetri
 gauge theories. Inthis paper, we only 
onsider models with Abelian gauge groups. Fayet-Iliopoulos (FI)parameters enter into the worldsheet D-term equations and determine the pattern ofgauge symmetry breaking and massless �elds. The pattern de
omposes the spa
e of FIparameters into domains 
alled \phases". On a \phase boundary", there is a 
lassi
alva
uum 
on�guration with an unbroken 
ontinuous subgroup whi
h is generi
ally a U(1).The quantum gauge theory also depends on the theta angles, whi
h are interpreted asthe ba
kground ele
tri
 �elds. The K�ahler moduli spa
e MK is thus spanned by the FIparameters as well as the theta angles.A part of the data to spe
ify a D-brane in a linear sigma model is the representation ofthe gauge group on the Chan-Paton spa
e, that is, the 
harges of the Chan-Paton ve
tors.The most important result of the present paper is the grade (or band) restri
tion rule.It provides the ne
essary and suÆ
ient 
ondition so that a \parallel family" of D-branes
an be de�ned over a region of the moduli spa
e MK whi
h 
overs two adja
ent phasesand their phase boundary. The 
ondition is on the Chan-Paton 
harges of the brane withrespe
t to the unbroken U(1) subgroup at the phase boundary, and goes as follows. LetS be the sum of all positive 
harges under that U(1) of the bulk matter �elds. Then the
ondition on the Chan-Paton 
harge q is that� S2 < �2� + q < S2 (1.1)for any value of � at the phase boundary in the region of MK under 
onsideration.The present work is strongly motivated by re
ent developments in mathemati
s. TheD-brane 
ategory, whi
h has the same information as the 
hiral se
tor of all possible2



boundary intera
tions in a �xed bulk theory, provides a
tive areas of resear
h in algebrai
geometry and symple
ti
 geometry, after M. Kontsevi
h's homologi
al mirror symmetry
onje
ture [3℄. The 
ategory of B-branes in a large volume regime is the derived 
ategoryof the target spa
e, while in an orbifold theory it is the derived 
ategory of obje
tswith orbifold group a
tion. In a Landau-Ginzburg model it is the 
ategory of matrixfa
torizations of the superpotential. The 
ategories of B-branes of bulk theories that arerelated by K�ahler deformations must be equivalent, as a 
onsequen
e of the invarian
e ofthe 
hiral se
tor. Mathemati
ally, an equivalen
e of 
ategories is given by a pair of maps ofobje
ts and morphisms with 
ertain isomorphism 
onditions. Re
ently, su
h equivalen
esof D-brane 
ategories were 
onstru
ted. One example is the 
ategori
al version of M
Kay
orresponden
e [4℄, that is, the equivalen
e of the derived 
ategory of a non-
ompa
ttori
 Calabi-Yau manifold and the derived 
ategory for the orbifold theory whi
h sits at adi�erent point of the same K�ahler moduli spa
e. Also, D. Orlov 
onstru
ted equivalen
esbetween the derived 
ategory of the Calabi-Yau hypersurfa
e de�ned by a polynomial andthe 
ategory of matrix fa
torizations of the same polynomial [5℄. A natural question iswhether these equivalen
es are the ones relevant for physi
s. Our work grew out of anattempt to answer this question.The organization of the rest of the paper is as follows.In Se
tion 2, we des
ribe B-type D-branes in non-linear sigma models, Landau-Ginzburgmodels, and their orbifolds. We determine the 
ondition of N = 2B supersymmetry andU(1) R-symmetry on the N = 1 invariant boundary intera
tions given by Quillen's su-per
onne
tions. This leads to 
omplexes of ve
tor bundles as the data of D-branes innon-linear sigma models and homogeneous matrix fa
torizations of the superpotential forLandau-Ginzburg models. We also study the 
hiral se
tor of ea
h system and des
ribethe 
orresponding D-brane 
ategory.In Se
tion 3, we look into D-term deformations and brane-antibrane annihilation,whi
h are operations that do not 
hange the low energy behaviour of the boundary inter-a
tions. We show that a quasi-isomorphism between 
omplexes of ve
tor bundles 
an beobtained by a 
hain of D-term deformations and brane-antibrane annihilation. This 
lari-�es the relevan
e of quasi-isomorphisms in brane-antibrane systems, whi
h was dis
ussedearlier in [6℄ from the spa
etime point of view. We also study relevant and marginal de-formations of the bulk theory. We study what happens to D-branes when a pair of bulk�elds with F-term mass are integrated out, and �nd the map of D-branes from the highenergy theory to the low energy theory (we 
all it Kn�orrer's map). We end the se
tionwith the study of marginal K�ahler deformations whi
h is the main subje
t of this paper.3



We determine the rule of D-brane transport along a path in the K�ahler moduli spa
e, andshow that it de�nes the notion of a \
at 
onne
tion" for the \bundle" of D-branes overMK.In Se
tion 4, we review bulk linear sigma models and make some new observationsthat play important rôles later in the paper. In parti
ular, we present a simple way to�nd the phase stru
ture and the symmetry breaking patterns by plotting the 
harges ofthe �elds in the spa
e of FI parameters. We also �nd a simple relation of the symmetrybreaking patterns between adja
ent phases.In Se
tion 5, we 
lassifyN = 2B supersymmetri
 boundary intera
tions in linear sigmamodels with U(1) R-symmetry. (Earlier works on this subje
t 
an be found in [7{10℄.)We �rst introdu
e the Wilson line branes as the basi
 building blo
ks. Their intera
tionswith the required symmetry are determined by gauge invariant and homogeneous matrixfa
torizations of the superpotential. In a system with vanishing superpotential, they aregiven by 
omplexes of Wilson line branes. We also des
ribe the 
hiral se
tor of the theorywith zero gauge 
oupling.In Se
tion 6, we study the boundary 
ontribution to the energy and 
harge densityof the ground state of a 
lass of matter systems. This is to �nd the low energy e�e
tivetheory on the Coulomb bran
h of the linear sigma model. One of the most important�ndings is the presen
e of normalizable modes lo
alized near the boundary, that be
omezero modes in a parti
ular dire
tion of the Coulomb bran
h. In su
h a dire
tion, thee�e
tive theory in terms of ve
tor multiplet �elds be
omes singular. We also digress tostudy, for later purpose, the va
uum energy and 
harge of the open string system in amassive Landau-Ginzburg model.Se
tion 7 is the main part in whi
h we derive the grade restri
tion rule. The key is theLagrangian boundary 
ondition on the Coulomb bran
h. We �rst re-examine the 
ondi-tion for A-branes in Landau-Ginzburg models and �nd the 
ondition that the boundarypotential must be bounded below. This is then applied to the e�e
tive theory on theCoulomb bran
h. For a brane that violates the grade restri
tion rule, the Lagrangiansubmanifold must rotate as the phase boundary is 
rossed. It 
annot avoid overlapingwith a part of the singular line on whi
h the e�e
tive des
ription breaks down. We expe
ta non-trivial e�e
t from su
h an overlap. On the other hand, for a brane satisfying thegrade restri
tion rule, the Lagrangian submanifold is stable and nothing spe
ial happenson the Coulomb bran
h as the phase boundary is 
rossed.In Se
tion 8, we apply the grade restri
tion rule to models with vanishing superpo-tential. We �rst study the redu
tion of the linear sigma model branes to the low energy4



theory. Worldsheet D-term equations give rise to a ta
hyon 
ondensation pattern thatdepends on the respe
tive phase in MK. The 
hange of the 
ondensation pattern a
rossphase boundaries �ts perfe
tly with the grade restri
tion rule. As an appli
ation, wederive the monodromy along a 
losed loop in the K�ahler moduli spa
e MK that en
ir
lesa singular point. We �nd that the e�e
t is to bind the brane that be
omes massless atthe singular point, as expe
ted from the spa
etime pi
ture and mirror symmetry. Wealso demonstrate the power of our 
onstru
tion in several key examples, in
luding the
op of the resolved 
onifold and M
Kay 
orresponden
e. We 
lose the se
tion with a
omment on D-brane transport through the 
enter of the moduli spa
e where multiplephase boundaries meet.Se
tion 9 is a mathemati
al digression in whi
h we introdu
e some important notionsin plain words and prove some key fa
ts used in the previous se
tion. This also paves theway to dis
uss 
ompa
t models in the next se
tion where we need elaborate 
ommutativealgebra at some point. We make a number of mathemati
al statements that follow fromour 
onstru
tion.In Se
tion 10, we apply the grade restri
tion rule to models with non-trivial super-potential. The problem of D-brane transport itself is equally simple as in the modelswithout superpotential. An extra 
ompli
ation shows up when the superpotential givesmass to some of the bulk �elds: we need to integrate them out to arrive at the low energytheory. To this end, we apply the Kn�orrer map developed in Se
tion 3 to �nd the lowenergy des
ription of the D-branes. We exhibit the D-brane transport in some examples,in
luding the large volume images of Re
knagel-S
homerus branes in the quinti
 and atwo-parameter model. We also randomly pi
k some brane at the geometri
 regime and�nd its Landau-Ginzburg image. We dis
uss monodromy and again �nd that the e�e
tis to bind a brane that be
omes massless at the singular point. We end by showing therelation of our work to that of Orlov [5℄ in a 
lass of models. We also in
lude a review ofrelevant mathemati
al ba
kgrounds [11, 12℄.We in
lude an appendix whi
h summarizes the supersymmetry transformations ofthe bulk �elds and the bulk Lagrangians, in non-linear sigma models, Landau-Ginzburgmodels and linear sigma models.1.1 A guide to read the paperWe tried to write this work in a self-
ontained manner, and as a result it turnedout quite 
omprehensive. In the following 
ow 
hart we therefore suggest various routes5



through the paper. We believe though that the most 
omprehendible way of doing so isto read through all se
tions, indi
ated by the bold arrows.Alternatively the reader may take short 
uts along the dashed arrows without missingthe most important 
on
eptual points in the shaded subse
tions. Depending on intereststhe reader may pro
eed after Se
tion 7 with D-branes in non-
ompa
t or 
ompa
t models.A remark on Se
tion 6 is in order. It provides the basis for dis
ussing the graderestri
tion rule in Se
tion 7. Together these two se
tions are the heart of the paper.However, for getting the main 
on
eptual ideas Se
tion 6 may be left out in a �rst reading.

6
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2 D-branes In N = 2 TheoriesIn this se
tion, we study D-branes in various (2; 2) supersymmetri
 �eld theories thatpreserve a diagonal N = 2 supersymmetry. In Se
tions 2.2, 2.3 and 2.4, we des
ribe D-branes in non-linear sigma models, in orbifolds and in Landau-Ginzburg models. We payspe
ial attention to R-symmetry and the ground state se
tor. We start out in Se
tion 2.1with the 
onstru
tion of N = 1 supersymmetri
 boundary Lagrangians based on openstring ta
hyon pro�le, whi
h will be used throughout this paper.2.1 N = 1 Supersymmetri
 Intera
tionsWe �rst 
onstru
t N = 1 supersymmetri
 boundary intera
tions that are marginalor relevant. For simpli
ity, we 
onsider a string propagating in 
at Eu
lidean spa
e Rn,whi
h is des
ribed by real s
alar �elds xI and Majorana fermions  I� (I = 1; :::; n), withthe Lagrangian densityL = nXI=1 � 12(�txI)2 � 12(�sxI)2 + i2 I�(�t + �s) I� + i2 I+(�t � �s) I+� : (2.1)The system has N = (1; 1) supersymmetry | the a
tion is invariant under the transfor-mations ÆxI = i�1� I+�i�1+ I�; and Æ I� = ��1�(�t��s)xI . If formulated on the worldsheetwith boundary, for instan
e on the strip S= [0; L℄�R, a diagonal N = 1 subalgebra 
anbe preserved when a suitable boundary term is added. In parti
ular, the LagrangianLbulk = Z L0 L ds + "� i2 nXI=1  I+ I� #L0 (2.2)is invariant under the variation with �1� = ��1+ = �1:ÆxI = i�1 I ; Æ I = �2�1 _xI ; Æ e I = �2�1�sxI ; (2.3)where  I =  I+ +  I� and e I =  I+ �  I�. The boundary term is needed so that Lbulkis supersymmetri
 without using equations of motion nor boundary 
onditions. We shallassume this type of term (the \standard boundary term") throughout this paper. In a
urved ba
kground with metri
 gIJ , the standard boundary term is � i2gIJ I+ J�. If thereis a 
losed B-�eld, the a
tion is supplemented byZS 12BIJ(x)(�txI�sxJ � �sxI�txJ)d2s+ i4 Z�SBIJ(x) I J dt: (2.4)There is another N = 1 subalgebra, �1� = �1+, for whi
h the standard boundary term hasthe opposite sign and the boundary term for the B-�eld is i4BIJ(x) e I e J .8



2.1.1 Brane-Antibrane System And Open String Ta
hyonsWe re
all that the vertex operators for the ta
hyon and the massless ve
tor boson takethe following form (see, for example, [13℄)VT = k �  eik�x; (k2 = 1); (2.5)V �A = (� � _x� (� �  )(k �  )) eik�x; (k2 = k � � = 0): (2.6)We would like to �nd o�-shell extension of these operators and their �nite version that
an be in
luded in the boundary Lagrangian. The o�-shell and �nite version of (2.6) iswell-known: At = _xIAI(x)� i4FIJ(x) I J ; (2.7)where AI is a U(1) gauge �eld on Rn and FIJ is its �eld strength FIJ = �IAJ��JAI . TheN = 1 variation ofAt is a total time derivative, and hen
e it 
an be added to the boundaryLagrangian preserving theN = 1 supersymmetry. Note that the full Lagrangian in
ludingthe boundary term �At is invariant under the simultaneous shift by a one-form �:B ! B + d�; A! A� �: (2.8)Let us next 
onsider the o�-shell and �nite version of (2.5). We �rst note that VT isfermioni
 and one 
annot in
lude it in the boundary Lagrangian. This is how the standardGSO proje
tion eliminates the ta
hyon. However, one 
an in
lude it by introdu
ing a Z2-graded Chan-Paton spa
e, a ve
tor spa
e of the formV = Vev � Vod; (2.9)where Vev is the even (or bosoni
) subspa
e and Vod is the odd (or fermioni
) subspa
e.We 
all a linear map between su
h ve
tor spa
es even (resp. odd) when it maps even toeven and odd to odd subspa
es (resp. even to odd and odd to even subspa
es). We de�nethe a
tion of the fermioni
 �elds  I� and the fermioni
 parameters (su
h as �1) so thatthey anti
ommutes with all odd linear maps of V. Then, one 
an 
onsider the followingo�-shell version of (2.5) A(1)t = i2 I�IT(x) (2.10)where T(x) is an odd endomorphism of V, mapping Vev to Vod and Vod to Vev. This A(1)tis bosoni
 and 
an be in
luded in the boundary Lagrangian. Let us see if it is N = 1invariant: ÆA(1)t = i2 ��2�1 _xI� �IT+ i2 Ii�1 I�I�JT = �i�1 _T: (2.11)9



This is a total derivative and it appears good at �rst sight. However, sin
e the Chan-Patonspa
e has rank larger than one, the term At is pla
ed in the path-ordered exponentialU(tf ; ti) = P exp��i Z tfti Atdt� :A variation ÆU(tf ; ti) = �i Z tfti U(tf ; t)ÆAtU(t; ti) dt:is a symmetry only when the whole integrand is a total derivative ddt [U(tf ; t)X(t)U(t; ti)℄,whi
h holds when ÆAt is a total 
ovariant derivativeÆAt = _X + i[At; X℄ =: DtX: (2.12)For the �rst trial (2.10), this almost holds with X = �i�1T, see (2.11), but there is anerror term �i[A(1)t ; X℄ = ��1[A(1)t ;T℄. Thus, we would like to modify A(1)t by a termwhose variation 
an
els it. Note that�1[A(1)t ;T℄ = �1 � i2 I�IT �T�T � i2 I�IT�= i2�1 I (�IT �T+T � �IT) = i2�1 I�I(T2) = Æ�12T2� ;where we have used the anti
ommutativity T I = � IT in the se
ond equality. Thus, ifwe modify the �rst trial to At = A(1)t + 12T2, we have ÆAt = _X + i[A(1)t ; X℄. Fortunately,12T2 
ommutes with X = �i�1T, and hen
e we have [A(1)t ; X℄ = [At; X℄ whi
h means thatÆAt = _X + i[At; X℄. The symmetry 
ondition (2.12) holds. In this way, we �nd thatAt = i2 I�IT(x) + 12T(x)2 (2.13)provides the N = 1 supersymmetri
 Wilson line P exp ��i R Atdt�. The expression (2.13)is the o�-shell and �nite version of the ta
hyon vertex operator (2.5). Note that it requiresa Z2-graded Chan-Paton spa
e V = Vev � Vod. The standard interpretation is that Vevand Vod are the Chan-Paton spa
es 
orresponding to branes and antibranes respe
tively.When the Chan-Paton spa
e has rank larger than one, FIJ in (2.7) must be the full
urvature FIJ = �IAJ � �JAI + i[AI ; AJ ℄. The quadrati
 part i[AI ; AJ ℄ is needed for thesame reason as the ta
hyon Lagrangian needs 12T2. We 
an also 
ombine (2.7) and (2.13).Let E = Eev � Eod be a Z2-graded ve
tor bundle over Rn. For an odd endomorphism Tof E and an even gauge 
onne
tion A of E, we have an invariant intera
tionAt = _xIAI(x)� i4FIJ(x) I J + i2 IDIT(x) + 12T(x)2; (2.14)10



where FIJ is the 
urvature of AI and DIT is the ordinary 
ovariant derivative �IT +i[AI ;T℄. Eev is the Chan-Paton ve
tor bundle suppoerted by branes and Eod is theone supported by antibranes. The expression (2.14) was �rst obtained in [9, 14, 15℄using boundary fermions. The part other than _xIAI is the 
urvature of Quillen's super-
onne
tion [16℄, and provides a 
on
ise expression for the Ramond-Ramond 
harge of abrane-antibrane system [14, 15℄.We obtained boundary intera
tions that are o�-shell extensions of the ones generatedby ta
hyon and gauge boson vertex operators, whi
h are relevant and marginal operatorsof the free theory. Here we 
omment on those generated by a 
lass of operators withhigher dimensions that have higher powers in the fermions  . (Other possibilities arethose with higher derivatives �x, d3x=dt3,..., _ , � ,..., whi
h we do not dis
uss here.) Theidea is to allow T to depend not only on x but also on  . It turns out that modifying(2.13) by giving  -dependen
e to T and adding one simple term does the job. Namely,for At = � _xI �� IT(x;  ) + i2 I ��xIT(x;  ) + 12T(x;  )2; (2.15)we �nd ÆAt = Dt (�i�1T) :In fa
t, the one in
luding the non-Abelian gauge �eld (2.14) 
an be regarded as a spe
ial
ase of this: For T(x;  ) = T(x)�  IAI(x) we �nd that (2.15) reprodu
es (2.14).The Landau-Ginzburg CaseFinally, we 
omment on the 
ase where the bulk theory has a superpotential termLh = �12 nXI=1(�Ih(x))2 � i I+ J��I�Jh(x): (2.16)In this 
ase, the N = 1 supersymmetry variation for e I is modi�ed to Æ e I = �2�1�sxI �2�1�Ih(x) while the variation for xI and  I are inta
t. Under this, the a
tion varies asÆ "ZS(L+ Lh) d2s+ Z�S"� i2 nXI=1  I+ I�# dt# = Z�S�i�1 I�Ih(x)�dt: (2.17)The right hand side is the same as the variation of R h(x) dt, and thus the a
tion is N = 1invariant provided that the following boundary term is added to the Lagrangian�L = h�h(x) i�S: (2.18)11



Sin
e the variation of xI and  I are not modi�ed, the boundary intera
tions 
onsideredabove, su
h as (2.13) and (2.14), remain invariant.We next 
onsider various (2; 2) supersymmetri
 bulk theories and determine the 
on-dition for the gauge 
onne
tion A and the ta
hyon T to preserve a diagonal N = 2supersymmetry of B-type, or N = 2B supersymmetry. The latter is a symmetry gener-ated by a linear 
ombination of Q+ and Q� and its 
omplex 
onjugate, su
h asQ = Q+ +Q�; (2.19)and its 
omplex 
onjugate,Qy = Q++Q�. These super
harges obey the anti
ommutationrelations Q2 = Qy2 = 0 and fQ;Qyg = 2H, where H is the Hamiltonian.2.2 Non-Linear Sigma Models: Complex Of Ve
tor BundlesLet us �rst 
onsider the non-linear sigma model on a K�ahler manifold (X; g). Ifformulated on the worldsheet with boundary, a diagonal N = 2 subalgebra of the (2; 2)supersymmetry 
an be preserved. If we add the standard boundary term as in (2.2),L(0)bdry = �� i2gi|( i+ |� +  |+ i�)��S; (2.20)the a
tion is invariant under the N = 2B supersymmetryÆxi = � i; Æ i = �2i� _xi; Æ e i = �2i��sxi � ��ijk j+ k�: (2.21)In this expression, i; j; k; ::: are indi
es of 
omplex 
oordinates, � is a 
omplex variationparameter, � = i(�1 + i�2), and � is its 
omplex 
onjugate, � = �i(�1 � i�2). The B-�eldterm (2.4) is N = 2B invariant if B obeys B(Jv; Jw) = B(v; w), that is, if B is a (1; 1)-form. We stress again that the N = 2B invarian
e holds using neither equations of motionnor boundary 
onditions, provided that the standard boundary term is added.2.2.1 Condition Of N = 2 SupersymmetryWe now determine the 
ondition on the super
onne
tion (A;T) of a Z2 graded ve
torbundle E = Eev�Eod so that the 
orresponding boundary intera
tion (2.14) has N = 2Bsupersymmetry. Let us �rst provide the answer. The 
ondition on the gauge 
onne
tionA is that its 
urvature is a (1; 1)-form, namely vanishing of the (0; 2) (and therefore (2; 0))
omponents F (0;2)A = 0: (2.22)12



Holomorphi
 stru
tures are then de�ned on Eev and Eod by the Cau
hy-Riemann operator�A, whi
h obeys the integrability 
ondition (�A)2 = F (0;2)A = 0. The 
ondition on theta
hyon T is that it 
an be de
omposed asT = iQ� iQy; (2.23)where Q is holomorphi
 D{Q = 0; (2.24)and its square is proportional to the identityQ2 = 
 � idE; (2.25)in whi
h 
 is a numeri
al (�eld independent) 
onstant. The 
ondition of the gauge 
on-ne
tion (2.22) is well-known [17℄, and the proof is omitted here. The 
ondition for T wasderived in [9℄ for those based on boundary fermions. We provide a general derivationbelow.We start for simpli
ity with the 
ase with trival gauge 
onne
tion A = 0. We �rstnote that the additional supersymmetry variation 
an be expressed in terms of the real
oordiantes as Æ2xI = i�2JIK K; Æ2 I = 2�2JIK _xK ; (2.26)where J is the 
omplex stru
ture of X. A

ording to this, At varies asÆ2At = i�2 _xKJIK�IT+ � � �where the ellipsis refers to terms without time derivative. In order for this to be a totaltime derivative, we would like JIK�IT to be �KY for some Y whi
h should be a linearre
ombination of T. Sin
e J is a 
omplex stru
ture, J2 = �1, the only possibility isthat T is a sum of two terms T+ and T� su
h that JIK�IT� = �i�KT�, for whi
hY = iT+ � iT� does the job. Writing T+ = iQ and using the hermiti
ity of T, one 
anwrite T = iQ� iQy where �{Q = 0. The boundary intera
tion then takes the formAt = �12 i�iQ+ 12 |�|Qy + 12fQ;Qyg � 12Q2 � 12Qy2:Let us 
ompute the full N = 2B variation of At. As in the N = 1 
ase, we would like the
13



variation to be the total 
ovariant derivative DtZ = _Z + i[At; Z℄ for some Z:ÆAt = i� _xi�iQ+ 12fQ;�� |�|Qyg � 12� i�iQ2 + h:
:= i� ddt(�Q) + i �12 |�|Qy; �Q��� 12� i�iQ2 + h:
:= i� ddt(�Q) + i[At; �Q℄�+ ��12 i�iQ + 12fQ;Qyg � 12Q2 � 12Qy2; �Q��12� i�iQ2 + h:
:= iDt(�Q)� 12(�+ �) i�iQ2 � 12(� + �)[Q2; Qy℄ + h:
:= iDt(�Q+ �Qy) + 2Re ��2 i�iQ2 � [�2Qy; Q2℄� : (2.27)We would like the se
ond term to vanish so that we are left with iDt(�Q+ �Qy). This is soif and only if Q2 is �eld independent and proportional to the identity matrix. When thegauge 
onne
tion is non-trivial A 6= 0, the above 
onsideration goes through with only aslight modi�
ation, and we obtain the 
onditions (2.23), (2.24) and (2.25).If we require Q2 = 
 � idE with a 
onstant 
, the term �12Q2� 12Qy2 in At is a 
onstantmultiple of the identity and we may omit it. From now on, we use the following versionof the boundary intera
tion without �Re(Q2)At = AI _xI � i4FIJ I J � 12 iDiQ+ 12 {D{Qy + 12fQ;Qyg: (2.28)Under the holomorphi
ity 
onditions (2.22) and (2.24), its N = 2B supersymmetry vari-ation with time dependent parameters �(t); �(t) is given byÆAt = iDt��(Q�  |A|) + �(Qy �  iAi)��Re� � iDiQ2 � [�Qy; Q2℄��i�_�Q+ _�Qy�: (2.29)where Dt is the 
ovariant derivative with respe
t to the new At in (2.28). Under theadditional 
ondition (2.25), the variantion ÆAt is a total 
ovariant derivative up to _�terms. The _�, _� terms in (2.29) show that Q and Qy provide the boundary 
ontributionto the super
harges Q and Qy. On the strip S = [0; L℄ �R with boundary intera
tions(E1; A1; Q1) and (E2; A2; Q2), the super
hargeQ found by the standard Noether pro
edureis given by Q = Qbulk +Qbdry;Qbulk = Z L0 dsngi|( |+ +  |�)�txi + gi|( |+ �  |+)�sxio (2.30)Qbdry = �iQ2���s=L+ iQ1���s=0: (2.31)14



The boundary part a
ts only on the Chan-Paton fa
tor,iQbdry(	CP 
 	internal) = �Q2��L	CP � (�1)j	CPj	CPQ1��0�
	internal;where (�1)j	CPj is +1 or �1 depending on whether 	CP is even or odd. The super
hargeQ squares to zero as required by the N = 2 supersymmetry algebra, as long as Q21 andQ22 are the same 
onstants.More General Intera
tionsLet us next 
onsider the ta
hyon pro�le T that depends also on the fermions  ;  . Wehave seen that the boundary intera
tionAt = � _xI �� IT+ i2 I ��xIT+ 12T2is N = 1 supersymmetri
. We would like to see the 
ondition for N = 2 invarian
e.Assuming again the form T = iQ� iQy, where Q is independent of  i's,�� iQ = 0; (2.32)we �nd the following supersymmetry variation of the above AtÆAt = Dt �i�Q+ i�Qy�� i2(� + �)ÆQ� |�|Q +Q2� + i2(�+ �)ÆQ�� i�iQy +Qy2��i_� Q�  { �� {Q!� i _��Qy �  i �� iQy� (2.33)where iÆQY :=  |�|Y +QY � (�1)jY jY Q+ 2i _xi �� iY; (2.34)iÆQY :=  i�iY �QyY + (�1)jY jY Qy + 2i _x{ �� {Y: (2.35)We see that the intera
tion preserves the N = 2 supersymmetry if and only if Q satis�es,in addition to (2.32),  |�|Q+Q2 = 
 � idE (2.36)where 
 is a �eld independent 
onstant. Under these 
onditions, the boundary intera
tiontakes the following form up to an additive 
onstantAt = �i _x| �� |Q + i _xi �� iQy � 12 i�iQ+ 12 |�|Qy + 12fQ;Qyg: (2.37)15



For the 
ase where Q(x;  ) is at most linear in  , i.e., Q(x;  ) = Q(x) �  |A|(x), theequation (2.36) splits into two equations, D|Q(x) = 0 and Q(x)2 = 
 � idE, whi
h arenothing but the 
ondition obtained previously.For the most part of this paper, we will not 
onsider su
h higher dimensional boundaryintera
tions, ex
ept for Se
tion 3 where we dis
uss D-term deformations.2.2.2 R-SymmetryThe bulk non-linear sigma model always has ve
tor U(1) R-symmetry that a
ts triv-ially on the target spa
e 
oordinates. If preserved by the boundary intera
tion, the bulkve
tor U(1) R-symmetry be
omes an R-symmetry of the N = 2B superalgebra underwhi
h the super
harge Q transforms as Q! �Q for some phase � = ei�. We restri
t ourattention to D-branes with su
h U(1) R-symmetry.Sin
e the holomorphi
 part of the ta
hyon Q enters into the super
harge Q, whi
h hasR-
harge 1, Q must also have R-
harge 1. Namely, the Chan-Paton bundle E must admita U(1) a
tion R( ei�) : E ! E su
h thatR(�)Q(x)R(�)�1 = �Q(x): (2.38)This in parti
ular requires 
 = 0 in (2.25), so thatQ2 = 0: (2.39)We of 
ourse require that the 
onne
tion A is invariant under the same a
tionR(�)AI(x)R(�)�1 = AI(x): (2.40)Let us denote the subbundle of E of R-
harge j by Ej. That is, Ej is the R(�) =�j eigenbundle. Ea
h Ej has a holomorphi
 stru
ture determined by the 
onne
tion Arestri
ted to Ej. We denote the 
orresponding holomorphi
 ve
tor bundle by E j. Then,by (2.38) the Q a
tion on E = �jE j is de
omposed as� � � Q�! E j�1 Q�! E j Q�! E j+1 Q�! � � � : (2.41)The 
ondition (2.39) means that this is a 
omplex of holomorphi
 ve
tor bundles whereQ plays the rôle of a boundary operator. We shall sometimes denote this 
omplex byC = C(E ; Q). We may assume that the R-
harges j are all integers, or equivalently,that � 7! R(�) is an honest U(1) a
tion | one 
an always rede�ne R(�) by multiplyingsome phase �Æj in ea
h irredu
ible fa
tor. Sin
e Q is odd, the mod 2 redu
tion of the16



grading by su
h integral R-
harges mat
hes with or is opposite to the original Z2-grading,E = Eev � Eod, or mixture of the two 
ases. We 
hoose R( ei�) so that they mat
h:Eev = Mj: evenEj; Eod = Mj: oddEj: (2.42)The reason is the 
harge integrality that is present in the bulk non-linear sigma model,i.e., any bulk operator has integral ve
tor R-
harge whi
h agrees modulo 2 with thestatisti
s of the operator. By the requirement (2.42) we extend this 
harge integrality tothe boundary.Let us 
onsider two branes with su
h R-symmetry, say, B1 = (E1; A1; Q1) with symme-try R1 and B2 = (E2; A2; Q2) with symmetry R2. Then, there is an a
tion of R-symmetryon the spa
e of open string states H(B1;B2). The a
tion on the Chan-Paton fa
tor isgoverned by R1 and R2;R(�) : 	CP 
 	internal 7�! R2(�)	CPR1(�)�1 
 Rinternal(�)	internal: (2.43)This introdu
es a grading on the spa
e of open string states, H(B1;B2) = �pHp(B1;B2),with Hp(B1;B2) = n	 2 H(B1;B2) ��� R(�)	 = �p	o : (2.44)The R-
harges p of states are not ne
essarily integers sin
e the R-a
tion on the internalpart may not be integral.There is an ambiguity in the 
hoi
e of R(�) | the uniform shift j ! j + 2m doesnot violate the 
ondition (2.38) and (2.42). This shift of R-
harges does not 
hange thephysi
al property of the brane. However, for a given a
tion Rinternal(�) on the internalpart, di�erent shifts of R1 and R2 will shift the grading of the spa
e of states (2.44). Wesometimes keep this grading as a part of the information of the D-brane. We 
all su
hbranes with additional information graded D-branes.Let us brie
y 
omment on the more general intera
tion (2.37) for  -dependent Q thatobeys the equation (2.36). The R-symmetry 
ondition isR(�)Q(x; � )R(�)�1 = �Q(x;  ):This again requires 
 = 0 in (2.36). If we write Q = Q0 +Q1 + � � � where Qm is the partthat has power m in  , then the 
ondition is R(�)QmR(�)�1 = �1�mQm. Thus, if werepla
e  { by the one form dx{ one 
an interpret Qm as a (0; m) form that sends Ej toEj+1�m. Then the supersymmetry 
ondition (2.36) be
omes�Q+Q2 = 0: (2.45)17



for the total sum Q = Pnm=0Qm of forms. This data for D-branes is 
alled a twisted
omplex. It is found from the point of view of string �eld theory in [18, 19℄ as a physi
alrealization of an obje
t of the \enhan
ed triangulated 
ategory" of Bondal and Kapranov[20℄. Here we showed its realization as an ordinary N = 2 supersymmetri
 boundaryintera
tion. This generalization is not ne
essary when X is algebrai
, in the sense thatwill be explained at the end of Se
tion 2.2.3 and in Se
tion 3.If the target spa
e X is a Calabi-Yau manifold, the bulk theory 
ows to a non-trivial�xed point in the infra-red limit, where ve
tor and axial R-symmetries of the 
lassi
alLagrangian be
ome parts of the (2; 2) super
onformal symmetry. If it has a large volumelimit, the 
orre
t R-symmetries are the ones su
h that the target spa
e 
oordinates havezero R-
harges. This is so even if X has a non-trivial U(1) symmetry by whi
h theR-symmetries 
ould be modi�ed [21℄. The super
onformal �eld theory obtained thisway is of spe
ial type | the R-
harges in the NS-NS se
tor are all integers and redu
emodulo 2 to the Z2-grading that determines the spin and statisti
s. Also, there exist
hiral spe
tral 
ow operators O 12 ;0 and O0; 12 in the NS-R and R-NS se
tors, whi
h areresponsible for spa
etime supersymmetry [22℄ in the 
ontext of string 
ompa
ti�
ations.In super
onformal �eld theories of this type, BPS D-branes are those su
h that the twospe
tral 
ow operators are related by O 12 ;0 = ei'O0; 12 for some phase ei' [23℄. In the
ontext of string theory, this phase determines the spa
etime supersymmetry preservedby the D-branes. For an open string stret
hed bewteen BPS branes with phases ei'1and ei'2 , the R-
harges of the states in the NS-se
tor are '1 � '2 plus integers [6℄. Thebrane de�ned by a boundary intera
tion (E;A;Q) may or may not 
ow to su
h a BPSD-brane. If it does, then the R-symmetry of (E;A;Q) is expe
ted to be
ome a part ofthe super
onformal symmetry of the infra-red brane. Often the brane (E;A;Q) 
owsto the de
oupled sum of several BPS branes with di�erent phases ei'. In that 
ase theR-symmetry of (E;A;Q) may not 
orrespond to the infra-red R-symmetry.2.2.3 Chiral Se
torIn a supersymmetri
 �eld theory with a super
harge Q that squares to zero, su
h as 4dN = 1 and 2d (2; 2) theories, the 
hiral ring is de�ned as the ring ofQ-
ohomology 
lassesof lo
al operators. It 
arries an important information of the theory that is prote
ted fromrenormalization. This is the 
ase also in 2d (2; 2) theories with boundary intera
tionsthat preserve N = 2 supersymmetry. In this 
ontext, a lo
al operator is inserted on theboundary of the worldsheet, say, at the point z = 0 of the upper-half plane Imz � 0.Note that a boundary 
ondition or a boundary intera
tion must be spe
i�ed. Suppose18



the boundary intera
tions on the left (z < 0) and the right (z > 0) of the insertionpoint are B1 and B2 respe
tively. Then the spa
e of Q-
ohomology 
lasses of operatorsis denoted by H(B1;B2). If the two are the same brane, the spa
e H(B;B) by itselfforms a ring by the produ
t of operators. For di�erent branes, the produ
t is of the formH(B1;B2) �H(B2;B3) ! H(B1;B3). If we �x a set of branes fBigi2I, the dire
t sum ofspa
es H(Bi;Bj) (i; j 2 I) forms a ring | we may 
all it the 
hiral ring 
orrespondingto the set fBigi2I . If we 
onsider all possible branes, it would be mathemati
ally moreappropriate to use the language of 
ategory | obje
ts are D-branes B and morphisms areelements ofH(B;B0). This is how the D-brane 
ategory (in the 
hiral se
tor) is de�ned. Inthis paper, however, we shall loosely refer to elements of H(B;B0) as 
hiral ring elements.If the bulk theory has an axial R-symmetry with integral R-
harges, su
h as a Calabi-Yau sigma model, one 
an use B-twist to obtain a topologi
al �eld theory in whi
h 
hiralring elements play the rôle of physi
al observables. In this 
ontext the D-brane 
ategoryin the 
hiral se
tor is 
alled \the 
ategory of topologi
al D-branes". Also, the B-twist
an be used to �nd a one-to-one 
orresponden
e between the 
hiral ring elements in theB1-B2 se
tor and supersymmetri
 ground states of the open string stret
hed from B1 toB2. Therefore, the terms \
hiral ring elements" and \supersymmetri
 ground states" 
anbe used inter
hangeably in su
h a 
ase.In what follows, we determine the spa
e H(B1;B2) for a pair of D-branes, B1 =(E1; A1; Q1) and B2 = (E2; A2; Q2), in the non-linear sigma model on a K�ahler manifoldX. We �rst realize it as a Dolbeault type 
ohomology, and then try to translate it into apurely holomorphi
 des
ription. This leads us to the derived 
ategory of X.The �elds  i� and �zxi, �zxi are Q-partners of ea
h other and thus 
an be eliminated.Also,  {+�  {� are set equal to zero by the boundary 
ondition. Thus, we may work onlywith the zero modes of xi, x{ and  { =  {+ +  {�. In this zero mode se
tor,1 the spa
e ofoperators is identi�ed as the spa
e of antiholomorphi
 forms with values in the bundle oflinear maps Hom(E1; E2);Hzero(B1;B2) = nMi=1 
0;i(X;Hom(E1; E2)): (2.46)On this spa
e,  | is represented as the one-form dx| while gi| _xi a
ts as the di�erentiation1The meaning of \zero mode" may require 
lari�
ation. It means \
onstant (or more pre
isely parallel)mode on the 
at worldsheet with straight boundary (at whi
h the operators are inserted)". It shouldnot be 
onfused with the \zero mode" in the open string NS se
tor to whi
h the spa
e of lo
al operatorsnaturally 
orresponds to: there is in fa
t no parallel mode for spinors in the NS se
tor. However, whenB-twist is possible, it literally 
orresponds to \zero mode" in the open string Ramond se
tor.19



�i�| +A|. Therefore the super
harge Q, as shown in (2.30) and (2.31), is represented asiQzero� = �A1;2�+Q2�� (�1)j�j�Q1: (2.47)�A1;2 is the Cau
hy-Riemann operator determined by the 
onne
tions A1 and A2, whi
his expressed lo
ally as �A1;2� = dz| ^ (�|� + iA2;|� � i�A1;|). The Z2-grading (�1)j�j isthe 
ombination of the one for Hom(E1; E2) and the one by the form degree. If both B1and B2 have R-symmetry, the spa
e (2.46) has a �ner grading. It is graded by the sumof the form degree and the grading of Hom(E1; E2) determined by the R-
harges of thebundles E1 and E2, where the degree j elements of Hom(E1; E2) in
rease the R-
hargeby j, Homj(E1; E2) = �j0Hom(Ej01 ; Ej0+j2 ). The R-
harge p subspa
e of (2.46) hen
e isHpzero(B1;B2) = Mi+j=p
0;i(X;Homj(E1; E2)): (2.48)The super
harge Qzero is a degree one operator that squares to zero, and hen
e de�nesa Z-graded 
omplex. The spa
e of 
hiral ring elements is isomorphi
 to the 
ohomologygroup of this 
omplex Hp(B1;B2) �= HpQzero(H�zero(B1;B2)): (2.49)The ring stru
ture H(B1;B2) �H(B2;B3) ! H(B1;B3) is simply realized as the wedgeprodu
t of forms 
ombined with the 
omposition of homomorphisms. In parti
ular, itpreserves the grading by the R-symmetry.Note that the degree p here is not ne
essarily the same as the R-
harge of the quantum�elds that in
ludes the 
ontribution from the internal part (su
h as the sum of the zeropoint 
harges). For distin
tion, we 
all it the R-degree or \R-
harge in the zero modeapproximation". If B1 and B2 
ow to BPS D-branes with phases ei'1 and ei'2 , the trueR-
harge is p+ '1 � '2 for a suitably 
hosen integral part of 'i.Flat Spa
e X = Cn | Homotopy CategoryAs the simplest example, let us 
onsider the Eu
lidean spa
e X = Cn and 
omplexesbased on ve
tor bundles with trivial 
at 
onne
tions. Namely, we 
onsider 
omplexes ofthe form (2.41) where E j are all trivial bundles O�kj over Cn. A brane is represented by anodd square matrix Q(x) whi
h is holomorphi
 in the 
omplex 
oordinates x = (x1; :::; xn)and squares to zero. For two branes of this kind, B1 = (E1; Q1) and B2 = (E2; Q2), thespa
e of 
hiral ring elements is realized as the 
ohomology group (2.49) but there is amore 
onvenient realization. Let Hom(E1; E2) be the spa
e of global holomorphi
 bundle20



maps from E1 to E2, whi
h is a graded subspa
e of the i = 0 part of (2.48). The operatorQzero a
ts on this subspa
e as iQhol� = Q2�� (�1)j�j�Q1and de�nes a 
omplex � � � ! Homp(E1; E2) ! Homp+1(E1; E2) ! � � � . We 
laim that thespa
e (2.49) is isomorphi
 to the 
ohomology group of this 
omplex,Hp(B1;B2) �= HpQhol (Hom�(E1; E2)): (2.50)This 
an be shown as follows. Let us pi
k a degree zero element � 2 H0zero(B1;B2)annihilated by Qzero. We de
ompose it with respe
t to its form-degree, � = �0 + �1 +� � �+�n where �i belongs to 
0;i(Cn; Hom�i(E1; E2)). Then the equation Qzero� = 0 
anbe de
omposed as follows ��n�1 +Q2�n � �nQ1 = 0;��n�2 +Q2�n�1 � �n�1Q1 = 0;... (2.51)��0 +Q2�1 � �1Q1 = 0;Q2�0 � �0Q1 = 0:Sin
e any (0; n) form on Cn is �-exa
t, there is an (0; n � 1)-form �n�1 su
h that �n =��n�1. Then the �rst equation means that �n�1 � Q2�n�1 � �n�1Q1 is �-
losed. Hen
eit 
an be written as ��n�2 for some (0; n � 2)-form �n�2. Then the se
ond equationmeans that �n�2 � Q2�n�2 � �n�2Q1 is �-
losed and hen
e 
an be written as ��n�3 forsome (0; n � 3)-form �n�3. Repeating this pro
edure, using the fa
t that any �-
losed(0; i)-form on Cn is �-exa
t if i > 0, we re
ursively �nd a sequen
e of forms, �i 2
0;i(Hom�i�1(E1; E2)) su
h that �i�Q2�i��iQ1 = ��i�1 at every i = n� 1; n� 2; :::; 1.The last two equations of (2.51) mean that �0�Q2�0��0Q1 =: e� is a holomorphi
 0-formthat is Qhol -
losed. Summarizing, we found� = e�+ iQzero�; �e� = Qhol e� = 0; (2.52)where � = �0 + �1 + � � �+ �n�1. Namely, every Qzero-
losed element has a holomorphi
representative. This proves the 
laim (2.50) for the 
ase p = 0. Proof for higher p issimilar. The only non-trivial property of Cn we have used in the above argument is thatany �-
losed form of positive degree is �-exa
t. This holds more generally in a 
lass ofspa
es 
alled Stein manifolds. 21



Let us restate the 
laim (2.50) in a more 
onventional mathemati
al language. Forthis we need to introdu
e some terminology. Here everything is stated in the 
ontext of
omplexes of trivial ve
tor bundles where maps are holomorphi
 bundle maps, but theterminology 
an be applied straightforwardly to more general 
ontext. By de�nition, a
o
hain map of a 
omplex � � � ! E j ! E j+1 ! � � � to another � � � ! F j ! F j+1 ! � � � isa sequen
e of maps E j ! F j su
h that the following diagram 
ommutes� � � ! E j�1 �! E j �! E j+1 ! � � �# # #� � � ! F j�1 �! F j �! F j+1 ! � � �A homotopy between these 
omplexes is a 
o
hain map of the form hQE +QFh where his a degree �1 map of E to F , that is, a 
olle
tion of maps E j ! F j�1. For a 
omplexC = C(E ; Q), we denote by C[p℄ the same 
omplex C shifted p steps to the left with the
oboundary operator given by (�1)pQ. In these terms, the 
laim (2.50) means that thespa
e of degree p 
hiral ring elements is isomorphi
 to the spa
e of 
o
hain maps C1 ! C2[p℄modulo homotopies, where C1 and C2 are the 
omplexes asso
iated with (E1; Q1) and(E2; Q2). Su
h a spa
e is simply denoted by HomHo(C1; C2[p℄). Thus, we may sayHp(B1;B2) �= HomHo(C1; C2[p℄): (2.53)The ring stru
ture is given by 
omposition of 
o
hain maps. The D-brane 
ategory weobtained, where the obje
ts are 
omplexes of trivial ve
tor bundles overCn and morphismsare 
o
hain maps modulo homotopies (2.53), is what is known as homotopy 
ategory ofthe 
ategory of 
omplexes of ve
tor bundles over Cn. This is in fa
t the same as thederived 
ategory of Cn, whi
h we will dis
uss momentarily in more general 
ontext. Thispoint will be dis
ussed further in Se
tion 9.ExtensionsWe would like to have a holomorphi
 or algebrai
 des
ription of the 
hiral ring, like(2.53), in more general spa
es. Here we present su
h a des
ription for branes whi
h areve
tor bundles, namely 
omplexes where E j is non-zero only for j = 0. Let (E1; A1) and(E2; A2) be ve
tor bundles with 
onne
tion whi
h determine holomorphi
 ve
tor bundlesE1 and E2. The spa
e (2.49) is simply the Dolbeault 
ohomology group whi
h is linearlyisomorphi
 to the �Ce
h 
ohomology group of (the sheaf of holomorphi
 se
tions of) theholomorphi
 bundle Hom(E1; E2) �= E�1 
 E2;Hp(B1;B2) �= H0;p�A1;2 (X;Hom(E1; E2)) �= Hp(X;Hom(E1; E2)): (2.54)22



For p = 0, this is equal to the spa
e of global holomorphi
 se
tions ofHom(E1; E2), namelythe spa
e of global holomorphi
 bundles maps,H0(B1;B2) �= Hom(E1; E2): (2.55)Indeed this is nothing but the answer obtained in (2.53). However, for p > 0, (2.53)would tell us that there is no 
hiral ring elements in the present situation, where bothB1 and B2 are ve
tor bundles. That is, however, not true in general sin
e we may haveH0;p�A1;2 (X;Hom(E1; E2)) 6= 0 for p > 0.The p = 1 subspa
e H1(B1;B2) has the following algebrai
 
hara
terization. Let� 2 
0;1(X;Hom(E1; E2)) represent an element of H0;1�A1;2 (X;Hom(E1; E2)). It obeys�A1;2� = 0. Then one 
an de�ne a holomorphi
 stru
ture F� on E1 � E2 by the operator�A1;2;� =  �A1 0� �A2 ! : (2.56)Indeed it squares to zero under the 
ondition �A1;2� = 0. The exa
t sequen
e 0! E2 !E1 � E2 ! E1 ! 0 given by the trivial maps e2 7! (0; e2) and (e1; e2) 7! e1 de�nes anexa
t sequen
e of holomorphi
 bundles0 �! E2 �! F� �! E1 �! 0: (2.57)Su
h a sequen
e is 
alled an extension of E1 by E2. If � is shifted by �A1;2-exa
t form,�! �+ �A1;2�, where � 2 �(X;Hom(E1; E2)), there is an isomorphism of the extension(2.57) to the new one. Namely, there is a 
o
hain map from (2.57) to the new one, whi
h isidentity at E1 and E2. The map in the middle is ne
essarily an isomorphism| expli
itly itis given by (e1; e2)! (e1; e2��e1). The set of isomorphism 
lasses of extensions, denotedby Ext1(E1; E2), is thus bije
tive to the 
ohomology group H0;1�A1;2 (X;Hom(E1; E2)). Thus,the spa
e of p = 1 
hiral ring elements isH1(B1;B2) �= Ext1(E1; E2): (2.58)A stru
ture of 
omplex ve
tor spa
e 
an be de�ned on the set Ext1(E1; E2) and (2.58) is alinear isomorphism. An extension (2.57) is a zero element if � itself is exa
t, � = �A1;2�.In that 
ase, there is a holomorphi
 map E1 ! F� (resp. F� ! E2) whi
h gives theidentity on E1 (resp. on E2) if it is followed by the map F� ! E1 of (2.57) (resp. pre
ededby the map E2 ! F� of (2.57)). Expli
itly, the map is given by e1 ! (e1;��e1) (resp.(e1; e2) 7! e2 + �e1). Su
h a map is 
alled a splitting, and an exa
t sequen
e with a23



splitting is 
alled split exa
t. An exa
t sequen
e represents the zero element of the groupExt1(E1; E2) when it is split exa
t.For higher p, algebrai
 
hara
terization is not as simply derived as in the p = 1 
ase.We just quote the fa
t that Hp(X;Hom(E1; E2)) is linearly isomorphi
 to the group ofequivalen
e 
lasses of p-extensions of E1 by E2, Extp(E1; E2). A p-extension of E1 by E2 isan exa
t sequen
e of the form0 �! E2 �! F1 �! � � � �! Fp �! E1 �! 0:Equivalen
es of p-extensions are de�ned in a similar but slightly more involved way thanin the p = 1 
ase. The extension de�nes the zero element of the group Extp(E1; E2) ifthere is a splitting E1 ! Fp or F1 ! E2. We refer the reader to [24℄ as well as Se
tion 9for more details.Derived CategoryWhat is the algebrai
 des
ription of the spa
e of 
hiral ring elements (2.49)? We haveseen partial answers: For X = Cn it is the spa
e of homotopy 
lasses of 
o
hain maps(2.53). For ve
tor bundles it is the extension group Extp(E1; E2). In general, the answeris provided by the formalism of the derived 
ategory2 | It is the spa
e of morphisms ofthe derived 
ategory D: Hp(B1;B2) �= HomD(C1; C2[p℄): (2.59)Here Ca is the 
omplex of ve
tor bundles asso
iated with Ba = (Ea; Qa) and C2[p℄ is the
omplex C2 shifted p-steps to the left. Let us sket
h the de�nition of the right hand sideof (2.59).First we need to make a te
hni
al remark. A disadvantage in working with 
omplexesof ve
tor bundles is that the kernel and 
okernel of a bundle map are not in generalve
tor bundles. To remedy this problem, we introdu
e some mathemati
al obje
ts 
alledsheaves (of OX-modules) as generalization of ve
tor bundles. Basi
ally, we 
onsider thespa
e of lo
al holomorphi
 se
tions of a ve
tor bundle as a module over the ring of lo
alholomorphi
 fun
tions, and we generalize it by in
luding any module of that ring. A mapof sheaves is given by linear maps of the modules de�ned lo
ally whi
h satisfy 
ertain
ompatibility 
ondition. Se
tion 9 provides a slightly more detailed explanation. Themain point is that we 
an freely talk about the kernel and 
okernel of a map of sheaves.2Possible relevan
e of the derived 
ategory for brane-antibrane systems was �rst emphasized in [25℄.24



We emphasize that this generalization is just to des
ribe HomD(�;�). Our branes arestill 
omplexes of ve
tor bundles.Of most importan
e is the notion of a quasi-isomorphism. A quasi-isomorphism froma 
omplex of sheaves � � � ! E j ! E j+1 ! � � � to another one � � � ! F j ! F j+1 ! � � �is a 
o
hain map that des
ends to an isomorphism at the 
ohomology level. Namely,ea
h map E j ! F j indu
es an isomoprphism from the 
ohomology sheaf Ker(E j !E j+1)=Im(E j�1 ! E j) to the 
ohomology sheaf Ker(F j ! F j+1)=Im(F j�1 ! F j). Notethat a shift of a 
o
hain map by a homotopy does not 
hange the map at the 
ohomologylevel. Thus, a 
hain map that is homotpy equivalent to a quasi-isomorphism is again aquasi-isomorphism.Let us now des
ribe the spa
e of morphisms in the derived 
ategory D. The homotopy
lasses of 
o
hain maps de�ne morphisms. In addition, we in
lude the formal inversesof the homotopy 
lasses of quasi-isomorphisms. Namely, if q : C1 ! C2 is a quasi-isomorphism, we in
lude its formal inverse q�1 as a morphism from C2 to C1 whi
h obeysthe property that q Æ q�1 = idC2 and q�1 Æ q = idC1 . Then HomD(C1; C2) is de�ned asthe set of all sequen
es of su
h extended morphisms starting from C1 and ending at C2,modulo the obvious identi�
ation�C1 ! � � � ! C f! C 0 g! C 00 ! � � � ! C2� � �C1 ! � � � ! C gÆf�! C 00 ! � � � ! C2�:One 
an show that ea
h morphism from C1 to C2 have presentations of the following formsC1 q�1�! C f�! C2; and C1 g�! C 0 q0�1�! C2;where f and g are (the homotopy 
lasses of) ordinary 
o
hain maps and q�1 and q0�1 arethe inverses of (the homotopy 
lasses of) quasi-isomorphisms.If there is a quasi-isomorphism q : C1 ! C2, then for any 
omplex C there are linearisomorphisms, HomD(C; C1) �= HomD(C; C2) and HomD(C1; C) �= HomD(C2; C), given by
omposition with q or q�1 on the left and on the right. This means that two obje
tsrelated by a 
hain of quasi-isomorphisms are isomorphi
 in the derived 
ategory.Let us 
onsider a 
omplex C given by an exa
t sequen
e� � � ! E i Qi�! E i+1 Qi+1�! E i+2 ! � � � (2.60)By de�nition of exa
tness, Ker(Qi) = Im(Qi�1), the 
ohomology sheaves are all zero.Hen
e the zero map from C to the zero sequen
e� � � �! 0 �! 0 �! 0 �! 0 �! � � �25



(or ba
k) is a quasi-isomorphism. In parti
ular, the morphism spa
e to and from any
omplex C 0 vanishes, HomD(C; C 0) = HomD(C 0; C) = 0. Namely, C is a zero obje
t inthe derived 
ategory. Another important observation is that the exa
t 
omplex C 
an bebroken at any position j to obtain a pair of quasi-isomorphi
 
omplexes� � � ! E j�2 �Qj�2�! E j�1 �Qj�1�! E j �! 0 �! 0 ! � � �# # # Qj # #� � � ! 0 �! 0 �! E j+1 Qj+1�! E j+2 Qj+2�! E j+3 ! � � � (2.61)That this is a quasi-isomorphism 
an be see easily by the exa
tness of C. Conversely, ifthis is a quasi-isomorphism, the 
omplex (2.60) is exa
t.Let us 
omment on how (2.59) may be related to the results obtained earlier for spe
ial
ases. First, for X = Cn we must show that the derived 
ategory is equivalent to thehomotopy 
ategory. It is equal to the statement that a quasi-isomorphism is a 
hainisomorphism up to homotopy. In parti
ular, there is no non-trivial extension betweentrivial ve
tor bundles. This point has a parti
ular importan
e in our paper and willbe explained in Se
tion 9. Next, let us 
onsider ve
tor bundles E1 and E2 on a moregeneral spa
e X and ask whether HomD(E1; E2[p℄) is isomorphi
 to the extension groupExtp(E1; E2). Let us demonstrate the map from the latter to the former for the p = 1 
ase.Take an element of Ext1(E1; E2) represented by an exa
t sequen
e0 �! E2 a�! F b�! E1 �! 0:Then we �nd the following morphism E1 ! E2[1℄ in the derived 
ategory! 0 �! 0 �! E1 �! 0 !" " "a "! 0 �! E2 b�! F �! 0 !# # id # #! 0 �! E2 �! 0 �! 0 !From the �rst line to the se
ond is the inverse of a quasi-isomorphism of the type (2.61).Alternatively, we 
ould 
onsider the morphism with 0! F ! E1 ! 0 in the se
ond lineand an inverse quasi-isomorphism from the se
ond line to the third, but that is homotopyequivalent to the above one. The generalization to p > 1 is obvious.Let us end the des
ription of the derived 
ategory with another te
hni
al remark.3 Ageneral sheaf of OX -modules is in some way too general and, if possible, we would like3We thank A. Bondal for everything that is said in this remark.26



to work with something 
lose to ve
tor bundles. This motivates us to 
onsider 
oherentsheaves. A 
oherent sheaf is realized lo
ally as the 
okernel of a map of sheaves of holo-morphi
 se
tions of ve
tor bundles. When X is algebrai
, namely, if it is 
overed by openaÆne varieties, then it is known that the intermediate 
omplexes of sheaves that appearin the de�nition of HomD(C1; C2) 
an be taken from 
omplexes of 
oherent sheaves. Also,any 
omplex of 
oherent sheaves is known to be quasi-isomorphi
 to a 
omplex of ve
torbundles. Thus, if X is algebrai
, we 
an des
ribe D-branes entirely by 
omplexes of 
oher-ent sheaves, and the 
ategoryD 
an be identi�ed as what is known as the derived 
ategoryof 
oherent sheaves of X. If X is not algebrai
, we may need more general sheaves than
oherent sheaves in the intermediate 
omplexes to de�ne HomD(C1; C2). As the D-branesthemselves, it is more natural to 
onsider 
omplexes of sheaves whose 
ohomology sheavesare 
oherent. They are slightly more general than 
omplexes of ve
tor bundles, but arenot more general than twisted 
omplexes (2.45). Namely, a twisted 
omplex determines a
omplex of sheaves with 
oherent 
ohomology sheaves and any 
omplex with 
oherent 
o-homologies is quasi-isomorphi
 to a 
omplex 
oming from a twisted 
omplex [26℄. (Thereis also a work whi
h studies this point [27℄.) In te
hni
al terms, the relevant 
ategory D isthe full sub
ategory of the derived 
ategory of sheaves of OX-modules 
onsisting of 
om-plexes with 
oherent 
ohomologies. When X is algebrai
, this sub
ategory is equivalentto the derived 
ategory of 
oherent sheaves. In the rest of this paper, we only 
onsideralgebrai
X's where we 
an entirely work with 
omplexes of 
oherent sheaves. Fortunatelyenough, Calabi-Yau manifolds with h2;0 = 0 are all algebrai
.2.3 OrbifoldsWhen a quantum �eld theory in 1+1 dimensions has a �nite group of symmetries, onemay 
onsider gauging it. This is the operation known as orbifold. We remove all the statesand operators that are not invariant under the group a
tion, and at the same time, wein
lude �eld 
on�gurations on a 
ir
le with preiodo
ity twisted by group elements, thusadding new se
tors (twisted se
tors) to the spa
e of states and operators [28℄. D-branesin an orbifold theory are simply boundary 
onditions and intera
tions that are invariantunder the orbifold group a
tion. The orbifold a
tion on the Chan-Paton ve
tors must bein
luded as a part of the data, in order to spe
ify the a
tion on the open string states sothat one 
an sele
t only the invariant states.For the non-linear sigma model on a Riemannian manifold (X; g), a typi
al orbifoldis asso
iated with a group � of isometries of (X; g). A D-brane of the type (E;A;T)is �-invariant when there is a lift of the �-a
tion to the ve
tor bundle E that preserves27



the Z2-grading, the gauge �eld A and the ta
hyon pro�le T. In parti
ular, there is aneven linear bundle map �(
) : E ! E over ea
h element 
 2 � su
h that the pull ba
k
onne
tion of A is A itself and �(
)�1T(
x)�(
) = T(x):Note that the maps �(
) en
ode the information of the �-a
tion on Chan-Paton fa
tors:For the open string stret
hed from a brane (E1; A1;T1; �1) to another brane (E2; A2;T2; �2),the 
 2 � a
tion on open string wavefun
tions is
 : 	(x) 7�! �2(
)�1	(
x)�1(
):We are interested only in wavefun
tions that are invariant under this orbifold a
tion.If (X; g) is a K�ahler manifold and if the isometry group � preserves also the 
omplexstru
ture, the orbifold theory has (2; 2) supersymmetry. An N = 2B invariant D-brane inthe orbifold theory 
an be provided by the usual data (E;A;Q) together with a �-a
tion,�(
) : E ! E, with the obvious invarian
e 
ondition in
luding�(
)�1Q(
x)�(
) = Q(x):A U(1) R-symmetry of su
h a brane is an R-symmetry R of (E;A;Q) that preserves the�-invarian
e 
ondition of open string wavefun
tions. It is easy to see that it requiresR(�)�(
) = 
�;
 � �(
)R(�)where 
�;
 is a 
omplex number whi
h is independent of the brane. Setting � = 1 or
 = 1 we �nd 
1;
 = 
�;1 = 1. Also, by group property R(�1�2) = R(�1)R(�2) and�(
1
2) = �(
1)�(
2), we �nd 
�1�2;
 = 
�1;

�2;
 and 
�;
1
2 = 
�;
1
�;
2 . By the �rstequation, one 
an write 
�;
 = �f(
) for some 
omplex valued fun
tion f of � and thenthe se
ond equation says f(
1
2) = f(
1) + f(
2). Also, 
�;1 = 1 means f(1) = 0. Sin
e� is a �nite group, say with order d, we have 
d = 1 for any 
 2 �. Thus, we �nd0 = f(1) = f(
d) = d � f(
), namely, f(
) = 0 for any 
 2 �. This means 
�;
 = 1 for any� and 
. Thus, we 
on
lude that the R-symmetry in the orbifold theory must satisfyR(�)�(
) = �(
)R(�):We �nd that the data to spe
ify an R-graded D-brane in the orbifold theory is the quin-tuple (E;A;Q;R; �) and 
orresponds to a 
omplex of �-equivariant ve
tor bundles.Of parti
ular importan
e is the orbifold of the Eu
lidean spa
e X = Cn with a �nitegroup � of linear transformations. For ea
h representation of the orbifold group, � : �!28



GL(V ), we have a D-brane asso
iated with the trival ve
tor bundle with �bre V and trivialgauge 
onne
tion A = 0 with the natural �-a
tion. We denote it by O(�). If the group isisomorphi
 to the 
y
li
 group � �= Zd, its irredu
ible representation is one-dimensionaland is spe
i�ed by a mod d integer, m 2 Zd, with �m : l 2 Zd 7! e2�iml 2 U(1). We oftenwrite O(�m) simply by O(m). Note that all these branes O(�) are extending in the entirespa
e Cn=�. A general D-brane may be \represented" as a 
omplex of these branes inthe sense that is spe
i�ed in the next se
tion. For example, in Se
tion 3.2 we will �ndsu
h a representation for D0-branes stu
k at the orbifold �xed point 0 2 Cn. These areknown as the fra
tional branes [29{31℄.The 
losed string se
tor of the orbifold theory on Cn=� has a 
harge integrality |any NS-NS operator has integral ve
tor R-
harge that mat
hes modulo 2 to the statisti
s.(The axial R-
harges are not ne
essarily integral unless the Calabi-Yau 
ondition det 
 = 1is met.) In order to preserve this integrality, we require the R-
harge of the even (resp.odd) Chan-Paton ve
tor to be even (resp. odd) integer.2.4 Landau-Ginzburg Models: Matrix Fa
torizationsLet us 
onsider the (2; 2) supersymmetri
 Landau-Ginzburg model of N variablesX1; :::; XN with a polynomial superpotential W (X) = W (X1; :::; XN). The Lagrangiandensity is given byL = Z NXi=1 XiXi d4� + � i2 Z W (X) d2� + 
:
:� + total derivative= NXi=1  j�txij2 � j�sxij2 + i i�( ���!t + ���!s) i� + i i+( ���!t � ���!s) i+ � 14 �����W (x)�xi ����2!+ � i2 NXi;j=1 i+ j��2W (x)�xi�xj + 
:
! ; (2.62)where the auxiliary �eld is eliminated in the se
ond equality. We would like to formulatethis theory on the worldsheet S with boundary, and �nd boundary intera
tions thatrespe
t the N = 2B supersymmetryÆxi = � i; Æ i� = �i�(�0 � �1)xi � i2��W (x)�xi : (2.63)With the addition of the standard boundary termL(0)bdry = "� i2 NXi=1 ( i+ i� +  i+ i�)#�S ; (2.64)29



the bulk a
tion varies asÆ �ZSL d2s+ Z�SL(0)bdrydt � = �Re Z�S NXi=1 �� i�W (x)�xi � dt: (2.65)This is known as the \Warner term" after [32℄. (See [9℄ for a simple super�eld derivation.)The main task is to 
an
el the Warner term (2.65) by adding a suitable boundaryterm to the a
tion [10, 33℄. Let us try our friendAt = �12 NXi=1  i ��xiQ(x) + 12 NXi=1  i ��xiQ(x)y + 12fQ(x); Q(x)yg; (2.66)where Q(x) is an odd operator on a Z2-graded ve
tor spa
e V whi
h depends holomor-phi
ally on x. Its N = 2B variation, 
omputed in (2.29), readsÆAt = �Re( NXi=1 �� i ��xiQ2�� [�Qy; Q2℄)+ iDt��Q+ �Qy�� i�_�Q+ _�Qy�: (2.67)The �rst term 
an
els the Warner term (2.65) provided that Q satis�es1Q2 = W � idV: (2.68)The remaining terms in (2.67) are as in non-linear sigma models: The se
ond term, whereDtX = _X + i[At; X℄, leads to a total derivative when inserted between the Wilson linesP exp ��i R�SAtdt� with the right time-ordering. The third term shows that Q and Qyenter into the N = 2B super
harges Q and Qy. For the open string stret
hed between(V1; Q1) and (V2; Q2), the super
harge Q is expressed as the sum Qbulk +Qbdry whereQbulk = Z L0 ds NXi=1 � i�txi + e i�sxi + e i�W�xi �Qbdry = �iQ2���s=L+ iQ1���s=0:The 
anoni
al 
ommutation relation yields the supersymmetry relation Q2 = 0; Q2bulkgives a boundary term W jL �W j0 that is 
an
ed by Q2bdry as a 
onsequen
e of (2.68).An odd holomorphi
 operator Q(x) of a Z2-graded ve
tor spa
e V = Vev�Vod 
an berepresented by a holomorphi
 matrix of the formQ(x) =  0 f(x)g(x) 0 ! :1Q2 = (W + 
) � idV for some 
onstant 
 is also allowed. However, sin
e we will 
onsider branes withR-symmetry, whi
h require 
 = 0, we restri
t our attention to those with 
 = 0.30



It satis�es the 
ondition (2.68) if and only if the even and the odd parts of V have thesame rank, say r, and f(x)g(x) = g(x)f(x) = W (x)1r: (2.69)Su
h a matrix Q, or a pair of matri
es (f; g), is 
alled a matrix fa
torization of W .Let us brie
y 
omment on the relation of this to the ta
hyon T in N = 1 Landau-Ginzburg model with the real superpotential h(x). By 
omparison of the potential andYukawa-type terms, we see that the N = (2; 2) Landau-Ginzburg model with superpo-tential W is equal to the N = (1; 1) Landau-Ginzburg model with h = W2 + W2 = Re(W ).The variation (2.65) is of 
ourse the same as (2.17) as far as the N = 1 part is 
on
erned.We have seen that the system is N = 1 supersymmetri
 with the additional boundaryterm (2.18), �L(0)bdry = � �12W + 12W��S : (2.70)Also, the boundary intera
tion of the form (2.13) is N = 1 invariant by itself for anyta
hyon pro�le T(x). If we in
lude it with T = iQ(x) � iQ(x)y, we obtain pre
isely theabove system (2.66) provided Q(x) obeys (2.68). Indeed the intera
tion (2.13) in
ludesextra terms �12Q2� 12Qy2 
ompared to (2.66) but those are 
an
elled by the term ��L(0)bdryfrom (2.70) provided Q2 =W � id.Chiral Se
torThe spa
e of 
hiral ring elements for a pair of branes B1 = (V1; Q1) and B2 = (V2; Q2)
an be studied, as before, by the zero mode approximation where the super
harge iQ a
tson the spa
e 
0;�(CN ; Hom(V1;V2)) as a Dolbeault-like operator ��+Q2�� (�1)j�j�Q1.Sin
e any �-
losed form of positive degree is �-exa
t on CN , one 
an further trun
ateto the subspa
e 
onsisting of holomorphi
 fun
tions of CN with values in Hom(V1;V2).Thus, we have a relation similar to (2.50). In this paper, as we will explain momen-tarily, we 
onsider matrix fa
torizations that are polynomials of x1; ::; xN . Then, one
an further trun
ate to the spa
e of polynomial fun
tions of x1; :::; xN with values inHom(V1;V2). In this situation, it turns out to be 
onvenient to use algebrai
 terminol-ogy asso
iated with the polynomial ring R = C[x1; :::; xN ℄. For ea
h Z2-graded Chan-Paton spa
e V = Vev � Vod we introdu
e the Z2-graded R-module M = V 
C R =M ev � Mod. The spa
e of polynomial fun
tions with values in Hom(V1; V2) is equalto the spa
e HomR(M1;M2) of homomorphisms of the R-module M1 to the R-moduleM2. It is of 
ourse Z2-graded, HomevR (M1;M2) = HomR(M ev1 ;M ev2 ) � HomR(Mod1 ;Mod2 )and HomodR (M1;M2) = HomR(M ev1 ;Mod2 )�HomR(M ev1 ;Mod2 ). The relation analogous to31



(2.50) 
an be written asHp(B1;B2) �= HpQpol (Hom�R(M1;M2)) p = ev=od; (2.71)where Qpol is given by iQpol� = Q2�� (�1)j�j�Q1:There is an alternative way to des
ribe these 
ohomology groups. Let us introdu
e anin�nite sequen
e of maps whi
h is 2-periodi
CQ : � � � f�!M ev g�!Mod f�!M ev g�!Mod f�! � � � (2.72)Over the ring B = C[x1; : : : ; xN ℄=(W ), where any multiple of W is regarded zero, this isa 
omplex of B-modules due to the matrix fa
torization 
ondition f � g = g � f = W id. Infa
t it is exa
t everywhere. (We will show this later in Se
tion 10.3 where we will revisitsu
h in�nite 
omplexes.) Su
h a 
omplex is 
alled a totally a
y
li
 
omplex of B-modules.Then, the spa
e of 
hiral ring elements for a pair of branes is isomorphi
 to the spa
e of
o
hain maps from CQ1 to CQ2 modulo homotopies,Hp(B1;B2) �= HomHo(CQ1 ; CQ1[p℄) for p = ev=od; (2.73)where C[ev℄ is C itself while C[od℄ is the 
omplex C shifted by one with Q repla
ed by �Q.R-SymmetryIf the superpotentialW (x1; :::; xN) is quasi-homogeneous of degree (d1; :::; dN), su
h asthe Fermat polynomialW = xd11 + � � �+xdNN , the bulk theory has ve
tor U(1) R-symmetrywhere xi has R-
harge 2=di:W (�2=d1x1; :::; �2=dNxN ) = �2W (x1; :::; xN): (2.74)The bulk LG model is believed to 
ow in the infra-red limit to a (2; 2) super
onformal�eld theory with 
entral 
harge 
̂ = PNi=1(1 � 2=di), where this R-symmetry be
omes apart of the super
onformal algebra. The R-
harges of NS-NS states are in general notintegral.This ve
tor R-symmetry is preserved by the D-brane (V; Q) if the matrix fa
torizationis quasi-homogeneous [34℄. Namely,R(�)Q(�2=d1x1; :::; �2=dNxN )R(�)�1 = �Q(x1; :::; xN ): (2.75)32



R(�) is a one parameter group of operators on V | it depends on � = ei� in su
h a waythat R(�1�2) = R(�1)R(�2). We do not require that it is invariant under � ! � + 2�,i.e., R(�) may 
ontain fra
tional powers of �. Noti
e that the 
ondition (2.75) requiresthat Q(x) must be a polynomial in x1; :::; xN .For two R-symmetri
 branes, (V1; Q1) with R1 and (V2; Q2) with R2, the R-symmetrya
ts on the open string states. In the holomorphi
 se
tor,2 the a
tion isR(�) : �(x1; :::; xN) 7�! R2(�)�(�2=d1x1; :::�2=dNxN )R1(�)�1: (2.76)It introdu
es a new grading in the spa
e of open string states. Note that a state ofde�nite R-degree is ne
essarily a polynomial. The R-degree is not in general integral. Inparti
ular, the R-grading and the Z2-grading 
an be 
ompletely independent.As an example, let us 
onsider the LG model of single variable X with superpotentialW = Xd. The bulk theory 
ows to a rational 
onformal �eld theory (RCFT) 
alled theA-type minimal model at level k = d�2. An obvious matrix fa
torization isW = xn �xd�n,that is, Qn(x) =  0 xnxd�n 0 ! : (2.77)If 1 � n � d � 1, this brane is believed to 
ow to the 
onformally invariant boundary
ondition in the minimal model known as the Cardy brane with L = (n � 1) (see forexample [35℄ for Cardy branes in RCFTs, [36, 37℄ for D-branes in (2; 2) minimal modelsand [38, 39℄ for relation to LG branes). It has the property (2.75) withRn(�) =  � 12�nd 00 �� 12+nd ! : (2.78)The n-dependen
e in the overall phase of Rn(�) is 
hosen so that it agrees with the R-symmetry of the infra-red �xed point [34, 40℄. Indeed, for the Qn1-Qn2 string, the spa
eof 
hiral ring elements is spanned by�evj (x) =  xj�n1�n22 00 xj+n1�n22 ! ; �odj (x) =  0 xn1+n22 �j�1�xd�n1+n22 �j�1 0 !(2.79)where j runs over jn1�n2j2 ; jn1�n2j2 +1; : : : ;min�n1+n22 � 1; d� n1+n22 � 1	. With the 
hoi
e(2.78), the R-
harges of these elements are 2jd for �evj and 1 � 2j+2d for �odj whi
h arethe right R-
harges for open string NS-states between the 
orresponding minimal modelbranes [37℄.2Somewhat loosely, we use the terms \lo
al operators" and \open string states" inter
hangeably. Notethat lo
al operators naturally 
orrespond to open string states in the NS se
tor and, if B-twist is possible,also to open string states in the Ramond se
tor. 33



2.4.1 Landau-Ginzburg OrbifoldThe Landau-Ginzburg model with quasi-homogeneous superpotential W (x) of degree(d1; :::; dN) has symmetry(x1; :::; xN) 7�! ( e2�i=d1x1; :::; e2�i=dNxN): (2.80)This generates the 
y
li
 group of order d = l:
:m:(d1; :::; dN), whi
h we 
all �0. Gaugingthis symmetry group, we obtain a Landau-Ginzburg orbifold theory. This orbifold theoryhas a 
harge integrality | the ve
tor R-
harges of NS-NS states are integers whose mod 2redu
tion mat
hes with the statisti
s of the 
orresponding operators. In parti
ular, thereis a one-to-one 
orresponden
e between R-R ground states and a
-primary operators.3A D-brane in this LG orbifold is spe
i�ed by the triple (V; Q; �) where (V; Q) is amatrix fa
torization and � is a representation of the group �0 su
h that�(!)�1Q(! � x)�(!) = Q(x); 8! 2 �0: (2.81)� determines the a
tion of the orbifold group on the Chan-Paton fa
tor in the theorybefore orbifolding, and the equation (2.81) means that the ta
hyon pro�le is invariantunder that orbifold group a
tion. For the brane pair (V1; Q1; �1), (V2; Q2; �2), the openstring states in the orbifold theory are �0-invariant states. In the polynomial se
tor, the
ondition of �0-invarian
e is �2(!)�1�(! � x)�1(!) = �(x): (2.82)Sin
e the bulk theory has ve
tor R-symmetry with integrality, we would like the branes torespe
t that as well [34, 41℄. Namely, we would like that the branes are quasihomogeneous,that is, equation (2.75) is satis�ed, and that the R-grading in the NS se
tor is integral andredu
es modulo 2 to the original Z2-grading. The R-symmetry a
tion (2.76) preserves the�0-invarian
e 
ondition when R(�)�(!) = 
�;!�(!)R(�) for a brane independent s
alar
�;!. As in the 
ase of orbifolds of non-linear sigma models, one 
an show 
�;! = 1. Thus,we require R(�)�(!) = �(!)R(�): (2.83)The 
harge integrality requires thatR2( e�i)�( e 2�id1 x1; :::; e 2�idN xN)R1( e�i)�1 = (�1)j�j�(x1; :::; xN):3If the degrees obey the \Calabi-Yau 
ondition" 1=d1 + � � �+ 1=dN = 1, then the axial R-
harges arealso integral and there is a spe
tral 
ow between R-R ground states and 

-primary operators.34



Using the orbifold invarian
e (2.82), this is equivalent toR2( e�i)�2( e 2�id )�(x)�1( e 2�id )�1R1( e�i)�1 = (�1)j�j�(x); (2.84)where ! = e 2�id is the generator (2.80) of �0. Let �1 and �2 be the Z2-grading operatorson V1 and V2, a
ting as 1 on even elements and �1 on odd elements. Then, we have(�1)j�j� = �2���11 . Thus the integrality 
ondition (2.84) is satis�ed if Ri( e�i)�i( e 2�id ) =
 � �i for i = 1; 2 for some 
ommon 
onstant 
. We simply 
hoose 
 = 1. Thus, we restri
tour attention to branes (V; Q; �) with R-symmetry R that obeysR( e�i)�( e 2�id ) = �V; (2.85)where �V is the Z2-grading operator on V. As in non-linear sigma models, there is anambiguity R(�) ! �2R(�) that does not 
hange the physi
al property of the brane but
hanges the R-grading. We again 
all the brane with this additional data (V; Q; �; R) agraded D-brane. By the 
ondition (2.85), a graded D-brane in the theory with the orbifoldgroup �0 is spe
i�ed simply by (V; Q;R) su
h that R( e�i)�V obeys (R( e�i)�V)d = 1. Forthis reason, in some literature, su
h as [5℄, only the R-symmetry a
tion is used to spe
ifya data for a graded D-brane in this 
lass of LG orbifolds.The superpotentialW may have a larger symmetry group � by whi
h we 
an de�ne theorbifold theory. As long as � in
ludes �0, the 
losed string se
tor has a 
harge integrality,and we require that it is extended to the boundary or open string se
tor. The requirementis just like (2.85), R( e�i)�(!�1) = �V , where !�1 is the element of � that a
ts on xi inthe same way as the R-symmetry a
tion for � = e�i. Su
h an element exists in � sin
e itin
ludes �0 by assumption.Re
knagel-S
homerus BranesAs examples, let us 
onsider tensor produ
ts of minimal model branes (2.77) in themodel with Fermat type superpotential W = Xd11 + � � �+XdNN . They are known as RS-branes after Re
knagel and S
homerus who �rst studied these branes in the framework ofRCFT [42℄. They are most 
onveniently des
ribed in terms of the Cli�ord algebraf�i; �jg = Æi;j; f�i; �jg = f�i; �jg = 0: (2.86)The latter is represented on the 2N -dimensional spa
e VN (the Cli�ord module), whi
h isgenerated by a ve
tor j0i annihilated by all �i's. There are two Z2-gradings on VN : the35



�rst is su
h that even and odd multiples of �i's on j0i are even and odd, and the se
ondis the opposite one. The sum of minimal model branes is written asQL = NXi=1 �xLi+1i �i + xdi�Li�1i �i� : (2.87)This is invariant under the orbifold group �0 �= Zd as well as the R-symmetry, with thetransformations �i ! !�Li�1�i and �i ! �1� 2(Li+1)di �i (with 
onjugate a
tion on �i's).The representations of the orbifold and R-symmetry groups on the Chan-Paton spa
e arespe
i�ed by the a
tion on the ve
tor j0i| a
tion on other ve
tors are determined by thetransformations of the �i's. The orbifold representation is labeled by a mod d integer �q:��q(!) : j0i 7! !�qj0i:The 
ondition of integrality (2.85) requires that the R-
harge Rj0i of the state j0i mustbe of the form Rj0i = �2qd + rwhere q is an integer representing �q mod d, while r is an even integer for the �rst Z2-gradingand an odd interger for the se
ond one. We shall denote the D-brane that 
orresponds tothe above data by BL;q;r. The label is a little redundant: obviously (L; q; r)! (L; q+d; r+2) does not 
hange the brane. Also, the ex
hange xLi+1i $ xdi�L�1i is 
ompensated by theex
hange �i $ �i, and this leads to the identi�
ation of branes under Li ! di � Li � 1(for one i), q ! q � d(Li+1)di , r ! r � 1. The translation to the standard notation forthe RS-branes BL;M;S (see e.g. [43℄) is 2q = M +PNi=1 d(Li+1)di = PNi=1 d(Mi+Li+1)di (mod2d) and 2r = S (mod 4) up to an overall shift. Matrix fa
torization realizations of thesebranes were �rst dis
ussed in [43, 44℄.These branes are inde
omposable ex
ept for the 
ase where there are two or more i'swith Li + 1 = di2 (whi
h ne
essarily requires that di is even for su
h i). In the latter
ase, it splits into a sum of inde
omposable ones known as short orbit branes bB(�)L;q;r. Forexample, if there are exa
tly two or three su
h i's the RS-brane BL;q;r splits into two:BL;q;r �= bB(+)L;q;r � bB(�)L;q;r: (2.88)To de�ne short orbit branes, we denote by S the set of i's su
h that Li + 1 = di2 and
onsider Q =Xi2S x di2i �i +Xj 62S�xLj+1j �j + xdj�Lj�1j �j�; (2.89)where �i are real Cli�ord generatorsf�i; �jg = 2Æi;j; f�i; �kg = f�i; �kg = 0:36



If the number of elements jSj is odd, we introdu
e one extra real Cli�ord generator �0. We
hoose an orientation in the spa
e of �i's. We then introdu
e 
omplex generators �i1j1 =12(�i1 + i�j1),..., �isjs = 12(�is + i�js), and their 
omplex 
onjugates �i1j1 = 12(�i1 � i�j1),...,�isjs = 12(�is � i�js), where (�i1; �j1; :::; �is; �js) is positively oriented. They form a 
omplexCli�ord algebra together with �j and �j. The expression (2.89) then be
omes a matrixfa
torization on the Cli�ord module. As before we denote the element annihilated by all�ij and �k by j0i. De�ning the label (q; r) in the same way as the RS-branes, we have abrane in the LG orbifold whi
h we denote by bB(+)L;q;r. One 
an see that it depends only onthe orientation of �i's. The key point is that �i is invariant under the R-symmetry andtransforms as �i ! ��i under the orbifold group generator (xdi=2i already has R-
harge1 and transforms by sign under the orbifold generator). The one asso
iated with theopposite orientation is denoted as bB(�)L;q;r. Thus, (+) versus (�) is de�ned with respe
t tothe orientation of �i's. Using the key point again, we �nd the relation bB(�)L;q;r �= bB(+)L;q+ d2 ;r+1.If jSj is odd, the (+) and (�) branes are isomorphi
 and we shall simply write bBL;q;rfor bB(+)L;q;r �= bB(�)L;q;r. For the 
ase jSj = 1, it is the same as the standard RS-brane,bBL;q;r �= BL;q;r. A matrix fa
torization realization of short orbit branes, whi
h is equivalentto the above, was �rst noti
ed in [45℄ based on the analysis of R-R 
harge. A derivationfrom the short orbit branes in minimal models will be given in Se
tion 3.4.The Fermat potential Xd11 + � � �+XdNN has a larger symmetry group Zd1 � � � � � ZdNand the brane QL is invariant under all the elements of that group. If we take the orbifoldgroup � to be larger than �0 �= Zd, then we need more labels to spe
ify the orbifold a
tionon the Chan-Paton fa
tor. For example, we may use ~q = (q1; :::; qN) with�~q(!) = !�q11 � � �!�qNN on j0i;for the orbifold element ! whi
h maps xi 7! !ixi. The translation to the standard notationis then 2qi =Mi + Li + 1 (again up to a universal shift).3 Renormalization Group FlowsGiven a D-brane realized as a boundary Lagrangian, we are interested in how it behavesat low energies, or equivalently, at long distan
es on the worldsheet. In this se
tion, wedis
uss two 
lasses of operations on D-branes that do not 
hange the low energy behaviour:boundary D-term deformations and brane-antibrane annihilation. We shall 
all them D-isomorphisms. Our main interest in this paper is the entire set of all possible D-branesup to D-isomorphisms. We start our dis
ussion with D-branes in non-linear sigma models37



as des
ribed in Se
tion 2.2. We show, in parti
ular, that D-isomorphisms of D-branes arenothing else but quasi-isomorphisms of 
omplexes. The argument is appli
able to a moregeneral 
lass of theories in
luding those dis
ussed in other parts of Se
tion 2 as well asthose for linear sigma models that we will study later in this paper. As an example, wedis
uss Landau-Ginzburg models in Se
tion 3.3.Subsequently, in Se
tion 3.4, we study the e�e
t on D-branes of bulk RG 
ows asso-
iated with integrating out �elds with F-term masses.We end with Se
tion 3.5 where we dis
uss parallel transport of B-type D-branes overmarginal K�ahler deformations of the bulk theory.3.1 D-Term Deformations And Brane-Antibrane AnnihilationIn N = 2 supersymmetri
 systems, there are two kinds of invariant Lagrangians |D-terms and F-terms. In terms of superspa
e integrals these are respe
tively of the formR V d�d� and R Wd� where � and � are fermioni
 
oordinates of the N = 2 superspa
e,V is any super�eld and W is any 
hiral super�eld. For N = 2B supersymmetri
 D-banes(E;A;Q) on a K�ahler manifold X, the 
hoi
e of a �bre metri
 of E de�nes the D-termand the 
hoi
e of 
omplex stru
ture of E together with the holomorphi
 part Q of theta
hyon determines the F-term. In other words, the F-term is �xed when the 
omplex ofholomorphi
 ve
tor bundles C = C(E ; Q) is �xed and then the D-term is �xed when the�bre metri
 of ea
h bundle (and therefore the hermitian 
onne
tion) is �xed. This 
anbe seen expli
itily when the brane is realized using fermioni
 boundary 
hiral super�elds[9℄. As in the bulk theory (for example, with 4d N = 1 or 2d (2; 2) supersymmetry) thereis a non-renormalization theorem: the F-term does not 
hange under the renormalizationgroup 
ow. On the other hand, the D-term does get renormalized and adjust itself to aunique form in the deep infra-red limit. For this reason, one 
an say that deformations ofthe D-term do not a�e
t the low energy behaviour and it is the F-term whi
h uniquelydetermines the infra-red �xed point.Let us expli
itly see how deformations of the �bre metri
 
orrespond to D-term defor-mations. For a brane (E;A;T), we 
hoose some lo
al unitary frame feag and lo
al holo-morphi
 frame f"ag of E, whi
h are related by, say "a = ebHba. The �bre metri
 of E isrepresented with respe
t to the holomorphi
 frame by h("a; "b) =P
(H
a)�H
b = (HyH)�ab.Let Q be the matrix expression of the holomorphi
 part Q of the ta
hyon with respe
tto the holomorphi
 frame. With respe
t to the unitary frame, the 
onne
tion and the38



ta
hyon is expressed asiA = Hy�1�Hy � �HH�1; Q = HQH�1; Qy = Hy�1QyHy:Sin
e we are going to deform the �bre metri
 for a �xed holomorphi
 stru
ture (E ;Q), itis more 
onvenient to use the holomorphi
 frame. The expression readsiA = h�1�h; Q = Q; Qy = h�1Qyh:Let us now deform the �bre metri
 h ! h + Æh = h(1 + �) and see how the boundaryintera
tion (2.28) 
hanges. By a straightforward 
omputation, we �ndÆAt = Dt(�i�)� 12QyQ� (3.1)where iQ� =  {�{� + [Q; �℄; iQy� =  iDi�� fQy; �g: (3.2)Up to a total 
ovariant derivative, it is indeed a D-term QyQ(�). This exer
ise lets usnoti
e that D-term deformations are not limited to deformations of the �bre metri
. Anydeformation of the form QyQ� (3.3)is a D-term deformation. If � is a fun
tion of x only, it is equivalent up to total 
ovariantderivative to a deformation of the �bre metri
, as we have just seen. However, we 
an takea more general � su
h as a matrix that depends also on bulk fermions. This generalizationwill play an important rôle later on.Let us next dis
uss brane-antibrane annihilation. Ashoke Sen proposed in [46℄ thatin a system of an equal number of 
oin
ident branes and antibranes in Type I or TypeII string theory, the 
lassi
al minimum of the ta
hyon potential has zero energy and
an be identi�ed with the supersymmetri
 va
uum state 
orresponding to the spa
etimewithout branes. What is relevant for us is a version of his 
onje
ture des
ribed in termsof renormalization group 
ow of the worldsheet quantum �eld theory. See, for example,[47, 48℄ for works in this dire
tion. The idea is very simple. Let us look at the boundaryintera
tion (2.13) or (2.14). It in
ludes the boundary potential termU(x) = 12T(x)2 (3.4)for a hermitian ta
hyon pro�le T(x). It is natural to expe
t that, at low energies, x wouldlike to be near the minimum of this potential. In fa
t only the zeromatters: The dynami
s
on
entrates at the lo
us where T(x) has zero eigenvalues. A blo
k of T(x) that has non-zero eigenvalues everywhere \
an be ignored" in the low energy dynami
s. These 
laims39



are understood as follows. If detT(x) is nowhere vanishing, the potential U(x) is stri
tlypositive everywhere on the target spa
e. In su
h a 
ase, the Eu
lidean path-integralweight, P exp �� R�SU(x)phd��, vanishes as the worldsheet metri
 h is sent to in�nity.As a 
onsequen
e, the partition fun
tion and all (unnormalized) 
orrelation fun
tionsvanish in the infra-red limit. In other words, the renormalization group sends T(x) toin�nity. From the spa
etime point of view, this is interpreted to mean that the minimumof the ta
hyon potential is lo
ated at in�nity. If there is no topologi
al obstru
tion, ata
hyon 
on�guration stabilizes at the va
uum T ! 1. If T(x) is of blo
k-diagonalform, diag(T0(x);T1(x); :::), and one of the blo
ks, say T0(x), is everywhere invertible,that part of the potential blows up and the 
orresponding weight vanishes in the infra-redlimit: P exp�� Z�SU(x)phd�� = 0B� P e� R U0(x)phd� 0 00 P e� R U1(x)phd� 00 0 . . . 1CA�! 0B� 0 0 00 P e� R U1(x)phd� 00 0 . . . 1CA :As a result the partition fun
tion and all 
orrelation fun
tions re
eive 
ontributions onlyfrom the remaining blo
ks. In this sense a blo
k with stri
tly positive boundary potential
an be ignored in the infra-red limit. Namely, the full theory is infra-red equivalent tothe theory without su
h a blo
k. Let us des
ribe the 
ondition of postitivity T2 > 0 inthe N = 2 supersymmetri
 system, where the ta
hyon is expressed as T = iQ � iQy.Positivity of T2 = fQ;Qyg is equivalent to KerQ \KerQy = f0g. Sin
e KerQy = (ImQ)?and ImQ � KerQ, it simply means that KerQ = ImQ. Namely, invertibility of T(x) atevery point x is equivalent to the statement that the 
omplex C(E ; Q) is exa
t. Thus, theD-brane 
orresponding to an exa
t 
omplex 
an be ignored in the infra-red limit. Re
allthat an exa
t 
omplex is quasi-isomorphi
 to the zero 
omplex in the derived 
ategory.Later in this subse
tion, we will understand the relation of quasi-isomorphism and brane-antibrane annihilation in more generality.The operation of brane-antibrane annihilation is analogous to integrating out massive�elds in the bulk theory. In the bulk, if there is a �eld of mass m it is appropriate tointegrate it out in the e�e
tive theory at energies below m. Similarly, in the boundarytheory, if there is a blo
k in the Chan-Paton fa
tor with everywhere invertible T0, it isappropriate to \eliminate" that fa
tor at energies below � jT20j. In the bulk, we knowthat integrating out a massive �eld may indu
e a new term in the superpotential when it40



is intera
ting with other �elds. For example, 
onsider a Landau-Ginzburg model of twovariables X and Y with the superpotentialW = Xn +X2Y + m2 Y 2: (3.5)Y has a mass m but it is intera
ting with X via the term X2Y . At energies below m it isappropriate to integrate out the �eld Y . This is done simply by solving the equation ofmotion for Y and plugging the result ba
k in, or equivalently, by 
ompleting the squarefor Y and eliminating the square [49℄. In any 
ase, the out
ome isWlow = Xn � 12mX4: (3.6)A term � 12mX4 has emerged in this pro
ess.Likewise, the brane-antibrane annihilation may produ
e a non-trivial e�e
t, when theeliminated se
tor is intera
ting with the rest of the system. Suppose there is a blo
k inthe Chan-Paton fa
tor with everywhere invertible T0:T = 0B� T0 �� T0 1CAThis blo
k is intera
ting with the other se
tor if the o�-diagonal parts, denoted by aster-isks, are non-zero. We may 
onsider erasing the o�-diagonal parts by the standard linearalgebra operation | addition/subtra
tion of raws and 
olumns in
luding the maximalrank T0. If that is possible and if that is done, then the T0(x) blo
k is de
oupled fromthe rest and 
an be ignored. But this may have indu
ed new terms in the remaining part,thus shifting T0. This operation is analogous to the pro
ess of 
ompleting the square inthe bulk theory. This is exa
tly what we will often do in this paper. For illustration, letus 
onsider the boundary intera
tion given by the following 
omplex:
aj�2- E j�1 aj�1 -������3
j�1 F j�E j

bj -QQQQQQsm������3
j -aj
F j+1�E j+1

bj+1 -������3
j+1 F j+2 bj+2-
(3.7)where F j m�! E j+1 is an isomorphism of ve
tor bundles, that is, there is an inversem�1 : E j+1 �! F j:41



This invertible part is the analog of the massive �eld Y in the bulk theory and we wouldlike to eliminate it. This se
tor is intera
ting with the rest of the system via the terms
j�1, bj aj, and 
j+1. Let us order the even and odd ve
tor bundles (assuming j is even)as Eev = F j � E j � F j+2 � � � � ; Eod = E j+1 �F j+1 � E j�1 � � � �Then, the operator Q for the above 
omplex is written asQ =  0 fg 0 !where g = 0BBBBBB� m aj 0 0 � � �bj 
j 0 0 � � �0 0 0 � � � �0 0 �... ... ...
1CCCCCCA ; f = 0BBBBBB� 0 0 
j�1 0 � � �0 0 aj�1 0 � � �
j+1 bj+1 0 0 � � �0 0 0... ... ...

1CCCCCCA :
We wish to erase the o�-diagonal terms by moving around the invertible map m. Thefollowing does the job for g:
g �! 0BBBB� 1 0�bjm�1 1 . . . 1

1CCCCA g0BBBB� 1 �m�1aj0 1 . . . 1
1CCCCA = 0BBBBBB� m 0 0 0 � � �0 
j � bjm�1aj 0 0 � � �0 0 0 � � � �0 0 �... ... ...

1CCCCCCA :
Note that the map 
j is modi�ed by �bjm�1aj. For f , the same basis 
hange works aswell,

f �! 0BBBB� 1 m�1aj0 1 . . . 1
1CCCCA f 0BBBB� 1 0bjm�1 1 . . . 1

1CCCCA = 0BBBBBB� 0 0 0 0 � � �0 0 aj�1 0 � � �0 bj+1 0 0 � � �0 0 0... ... ...
1CCCCCCA :

The two o�-diagonal entries are erased, thanks to the equations m
j�1 + ajaj�1 = 0 and
j+1m + bj+1bj = 0 that are part of the 
ondition that (3.7) is a 
omplex. Changingthe �bre metri
 so that the new frame is orthogonal, whi
h is a D-term deformation, these
tor F j m�! E j+1 is de
oupled from the rest and thus 
an be ignored. The remaining42



part is, however, not the one obtained by just ignoring all the maps involving F j andE j+1. The original intera
tion between the two se
tors has a non-trivial e�e
t: A zigzagmap, �bjm�1aj, is added to 
j. This is the analog of the new term �X4=2m in (3.6) thatresults from integrating out Y . To 
on
lude, the boundary theory based on the 
omplex(3.7) is equivalent up to D-term deformations and brane-antibrane annihilation, and inparti
ular infra-red equivalent, to the brane based on the 
omplexaj�2- E j�1 aj�1 - E j 
j�bjm�1aj- F j+1 bj+1 - F j+2 bj+2-(3.8)Note that, without the modi�
ation 
j ! 
j � bjm�1aj, this (3.8) is not even a 
omplexin general. In fa
t the new 
omplex (3.8) is quasi-isomorphi
 to the original one (3.7).Now, let us turn to the general relation of quasi-isomorphisms to D-term deformationsand brane-antibrane annihilation. We start with introdu
ing the 
one 
onstru
tion.3.1.1 Binding D-Branes: Cone Constru
tionCone is an operation whi
h \binds" two D-branes together using a 
hiral ring element.Let us 
hoose two D-branes (E ; QE) and (F ; QF ). Let ' : E ! F be a degree zerobundle map obeying QF' � 'QE = 0, or equivalently, a 
o
hain map ' : CE ! CF ofthe asso
iated 
omplexes. Then, one 
an 
onstru
t a new brane, 
alled the 
one of ',whi
h is denoted by C(') = C(' : CE ! CF ). It is based on the graded ve
tor bundleEC(') = E [1℄� F , and the holomorphi
 part of the ta
hyon is given byQC(') =  �QE 0' QF ! : (3.9)The asso
iated 
omplex, the 
one 
omplex, looks like this:� � � ! E j �! E j+1 �! E j+2 �! E j+3 ! � � �& � & � & � & � &� � � ! F j�1 �! F j �! F j+1 �! F j+2 ! � � � : (3.10)The horizontal arrows on the �rst line are �QE , the southeast arrows are ', and thehorizontal arrows on the se
ond line are QF . A very important fa
t is:If ' is a quasi-isomorphism, the 
one 
omplex is exa
t. Let us provide a proof of thisstatment sin
e it plays an important rôle in our paper. Suppose (ej+1; f j) is in the kernelof the 
one 
omplex (3.10) at degree j,QEej+1 = 0; 'ej+1 +QFf j = 0:43



The �rst equation means that ej+1 represents an element of the 
ohomology 
lass of CE,and by the se
ond equation we see that the 
ohomology 
lass [ej+1℄ is mapped by '� tothe zero element of the 
ohomology of CF . By the fa
t that ' is a quasi-isomorphism,this means that the 
lass [ej+1℄ is zero, namely, ej+1 
an be written as �QEej1 for someelement ej1 of E j. Using the se
ond equation again, we �nd �'QEej1 + QFf j = 0. Sin
e' is a 
o
hain map, 'QE = QF', this means that QF (f j � 'ej1) = 0 and therefore wehave a 
ohomology 
lass [f j � 'ej1℄ of CF at degree j. Again using the fa
t that ' is aquasi-isomorphism, this 
lass 
an be written as '�[ej2℄ for some element ej2 2 E j that obeysQEej2 = 0. In other words, [f j � '(ej1 + ej2)℄ = 0. Thus, f j � '(ej1 + ej2) 
an be written asQFf j�1 for some element f j�1 of F j�1. Writing ej = ej1 + ej2, we �ndej+1 = �QEej; f j = 'ej +QFf j�1:Namely, (ej+1; f j) is in the image of the 
omplex (3.10) at degree j. This proves that the
one 
omplex is exa
t. The 
onverse, ' is a quasi-isomorphism if its 
one is exa
t, alsoholds and 
an be proved easily.We have already seen an example of this fa
t. Re
all that a 
o
hain map (2.61) 
anbe obtained by breaking a 
omplex (2.60). Its 
one is the original 
omplex itself, (2.60),and it is exa
t if and only if the map (2.61) is a quasi-isomorphism.3.1.2 D-Isomorphisms Versus Quasi-IsomorphismsWe 
laim that two quasi-isomorphi
 branes are related by a 
hain of D-term deforma-tions and brane-antibrane annihilation. Let A and B be two D-branes and suppose thereis a quasi-isomorphism ' : CA ! CB between the 
orresponding 
omplexes. Let C be the
one of '. As we have seen, the 
one 
omplex is exa
t and hen
e 
an be ignored in theinfra-red limit. However, does this mean that A and B are equivalent at low energies?One possible way to show this is to use the following line of arguments:A �= A + (B +B)idB ?�= (A +B)' +B �= B; (3.11)where (B + B)idB is the brane-antibrane system with the ta
hyon idB turned on, and(A+B)' is the 
one C.1 The �rst and the last equivalen
e relations are asso
iated withbrane-antibrane annihilation| both (B+B)idB and of C = (A+B)' 
an be ignored in theinfra-red limit. But what about the equivalen
e in the middle? One may try to prove it by1To be very pre
ise C is the 
one of �' shifted by one to the right and reversing the sign of theta
hyon. Anyway the 
omplex for C is exa
t and thus C 
an be ignored in the IR limit.44




onsidering an alternative brane based on the graded ve
tor bundle eE = EA�EB[�1℄�EBwhere ' and idB are turned on at the same time:eQ = 0B� QA 0 0' �QB idB0 0 QB 1CA : (3.12)We wish to �nd two similarity transformations of eQ, one erasing ' and the other erasingidB. That would show that (eE; eQ) is related to both A + (B + B)idB and (A + B)' + Bby 
hanges of the �bre metri
. It is easy to �nd a transformation of the �rst type:0B� idA 0 00 idB 0' 0 idB 1CA0B� QA 0 0' �QB idB0 0 QB 1CA0B� idA 0 00 idB 0�' 0 idB 1CA = 0B� QA 0 00 �QB idB0 0 QB 1CA ;(3.13)where we have used QB' = 'QA to see that the lower left 
orner is zero. However,a transformation of the se
ond kind does not always exist. Let us try the similaritytransformation eQ!M eQM�1 of the following form,M = 0B� idA 0  0 idB q0 0 idB 1CA : (3.14)We �nd that it eliminates idB in (3.12) if and only if QB = QA ; (3.15)' = idB + qQB +QBq: (3.16)The �rst equation means that  : CB ! CA is a 
o
hain map, and the se
ond is the
ondition that ' and  are inverse to ea
h other at the level of the 
ohomology sheaves.This is a
tually a very spe
ial situation. For example, if 0 ! E ! F ! G ! 0 is anexa
t sequen
e, then there is a quasi-isomorphism of the type (2.61)CA : � � � ! 0 ! E ! F ! 0 ! � � �' # # # # #CB : � � � ! 0 ! 0 ! G ! 0 ! � � � (3.17)However, there is no inverse  from CB to CA satisfying the above 
ondition unless thesequen
e 0 ! E ! F ! G ! 0 is split-exa
t. We 
on
lude that (eE; eQ) is not in generalholomorphi
ally isomorphi
 to the de
oupled sum C +B.45



We have thus seen that the proof is not straightforward. It is this point where a moregeneral D-term deformation 
omes to the res
ue. Let us 
onsider a one parameter familyof theories given by Qs = 0B� QA 0 0' �QB s � idB0 0 QB 1CA : (3.18)At s = 0 the theory is the de
oupled sum of C and B. For any non-zero s 6= 0 thetheory is equivalent up to deformations of �bre metri
 to the de
oupled sum of A and(B + B)idB . We have seen that Qs with non-zero s, no matter how small it is, is not ingeneral related to Q0 by a 
hange of �bre metri
. A
tually, turning on s is a more generalD-term deformation. The variation of the boundary intera
tion is given by��sAt����s=0 = 12fQy0; �g = � i2Qy� (3.19)where � = 0B� 0 0 00 0 idB0 0 0 1CA =: 0B� 0 00 0 u0 0 0 1CA :Note that � anti
ommutes with Q0, or equivalently, u : EB ! EC satis�es QCu+uQB = 0.In parti
ular, u determines a 
hiral ring element for the open string fromB to C. However,sin
e the 
one 
omplex CC is exa
t, the spa
e of 
hiral ring elements is zero,Hp(B;C) �= HpQzero(H�zero(B;C)) �= HomD(CB; CC [p℄) = f0g:This in parti
ular means that u is Qzero-exa
t, that is, there is some di�erential form� 2 Hzero(B;C) = �ni=0
0;i(X;Hom�i(EB; EC)) su
h thatu = iQzero�: (3.20)Note that � is not ne
essarily a holomorphi
 zero-form; that would be the 
ase when Q0and Qs 6=0 are related by a similarity transformation. As remarked earlier, that is a veryspe
ial 
ase. The point is that, even if that fails, there is a di�erential form � with higherdegree 
omponents su
h that u = iQzero�.Let us digress for a moment to see how it works in the example (3.17) asso
iated with anon-split exa
t sequen
e 0! E ! F ! G ! 0. We suppose that the holomorphi
 bundlesE and G are realized as the smooth bundles with hermitian 
onne
tions, (E2; �A2) and(E1; �A1), and F is the extension by a non-zero element � 2 H0;1�A1;2 (X;Hom(E1:E2)). Were
all that F 
orresponds to the ve
tor bundle E1�E2 with the 
onne
tion �A1;2;� given in46



(2.56), and the maps E ! F and F ! G are e2 7! (0; e2) and (e1; e2) 7! e1. We would liketo �nd � = �0+�1, with �0 2 
0(X;Hom(E1; E1�E2)) and �1 2 
0;1(X;Hom(E1; E2)),su
h that u = iQzero�. Here, u is the identity map of E1 that sends G of B to therightmost G in the 
one C.C : - 0 - E2  0idE2!- E1 � E2 ( idE1 ; 0 )- E1 - 0 -�1QQk . . . . . . �06...... �����3u = idE1B : - 0 - 0 - E1 - 0 - 0 - (3.21)In fa
t, �0(e1) = (e1; 0) and �1(e1) = ��(e1) does the job:QC�0 = idE1 ;�A1;2;��0 � �0�A1 =  �A1� !� �A10 ! =  0� ! ;QC�1 =  0� ! ;�A2�1 � �1�A1 = 0:We indeed have �A(�) +QC� � �QB = idE1 . (End of digression.)Let us pla
e � into the 3 � 3 blo
k matrix, just as u �ts into �, and repla
e thedi�erential form dx{ by the fermion  {. We denote the resulting matrix by e�.e� := 0B� 0 00 0 �0 0 0 1CA�������dx{ !  { :Then u = iQzero� means � = iQe�. Thus, we �nd that the variation of the boundaryintera
tion is a D-term ��sAt����s=0 = 12QyQe�: (3.22)We have shown that turning on s is indeed a D-term deformation. On
e s is turned on, thesystem is equivalent to the de
oupled sum of A and (B+B)id. In this way, the middle partof (3.11) is shown to hold. This 
ompletes the proof that quasi-isomorphi
 D-branes arerelated by a 
hain of D-term deformations and brane-antibrane annihilation. In parti
ularwe proved that quasi-isomorphi
 branes 
ow to the same infra-red �xed point.47



Conversely, one 
an also show that D-branes that are related by D-isomorphisms arerelated by a 
hain of quasi-isomorphisms. Firstly, brane-antibrane annihilation is a trivialexample of a quasi-isomorphism. Se
ondly, D-term deformations do not 
hange the D-brane 
ategory in the 
hiral se
tor [50℄. On the other hand, the D-brane 
ategory in the
hiral se
tor is equivalent to the derived 
ategory, and two 
omplexes are isomorphi
 inthe derived 
ategory if and only if they are related by a 
hain of quasi-isomorphisms.Thus, two D-branes related by a D-term deformation are related by a 
hain of quasi-isomorphisms.To summarize, we have seen thatD-isomorphisms are equivalent to quasi-isomorphisms.When a B-twist to a topologi
al �eld theory is possible, our result 
an also be statedas follows: two D-branes are D-isomorphi
 if and only if they determine isomorphi
 D-branes in topologi
al �eld theory. Thus, in a �xed 
losed string ba
kground, our maintarget of study | D-branes up to D-isomorphisms | is nothing but the isomorphism
lass of obje
ts in the 
ategory of topologi
al D-branes. Nevertheless, we de
ide not touse the term \topologi
al D-branes" sin
e our ultimate motivation is to study the fullphysi
s of D-branes, rather than the property of D-branes in topologi
al �eld theory andtopologi
al strings. In parti
ular, we pay attention to the dependen
e of the boundaryRG 
ow on the bulk parameter 
orresponding to the 
omplexi�ed K�ahler 
lass, whereastopologi
al �eld/string theory is insensitive to su
h a dependen
e.The relevan
e of quasi-isomorphisms 
on
erning identi�
ation of D-branes was arguedin [6℄ employing the spa
etime pi
ture (
rossing symmetry). We have �nally managed to
larify their pre
ise relevan
e in the general 
ase from the worldsheet view point.3.2 Lower-Dimesional Branes As Complexes Of Ve
tor BundlesThe fa
t that a brane is infra-red empty in the region of x where T(x) is non-vanishingsuggests a way to represent a D-brane wrapped on a submanifold of X as a 
omplex ofve
tor bundles of the entire spa
e X [46, 51℄. For example, 
onsider a holomorphi
 linebundle L with a se
tion f . A D-brane wrapped on the zero lo
us of f , the divisor Df ,may be represented by the 
omplex L�1 f�! O;where O is at R-degree 0. In this paper, we do not attempt to 
onstru
t and analyzeworldsheet boundary 
onditions for B-type D-branes wrapped on submanifolds nor dowe show that the D-branes asso
iated with 
omplexes of ve
tor bundles are really D-isomorphi
 to su
h lower dimensional branes. Rather, we take the following indire
t48



route. For ea
h 
omplex submanifold there is a 
oherent sheaf supported on it, and wetake a 
omplex of ve
tor bundles that is quasi-isomorphi
 to that sheaf as the worldsheetde�nition of the D-brane wrapped on that submanifold. For example, the above 
omplexis indeed quasi-isomorphi
 to the 
oherent sheaf ODf supported on the divisor Df . To bepre
ise, a general D-brane 
an be represented as a 
omplex of 
oherent sheaves and it isknown that there exists a 
omplex of ve
tor bundles on X that is quasi-isomorphi
 to it(
f Se
tion 9). Thus, we still have a `de�nition' that applies to the most general D-brane.Consisten
y of this proposal is provided by our results of the previous subse
tion: aslong as 
omplexes of ve
tor bundles are 
on
erned, D-isomorphisms are nothing else butquasi-isomorphisms.As another example, and as the example that plays a key rôle in this paper, weintrodu
e a 
omplex that represents a point on X. For 
on
retness we 
onsider Eu
lideanspa
e X = Cn with 
oordinates x1; :::; xn and a D0-brane at the origin p = fx1 = � � � =xn = 0g. Let us re
all the Cli�ord algebra (2.86) for �i and �i and its representationVn, the Cli�ord module, generated by the ve
tor j0i that is annihilated by all �i's. We
onsider the brane with the Chan-Paton spa
e Vn and the ta
hyon pro�le given byQ(x) = nXi=1 xi�i: (3.23)This de�nes a sequen
e of linear maps of the subspa
es of Vn:C�1 � � ��nj0i Q�! � � � Q�!Mi<j C�i�jj0i Q�! nMi=1 C�ij0i Q�! Cj0isu
h that Q2 = 0. Namely, we have a 
omplex of trivial ve
tor bundles,K : O Q�! O�n Q�! O�(n2) ! � � � ! O�(n2) Q�! O�n Q�! O: (3.24)A 
omplex of the form (3.24) is 
alled a Koszul 
omplex. Note that the boundary potentialis fQ;Qyg =  nXi=1 jxij2! � idVn : (3.25)It vanishes pre
isely at the origin p, and therefore represents a D0-brane at the origin.Indeed, the ta
hyon pro�le T = iQ � iQy is nothing but the \Atiyah-Bott-Shapiro 
on-stru
tion for the D0-brane" [51℄ (see for eaxmple [9℄). In parti
ular, it has the properRamond-Ramond 
harge as well as the 
orre
t spa
e of 
hiral ring elements with otherbranes. 49



If we 
onsidered a theory in whi
h the point x = 0 is ex
ised in some way, then theboundary potential (3.25) would be nowhere vanishing, and hen
e the Koszul 
omplex Kmust represent a brane that is empty in the infra-red limit. In parti
ular, a brane 
an bemodi�ed by binding su
h K's without 
hanging its low energy behaviour. This operationwill be used frequently later in this paper.A Koszul 
omplex 
an also be used to 
onstru
t the fra
tional branes in an orbifoldtheory | D0-branes stu
k at the orbifold �xed points. We 
onsider the orbifold of theEu
lidean spa
e Cn by a �nite group � of linear transformations, � 3 
 : xi 7!Pnj=1 
ijxj.We would like to �nd a representation � of � on the Cli�ord module Vn su
h that thebrane (Vn; Q) obeys the invarian
e 
ondition�(
)�1 nXi;j=1 
ijxj�i! �(
) = nXj=1 xj�j;that is, �(
)�j�(
)�1 = Pni=1 �i
ij. In order to preserve the Cli�ord algebra relations,we �nd that the �i's must transform as �(
)�i�(
)�1 =Pnj=1(
�1)ij�j. If we de
ide thatj0i 2 Vn is a �-invariant ve
tor, we �nd that the ve
tors f�ij0ig transform as�(
) : �ij0i 7�! nXj=1 �jj0i(
�1)ij:Let R be the de�ning representation of �, that is, the spa
e Cn regarded as a represen-tation of �. The basis elements ei of R transforms under 
 2 � as ei 7! Pnj=1 ej
ji.Then, we �nd that the elements �ij0i transform in the same way as the dual basis to feig.Namely, the spa
e spanned by f�ij0ig 
an be identi�ed with R� as a representation of �.Similarly, the spa
e spanned by f�i1 � � � �ir j0ig 
an be identi�ed with ^rR�. Thus, we �ndthat the Koszul 
omplex 
an be regarded as the 
omplex of �-modules^n R� Q�! ^n�1R� ! � � � ! ^2R� Q�! R� Q�! C: (3.26)We may also 
onsider tensoring this with any representation � of �. We shall denote thebrane asso
iated with that 
omplex by Op(�). For an Abelian group, su
h as � �= Zd, weuse the additive notation Op(�m) = Op(m). For irredu
ible representations, these are thefra
tional branes stu
k at the orbifold point p. As a side remark and for later 
onvenien
e,we note that Op(^nR) 
an also be written asC Q�! R Q�! ^2R! � � � ! ^n�1R Q�! ^nR: (3.27)This is what we would dire
tly �nd if we span the Cli�ord module Vn by the even andodd multiples of the �i's on the state j0i0 that is annihilated by all �i's.50



3.3 The Landau-Ginzburg CaseWe next dis
uss D-isomorphisms in Landau-Ginzburg models. We re
all that theboundary intera
tion for a B-brane is given by the formula (2.66) for a matrix fa
torizationQ(x) of the superpotential W (x).D-term deformations in
lude deformations of the �bre metri
 of the Chan-Paton spa
e.In parti
ular, a similarity transformation by an even (or R-symmetry preserving) matrixQ(x)! U(x)�1Q(x)U(x) (3.28)is of this type. The D-brane is empty at low energies if and only if the potential U(x) =12fQ(x); Q(x)yg is positive de�nite for all x. For example, a matrix fa
torization of theform Q(x) =  0 1rW (x)1r 0 ! or  0 W (x)1r1r 0 ! (3.29)has a positive de�nite boundary potential, fQ(x); Q(x)yg = (1+jW (x)j2)idV > 0, and 
anbe ignored at low energies. In the 
ase where W (x) is a quasi-homegeneous polynomialand ea
h variable xi has a positive degree, any quasi-homogeneous matrix fa
torizationwith fQ(x); Q(x)yg > 0 is holomorphi
ally isomorphi
 to the dire
t sum of those of thetype (3.29).Let us prove the last statement. We take a matrix fa
torization of size 2r by 2r,Q(x) =  0 f(x)g(x) 0 ! :Suppose f(x) has rank s at x = 0. Then, with a 
hange of basis, that is, with a similaritytransformation (3.28), it 
an be written asf(0) =  1s 00 0 ! :If we move away from x = 0, polynomials appear in the entries of f(x) ex
ept at the �rsts diagonals where \1" are. This is be
ause ea
h entry must be quasi-homogeneous and1 is the only polynomial of degree zero. By standard linear algebra operations, one 
anerase all the entries in the same raws and 
olums as these 1's, and one may assume theform f(x) =  1s 00 A(x) ! :51



Then, f(x)g(x) = g(x)f(x) =W (x)1r shows that g(x) 
an be written asg(x) =  W (x)1s 00 B(x) ! ;where A(x)B(x) = B(x)A(x) = W (x)1r�s. The 
ondition fQ;Qyg > 0 at x = 0 requiresthat B(0)B(0)y > 0 and B(0)yB(0) > 0. Thus, again by raw and 
olumn operations, onemay assume B(x) = 1r�s whi
h in turn requires A(x) = W (x)1r�s. In this way, we haveseen that Q(x) is equivalent up to similarity transformations to the sum of (1;W )'s and(W; 1)'s; Q(x) �=  0 1sW (x)1s 0 !� 0 W (x)1r�s1r�s 0 ! : (3.30)This proves our 
laim.We have learned that \brane-antibrane annihilation" in a LG model means annihila-tion of (1;W )'s and (W; 1)'s. Using the same argument as in the non-linear sigma models,we 
an show that two D-branes are related by a 
hain of D-term deformations and brane-antibrane annihilations if there is a degree zero state whose 
one has positive potentialfQ;Qyg > 0. Two su
h D-branes 
ow to the same �xed point in the infra-red limit.3.4 Kn�orrer Periodi
itySo far, our fo
us was renormalization group 
ows of boundary intera
tions. However,bulk intera
tions generi
ally 
ow as well, and the interplay of bulk and boundary RG
ows is expe
ted to have some important 
onsequen
es. For re
ent works on this subje
tin systems with N = 2 supersymmetry, see [52℄ and referen
es therein. Here, we wouldlike to fo
us on the most primitive among bulk RG 
ows | integrating out massive �elds.As far as we know, this has not been 
onsidered in full detail in the literature.Let us 
onsider a Landau-Ginzburg model of n + 2 variables, X1; : : : ; Xn; U; V withsuperpotential of the form W = WL(X1; :::; Xn) + UV: (3.31)We see that the �elds U and V are massive and must be integrated out at an appropriateenergy s
ale. (We assume thatX1; :::; Xn are massless or have lower masses.) The questionis how the D-branes in the high energy theory in
luding the variables U and V are relatedto the ones in the low energy theory where U and V are gone. That is, what is the relationof matrix fa
torizations of WL(x) + uv and matrix fa
torizations of WL(x)? A similar52



question in a mathemati
al 
ontext is solved and is known as Kn�orrer periodi
ity [53℄,whi
h states that the 
ategory of matrix fa
torizations of WL(x) and that of WL(x) + uvare equivalent. We show below that this is indeed relevant to our question. Moreover, we
onstru
t an expli
it map of branes whi
h was not given in [53℄. This 
onstru
tion willplay a very important rôle later in this paper.Let us �rst 
onsider the opposite problem: Given a brane in the low energy theory,does it 
ome from a brane in the high energy theory? Namely, if QL(x) is a matrixfa
torization of WL(x), is there a matrix fa
torization Q(x; u; v) of WL(x) + uv su
h thatthe brane Q 
ows to the brane QL as U and V are integrated out? The answer is yes.An important rôle is played by a 
ertain brane of the theory of variables U and V only,and with superpotential W = UV . For our purpose it is 
onvenient to use its realizationin terms of boundary fermions �; � with boundary a
tionS1(�; U; V ) = Z�Sdt�i� _� � 12 jvj2 � 12 juj2 +Re� u� +  v��� ; (3.32)where  u and  v are the boundary values of the fermioni
 
omponents  =  + +  � ofU and V . Upon quantization, � and � obey the anti
ommutation relations f�; �g = 1,�2 = �2 = 0, whi
h is represented on the two dimensional ve
tor spa
e spanned by j0i and�j0i, where j0i is annihilated by �. With respe
t to that basis, � and � are representedby the matri
es � =  0 10 0 ! ; � =  0 01 0 ! ;and we �nd that the boundary intera
tion (3.32) is of the from (2.66), withQ = u� + v� =  0 uv 0 ! :There is a unique supersymmetri
 ground state in the Ramond se
tor of the open stringstret
hed between two 
opies of it. Sin
e the system has a �nite 
orrelation length, thisimplies that the system formulated on the half-spa
e also has a unique supersymmetri
ground state. (See Se
tion 6 for a more detailed reasoning and an expli
it 
ontru
tion.)Now, given a brane P exp ��i R�SALt dt� of the low energy theory, we 
onsider the followingbrane of the high energy theoryP exp��i Z�SALt dt� exp�iS1(�; U; V )�: (3.33)If we integrate out the �elds U; V and �, the fa
tor exp(iS1(U; V; �)) simply drops sin
ethe (U; V; �) system has a unique ground state of zero energy. As a result, we simply53



get ba
k the original brane of the low energy theory. Thus, (3.33) is the brane we werelooking for. One 
an write it in the form (2.66), withQ = QL + u� + v�:If QL is represented by a matrix QL =  0 f(x)g(x) 0 !with respe
t to a basis b0 = (e0; o0) of the original Chan-Paton spa
e, then Q is repre-sented by a matrix Q = 0BBBB� 0 f(x) 0 ug(x) 0 �u 00 �v 0 g(x)v 0 f(x) 0
1CCCCA (3.34)with respe
t to the basis b = (e0 
 j0i; o0 
 j0i; o0 
 �j0i; e0 
 �j0i) of the Chan-Patonspa
e of the brane (3.33). This map QL 7�! Q is indeed the fun
tor given in [53℄ thatmakes the equivalen
e of the two 
ategories.Now we 
ome to our main problem: Given a brane in the high energy theory, whathappens when U and V are integrated out? We already know the answer if the givenbrane is of the form (3.33): it is P exp ��i R ALt dt�. Note that this is not the same as justsetting u = v = 0 in the matrix fa
torization Q(x; u; v). If we simply did that, we wouldobtainQju=v=0 = 0BBBB� 0 f(x) 0 0g(x) 0 0 00 0 0 g(x)0 0 f(x) 0

1CCCCA =  0 f(x)g(x) 0 !� 0 g(x)f(x) 0 !
whi
h is twi
e as mu
h in size as the 
orre
t answer. Rather, we should extra
t the �rsthalf blo
k of it. What happens to more general branes? The key is the fa
t, shown inKn�orrer's paper [53℄, that any matrix fa
torization ofW = WL(x)+uv is holomorphi
allyisomorphi
 to the one of the form (3.34) up to a de
oupled sum of empty branes (W; 1),(1;W ). Thus, the pro
edure is �rst to �nd su
h a presentation and then take out therelevant blo
k of Qju=v=0. However, this is not systemati
 and requires a lot of work inthe indivisual 
ase.Here, we present a general pro
edure to �nd the low energy brane without expli
itly�nding a spe
ial presentation. Let Q be the matrix fa
torization of W = WL(x) + uv54



represented on a Chan-Paton ve
tor spa
e V. We set v = 0 but keep u in Q,bQ = Qjv=0; (3.35)and regard bQ as a matrix fa
torization of WL(x) represented on the in�nite dimensionalChan-Paton spa
e bV = V� uV� u2V� u3V� � � � : (3.36)Then, ( bQ; bV) is the matrix fa
torization determining the low energy brane. It is in�nitein size, but the boundary potential f bQ; bQyg is mostly positive and has zero only in a �nitedimensional subspa
e of bV.Let us see how it works. First, 
onsider the 
ase where Q is already of the form (3.34).With respe
t to the basis (b; ub; u2b; : : :) of bV, bQ is represented by the matrix
bQ =

0BBBBBBBBBBBBBBBBBBBBB�

0 fg 0 0 gf 00 1 0 f�1 0 g 0 0 gf 00 1 0 f�1 0 g 0 . . .

1CCCCCCCCCCCCCCCCCCCCCA
; (3.37)

where unwritten entries are all zero. We �nd that bQ 
onsists mostly of the dire
t sum ofin�nite 
opies of the blo
k Q1 = 0BBBB� 0 gf 00 1 0 f�1 0 g 0
1CCCCA :The potential of this blo
k isfQ1; Qy1g = 0BBBB� 1 + ggy + f yf 00 1 + ff y + gyg 1 + ff y + gyg 00 1 + ggy + f yf

1CCCCA ;55



whi
h is everywhere positive. (Equivalently, there is a similarity transformation thatmakes Q1 into a dire
t sum of (1;WL)'s and (WL; 1)'s.) Thus, ea
h of su
h blo
ks isempty in the infra-red limit. Therefore, only the �rst blo
k � 0 fg 0 � of bQ remains, and thisis indeed the right answer. Next, 
onsider the empty branesQ2 =  0 W1 0 ! ; Q3 =  0 1W 0 ! :bQ2; bQ3 are dire
t sums of in�nite 
opies ofQ2jv=0; Q3jv=0 and in parti
ular have everywherepositive potentials. Thus, bQ2 and bQ3 are also empty. Sin
e any matrix fa
torization isholomorphi
ally isomorphi
 to the sum of matri
es of the form (3.34), Q2 and Q3 [53℄,we �nd that the above pro
edure gives the right answer to the low energy brane in thegeneral 
ase.Some remarks are in order:(i) One may noti
e the asymmetry in the rôle of u and v. We 
ould have applied theabove pro
edure by swapping the two variables. If we did so, the resulting low energybrane would have the opposite Z2-grading. This asymmetry or ambiguity 
ame from thefa
t that the Z2-grading of branes in the high energy theory is not given separately forthe x-part and for the (u; v)-part. What we have done above is to make a 
hoi
e of theZ2-grading in the (u; v)-part | we de
lared that j0i is even and �j0i is odd. The opposite
hoi
e, or equivalently, the swap of u and v, results in the opposite Z2-grading of the lowenergy D-brane. One should remember that there is this 
hoi
e dependen
e in the mapof branes from the high energy theory to low energy theory. If we want to be systemati
,we need to �x one 
hoi
e and use it for all branes.(ii) The above pro
edure will turn out to be extremely powerful and have a wide rangeof appli
ations, despite the fa
t that we need to invoke in�nite size Chan-Paton fa
tors.The parti
ularly important 
ase is where the Landau-Ginzburg superpotential is �bredover some base manifold (the 
ase of non-linear sigma model with superpotential). Insu
h a situation, it is in general impossible to �nd a presentation of Q as (3.34) globally,and it is also very diÆ
ult to �nd su
h a presentation lo
ally and to pat
h them together.However, the above pro
edure (V; Q) 7! (bV; bQ) 
an be applied without diÆ
ulty to su
h�bred situation and provides a one-shot answer. We will use this �bre-wise 
onstru
tionin Se
tion 10.(iii) In�nite size Chan-Paton fa
tors whi
h are e�e
tively �nite for the same reason asabove had been dis
ussed earlier in [54, 55℄.56



Note on Short Orbit BranesIt is a good point to digress for a moment to explain the matrix fa
torization realizationof the short orbit RS-branes given in Se
tion 2.4.1. The N = 2 minimal model at levelk is realized as the infra-red limit of the single variable LG model with superpotentialW = Xd with d = k+2. Alternatively, it 
an also be identi�ed with the IR �xed point ofthe model with two variables W = Xd� Y 2. The minimal model with even level has two
lasses of Cardy branes, ordinary branes and short orbit branes [36℄. Ordinary branes arerealized by matrix fa
torizations of W = xd 
orreponding to xL+1 �xd�L�1 while the shortorbit branes 
orrespond to the matrix fa
torizationQ =  0 x d2 � yx d2 + y 0 !of W = xd � y2 [50℄ (see also [39℄). It was found in [37℄ that there are an odd numberof fermioni
 zero modes in the open string stret
hed between ordinary and short orbitbranes. For that reason, short orbit branes 
annot 
oexist with ordinary branes if we wantto de�ne a Z2-grading operator (�1)F . This problem disappears for a produ
t branes witheven number of short orbit fa
tors in a produ
t of minimal models. This is why we allowsu
h short orbit branes in Gepner models [43℄.Consider the produ
t of two minimal models with even levels, d1 = 2m1 and d2 = 2m2.A produ
t of two short-orbit branes is realized by the matrix fa
torizationQ = �xm11 � y1��1 + �xm11 + y1��1 + �xm22 � y2��2 + �xm22 + y2��2of W = x2m11 � y21 + x2m22 � y22. We write �1 = 12(�1 + i�01), �2 = 12(�2 + i�02) for real �i, �0iand then introdu
e � = 12(�01+ i�02). Writing u = �y2� iy1, v = y2� iy1, the above matrix
an be written as Q = xm11 �1 + xm22 �2 + u� + v�;whi
h is a matrix fa
torization of W = x2m11 + x2m22 + uv. In this form, one 
an readilyintegrate out the U; V; � system. The result is the matrix fa
torizationQL = xm11 �1+xm22 �2ofWL = x2m11 +x2m22 . This is why (2.89) represents a short orbit brane in a Gepner model.3.5 D-brane Transport On The K�ahler Moduli Spa
eBulk (2; 2) supersymmetri
 quantum �eld theories have two kinds of distinguisheddeformation parameters | 
hiral and twisted 
hiral parameters. For non-linear sigma57



models, 
hiral parameters 
orrespond to the 
omplex stru
ture of the target spa
e whiletwisted 
hiral parameters determine the 
omplexi�ed K�ahler 
lass. The moduli spa
e of(2; 2) theories up to bulk D-term deformations is a dire
t produ
t MC �MK, where MCand MK are parametrized by 
hiral and twisted 
hiral parameters respe
tively. We shallrefer toMK and MC as the K�ahler moduli spa
e and the 
omplex stru
ture moduli spa
erespe
tively, although the geometri
 interpretation is present only around spe
ial 
ornersofMK, 
alled the large volume limits. Moving away from su
h a 
orner, the �0 
orre
tionsgrow and the sigma model des
ription eventually be
omes totally inadequate. There 
analso be 
orners of di�erent type whi
h are des
ribed in terms of Landau-Ginzburg modelsor orbifolds thereof. In general, a single K�ahler moduli spa
e may have multiple regionswith quite di�erent des
riptions. For example, the non-linear sigma model on the quinti
hypersurfa
e XG = fG(x) = 0g in CP4 and the Landau-Ginzburg orbifoldW = G(x)=Z5are at two opposite 
orners of the same one dimensional K�ahler moduli spa
e. There arealso examples ofMK with several large volume limits 
orresponding to K�ahler manifoldsof di�erent topology. As dis
ussed in the introdu
tion, the main purpose of the paperis to 
onstru
t a family of boundary intera
tions in a family of bulk theories de�ned ina region of MK that en
ompass various 
orners with di�erent interpretations. We showbelow that there is a natural notion of \parallel families" of B-branes.We �rst des
ribe the \parallel transport" of D-branes along a path inMK. Deforma-tions of the (2; 2) bulk theory inside MK are generated by bulk twisted F-terms whi
hare 
lassi�ed as D-terms from the point of view of the N = 2B supersymmetry. Namely,they are of the form QQy(� � � ) where Q and Qy are the N = 2B generators. Also, we areinterested in properties of D-branes that do not 
hange under N = 2B boundary D-termdeformations. This motivates us to take the following rule of D-brane transport: The bulkand boundary intera
tions must vary by N = 2B D-terms only. To be more expli
it, ifS(�) = Sbulk(�)+Sbdry(�) is a one parameter family of a
tions that realizes the transport,its variation must be a D-term dd� S(�) = QQy(� � � ): (3.38)The 
hiral se
tor of B-type D-branes does not 
hange under the bulk and boundaryN = 2B D-term deformations. Therefore, the rule is de�ned so that the 
hiral se
torremains 
onstant under the transport. When B-twist is possible, this means that theasso
iated open topologi
al �eld theory remains invariant under the transport.We assert that the rule (3.38) de�nes a \
at 
onne
tion" on the \bundle of D-branes"over the K�ahler moduli spa
e MK in a 
ertain sense. Let us �rst show that the D-branetransport obeying our rule is unique up to boundary N = 2B D-term and bulk (2; 2)58



D-term deformations. Let us 
onsider two admissible transports of a given intera
tionS(0) over the same path. In�nitesimally, the transports 
an be written as Si(�) = S(0) +�QQyAi, i = 1; 2. Then, S2(�) 
an be regarded as the deformation of S1(�) by the term�QQy(A2�A1). Sin
e S1(�) and S2(�) represents the same point ofMK, the deformationtermmust have no twisted F-term 
omponent. Thus, it is a boundary D-term plus possiblya bulk (2; 2) D-term. By 
omposition of this elementary pro
ess, we �nd that admissibletransports over the same path are related by a 
hain of boundary D-term deformations,possibly with bulk (2; 2) D-term deformations. One important point whi
h is impli
itlyassumed in this argument is that we 
an use a set of �eld variables whose supersymmetrytransformations do not depend on the twisted 
hiral parameters, at least inside the regionof MK we are 
onsidering. This is to ensure that �QQy(A2 � A1), whi
h is a D-termin the initial theory S(0), is also a D-term with respe
t to the N = 2B supersymmetryof the deformed theory S1(�). In the non-linear sigma model, this is indeed the 
asesin
e the sets of �elds as well as their supersymmetry transformation are �xed when the
omplex stru
ture of the target spa
e is �xed. By a similar argument, we �nd that the\
onne
tion" is 
at: under a deformation of the path in MK with �xed initial and �nalpoints, the result of D-brane transport 
hanges only by boundary N = 2B D-terms andbulk (2; 2) D-terms. Note that this holds only for 
ontinuous deformations of the paths.There 
an be non-trivial monodromies for topologi
ally non-trivial loops in MK. In fa
tsu
h monodromies are known to exist even at the level of D-brane 
harge.As we have dis
ussed earlier in this se
tion, our main interest is in the properties of D-branes that do not 
hange not only under boundary D-term deformations but also underbrane-antibrane annihilation. A natural question is whether brane-antibrane annihilationat one point of the K�ahler moduli spa
e is sent to brane-antibrane annihilation at anotherpoint under the parallel transport. Formally, that must be the 
ase. Otherwise the
hiral se
tor would 
hange, but the transport is de�ned so that it remains 
onstant. Andthis indeed appears plausible as long as the path stays inside a large volume regime| positivity of the boundary potential fQ;Qyg is una�e
ted under deformations of theK�ahler 
lass. However, it is not at all obvious whether this 
ontinues to be the 
ase ifthe path goes out of one large volume regime and the size of the target spa
e be
omesvanishingly small.That the 
hiral se
tor does not 
hange under D-brane transport does not mean thatthe full theory remains 
onstant. In parti
ular, the infra-red limit must depend on wherewe are onMK, sin
e it de�nes a N = 2B super
onformal boundary 
ondition in the (2; 2)super
onformal �eld theory that really depends both on MK and MC . We expe
t a ri
hpattern of renormalization group 
ows that 
hange along the transport. For example, let59



us 
onsider a 
omplex of two ve
tor bundles,E1 Q�! E2;whi
h de�nes a parallel family of boundary intera
tions over a region ofMK. The regionmay be separated into two by a wall of marginal stability. On one side of the wall the mapQ is ta
hyoni
 so that the brane 
ows to a single inde
omposable N = 2B super
onformalboundary 
ondition. On the other side of the wall, Q is irrelevant and vanishes in the infra-red limit. Then the brane splits into two N = 2B super
onformal boundary 
onditions,one 
orresponding to E1 and another 
orresponding to E2. Note that in the latter 
ase theabove brane and the brane E1[1℄� E2 are not D-isomorphi
 to ea
h other but still 
ow tothe same super
onformal boundary intera
tion.Other quantities that show dependen
e on MK are the overlap of the boundary statewith the R-R ground states hijBi: These are de�ned as the path integrals over an A-twistedsemi-in�nite 
igar S with an operator 
orresponding to the ground state hij inserted atthe tip, see[7℄. This quantity does not depend on boundary D-term deformations as theywould insert an N = 2B D-term at the boundary whi
h is annihilated by the supersym-metri
 ground state: ÆhijBi = hij Z�SQQy(� � � )jBi = 0:On the other hand, as argued in [7, 23℄, they do depend on the twisted 
hiral param-eters and satisfy a 
ertain system of di�erential equations. The overlaps are 
alled thegeneralized 
entral 
harges and play important roles in the study of D-brane stability.When the infra-red limits of the (2; 2) quantum �eld theories are used as the ba
k-grounds for string 
ompa
ti�
ation, the family of boundary intera
tions obeying the rule(3.38) plays an important rôle in spa
etime physi
s. Open string states for su
h families ofboundary intera
tions de�ne open string �elds that 
an be used everywhere on the regionof MK under 
onsideration. This provides us with a basis to study spa
etime D-termpotentials as a fun
tion of those open string �eld variables as well as of 
losed string �eldsasso
iated to MK parameters.An ideal framework to study the above issues is provided by linear sigma models. Theyare (2; 2) supersymmetri
 gauge theories in 1+1 dimensions de�ned over the moduli spa
eMK �MC , whi
h in
ludes large volume limits, Landau-Ginzburg orbifold points as wellas regions in between where neither a geometri
al nor a Landau-Ginzburg interpretationis totally absent. It uses a single set of �eld variables with a �xed supersymmetry trans-formation rule and the dependen
e on the MK �MC moduli parameters appears only inthe (twisted) F-term intera
tions of the a
tion. In this paper, we study parallel families60



of boundary intera
tions using linear sigma models. We will in fa
t en
ounter a sharpproblem asso
iated with brane-antibrane annihilation, and will �nd a rather surprizingsolution. Also, our 
onstru
tion provides a starting point for the study of D-brane sta-bility and spa
etime D-term potentials in intermediate regimes of MK where no usefuldes
ription of the low energy theory is available.4 Linear Sigma ModelsIn this se
tion, we review the basi
 aspe
ts of (2; 2) supersymmetri
 linear sigmamodels in 1 + 1 dimensions [2℄. The main purpose is to �x notations and to introdu
ea 
lass of examples that will be used in this paper. We will also obtain a new result ongeneral multiparameter models (Se
tion 4.5) that will play an important rôle.4.1 The LagrangianLet us 
onsider a 2d (2; 2) supersymmetri
 gauge theory with a 
ompa
t Abelian gaugegroup T �= U(1)1 � U(1)2 � � � � � U(1)k and matter 
hiral super�elds � = (�1; :::;�N),where �i has 
harge Qai with respe
t to the ath gauge group U(1)a (a = 1; :::; k is the gaugeindex and i = 1; :::; N is the `
avor' index). We denote the ve
tor super�eld for U(1)aby Va, and its 
urvature by �a = D+D�Va (a twisted 
hiral super�eld). The Lagrangiantakes the following formL = Z d4� �12 kXa;b=1(e�2)ab�a�b + NXi=1 �i eQi�V�i!+Re Z d2e� � kXa=1 ta�a!+Re Z d2�W (�) (4.1)The �rst term on the right hand side is the gauge kineti
 term where e is the gauge
oupling 
onstant. The se
ond term is the matter kineti
 term with the minimal 
ouplingto the gauge �elds, where Qi � V is a short hand notation for Pka=1Qai Va. The third is atwisted superpotential term, where ta = ra � i�a (4.2)is a 
omplex 
ombination of the Fayet-Iliopoulos (FI) parameter ra and the theta angle�a for the ath gauge group U(1)a. The last term exists if there is a gauge invariantholomorphi
 polynomial W (�) of �1; :::;�N , the superpotential.61



Let us write down the Lagrangian in terms of the 
omponent �elds. We re
all that ave
tor multiplet 
onsists of a gauge �eld v�, a 
omplex s
alar �, a Dira
 fermion �� anda real auxilary �eld D. A 
hiral multiplet 
onsists of a 
omplex s
alar �, a Dira
 fermion � and a 
omplex auxiliary �eld F . The 
omponent expressions for the gauge kineti
term, the matter kineti
 term, and the twisted superpotential term are given belowLg = Z d4��� 12e2��� + total derivative= 12e2 hj�0�j2 � j�1�j2 + i��( ���!0 + ���!1)�� + i�+( ���!0 � ���!1)�+ + v201 +D2i ;(4.3)Lm = Z d4� � eV � + total derivative= jD0�j2 � jD1�j2 + i �( �D�!0 + �D�!1) � + i +( �D�!0 � �D�!1) + + �D�+ jF j2�j��j2 �  �� + �  +� � � i��� + + i��+ � + i +���� i ��+�; (4.4)LFI � = Re Z d2e���t�� = �rD + �v01: (4.5)Only the spe
ial 
ase of T = U(1) and with just one 
harge 1 matter �eld is presented,sin
e the generalization is obvious. The superpotential term isLW = Re Z d2�W (�) = Re" NXi=1 Fi�W��i (�)� NXi;j=1 �2W��i��j (�) i+ j� # : (4.6)In the above expressions,  ���!� and  �D�!� are de�ned as 1 ���!� 2 := 12 1(�� 2)� 12(�� 1) 2: (4.7)If the worldsheet has no boundary, whi
h is the 
ase within this se
tion, a total deriva-tive 
an be ignored and hen
e there is no need to distinguish  1(�� 2) and �(�� 1) 2.However, later in this paper, we will 
onsider worldsheets with boundary. Then a totalderivative is non-zero in general and the distin
tion is important. The above 
hoi
e ofLagrangian is the one that will be used throughout this paper.4.2 PhasesThe 
lassi
al potential for the s
alar �elds �i and �a is obtained after integrating outthe auxiliary �elds Da and Fi:U = NXi=1 ����� kXa=1 Qai �a�i�����2 + e22 kXa=1  NXi=1 Qai j�ij2 � ra!2 + NXi=1 �����W��i (�)����2 : (4.8)62



Here we assume e2ab = Æabe2 for simpli
ity. One obtains some idea of the low energy theoryby looking at the va
uum lo
us, U = 0. It depends very mu
h on the value of the FIparameters ra whi
h enter into the middle term, the D-term potential. If r = (r1; :::; rk)is in a 
ertain domain, the D-term equationsNXi=1 Qai j�ij2 � ra = 0 8a = 1; : : : ; k; (4.9)may require that the �i are non-zero and the matrix Mab =PNi=1QaiQbi j�ij2 has maximalrank k. This means that the gauge group T is 
ompletely broken, or broken to a �nitesubgroup. In parti
ular, U = 0 requires all �a to be zero by the �rst term in (4.8).However, this may fail at spe
ial values of r = (r1; :::; rk). Also, it is possible that theequation U = 0 has no solution in some domain. Thus, the spa
e RkFI spanned by FIparameters is divided into a �nite number of 
hambers. There are lo
i in whi
h the rankofMab for generi
 solutions to (4.9) are less than k. They are parts of linear hypersurfa
esand form walls that divide RkFI into 
hambers. The 
hambers that admit solutions to theva
uum equation U = 0 are 
alled the phases and the walls separating them are 
alledthe phase boundaries. At a point r in the interior of ea
h phase, the 
ontinuous part ofthe gauge group T is broken everywhere on the va
uum lo
us U = 0.A geometri
 phase is a phase in whi
h T is 
ompletely broken at any solution of U = 0and all modes transverse to U = 0 are massive. In that 
ase, the low energy theory is anon-linear sigma model whose target spa
e is the quotient (U = 0)=T . If the model haszero superpotential W = 0, the spa
e (U = 0)=T is the symple
ti
 quotient of CN by Twith the moment map equation (4.9). As a 
omplex manifold, it is the quotient by the
omplexi�ed gauge group TC, Xr = (CN ��r)=TC; (4.10)where �r 
onsists of points whose TC orbits do not pass through solutions to (4.9). �ris a union of linear subspa
es of CN and depends only on the phase that r belongs to.We shall 
all it the deleted set of the respe
tive phase. Xr is a so 
alled tori
 manifold.If the superpotential is non-trivival, the va
uum lo
us is a submanifold Mr of this tori
manifold Xr, whi
h is de�ned by the F-term equations�W��i = 0 8i = 1; : : : ; N: (4.11)In the e�2 ! 0 limit, the gauge �eld v� and the s
alar �eld � are expressed in terms of63



the matter �elds asva0 = Xb;i M�1ab Qbi �i�i ���!0�i + 12( i+ i+ +  i� i�)� ; (4.12)va1 = Xb;i M�1ab Qbi �i�i ���!1�i + 12( i+ i+ �  i� i�)� ; (4.13)�a = �Xb;i M�1ab Qbi i+ i�: (4.14)The gauge �eld is the pull-ba
k of the 
onne
tion of the 
omplex line bundle O(ea) overXr (or its restri
tion to Mr) asso
iated with the 
harge 1 representation for the ath U(1).If W = 0, all phases are almost geometri
 in the sense that all modes transverse toU = 0 are massive and the quotient Xr = (U = 0)=T has at most orbifold singularities.When it 
an be realized as a global orbifold by an unbroken gauge group, Xr = X 0r=�,the low energy theory is the orbifold theory in the standard sense [28℄: the �-gaugedsigma model on X 0r. Otherwise, no 
onvenient des
ription of the low energy theory isavailable today. See for example [56℄ and referen
es therein. A singular Xr makes aperfe
t sense as an algebrai
 variety, but that has no useful suggestion to the des
riptionof the theory. It makes sense also as something 
alled a quotient sta
k, and that seemsto 
arry 
onvenient stru
tures, espe
ially when we 
onsider D-branes. (See Se
tion 9.) Inthis paper, somewhat loosely, we simply refer to the low energy theory as \the non-linearsigma model on the tori
 variety Xr", having this subtlety in mind.If the superpotential W is non-trivial, there are various phases in whi
h some of thetransverse modes to U = 0 are massless. The extreme 
ases are the so 
alled Landau-Ginzburg phases. A Landau-Ginzburg phase is a phase in whi
h the va
uum lo
us (U =0)=T is one point and all modes transverse to the TC orbit do not a
quire mass fromthe D-term potential. In the limit where r is s
aled up to in�nity, the modes tangentto the TC orbit de
ouple and the theory redu
es to the Landau-Ginzburg model for thetransverse modes, possibly with a residual dis
rete gauge symmetry (Landau-Ginzburgorbifold).RG Flows And Calabi-Yau ConditionsUnder the renormalization group (RG) the FI parameters r1; :::; rk 
ow as ra(�) =ra(�0) +PNi=1Qai log(�=�0), so that r(�) runs along a straight line in RkFI. In general,this indu
es a 
ow between di�erent phases or domains without solution to the va
uum64



equation U = 0. However, under the 
onditionNXi=1 Qai = 0 8a = 1; : : : ; k; (4.15)the FI parameters do not run and are genuine parameters of the theory. A related e�e
tis the axial anomaly. The 
lassi
al a
tion (4.1) has axial U(1) R-symmetry but this isanomalously broken if the 
ondition (4.15) is violated. As a 
onsequen
e, the shift oftheta angles, �a ! �a +PNi=1Qai�, is physi
ally irrelevant as that 
an be absorbed by a�eld rede�nition using an axial rotation. If the 
ondition (4.15) is indeed met, there is nosu
h anomaly and all the k theta angles �a are genuine parameters of the theory. If thesuperpotential is quasi-homogeneous, namely if it obeysW (�R1�1; : : : ; �RN�N ) = �2W (�1; : : : ;�N); (4.16)for 
ertain R1; :::; RN (
alled the R-
harges of the �elds �1; :::;�N ), there is also a ve
torU(1) R-symmetry.If the two 
onditions (4.15) and (4.16) are met, we have both axial and ve
tor U(1)R-symmetries. They are expe
ted to be
ome a part of the super
onformal symmetry ofthe non-trivial infra-red �xed point of the RG 
ow. In su
h a 
ase, we have a family ofsuper
onformal �eld theories parametrized by the FI-theta parameters ta = ra � i�a aswell as the parameters that enter into the superpotential W (�). In many 
ases these arethe entire set of exa
tly marginal parameters, but in many other 
ases there are extraparameters.4.3 SingularityLet us assume that the Calabi-Yau 
onditions (4.15) and (4.16) are met and hen
e allta's are genuine parameters of the theory.On a phase boundary, a non-
ompa
t Coulomb bran
h emerges | the va
uum lo
usU = 0 in
ludes a point at whi
h there is an unbroken 
ontinuous subgroup of T and the
orresponding �a is un
onstrained. This implies a singularity of the theory. The storymust be modi�ed in the quantum theory sin
e it depends also on the theta angles �a.A
tual existen
e of the Coulomb bran
h 
an be examined by 
omputing the quantumground state energy at large values of �'s. The result isUe� = 12 kXa;b=1 e2ab(�)�fW e���a �fWe���b : (4.17)65



e2ab(�) are the e�e
tive gauge 
oupling 
onstants. They approa
h their 
lassi
al values asj�j ! 1. fWe�(�) is the e�e
tive twisted superpotential whi
h is obtained by integratingout the 
harged 
hiral multiplet �elds. Its �rst derivatives are given by�fWe���a (�) = �ta � NXi=1 Qai log kXb=1 Qbi�b! : (4.18)The imaginary part of these are the e�e
tive ba
kground ele
tri
 �elds and enter into(4.17) as the ele
trostati
 energy [57℄. To be pre
ise, the potential (4.17) 
hanges if �a isshifted by 2�, and the lowest among all is the a
tual ground state energy. In parti
ular,the potential is zero if the derivatives (4.18) vanish modulo 2�i times integers [2, 57℄.Namely, the va
uum equation isNYi=1 kXb=1 Qbi�b!Qai = e�ta : (4.19)Under the 
ondition (4.15), this equation is invariant under the uniform res
aling of �a's,so that existen
e of one solution means existen
e of a non-
ompa
t Coulomb bran
h.Eliminating �a's we obtain an equation for e�ta 's that de�nes the lo
us where there is aquantum Coulomb bran
h. The theory is singular there sin
e the wavefun
tions spreadover the Coulomb bran
h and are not normalizable. In general, there are additionalsingular lo
i 
oming from mixed Coulomb-Higgs bran
hes [58℄.Let us denote the set of singular points by S. It is a union of hypersurfa
es in theset (C�)k of all FI-theta parameters f( et1 ; :::; etk)g. The K�ahler moduli spa
e is the
omplement MK = (C�)k nS:In order to get some idea of how MK looks like, it is useful to introdu
e two proje
tionsof (C�)k | the proje
tion to the FI parameters (Log) and the proje
tion to the thetaparameters (Arg): (C�)kLog Arg����	 ����RRkFI (S1)k� (4.20)The image of the singular lo
i S under the map Log is 
alled the Amoeba of S [59℄. Itis a domain on RkFI with tenta
les whi
h asymptote to the 
lassi
al phase boundaries atlarge jrj, possibly shifted by some �nite amount. The image of S under the map Arg is
alled the 
o-Amoeba or the Alga of S [60, 61℄. We will see in some examples that the66



Alga of S has a non-empty 
omplement, whi
h has an important 
onsequen
e for D-branetransport at the 
enter of the moduli spa
e MK.4.4 ExamplesIn what follows, we introdu
e some examples whi
h will a

ompany us throughout thispaper. We pla
e emphasis on the phase stru
ture and the deleted sets �r. In Example (C),we introdu
e a method to �nd the deleted sets whi
h turns out to be useful for des
ribing
oherent sheaves on tori
 varieties. In Examples (A) and (C), one 
an 
onsider a 
ompa
ttheory with a non-trivial superpotential W , but one may also 
onsider a non-
ompa
ttheory with W = 0.(A) Calabi-Yau Hypersurfa
e In CPN�1The �rst example has gauge group U(1) and (N +1) �elds P;X1; : : : ; XN with 
harge�N; 1; : : : ; 1. We 
onsider the superpotential W = PG(X1; : : : ; XN) where G(X) is ahomogeneous polynomial of degree N . There are two phases as shown in Fig. 1. We plot
P X1,2,3,4,5

<0 Phase Phase>0=0r rrFigure 1: The Phases of the model (A) for N = 5.the latti
e of gauge 
harges (
alled the Pi
ard latti
e) inside RkFI, for a reason that willbe
ome 
lear later. The deleted sets are�+ = fx1 = x2 = � � � = xN = 0g for r > 0;�� = fp = 0g for r < 0:The exa
t lo
ation of the singularity is et = (�N)N . In the r � 0 phase, the theoryredu
es to the non-linear sigma model on the Calabi-Yau hypersurfa
e XG = fG = 0g inthe proje
tive spa
e CPN�1. In the r � 0 phase, the va
uum manifold (U = 0)=U(1) isa one point with p 6= 0 and x = 0 whi
h breaks the gauge group to � = f! 2 U(1)j!N =1g �= ZN . All the Xi's are massless there. At r ! �1, the theory redu
es to the Landau-Ginzburg orbifold of the N variables X1; : : : ; XN with the superpotential W = G(X) andthe orbifold group �. If there is no superpotential, r � 0 is the geometri
 phase on thetotal spa
e of O(�N) (the 
anoni
al bundle) over CPN�1, while the r ! �1 limit yieldsthe free orbifold CN=�. 67



(B) The Resolved Conifold, O(�1)�O(�1)! CP1
X

<0 Phase Phase>0=0

1,2
X3,4

rr rFigure 2: The Phases of the model (B).The se
ond example has U(1) gauge group and four �elds X1; X2; X3; X4 with 
harge1; 1;�1;�1. There are two phases as shown in Fig. 2. The deleted sets are�+ = fx1 = x2 = 0g for r > 0;�� = fx3 = x4 = 0g for r < 0:The exa
t lo
ation of the singularity is et = 1. The r � 0 phase is the non-linear sigmamodel on the total spa
e of O(�1) � O(�1) over CP1 (a resolved 
onifold), while ther � 0 phase is that of another resolved 
onifold. The di�eren
e is that in the r � 0 pase,x1; x2 span the base CP1 and x3; x4 span �bres, while in the r � 0 phase CP1 is spannedby x3; x4 and the �bres are spanned by x1; x2. They are both geometri
 phases and thetransition between them is 
alled the 
op.(C) A two parameter modelThe third example has two K�ahler parameters. It has U(1)2 gauge group and seven
harged �elds as shown below: P X1 X2 X3 X4 X5 X6U(1)1 �4 0 0 1 1 1 1U(1)2 0 1 1 0 0 0 �2Using this example, we introdu
e a method to �nd the phases and the deleted sets,without writing down the D-term equations, but by looking at the 
harge latti
e embeddedinto RkFI. Not only fa
ilitating the problem with a geometri
 pi
ture, this method turnsout to be useful also when we des
ribe 
oherent sheaves on tori
 varieties (see Se
tion 9).First of all, the phase boundaries are domains of the hypersurfa
es whi
h are in positivelinear spans of (k�1) 
harge ve
tors of some of the �elds. In the present example there arefour boundaries 
orrespnding to four 
harge ve
tors. A

ordingly, there are four phasesas shown in Fig. 3. 68
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Figure 3: The Phases of the two parameter model (C).Next we des
ribe how to �nd the deleted set, say in Phase I. Let us take any hyperplanethrough the origin su
h that Phase I is in one of the two halves of RkFI separated by theplane. Then we forbid the 
ommon zero of those xi's that are on the same side asPhase I. This is required by the D-term equation for the U(1) subgroup with respe
tto whi
h the 
harge ve
tors in that hyperplane is neutral. For the verti
al hyperplanein Fig. 3, the 
harge ve
tors on the same side as Phase I are those of X3; X4; X5; X6.Thus fx3 = x4 = x5 = x6 = 0g is deleted. (The relevant subgroup is U(1)1 and theequation is jx3j2 + jx4j2 + jx5j2 + jx6j2 � 4jpj2 = r1. Sin
e r1 is positive in Phase I,x3 = x4 = x5 = x6 = 0 is indeed forbidden.) By other 
hoi
es of the hyperplane, we �ndthat we also delete fx1 = : : : = x6 = 0g and fx1 = : : : = x5 = 0g as well as fx1 = x2 = 0g.But the latter subspa
e 
ontains the previous two, so that the deleted set for Phase I isthe union of fx1 = x2 = 0g and fx3 = x4 = x5 = x6 = 0g. Repeating this pro
edureprovides the deleted sets for the other phases as well:�I = fx1 = x2 = 0g [ fx3 = x4 = x5 = x6 = 0g;�II = fx1 = x2 = x3 = x4 = x5 = 0g [ fx6 = 0g;�III = fp = 0g [ fx6 = 0g;�IV = fp = 0g [ fx1 = x2 = 0g:The exa
t lo
ation of the singularity S is the union ofe�t1 = 4�4(1� 2u); e�t2 = u2(1� 2u)2 ;69
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2π0Figure 4: The Amoeba (Left) and Alga (Right) of S of the two parameter model (C).where u := �2=�1, and e�t2 = 2�2:The latter 
omponent 
omes from the mixed Higgs-Coulomb bran
h, where �2 as well as�elds neutral to U(1)2 are large. The Amoeba and Alga of the singular lo
us are depi
tedin Fig. 4. The Alga is found by looking at the behaviour of �1 and �2 near the spe
ialpoints, u = 0; 12 and1, that 
orrespond to the tenta
les of the Amoeba, i.e., to the phaseboundaries. (We learned this te
hnique from M. Passare.) Note that the Alga has anon-trivial 
omplement.Without the superpotential, the low energy theory is the sigma model on a non-
ompa
t Calabi-Yau variety Xr with or without orbifold singularity. In Phase I, theunborken subgroup is everywhere trivial f1g and the spa
e Xr is the total spa
e of aholomorphi
 line bundle on a smooth 
ompa
t manifold Br. The base manifold Br isthe 
ompa
t tori
 manifold 
orresponding to the model without the �eld P , and the linebundle is O(�4; 0). In Phase II, the unbroken subgroup is f(1;�1)g �= Z2 at x1 = x2 = 0,and the spa
e Xr is the total spa
e of the line bundle O(�8) over the weighted proje
tivespa
e WCP4[11222℄. In Phase III, the unbroken subgroup is f( e2�i=4; e2�i=8)g �= Z8 atx1 = � � � = x5 = 0, and the spa
e Xr is the orbifold C5=Z8. In Phase IV, the unbrokensubgroup is f( e2�i=4; 1)g �= Z4, and the spa
e Xr is the orbifold of OCP1(�2)�C3 by Z4.We 
an also 
onsider a theory with superpotentialW = PG(X1; :::; X6)70



where G(X) is a homogeneous polynomial of bidegree (4; 0), su
h as G(X) = X81X46 +X82X46 + X43 + X44 + X45 . In Phase I and Phase II the low energy theory is the non-linear sigma model on the hypersurfa
e fG= 0g of Br and WCP4[11222℄ respe
tively. InPhase III it is the Z8 orbifold of the Landau-Ginzburg model with superpotential W =G(X1; :::; X5; 1). In Phase IV it is a non-linear Landau-Ginburg orbifold.(D) Resolution Of AN�1 SingularityAs the �nal example, we take the U(1)N�1 gauge theory with the following matter
ontent: X1 X2 X3 X4 � � � XN�2XN�1 XN XN+1U(1)1 1 �2 1 0 � � � 0 0 0 0U(1)2 0 1 �2 1 � � � 0 0 0 0... . . . . . . . . .... . . . . . . . . .U(1)N�2 0 0 0 0 � � � 1 �2 1 0U(1)N�1 0 0 0 0 � � � 0 1 �2 1 (4.21)
This theory des
ribes the AN�1 singularity and its various resolutions. The 
ase N = 2is identi
al to the 
ase N = 2 in Example (A).There is a phase, the orbifold phase, where the deleted set �orb is the union of fxi = 0gfor i = 2; :::; N . The non-zero values of these xi's breaks the gauge group to a dis
retesubgroup f(!; !2; :::; !N�1);!N = 1g whi
h is isomorphi
 to ZN . In the limit ra ! �1,the low energy theory is the free orbifold Xorb = C2=ZN where C2 is spanned by x1; xN+1and the group ZN a
ts on it by (x1; xN+1)! (!x1; !�1xN+1). If we introdu
e the orbifoldinvariants by x = xN1 , y = xNN+1 and z = x1xN+1, they satisfy the equationxy = zN :The singularity at the origin is 
alled the AN�1 singularity. The opposite limit is the largevolume phase where all ra are positive. The deleted set �res is a union of fxi = xj = 0gfor all i; j su
h that ji � jj � 2. The low energy theory is the sigma model on the fullresolution Xres of the AN�1 singularity. The proje
tion map � : Xres ! Xorb is des
ribedby x = xN1 xN�12 xN�33 � � �xN , y = x2x23 � � �xN�1N xNN+1, z = x1x2 � � �xN+1. The pre-image ofthe singular point x = y = z = 0 is the ex
eptional divisor whi
h is a 
hain of 2-spheresC1; : : : ; CN�1, where Ci is de�ned by the equation xN�i+1 = 0. They interse
t a

ordingto the AN�1 Dynkin diagram as in Figure 5.71
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C1 C2 C3 CN�2 CN�1Figure 5: The ex
eptional divisor of the resolved AN�1 singularity.In between, there are other phases 
orresponding to partial resolutions. A 
onvenientway to label the phases is to asign 0 or 1 to ea
h node of the AN�1 Dynkin diagram,depending on whether the node is resolved or not. For example, the orbifold phase is(11 � � �1) and the fully resolved phase is (00 � � �0). The phase where only C1 is resolvedis (011 � � �1) and the phase where only C2 is unresolved is (010 � � �0). In total, there are2N�1 phases. If there is a sequen
e of m 1's in the label, that means that there is an Amsingularity in that phase. For example, the phase (1101) in the N = 5 model has one A2singularity and one A1 singularity.A phase boundary 
orresponds to a blow down or blow up of one Ci. In the abovelabelling system, that is the boundary between the phases where the i-th node 
ipsbetween 0 and 1. Let us des
ribe where it sits inside the spa
e RN�1FI . We know thatit is a part of the hyperplane spanned by the 
harge ve
tors of a subset of (N � 1) � 1variables, but whi
h subset? It is the set of all xj's ex
ept xN�i+1, xN�i++1 and xN�i�+1where i� < i and i+ > i are the labels of the resolved nodes whi
h are 
losest to i on theleft and on the right. When there is no resolved node on the left (resp. right) of i weset i� = 0 (resp. i+ = N). This shows that there is at least one phase boundary in thehyperplane spanned by the 
harge ve
tors of any subset of (N � 2) 
harge ve
tors.
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phases. As we have learned in Example (C), we 
an read o� the deleted set at ea
h phase:�(00) = fx1 = x3 = 0g [ fx1 = x4 = 0g [ fx2 = x4g;�(01) = fx2 = 0g [ fx1 = x4 = 0g;�(10) = fx3 = 0g [ fx1 = x4 = 0g;�(11) = fx2 = 0g [ fx3 = 0g:That x2 = 0 (resp. x3 = 0) is not allowed means that C2 (resp. C1) is not resolved, thusjustifying the labelling of the phases. Note that ea
h of the phase boundaries is spannedby the 
harge ve
tor of a parti
ular variable, in a

ord with the general des
ription givenabove. The singular lo
us is found in the by-now standard way. Its Alga is shown inFigure 6 (right).For higher N the analysis be
omes in
reasingly 
ompli
ated, and it is not illuminatingto draw the pi
ture of phases on a two-dimensional sheet. Figure 7 shows the labels ofphases and their boundaries in the A3 model. The label (jk) of the phase boundary means
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harge ve
tors of xj and xk, insidetheir positive span. It is the positive span itself, unless it is on the hyperplane spanned by(12) and (45). The positive spans of (12) and (45) interse
t on a half-line whi
h separatesea
h of them into two phase boundaries. That is why \(12)" and \(45)" appear twi
e inFigure 7. 73



4.5 Phase Boundary And Deleted SetsTo �nish the review of linear sigma models, we point out a relation between the deletedsets of adja
ent phases. This relation will play an important rôle later in this paper.Let us 
onsider two phases, say, Phase I and Phase II, whi
h are separated by a phaseboundary. Let T u be the unbroken subgroup at that phase boundary, and we 
hoosebasis elements (e1; :::; ek) of the Lie algebra of T so that the �rst element e1 generatesT u. We 
hoose its sign so that r1 is positive in Phase I and negative in Phase II. Wedenote by �I;II+ the 
ommon zeroes of �i's that are positively 
harged under the subgroupT u, Q1i > 0. Similarly, we denote by �I;II� the 
ommon zeroes of �i's that are negatively
harged, Q1i < 0. Obviously �I;II+ is in �I, and �I;II� is in �II. We 
laim that�I = �I;II+ [ (�I \�II);�II = �I;II� [ (�I \�II): (4.22)It is straightforward to 
he
k su
h a relation in examples. Let us take, say, Example(C), and look at the boundary between Phase I and Phase IV. The basis of the gauge groupis already 
hosen in the way just mentioned, and we �nd �I;IV+ = fx3 = x4 = x5 = x6 = 0gand �I;IV� = fp = 0g. On the other hand, we have �I \�IV = fx1 = x2 = 0g. Indeed therelation (4.22) holds for Phase I and Phase IV. It is very easy to 
he
k it for other phaseboundaries.In general, the relation (4.22) 
an be proved as follows. Let � be an element of �I thatis not in �II. This means that the TC orbit of � does not in
lude a solution of the D-termequation at any point in Phase I, and also, at any point in Phase II there is some elementg 2 TC su
h that g� solves the D-term equation there. Namely, the D-term image ofthe TC-orbit of � in
ludes the Phase II entirely but does not meet Phase I. This D-termimage is known to be 
onvex in RkFI [62℄, and hen
e is entirely on the same side as PhaseII with respe
t to the hyperplane spanned by the I-II boundary. In parti
ular, we haveXi Q1i jzQ1i�ij2 < 0 8z 2 C�:This is possible only if �i = 0 for ea
h i su
h that Q1i > 0. Namely, � must be in the set�I;II+ . This shows �I n (�I \�II) � �I;II+ , whi
h is equivalent to �I = �I;II+ [ (�I \�II).The proof of the other relation is similar.
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5 D-branes In Linear Sigma ModelsIn this se
tion, we write down boundary intera
tions in linear sigma models thatpreserve N = 2B supersymmetry as well as ve
tor U(1) R-symmetry. The building blo
kis the Wilson line brane that 
arries a de�nite gauge 
harge. Intera
tions of Wilsonlines 
an also be introdu
ed just as in the systems 
onsidered in Se
tion 2. In a systemwith vanishing superpotential, they are given by 
omplexes of Wilson line branes. If thesuperpotential W is non-vanishing, they are given by gauge invariant and homogeneousmatrix fa
torizations of W . We take a �rst look at the boundary 
onditions on the bulk�elds, postponing the full 
onsideration to Se
tion 7. We end the se
tion by des
ribingthe 
hiral se
tor in the theory with vanishing gauge 
oupling e = 0.5.1 The Bulk A
tion And Boundary Counter TermsN = 2B supersymmetry variation of the bulk a
tion is a boundary term whi
h isin general non-vanishing unless a boundary 
ondition is used. We would like to �nd aboundary 
ounter term whose variation 
an
els it. First, we fo
us on the gauge kineti
term, matter kineti
 term and the FI-theta term. The 
ounter term for the superpotentialF-term is written using boundary degrees of freedom and will be fully 
onsidered inSe
tion 5.4. The kineti
 terms and FI-theta terms are (2; 2) D-terms and twisted F-terms. As explained in Se
tion 3.5, they are 
lassi�ed as D-terms with respe
t to theN = 2B supersymmetry. Thus, we should be able to write the invariant a
tion in theform R dtQQy(� � � ), where Q = Q+ +Q�, Qy = Q+ +Q� are the N = 2B generators.A
tion of su
h a form would be manifestly N = 2B invariant and automati
ally lead usto �nd the needed boundary 
ounter term.A hint to �nd su
h a form lies in the original manifestly (2; 2) invariant a
tion writtenin terms of the superspa
e intergals (4.1). Up to a total derivative, bulk D-term R d4�Kis equal to Q+Q�Q�Q+k � 12QQy[Q+;Q+℄k, where k is the lowest 
omponent of thesuper�eld K. Similarly, for a twisted 
hiral super�eld fW , the twisted F-term R d2e�fW 
anbe written as QQy �fW jlowest� again up to a total derivative. This motivates us to takethe following as the manifestly N = 2B invariant a
tion:Sg + Sm + SFI � = 14� ZSd2sQQy[Q+;Q+℄ � 12e2 kXa=1 j�aj2 + NXi=1 j�ij2!+ 12�Re ZSd2sQQy � kXa=1 ta�a! : (5.1)75



Despite its appearan
e, it in
ludes the boundary 
ounter term. Let us write it down moreexpli
itly. For the 
ase of the U(1) gauge theory with a single 
harge 1 matter, we �ndSg = 12� ZSd2sLg + 14�e2 Z�Sdt �12�1j�j2 + Im(�)D +Re(�)v01� ; (5.2)Sm = 12� ZSd2sLm + 12� Z�Sdt � i2( � + �  + �) + Im(�)j�j2� ; (5.3)SFI � = 12� ZSd2sLFI � + 12� Z�Sdt Im��t� �; (5.4)where Lg, Lm, LFI � are the expressions given in (4.3), (4.4), (4.5) respe
tively. The
ounter term in (5.3) is the gauge theory version of the \standard boundary term" (2.20)in non-linear sigma models and LG models. For the general 
ase, the total boundary
ounter term is expressed asS
:t:tot = 12� Z�Sdt ( 12e2 kXa=1 �12�1j�aj2 + Im(�a)Da +Re(�a)(va)01�+ i2 NXi=1� i� i+ �  i+ i��+ Im kXa=1 " NXi=1 Qai j�ij2 � ta!�a#) : (5.5)This 
ounter term had been found earlier in [9, 10℄.As always, there is a freedom to add boundary D-terms,�Sbdry = Z�SdtQQy�:This would have no e�e
t to the low energy theory as long as � is small enough at in�nityin the �eld spa
e. But addition of su
h a term will alter the theory if � is large at in�nity.In what follows, we will not 
onsider su
h \large D-terms".5.2 The Wilson LineNext, we 
onsider boundary intera
tions that are by themselves N = 2B invariant butthat are not D-terms. The simplest one is12 ZB d�d� V = �h v0 � Re(�) i: (5.6)This is manifestly N = 2B invariant, but is not invariant under the U(1) gauge transfor-mation iv0 ! iv0 + g�0g�1. However, the exponentiated a
tion, the Wilson lineWq(tf ; ti) = exp��i Z tfti qh v0 � Re(�) idt�76



transforms as Wq(tf ; ti) �! g(tf)q �Wq(tf ; ti) � g(ti)�qand hen
e is gauge 
ovariant whenever the number q is an integer. We denote the branesupporting this Wilson line by W(q):The simple interpretation is that the Chan-Paton spa
e V 
arries 
harge q under thegauge group. Sin
e the super�eld V is not gauge invariant, the Wilson line is not aD-term despite its appearan
e (5.6).For a U(1)k theory, a 
hoi
e of k-tuple of integers de�nes the Wilson line braneW(q1; :::; qk) in the same way. Note that the bulk theta term 
an be 
onverted into aboundary term by Stokes theorem:ZS� v01 d2s = � Z�S� v0 dt;In
luding this into the 
ounter term (5.5) and the Wilson line term, we have the followingboundary LagrangianSbdry = S
:t:g + 12� Z�Sdt ( i2 NXi=1� i� i+ �  i+ i��+ kXa=1  NXi=1 Qai j�ij2 � ra! Im(�a)� kXa=1(�a + 2�qa)h (va)0 � Re(�a) i) :(5.7)The expression (5.7) makes it manifest that the theory depends only on the 
ombination�a + 2�qa, or equivalently, that the theory does not 
hange under�a ! �a + 2�ma; and qa ! qa �ma; (5.8)for integers m1; :::; mk.The 2� periodi
ity in the theta parameters may be lost if the worldsheet S has aboundary. One way to see this is to note that the integral12� ZSv12 d2sis not ne
essarily an integer unless a boundary 
ondition like vj�S= 0 is imposed. In thepresent system, we de
ide not to impose su
h a boundary 
ondition nor (v0�Re(�))j�S= 0,and hen
e the theta parameters indeed do not have the 2� periodi
ity. We will dis
uss77



more on the boundary 
onditions in later se
tions. Thus, �a ! �a+2�ma with no 
hangein qa is a non-trivial operation. In parti
ular, the Wilson line brane W(q1; :::; qk) makesan invariant sense only when the theta parameters are spe
i�ed as a real number (notjust modulo 2�Z).5.3 Intera
tion Of Wilson LinesIt turns out that the Wilson line branes serve as the building blo
ks of more generalsupersymmetri
 boundary intera
tions. The �rst step of the generalization is to take thedire
t sum W = nMi=1 W(qi): (5.9)Namely, instead of just At =Pka=1 qa(va0�Re(�a)) we 
onsider the matrix valued bound-ary intera
tion At = kXa=10B� qa1 . . . qan 1CAh (va)0 � Re(�a) i: (5.10)Under the gauge transformation by a U(1)k valued fun
tion g = (g1; :::; gk), it transformsas iAt ! iAt + �(g)�t�(g)�1 with�(g) = 0B� gq1 . . . gqn 1CA ; (5.11)where gq := gq11 � � � gqkk . Simply put, the Chan-Paton spa
e V of the brane �ki=1W(qi)
arries the representation � of the gauge group T �= U(1)k. Note that the At 
an bewritten su

in
tly asAt = kXa=1 ��(ea)h (va)0 � Re(�a) i = ���v0 � Re(�)�;where �� is the in�nitesimal form of �, de�ned by ��(X) = �i ddt�( eitX)���t=0 for an elementiX of the Lie algebra of the gauge group.Just as in various (2; 2) theories 
onsidered in Se
tion 2, we may also introdu
e aZ2 graded sum of Wilson line branes W = Wev �Wod along with a ta
hyon pro�le Qthat represents an intera
tion between Wilson lines. Namely we introdu
e a Z2 gradedChan-Paton spa
e V = Vev � Vod;78




arrying a representation � of the gauge group, with an odd operator Q on V that dependsholomorphi
ally on the �elds �1; ::; �N . Then one 
an write the boundary intera
tionAt = ���v0 � Re(�)�+ 12fQ;Qyg � 12 NXi=1  i ���iQ+ 12 NXi=1  i ���iQy (5.12)First of all, we would like At to transform under the gauge transformation asiAt �! �(g)iAt�(g)�1 + �(g)�t�(g)�1: (5.13)This is the 
ase if and only if Q satis�es�(g)�1Q(g � �)�(g) = Q(�); (5.14)where g �� is the gauge transform of � = (�1; :::; �N), given by (gQ1�1; :::; gQN�N). Underthis 
ondition, At is N = 2B supersymmetri
 if and only if Q squares to the identitytimes a 
onstant, Q2 = 
 � idV.R-symmetryThe linear sigma model without superpotential has a ve
tor U(1) R-symmetry. We
onsider the R-symmetry that a
ts trivially on �i's even though the model usually hasother symmetries with whi
h the R-symmetry 
ould be dressed. This is motivated by thefa
t that the bulk theory generi
ally redu
es to a large volume sigma model for whi
h wede
ided to respe
t the R-symmetry su
h that the target 
oordinates have R-
harge zero.(See Se
tion 2.2.2.) We restri
t our attention to branes that preserve this ve
tor U(1)R-symmetry.Sin
e Q enters into the super
harge Q, we would like Q to have R-
harge 1. Namely,we would like to have an a
tion of U(1) R-symmetry on the Chan-Paton spa
e V, givenby a matrix R(�) su
h that R(�)Q(�)R(�)�1 = �Q(�): (5.15)This together with Q2 = 
 � idV requires Q2 = 0: (5.16)We would like the R-a
tion to 
ommute with the gauge group a
tion,R(�)�(g) = �(g)R(�): (5.17)79



Under the 
ondition (5.15), the Q-dependent part ofAt is invariant under the R-symmetrywhen 
ombined with the 
onjugation by R(�), and under the 
ondition (5.17), the re-manining part ��(v0�Re(�)) is also invariant. As in the 
ase of non-linear sigma models(see Se
tion 2.2.2), we may assume that R(�) is a genuine representation of U(1) and is
ompatible with the Z2 grading, so that the eigenvalues are �j for some integer j whi
h iseven (resp. odd) for elements of Vev (resp. Vod). If we denote by Vj the R(�) = �j partof V, we have V = jmaxMj=jmin Vj: (5.18)with Vev = Mj: evenVj; and Vod = Mj: oddVj:By the 
ommutativity with gauge group (5.17), ea
h Vj 
orresponds to a dire
t sumWj ofWilson line branes. If we order the subspa
es Wj by in
reasing R-
harge the intera
tionQ has the blo
k-o� diagonal form:
Q = 0BBBBBB� 0 djmax 0 : : : 0 00 0 djmax�1 : : : 0 0... . . . . . . ...0 0 0 : : : 0 djmin+10 0 0 : : : 0 0

1CCCCCCA ; (5.19)
where dj denotes the intera
tion term between Wj�1 and Wj.As usual, there is an ambiguity in the 
hoi
e of R(�) | it 
an be repla
ed by �2R(�)without violating any of the above 
ondition. However, this of 
ourse does not 
hange thephysi
al property of the brane. Nevertheless it is sometimes useful to keep this informationof the R-symmetry a
tion. An R-graded D-braneB, a brane with this additional informa-tion, is determined by the triple (W; Q;R) or equivalently by the quartuple (V; Q; �; R).Note that the information on B 
an ni
ely be en
oded as a 
omplexC(B) : � � � dj�1�!Wj�1 dj�!Wj dj+1�!Wj+1 dj+2�! � � � : (5.20)Ea
h Wj is a dire
t sum of Wilson line branes.
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5.4 Matrix Fa
torizationsLet us now dis
uss D-branes in the linear sigma model with a non-zero superpotentialW . The supersymmetry transformation of the bulk F-term is given by the Warner term:Æ ZSd2sLW = �Re Z�Sdt NXi=1 � i�W��i (5.21)As in LG models, the 
an
ellation is done by a matrix fa
torization of W . Let us 
onsidera Z2 graded sum of Wilson line branes with a polynomial ta
hyon pro�le. Namely, a Z2graded Chan-Paton spa
e, V = Vev �Vod, an odd operator Q on V whi
h is a polynomialin � = (�1; :::; �N), and a representation � of the gauge group T �= U(1)k on V, whi
hobey the gauge invarian
e 
ondition�(g)�1Q(g � �)�(g) = Q(�): (5.22)Then the 
orresponding boundary intera
tionAt = ���v0 � Re(�)� + 12fQ;Qyg � 12 NXi=1  i ���iQ + 12 NXi=1  i ���iQytransforms under the N = 2B supersymmetry asÆAt = �Re( NXi=1 �� i ���iQ2�� [�Qy; Q2℄)+ iDt��Q+ �Qy�� i�_�Q+ _�Qy�: (5.23)The �rst term 
an
els the Warner term if and only if Q is a matrix fa
torization of W ,Q2 = W � idV: (5.24)(The se
ond and the third terms of (5.23) are as before.)We fo
us our attention to bulk theories with a ve
tor U(1) R-symmetry with anintegrality that is 
ompatible with the statisti
s of operators. Ve
tor R-symmetry requiresthat the superpotentialW is quasi-homogeneous. Namely, there is a one-parameter groupof linear transformations of the variables � 7! R�(�) 
ommuting with the gauge symmetryR�(g � �) = g �R�(�); (5.25)su
h that W (R�(�)) = �2W (�): (5.26)Note that there is an ambiguity in R� | it 
an be modi�ed by the gauge symmetry.Integrality 
ompatible with statisti
s means that the R-
harges of operators or of NS-NS81



states are integral and are 
onguruent modulo 2 to their spins. This is the 
ase when R�for � = e�i is trivial, R e�i(�) = �; (5.27)or 
an be made trivial with the help of modi�
ation by a gauge transformation, in thephase where the theory redu
es to a sigma model with large volume limit. Thus, weassume both (5.26) and (5.27) in the rest of this paper. This is 
ertainly the 
ase whenthe superpotential is designed to engineer a hypersurfa
e W = PG(X) or a 
ompleteinterse
tion of hypersurfa
es W =Pl�=1 P�G�(X) in a tori
 variety: R�(p; x) = (�2p; x)satis�es the 
ondition.We would like the branes to respe
t this R-symmetry and integrality. The 
onditionof R-symmetry is that Q has R-
harge 1. Namely, there is a one parameter group of linearoperators R(�) on the Chan-Paton spa
e V 
ommuting with the gauge symmetryR(�)�(g) = �(g)R(�); (5.28)su
h that R(�)Q(R�(�))R(�)�1 = �Q(�): (5.29)Integrality means that the R-grading of NS-states and operators is integral and redu
esmodulo 2 to the original Z2 grading. Let us take two branes with R-symmetry, (Vi; Qi; �i)with Ri, i = 1; 2. The requirement in the polynomial se
tor isR2( e�i)'(R e�i(�))R1( e�i)�1 = (�1)j'j'(�) (5.30)for any polynomial ' of �1; :::; �N with values in Hom(V1;V2) whi
h is gauge invariant.In the frame where (5.27) holds, this means that R1( e�i) and R2( e�i) are equal to the Z2grading operators �1 and �2 of V1 and V2 (up to a 
ommon 
onstant whi
h 
an be setequal to 1). Thus, we require thatR( e�i) = �V (the Z2-grading of V); (5.31)in the frame where (5.27) holds. In parti
ular, this means R( e2�i) = (�V)2 = idV. Namely,the eigenvalues of R(�) are �j where j is an integer whi
h is even (resp. odd) on Vev (resp.Vod). As usual, the repla
ement R(�) ! �2R(�) does not 
hange the physi
al propertyof the branes, and we 
all a brane with the additional information R(�) an R-gradedD-brane.As an example, let us expli
itly write down the data of an R-graded D-brane inthe U(1) gauge theory with the �elds P;X1; :::; XN of 
harge �N; 1; : : : ; 1 having the82



superpotential W = PG(X1; :::; XN) where G(X) is a homogeneous polynomial of degreeN . Choosing a basis of the Chan-Paton spa
e where the �rst half are even and the latterhalf are odd, it is given by (Q; �; R)Q(p; x) =  0 f(p; x)g(p; x) 0 ! ; Q(p; x)2 = pG(x)12` (5.32)�(g) = 0B� gq1 0. . .0 gq2` 1CA ; (5.33)R(�) = 0B� �j1 0. . .0 �j2` 1CA ; R( e�i) =  1` 00 �1` ! ; (5.34)su
h that �(g)�1Q(g�Np; gx)�(g) = Q(p; x); (5.35)and R(�)Q(�2p; x)R(�)�1 = �Q(p; x): (5.36)5.5 A First Look At The Boundary ConditionLet us take a �rst look at the boundary 
ondition of the bulk �elds. We postpone thedis
ussion of the ve
tor multiplet �elds to Se
tion 7, as that requires some understandingof the quantum theory. Here we fo
us on the 
ondition on the matter 
hiral multiplet�elds, treating the ve
tor multiplet �elds as ba
kgrounds.It is straightforward to 
he
k that the following set of boundary 
onditions are invariantunder the N = 2B supersymmetry:D1�� Im(�)� = 0; + =  �;D1( + +  �)� (�+ + ��)�� Im(�)( + +  �) = 0;F = 0: (5.37)Here we 
onsidered 
harge 1 �elds in a U(1) gauge theory. The generalization is obvious.If there is no superpotential W and no boundary intera
tion Q, this is also 
ompatiblewith the variational equation of the a
tion: The Im(�)j�j2 term in the boundary 
ounterterm (5.5) deforms the ordinary Neumann 
ondition D1� = 0 to D1� = Im(�)�.83



If there is a superpotential W or a boundary intera
tion Q, the variational equation
hanges and the boundary 
onditions will be modi�ed. However, as long as we 
an treatthe intera
tions W and Q as perturbation, we 
an still use the 
onditions (5.37) withoutmodi�
ations. In parti
ular, when we dis
uss the e�e
tive theory on the Coulomb bran
hin Se
tion 6, the 
harged matter multiplets are heavy and hen
e W and Q, whi
h aregeneri
ally of high powers in the matter �elds, 
an be treated as perturbation. In theliterature, perturbative treatment of boundary intera
tion is widely used. In studyingthe renormalization group 
ow of the spa
etime ele
tromagneti
 potential, one 
an useeither the \
orre
t" (mixed Diri
hlet-Neumann) boundary 
ondition or the \in
orre
t"Neumann 
ondition [63℄. For a non-Abelian gauge group, the latter approa
h turns outto be more eÆ
ient and leads us qui
kly to the Yang-Mills equation at leading order inthe �0 expansion [64℄.The treatment of the auxiliary �eld needs some 
are in this approa
h. The boundary
ondition F = 0 from (5.37) may appear too strong in the presen
e of the superpotentialW : It appears to require W 0 = 0 at the boundary sin
e the bulk equation of motionreads W 0 = �F . But that would be in
onsistent with the free boundary 
ondition for� and would 
ompletely 
hange our pi
ture of boundary intera
tion based on matrixfa
torization. However, if we 
arefuly think about the meaning of the equation of motionand the boundary 
ondition, we immediately �nd that there is no need to requireW 0 = 0.To illustrate it, we 
onsider the following toy model:Z dF1 � � �dFn exp �12 nXi;j=1AijFiFj + nXi=1 BiFi! :The equations of motion for Fi's are Fi = Pnj=1(A�1)ijBj. If we impose the 
onditionF1 = 0, we simply loose the F1 integral and obtain a di�erent answer as a fun
tion ofBj's. But we never require Bj's to satisfy Pnj=1(A�1)1jBj = 0. However, there is stillsome subtlety we may need to be aware of. It 
on
erns the supersymmetry variationin the version when the auxiliary �elds are eliminated. To show the essential point, wedes
ribe it in a LG model without gauge intera
tion. The auxiliary �eld F appears in the�-variation of the fermion  �: Æ � = ��F :In the bulk theory after the auxiliary �elds are integrated, we simply set F = �W 0 inthis variation. However, in the presen
e of a boundary and with the above boundary
ondition, we need to set Æ � = ( ��W 0 in the interior0 at the boundary:84



Therefore the variation is in general dis
ontinuous at the boundary. In parti
ular, thevariation of the bulk Lagrangian density will have a delta fun
tion supported at theboundary. In fa
t, this delta fun
tion is 
ru
ial in obtaining the Warner termÆSbulk = � Z�Sdt�12� W 0� ;with the 
orre
t normalization. Without the dis
ontinuity in Æ �, that would be o� by afa
tor of 12 . In the previous treatment where we did not spe
ify the boundary 
onditionand we used the variation Æ � without dis
ontinuity, the 
orre
t Warner term resultswith additional 
ontribution from the variation of the standard boundary term (S
:t:matter inthe gauge theory version). With the boundary 
ondition, that term is absent.5.6 The Ultra-Violet Limit: e = 0In the stri
t limit of vanishing gauge 
oupling e! 0, whi
h 
orresponds to the ultra-violet limit, the linear sigma model be
omes parti
ularly simple. With the standard �eldrede�nition, V ! eV , we see that the ve
tor multiplet �elds de
ouple from the rest ofthe system in the limit e ! 0. Alternatively, the in�nite kineti
 terms simply freeze thegauge multiplet �elds, and we are left with the matter se
tor. The boundary 
ondition(5.37) then be
omes the standard Neumann 
ondition�1� = 0; + =  �;�1( + +  �) = 0;F = 0: (5.38)The D-term potential is turned o� and the matter se
tor is 
ompletely independent ofthe K�ahler moduli. The remnant of the gauge theory is that we respe
t the gauge sym-metry and require that physi
al observables must be gauge invariant. For example, theboundary intera
tion Q must respe
t the gauge invarian
e 
ondition, (5.14) or (5.22). Inthe following we study the 
hiral ring of D-branes in the matter se
tor in this limit.We emphasize that the limit e2 ! 0 is not smooth even in the 
hiral se
tor. In fa
t,we turned o� the D-term potential and altered the theory at in�nity in �eld spa
e, so thateven quantities like the Witten index may jump. Nevertheless, we study the 
hiral ringin this limit as it plays an important rôle, as we will see later, in des
ribing the theorywith �nite gauge 
oupling.We �rst 
onsider the theory with vanishing superpotential. Let us take two D-branesBi = (Vi; Qi; �i; Ri), i = 1; 2. To �nd the spa
e of 
hiral ring elements in the B1-B285



se
tor, we use the zero mode approximation. Namely, the operators in this se
tor areantiholomorphi
 forms with values in Hom(V1;V2) that are gauge invariant,Hzero(B1;B2) = �
0;�(CN ; Hom(V1;V2))�T (5.39)and the super
harge a
ts as the Dolbeault-like operator iQzero' = �'+Q2'�(�1)j'j'Q1.Here, the gauge group a
tion is determined by the a
tion of T on CN as well as onHom(V1;V2) via �1 and �2. Note thatR1 andR2 together with the form-degree determinesa Z-grading on the spa
e under whi
hQzero has degree 1. The spa
e of 
hiral ring elementsof R-degree p is the p-th 
ohomology group Hp(B1;B2) = HpQzero(H�zero(B1;B2)).As before, using the property that any �-
losed form of positive degree is �-exa
ton CN , we 
an use the holomorphi
 or polynomial trun
ation where the spa
e (5.39) isrepla
ed by the spa
e of T -invariant holomorphi
 or polynomial fun
tions with values inHom(V1;V2) and the super
harge a
tion is simply iQpol' = Q2' � (�1)j'j'Q1. In this
ontext, it is 
onvenient to introdu
e the notion of graded rings and graded modules. Thegauge group a
tion introdu
es a grading by k-integers, or Zk-grading, in the polynomialring R = C[�1; :::; �N ℄:An element of R has degree (n1; :::; nk) if it has 
harge (n1; :::; nk) under the gauge groupT . For example, the variable �i, whi
h has gauge 
harge Qai under the a-th U(1) fa
tor ofT �= U(1)k, has degree (Q1i ; :::; Qki ). The degree is additive with respe
t to the produ
t,and in this sense it is a graded ring. (More on mathemati
s will be dis
ussed in Se
tion 9.)For ea
h representation (V; �) of the gauge group T , we introdu
e an R-moduleM = R
C V:It is a graded R-module: an element of M has degree (n1; :::; nk) if it has gauge 
harge(n1; :::; nk). For example, if v 2 V transforms as �(g)v = gqv = gq11 � � � gqkk �v, then 1
v 2Mhas degree q = (q1; :::; qk). A homomorphism of graded R-modules f : M1 ! M2 is ahomomorphism ofR-modules that preserves the Zk-grading information. Namely, it sendsan element of M1 of a 
ertain degree to an element of M2 of the same degree. For theMi that 
ome from representations (Vi; �i) of T , this is equivalent to f(b 
 �(g)v1) =(b 
 �2(g))f(1 
 v1) for b 2 R and v1 2 V1. In this language, the spa
e of T -invariantpolynomial fun
tions with values in Hom(V1;V2) is linearly isomorphi
 to the spa
e ofhomomorphisms of graded R-modules,��pol (CN ; Hom(V1;V2))�T �= Homgr-R(M1;M2): (5.40)86



Sin
e Vi are Z-graded by the R-symmetry Ri 
ommuting with T , Vi = �jVji , the R-modules Mi are also Z-graded, Mi = �jM ji , where M ji = R
 Vji . Thus the above spa
eis also Z-graded Hompgr-R(M1;M2) = �jHomgr-R(M j1 ;M j+p2 ). This of 
ourse 
orrespondsto the R-grading of Hzero(B1;B2) restri
ted to the polynomial se
tor. In parti
ular, thespa
e of 
hiral ring elements with R-degree p is given by the p-th 
ohomology groupHp(B1;B2) = HpQpol (Hom�gr-R(M1;M2)):For a brane (V; Q; �; R) or (W; Q;R), the 
omplex of Wilson line branes (5.20) 
an alter-natively be represented as the 
omplex of graded R-modulesC : : : : dj�1�!M j�1 dj�!M j dj+1�!M j+1 dj+2�! : : : : (5.41)Note that the information of the gauge 
harge (or Wilson line) is en
oded in the Zk-grading information of ea
h M j. In this language, the spa
e of 
hiral ring elements isgiven by the spa
e of 
hain maps of the 
omplexes C1 and C2 of graded R-modules up tohomotopy Hp(B1;B2) �= HomHo-gr-R(C1; C2[p℄): (5.42)Here [p℄ is the shift in the R-grading whi
h involves the sign 
ip of Q2 if p is odd. Inshort, the D-brane 
ategory in the 
hiral se
tor for the linear sigma model at e2 = 0 is thehomotopy 
ategory of the 
ategory of 
omplexes of graded R-modules. We will revisitthe latter in Se
tion 9.Let us 
onsider the theory with non-zero superpotential. The data of a D-brane(V; Q; �; R) 
an be en
oded in a two-periodi
 sequen
e of maps of graded R-modulesC : � � � Q�!M ev Q�!Mod Q�!M ev Q�!Mod Q�! � � � (5.43)The R-module M ev=od := R
C Vev=od 
an also be regarded as a module over the gradedring S = R=(W ) in whi
h any multiple of the superpotential W is equal to zero. Then,it is a 
omplex of graded S-modules. Let us take two su
h 
omplexes Ci 
orresponding totwo branes (Vi; Qi; �i), i = 1; 2. The spa
e of 
hiral ring elements for this se
tor is thespa
e of 
o
hain maps of the 
omplexes of graded S-modules up to homotopiesHev(B1;B2) = HomHo-gr-S (C1; C2);Hod(B1;B2) = HomHo-gr-S (C1; C2[1℄);where C2[1℄ is the shift of C2 by one (with the sign 
ip of Q2). When the two branes areR-graded, these spa
es are also Z-gradedHev(B1;B2) = �p:evenHp(B1;B2); Hod(B1;B2) = �p:oddHp(B1;B2):The produ
t stru
ture is given by the 
omposition of 
hain maps.87



6 The Va
uum Energy/Charge On The IntervalIn this se
tion, we study properties of the quantum va
uum of 
ertain massive �eldtheories formulated on an interval and on the half-spa
e. The fo
us is the energy and
harge densities of the va
uum state. For the most part, in Se
tions 6.1 through 6.9, westudy theories that appear in the Coulomb bran
h with large values of � in linear sigmamodels. In Se
tion 6.10, we 
onsider a di�erent type of theories | theories at � = 0with superpotential mass terms. This se
tion has an independent 
avor and 
an be readindependently of the rest of the paper. The reader 
an skip this se
tion in the �rst readingas the result will be quoted when it is used.Notation and 
onvention: In this se
tion alone, we shall use x for the spatial 
oordiateof the worldsheet (instead of s that is used in other se
tions). Also, we take the 
onventionthat the Lagrangian enters into the path-integral weight as exp �i R Ldt�, unlike in otherse
tions where it enters as exp � i2� R Ldt�.6.1 The System At Large �In Se
tion 7, we will study the boundary 
onditions on the Coulomb bran
h, and forthat we need to know the e�e
tive potential for � in the presen
e of a boundary. Forthis purpose, we 
ompute the energy and 
harge of the ground state in the matter se
torde�ned on the interval, 0 � x � L, for a �xed large value of �. The bulk Lagrangian forthe 
ase of a single 
harge 1 �eld isLbulk = Z L0 (jD0�j2 � jD1�j2 + i �� �D�!0 + �D�!1� � + i +� �D�!0 � �D�!1� +�j�j2j�j2 +Dj�j2 �  �� + �  +� �)dx: (6.1)We are interested in the boundary 
ondition preserving an N = 2B supersymmetry.We 
onsider both Ramond and Neveu-S
hwarz (NS) se
tors. In Ramond se
tor the twoboundaries preserve the same super
harge (say Q++Q� both at x = 0 and x = L), whilein NS se
tor the preserved super
harges are opposite (say Q++Q� at x = L and Q+�Q�at x = 0). The boundary intera
tion that preserves the supersymmetry Q+ +Q� at theright boundary x = L isL+right bdry = � Im(�)j�j2 + i2 � + � i2 + � �x=L (6.2)88



with boundary 
onditionD1� = Im(�)�;  + =  �; D1( � +  +) = Im(�)( � +  +): (6.3)At the left boundary, x = 0, the intera
tion preserving Q+ �Q� isL�left bdry = � � Im(�)j�j2 + i2 � + � i2 + � �x=0 (6.4)with boundary 
onditionD1� = �Im(�)�;  + = � �; D1( � �  +) = �Im(�)( � �  +): (6.5)We �rst turn o� the gauge �eld and auxiliary �eld, v� = D = 0, and assume that � islarge and 
onstant. We often use the notaionM = j�j; S = Im(�); pM2 � S2 = jRe(�)j:6.2 Mode ExpansionsWe denote b = ( + +  �)=p2 and 
 = ( � �  +)=p2. The boundary 
ondition onthe �elds �; b; 
 in Ramond and NS se
tors are(R) : �1� = S�;�1b = Sb;
 = 0 9>=>; both at x = 0; L; (6.6)(NS) : �1� = �S�b = 0;�1
 = �S
; 9>=>; at x = 0; �1� = S��1b = Sb;
 = 0 9>=>; at x = L; (6.7)If we use these 
onditions, the total Lagrangian 
an be written asLbulk + Lbdry = Z L0 " j _�j2 � ����21 + j�j2��+ i	y _	� 	yD	#dx1;where 	 :=  b
 ! ; D :=  Re(�) �i�1 � iIm(�)�i�1 + iIm(�) �Re(�) !In both Ramond and NS se
tors, the kineti
 operators, ��21 for � and D for 	, arehermitian with respe
t to the standard inner produ
t. Thus, we 
an expand the �elds byeigenve
tors of these operators. 89



6.2.1 Ramond Se
torWe �rst 
onsider the Ramond se
tor (6.6). For the s
alar �eld �, the boundary
onditions on the plane wave f(x) = a sin(kx) + b 
os(kx) readka = Sb; ka 
os(kL)� kb sin(kL) = Sa sin(kL) + Sb 
os(kL):Using the �rst equation, the se
ond equation simpli�es to (k2 + S2) sin(kL) = 0 and we�nd k = �n=L, n = 1; 2; 3; :::. Thus, the plane waves obeying the boundary 
ondition arefn(x) = kn 
os(knx) + S sin(knx)pk2n + S2 ; kn = �nL : (6.8)There is also a single non-os
illating mode:f0(x) =r SLe2SL � 1 eSx: (6.9)For S � 1=L (resp. S � �1=L), this mode is lo
alized near the right (resp. left)boundary. It is a 
onstant mode for S = 0.The fun
tions fn(x), n = 0; 1; 2; ::: are normalized asZ L0 fn(x)fm(x)dx = L2 Æn;m:Sin
e fn(x) are eigenfun
tions for the kineti
 operator ��21 , we 
an expand the �eld � as�(x) = 1Xn=0r 2L�nfn(x);so that the Lagrangian is written asLboson = 1Xn=0 � j _�nj2 � (M2 + k2n)j�nj2 � ; (6.10)where it is understood that k20 = �S2.Let us next study the mode expansion of fermions. The boundary 
ondition for b isexa
tly the same as for the s
alar � and thus it 
an be expanded by fn(x), n = 0; 1; 2; :::.The 
ondition of 
 is easier to solve:gn(x) = sin(knx); kn = �nL (n = 1; 2; 3:::): (6.11)90



On the subspa
e b / fn(x) and 
 / gn(x), for n = 1; 2; 3; :::, the kineti
 operator is writtenas D =  Re(�) �ipk2n + S2ipk2n + S2 �Re(�) ! ;and it is diagonalized by	n;�(x) = 0BB� rpM2+k2n�Re(�)LpM2+k2n fn(x)�irpM2+k2n�Re(�)LpM2+k2n gn(x) 1CCA ; D = �pM2 + k2n: (6.12)The n = 0 mode is non-os
illating,	0(x) =  q 2Lf0(x)0 ! ; D = Re(�): (6.13)If we expand the �eld 	 as	(x) = b0	0(x) + 1Xn=1 �bn;+	n;+(x) + byn;�	n;�(x)�the Lagrangian is expressed asLfermion = iby0 _b0 � Re(�)by0b0+ 1Xn=1 � ibyn;+ _bn;+ + ibyn;� _bn;� �pM2 + k2n byn;+bn;+ +pM2 + k2n bn;�byn;� � : (6.14)6.2.2 Neveu-S
hwarz Se
torLet us now 
onsider the NS se
tor (6.7). For the plane-wave h(x) = a sin(kx) +b 
os(kx), the boundary 
ondition for � readska = �Sb; ka 
os(kL)� kb sin(kL) = Sa sin(kL) + Sb 
os(kL):We �nd that the allowed wavenumbers k are
ot(kL) = S2k � k2S : (6.15)There are solutions kn labelled by an integer n su
h thatkn ! �nL as n!1;91
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h we �nd that the allowed value of � is
oth(�L) = S2� + �2S : (6.17)See Fig. 9 for the pattern of solutions to this equation. For S < 0, there is no solutionother than � = 0 for whi
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κ κSSFigure 9: Solving (6.17), i.e., e2�L = ��+S��S�2.These additional modes 
an be written ash0(x) =s �0L2(1� e�2�0L + 2�0L e��0L)� e�0(x�L) + e��0x� S � 0; (6.18)h1(x) =s �1L2(1� e�2�1L � 2�1L e��1L)�� e�1(x�L) + e��1x� S � 2=L: (6.19)Note that h0(x) = q12 at S = 0 and h1(x) = q32 L�2xL at S = 2=L. For S � 1=L, thesemodes are lo
alized near the two boundaries.The modes are labeled by n = 0; 1; 2; ::: at any value of S | for S < 0 they are allos
illating modes while for S > 2=L the �rst two are exponential modes. These fun
tionsare normalized as Z L0 hn(x)hm(x) = Æn;mL2 ; n;m = 0; 1; 2; 3; :::If we expand the �eld as �(x) = 1Xn=0r 2L�nhn(x);the Lagrangian reads as Lboson = 1Xn=0 � j _�nj2 � (M2 + k2n)j�nj2 � ; (6.20)where it is understood that k20 = ��20 and/or k21 = ��21 whenever it applies.The boundary 
onditions of the fermions b, 
 are satis�ed by sin(kx) and sin(k(x�L))respe
tively, provided k obeys the equationtan(kL) = kS : (6.21)93
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1 / L 1 / LFigure 10: Flow of modes as S is varied | the Dira
 fermion (NS se
tor): the s
ale forthe 
ase 0 < S < 1=L is di�erent.There are solutions kr labelled by a half integer r su
h thatkr ! �rL as r !1:The starting number r depends on the value of S (See Fig. 10):S < 1=L r = 12 ; 32 ; 52 ; 72 ; : : : ;S � 1=L r = 32 ; 52 ; 72 ; : : : ;For ea
h su
h kr, we have the plane-wavesgr(x) = sin(krx)�1� SL(k2r+S2)��1=2 ;hr(x) = gr(L� x) = kr 
os(krx)� S sin(krx)pk2r + S2 �1� SL(k2r+S2)��1=2 ;whi
h are normalised asZ L0 gr(x)gs(x)dx = Z L0 hr(x)hs(x)dx = Ær;sL2 :On this subspa
e of wavenumber kr, the kineti
 operator D is expressed asD =  Re(�) ipk2r + S2�ipk2r + S2 �Re(�) ! ;and it is diagonalized by	r;�(x) = 0BB� rpM2+k2r�Re(�)LpM2+k2r gr(x)�irpM2+k2r�Re(�)LpM2+k2r hr(x) 1CCA ; D = �pM2 + k2r : (6.22)94
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SS κ κFigure 11: Solving (6.23), i.e., e2�L = S+�S�� .There may also be eigenmodes spanned by exponential fun
tions e��x | there is indeedsu
h a mode for � solving tanh(�L) = S� : (6.23)There is no non-zero solution if S < 1=L, and there is a single non-zero solution whenS > 1=L (see Fig. 11). It approa
hes S rapidly as SL grows,� � S tanh(SL); SL� 1:Thus, this exponential mode 
an be regarded as the repla
ement of the r = 12 os
illatingmode that is missing for S � 1=L. The modes are obtained by simply repla
ing k 12 by i�in 	 12 ;�(x), expli
itly,	 12 ;�(x) = 2p� e��Lp1� e�4�L � 4�L e�2�L 0� qpM2��2�Re(�)pM2��2 sinh(�x)�iqpM2��2�Re(�)pM2��2 sinh(�(x� L)) 1A ;D = �pM2 � �2: (6.24)In the limit S & 1=L, � approa
hes zero but 	 12 ;� approa
hes a non-zero linear fun
tion.Thus, for any value of S the modes are parametrized by positive half-integers r = 12 ; 32 ; ::::.If we expand the �eld 	 as	(x) = Xr= 12 : 32 ;:::�br;+	r;+(x) + byr;�	r;�(x)� ;the Lagrangian is expressed asLfermion = Xr= 12 ; 32 ;:::� ibyr;+ _br;+ + ibyr;� _br;� �pM2 + k2r byr;+br;+ +pM2 + k2r br;�byr;� � ;(6.25)where it is understood that k212 = ��2 if S � 1=L.95



6.3 The Ground StateLet us next quantize the system. Looking at the Lagrangian, (6.10) and (6.14) in theRamond se
tor, (6.20) and (6.25) in the NS se
tor, it is 
lear what to do.The bosoni
 system is simply the sum of harmoni
 os
illators. For ea
h mode n weintrodu
e 
reation and annihilation operators[ain; (ajm)y℄ = Æi;jÆn;m; [ain; ajm℄ = [(ain)y; (ajm)y℄ = 0; (6.26)where we need two sets, i; j = 1; 2, sin
e we have 
omplex (two real) os
illators. Thevariables �n = (�1n + i�2n)=p2 and their 
onjugate momenta 
an be written as�in = 1q2pM2 + k2n (ain + (ain)y); _�in =spM2 + k2n2 (�iain + i(ain)y);or equivalently, for � = (�1 + i�2)=p2,�i(x) =Xn s 1LpM2 + k2n (ain + (ain)y)Fn(x);_�i(x) =Xn spM2 + k2nL (�iain + i(ain)y)Fn(x);where Fn(x) = fn(x) (resp. hn(x)) in the Ramond se
tor (resp. NS se
tor). The Hamil-tonian of the system is the standard oneHboson = 1Xn=0 Xi=1;2pM2 + k2n�(ain)yain + 12� : (6.27)For the fermion system, it is simply to require the anti
ommutation relations to themode 
oeÆ
ientsfbn;�; bym;�g = Æn;mÆ�;�; fbn;�; bm;�g = fbyn;�; bym;�g = 0; (6.28)where the indi
es �; � are for �. In the Ramond se
tor, we also have the non-os
illatingmodes, b0 and by0, whi
h obey fb0; by0g = 1; b20 = (by0)2 = 0; (6.29)and anti
ommute with all others, bn;� and byn;�. The Hamiltonian is given byHfermion =Xn;� pM2 + k2n�byn;�bn;� � 12� ; (6.30)96



with the addition of Hfermion 0 = Re(�)�by0b0 � 12� ; (6.31)in the Ramond se
tor. Here, we have 
hosen the standard operator ordering byb !12 [by; b℄ = byb� 12 .The ground state of the system is the state j0i annihilated by all annihilation operatorsainj0i = bn;�j0i = 0: (6.32)In the Ramond se
tor, we need an additional 
ondition | if Re(�) > 0, the ground statemust be annihilated by b0 while it must be annihilated by by0 if Re(�) < 0:b0j0i = 0; Re(�) > 0;by0j0i = 0; Re(�) < 0: (6.33)The energy gap to the �rst ex
ited state is pM2 + k20. In the Ramond se
tor k20is understood as �S2 and thus the gap is pM2 � S2 = jRe(�)j. For Re(�) = 0, thegap vanishes. In this 
ase, the n = 0 exponential modes for the s
alars have vanishingpotential, see (6.10), and the ground state wavefun
tion is not normalizable in the �0dire
tions. In addition, there is a two-fold degenera
y from the exponential mode fromthe fermion. In the NS se
tor, k20 is non-negative for S � 0 but is negative, k20 = ��20, forS > 0. As Re(�) approa
hes zero while S is positive, M2 + k20 =M2 � �20 turns negative(this o

urs when jRe(�)j � 2S e�SL=2 provided SL � 1). In su
h a 
ase, the potentialfor the n = 0 exponential mode is unbounded below, see (6.20), and there is no groundstate in the system. The appearan
e of the zero mode or unstable mode at spe
ial valuesof � is extremely important and plays a 
ru
ial rôle later in this paper. For now, we fo
uson the 
ases where there is a unique normalizable ground state and study its energy and
harge.6.4 The EnergyLet us 
ompute the energy and its density of the ground state.
97



6.4.1 Total EnergyR se
torThe 
omputation in the Ramond se
tor is extremely simple: For ea
h non-zero mode,the positive energy from the boson and the negative energy from the fermion 
an
el out;pM2 + k2n�12 + 12� +pM2 + k2n��12 � 12� = 0:The ground state energy from the bosoni
 zero mode ispM2 + k20 �12 + 12� = pM2 � S2 =jRe(�)j. The ground state energy from the fermioni
 zero mode is Re(�) ��12� if Re(�) > 0and Re(�) �12� if Re(�) < 0 (see (6.33)), that is, �12 jRe(�)j for any 
ase. They fail to
an
el against ea
h other, jRe(�)j � 12 jRe(�)j = 12 jRe(�)j: Thus, the gound state energyin the Ramond se
tor is Eva
 = 12 jRe(�)j (6.34)NS Se
torThe energy of the ground state in the NS se
tor is less straightforward to 
ompute,but it is possible to �nd the answer in the limit L!1.Let us �rst start with the S = 0 
ase where the bosons have integer modes kn = �nL ,n = 0; 1; 2; ::: and fermions have half-integer modes kr = �rL , r = 12 ; 32 ; 52 ; :::. The groundstate energy is Eva
 = 1Xn=0pM2 + k2n � Xr= 12 ; 32 ;:::pM2 + k2r (6.35)This is in�nity minus in�nity and we need an appropriate regularization to de�ne thesum. We do this using the fa
t that the sum overIn := rM2 + ��nL �2 � 12vuutM2 + � �n� 12�L !2 � 12vuutM2 + � �n+ 12�L !2= �M22 � �2L�2�M2 + ��nL �2�� 32 + 1L3O 1��nL �2!
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is �nite. Namely, we evaluate the sum (6.35) asEva
 = 12 1Xn=00B�rM2 + ��nL �2 �vuutM2 + � �n + 12�L !21CA+128><>:M + 1Xn=10B�rM2 + ��nL �2 �vuutM2 + � �n� 12�L !21CA9>=>;= M2 + 12  M �rM2 + � �2L�2!+ 1Xn=1 In= M2 +O� 1ML2� +O� 1L�Thus, in the limit L!1 we havelimL!1Eva
 = M2 = 12 jRe(�)j: (6.36)The validity of this regularization will be examined momentarily.Let us move on to the 
ase with non-zero S. We are interested in the limit of largeL for a �xed S, so that we may assume jSj � 1=L. We divide the total energy into twoparts, the part E 0va
 
oming from the os
illating or 
onstant modes and the part 
omingfrom the exponential modes. The latter part is present for S > 0 but is absent for S � 0.To �nd E 0va
, we �rst 
ompute the derivative ��SE 0va
 and then integrate,�E 0va
�S =Xn 0 knpM2 + k2n �kn�S �Xr 0 krpM2 + k2r �kr�S :The sum is over n = 0; 1; 2; :::, r = 12 ; 32 ; ::: if S � 0 while it omits n = 0; 1 and r = 12if S � 1=L. The equations determining kn and kr are in (6.15) and (6.21) respe
tively,from whi
h it follows�kn�S = � 1L 2knk2n + S2 (1 + � � � ); �kr�S = � 1L krk2r + S2 (1 + � � � );where + � � � are terms that vanish as L ! 1 (in what follows su
h terms will not bementioned). Thus we �nd�E 0va
�S = �2Xn 0 1L k2npM2 + k2n(k2n + S2) +Xr 0 1L k2rpM2 + k2r(k2r + S2)L!1�! � Z 10 dk� k2pM2 + k2(k2 + S2)99



This is logarithmi
ally divergent and we introdu
e a 
ut-o� ��M :�E 0va
�S = � Z �0 dk� � 1pM2 + k2 � S2pM2 + k2(k2 + S2)�= � 1� log�2�M �+ Z �0 dk� S2pM2 + k2(k2 + S2)= � 1� log�2�M �+ 1� tan � ���2 � �� ; S >< 0:where S =M sin �, with 0 < � < � or �� < � < 0. Integrating, we �nd for �S > 0E 0va
(S)� E 0va
(0�)= �S� �log�2�M �+ 1�� pM2 � S22 � M2 + pM2 � S2� ar
tan� SpM2 � S2� :Here, ar
tangent is assumed to take values between ��2 and �2 . Let us now deter-mine E 0va
(0�). We re
all that the spe
trum of os
illating modes is 
ontinuous as Sapproa
hes 0 from below (the lowest mode 
onverges to the zero mode). Thus we haveE 0va
(0�) = E 0va
(0) = Eva
(0) = M2 . On the other hand, we loose two bosoni
 and onefermioni
 os
illating modes as S is in
reased beyon 2=L. Sin
e ea
h mode 
omes with apair (
omplex for boson and � for fermion), we haveE 0va
(0+) = �2M +M + E 0va
(0) = �M2 :Using these we �ndE 0va
(S) = �S� �log�2�M �+ 1�� pM2 � S22 + pM2 � S2� ar
tan� SpM2 � S2� ;for S > 0S � 0:If S > 0, whi
h a
tually means S � 2=L, we need to add the 
ontribution from theexponential modes,qM2 � �20 +qM2 � �21 �pM2 � �2 ' pM2 � S2:After the addition, the term �pM2�S22 in E 0va
 be
omes just +pM2�S22 for any value of S.In this way, we �nd that the total energy isEva
 = �Im(�)� �log�2�j�j� + 1�+ jRe(�)j2 + jRe(�)j� ar
tan� Im(�)jRe(�)j� : (6.37)100



6.4.2 Energy DensityLet us next 
ompute the va
uum energy density, de�ned as the va
uum expe
tationvalue E(x) = h0jH(x)j0i (6.38)of the Hamiltonian densityH(x) = j _�(x)j2 + �(x)(��2x +M2)�(x) + 12[	(x)y;D	(x)℄:R Se
torIn the Ramond se
tor it isER(x) = 2 1Xn=0 pM2 + k2nL fn(x)2 � 1Xn=0 pM2 + k2nL (fn(x)2 + gn(x)2)= 1Xn=0 pM2 + k2nL (fn(x)2 � gn(x)2)= 1Xn=1 pM2 + k2nL k2n 
os(2knx) + knS sin(2knx)k2n + S2 + pM2 � S2L SLe2SL � 1 e2SxLet us fo
us on the region near the left boundary x = 0, and take the L ! 1 limit. Inthis limit, the last term be
omespM2 � S2L SLe2SL � 1 e2Sx �! 8><>: 0 S > 0M2L ! 0 S = 0�pM2 � S2S e2Sx S < 0:Thus, the density 
an be written in the limit aslimL!1 ER(x) = Z 10 dk� pM2 + k2k2 
os(2kx) + kS sin(2kx)k2 + S2 � �S<0jRe(�)jS e2Sx: (6.39)If x is stri
tly away from the boundary, x > 0, one may pro
eed the 
omputation asfollows:
101



S

Si

i M

−iFigure 12: Deformed 
ontour.limL!1ER(x) = Z 10 dk� pM2 + k2k2 � k � iSk2 + S2 e2ikx + k + iSk2 + S2 e�2ikx�� �S<0jRe(�)jS e2Sx= Z 1�1 dk2�pM2 + k2 kk + iS e2ikx � �S<0jRe(�)jS e2Sx= Z 1M diK2� �ipK2 �M2 � (�ipK2 �M2)� iKiK + iS e�2Kx+�S<02�i2� pM2 � S2(�iS) e2Sx � �S<0jRe(�)jS e2Sx= � Z 1M dK� pK2 �M2 KK + S e�2Kx: (6.40)From the se
ond to the third line, the 
ontour is deformed as in Fig. 12 using the fa
tthat x is stri
tly positive. Note that there is a simple pole at k = �iS only when S isnegative, whi
h produ
es the additional term �S<0(� � � ), whi
h in turn is 
an
eled againstthe 
ontribution from the exponential mode.We see that the density is lo
alized near the boundary x = 0 with widths 1=M . Letus 
ompute the total of this lo
alized energy by integrating the density after the limitL!1. (This is di�erent from integration before the limit, whi
h simply reprodu
es thetotal energy given in (6.34).) Sin
e the integration domain in
ludes x = 0, we must goba
k to the expression (6.39) before the 
ontour deformation of Fig. 12. Also, we need to
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ut o� the momentum integral at k = �:Ex�0 = limR!1Z R0 dx limL!1 ER(x)���
ut o� �= limR!1Z R0 dx �Z �0 dk� pM2 + k2k2 
os(2kx) + kS sin(2kx)k2 + S2 � �S<0jRe(�)jS e2Sx�= limR!1Z �0 dk� pM2 + k2k2 + S2 �k2 sin(2kR)2k + S� 
os(2kR) + 12 �+ �S<0 jRe(�)j2 :At this stage we use limR!1 sin(2kR)2k = �2 Æ(k);and also the fa
t that Z 10 dk� pM2 + k2k2 + S2 
os(2kR)de
ays exponentially as RM;RS ! 1 | as 
an be shown by deforming the 
ontour asin (6.40). Then we �ndEx�0 = S Z �0 dk2� pM2 + k2k2 + S2 + ÆS;0M4 + �S<0 jRe(�)j2 : (6.41)The integral on the right hand side is de�ned to be zero for S = 0. For S 6= 0, it 
an beevaluated;S Z �0 dk2� pM2 + k2k2 + S2= S2� �log�2�M �+ 1�� pM2 � S22� ar
tan� SpM2 � S2� + 14sgn(S)pM2 � S2:Thus the lo
alized energy at x = 0 isEx�0 = Im(�)2� �log�2�j�j�+ 1�� jRe(�)j2� ar
tan� Im(�)jRe(�)j� + 14 jRe(�)j: (6.42)Let us next 
ompute the energy lo
alized near the right boundary x = L, where weuse the 
oordinate y = x� L � 0. Namely, we take the limit L!1 of ER(x) keeping y�nite. Sin
e the wavenumbers are kn = �n=L, we have equations sin(2knx) = sin(2kny)and 
os(2knx) = 
os(2kny) that allow us to write the energy density in the y 
oordinate:ER(x) = 1Xn=1 pM2 + k2nL k2n 
os(2kny) + knS sin(2kny)k2n + S2 + pM2 � S2L SL1� e�2SL e2SyThe limit 
an now be taken straightforwardly:limL!1ER(x) = Z 10 dk� pM2 + k2k2 
os(2ky) + kS sin(2ky)k2 + S2 + �S>0jRe(�)jS e2Sy: (6.43)103



Pro
eeding as before, we �ndlimL!1ER(x) = � Z 1M dK� pK2 �M2 KK � S e2Ky for y < 0 stri
tly; (6.44)andEx�L = limR!1 Z 0�R dy �Z �0 dk� pM2 + k2k2 
os(2ky) + kS sin(2ky)k2 + S2 + �S>0jRe(�)jS e2Sy�= �S Z �0 dk2�pM2 + k2k2 + S2 + ÆS;0M4 + �S>0 jRe(�)j2= �Im(�)2� �log�2�j�j� + 1�+ jRe(�)j2� ar
tan� Im(�)jRe(�)j� + 14 jRe(�)j (6.45)Note that Ex�0 + Ex�L = jRe(�)j2 = Eva
;see (6.34). This means that the total energy 
omes purely from the energies lo
alized atthe two boundaries. This is 
onsistent with the fa
t that the energy density vanishes inthe bulk of the interval 1M � x� L� 1M .NS Se
torLet us next dis
uss the energy density of the ground state in the NS se
tor (6.7).A
tually, we know what to expe
t: At the right boundary x = L, the boundary 
onditionis exa
tly the same as the Ramond boundary 
ondition and thus we should obtain thesame answer as ER(x). The NS 
ondition at the left boundary x = 0 is obtained fromthe Ramond 
ondition at the right boundary x = L, by  �(x) ! � �(L � x), �(x) !�(L � x). Therfore we expe
t that ENS(x) for x 
lose to 0 is obtained from ER(x) at x
lose to L, by the repla
ement x! L� x. To summarize, the expe
tation is
limL!1 ENS(x) =

8>>>>>>>>><>>>>>>>>>:
Z 10 dk� pM2 + k2k2 
os(2ky) + kS sin(2ky)k2 + S2 + �S>0jRe(�)jS e2Syx <� L;Z 10 dk� pM2 + k2k2 
os(2kx)� kS sin(2kx)k2 + S2 + �S>0jRe(�)jS e�2Sxx >� 0; (6.46)

= 8>><>>: � Z 1M dK� pK2 �M2 KK � S e2Ky x < L stri
tly;� Z 1M dK� pK2 �M2 KK � S e�2Kx x > 0 stri
tly;104



and Ex�0 = Ex�L = �S Z �0 dk2�pM2 + k2k2 + S2 + ÆS;0M4 + �S>0 jRe(�)j2= �Im(�)2� �log�2�j�j�+ 1�+ jRe(�)j2� ar
tan� Im(�)jRe(�)j�+ 14 jRe(�)j (6.47)The sum of the two is is nothing but the total energy (6.37) of the NS va
uum.One 
an indeed verify the above expe
tations. We split the density into two parts,the part E 0NS(x) from the os
ilating or 
onstant modes, and the part EexpNS (x) from theexponential modes that are present only for S > 0. We �rst 
onsider the 
ontributionfrom the os
illating/
onstant modes. By de�nition we haveE 0NS(x) = 2Xn 0pM2 + k2nL hn(x)2 �Xr 0pM2 + k2rL (gr(x)2 + hr(x)2):See Se
tion 6.2.2 for the quantities that appears here. In parti
ular, kn and kr are de�nedby the equations (6.15) and (6.21). Let us look at the behaviour near the left boundaryx >� 0, taking the limit L ! 1 for a �nite x. In this limit, the di�eren
e betweenneighboring wavenumbers disappears jkn� kr=n� 12 j < �L ! 0, and we have hn(x) � hr(x)for a �nite kn � kr. Thus we haveE 0NS(x) = Xn 0pM2 + k2nL (hn(x)2 � gn� 12 (x)2) + � � �= Xn 0pM2 + k2nL k2n 
os(2knx)� knS sin(2knx)k2n + S2 + � � �L!1�! Z 10 dk� pM2 + k2k2 
os(2kx)� kS sin(2kx)k2 + S2 ; x >� 0;where + � � � are terms that vanish in the L ! 1 limit. Let us now look near the rightboundary x <� L: take the limit L!1 with y = x� L kept �nite. To do this, we writeeverything as a fun
tion of y. Using the de�ning equation of kn and kr we �ndhn(x) = �kn 
os(kny) + S sin(kny)pk2n + S2 (1 + � � � )gr(x) = �kr 
os(kry) + S sin(kry)pk2r + S2 (1 + � � � )hr(x) = � sin(kry)(1 + � � � ):In the limit L ! 1 the sum over the modes be
omes an integral over k where thedi�eren
e of kn and kr disappears. Noting that hn(x)2 � gr(x)2 6= hr(x)2 for kn � kr, we105



�nd E 0NS(x) = Xn 0pM2 + k2nL (hn(x)2 � hn� 12 (x)2) + � � �= Xn 0pM2 + k2nL k2n 
os(2kny) + knS sin(2kny)k2n + S2 + � � �L!1�! Z 10 dk� pM2 + k2k2 
os(2ky) + kS sin(2ky)k2 + S2 ; x <� L:We next 
onsider the 
ontribution from the exponential modes, whi
h are given by (6.18),(6.19) and (6.24). These fun
tions behave as follows, in the limit L!1 for �nite x and�nite y = x� L,
(�nite x) : 8>>>>>>><>>>>>>>:

h0(x); h1(x)!qSL2 e�Sx;qSL2 e�Sx	 12 ;+(x);	 12 ;�(x)! 8>>>><>>>>:
 00 ! ; 0ip2S e�Sx ! Re(�) > 0 0�ip2S e�Sx ! ; 00 ! Re(�) < 0

(�nite y) : 8>>>>>>><>>>>>>>:
h0(x); h1(x)!qSL2 eSy;�qSL2 eSy	 12 ;+(x);	 12 ;�(x)! 8>>>><>>>>:

 p2S eSy0 ! ; 00 ! Re(�) > 0 00 ! ; p2S eSy0 ! Re(�) < 0The 
ontribution to the energy density isEexpNS (x) = qM2 � �20 2Lh0(x)2 +qM2 � �21 2Lh1(x)2�pM2 � �22 �	 12 ;+(x)y	 12 ;+(x) + 	 12 ;�(x)y	 12 ;�(x)�x�nite�! jRe(�)jS e�2Sx + jRe(�)jS e�2Sx � jRe(�)j2 2S e�2Sx = jRe(�)jS e�2Sxy �nite�! jRe(�)jS e2Sy + jRe(�)jS e2Sy � jRe(�)j2 2S e2Sy = jRe(�)jS e2Sy:The sum E 0NS(x) + EexpNS (x) leads to the expe
ted answer (6.46) in the limit L!1.
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6.5 The ChargeLet us 
ompute the 
harge of the ground state. The 
harge density operator is de�nedby j0 = i2f�; _�g � i2f�; _�g+ 12[	y;	℄ (6.48)and we want to 
ompute the eigenvalue of the total 
hargeQ = Z L0 j0(x)dxof the ground state j0i and the va
uum expe
tation value of the density�(x) = h0jj0(x)j0i:R Se
torUsing the mode expansion, we �nd that the density operator is expressed asj0(x) = 1Xn;m=0 iL �M2 + k2mM2 + k2n � 14fn(x)fm(x) �(a1n + a1yn )(a2m � a2ym)� (a2n + a2yn )(a1m � a1ym)�+ 1Xn;m=0 12 hbyn;+; bm;+i	n;+(x)y	m;+(x)� 12 hbym;�; bn;�i	n;�(x)y	m;�(x)+bn;�bm;+	n;�(x)y	m;+(x) + byn;+bym;�	n;+(x)y	m;�(x)!; (6.49)in whi
h we set 	0;+(x) = 	0(x) and 	0;�(x) = 0, and the total 
harge isQ = 1Xn=1 h i �a1yn a2n � a2yn a1n�+ byn;+bn;+ � byn;�bn;� i+ � i�a1y0 a20 � a2y0 a10� + by0b0 � 12 � :(6.50)The ground state j0i is annihilated by b0 if Re(�) > 0 and by by0 if Re(�) < 0. Thus, ithas 
harge Qva
 = ( �12 Re(�) > 012 Re(�) < 0 = �12sgnRe(�): (6.51)
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The 
harge density is�R(x) = 1Xn=1 � �12	n;+(x)y	n;+(x) + 12	n;�(x)y	n;�(x) �� 12sgnRe(�)	0(x)y	0(x)= � 1Xn=1 Re(�)LpM2 + k2n (fn(x)2 � gn(x)2)� 12sgnRe(�) 2S e2Sxe2SL � 1= � 1Xn=1 Re(�)LpM2 + k2n k2n 
os(2knx) + knS sin(2knx)k2n + S2 � sgnRe(�) S e2Sxe2SL � 1 : (6.52)Let us look at the neighborhood of the left boundary x = 0 by taking the limit L ! 1for a �nite x. In this limit we havelimL!1�R(x) = � Z 10 dk� Re(�)pM2 + k2 k2 
os(2kx) + kS sin(2kx)k2 + S2 + �S<0sgnRe(�)S e2Sx:(6.53)If x is stri
tly away from the boundary x > 0, it islimL!1 �R(x) = � Z 1M dK� Re(�)KpK2 �M2(K + S) e�2Kx: (6.54)We see that the 
harge is lo
alized near the boundary with width 1=M . The total lo
alized
harge is Qx�0 = limR!1 Z R0 limL!1 �R(x)dx= sgn(Re(�)) � 12� ar
tan� Im(�)jRe(�)j�� 14 � : (6.55)Let us next look at the neighborhood of the right boundary x = L. In the limit L!1for a �nite y = x� L, we havelimL!1 �R(x) = � Z 10 dk� Re(�)pM2 + k2 k2 
os(2ky) + kS sin(2ky)k2 + S2 � �S>0sgnRe(�)S e2Sy:(6.56)If x is stri
tly away from the boundary x < L, i.e. y < 0, it islimL!1 �R(x) = � Z 1M dK� Re(�)KpK2 �M2(K � S) e2Ky: (6.57)Again, the 
harge is lo
alized near the boundary. The total isQx�L = limR!1Z 0�R limL!1�R(x)dy= sgn(Re(�)) �� 12� ar
tan� Im(�)jRe(�)j�� 14 � : (6.58)We note that the sum of the lo
alized 
harges Qx�0 + Qx�L reprodu
es the total 
hargegiven by (6.51). 108



NS Se
torThe 
harge density operator j0(x) 
an be expanded in terms of the modes as in (6.49),from whi
h it follows thatQ =Xn i � a1yn a2n � a2yn a1n �+Xr � byr;+br;+ � byr;�br;� � : (6.59)In parti
ular, the va
uum has zero total 
harge,Qva
 = 0: (6.60)The 
harge density of the ground state 
an be determined either dire
tly or by employingthe symmetry argument as in the 
omputation of the energy density. In the latter method,we 
onsider the transformation  �(x) ! � �(L � x), �(x) ! �(L � x) that maps theRamond boundary 
ondition at x = L to the NS boundary 
ondition at x = 0. Note thatit 
ips the sign of the 
harge density, j0(x)! �j0(x� L). In either way we �nd�NS(x) = �Xr 0 Re(�)LpM2 + k2r (gr(x)2 � hr(x)2)� 12�S>0 �jj	 12 ;+(x)jj2 � jj	 12 ;�(x)jj2�
L!1�! 8>>>>>>>>><>>>>>>>>>:

� Z 10 dk� Re(�)pM2 + k2 k2 
os(2ky) + kS sin(2ky)k2 + S2 � �S>0sgnRe(�)S e2Syx <� L;Z 10 dk� Re(�)pM2 + k2 k2 
os(2kx)� kS sin(2kx)k2 + S2 + �S>0sgnRe(�)S e�2Sxx >� 0;= 8>><>>: � Z 1M dK� Re(�)KpK2 �M2(K � S) e2Ky x < L stri
tly;Z 1M dK� Re(�)pK2 �M2(K � S) e�2Kx x > 0 stri
tly;and Qx�L = �Qx�0 = sgn(Re(�)) �� 12� ar
tan� Im(�)jRe(�)j�� 14 � (6.61)In Fig. 13, we plot the graph of the fun
tion (6.58)=(6.61) that shows the 
harge lo
alizedat the right boundary, for both Ramond and NS se
tors.
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Figure 13: Charge lo
alized near the right boundary of an interval6.6 Note On SupersymmetryLet us 
omment on the supersymmetry of the states. The system in the Ramondse
tor has an N = 2B supersymmetry whi
h transforms the �elds asÆ� = p2�b;Æb = �p2�(i�t�+Re(�)�);Æ
 = ip2�(�x�� Im(�)�):By Noether pro
edure we �nd the super
harges generating them;Q = Q0 + 1Xn=1Qn (6.62)whereQ0 = ip2��i _�0 +Re(�)�0� b0= 8<: ip2jRe(�)j�a1y0 � ia2y0 �b0 Re(�) > 0;�ip2jRe(�)j�a10 � ia20�b0 Re(�) < 0; (6.63)Qn = ispM2 + k2n +Re(�)pM2 + k2n ��i _�n +pM2 + k2n�n� bn;"+ispM2 + k2n � Re(�)pM2 + k2n ��i _�n �pM2 + k2n�n� byn;#= iqpM2 + k2n +Re(�)bn;+ �a1yn � ia2yn �� iqpM2 + k2n � Re(�)byn;� �a1n � ia2n�(6.64)110



The super
harges obey the supersymmetry relations with equivariant parameter Re(�);12fQ;Qyg = H +Re(�)Q; (6.65)Q2 = Qy2 = 0: (6.66)The operator Q on the right hand side of the �rst equation is the total 
harge operator(6.50) (not a super
harge).We note that ea
h term of Q and Qy has an annihilation operator. This is obviousfor the n 6= 0 modes but is true also for the n = 0 mode; see the property (6.33) of theground state. Therefore, the ground state is supersymmetri
, i.e., annihilated by both ofthe super
harges Qj0i = Qyj0i = 0:The energy and the 
harge of the Ramond ground state is 
omputed in (6.34) and (6.51);The energy is Eva
 = jRe(�)j=2 while the 
harge is Qva
 = �sgn(Re(�))=2. These areperfe
tly 
onsistent with the supersymmetry algebra (6.65) and the fa
t that the stateis supersymmetri
. The ground state has positive energy but it does not mean thatsupersymmetry is broken in this matter se
tor.6.7 The Case Of The Half-Spa
eLet us 
omment on the theory formulated on the half-spa
e, say,x � 0: (6.67)To be spe
i�
, we 
onsider the boundary 
onditions whi
h are the same as in the \rightboundary x = L" of the �nite interval. Namely we add the term (6.2) at the boundaryx = 0 and impose the asso
iated boundary 
onditions (6.3) there:�1� = S�;  + =  �; �1( + +  �) = S( + +  �):As in the �nite interval there are os
illating modes and exponential modes. Os
illatingmodes for the �elds � and b = ( + +  �)=p2, or 
 = ( � �  +)=p2 arefk(x) = k 
os(kx) + S sin(kx)k2 + S2 ; or gk(x) = sin(kx); (6.68)for any positive k. In addition, � and b may have exponential modes, proportional toeSx: (6.69)111



They are normalizable when S is positive. Sin
e they de
ay rapidly as x! �1, we shall
all them de
aying modes. They have a frequen
y pM2 � S2 = jRe(�)j and be
ome zeromodes when S = M , that is, when � = ij�j. If S is negative, the fun
tion eSx growsexponentially and will not be 
onsidered.Mode expansion and quantization is straightforward. It is simply to 
onsider theL ! 1 limit of the �nite interval theory | we only have to dis
ard the modes thatvanishes in that limit (su
h as the exponential mode in the Ramond se
tor of the S < 0theory, and a linear 
ombination of the two exponential modes of the NS se
tor in theS > 1=L and S > 2=L theory). The �elds are expanded as�i(x) = Z 10 dkp� 14pk2 +M2�ai(k) + ai(k)y�fk(x)+�S 14pM2 � S2�aiD + aiyD�pS eSx; (6.70)��i(x) = Z 10 dkp� 4pk2 +M2��iai(k) + iai(k)y�fk(x)+�S 4pM2 � S2��iaiD + iaiyD�pS eSx; (6.71)	(x) = Z 10 dkp�pk2 +M2 �	";k(x)b"(k) + 	#;k(x)b#(k)y�+ �Sp2SbD	D(x);(6.72)where 	�;k(x) and 	D(x) are the eigen modes of the kineti
 operator D de�ned by	";k = 0� qpk2 +M2 +Re(�)fk(x)iqpk2 +M2 � Re(�)gk(x) 1A ; D = pk2 +M2 (6.73)	#;k = 0� qpk2 +M2 � Re(�)fk(x)�iqpk2 +M2 +Re(�)gk(x) 1A ; D = �pk2 +M2: (6.74)	D =  eSx0 ! ; D = Re(�): (6.75)The mode operators obey the (anti-)
ommutation relations[ai(k1); aj(k2)y℄ = Æi;jÆ(k1 � k2);([aiD; ajyD ℄ = Æi;j; [aiD; aj(k)y℄ = 0 et
);fb�(k1); b�(k2)yg = Æ��Æ(k1 � k2); fb�(k1); b�(k2)g = 0;( fbD; byDg = 1; fbD; b�(k)yg = 0 et
);112



so that the �elds obey the 
anoni
al (anti-)
ommutation relations[�i(x1);��j (x2)℄ = iÆijÆ(x1 � x2);[�i(x1); �j(x2)℄ = [��i(x1);��j (x2)℄ = 0:fb(x1); b(x2)yg = Æ(x1 � x2); fb(x1); b(x2)g = 0;f
(x1); 
(x2)yg = Æ(x1 � x2); f
(x1); 
(x2)g = 0;fb(x1); 
(x2)yg = 0; :::Note that we need the de
aying mode (in the 
ase S > 0) for this to work.The ground state is the state annihilated by all the annihilation operators ai(k); b�(k)and, in the 
ase S > 0, bDj0i = 0 if Re(�) > 0;byDj0i = 0 if Re(�) < 0: (6.76)This is be
ause the de
aying mode 
ontributes to the total Hamiltonian byHD = 12Re(�)[byD; bD℄:whi
h has value �12Re(�) (resp. +12Re(�)) for the state annihilated by bD (resp. byD).The energy gap to the �rst ex
ited state is M for S � 0 and is jRe(�)j for S > 0 from thede
aying modes of � and b. It vanishes at � = ij�j where the de
aying modes be
ome zeromodes. In parti
ular, the ground states are two-fold degenerate and non-normalizable.We 
an easily obtain the energy (density) and the 
harge (density) of the va
uum |we simply use the result of the L!1 limit of the �nite interval theory:E = �Im(�)2� �log�2�j�j� + 1�+ jRe(�)j � 14 + 12� ar
tan� Im(�)jRe(�)j�� (6.77) E(x) = � 1� Z 1M dKpK2 �M2 KK � S e2Kx x < 0 stri
tly!;Q = �sgn(Re(�)) � 14 + 12� ar
tan� Im(�)jRe(�)j�� (6.78) �(x) = �Re(�)� Z 1M dKpK2 �M2 KK � S e2Kx x < 0 stri
tly!:The formula (6.77) agrees with the result obtained in [65℄. Alternatively, one 
an �ndthese results independently of the �nite interval 
omputation, dire
tly from the abovemode expansions. Then, we 
an learn about the �nite interval theory. In parti
ular, we
an reprodu
e all of the results on the energy (density) and 
harge (density) at least forthe 
ase L is very large. 113



6.8 Cases With Several MattersLet us re
ord the results for the 
ase where we have n matter �elds with 
hargesQ1; :::; Qn. We just have to sum the results for the single �eld 
ases with M = jQi�j,S = Im(Qi�).If the theory is formulated on the half spa
e (6.67), the energy and the 
harge arelo
alized near the boundary, and the totals areE = 12� nXi=1 �QiIm(�) �log� jQi�j2� �� 1�+QijRe(�)j ar
tan� Im(�)jRe(�)j�+ jQij4 jRe(�)j�= 12� Im( nXi=1 Qi� �log�Qi�2� �� 1�)+ nXi=1 jQij4 jRe(�)j; (6.79)Q = �sgnRe(�)2� nXi=1 Qi ar
tan� Im(�)jRe(�)j�� nXi=1 jQij4 sgnRe(�); (6.80)where \ar
tan" is assumed to take values between ��2 and �2 .If formulated on the interval, the energy and the 
harge are lo
alized near the twoboundaries. The ones at the right boundary, x = L, are the same as on the half spa
e,(6.79) and (6.80), for both NS and Ramond se
tors. The ones at the left boundary, x = 0,depend on the se
tor. In the NS se
tor, the energy is the same while the 
harge is opposite,in 
omparison to (6.79) and (6.80). In the Ramond se
tor, the energy and the 
harge areopposite to (6.79) and (6.80) ex
ept the last terms involving the jQij's. The total energyand 
harge are the sum of those lo
alized ones:ERva
 = nXi=1 jQij2 jRe(�)j; QRva
 = � nXi=1 jQij2 sgn(Re(�)); (6.81)ENSva
 = 2E; QNSva
 = 0: (6.82)Assuming the Calabi-Yau 
onditionXQi>0Qi = �XQi<0Qi =: S;the above formulae simplify, in parti
ularE = 12� nXi=1 Qi log jQijIm(�) + S2 jRe(�)j; (6.83)Q = �sgnRe(�)S2 : (6.84)114



6.9 Gauge Dynami
sSo far, we have set all the �elds in the gauge multiplet zero, ex
ept the 
onstant modeof the s
alar 
omponent �. If we want to obtain the e�e
tive potential for � we need tointegrate out the gauge �eld and the auxiliary �eld.Let us 
onsider the system on the interval 0 � x � L with 
harges ql and qr on theleft and the right boundaries respe
tively. The Lagrangian is given byL = Z L0 dx � 12e2 (v201 +D2) + �2�v01�� qrv0���x=L + qlv0���x=0 + Lmatter (6.85)where Lmatter is the matter se
tor Lagrangian | in the 
ase of a single 
hiral multipletwith 
harge 1, it is the sum of the bulk part (6.1) and the boundary parts (6.2), (6.4).Integrating out the auxiliary �eld D simply produ
es the D-term potentialUD = e22 �j�j2 � r�2 :When we quantize a gauge theory in operator formalism, it is best to swit
h to the
anoni
al formulation. The a
tion in the 
anoni
al formulation is given by (see e.g. [66℄)S = Z dt Z L0 dx� 1e2 (�0v1 � �1v0)E1 � 12e2 (E1)2 � v0j0 + �2� (�0v1 � �1v0)�� Z �qrv0���x=L � qlv0���x=0� dt+ Smatter; (6.86)where j0 is the 
harge densityj0 = i��� � i��� +  � � +  + +; (6.87)and Smatter is the matter a
tionSmatter = Z dt Z L0 dx(�� _�+ �� _�� j��j2 � jD1�j2 � j�j2j�j2 � UD+i �(�0 � �D�!1) � + i +(�0 � �D�!1) + �  �� + �  +� �)+ boundary terms, (6.2) + (6.4). (6.88)It is easy to see that we get ba
k the system with the Lagrangian (6.85) after integratingout E1, ��, ��. On the other hand, in the Hamiltonian formulation, they play the roleof 
onjugate momenta for v1, � and �. (i � are 
onjugate momenta for  �). v0 is anon-dynami
al variable and imposes the Gauss law 
onstraints.115



We 
hoose the boundary 
ondition su
h that v0 is allowed to vary at the boundary.The Gauss law 
onstraints are then1e2�1E1 = j0 (in the bulk); (6.89)1e2E1 + �2� + qr = 0 (on the right boundary) and; (6.90)1e2E1 + �2� + ql = 0 (on the left boundary): (6.91)They 
an be solved by1e2E1(x) = �� �2� + ql� + Z x0 j0(x0)dx0 or= �� �2� + qr�+ Z xL j0(x0)dx0whi
h is 
onsistent if and only if the following 
ondition is satis�ed:Q = Z L0 j0(x0)dx0 = ql � qr: (6.92)For a given pair of Chan-Paton 
harges, this is the 
ondition on the state of the mattersystem: the 
harge of that state must agree with the di�eren
e of the Chan-Paton 
hargesat the left and the right boundaries.The Hamiltonian density of the total system, with the gauge 
ondition v1 = 0, is givenby H(x) = 12e2E1(x)2 + UD(�) +Hmatter(x)= e22 � �2� + ql � Z x0 j0(x0)dx0�2 + e22 �j�(x)j2 � r�2 +Hmatter(x) (6.93)where Hmatter is the Hamiltonian density of the matter se
tor. The task is to �nd theground state of the Hamiltonian R L0 H(x)dx and its energy. This is a hard problem.An ex
eption is the 
ase of a Dira
 fermion with � = 0 (massless S
hwinger model)where the diagonalization 
an be done exa
tly. For the massive model, there are variousapproximation methods to treat this problem depending on the range of parameters, su
has the relation of the gauge 
oupling 
onstant e and the mass j�j of the matter �elds. Seefor example [57℄. Although this is a very interesting problem in its own right, we do notdevelop a thorough study in the present paper.Instead, we take just one approximation method, whi
h leads to the following answerfor the energy density of the ground state:Eva
(x) = e22 � �2� + ql � Z x0 hj0(x0)idx0�2 + e22 �hj�(x)j2i � r�2 + Ematterva
 (x): (6.94)116



In the above expression, hO(x)i stands for the expe
tation value with respe
t to theground state j0i of the matter se
tor, h0jO(x)j0i. Note that hj0(x)i is the 
harge density�(x) whi
h we have 
omputed in Se
tion 6.5. Also, Ematterva
 (x) in (6.94) is the energydensity of the ground state in the matter se
tor, whi
h was obtained in Se
tions 6.4.2 and6.7.Let us des
ribe the origin of (6.94) and estimate the error. The exa
t answer wouldbe obtained by integrating out the matter �elds as well as the �elds v� and D, in a �xedba
kground of �. One way to perform this is to �rst integrate out the matter �elds fora �xed general pro�le for v�(x) and D(x), and then integrate out the latter. At the �rststep, we may treat the 
oupling �v0(x)j0(x) +D(x)j�(x)j2 perturbatively and keep onlythe �rst order terms, that is, repa
e it with �v0(x)hj0(x)i + D(x)hj�(x)j2i. This is theapproximation that leads to (6.94). The dis
arded part starts with terms of the formL v201�E ; L D2�E ;where �E is the energy gap between the ground state and the �rst ex
ited state. Therest are of higher order in v01 and D. These errrors shift the gauge 
oupling as1e2 �! 1e2 + 
onstant � L�E :As long as the shift is small 
ompared to 1=e2, we may say that (6.94) is a valid ap-proximation, with an error given by power series in e2L�E . Re
all that the energy gap is ofthe order of the real part of �, �E � jRe(�)j, provided the imaginary part is positive,Im(�) > 0, in the NS se
tor, and for any 
ase in the Ramond se
tor. In su
h a 
ase, the
ondition for the validity of (6.94) is jRe(�)j � e2L: (6.95)This is in addition to the 
ondition j�j � e whi
h is already assumed in the bulk theory.In Se
tion 7.4, we will obtain the same 
ondition from a di�erent perspe
tive.The gap �E � jRe(�)j in the matter se
tor 
omes from the exponential modes (thedea
ying modes) lo
alized near the boundary. Re
all that they be
ome the zero modesor unstable modes when Re(�) vanishes. In su
h a 
ase, the whole idea of the e�e
tivea
tion for the ve
tor multiplet breaks down. We must treat those modes on the samefooting as the ve
tor multiplet �elds. For example, we may integrate out the os
illatingmodes only, leaving the de
aying modes dynami
al. Then (6.94) is a Hamiltonian densityoperator that involves the de
aying modes and the � �elds. Note that we no longer have117



an unstable potential for the de
aying modes in su
h a treatment. Although this problemis important and interesting on its own right, we do not attempt to solve it here.Thus, let us assume (6.95). Even in su
h a 
ase, one may still wonder if the expression(6.94) makes sense, sin
e �(x) = hj0(x)i as well as hj�(x)j2i diverges at the boundary andtheir squares may be dangerous. To examine this and also to �nd how the answer bahavesas a fun
tion of �, let us 
ompute the total of the ele
trostati
 and D-term energies. Thisis enough to see whether there is a problem lo
ally, sin
e these two terms are positivesemi-de�nite.Let us �rst 
ompute it in the Ramond se
tor. The mode expansion leads to theexpression hj�(x)j2i =Xn 1L fn(x)2pM2 + kn2 :Using this we �nd that the energy from the D-term potential isED = e22 L 1Xn=0 12LpM2 + k2n � r(�)!2+e24 1Xn=1 14L(M2 + k2n) � S2LjRe(�)jpM2 + k2n(k2n + S2)!+ e2S8Re(�)2 � 1tanh(SL) � 1SL� ; (6.96)where it is understood that k20 = �S2 so that pM2 + k20 = jRe(�)j. Also, using theexpression (6.52) for hj0(x0)i = �R(x0), we �nd that the ele
trostati
 energy isEes = e22 L �2� + ql + 1Xn=1 Re(�)S2LpM2 + k2n(k2n + S2) + sgnRe(�)4 � 21� e2SL + 1SL�!2e28 1Xn=1 Re(�)22L(M2 + k2n)(k2n + S2) � jRe(�)jLpM2 + k2n(k2n + S2)!+ e232S � 1tanh(SL) � 1SL� : (6.97)Despite its appearan
e, this is 
ontinuous at S = 0, withED S=0= e22 L 1Xn=0 12LpM2 + k2n � r(�)!2 + e216 1Xn=1 1L(M2 + k2n) ;Ees S=0= e22 L� �2� + ql + 14sgnRe(�)�2 + e216 1Xn=1 k2nL(k2n +M2)(pM2 + k2n +M)2 :118



To obtain the last expression, we have used the formula1Xn=1 1n2 = �26 :The behaviour at large L isED = e22 L� 12� log�2�j�j�� r(�)�2 + e232j�j + e2Im(�)4�Re(�)2 ar
tan� Im(�)jRe(�)j� ;Ees = e22 L� �2� + ql �Qx�0�2 � e232j�j + e28�Im(�) ar
tan� Im(�)jRe(�)j� :Here Qx�0 is the 
harge lo
alized near the left boundary (6.55). The result is regulareverywhere away from the lo
us Re(�) = 0 whi
h we ex
luded by (6.95). The quantityinside the parenthesis in the extensive part e22 L(� � � )2 should be de�ned as the seriesthat appears in the �rst expressions (6.96), (6.97) | an error of order 1=L there woulda�e
t the non-extensive part. Note that it is �nite as the 
ut-o� is removed, sin
e theFI parameter depends on it as r(�) = r(�) + 12� log����. The sum of the D-term andele
trostati
 energies, ED;es = Ees + ED, is thusED;es = e22 Ljte� j2 + e28� �2Im(�)Re(�)2 + 1Im(�)� ar
tan� Im(�)jRe(�)j� ; (6.98)where te� = r(�)� 12� log�2�j�j�� i � �2� + ql �Qx�0�+O(1=L):Let us next write down the result for the NS se
tor. We have to treat the three 
ases,S > 0, S = 0 and S < 0, separately. The main point is that it is 
ontinuous at S = 0,withED S=0= e22 L 1Xn=0 12LpM2 + k2n � r(�)!2 + e216 1Xn=0 1L(M2 + k2n)Ees S=0= e22 L� �2� + ql � sgnRe(�) �14 � 1LI��2 + e216 1Xr k2rL(k2r +M2)(pM2 + k2r +M)2with I :=Xr 12LpM2 + k2r(pM2 + k2r +M) :To obtain this, we used the formula Xr= 12 ; 32 ;::: 1r2 = �22 :119



The behaviour at large L for the general value of S = Im(�) isED = e22 L� 12� log�2�j�j�� r(�)�2 + e232j�j + e2Im(�)Re(�)2 Q2x�0;Ees = e22 L� �2� + ql �Qx�0�2 � e232j�j + e22Im(�) �Q2x�0 � 116� ;where Q�0 is the lo
alized 
harge given now by (6.61). The result is regular everywhereaway from the ex
luded lo
us Re(�) = 0. The sum of them isED;es = e22 Ljte� j2 + e22 ��2Im(�)Re(�)2 + 1Im(�)�Q2x�0 � 116Im(�)� ; (6.99)where te� is as in the Ramond se
tor, with Qx�0 from (6.61).The main 
on
lusion of these 
omputations is that, in both R and NS se
tors, theD-term and ele
trostati
 energy of the ground state behaves asED;es = e22 Ljte� j2 + e2j�jA: (6.100)A is a fun
tion of Im(�)=Re(�), independent of L, whi
h is regular everywhere ex
eptRe(�)! 0. This also holds in the theory with multiple �elds of various 
harges.This 
on
ludes that there is no danger from taking the square of a quantity thatdiverges at the boundary. Furthermore, we see that the dominant part of the va
uum en-ergy, for large � with a �xed L, is the lo
alized energy from the matter se
tor whi
h growslinearly with �. Compare (6.100) with the expressions obtained in earlier subse
tions, forexample (6.79).An AnomalyAlthough it is not dire
tly relevant for the main dis
ussion of this paper, we wouldlike to 
omment on an anomaly in the Ramond se
tor that 
omes from the Gauss law
onstraint. We 
onsider a U(1) gauge theory with n matter �elds of 
harges Q1; : : : ; Qn,whi
h we assume integers with q.
.d.(Qi) = 1.The Gauss law implies that the total 
harge Q of the state in the matter se
tor mustmat
h the di�eren
e of the 
harges ql and qr whi
h we pla
e on the two boundaries, (6.92).We usually take both ql and qr to be integers, and he
ne Q must be an integer. The total
harge of a state in the matter se
tor is an integer plus the 
harge of the ground state. Inthe NS se
tor, we found that the 
harge of the ground state vanishes, see (6.82). Thus,120



the 
harges of all states are integers. In the Ramond se
tor, on the other hand, the 
hargeof the ground state is obtained in (6.82), from whi
h we 
on
lude that the 
harges of allstates are Pni=1Qi=2 modulo integers. Thus, we �nd a 
on
i
t with the Gauss law whennXi=1 Qi is odd. (6.101)In the 
ontext of linear sigma models, this is pre
isely the 
ase when the 
orrespondingtori
 variety is not a spin manifold. In an open string Ramond se
tor of the non-linearsigma model, we need to have a spin stru
ture of the target spa
e in order to quantizethe fermioni
 zero modes. The above anomaly is understood as the Coulomb bran
h
ounterpart of this. There is of 
ourse no problem when the Calabi-Yau 
ondition isassumed, Pni=1Qi = 0.6.10 Mass From SuperpotentialWe now turn to a di�erent system: the LG model of two variables U; V with super-potential W = 2MUVwhere M is taken to be real positive. We also 
onsider a D-brane 
orreponding to thematrix fa
torization Q =  0 p2Mup2Mv 0 ! :We may regard this as a part of the matter se
tor of a U(1) gauge theory in whi
h U andV have 
harges �1 and 1. If we write the matrix as Q = p2M(u� + v�), then � and �have gauge 
harges 1 and �1 respe
tively. In this se
tion we study the property of theground state of the open string whose both ends have the brane Q. In parti
ular, we areinterested in the energy and 
harge density of the ground state, espe
ially in the limitwhere the length L of the string is taken to be very large.Before doing any 
omputation, we already know quite a lot about the ground state.First of all, there is just one 
hiral ring element proportional to the identity 1 00 1 ! : (6.102)Thus, by the spe
tral 
ow, we know that there is a unique supersymmetri
 ground state.In parti
ular the ground state energy is zeroEva
 = 0:121



At this point we re
all that any quantum �eld theory formulated on a 
ompa
t spa
e, su
has the interval [0; L℄ we are 
onsidering, behaves like quantum me
hani
s. In parti
ular,any symmetry present in the system 
annot be spontaneously broken by the ground statej0i. In the present open string system, there are two symmeties in sight. One is the U(1)
harge symmetry (under whi
h U; V has 
harge �1; 1). The other is the parity symmetryx ! L � x that swaps the left and the right boundaries. That the U(1) symmetry isunbroken means that the ground state has 
harge zero:Qva
 = 0:That the parity symmetry is unbroken means that the energy and 
harge density of theground state is symmetri
 under x! L� x:E(x) = E(L� x); �(x) = �(L� x):Finally, one more important fa
t is that the bulk theory has a mass gap. This in parti
ularmeans that any lo
al observable O(x) approa
hes the value of the bulk va
uum when itis far enough from the boundary, that is, when 1=M � x � L � 1=M . In parti
ular weexpe
t E(x) �! 0; �(x) �! 0in that regime. Namely E(x) and �(x) might have a non-trivial pro�le but that is 
on�nedin a region of width 1=M near the two boundaries. Moreover, the parity symmetry as wellas Eva
 = Qva
 = 0 tell us that the total energy and the 
harge a

umulated near ea
h ofthe boundaries vanish. Thus, for a long distan
e observer, it looks as if the energy and the
harge density identi
ally vanishes without any delta fun
tion support at the boundaries.In what follows, we 
on�rm this expe
tation by an expli
it 
omputation.The system (6.1) we 
onsidered in the bulk part of this se
tion does not have theparity symmetry x! L� x. To be pre
ise, there would be a parity symmetry only whenit is 
ombined with a sign 
ip of of � and a 
omplex 
onjugation of � and  . Thus, theenergy and 
harge densities are not symmetri
 under the parity but only so when theappropriate operation is applied.Expl
it quantization of a related system had been done in [50℄ and later also in [33℄.These works studied the Diri
hlet boundary 
ondition U = 0 in the same bulk theory.That brane 
an be obtained from the above matrix fa
torization by repla
ing p2Mu,p2Mv by �p2Mu, ��1p2Mv and taking the limit � !1.
122



6.10.1 The Ground StateThe Lagrangian of the open string system reads asL = Z L0 " j _uj2 � ju0j2 + j _vj2 � jv0j2 �M2juj2 �M2jvj2+i u�( ���!t + ���!x) u� + i u+( ���!t � ���!x) u++i v�( ���!t + ���!x) v� + i v+( ���!t � ���!x) v+�iM( u+ v� +  v+ u�) + iM( v� u+ +  u� v+) #dx+"� i2( u+ u� +  u+ u�)� i2( v+ v� +  v+ v�)#L0+" i�L _�L +p2MRe( u�L +  v�L)�M juj2 �M jvj2 #x=L�" i�0 _�0 +p2MRe( u�0 +  v�0) +M juj2 +M jvj2 #x=0 (6.103)Note that the boundary fermions �0; �0 have the opposite orientation of time. In par-ti
ular, they have the \wrong" sign kineti
 term and obey the non-standard hermiti
ityrelation �y0 = ��0;with respe
t to the standard orientation of time.We take the standard supersymmetri
 Neumann 
ondition for the bulk �elds:�1u = �1v = 0; u+ �  u� =  v+ �  v� = 0;�1( u+ +  u�) = �1( v+ +  v�) = 0; 9>=>; at both x = 0; L: (6.104)Note that this does not agree with the one 
oming from the variational prin
iple. Forexample, the 
ondition on u from the variational prin
iple would be�1u+Mu = 0 at x = L; �1u�Mu = 0 at x = 0;but we take the Neumann 
ondition �1u = 0 at both boundaries. However, we will �nd noproblem in quantization. In fa
t, the boundary 
onditions from the variational prin
iplewill show up in an interesting way. 123



This system has U(1) symmetry: u;  u�; �L; �0 has 
harge �1 and v;  v�; �L; �0 has
harge 1. There is also a parity symmetryu(x)! iu(L� x); v(x)! iv(L� x); u�(x)! i u�(L� x);  v�(x)! i v�(L� x);�L ! i�0; �L ! i�0; �0 ! i�L; �0 ! i�L;that 
ommutes with the U(1) symmetry.The a
tion is quadrati
 in all �elds and the quantization is straightforward providedwe �nd a 
lever 
hoi
e of variables. The bosoni
 part is a de
oupled sum of four 
opies(two from u and two from v) of the real s
alar �eld � with LagrangianLB = 12( _�; _�)� 12(�;DB�)where (�1; �2) := R L0 dx�1(x)��2(x) andDB = ��21 +M2 +MÆ(x� L) +MÆ(x): (6.105)The fermioni
 system de
omposes into two se
tors. Let us take the linear 
ombination �� = ( v� �  u�)=p2 where � = � is the spinor index and then introdu
e	+ = 0B� b+
+�0 1CA ; 	� = 0B� b�
��L 1CA ;for b� := ( �� +  �+)=p2, 
� := ( �� �  �+)=p2. The Lagrangian 
an be written asLF = i(	+; _	+) + i(	�; _	�)� (	+;D+	+)� (	�;D�	�)where (	1;	2) := R L0 dx(b1(x)yb2(x) + 
1(x)y
2(x)) + �y1�2 andD+ = 0B� 0 �i�1 + iM p2MÆ(x)�i�1 � iM 0 0p2Mev0 0 0 1CA ; (6.106)D� = 0B� 0 �i�1 � iM p2MÆ(x� L)�i�1 + iM 0 0p2MevL 0 0 1CA : (6.107)Here ev� is the evaluation map, evLb = b(L) and ev0b = b(0).124



The kineti
 operators DB, D� are hermitian operators in the spa
e of fun
tions de�nedby (6.104): Neumann for u; v; b� and Diri
hlet for 
�. Thus, they have eigenve
tors withreal eingenvalues. Let us diagonalize these operators. To this end, we introdu
e proje
tionoperators onto Neumann and Diri
hlet fun
tions(P
f)(x) = 1Xn=0 
n(x)(
n; f); (Psf)(x) = 1Xn=1 sn(x)(sn; f);where 
0(x) = 1pL , 
n(x) = q 2L 
os(�nxL ) and sn(x) = q 2L sin(�nxL ). They obey thefollowing relations (P
f)0(x) = (Psf 0)(x); (6.108)(Psf)0(x) = (P
f 0)(x)� Æ(x� L)f(L) + Æ(x)f(0); (6.109)P
PsP
 = P
: (6.110)Using the �rst two, we �ndDBP
f = P
(�f 00 +M2f) + Æ(x� L)(f 0 +Mf)� Æ(x)(f 0 �Mf):Thus, if f obeys the boundary 
onditionf 0(x) +Mf(x) = 0 at x = Lf 0(x)�Mf(x) = 0 at x = 0; (6.111)DB is simply represented by �f 00 +M2f . At this point, we noti
e that this boundary
ondition for f is pre
isely the same as the boundary 
ondition for the boson in thesystem 
onsidered earlier: the NS 
ondition (6.7) for � with S = �M . In parti
ular, for aplane wave f(x) = a sin(kx)+b 
os(kx) the allowed wavenumbers k are determined by theequation (6.15) with S = �M . As before we denote the solutions by kn, n = 0; 1; 2; :::,whi
h approa
h �nL as n!1.For the fermion 	 = (P
f; Psg; �), the equations D�	 = �	 both lead toP
(�f 00 +M2f) + Æ(x� L)(f 0 +Mf)� Æ(x)(f 0 �Mf) = �2P
f:This 
an be obtained by eliminating Psg and � from the three equations and using (6.108)(6.109) and (6.110). Again we �nd the standard eingenvalue problem �f 00 +M2f = �2fprovided f obeys the boundary 
ondition (6.111). In parti
ular, we have plane wavesolutions with eigenvalue � = �pk2n +M2, where kn solves (6.15) with S = �M .Normalized modes are given as follows: For bosons, we havehn(x) = �n(P
fn)(x); DB = k2n +M2 (6.112)125



and for fermions	+n;�(x) = �npL 0B� (P
fn)(x)�i(�1)n(Psgn)(x� L)�p2Mknk2n+M2 1CA ; D+ = �pk2n +M2; (6.113)	�n;�(x) = �npL 0B� (P
fn)(x)�i(Psgn)(x)�(�1)np2Mknk2n+M2 1CA ; D� = �pk2n +M2; (6.114)where�n = �1 + 2ML(k2n+M2)�� 12 ; fn(x) = kn 
os(knx) +M sin(knx)pk2n +M2 ; gn(x) = sin(knx):Expanding the �elds as �i(x) = 1Xn=0 �inr 2Lhn(x); i = 1; 2; 3; 4;	�(x) = 1Xn=0 �b�n;+	�n;+(x) + b� yn;�	�n;�(x)� ;the Lagrangian 
an be written asL = 1Xn=1 " 4Xi=1 �12( _�in)2 � k2n+M22 (�in)2�+X�=� �ib� yn;+ _b�n;+ + ib� yn;� _b�n;� �pk2n+M2b� yn;+b�n;+ +pk2n+M2b�n;�b� yn;�� # :The Hamiltonian isH = 1Xn=0 " 4Xi=1 pk2n +M2 �ai yn ain + 12�+X�;� pk2n +M2 �b� yn;�b�n;� � 12� # ; (6.115)where ai yn , ain, b� yn;�, b�n;� are the 
reation and annihilation operators obeying the standard(anti-)
ommutation relations. There is a unique ground state j0i 
hara
terized byainj0i = b�n;�j0i = 0:Let us dis
uss the energy and its density of the ground state j0i. The bosoni
 andfermioni
 
ontributions to the energy 
an
el at ea
h level: 4pk2n+M22 � 4pk2n+M22 = 0.Therefore the total energy of the ground state vanishes:Eva
 = 0 (6.116)126



This is of 
ourse a 
onsequen
e of supersymmetry. To �nd the energy density, let usintrodu
e the notation�	1(x)y x�; 	2(x)� := [b1(x)y; b2(x)℄ + [
1(x)y; 
2(x)℄ + Æ(x� x�)[�y1; �2℄:Then, the energy density operator 
an be written asH(x) = 4Xi=1 �12 _�i(x) + 12�i(x)DB�i(x)�+12 �	�(x)y L; D�	�(x)�+ 12 �	+(x)y 0; D+	+(x)� (6.117)The energy density of the ground state isE(x) := h0jH(x)j0i = (6.118)1Xn=0 pk2n +M2L �2n 2fn(x)2 � gn(x)2 � gn(x�L)2 � 2Mk2n(k2n +M2)2 (Æ(x�L) + Æ(x))!:It is indeed symmetri
 under x! L�x, as one 
an see by using fn(L�x) = (�1)nfn(x).Let us next dis
uss the U(1) 
harge of the ground state. The 
harge density operatoris de�ned by j0(x) = i2fv; _vg � i2fv; _vg � i2fu; _ug+ i2fu; _ug+12 �	�(x)y L; 	�(x)�+ 12 �	+(x)y 0; 	+(x)� :The total 
harge as well as its density of the ground state vanishQva
 = 0; (6.119)�(x) := h0jj0(x)j0i = 0: (6.120)This mat
hes with the expe
tation.6.10.2 L!1 LimitLet us look at the energy density in the limit where L is very large 
ompared to 1=M .We �rst look at the region 
lose to the left boundary x = 0, that is, 0 � x � L. Theformula (6.118) 
an be rewritten asE(x) = 1Xn=0 pk2n +M2L 2k2n�2n(k2n +M2)2 (k2n �M2) 
os(2knx) + 2knM sin(2knx)�M(Æ(x�L) + Æ(x))!:127



In the limit L!1 the sum over n turns into integral over the momentum k. If x is 
loseto but stri
tly away from x = 0, the 
ontour of the integral 
an be deformed and we haveE(x) = �2 Z 1M dK� pK2 �M2K2(K +M)2 e�2Kx (6.121)We see that it de
ays exponentially as e�2Mx or faster. This is of 
ourse a 
onsequen
eof the mass gap of the bulk theory. By the symmetry x ! L � x, we �nd the samebehaviour near the right boundary x = L. Namely, the energy density is non-trivial onlyin the region of width 1=M near the two boundaries. Sin
e the total energy vanishes(6.116), we learn that the energies lo
alized near the left and the right boundaries vanishindivisually. Indeed that 
an be 
on�rmed by a dire
t 
omputation:Ex�0 := limR!1Z R0 E(x)dx= limR!1Z �0 dk� pk2 +M2 k(k2 +M2)2�(k2�M2) sin(2kR) + 2kM(1� 
os(2kR)�� Z �0 dk� pk2 +M2 2Mk2(k2 +M2)2 :The last term 
omes from the delta fun
tion at x = 0 | the one at x = L of 
ourse doesnot 
ontribute. The two lines 
an
el out and we have Ex�0 = 0.6.10.3 L! 0 LimitFor 
ompleteness, let us 
onsider the opposite regime,ML� 1. In the limitML! 0,the momenta kn approa
h the standard valueknL! �n; n = 0; 1; 2; 3; : : : :In parti
ular, the n = 0 mode approa
hes the 
onstant mode while the n � 1 modesapproa
h the standard plane wave modes 
os(�nL x); sin(�nL x), for 0 � x � L. To be morepre
ise, using the de�ning equation (6.15), we �nd that k0 diverges ask20 ! 2ML ;but it is still true that the mode appro
hes a 
onstant, 
os(k0x) ! 1 and sin(k0x) ! 0,as long as x is in the interval [0; L℄. Let us look at the ground state j0i in this zero modese
tor. 128



In the limit ML� 1, the fermioni
 zero mode be
omes	+0;�(x);	�0;�(x) �! 1p2L 0B� 10�pL 1CA :Thus, we 
an write b� = 1p2L(b�0;++ b� y0;�), �L = 1p2(b�0;+� b�y0;�), �0 = 1p2(b+0;+� b+ y0;�), Sin
ethe ground state j0i is annihilated by b�n;�, it is annihilated byb� + 1pL�L; b�y � 1pL�yL; b+ + 1pL�0; b+y � 1pL�y0:It follows that the zero mode ground state is of the formj0izero / �b+y � 1pL�y0��b�y � 1pL�yL� j0i1;where j0i1 is the state annihilated by �0; �L; b+; b� as well as the bosoni
 annihilationoperators. (Note the normalization fb�1 ; b�2yg = Æ�1;�2=pL.) Re
alling the de�nition of b�,and using the matrix representation of �L, �0, et
,�L a b
 d ! =  0 10 0 ! a b
 d ! ;�0 a b
 d ! =  (�1)aa �(�1)bb�(�1)

 (�1)dd ! 0 10 0 ! ;we �nd that the ground state is given byj0izero = 0� j0i0 � L2 v uj0i0 �pL vj0i0pL uj0i0 j0i0 + L2 v uj0i0 1A : (6.122)Here, j0i0 is the state of the bulk zero mode se
tor that is annihilated by  u;  v as wellas the bosoni
 annihilation operators. As a wave fun
tion of u; v, it is proportional toe�p2ML(juj2+jvj2). The state (6.122) is indeed annihilated by the zero mode super
hargeiQzero =  u�u +  v�v +p2M(�Lu+ �Lv)�p2M(�0u+ �0v);iQzeroy =  u�u +  v�v �p2M(�Lu+ �Lv)�p2M(�0u+ �0v):Note the normalization f u;  ug = f v;  vg = 2=L. It indeed 
orresponds to (6.102):j0ihol =  1 00 1 !in the holomorphi
 trun
ation. 129



7 The Grade Restri
tion RuleWe now dis
uss the �rst main quantum e�e
t of the linear sigma model with bound-ary. The goal of the paper is to 
onstru
t parallel families of boundary intera
tions overthe bulk of the K�ahler moduli spa
e, in
luding in parti
ular the boundaries between dif-ferent phases. At ea
h phase boundary, at least one U(1) subgroup of the gauge groupis unbroken, and the 
orresponding Coulomb bran
h has a bounded bulk potential whi
hvanishes exa
tly at the singular point. The fo
us of study will be the behaviour of bound-ary intera
tions and boundary 
onditions on that Coulomb bran
h. This leads us to thegrade restri
tion rule (or the band restri
tion rule), whi
h 
lassi�es the Chan-Paton rep-resentation of the gauge group for the D-brane that 
an be transported a
ross the phaseboundary. This is the main result of this paper.7.1 A-branes In LG-ModelsThe theory on the Coulomb bran
h is des
ribed in terms of the twisted 
hiral super�eld� = D+D�V and has a superpotential whi
h is 
lassi
allyfW (�) = �t�. Note that B-typeboundary 
onditions on twisted 
hiral super�elds are like A-type boundary 
onditions on
hiral super�elds. To pave the way to dis
uss the boundary 
ondition of bulk �elds on theCoulomb bran
h, we brie
y digress to reexamine the general requirement for A-branes inLandau-Ginzburg models. For simpli
ity, we 
onsider the LG model of n 
hiral super�eldsspanning a 
at Eu
lidean spa
e Cn, with some polynomial superpotential W .It was argued in [7, 67℄ that an A-brane in a LG model is a Lagrangian submanifoldwhose image in the W -plane must be parallel to the real line, or equivalentlyImW = 
onstant (7.1)on the brane. It is de�nitely true that (7.1) must be satis�ed as long as we use the stan-dard bulk a
tion without a boundary term and impose the standard D-brane boundary
ondition. By the standard D-brane boundary 
ondition we mean Diri
hlet on normal andNeumann on tangent 
oordinates along with the 
ondition on fermions that follows fromsupersymmetry. However, the requirement (7.1) is relaxed if we modify the a
tion by asuitable boundary intera
tion whi
h leads to a non-standard boundary 
ondition.Let us �rst examine the N = 2A supersymmetry of the boundary 
onditions them-selves, whi
h does not depend on the detail of the a
tion. It is 
onvenient to use the real
omponents of the 
hiral super�elds, xI ;  I�; f I (I = 1; :::; 2n), whi
h are related to the130




omplex ones as �i = x2i�1 + ix2i,  i� =  2i�1� + i 2i� , F i = �i(f 2i�1 + if 2i). We alsointrodu
e N I := �1xI � f I I = 1; : : : ; 2n;in additon to  I =  I++ I�; e I =  I+� I�. The variation of these 
omponent �elds readsÆxI = i�1 I + i�2J IJ e J ;Æ I = �2�1 _xI + 2�2J IJNJ ;Æ e I = �2�1N I + 2�2J IJ _xJ ;ÆN I = i�1 _e I + i�2J IJ _ J ; (7.2)
where J IJ is the 
omplex stru
ture (multipli
ation by i = p�1 written in real 
oordinate):J 2i2i�1 = �J 2i�12i = 1 and all other entries are zero. �1 is the parameter of the N = 1supersymmetry while �2 is the extension to N = 2A. We �nd an invariant set of boundary
onditions of the form1x 2 L;  2 TxL; e 2 JxTxL; N 2 JxTxL; (7.3)for some submanifold L of R2n. This is 
onsistent and 
omplete when TxL and JxTxLhave no overlap (ex
ept the origin x) and span the whole of TxR2n �= R2n,TxL \ JxTxL = fxg; TxL+ JxTxL = R2n:Su
h an L is 
alled a totally real submanifold of (R2n;J ) = Cn. It must be middledimensional, dimR L = n. To summarize, we have an invariant set of boundary 
onditions(7.3) for ea
h totally real submanifold of Cn.Let us next examine the invarian
e of the a
tion. We �rst take the standard bulka
tion Sbulk without a boundary term. Its variation isÆSbulk = Z�Sdt" i2�1 �g( _x; e )� g(N; ) + 2 I�IIm(W )�+ i2�2 �g( _x;J )� g(N;J e ) + 2(J e )I�IIm(W )�#: (7.4)Vanishing of the term �1g( _x; e ) requires that TxL and JxTxL must be orthogonal to ea
hother, TxL ? JxTxL:1 There are more general boundary 
onditions whi
h eventually lead to 
oisotropi
 branes [68℄. How-ever, they require at least 
omplex dimension two, n � 2. Sin
e we are primarily interested in theCoulomb bran
h, espe
ially for U(1) gauge theories, we shall fo
us on the 
onditions of the type (7.3).131



For a totally real submanifold L, this is nothing but the 
ondition that it is a Lagrangiansubmanifold with respe
t to the symple
ti
 stru
ture !(v; w) = g(J v; w). On
e that issatis�ed, the only remaining 
ondition is that  I�IImW = (J e )I�IImW = 0. Sin
e theve
tors  and J e are tangent to L, this means that ImW is lo
ally 
onstant on L. Thisis how the requirement (7.1) arises. It is easy to see that the boundary 
ondition (7.3) is
onsistent with the variational equation from the standard a
tion: Sin
e the a
tion has noboundary term, the variational equation requires that �1x must be normal to the brane.Sin
e N = �1x� f 2 JTL is normal to L we �nd that �1x and f must be independentlynormal to L. If we use the bulk equation for the auxiliary �eldf I = �gIJ�J ImW; (7.5)the 
ondition that f is normal to L is automati
ally satis�ed provided ImW is 
onstanton L. This is the basi
 story of [7℄.The standard bulk a
tion Sbulk 
an be modi�ed by a boundary term so that it isN = 2A invariant without use of any boundary 
ondition. In fa
t one 
an write down amanifestly N = 2A invariant a
tion as follows:Stot = 12 ZSd2sQAQyA[Q+;Q+℄K(�; �)� ReZSd2sQAQyAW (�)= Sbulk + Z�Sdt  12 2nXI;J=1 gIJxIN I � ImW ! (7.6)Here we used the K�ahler potential K = 12P2nI;J=1 gIJxIxJ . If we use this a
tion, obviously,no requirement should arise from the NA = 2 invarian
e. This time, however, a 
ondition
omes from the 
onsisten
y of the boundary 
ondition (7.3) and the variational equationfrom (7.6), whi
h reads12gIJ(ÆxINJ + xIÆNJ)� ÆxI(gIJ�1xJ + �IImW ) + i4gIJ(Æ I e J + Æ e I J) = 0:From the fermion terms, we �nd again the 
ondition that JxTxL must be orthogonal toTxL, that is, L must be a Lagrangian submanifold. If we use the bulk equation for theauxiliary �eld (7.5), the ÆxI-terms 
ombine to give gIJÆxINJ = 0, whi
h is again satis�edunder JxTxL ? TxL. This leaves us with the equationP2nI;J=1 gIJxIÆNJ = 0. This is notsatis�ed for an arbitrary Lagrangian submanifold L | it has to be a Lagrangian planethat goes through the origin x = 0, that is, a linear Lagrangian subspa
e of R2n. Notethat we have the modi�ed Neumann 
ondition�1xIt + gItJ�J ImW = 0; (7.7)132



in the dire
tion tangent to the brane.We have found that the manifestly invariant a
tion (7.6) admits only a very spa
ial
lass of D-branes | linear Lagrangian subspa
es. In fa
t, one 
an modify the a
tion byadding a boundary term that is by itself NA = 2 invariant. For example, we may add aboundary D-term �Sbdry = Z�SdtQAQyAh (7.8)= Z�Sdt �J IJNJ�Ih + i2(J e )I J�I�Jh�for some fun
tion h of R2n. We see that this 
hanges the boundary term of (7.6) asgIJxINJ ! gIJ �xI � 2!IK�Kh�NJwhi
h 
orresponds to a Hamiltonian deformation of the brane L. Thus, D-term defor-mations on the boundary generate Hamiltonian deformations of the brane. If h is linearin xI 's then this simply 
orrsponds to a parallel displa
ement of L. If h is quadrati
 it
orresponds to a symple
ti
 rotation of L. For a more general fun
tion, we obtain a moregeneral Lagrangian submanifold. This is one way to obtain more general D-branes thanjust linear Lagrangian subspa
es. Alternatively, we may simply takeStot = Sbulk + Z�Sdt��ImW �: (7.9)It is not automati
ally NA = 2 invariant but the invarian
e requires only the Lagrangian
ondition TxL ? JxTxL. The variational equation is then solved again by (7.3) thatin
ludes the modi�ed Neumann 
ondition (7.7). Thus, we �nd an A-brane for any Lan-grangian submanifold L. The imaginary part of W does not have to be a 
onstatnt onL. In the new formulation, with the a
tion (7.6) or (7.9), the system has a potentialenergy at the boundary Vbdry = ImW: (7.10)The imaginary part of a holomorphi
 fun
tion is unbounded below and above on R2n.Thus, depending on the asymptoti
 dire
tion of the brane L, the boundary potential 
anbe unbounded below. To avoid any problem asso
iated with it, we propose to require thatImW must be bounded below on the brane L. Ne
essity of su
h a 
onstraint is not soobvious sin
e there is also a bulk potential Ubulk = 14gi|�iW�|W: An ex
eption is the 
asewhere W is linear, whi
h is the main fo
us of the present se
tion: the bulk potential is133




onstant whereas the boundary potential is linear. In this 
ase, it is absolutely ne
essaryto require that ImW is bounded below at every in�nity of the brane L. When W isquadrati
 or higher, it is less 
lear whether we need the 
onstraint. However, as we shallsee below, it is preferable to keep this requirement also in the general 
ase.If we loose the requirement (7.1), the set of allowed D-branes is 
onsiderably expanded.However, we may identify the branes that are related by boundary D-term deformations.We have seen that a Hamiltonian deformation of the brane 
orresponds to the boundary D-term of the form (7.8). Here we must be 
areful | (7.8) 
an be regarded as a deformationonly when its e�e
t is small at in�nity in the �eld spa
e. In the absen
e of a superpotential,we need to assume that the fun
tion h approa
hes a 
onstant at in�nity or a linear fun
tionat most. For example, a quadrati
 fun
tion h 
orresponds to a rotation of the brane and
annot be regarded as a \deformation" sin
e it results in an inde�nitely large move atin�nity. The parallel displa
ement, 
orresponding to a linear h, is the marginal 
ase whereone may or may not regard it as a deformation. In the presen
e of bulk and boundarypotentials, a higher power of h is allowed as long as the e�e
t is small relative to thee�e
t of the potentials. In fa
t, as long as the potentials grow fast enough along thebrane L, the wavefun
tion in that in�nity dire
tion is damped exponentially, so that theHamiltonian deformation for almost any fun
tion h 
an be safely regarded as a boundaryD-term deformation.An important invariant under the boundary D-term deformation is the overlap ofthe boundary state jBLi with a R-R ground state jii, known as the generalized 
entral
harge. (Here we assume that the polynomial W is quadrati
 or higher so that there aresupersymmetri
 ground states as many as degW � 1.) It is realized as the path integralon a semi-in�nite 
igar and is represented as the integral:hijBLi = ZL e�� ImW!i(�): (7.11)Here � is the 
ir
umferem
e of the boundary 
ir
le of the 
igar and !i(�) is the di�erentialform on R2n of middle degree that 
orresponds to the ground state jii. To be pre
ise, theform !i(�) realizes the ground state of the supersymmetri
 quantum me
hani
s obtainedby 
ompa
ti�
ation on the 
ir
le of 
ir
umferen
e �. See [50℄ for details. It is normal-izable and has the asymptoti
 behaviour jj!i(�)jj � e��jW j. Although it indeed de
aysexponentially at in�nity, the fa
tor e�� ImW 
oming from the boundary potential (7.10)
an be dangerous if L extends to the dire
tion with ImW = �jW j. Thus, Hamiltoniandeformations of L a
ross that dangerous hypersurfa
e 
annot be regarded as boundaryD-term deformations. Therefore, we should better avoid that hypersurfa
e. Given thefreedom to use boundary D-term deformation, we may even require that ImW grows at134
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Figure 14: Some A-branes in LG model with W = �6.every asymptoti
 dire
tion of L. In that 
ase the integral (7.11) 
an be re
ast into anintegral of a holomorphi
 di�erential RL ei�W
i(�) [50℄.This pi
ture of A-branes in LG models is 
onsistent with all known results based on(7.1) and also on other methods. It a
tually explains some of the puzzles in the old pi
ture.For example, in [7℄ only branes with ImW = 
onstant and ReW ! +1 were 
onsidered,and those with ReW ! �1 were 
ompletely ignored. In the new pi
ture, those braneswith ReW ! +1 and those with ReW ! �1 are 
onne
ted via D-term deformationsthrough the region with large positive ImW . There is a one to one 
orresponden
e betweenthe D-isomorphism 
lasses in su
h two sets of branes. For illustration, let us 
onsider theLG model for the minimal modelW = �k+2. If we require ImW = 0, a brane is a union oftwo rays in the dire
tions e�mi=(k+2), m = 0; :::; 2k+3. However, only rays in the dire
tionse2�mi=(k+2), m = 0; :::; k + 1 were 
onsidered in [7℄. In the new pi
ture, ea
h ray 
an be inany dire
tion bewteen e2�mi=(k+2) and e�(2m+1)i=(k+2) so that ImW is bounded below atin�nity. Fig. 14 shows the 
ase k = 4. The dashed line is an example of a brane taken in[7℄ while the 
entipede line satis�es ImW = 0 but was ignored. In the new pi
ture anybrane is allowed as long as it has asymptoti
 region with positive ImW . The solid line issu
h an example and it indeed 
onne
ts the dashed line and the 
entipede line. For thebranes preserving the opposite super
harge Q0A = Q+�Q� (or for the branes preservingthe same super
harge but on the left boundary), the boundary potential has the oppositesign, V bdry = �ImW , and thus the requirement is that ImW is bounded above on L.Then, the rays must be between e�(2m�1)i=(k+2) and e2�mi=(k+2). This alternation patternhas been observed in the geometri
al pi
ture of D-branes in the U(1) gauged SU(2) WZWmodel (Kazama-Suzuki model) that realizes the minimal model [36℄.135



7.2 Asymptoti
 Condition In The Coulomb Bran
hWe now 
ome ba
k to the study of boundary linear sigma models. Our fo
us will bethe boundary 
ondition on the Coulomb bran
h. As dis
ussed in the previous se
tion, weneed to spe
ify a Lagrangian submanifold L on whi
h the boundary potential is boundedbelow. We �rst 
onsider a model with U(1) gauge group and assume the Calabi-Yau
ondition nXi=1 Qi = 0:In the region with large �, it is appropriate to integrate out the 
harged matter �elds.This yields 
orre
tions to the potential and kineti
 terms and also produ
es higher deriva-tive terms. Corre
tions to the kineti
 term and higher derivative terms are written aspower series in e=j�j and k�=j�j and are negligible in the low energy limit in the regionj�j � e. Therefore, we 
an use the 
lassi
al kineti
 term (5.2) in that regime. Sin
eit is written in the manifestly supersymmetri
 form with quadrati
 K�ahler potential, asdis
ussed in the previous se
tion, the Lagrangian L must be a linear Lagrangian subspa
e.Namely, it must be asymptoti
ally a straight line in the Coulomb bran
h. Of 
ourse the
orre
tion will be large in the region j�j < e, and there is no reason for L to be straightthere. Thus, the Lagrangian L is a bent line, 
oming in toward the origin from one asymp-toti
 dire
tion and going out to in�nity in another dire
tion. In order for the brane to be
oupled to the Higgs bran
h theory, L should better go through the region j�j � e.The 
orre
tion to the potential 
an be non-zero even in the asymptoti
 region. In thebulk, the twisted superpotential is 
orre
ted simply by the shift of the FI-theta parameter,fW = �t�!fWe� = �te��te� = t+ nXi=1 Qi log(Qi) mod 2�iZ:The 2�Z ambiguity of the imaginary part is �xed by the boundary 
harge. Quantum
orre
tions to the boundary potential and the boundary 
harge were analyzed in Se
tion 6.For the Wilson line brane with 
harge q, the e�e
tive boundary potential isV bdrye� = 12�  r + nXi=1 Qi log jQij! Im(�)� � �2� + q�Re(�) + 14 nXi=1 jQiRe(�)j;(7.12)and the e�e
tive 
harge is qe� = q � sgnRe(�) nXi=1 jQij4 : (7.13)136



The potential 
an indeed be written as V bdrye� = � 12� ImfWe� with te� = re� � i(�+2�qe� )where re� = r +Pni=1Qi log jQij. (In 
omparison with (7.10), the fa
tor of 12� is just a
onvention and the sign is the di�eren
e between 
hiral and twisted 
hiral superpotentials.)Note that there is a dis
ontinuity in the e�e
tive 
harge and singularity in the potentialat Re(�) = 0, that is, on the imaginary line. This is due to the appearan
e of zero modesfrom the 
harged matter se
tor: The de
aying modes lo
alized at the boundary be
omezero modes exa
tly at � = ij�j for positively 
harged �elds and at � = �ij�j for negatively
harged �elds. In those dire
tions, no matter how large j�j is, the matter �elds are notreally de
oupled from the low energy dynami
s. The e�e
tive des
ription purely in termsof � breaks down at � = �ij�j. In this sense we shall sometimes 
all the imaginary � linea singular line.The asymptoti
 lines for L must be su
h that the boundary potential (7.12) is boundedbelow. Let us depi
t the region of positive boundary potential, for various values of r anda �xed �2� + q. The behaviour depends very mu
h on the relation of �2� + q and the 
hargeshift �12S, S := 12Xi=1 jQij = XQi>0Qi: (7.14)We 
onsider three 
ases separately.PSfrag repla
ements
re� � 0 re� > 0 re� = 0 re� < 0 re� � 0Figure 15: �2� + q > 12SPSfrag repla
ements
re� � 0 re� > 0 re� = 0 re� < 0 re� � 0Figure 16: �12S < �2� + q < 12SThe boundary potential is positive in the shaded regions. If �2� + q is larger than S2 orsmaller than �S2 , the positive potential region rotates roughly by 180 degrees as r is
hanged from +1 to �1. Not a single Lagrangian 
an stay inside the region for all137



PSfrag repla
ements
re� � 0 re� > 0 re� = 0 re� < 0 re� � 0Figure 17: �2� + q < �12Svalues of r. On the other hand, if �12S < �2� + q < 12S, the region does not rotate. Inparti
ular, the real line is always inside.As dis
ussed in the previous se
tion, we 
an deform the brane L as long as they stayinside the admissible region | that would be a boundary D-term deformation. If we usethis freedom we noti
e that some of the 
on�gurations should be regarded as trivial. Forexample, we 
an 
onsider deformations as shown in Figure 18. When the two rays are

orFigure 18: Annihilation of the brane.deformed to 
oin
ide, brane-antibrane annihilation takes pla
e. Alternatively, the branemay be deta
hed from the 
enter of the Coulomb bran
h. Then, it is de
oupled fromthe Higgs bran
h theory and will eventually disappear to in�nity. The existen
e of su
hdeformations means that the starting 
on�guration (left) should be regarded as trivial.This does not apply if the two rays of L are on the opposite side of the singular line at� = �ij�j. In order to move the two rays until they 
oin
ide, either one or both of themmust hit the singular line. Also, even if the brane is deta
hed from the origin, it will stillinterse
t with the singular line and 
ontinue to be 
oupled to the matter se
tor.7.3 Rules Of D-Brane TransportWe now des
ribe rules of D-brane transport. We �rst 
onsider models with U(1) gaugegroup and next the 
ases of higher rank gauge groups.
138



7.3.1 U(1) Gauge Group |The Grade Restri
tionWe are interested in transporting branes along a path that goes from the large volumephase r � 0 to the small volume phase r � 0, or in the opposite dire
tion. The pathshould better avoid the singular points at re� = 0 and � 2 2�Z + �S. Thus, it must go
π−π−5π 3π−3π

r

θ

Figure 19: A path through one of the windows.through the windows between the singular points. For simpli
ity, we 
onsider paths thatgoes just on
e through one of the windows, as shown in Figure 19. (The Figure is for the
ase where S is odd. For even S, the windows are at 2�n < � < 2�(n+ 1), n 2 Z). More
ompli
ated paths are just some 
ombinations of su
h simple paths. We 
laimThe Grade Restri
tion Rule:The Wilson line brane W(q) 
an be transported smoothly between the two phases if andonly if the inequality � S2 < �2� + q < S2 (7.15)holds in the window. The same 
an be said on a 
omplex of Wilson line branes W(qi) ora matrix fa
torization of the superpotential: ea
h qi must obey the inequality (7.15) in thewindow in order for the brane to be transported smoothly.For a given 
hoi
e of window, this rule sele
ts S 
onsequtive integers as the allowed setof boundary 
harges q. For example, in a theory with S = 3, the allowed set is f�1; 0; 1g139



if the window is at �� < � < �. If we 
hange the window to �3� < � < ��, the set
hanges to f0; 1; 2g. Below, we provide a derivation of this rule.Suppose the inequality (7.15) is not satis�ed on the window. To be 
on
erete, supposethat q is too large for that. As we move along the path, say from r � 0 to r � 0, theregion of positive boundary potential rotates 
ounter-
lo
kwise as in Figure 15. The raysof L must be rotated so that they are always inside that region. We depi
t an exampleof su
h a rotation in Figure 20. The starting 
on�guration (left) is 
hosen so that the
Figure 20: Rotation of L in the 
ase where q is too large for (7.15).two rays are on the opposite side of the singular line � = �ij�j. As we have dis
ussedabove, this is required for the brane to be non-trivial. At some moment before we gothrough the window, the ray that was on the right of the singular line must overlap withthe singular line on � = ij�j (se
ond from left). At that moment, something non-trivialmust happen to the brane. If nothing had happened, then after that we would have a
on�guration where both of the rays are on the left of the singular line (
enter). But that
on�guration is trivial as the brane would annihilate by admissible deformations. This isin 
ontradi
tion to the fa
t that the starting 
on�guration was non-trivial. Somthing non-trivial must also happen when the other ray overlaps with the singular line on � = �ij�j(se
ond from right). At this stage, we 
annot exa
tly tell what really happens ex
ept thatit has to do with the zero modes from the matter se
tor. Later in this paper, we willdis
uss this point from a di�erent perspe
tive.Let us now 
onsider the 
ase where the inequality (7.15) is satis�ed. If the path is astraight line at a 
onstant � obeying (7.15), then there is no need to move L as the realline Im(�) = 0 (7.16)is always inside the admissible region. If the path is 
urved as in Figure 19, then it mayhappen that the inequality is not satis�ed along a part of the path. Then, we may needto deform L away from the real line. However, as long as the inequality is satis�ed onthe window at re� = 0, the admissible region is always on both sides of the singular line� = �ij�j, and the two rays do not have to overlap with the line, never at any point ofthe path. Thus, the brane 
an be 
ontinuously deformed from one phase to another.140



To summarize, we 
an 
onsider branes for arbitrary boundary 
harges qi. They arenon-trivial as long as the two rays of L are on opposite sides of the singular line � = �ij�j.However, only those obeying the grade restri
tion rule 
an be 
ontinuously transportedbetween the two phases through the window. For a 
omponent of a brane whi
h doesnot satisfy the grade restri
tion rule, the asymptoti
 
ondition on the Coulomb bran
h Lmust overlap with the singular line � = �ij�j along the way, and something non-trivial isexpe
ted to happen. This is the meaning of the grade restri
tion rule.7.3.2 Higher Rank Gauge Group | The Band Restri
tionWe now 
onsider the model with higher rank gauge group T �= U(1)k (k � 2). We areinterested in transporting branes along a path that goes from one phase to another in themulti-dimensional K�ahler moduli spa
e MK. Here we fo
us on paths that go from onephase to an adja
ent phase through the phase boundary in the asymptoti
 region, thatis, the region with large values of FI parameters. Any two phases 
an be 
onne
ted by a
ombination of su
h paths.In the asymptoti
 region, there is exa
tly one U(1) subgroup of the gauge group T that
an be unbroken at the phase boundary. The remaining gauge group is 
ompletely Higgsedand 
an be ignored. Repeating what we have done before for the unbroken U(1) subgroup,we �nd a rule of D-brane transport. Let us arrange the basis of the Lie algebra of T sothat the �rst fa
tor is the unbroken U(1). Then, the 
oordinate r1 is transverse to thephase boundary. The singular lo
us is asymptoti
ally at r1e� = r1 +Pni=1Q1i log jQ1i j = 0and �1 2 2�Z+ �S1 where S1 := XQ1i>0Q1i : (7.17)We �x one of the windows at r1e� = 0 and 
onsider a path that goes though it. We haveThe Band Restri
tion Rule:The Wilson line braneW(q1; :::; qk) 
an be transported smoothly a
ross the phase boundaryif and only if the inequality � S12 < �12� + q1 < S12 (7.18)holds in the window. The same 
an be said for a 
omplex of Wilson line branes W(~qi)or a matrix fa
torization of the superpotential: ea
h q1i must obey the inequality (7.18) inthe window.There is no 
ondition on q2; :::; qn. For a 
hoi
e of window, this sele
ts a band of width141



S1 in the latti
e of 
harge ve
tors. For example, let us 
onsider the two parameter model(Example (C) in Se
tion 4.4), and look at the boundary between Phase I and Phase IV.The unbroken subgroup is the original U(1)1, with the number S1 = 4. If we 
hoose thewindow 0 < �1 < 2� at r1e� = r1 � 4 log 4 = 0, r2 � 0, then the band is f(q1; q2) j q1 =�2;�1; 0; 1g as shown in Figure 21 (left). The Figure also shows a sample of bands at
PSfrag repla
ements q1q1q1
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Figure 21: Examples of bands in the two parameter model.other phase boundaries; the I-II or III-IV boundary (middle) and the II-III boundary(right).7.4 The Nature Of The RuleThe above derivation of the grade/band restri
tion rule is 
ertainly 
on
erned withthe transport of D-branes in a linear sigma model with �nite gauge 
oupling e whi
h isformulated on a worldsheet of �nite (spatial) volume.In fa
t, the e�e
tive boundary potential (7.12) as well as the e�e
tive boundary 
harge(7.13) 
eases to be valid if we take the in�nite 
oupling or in�nite volume limit. Thevalidity of a perturbative treatment of the gauge intera
tion that leads to these expressionshad been analyzed in Se
tion 6.9. Here we would like to dis
uss it from a di�erentperspe
tive. As before, we 
onsider the strip of width L. There is a bulk 
ontribution tothe total energy Ebulk = e2L2 r2e� + e2L2 � �2� + qb�2 : (7.19)The se
ond term is the ele
trostati
 energy: qb is the 
harge at the (right) boundarythat determines the value of the ele
tri
 �eld via the Gauss law. The boundary 
hargeqb 
an be 
hanged if we 
hoose a di�erent state from the matter se
tor. Su
h a 
hangemay redu
e the ele
trostati
 energy Ees , but it may in
rease the energy of the matter142



se
tor at the same time. The e�e
tive potential and 
harge are obtained by �nding the
on�guration that minimizes the total energy. The results (7.12) and (7.13) are obtainedby ignoring the 
ontribution of Ees in the minimization problem. That is valid when theex
itation energy in the matter se
tor is mu
h larger than the possible 
hange in Ees bythe 
hange of boundary 
harge. The separation of the energy levels is of order j�j foros
illating modes and jRe(�)j for de
aying modes. Thus, the region of validity isjRe(�)j � e2L: (7.20)This is indeed the same as the 
ondition (6.95) we obtained earlier. In the opposite regime,jRe(�)j � e2L, while j�j is still mu
h larger than the gauge 
oupling e, the ele
trostati
bulk energy Ees is mu
h more important than the boundary potential. Then, the state inthe matter se
tor must be su
h that the boundary 
harge qb minimizes the ele
trostati
energy. Thus, \the singular line" of purely imaginary �, whi
h played the 
ru
ial rôle forthe grade/band restri
tion rule, is a
tually a singular band of width � e2L. This bandspreads over the entire �-plane if we take the in�nite volume limit L ! 1 or in�nitegauge 
oupling limit e!1, or any limit that sends e2L to in�nity.The key question is what is the rule of D-brane transport in a theory formulated on aworldsheet of in�nite volume, or in the 
onformal �eld theory to whi
h the linear sigmamodel 
ows to in the infra-red limit. Does the grade restri
tion rule still hold? Is theresome phase transition that is not visible at �nite volume and �nite gauge 
oupling?A similar issue was dis
ussed in the bulk theory [2℄ 
on
erning the meaning of theCoulomb bran
h analysis to the phase transition in the in�nite volume system. It was�rst noted that the existen
e of a phase transition depends on the parti
ular path inthe multi-parameter spa
e of theories. Then the fo
us was 
on
entrated on the pathsinside 
onformal �eld theories for whi
h we know the answer from mirror symmetry. Itwas argued that the �nite volume and �nite 
oupling theory is enough to �nd all possiblesingularities of the 
onformal �eld theories: if the singularity is purely due to the vanishingof the Coulomb bran
h potential (Ebulk above), then the potential only seems to grow inthe infra-red limit e!1 if that was non-zero for �nite e and �nite L. The only possibleproblem in this argument was the 
on
i
t of the 
ondition j�j � e for the Coulomb bran
hanalysis and the infra-red limit e!1.The situation is mu
h more subtle in the boundary theory. It is 
ertainly the 
ase thatthe existen
e of a singularity depends on the parti
ular path in the multi-parameter spa
eof theories. The grade/band restri
tion rule is derived for the path in the (r; �) spa
e at�xed, �nite values of e and L: there is no singularity in the transport of the brane if andonly if any of the boundary 
harges of the brane is inside the grade/band restri
tion range143



(7.15) or (7.18). Does it tell something about transport of the 
orresponding 
onformallyinvariant brane in the 
orresponding family of 
onformal �eld theories? For branes with
harges outside the grade/band restri
tion range, the answer is simple. We do not evenhave a family of boundary 
onformal �eld theories from su
h a family of linear sigmamodel branes. This is so as long as they are de�ned as the infra-red limit of boundaryQFTs with �nite e and �nite L. The grade restri
tion rule is valid as long as e2L is �nite,no matter how large it is. There is a problem already at �nite volume and �nite 
oupling,and hen
e there is nothing to study.Things are non-trivial for branes with 
harges inside the grade/band restri
tion range.First of all, we do have a family of boundary 
onformal �eld theories from su
h a linearsigma model brane. The question is then whether there is a singularity along the way.There is no 
ompelling argument like the one for the bulk theory that shows the non-existen
e of a singularity. On the 
ontrary, it is expe
ted that there are singularities ormore appropriately transition points. We know many examples of D-brane de
ays whenthe 
losed string ba
kground is dialed through walls of marginal stability: on one side ofthe wall the brane is stable and on the other side it de
ays to, say, two stable D-branes.From the worldsheet point of view, the point of marginal stability 
an be regarded as atransition point in the family of boundary 
onformal �eld theories. Thus, it is not thatthere is no singularity if the grade/band restri
tion rule is obeyed. But it is that a graderestri
ted brane provides a family of boundary 
onformal �eld theories. It provides uswith a starting point to study stability and D-brane de
ay.7.5 The Full Boundary ConditionsLet us expli
itly write down the boundary 
onditions on the bulk �elds. For the Wilsonline brane W(q) in a U(1) gauge theory, the Lagrangian submanifoldIm(�) = 0is in the admissible region as long as (r; �) is in the strip domain �S2 < �2� + q < S2 ,�1 < r <1. Thus, we take it as a part of the boundary 
ondition of the ve
tor multiplet�elds. The boundary 
onditions on other 
omponent �elds, (7.3), read �+ + �� = 0 and�1Re(�) + v01 = 0. A
tually, we may take v1 = 0 as an extra 
ondition sin
e its N = 2Bvariation is proportional to that of Im(�). In this way, we �nd the following set of
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boundary 
onditions Im(�) = 0;�+ + �� = 0;�1(v0 � Re(�)) = 0;v1 = 0: (7.21)Another set of 
onditions follows from the Gauss law 
onstraint:� 1e2 v01 = � + 2�q;�1(�+ � ��) = 0;�1(D + �1Im(�)) = 0: (7.22)If we use (7.21), the 
onditions on the matter 
hiral multiplet �elds (5.37) simplify to�1� = 0; + =  �;�1( + +  �) = 0;F = 0: (7.23)These are the full set of boundary 
onditions on the bulk �elds. These are invariant underthe N = 2B supersymmetry and are 
ompatible with the variational equation.At a point (r; �) away from the strip domain, only one half of the line Im(�) = 0 is inthe admissible region. As we have dis
ussed, the two asymptoti
 lines of L must be onthe opposite sides of the singular line � = �ij�j. Thus, we take L to be the one obtainedfrom Im(�) = 0 by rotating one of the asymptoti
 lines so that it is in the admissibleregion. This is possible as long as re� 6= 0. In parti
ular, for r � 0 or r � 0, we 
an takeL to be very 
lose to the real line Im(�) = 0. The other set of 
onditions (7.22) 
an stillbe imposed. For the matter se
tor, we need to use the original 
ondition (5.37) for thepart of L away from Im(�) = 0.Remarks(i) The 
ondition on the matter �elds (7.23) is identi
al to the ultra-violet boundary
ondition (5.38). At this moment we do not know the signi�
an
e of this observation.One possibility is that the e = 0 ultra-violet theory 
an be used to study some of theproperties of the grade restri
ted branes. Indeed, as we will see in later se
tions, the e = 0theory provides 
orre
t results for the spa
e of 
hiral ring elements for any pair of graderestri
ted branes. 145



(ii) When there are bulk and boundary intera
tions from the superpotential W andthe ta
hyon pro�le Q, the variational equation is 
hanged and the boundary 
onditionsshould be modi�ed. However, we 
an still use the above boundary 
onditions as long aswe treat these intera
tions as perturbations. Re
all the remark on this approa
h given inSe
tion 5.5. Here, we would like to 
omment on the treatment of the Gauss law. Supposea brane 
onsists of more than one Wilson lines with various di�erent 
harges qi. TheGauss law 
onstraint shows that the bulk �elds obey di�erent boundary 
onditions fordi�erent Chan-Paton 
omponents of the same brane. This may look strange at �rst sightbut a moment of re
e
tion reveals that there is nothing wrong, at least in perturbationtheory. In the path-intergal formalism, we expand the path ordered exponential into aDyson series. Ea
h term of the series is a produ
t of matri
es of the form ��(v0�Re(�)), i�iQ, fQ;Qyg, et
, whi
h are inserted at points of the worldsheet boundary. These pointsseparate the boundary into segments | ea
h segment 
orresponds to one of the Chan-Paton 
omponents. Then, it is simply that we impose di�erent 
onditions on di�erentparts of the worldsheet boundary. In the operator formalism, the situation is even 
learer.The Chan-Paton spa
e is already a part of the quantum Hilbert spa
e | an open stringwavefun
tion is a produ
t of the bulk part and the Chan-Paton fa
tor. It is simply thatthe bulk �elds obey boundary 
onditions that depend on the Chan-Paton fa
tor.(iii) That one 
an take an extra 
ondition v1 = 0 is a spe
ial feature of the Lagrangiansubmanifold Im(�) = 0. In fa
t a similar property is possessed by the singular lineRe(�) = 0on whi
h the de
aying modes from the matter se
tor be
ome zero modes. One 
an takean extra 
ondition v0 = 0, sin
e its N = 2B variation is identi
al to that of Re(�) (thatis why the 
ombination v0 � Re(�) is supersymmetri
). The N = 2B invariant set of
onditions in
luding these is Re(�) = 0;�+ � �� = 0;D + �1Im(�) = 0;v0 = 0: (7.24)This may be 
ompleted by another set of 
onditions:�1(�+ + ��) = 0;�1(v01 + �1Re(�)) = 0;�1Im(�) = 0: (7.25)In fa
t, (7.21) and (7.24) are the only possible N = 2B invariant sets that in
lude two146



independent equations of the form f = 0 and gv0 + hv1 = 0 where f; g; h are real valuedfun
tions of � and �. We do not yet understand the signi�
an
e of this observation.8 Non-Compa
t ModelsIn this se
tion, we a
hieve our main goal of the paper: using linear sigma models, we
onstru
t parallel families of D-branes over regions of the K�ahler moduli spa
e MK thaten
ompass various di�erent phases. The key result of the previous se
tion, the grade (orband) restri
tion rule, plays the most important role in the 
onstru
tion. This se
tionfo
uses on models without superpotential, whose low energy theories are non-linear sigmamodels on tori
 Calabi-Yau varieties, possibly with orbifold singularities.In Se
tion 8.1 we study how D-branes of the linear sigma model des
end to the lowenergy theories deep inside the phases of the K�ahler moduli spa
e. We pro
eed in twosteps: First, we determine the low energy boundary intera
tion of a given 
omplex ofWilson line branes (5.20). Se
ond, we take into a

ount D-term deformations and brane-antibrane annihiliation, named D-isomorphisms in Se
tion 3, whi
h do not 
hange thelow energy behaviour of boundary intera
tions.In Se
tion 8.2, we apply the grade (or band) restri
tion rule and transport D-branesalong paths that 
onne
t adja
ent phases, a
hieving our main goal of the paper. As a
onsequen
e, this leads to one to one 
orresponden
es between D-isomorphism 
lasses ofD-branes at di�erent phases. Mathemati
ally, this results in equivalen
es of the derived
ategories of di�erent tori
 varieties.As an appli
ation, we obtain an honest understanding of D-brane monodromies asso-
iated to 
losed loops in K�ahler moduli spa
e, whi
h we shall 
onsider in Se
tion 8.3. InSe
tion 8.4, we demonstrate the power of 
onstru
tion in typi
al examples: the (lo
al) 
optransition and the M
Kay 
orresponden
e. In Se
tion 8.5, we dis
uss families of D-branesover the 
entral region of the moduli spa
e where multiple phase boundaries meet. We�nd a simple 
onstru
tion whi
h works under a 
ertain 
ondition.8.1 Low Energy Boundary ConditionsWe �rst study the low energy behaviour of D-branes of the linear sigma model, assum-ing that we are deep in some phase in the K�ahler moduli spa
e where the gauge groupis broken either 
ompletely or to its dis
rete subgroup. At energies well below the gauge147




oupling e, the theory redu
es to the bottom of the s
alar potential, the va
uum manifoldXr = (CN � �r)=TC, possibly with orbifold points. Thus, we are interested in how thelinear sigma model branes des
end to D-branes in the non-linear sigma model on Xr.The low energy limit is a
hieved by the limit e!1, in whi
h the ve
tor multiplet losesthe kineti
 term in the bulk. The auxiliary �eld D be
omes a Lagrange multiplier �eldthat imposes the D-term equation stri
tly. The 
omponents v� and � be
ome auxiliary�elds and the e�e
t of elimination is to set them equal to their 
lassi
al values, see (4.12)-(4.14). We 
laim that, under appropriate boundary 
ondition on the ve
tor multiplet,this pi
ture remains the same also in the presen
e of a boundary with the boundaryintera
tion (5.5) or (5.7) that in
ludes D, v� and �. For 
on
reteness, we 
onsider a U(1)gauge theory formulated on the left-half plane, S = f(t; s)js � 0g, and put the Wilsonline brane W(q) at the boundary.We �rst note that D and v1 appear only in the boundary 
ounter term S
:t:g for thegauge kineti
 terms, see (5.2) and (5.7). As we have dis
ussed in Se
tion 7.1, the boundary
ondition for the gauge multiplet �elds are 
hosen so that this 
ounter term vanishes.Thus, D and v1 do not appear in the boundary intera
tion. In parti
ular, the e�e
t ofintegrating them out remains the same as in the bulk: impose the D-term equation asa 
onstraint and set v1 equal to the 
lassi
al value (4.13). The part of the a
tion thatdepends on v0 is12� ZS�v20j�j2 � 2iv0  ���!t�� v0( + + +  � �)� dtds� 12� Z�S(� + 2�q)v0dt= 12� ZS�v20j�j2 � 2iv0  ���!t�� v0( + + +  � �)� (� + 2�q)v0Æ(s)�dtds:For simpli
ity of notation, we 
onsider only a single 
harge 1 matter �eld. Completingthe square and integrating out v0, we are left with� 12� ZS 1j�j2 �i� ���!t�+ 12( + + +  � �) + 12(� + 2�q)Æ(s)�2 dtds= � 12� ZS 1j�j2 �i� ���!t�+ 12( + + +  � �)�2 dtds� 12� Z�S�(� + 2�q)�i� ���!t�+ 12( + + +  � �)�+ 14(� + 2�q)2Æ(0)�dt:The e�e
t is simply to set v0 equal to the 
lassi
al value of the bulk theory (4.12), ex
eptthat we a
quire the boundary term that involves Æ(0). This looks problemati
. For �
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integration, we �nd12� ZS��j�j2j�j2 �  �� + �  +� � + (� + 2�q)Re(�)Æ(s)�dtds�! 12� ZS 1j�j2 j + �j2dtds� 12� Z�S�(� + 2�q)12( � + +  � +)� 14(� + 2�q)2Æ(0)�dtAgain, we �nd the unwanted Æ(0) at the boundary. However, we noti
e that it has theopposite sign and exa
tly the same absolute value 
ompared to the Æ(0) term from thev0-integration. Thus, they 
ompletely 
an
el out. This 
an
ellation o

urs pre
isely whenboth v0 and Re(�) are un
onstrained at the boundary. And this is indeed the type ofboundary 
onditions we impose, as we have dis
ussed in Se
tions 7.2 and 7.5. Otherwise,we may need to keep an un
an
elled Æ(0) in the low energy theory. Our 
hoi
e of boundary
onditions saves us from su
h a 
ompli
ation. The appearan
e of Æ(0) at the boundaryfrom elimination of auxiliary �elds was found earlier in [69℄ where the signi�
an
e of su
ha term to supersymmetry is dis
ussed.To summarize, the e�e
t of intergrating out v0 and � also remains the same as in thebulk: set them equal to their 
lassi
al values (4.12), (4.14). A

ordingly, the boundaryintera
tion for the Wilson line brane W(q) =W(q1 : : : qk) is expressed asAt = kXa=1 qa�(va)0 � Re(�a)� = _xIA(q)I (x)� i4F (q)IJ (x) I J ;where the term _xIA(q)I (x) is the pull-ba
k of the 
onne
tion on the holomorphi
 line bundleO(q) = O(q1; : : : ; qk) over Xr. This is nothing but the boundary intera
tion for the D-brane in the non-linear sigma model supporting the line bundle O(q), see (2.7). Thus, we�nd that the Wilson line brane des
ends to the brane supporting the line bundleW(q1; : : : ; qk) �! O(q1; : : : ; qk):Things are as simple as this also for more general branes, dire
t sums of Wilson line branesW = �iW(qi) with intera
tion Q. The 
orresponding boundary intera
tion (5.12) dire
tlydes
ends to the boundary intera
tion (2.28) of a D-brane in the non-linear sigma model,asso
iated with the ve
tor bundle E = �iO(qi) with 
onne
tion A = diag(A(qi)) andta
hyonT = iQ�iQy. The R-symmetry also des
ends straightforwardly. Thus, the gradedD-brane B = (V; Q; �; R) dire
tly des
ends to the graded D-brane B = (E;A;Q;R). Inother words, a 
omplex of Wilson line branes,C(B) : � � � dj�1�!Wj�1 dj�!Wj dj+1�!Wj+1 dj+2�! � � �149



withWj = �nji=1W(qij), be
omes a 
omplex of holomorphi
 ve
tor bundles over the targetspa
e Xr, C(B) : � � � dj�1�! E j�1 dj�! E j dj+1�! E j+1 dj+2�! � � � ; (8.1)where the 
omponent of R-degree j is a dire
t sum of line bundles, E j = �nji=1O(qij).In the above dis
ussion, we have assumed that Xr is smooth, but everything goesthrough in the presen
e of orbifold lo
i as well, provided we 
onsider a part of the gauge
harges (q1; :::; qk) as the data of the orbifold group a
tion on the Chan-Paton fa
torsrather than the data determining the ve
tor bundle with 
onne
tion. When Xr 
an berealized as a global orbifold of a spa
e X 0r, we may regard O(q1; :::; qk) as an equivariantline bundle over X 0r. In general, the 
orre
t mathemati
al name for it is a line bundleover the quotient sta
k [(CN ��r)=TC℄, but not a sheaf over the algebrai
 varity Xr (see[70℄ and Se
tion 9). In what follows, somewhat loosely we 
all su
h obje
ts simply \linebundles or ve
tor bundles over the tori
 variety Xr".Let us introdu
e some notation. We denote by D(CN ; T ) the set of graded D-branesin the linear sigma model. We denote by D(Xr) the set of graded D-branes in the lowenergy theory with target spa
e Xr. The map of D-branes obtained above is denoted by�r : D(CN ; T ) �! D(Xr): (8.2)In the following, we shall indi
ate the degree 0 
omponent of a 
omplex by underlining it,E0 = E , when there is a room of 
onfusion. Also, a 
omplex 
onsisting of a single ve
torbundle E at R-degree j will be denoted by E [�j℄. For the one at degree 0, we may simplydenote it by E when there is no room of 
onfusion.D-isomorphismsLet us now apply the 
on
epts that are introdu
ed in Se
tion 3 to D-branes in thelow energy theory. Namely, we regard D-branes to be isomorphi
 in D(Xr) (or simplyD-isomorphi
) if they are related by a 
ombination of D-term deformations and brane-antibrane annihilation. Isomorphi
 D-branes in D(Xr) 
ow to the same infra-red �xedpoint, although the 
onverse is not true in general. The map (8.2) is therefore the op-eration of modding out D-branes of the linear sigma model by D-isomorphism relations.In what follows, we study su
h isomorphism relations and see how they depend on thephases of the K�ahler moduli spa
e.Re
all from Se
tion 3 that D-isomorphisms 
an be 
hara
terized as follows. For twoD-branes in the linear sigma model, B1 and B2, a D-isomorphism of the image D-brane150



in D(Xr) may be represented by a degree 0 map ' in the linear sigma model whose 
oneQC(') =  �Q1 0' Q2 !has positive de�nite boundary potential, fQC('); QyC(')g > 0, everywhere on Xr. Noti
ethat everywhere-positivity of the boundary potential depends heavily on the deleted set�r, whi
h is determined by the bulk D-term equation. This is how the D-isomorphismrelations of linear sigma model branes depend on the phase that we are in.Let us illustrate the dependen
e in Example (A) with N = 3, namely, U(1) gaugetheory with �elds P;X1; X2; X3 of 
harge �3; 1; 1; 1 respe
tively. The model has twophases, r � 0 and r � 0. The deleted sets are�+ = fx1 = x2 = x3 = 0g; in the r � 0 phase;�� = fp = 0g; in the r � 0 phase:Let us 
onsider the D-brane, B+, given by the 
omplex1C(B+) : W(�1)  x1x2x3!�����!W(0)�3  0 �x3 x2x3 0 �x1�x2 x1 0 !�����! W(1)�3 (x1;x2;x3)�����!W(2): (8.3)The boundary potential isfQ+; Qy+g = �jx1j2 + jx2j2 + jx3j2� � idV+: (8.4)In the low energy theory of the positive volume phase r � 0, the potential is stri
tlypositive sin
e the point x1 = x2 = x3 = 0 is deleted. As a 
onsequen
e 
omplete brane-antibrane annihilation takes pla
e: B+ is D-isomorphi
 to the empty brane,�+(B+) �= 0:On the other hand, we may view B+ as a result of binding two D-branes,C(B1) : W(�1) X�!W(0)�3 X�!W(1)�3 and C(B2) =W(2);by the right-most map ' = (x1; x2; x3) in (8.3), via the 
one 
onstru
tion. Then, thepositivity of fQ+; Qy+g tells us thatB1 andB2 determine isomorphi
 low energy D-branesin D(Xr): �+(B1) �= �+(B2):1In the following we use the short-hand notation W(�1) X�! W(0)�3 X�! W(1)�3 X�! W(2) forKoszul-like 
omplexes (8.3). 151



Let us next study these branes in the negative volume phase r � 0, where the deletedset is �� = fp = 0g and the low energy theory is the free orbifold X� = C3=Z3.Now the xi's are allowed to vanish at the same time, and hen
e the boundary potentialfor B+ is no longer positive everywhere. In fa
t, the D-brane B+ des
ends dire
tly tothe fra
tional D-brane (see Se
tion 3.2), Op(2), whi
h is lo
alized at the orbifold pointp = fx1 = x2 = x3 = 0g, ��(B+) �= Op(2):Moreover, we �nd that ��(B1) and ��(B2) are not isomorphi
 in D(X�).A 
omplementary example is provided by the 
omplexC(B�) : W(q+3) p�!W(q);for some q 2 Z. The asso
iated boundary potential is fQ�; Qy�g = jpj2 � idV�. In theorbifold phase, r � 0, it is positive everywhere, and hen
e the image ��(B�) is empty inthe infra-red limit. This 
an also be interpreted as the D-isomorphism��(W(q+3)) �= ��(W(q)); (8.5)whi
h re
e
ts the breaking of the gauge group U(1) to the dis
rete subgroup Z3. On theother hand, at large volume the boundary potential fQ�; Qy�g vanishes at the p = 0 lo
us| the ex
eptional divisor E �= CP2, so that we �nd�+(B�) �= OE(q);where OE(q) is the line bundle supported on E equipped with the restri
tion of the gauge
onne
tion of the line bundle O(q) over X+. Of 
ourse, the D-branes �+(W(q+3)) = O(q+3) and �+(W(q)) = O(q) are not isomorphi
 in D(X+). The \di�eren
e" is representedby OE(q).Let us summarize our �ndings on the low energy behaviour of D-branes deep insidethe phases of the linear sigma model. As we have seen expli
itly in our examples, thereare phase dependent low energy relations among D-branes. In a general model with gaugegroup T = U(1)k, there are a multitude of phases, and we have a pyramid as depi
tedbelow. The maps �I; �II; : : : are proje
tions that mod out the linear sigma model branes bythe low energy D-isomorphism relations. And the D-isomorphism relations are governedby the deleted sets �I;�II; : : : , whi
h determine the va
uum manifolds XI; XII; : : : andhen
e the ta
hyon 
ondensation patterns in the respe
tive phases.152
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8.2 Crossing Phase Boundaries By Grade (Band) Restri
tionRuleLet us now 
onsider the problem of transporting D-branes ba
k and forth betweendi�erent phases, along paths that 
ross the phase boundaries. It would be a hard task ifwe tried to do this dire
tly within the infra-red 
onformal �eld theory. Going away fromthe large volume limits there are huge perturbative as well as non-perturbative 
orre
tionsthat will 
ompletely blur the geometri
 pi
ture of D-branes, and we do not really havea good or 
onvenient des
ription of the low energy theories near the phase boundaries.Linear sigma models allow us to 
ir
umvent this problem: they provide us with a simpleand expli
it UV-des
ription of the bulk theory over regions of the moduli spa
e in
ludingthe phase boundaries. The grade restri
tion rule allows us to extend this advantage todes
ription of D-branes. Together with the ta
hyon 
ondensation pattern that we justfound, it will provide a beautiful solution to the problem of D-brane transport a
rossphase boundaries.The �rst step is to lift a given D-brane in the low energy theory to a D-brane inthe linear sigma model. Let us denote su
h a lift of the boundary intera
tions by !r :D(Xr) ! D(CN ; T ). By de�nition the 
omposition �r Æ !r has to map a brane to anisomorphi
 brane, symboli
ally, �r Æ!r �= idD(Xr). For an arbitrary D-brane in D(Xr), theexisten
e of a lift to D(CN ; T ) is guaranteed, be
ause any 
omplex of ve
tor bundles isD-isomorphi
 to a 
omplex of the form (8.1). (See Se
tion 9 for this point and extensionto 
omplexes of 
oherent sheaves.) In view of the isomorphism relation of D-branes inD(Xr) through D-term deformations and brane-antibrane annihilation, we noti
e that!r is highly ambiguous, i.e., for any B 2 D(Xr) there are in�nitely many D-branesB 2 D(CN ; T ) with the property that �r(B) �= B. However, as long as we transport theD-brane along a path in K�ahler moduli spa
e that stays within a given phase, the ta
hyon
ondensation pattern does not 
hange, and any D-brane B su
h that �r(B) �= B will doas a lift. 153



However, when we move to another phase, the ta
hyon 
ondensation pattern does
hange. Then, a di�erent lift 
ould result in a di�erent transport. And that is indeed the
ase! In fa
t, we already know plenty of examples that 
learly exhibits the dependen
eon the 
hoi
e of lift. Let us 
onsider Example (A) with N = 3. In the positive volumephase r � 0, we may lift an empty brane in D(X+) to an empty brane in the linearsigma model or to the brane B+ that was de�ned in (8.3). In the negative volume phaser � 0, the empty brane of 
ourse des
ends to an empty brane in D(X�) but the braneB+ des
ends to the fra
tional brane Op(2) whi
h is not empty in the infra-red limit. Asanother example, the brane O(q) 2 D(X�) may be lifted to W(q) or W(q + 3) but theirimages in the positive volume phase are 
ompletely di�erent, O(q) 6�= O(q + 3) 2 D(X+).We now en
ounter the problem dis
ussed in Se
tion 3.5: the parallel transport of D-branes does not seem to preserve the D-isomorphism 
lasses. What does this mean? Dothe D-isomorphism relations break down somewhere along the way? This is the pointwhere the grade (band) restri
tion rule 
omes to the res
ue: It is simply that some ofthe linear sigma model branes 
annot be transported to the other phase, in the sensedes
ribed in Se
tion 7.3. It is not the D-isomorphism relation but the transport itself thatbreaks down.Suppose that Phase I and Phase II share a phase boundary, and let us �x a window win the spa
e of FI-theta parameters for paths that 
onne
t the two phases. The window wde�nes the subset T wI;II � D(CN ; T ) 
onsisting of grade (or band) restri
ted D-branes, andin fa
t only the D-branes therein 
an smoothly get through. Hen
e, in order to be ableto transport a low energy D-brane B along a path that passes through the window w, wehave to make sure that it is lifted to a grade (or band) restri
ted D-brane B, i.e., we needa lift !wI;II : D(XI)! T wI;II su
h that �I Æ !wI;II �= idD(XI). For the transport in the oppositedire
tion, we need the 
orresponding lift with I and II ex
hanged. Diagramati
ally, we
an asso
iate the following hat diagram to the phase boundary with window w:D(CN ; T )[T wI;II






� JJJJJJĴ�I �II



� JJJJ℄!wI;II !wII;ID(XI) D(XII) (8.6)It is not a priori 
lear whether the map !wI;II to the subset T wI;II exists for every D-brane inD(XI). And even if it exist, it may not be unique. We will mathemati
ally prove that itindeed exists in the next se
tion, but for now we illustrate the main point by examples.154



As we will see, for the 
ase T = U(1), where the grade restri
tion rule applies, the liftis also unique up to de
oupled additon of trivial brane-antibrane pairs with 
ompleteta
hyon 
ondensation. For the higher rank 
ase, T = U(1)k with k > 1, where the bandrestri
tion applies, the uniqueness of the lift is lost. However, this is not harmful in thatthe ambiguity does not matter on
e we 
ompose the lift with the proje
tions �II or �I.Namely, the 
omposite mapsFwI;II : D(XI) !wI;II�! T wI;II �II�! D(XII);FwII;I : D(XII) !wII;I�! T wI;II �I�! D(XI);indu
e maps of D-isomorphism 
lasses of branes that do not depend on the 
hoi
e of lifts.In parti
ular, they are inverses of ea
h other,FwII;I Æ FwI;II �= idD(XI); FwI;II Æ FwII;I �= idD(XII):Let us illustrate the main points using Example (A) with N = 3. The singular pointson the FI-theta parameter spa
e are (r; �) = (3 log 3; � + 2�n) (n 2 Z). Let us 
hoosethe window w = f�� < � < �g at the phase boundary r = 3 log 3. The 
orrespondinggrade restri
tion rule on the Pi
ard latti
e Z is Cw = f�1; 0; 1g and hen
e the subset T wis generated by W(�1); W(0); W(1):We start at positive volume, r � 0, with the holomorphi
 line bundle O(2) over X+. Themost na��ve lift to the linear sigma model is the D-brane C(B2) = W(2); but, as we haveseen previously, the D-braneC(B1) : W(�1) X�!W(0)�3 X�!W(1)�3also satis�es �+(B1) �= O(2). In fa
t, there are in�nitely many D-branesB with �+(B) �=O(2). However, among those the D-brane B1 is spe
ial in that it is an obje
t in the graderestri
ted subset T w, whereas, for instan
e, B2 is not. We 
on
lude that B1 is the rightrepresentative to 
ross the phase boundary through the window w. After arriving atthe orbifold phase, r � 0, we apply the proje
tion �� to B1 and obtain the low energyD-brane in D(X�): O(�1) X�! O(0)�3 X�! O(1)�3:This is the result of transporting the D-brane O(2) 2 D(X+) through the window w.We next start at r � 0, with the equivariant line bundle O(2) over C3. Again this
an be lifted to in�nitely many branesW(2+3n), n 2 Z, but only one of them,W(�1), is155



in the grade restri
tion range. Thus, the transport of O(2) 2 D(X�) through the windoww results in O(�1) 2 D(X+).As another example, let us 
onsider the fra
tional brane Op(2) 2 D(X�). We havefound in (8.25) that its na��ve lift is the brane B+ given in (8.3). However, the rightmostentry, W(2), is not in the grade restri
tion range. But we 
an repla
e B+ byW(�1) X�!W(0)�3 X�!W(1)�3 pX�!W(�1)using the D-isomorphism relation p : W(2) �=�! W(�1) in the r � 0 phase. This newD-brane 
an be transported safely through the window w, and we obtain the D-braneO(�1) X�! O(0)�3 X�! O(1)�3 pX�! O(�1) as the large volume image of Op(2).The key step is to �nd a lift of a low energy D-brane to the grade restri
ted subsetin the phase of the starting point. How 
an we �nd su
h a lift in general? It is alwayspossible to �nd some lift to a 
omplex of Wilson line branes in D(CN ; T ), but that maynot be grade restri
ted. The point is that this 
omplex 
an always be 
hanged into a graderestri
ted one by binding infra-red empty D-branes to it, so that the D-isomorphism 
lassis preserved. In the r � 0 phase, one 
an do so using the D-branesW(n) X�!W(n+ 1)�3 X�!W(n+ 2)�3 X�!W(n+ 3) for all n 2 Z: (8.7)By binding these D-branes to the original 
omplex, we 
an eliminate the Wilson linebranes W(q) whose 
harges are too large or too small, and we 
an repeat this pro
edureuntil the resulting 
omplex �ts into the grade restri
tion range. The 
omplex (8.7) hasthe right length so that one 
an make sure that the pro
ess of de
reasing or in
reasingthe 
harges does not overshoot. In the r � 0 phase, the same rôle is played byW(n) p�!W(n� 3):Let us des
ribe the 
orresponding empty branes in the general one-parameter modelwith the �elds X1; :::; Xl, 
arrying positive 
harges Q1; :::; Ql, and the �elds Y1; :::; Yl0,
arrying negative 
harges �Q01; :::;�Q0l0 . In view of the Calabi-Yau 
ondition (4.15) wehave Pki=1Qi = S = Pl0j=1Q0j. In the r � 0 phase, any D-brane B 
an be brought intothe grade restri
tion range by using the Koszul 
omplexK+ : W(0) X�!W+ X�! ^2W+ X! � � � X! ^l�1W+ X�! ^lW+ =W(S) (8.8)and its shifts K+(n), where W+ := �li=1W(Qi). In the r � 0 phase, this 
an be doneusing the Koszul 
omplexK� : W(0) Y�!W� Y�! ^2W� Y! � � � Y! ^l0�1W� Y�! ^l0W� =W(�S) (8.9)156



and its shifts K�(n), where W� := �l0j=1W(�Q0j).In models with higher rank gauge groups, we mentioned that the band restri
ted liftis not unique but that the non-uniqueness does not matter in the end. Let us illustratethis subtle point using the two-parameter model (C). There are four phases as depi
tedin Fig. 3. Let us fo
us on Phases III and IV. We re
all the deleted sets there:�III = fx6 = 0g [ fp = 0g;�IV = fx1 = x2 = 0g [ fp = 0g:The unbroken gauge group at the III-IV phase boundary is the subgroup U(1)2 whi
hhas width S = 2. The asymptoti
 singular lo
us in this dire
tion is at �2 2 2�Z. Let us
hoose the window �2� < �2 < 0 for whi
h the band restri
tion rule isq2 = 0; 1:Every brane in Phase IV 
an be lifted to a 
omplex of Wilson line branes obeying thisband restri
tion rule. This 
an be done by redu
ing or in
reasing the 
harge q2 using the
omplex KIII;IV+ : W(0; 0) (x1x2)����!W(0; 1)�W(0; 1) (�x2;x1)����!W(0; 2)or its shifts KIII;IV+ (n;m). They are D-isomorphi
 to the empty brane in the low energytheory, sin
e fx1 = x2 = 0g is a part of the deleted set �IV. Similarly, every branein Phase III 
an be lifted to a 
omplex of band restri
ted Wilson line branes using the
omplex KIII;IV� : W(0; 0) X6�!W(1;�2);or its shifts KIII;IV� (n;m), whi
h are empty in the low energy theory sin
e fx6 = 0g is apart of the deleted set �III. However, in both phases the lift is not unique. The reason isthat there are additional branes that are empty in the low energy theory, i.e.,K : W(0; 0) p�!W(�4; 0)and its shifts K(n;m). One 
an modify the lift using the latter branes without 
hangingthe 
harge q2. From the stru
ture of the deleted sets, this is obviously the only non-trivialambiguity of the lifts in both phases. Now, the point is that this ambiguity is 
ommonto the two phases. In parti
ular, it does not matter when the D-brane is proje
ted downto the low energy theory even after 
oming to the other side of the phase boundary. (Of
ourse, when redu
ed to the low energy theory in a di�erent phase, say Phase I, in whi
h157



fp = 0g is not a part of the deleted set, modi�
ation by K results in a totally di�erentbrane.)This is the general situation. The key point is the relation proved in Se
tion 4.5:�I = �I;II+ [ (�I \�II)�II = �I;II� [ (�I \�II) (8.10)One 
an �nd a lift in the band restri
tion range using the Koszul 
omplexes asso
iatedwith �I;II+ and �I;II� in Phases I and II respe
tively. There are genuine ambiguities in thelifts but they are from �I \�II and are 
ommon to both phases. Thus, one 
an go ba
kand forth between Phases I and II without worrying about the ambiguity.8.3 MonodromiesNow that we learned a way to transport D-branes a
ross phase boundaries, we nextstudy transport of D-branes along non-trivial 
losed loops in the K�ahler moduli spa
eMK. This yields an operation known as monodromy.Models With Gauge Group T = U(1)The K�ahler moduli spa
e of the linear sigma model with a single U(1) gauge group is
omplex one-dimensional and has three spe
ial points: the `positive volume limit' r !1,the `negative volume limit' r ! �1, and the singular point te� = 0. We des
ribe themonodromies around ea
h of these points.Monodromies around the positive and negative volume limits r ! �1 are ratherstraightforward. They are simple shifts of the theta parameter by �2�. Sin
e the thetaparameter enters into the boundary intera
tion of the Wilson line brane W(q) in the
ombination �+2�q, shift of � by �2� is equivalent to the shift of q by �1 while � is keptinta
t. This shows that the monodromy is a shift in the gauge 
harge;M�!��2�(E ; Q;R) = (E(�1); Q;R): (8.11)The monodromy around the singular point is less straightforward and hen
e is moreinteresting. We re
all that the simgular point is at et =QiQQii , i.e., at r =PiQi log jQijand � � �S mod 2�Z, where S = PQi>0Qi. Let us 
onsider a loop that starts from apoint deep inside the negative volume phase r � 0, goes on
e around the singular point
ounter 
lo
kwise, and 
omes ba
k to the starting point. This 
an be represented by a158



path in the (r; �) spa
e as depi
ted in Fig 22 (the �gure is for the 
ase where S is oddso that the singularity is at � 2 �(2Z + 1)). The path starts at a point in r � 0 and
π−π
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Figure 22: A loop around a singular point in MKgoes to r � 0 through a window w0, makes a turn and 
omes ba
k to r � 0 throughthe next window w�1. To transport a brane in D(X�) along this path, we �rst lift it toa linear sigma model brane that respe
ts the grade restri
tion rule of the window w0 andthen move it to r � 0 along the path that goes through w0. On
e inside the positivevolume phase, using the D-isomorphism relation in D(X+), we swit
h the linear sigmamodel brane to another one that obeys the grade restri
tion rule of the window w�1. Andthen we move it ba
k to the negative volume phase along the path through the windoww�1. This gives the result of the monodromy along the loop around the singular point.Let us illustrate this operation in Example (A) with N = 3. In this example, thewidth S is 3 and the grade restri
tion rules for some of the windows in Fig 22 areT w�1 = hW(0);W(1);W(2)i;T w0 = hW(�1);W(0);W(1)i;T w1 = hW(�2);W(�1);W(0)i:Let us take a D-brane at the orbifold point in the K�ahler moduli spa
e, say the Z3-equivariant line bundle O(2) over C3. The lift to the linear sigma model 
an be givenby W(q) for any q 2 3Z + 2. Sin
e we �rst go to the positive volume phase through thewindow w0, we must 
hoose the one in hW(�1);W(0);W(1)i, namely, W(�1). Inside the159



r � 0 phase, we wish to �nd a di�erent linear sigma model brane that is D-isomorphi
to W(�1) at low energies and lies in the subset hW(0);W(1);W(2)i asso
iated with thewindow w�1. In view of the fa
t that the brane B+ given by (8.3) is D-isomorphi
 to theempty brane in this phase, we �nd that the 
omplexW(0)�3 X�!W(1)�3 X�!W(2) (8.12)is the one we wanted. That is, this is the representative that 
an go through the windoww�1. On
e we are ba
k in the r � 0 phase, we 
an proje
t it to the low energy theory.In this way, we �nd the monodromy image of O(2) along this loop (let us 
all it L)ML(O(2)) = O(0)�3 X�! O(1)�3 X�! O(2): (8.13)It is as easy as this in any example.When presented in a slightly di�erent way, the above example leads to a general re
ipeto determine the monodromy a
tion. The repla
ement of W(�1) by the 
omplex (8.12)in the r � 0 phase 
an be understood as binding to W(�1) the empty brane B+:W(�1) X�!id& W(0)�3�W(�1) X�!W(1)�3 X�!W(2)On
e we are ba
k in the r � 0 phase, we may bind to this the empty brane B�, givenby the 
omplex W(2) p�!W(�1):W(�1) X�!id& W(0)�3�W(�1) X�! W(2)�W(1)�3 p�!& idX�! W(�1)�W(2)The net result is binding to the original brane W(�1) the brane V given by the 
omplexW(�1) X�! W(0)�3 X�! W(2)�W(1)�3 p�!& idX�! W(�1)�W(2) (8.14)by the 
o
hain map ' : V!W(�1) that maps the left mostW(�1) identi
ally toW(�1).Collapsing the trivial brane-antibrane pair W(2) id�! W(2), a

ording to the pro
edurefrom (3.7) to (3.8), the brane V 
ould also be presented asV �= W(�1) X�!W(0)�3 X�!W(1)�3 pX�!W(�1):160



Note that the map ' is the only 
o
hain map from V to W(�1), and this is true alsowhen proje
ted to D(X�). Thus, we �nd that the monodromy image of O(2) 2 D(X�)is simply the bound state with the brane ��(V) via the unique map ��(V)! O(2):ML(O(2)) = Cone���(V)! O(2)�:It is now 
lear what to do for a general brane B 2 D(X�). We �rst lift it to a braneB in the grade restri
ted subset hW(�1);W(0);W(1)i and bind a 
opy of V at ea
happearan
e of the fa
tor W(�1) in B that fails to obey the new grade restri
tion rulehW(0);W(1);W(2)i. The end result is binding as many 
opies of ��(V) as the numberof W(�1)'s in B. In fa
t, for ea
h W(�1) at R-degree j there is a 
hiral ring elementHj(��(V);B), and vi
e versa. (This will be
ome 
lear from our 
onsideration in Se
-tion 9.) Thus, we �nd that the monodromy a
tion is given byML(B) = Cone Mj2ZHj(��(V);B)
 ��(V)[�j℄ �! B! : (8.15)Let us next 
onsider the monodromy along the same loop but with the opposite orien-tation. The loop goes around the singular point, now 
lo
kwise. Let us see what happensto the brane W(�1) again. Sin
e we �rst go through the window w�1, binding with B�must be done in advan
e: W(�1)�W(2) & idp�! W(�1):On
e inside r � 0, we must bind the empty brane B+ before 
oming ba
k to r � 0:
W(�1) X�! W(0)�3 X�!

W(�1)�W(2)�W(1)�3 & idp�!& idX�! W(�1)�W(2):The net result is binding the brane V in (8.14) again, but now with an arrow in theopposite dire
tion | from the given brane W(�1) to V. The monodromy a
tion on ageneral brane B 2 D(X�) isM�L(B) = Cone B �!Mj2Z Hj(B; ��(V))
 ��(V[j℄))! [�1℄:161



It is obviously the inverse of ML: the 
ompositions M�L ÆML and ML ÆM�L simply bindan empty brane to a given brane.In the same way, we 
an study monodromies along loops with a base point in ther � 0 phase, su
h as L1 as despi
ted in Fig. 23. The result is again binding the brane V:
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Figure 23: Another loop around the same pointML1(B0) = Cone B0 �!Mj2Z Hj(B0; �+(V))
 �+(V[j℄))! [�1℄;M�L1(B0) = Cone Mj2ZHj(�+(V);B0)
 �+(V)[�j℄ �! B0! :We have seen that the monodromy around the singular point (r; �) = (3 log 3;��) isto bind a 
ertain number of 
opies of the brane V. In the r � 0 phase, the brane V (witha shift by 3) redu
es at low energies toO(2) p�! O(�1) �= OE(�1);the D-brane wrapped on the ex
eptional divisor E �= CP2 and supporting a non-trivialU(1) gauge 
onne
tion. In the negative volume phase r � 0, it redu
es toO(�1) X�! O(0)�3 X�! O(1)�3 X�! O(�1) �= Op(2);162



whi
h is one of the three fra
tional branes. Note also that the monodromies around thesame singular point are des
ribed more naturally in terms of another brane eV24 W(2)�W(�1) p�!id%X�! W(�1)�W(0)�3 X�!W(1)�3 X�! W(2) 35�= W(2) pX�!W(0)�3 X�!W(1)�3 X�!W(2);if we would like to present the branes using the grade restri
ted set hW(0);W(1);W(2)irather than hW(�1);W(0);W(1)i. This brane is essentially the same as V, sin
e �+(V) �=�+(eV[�2℄) and ��(V) �= ��(eV).It is easy to �nd the analogue of V for any model with U(1) gauge group. Considerthe model with �elds X1; :::; Xl and Y1; :::; Yl0 of positive 
harges Q1; :::; Ql and negative
harges �Q01; :::;�Q0l0. The brane V relevant for the monodromy around the singularpoint is obtained by 
on
atenation of the two Koszul-type 
omplexes (8.8)-(8.9):V = Cone�K�(S)[�l0℄ �! K+�[�l℄by the identity map of the left-most W(S) of K�(S) to the right-most W(S) of K+. Wemay need to make an appropriate shift in the gauge 
harge, V(n), depending on thepre
ise value of the theta parameter. In the positive (resp. negative) volume phase, itredu
es to a brane wrapped on the lo
us Y1 = � � � = Yl0 = 0 (resp. X1 = � � � = Xl = 0).In [71℄ it was argued from the spa
etime point of view that the monodromy arounda singular point of the moduli spa
e is governed by binding 
opies of the D-brane thatbe
omes massless at that point. This approa
h was re
ast into the language of derived
ategory in [72, 73℄ following Kontsevi
h's suggestion and studied further in [6, 74, 75℄.Our result dire
tly 
on�rms a part of this pi
ture: the monodromy around a singular pointis the binding of a brane V. A 
omparison with Strominger's spa
etime pi
ture then tellsus that our brane V is the one that be
omes massless at the singular point. In the past,the brane that be
omes massless was identi�ed only in the mirror des
ription | it isthe A-brane wrapped on the vanishing 
y
le. There was not even an attempt to do thisfor B-branes, ex
ept for identi�
ation of the Ramond-Ramond 
harges. This is be
ausethe usual methods were based on the non-linear sigma model des
ription, whi
h 
ertainlybreaks down near the singularity of the K�ahler moduli spa
e MK. In the present work,with the input from the spa
etime pi
ture, we have dire
tly identi�ed in the linear sigmamodel des
ription the B-brane that be
omes massless at the singular point. In parti
ular,the D-brane V in our Example (A) 
on�rms the results from the mirror 
omputation ofthe 
entral 
harge in [76℄. 163



Our approa
h to des
ribe monodromies has a te
hni
al advantage over the approa
hthat was previously used in the literature su
h as [72, 73, 75℄, whi
h starts from a formulalike (8.15). From our point of view this formula is a 
onsequen
e of a more general
onstru
tion, i.e., a loop around a singular point must go through two di�erent windows,and hen
e we must 
hange the linear sigma model representatives a

ording to the graderestri
tion rule. In this pro
edure, we do not have to 
ompute the 
hiral ring spe
trumHj(��(V);B) nor to 
onstru
t the 
one. That is parti
ularly advantageous in situationswhere Hj(��(V);B) is in�nite dimensional and the formula like (8.15) does not makesense. We will �nd su
h examples in models with higher rank gauge group.Multi-parameter ModelsFor models with higher rank gauge groups, T = U(1)k with k > 1, the story isessentially the same, and our approa
h again provides an eÆ
ient way to �nd monodromiesof loops in the K�aher moduli spa
e MK.A shift of theta parameters �a ! �a + 2�na at a point deep inside a phase does,as in the U(1) 
ase, shifts the gauge 
harges, E ! E(n1; :::; nk). The monodromy of aloop around the singular lo
us S in an asymptoti
 dire
tion 
an be found as follows. Anasymptoti
 dire
tion 
orresponds to a phase boundary where all but one U(1) subgroupof the gauge group is 
ompletely Higgsed. The loop 
an be regarded as a loop in theFI-theta parameter spa
e of that single U(1) subgroup. Then, we simply apply what wehave done previously in the model with a single U(1) gauge group.Let us illustrate the monodromy around the singular lo
us S in Example (C). We lookat the asymptoti
 region 
orresponding to the III-IV phase boundary, where the unbrokengauge group is the subgroup U(1)2 and the singular lo
us is at �2 2 2�Z and r2 = 2 log 2.We 
onsider the loop L as depi
ted in Fig. 24. The band restri
tion rules at the tworelevant windows are: w�1 : q2 = 0; 1;w0 : q2 = �1; 0:Let us take the brane O(m; 1) in Phase IV. Its lift that obeys the band restri
tion rule ofthe window w�1 isW(m; 1). Here m 
ould be repla
ed by m�4; m�8; et
, sin
e fp = 0gis a part of the deleted set (this applies also to Phase III). This 
an be moved safelyto Phase III. On
e inside that phase we swit
h to a representative that obeys the bandrestri
tion rule of the next window w0. This is done by binding the 
omplex KIII;IV� (m; 1)164
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Figure 24: A loop around the singular lo
us in the two-parameter model (C)introdu
ed in Se
tion 8.2 to W(m; 1):W(m; 1) x6�!id& W(m+ 1;�1)�W(m; 1) : (8.16)Then, one 
an move W(m + 1;�1) ba
k to Phase IV through w0. After doing that, weagain bring it into the form 
onsisting only of the band restri
ted Wilson lines W(�; 0)and W(�; 1). This is done by bindingKIII;IV+ (m+ 1;�1) : W(m+ 1;�1) (x1x2)����!W(m+ 1; 0)�W(m+ 1; 0) (�x2;x1)����!W(m+ 1; 1)via the identity map to W(m+ 1;�1). The out
ome is the total binding ofVm : W(m; 1) x6(x1x2)����!W(m+ 1; 0)�W(m+ 1; 0) (�x2;x1)����!W(m+ 1; 1)to the original brane W(m; 1) via the map Vm !W(m; 1) that sends W(m; 1) in Vm toW(m; 1) by the identity. Thus, we found that the monodromy is given byML(O(m; 1)) = Cone��IV(Vm)! O(m; 1)�:Note that the isomorphism 
lass of �IV(Vm) depends on m; in fa
t �IV(Vm) �= �IV(Vm0)if and only if m � m0 modulo 4. This holds in Phase III as well. Thus, for a generalbrane B in Phase IV, the monodromy along the loop L is binding a 
opy of �IV(Vm) withm = 0; 1; 2 or 3 for ea
h W(n; 1) in the lift B to T w�1III;IV, where n = m mod 4.165



When we try to write this monodromy a
tion in the formML(B) = Cone Mm=0;1;2;3Mj2Z Hj(�IV(Vm);B)
 �IV(Vm)[�j℄ �! B! ; (8.17)we run into troubles. This is in view of the fa
t that in the present situation the D-branes Vm are non-
ompa
t, so that in�nite dimensional spa
es of 
hiral ring elementsappear in (8.17). For instan
e, H0(�IV(Vm);O(m; 1)) is spanned by the gauge invariantmonomials f1; px43; px33x4; : : :g that map O(m; 1) in �IV(Vm) to O(m; 1), whereas only the�rst element 1 played a rôle in (8.16).This is a quite general feature of multi-parameter models, and the monodromy formula(8.17) is only appli
able if the D-branes that indu
e the monodromy a
tion are 
ompa
tlysupported. As an example the D-branes indu
ing the monodromy at the I-IV phaseboundary of the two-parameter model (C) are of this kind. We want to stress thatour method does not rely on 
omputing the spe
trum, and thus applies to any phaseboundaries in multi-parameter models.8.4 More Examples8.4.1 Flop Transition Of The Resolved ConifoldLet us 
onsider Example (B), the U(1) gauge theory with four �elds X; Y; U; V whi
h
arry 
harges 1; 1;�1;�1. It provides a lo
al model for a 
op transition. The deleted setsof the two phases r � 0 and r � 0 are�+ = fx = y = 0g; �� = fu = v = 0g:For r � 0 the �elds x; y form the base CP1 and u; v span the �bre, whereas for r � 0 itis the other way around:X+ = 264 O(�1)�2u;v#CP1[x:y℄ 375 
op ��! X� = 264 CP1[u:v℄"O(�1)�2x;y 375In view of the deleted sets, we �nd that the branesK+ : W(0) � y�x�����!W(1)�2 (x;y)����!W(2)K� : W(2) � v�u�����!W(1)�2 (u;v)����!W(0)166



are empty at low energies in the r � 0 and r � 0 phases, respe
tively. The model has asingular point at er�i� = 1.We would like to transport branes ba
k and forth between the two phases. Let us
hoose the window w = f�2� < � < 0g at the phase boundary, for whi
h the graderestri
tion rule is given by T w = hW(0);W(1) iIn what follows, we 
onsider 
ompa
tly supported D-branes on one side of the 
op and�nd what they turn into on the other side.D 2-BranesPhase r � 0: Let us 
onsider OE+(0) 2 D(X+), the D2-brane wrapped on the zerose
tion E+ = fu = v = 0g �= CP1[x:y℄ � X+ and supporting a trivial line bundle. It 
anbe represented by the 
omplex of ve
tor bundlesO(2) � v�u�����! O(1)�2 (u;v)����! O(0): (8.18)A lift to the linear sigma model is obtained by repla
ing ea
h line bundle O(q) in this
omplex by the Wilson line brane W(q) | this gives K�. In order to transport it to theother phase r � 0 through the window w, we have to rewrite it as a grade restri
ted
omplex, i.e., we have to repla
e the Wilson line brane W(2) by something made ofW(0)and W(1). This 
an be done using the brane K+ whi
h is empty at low energies in thisphase. Namely, we bind the empty brane K+, written in a di�erent basis, to our braneK� by the 
o
hain map K� ! K+ that sends W(2) to W(2) by the identity:
W(0) (xy)�! W(2)�W(1)�2 ( v�u)�!&id(�y; x)�! W(1)�2�W(2) (u; v)�! W(0) : (8.19)Can
elling the trivial pair W(2) id�! W(2) as in (3.7) and (3.8), we obtain the followinggrade restri
ted representative of OE+(0):C(B1) : W(0) �xy�����!W(1)�2 � yv �xv�yu xu �����! W(1)�2 (u;v)����!W(0) :Another example is provided by the D-brane OE+(�1) 2 D(X+), again wrapped on thezero se
tion E+, but now supporting a non-tivial line bundle. The na��ve lift is K�(�1),167



but this in
ludes the Wilson line braneW(�1), whi
h is outside the grade restri
tion rule.This time we glue the empty brane K+(�1) by the map K+(�1) ! K�(�1) and then
an
el W(�1) id�! W(�1). This leads to the following grade restri
ted representative ofOE+(�1): C(B2) : W(1) �uv�����!W(0)�2 � yv �uy�vx xu �����! W(0)�2 (x;y)����!W(1) :Phase r � 0: After 
rossing the phase boundary the ta
hyon 
ondensation pattern
hanged. Now the 
omplexes K�(n) are trivial branes-antibrane systems, and they 
anbe eliminated from B1 and B2. For instan
e, if we restore the identity map in B1 towrite it in the form (8.19) and then eliminate the trivial upper line, we see that one endsup with ��(K+[1℄). This is isomorphi
 to the D2-brane OE�(2)[1℄ 2 D(X�) wrapped onthe zero se
tion E� = fx = y = 0g �= CP1[u:v℄. Repeating these arguments for B2 we �ndthe following maps: OE+(0) �+ ��!!w+;� B1 ���! �!w�;+ OE�(2)[1℄ ;and OE+(�1) �+ ��!!w+;� B2 ���! �!w�;+ OE�(1)[�1℄ :We �nd that D2-branes wrapped on the zero se
tion E+ in one phase are mapped to D2-branes wrapped on the zero se
tion E� in the other phase. Re
all that the R-degree forD-branes redu
es modulo two to the Z2-degree that distinguishes branes and antibranes.The shifts, by [1℄ resp. [�1℄, of the R-degrees on the right-hand side, therefore, indi
atethat the branes on X+ turned into antibranes on X�.D 0-BranesPhase r � 0: Next, we study a D0-brane at a point on E+ � X+, say at p = fu = v =P = 0g, where P = �x+�y and [� :�℄ 2 CP1 parametrizes the lo
ation of the D0-brane.A linear sigma model lift of this D0-brane Op 
an be realized as the Koszul 
omplexW(1)  Puv!����! W(2)�W(0)�2  �v 0 Pu �P 00 v �u!�������! W(1)�2�W(�1) (u;v;P )����!W(0) : (8.20)This 
an be viewed as the D2-brane OE+(0) and the anti-D2-brane OE+(�1)[1℄ 
oupledby a ta
hyon proportional to P = �x+ �y:168



W(1) � uv�- W(0)�2 (v;�u)- W(�1)P�����*  0 P�P 0 !����* P�����*� �W(2) ��vu �- W(1)�2 (u; v) - W(0)
We 
an glue in the trivial Koszul 
omplexes K+ and K+(�1) in order to 
an
el the WilsonlinesW(2) and W(�1) outside the grade restri
tion range. For this it is best to write theKoszul 
omplexes using a new 
oordinate system (P;Q), where P is as above and Q is anew linear 
oordinate, so that P and Q 
annot simultaneously vanish on X+. After thegluing, we have

W(�1) ��QP �- W(0)�2 (P;Q)- W(1).������(0;�id)id����*� �
� 0�id�������W(1) � uv�- W(0)�2 (v;�u)- W(�1)P�����*  0 P�P 0 !����* P�����*� �W(2) ��vu �- W(1)�2 (u; v) - W(0)id����*� �W(0) �PQ�- W(1)�2 (�Q; P )- W(2)

Note that we need to in
lude non-zero maps W(1) ! W(1)�2 and W(0)�2 ! W(0) inorder to have a 
omplex. Eliminating the trivial brane-antibrane pairs W(q) id�! W(q)(there are four of them), we obtain the grade restri
ted representativeC(Bp) : W(0)  PuQvQ!����! W(1)�W(0)�2  �vQ 0 PuQ �P 00 Qv �Qu!�������! W(1)�2�W(0) (Qu;Qv;P )����! W(1) :Phase r � 0: The transport to the other phase through the window w yields a quiteexoti
 D-brane in D(X�). There is no way to eliminate trivial brane-antibrane pairs, like(8.18), from Bp by D-term deformations. Moreover, it is not possible to rewrite ��(Bp)as a 
omplex of 
ompa
tly supported D-branes on E�, as one might suspe
t. The best we
an tell about ��(Bp) is that as a 
omplex of 
oherent sheaves its non-trivial 
ohomologyis given by H�1(��(Bp)) �= OE�(2)[1℄ as well as H0(��(Bp)) �= OE�(1), whi
h is in linewith the result for the D2-branes that we found previously. A
tually, we have at handan expli
it example of a perverse (point) sheaf. This 
lass of obje
ts was studied in the
ontext of 
op transitions and derived 
ategories by Bridgeland in [77℄. From the latterpoint of view our example D-brane Bp was investigated in [76℄.169



8.4.2 M
Kay Corresponden
eSuppose we 
onsider a linear sigma model whi
h, in a parti
ular phase, redu
es at lowenergies to a free orbifold Xorb �= Cn=� with a �nite subgroup � � SL(n;C). In thepresent 
ontext of Abelian gauge groups, T = U(1)k, the group � arises as the unbrokensubgroup of T and as su
h must be Abelian. In view of the fa
t that the representation� of T on the Chan-Paton spa
e des
ends to a representation of the subgroup �, the lowenergy D-branes on the orbifold are a
tually given in terms of 
omplexes of �-equivariantve
tor bundles on Cn: D(Xorb) �= D�(Cn):The other phases 
orrespond to partial or 
omplete 
repant1 resolutions, Xres, of the orb-ifold singularity. Transport of branes along a path from Xorb to Xres in the K�ahler modulispa
e MK leads to a map of low energy boundary 
onditions up to D-term deformationsand brane-antibrane annihilation:F : D�(Cn) �! D(Xres): (8.21)By 
onstru
tion, the 
hiral se
tor is preserved under our transports. As remarked ear-lier, the 
hiral se
tor of low energy boundary 
onditions D(Xr) gives rise to the derived
ategory of 
oherent sheaves D(Xr) | the obje
ts are elements in D(Xr) and as themorphisms we only take 
hiral ring elements. (Note that D(Xr) has smaller informationthan D(Xr). For example, it does not depend on MK at all, while D(Xr) does.) As a
onsequen
e of our map (8.21), we �nd a modern version of M
Kay 
orresponden
e:Given a �nite Abelian group � � SL(n;C) and a 
repant resolution Xres of the quotientCn=�, there exists an equivalen
e of derived 
ategories:� : D�(Cn) �=�! D(Xres): (8.22)For arbitrary n the equivalen
e (8.22) was shown (as a spe
ial 
ase) in [78℄. For n � 3,but � also non-Abelian, it was proven in [4℄. M
Kay 
orresponden
e was also dis
ussedby physi
ists in [79, 80℄.We illustrate these maps (8.21) in three examples.1The property `
repant' (opposite to `dis
repant'), whi
h says that the 
anoni
al line bundle remainstrivial, is ensured by the Calabi-Yau 
ondition (4.15).
170



(A) Resolution of the orbifold CN=ZNThe simplest example of an orbifold resolution is provided by Example (A), the U(1)gauge theory with the �elds P;X1; : : : ; XN of 
harge �N; 1; : : : ; 1. The low energy theoryis the orbifold X� �= CN=ZN in the r � 0 phase (the orbifold phase), whereas it is thenon-linear sigma model on the total spa
e of the line bundle O(�N) over CPN�1 in ther � 0 phase (the large volume phase).We 
hoose the window w : �N� < � < �N� + 2� at the phase boundary so that thegrade restri
tion rule is T w = hW(0);W(1); : : : ;W(N � 1) i:We transport branes from the orbifold phase to the large volume phase along a path thatgoes through this window. We �rst 
onsider the equivariant line bundles O({) 2 D(X�)parametrized by a mod-N integer { 2 ZN . As its lift to the linear sigma model, we takeW(i) where i is the integer in the grade restri
tion range f0; 1; :::; N � 1g that redu
esmodulo N to {. It 
an be tranported safely to the large volume phase where it des
endto the line bundle O(i) 2 D(X+). Thus, we �nd the following transportation rule:Fw�;+ : O({) 7�! O(i); i = 0; 1; : : : ; N � 1: (8.23)Next, let us 
onsider the fra
tional branes, Op({) 2 D(X�), parametrized again by amod-N integer { 2 ZN . These are D-branes stu
k at the ZN -�xed point p = fx1 = � � � =xN = 0g. A lift to the linear sigma model may be realized as the Koszul 
omplex madeof Wilson line branesB{ : W(i�N) X�! � � � X�!W(i�2)�(N2 ) X�!W(i�1)�N X�!W(i): (8.24)However, for any 
hoi
e of i, at least one of the Wilson line branes in this 
omplex isoutside the grade restri
tion range. Thus, we must �nd appropriate repla
ements fromthe subset T w. This is straightforward. In the order of Op(�0),Op(�1), Op(�2),..., Op(N � 1),the grade restri
ted lifts are given as follows:B0�0 : W(0) X�! � � � X�!W(N�3)�(N3 ) X�!W(N�2)�(N2 ) X�!W(N�1)�N pX�!W(0)B0�1 : W(1) X�! � � � X�!W(N�2)�(N3 ) X�!W(N�1)�(N2 ) pX�!W(0)�N X�!W(1)B0�2 : W(2) X�! � � � X�!W(N�1)�(N3 ) pX�!W(0)�(N2 ) X�!W(1)�N X�!W(2)� � � � � � � � �B0N�1 : W(N�1) pX�!W(0)�N X�! � � � X�!W(N�2)�N X�!W(N�1) (8.25)171



These branes 
an be transported safely to the large volume. On
e we are in that phase,we 
an just redu
e them to the low energy theory | it is simply to repla
eW(q) by O(q).This is essentially the end of the story. We 
an, however, simplify the result. The pointis that these lifts B0{ 
an be presented as the bound state of the brane B{ in (8.24) withanother, simpler, brane B00{ that is empty in the low enery theory in the phase r � 0.After being transported to the r � 0 phase, the partB{ in su
h a presentation is empty inthe infra-red limit sin
e fx1 = � � � = xN = 0g is deleted. Thus, we are left with the otherpart B00{ : �+(B0{) �= �+(B00{ ). For example, the last few terms of B0�2 
an be presented as:W(0)�(N2 ) X - W(1)�N X - W(2)� �p���* p���* p���*W(N)�(N2 ) �X-W(N+1)�N �X- W(N+2) �� � �idHHHj idHHHj idHHHj� � � X -W(N�1)�(N3 ) X - W(N)�(N2 ) X - W(N+1)�N X- W(N+2)The bottom line is the brane B�2 whi
h is infra-red empty in the phase r � 0. Theabove two lines form the brane B00�2, whi
h is infra-red empty in the phase r � 0. Tosee that this is indeed isomorphi
 to B0�2 (even upstairs in D(CN+1; U(1))), eliminate�rst the leftmost brane-antibrane pair using the standard pro
edure (from (3.7) to (3.8)).Then the remaining two brane-antibrane pairs simply de
ouple, thus yielding B0�2. It is
lear from this example that the attat
hed brane B00{ for general { 2 ZN is the 
one ofAi(N) p! Ai, whereAi : W(0)�(Ni ) X�!W(1)�( Ni�1) X�! � � � X�!W(i� 1)�N X�!W(i); (8.26)with i 2 f0; 1; :::; N � 1g. In the low energy theory at r � 0, this brane B00{ be
omes thefollowing 
omplex supported at the ex
eptional divisor E = fP = 0g �= CPN�1:�+(B00{ ) �= OE(0)�(Ni ) X�! OE(1)�( Ni�1) X�! � � � X�! OE(i� 1)�N X�! OE(i)This is the simpli�ed version of the large volume image of the fra
tional brane Op({).A
tually, one 
an further simplify it using the Euler sequen
e of CPN�1:0 �! O �! O(1)�N �! TCPN�1 �! 0and its various dual versions, whi
h show thatO�(Ni ) X�! O(1)�( Ni�1) X�! � � � X�! O(i� 1)�N X�! O(i)is quasi-isomorphi
 to 
i(i) where 
i is the sheaf of holomorphi
 i-forms on CPN�1.Therefore, we �nd that the image brane �+(B00{ ) 
an also be written as 
iE(i)[i℄. To172



summarize, we �nd Fw�;+ : Op({) 7�! 
iE(i)[i℄; i = 0; 1; : : : ; N � 1: (8.27)This is the form that was 
onje
tured to be the large volume image of the fra
tional braneOp({) in the literature [31, 79℄, based on R-R 
harge, mirror symmetry and mathemati
al
onstru
tion of the equivalen
e [4, 81℄. We have �nally proved that 
onje
ture from thepurely worldsheet point of view. A
tually, we have proved a pre
ise version: we nowknow that the above 
orresponden
e is with respe
t to the path through the parti
ularwindow w. If we had 
hosen a di�erent homotopy 
lass of paths, we would have a di�erent
orresponden
e.(C) A two parameter model

Phase III

Phase IV Phase I

Phase II

Figure 25: Two 
lasses of route from Phase III to Phase IAs the next example of orbifold resolution, we 
onsider the two parameter model (C)whi
h has four phases, in
luding an orbifold phase (Phase III) and a large volume phaseof a smooth Calabi-Yau manifold (Phase I). We transport the branes from the orbifoldphase to the large volume phase. The two phases do not share a phase boundary, so thatwe 
onsider routes through Phase II or Phase IV, 
rossing two phase boundaries | asdepi
ted in Fig. 25. In either 
ase, there is an in�nite number of homotopy 
lasses 
oming173



from the 
hoi
e of a window at ea
h phase boundary. The unbroken subgroups Tu andthe widths S at the phase boundaries areI-II II-III III-IV IV-ITu f(1; g)g f(g2; g)g f(1; g)g f(g; 1)gS 2 8 2 4At the I-II boundary and the III-IV boundary, we 
hoose the window w0 : �2� < �2 < 0:At the IV-I boundary we 
hoose w00 : �4� < �1 < �2�: At the II-III boundary, we
onsider two windows w0 : � 10� < 2�1 + �2 < �8�;w1 : � 8� < 2�1 + �2 < �6�:For these windows we �nd the following band restri
tion rulesCw0I;II = Cw0III;IV = fq2 = 0; 1g;Cw00IV;I = fq1 = 0; 1; 2; 3g;Cw0II;III = f2q1 + q2 = 1; 2; 3; 4; 5; 6; 7; 8gCw1II;III = f2q1 + q2 = 0; 1; 2; 3; 4; 5; 6; 7g:As a �rst exer
ise, we take the Z8-equivariant line bundle O(�0) in the orbifold phase.It 
an be lifted to the Wilson-line brane W(a; b) where a and b are any pair of integerssu
h that 2a + b = 0 modulo 8. Let us 
onsider transporting it to Phase III through thewindow w0. The band restri
tion rule di
tates us to 
hoose a; b su
h that 2a + b = 8.Other than that it is arbitrary. Before transporting it to Phase I through w0, we shouldrepresent su
h W(a; b) as a 
omplex of Wilson line branes W(q1; q2) with q2 = 0; 1, usingthe D-isomorphism relations in Phase II. This 
an be done simply by requiring b = 0 or 1,without using any non-trivial D-isomorphism. In view of the relation 2a + b = 8 it mustbe that b = 0. This uniquely �xes (a; b) = (4; 0). In this way we obtain the transportationrule Fw0II;I Æ Fw0III;II : O(�0) 7�! O(4; 0):If instead we 
hoose the window w1 at the III-II boundary, we must have 2a + b = 0 inthe �rst step and therefore the transportation isFw0II;I Æ Fw1III;II : O(�0) 7�! O(0; 0):Let us next 
onsider the route through Phase IV. To 
ross the III-IV boundary throughwindow w0, we need to band restri
t to b = 0 or 1. In the present 
ase where 2a + b = 0174



mod 8, b must be 0. Before transporting the brane to Phase I through w00, we shouldrepresent it as a 
omplex of Wilson line branes W(q1; q2) with q1 = 0; 1; 2; 3, using theD-isomorphism relations in Phase IV. Again this is done without any e�ort by simplysetting a = 0 in W(a; 0). This givesFw00IV;I Æ Fw0III;IV : O(�0) 7�! O(0; 0):Noti
e that Fw0II;I Æ Fw1III;II and Fw00IV;I Æ Fw0III;IV give the same result but Fw0II;I Æ Fw0III;II gives adi�erent one. In fa
t, this holds for any brane, as 
an be seen as follows.In the present model, we a
tually have a grade restri
tion rule. We noti
e that theinterse
tions of the relevant bands are as follows:Cw0III;II \ Cw0II;I = f(0; 1); (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 1); (4; 0)g;Cw1III;II \ Cw0II;I = Cw0III;IV \ Cw00IV;I = f(0; 0); (0; 1); (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 1)g:
q2

q1 q1

q2

Figure 26: The grade restri
tion rule for the route IIIw0!IIw0!I (Left), IIIw1!IIw0!I (Right),IIIw0!IVw00!I (Right)The key point is that, in any phase, any brane 
an be written as a 
omplex of Wilsonline branes with (q1; q2) from either one of the two sets, by using D-isomorphisms in thatphase. For example, in Phase III where the deleted set is �III = fp = 0g [ fx6 = 0g; one
an use the D-isomorphismsW(q1; q2) p�!W(q1 � 4; q2); W(q1; q2) x6�!W(q1 + 1; q2 � 2);to bring any (q1; q2) into the �nite set. On
e that is done, the brane 
an be transportedsafely along the respe
tive route. Sin
e the �nite sets of 
harges f(q1; q2)g are equal forthe routes IIIw1!IIw0!I and IIIw0!IVw00!I, the transports result in the same brane. The set isdi�erent for the route IIIw0!IIw0!I and hen
e the map of branes is di�erent.The fa
t that the two routes, IIIw1!IIw0!I and IIIw0!IVw00!I, give rise to the same map ofbranes may imply that these routes are homopoti
 to ea
h other. Indeed they are! To see175



this let us look at the windows w1, w0 and w00 for these routes. Fig. 27 shows the overlapof these windows. Comparing with Fig. 4, we �nd that the overlap pre
isely mat
hes
−4π −2π

θ2

θ1
0

−2πFigure 27: Overlap of the windows w1, w0 and w00with the 
omplement of the Alga of the singular lo
us S. Note that any point of the alga
omplement determines a global se
tion of the entire plane R2FI of FI parameters (r1; r2)to the K�ahler moduli spa
e MK = (C�)2 nS. Su
h a se
tion de�nes a homotopy of thetwo routes under 
onsideration. On the other hand, the overlap of the windows w0, w0and w00 is 
ontained inside the Alga of S. This means that the attempted homotopy ofthe routes IIIw0!IIw0!I and IIIw0!IVw00!I will interse
t with the singular lo
us S and 
annotreally de�ne a homotopy.These observations have some signi�
an
e on D-brane transport along paths throughthe 
entral region of the moduli spa
e MK, as will be dis
ussed in Se
tion 8.5.Transport Of The Fra
tional BranesLet us transport the fra
tional branes Op({) of the orbifold C5=Z8 along the routeIIIw1!IIw0!I. As remarked above, we 
an use the grade restri
tion rule q1 = 0; 1; 2; 3, q2 = 0; 1for this path. Re
all that the fra
tional brane Op(�0) is given byO(�0) X�! R X�! ^2R X�! ^3R X�! ^4R X�! O(�0)where R = O(�1)�2 �O(�2)�3 is the de�ning representation. The other ones Op({) are thetensor produ
t of this 
omplex with O({). As a lift of Op(�0) to the linear sigma model,we may take B�0 given by
176



W(0; 0) XY���1PPPq W(0; 1)�2�W(1; 0)�3 X YX Y���1PPPq���1PPPqW(0; 2)�W(1; 1)�6�W(2; 0)�3 YXYXY
PPPq���1PPPq���1PPPqW(1; 2)�3�W(2; 1)�6�W(3; 0) YXYXPPPq���1PPPq���1W(2; 2)�3�W(3; 1)�2 YXPPPq���1 W(3; 2)where we use \X" for x1; x2 and \Y " for x3; x4; x5. The lifts of other branes Op({) 
anbe obtained by tensoring with W(n; 0) if i = 2n and with W(n; 1) if i = 2n + 1, withn = 0; 1; 2; 3. We denote su
h lifts by B{.Before transporting it to Phase I, we have to grade restri
t the branes. That 
an bedone simply by multiplying appropriate powers of p and x6 to the arrows. We denotethis grade restri
ted version of B{ by B0{. For example, for the brane B�0 we repla
e theupper-right entries W(0; 2),W(1; 2),W(2; 2) by W(1; 0),W(2; 0),W(3; 0) and repla
e theX's that go into them by x6X. Also, we repla
e the rightmost entry W(3; 2) by W(0; 0)and substitute the arrows Y , X going into it by pY , px6X. Thus, B0�0 is given byW(0; 0) XY���1PPPq W(0; 1)�2�W(1; 0)�3 x6XYX Y���1PPPq���1PPPqW(1; 0)�W(1; 1)�6�W(2; 0)�3 Yx6XYXY
PPPq���1PPPq���1PPPqW(2; 0)�3�W(2; 1)�6�W(3; 0) Yx6XYXPPPq���1PPPq���1W(3; 0)�3�W(3; 1)�2 pYpx6XPPPq���1 W(0; 0)On
e that is done and the D-brane is transported into Phase I, we simply go to the lowenergy theory, repla
ing W(q1; q2) by O(q1; q2). That's all.However, just as in Example (A), we may simplify the image D-branes in the largevolume phase. The strategy is the same: We present the grade restri
ted liftB0{ as a boundstate of B{ and another brane B00{ that is infra-red empty in Phase III. On
e transportedinto Phase I, then, this time the part B{ is infra-red empty and we are left with �I(B00{ ).For example, B0�0 des
ribed in the previous paragraph 
an be presented as the bound stateof B�0 andB00�0 : W(0; 2) X6Y���1PPPqW(1; 0)�W(1; 2)�3 YX6YPPPq���1PPPqW(2; 0)�3�W(2; 2)�3 YX6YPPPq���1PPPq W(4; 0)�W(3; 0)�3�W(3; 2)

pid-���RYX6PPPq���1 W(0; 0)�W(4; 0)by the mapB00�0 ! B�0 that sends the bottom line of B00�0 with entriesW(�; 2) to the upper-right line of B�0 by the identity maps. Note that B00�0 is infra-red empty in Phase III sin
eit 
onsists of x6-Koszul and p-Koszul 
omplexes. This is why we 
an repla
e B0�0 with theabove bound state (whi
h we denote by eB0�0). On the other hand, B�0 is infra-red empty177



in Phase I with �I = fX = 0g [ fY = x6 = 0g sin
e it 
onsists of X-Koszul 
omplexes.Thus we �nd �I(eB0�0) �= �I(B00�0): Note that B00�0 also in
ludes a (Y; x6)-Koszul 
omplex asa part. Dropping them, we are left withO(4; 0) p�! O(0; 0):This is quasi-isomorphi
 to the sheaf OE(0; 0) supported at the ex
eptional divisor E =fp = 0g. In this way we �nd that the large volume image of the fra
tional brane Op(�0)is the D-brane wrapped on the divisor E with a trivial line bundle. Repeating the samepro
edure we �nd simple representatives of the large volume images of all the fra
tionalbranes Op({): Cone�Ai(4; 0) p�! Ai(0; 0)�where Ai are the 
omplexes of ve
tor bundles given below. A0 = O(0; 0);A1 = O(0; 0)�2 X�! O(0; 1);A2 = O(0; 0) ( 0X)�! O(0; 0)�3�O(0; 1)�2 (Y; x6X)�! O(1; 0);A3 = O(0; 0)�6�O(0; 1) �X 0Y x6X��! O(0; 1)�3�O(1; 0)�2 (Y;X)�! O(1; 1);A4 = O(0; 0)�3  0XY !�! O(0; 0)�3�O(0; 1)�6�O(1; 0) �Y x6X 00 Y X��! O(1; 0)�3�O(1; 1)�2 (Y; x6X)�! O(2; 0); (8.28)A5 = O(0; 0)�6�O(0; 1)�3  X 0Y x6X0 Y !�! O(0; 1)�3�O(1; 0)�6�O(1; 1) �Y X 00 Y x6X��! O(1; 1)�3�O(2; 0)�2 (Y;X)�! O(2; 1);
A6 = O(0; 0)�3  0XY !�! O(0; 0)�O(0; 1)�6�O(1; 0)�3  Y x6X 00 Y X0 0 Y !�! O(1; 0)�3�O(1; 1)�6�O(2; 0) �Y x6X 00 Y X��! O(2; 0)�3�O(2; 1)�2 (Y; x6X)�! O(3; 0);
A7 = O(0; 0)�2�O(0; 1)�3  X 0Y x6X0 Y !�! O(0; 1)�O(1; 0)�6�O(1; 1)�3  Y X 00 Y X0 0 Y !�! O(1; 1)�3�O(2; 0)�6�O(2; 1) �Y X 00 Y x6X��! O(2; 1)�3�O(3; 0)�2 (Y;X)�!O(3; 1):
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In parti
ular, the images are 
omplexes of sheaves (Ai)E supported at the divisor E (thepushforward of the 
omplex AijE over E by the embedding map E ,! X).The 
omplexes Ai for high values of i 
an be simpli�ed using the X- and the (Y; x6)-Koszul 
omplexes. In parti
ular, there is a duality relationAi �= AT7�i(�1; 1)[4℄;where AT is the transpose of the 
omplex A in whi
h the dual of the R-degree zero
omponent is de�ned to have R-degree zero. The Chern 
hara
ters of AijE are
h(A0)jE = 1;
h(A1)jE = �1 + L;
h(A2)jE = �3 +H � 2L+ 12H2 + 16H3 + 112vE;
h(A3)jE = 3�H � 2L� 12H2 +HL� 16H3 + 12H2L + 112vE;
h(A4)jE = �3 +H + 2L� 12H2 +HL+ 16H3 � 12H2L + 112vE� e�H+L;
h(A5)jE = ��3�H + 2L + 12H2 � 16H3 + 112vE� e�H+L;
h(A6)jE = (�1� L) e�H+L;
h(A7)jE = e�H+L: (8.29)Here H and L are the �rst Chern 
lasses of O(1; 0) and O(0; 1) and vE is a volume formof the tori
 variety E. They obey homology relations L2 = 0, H4 = 2H3L = 2vE, andRE vE = 1.(D) Resolutions Of AN�1 SingularityAs the �nal example, we 
onsider resolutions of the AN�1 singularity, whi
h providehistori
ally the �rst example of M
Kay 
orresponden
e. We are parti
ularly interestedin 
onne
ting the orbifold phase (11 � � �1) and the fully resolved phase (00 � � �0) via someother phases 
orresponding to partial resolutions. See Se
tion 4.4 for the labelling ofphases and remarks on the phase boundaries. We 
onsider a route that goes through theparti
ular sequen
e of phases:(00 � � �000) ! (00 � � �001) ! (00 � � �011) ! � � �  ! (01 � � �11) ! (11 � � �11)179



We see that there are N phases and (N � 1) phase boundaries. The �rst phase boundary
orresponds to blowing down (up) the right most divisor CN�1 = fx2 = 0g. Applyingthe general rule, we see that the phase boundary in RN�1FI is a domain in the hyperplanespanned by the 
harge ve
tors of all xj's but x1; x2; x3. The unbroken subgroup is thereforeT u1 = U(1)1. At the i-th phase boundary, 
hange o

urs at CN�i = fxi+1 = 0g and thehyperplane is spanned by all xj's but x1; xi+1; xi+2. The unbroken subgroup isT ui = f(g; g2; g3; : : : ; gi; 1; 1; : : : ; 1) j g 2 U(1) g;whi
h has width Si = (i+1). Thus, the band restri
tion rule at the i-th phase boudary is� i + 12 < �1 + 2�2 + � � �+ i�i2� + q1 + 2q2 + � � �+ iqi < i + 12 :There is a non-empty region of the spa
e of theta parameters su
h that the following setof 
harges are band restri
ted at all the (N � 1) phase boundaries.C = f 0; e1; e2; : : : ; eN�1 g (8.30)(ei is the 
harge ve
tor q where all qj = 0 but qi = 1.) For example 
he
k the value�i = ��=i (i = 1; :::; (N � 1)). At ea
h of the N phases on the route, any brane isD-isomorphi
 to a 
omplex of Wilson line branes with 
harges in this �nite set C. Forexample, at the orbifold phase, all the equivariant line bundles O({) 
an be realized asthe low energy images of W(ei), where it is understood that e0 = 0. Thus, we 
an usethis set to de�ne the grade restri
tion rule for the transport of D-branes along this route,say from the orbifold phase to the fully resolved phase.Let us see the large volume images of the fra
tional branes Op({):O({) ( x1xN+1)����! O(i + 1)�O(i� 1) (�xN+1;x1)����! O({)Its lift su
h that all the 
harges are from the set (8.30) isW(ei) (ab )����! W(ei+1)�W(ei�1) (�
;d)����!W(ei);where a = x1x2 � � �xi+1; 
 = xi+2 � � �xN+1;b = xi+1 � � �xN+1; d = x1x2 � � �xi:180



For the i = 0 
ase, we set e�1 := eN�1 so that b = xN+1 and d = x1x2 � � �xN whilea = x1 and 
 = x2 � � �xN+1 remains valid. The large volume image is obtained simplyby repla
ing W(q) by O(q). As before, we 
an simplify this image by taking out andeliminating infra-red empty 
omplexes. For the i = 0 
ase, we take out and eliminate aKoszul 
omplex for a pair of variables (x1; xN+1) whi
h 
annot vanish in the large volumeregime. This shows that the large volume image of the fra
tional brane Op for the trivialrepresentation is O(e1 + eN�1) x2x3���xN����! O(0): (8.31)This is the stru
ture sheaf of the entire ex
eptional divisor E = C1 + � � � + CN�1. Fori > 0, we take out three Koszul 
omplexes asso
iated with three pairs of variables,(x1 � � �xi; xi+3 � � �xN+1), (x1 � � �xi; xi+2) and (xi+1; xi+3 � � �xN+1), whi
h 
annot vanish inthe large volume phase sin
e the sets fxj = xl = 0g with jj � lj > 2 are deleted. In thisway, we �nd the following large volume image of the fra
tional brane Op({) for the i-threpresentation O(ei + ei+1 � ei+2) xi+1��! O(ei�1 � ei + 2ei+1 � ei+2)! 0: (8.32)This is a sheaf supported at the 
omponent CN�i = fxi+1 = 0g of the ex
eptional divi-sor, shifted by 1 to the left. Thus, we very expli
itly re
ontru
ted the original M
Kay
orresponden
e | one-to-one 
orresponden
e between the non-trivial irredu
ible represen-tations of ZN and the irredu
ible 
omponents of the ex
eptional divisor of the resolutionof the AN�1 singularity.8.5 Center Of Multiparameter Moduli Spa
eIn models with higher rank gauge groups, k > 1, we have so far dis
ussed D-branetransport a
ross phase boundaries only in the asymptoti
 regions where all but one U(1)subgroup is 
ompletely broken. However, it is of 
ourse an important problem to 
onstru
ta parallel family of boundary intera
tions over the 
entral region of the moduli spa
e wheremultiple phase boundaries meet. Although we do not attempt to �nd a general solutionin this paper, we have something to say about this problem.We made an interesting observation in the two parameter model (C): There is a �niteset of Wilson line branes whi
h obeys the band restri
tion rule at all the phase boundaries,with the following properties;(i) In ea
h phase the set is maximal generating, that is, there is no low energy D-isomorphism relation among the Wilson line branes in the set and any brane is181



D-isomorphi
 to a 
omplex of sums of them.(ii) The overlap Z of windows for whi
h the set obeys the band restri
tion rule pre
iselymat
hes with a 
opy of the 
omplement of the Alga of the singular lo
us S, that is,the values of the theta parameters that are missed by S.The property (ii) means that the region RkFI�Z in the FI-theta parameter spa
e does notmeet the singular lo
us. Due to the 
atness of our 
onne
tion, the out
ome of D-branetransport from one phase to another, along any path inside this region, is the same as theresult of transport along paths that stay in the asymptoti
 region. This tempts us to ask:do the Wilson line branes in this set de�ne smooth families of boundary intera
tions overthe entire region RkFI � Z? Can we use it to 
onstru
t the parallel family of an arbitrarybrane over this 
entral region? In fa
t, existen
e of su
h a �nite set of Wilson lines isnot limited to the example (C) but holds in many multiparameter models. Thus, let usdis
uss this question in a general 
ontext of U(1)k gauge theory with matter �elds �i with
harge Qai (a = 1; :::; k, i = 1; :::; N).Let us look at the e�e
tive boundary potential on the Coulomb bran
h. Introdu
ingMi(�) :=Pka=1Qai �a, it is written as follows:V bdrye� = 12� kXa=1 raIm(�a)� kXa=1 � �a2� + qa�Re(�a)+ NXi=1 12� ImMi(�)�log jMi(�)j � 1�+ NXi=1 �14 jReMi(�)j+ 12� jReMi(�)j ar
tan� ImMi(�)jReMi(�)j�� :This is not valid on the 
omplex hyperplanes Mi(�) = 0 where the i-th �eld be
omesmassless, and there is also a singularity at the real hyperplanes ReMi(�) = 0, ImMi(�) > 0where the i-th �eld has a normalizable zero mode lo
alized at the boundary. We shall
all the latter the singular hyperplanes. We would like to �nd a Lagrangian submanifoldthat asymptotes to Lagrangian planes on whi
h the boundary potential is bounded below.Also, we would like the Lagrangian planes to avoid meeting with the singular hyperplanesas we vary the FI and theta parameters. Can we �nd su
h a family of Lagrangians?This problem is te
hni
ally 
ompli
ated. So let us simplify the problem by 
hoosing aparti
ular Lagrangian submanifold Im(�a) = 0; 8a: (8.33)182



Is the boundary potential bounded below on this submanifold ? Note that it has no dangerof meeting the singular hyperplanes. On this Lagrangian plane, the e�e
tive boundarypotential is given by V bdrye� = � kXa=1 � �a2� + qa� �a + NXi=1 14 jMi(�)j: (8.34)This is a pie
ewise linear fun
tion whi
h has 
orners at the hyperplanes Mi(�) = 0. Itis bounded below if and only if it is bounded below at ea
h one dimensional interse
tionof (k � 1) hyperplanes Mi1(�) = � � � = Mik�1(�) = 0. Note that su
h a one-dimensionalinterse
tion is the dire
tion of the U(1) subgroup whi
h is unbroken by the values of�i1 ; : : : ;�ik�1 , namely the unbroken U(1) at the phase boundary spanned by the 
hargeve
tors of these �elds. And the boundary potential (8.34) restri
ted on that line is thesame as the boundary potential for the theory of that U(1) gauge group only. Therefore,the boundary potential (8.34) is bounded below for some values of the theta parametersif and only if the band restri
tion rule is satis�ed at all the phase boundaries for thosevalues of the theta parameters. Under su
h a 
ir
umstan
e, we have a smooth family ofWilson line branes W(q1; : : : ; qk) over the entire spa
e of FI-parameters RkFI.This is exa
tly the situation we had in Example (C). Moreover, we have a set of su
hWilson line branes with the property (i). Thus, indeed we 
an 
onstru
t the parallelfamily of an arbitrary brane over the 
entral region of the moduli spa
e, using this setjust like the grade restri
ted set in one-parameter models.
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Figure 28: Overlap of the windows for the two setsAs mentioned above, there are many other models with su
h a �nite set of Wilson linebranes. To see just one, let us take the two parameter model in Example (D) | the A2singularity and its resolutions. In this model, there are two sets of di�erent kinds. Oneis CA = f(0; 0); (1; 0); (0; 1)g and the other is CB = f(1; 0); (0; 1); (1; 1)g. In Figure 28 we183



show the overlaps of the windows at all the phase boundaries for whi
h the sets obey theband restri
tion rule. We see that they are non-empty, and moreover 
oin
ides with a 
opyof the 
omplement of the Alga of the singular lo
us S whi
h is shown in Figure 6 (right).In fa
t, within two parameter models, it is diÆ
ult to 
ome up with a model whi
h doesnot have su
h a �nite set. This makes us wonder if this is a general phenomenon. Is therealways a �nite set with the property (i) and (ii)? Can we always de�ne D-brane transporta
ross the 
enter of the moduli spa
e, with the simple boundary 
ondition (8.33)?The �rst 
ounter example was shown to us by Mikael Passare. It is a U(1)2 theorywith the following matter 
ontent: X1 X2 X3 X4U(1)1 0 1 2 �3U(1)2 1 0 �4 3 (8.35)It is straightforward to 
he
k that there is no �nite set of Wilson line branes whi
hsatis�es both of the properties (i) and (ii), and that the Alga indeed has no 
omplement.This model is a
tually a trun
ated version of a model with more parameters | the�ve parameter model of the A5 singularity: the U(1)5 gauge theory with seven �eldsX1; : : : ; X7 as shown in (4.21). If we are in a phase where fx2 = 0g, fx5 = 0g and fx6 = 0gare among the deleted set, then we obtain the same theory as (8.35) by eliminating thethree variables X2; X5 and X6. By a dire
t 
omputation, one 
an show that a set with theproperties (i) and (ii) does not exist in the full U(1)5 gauge theory either. This exampleshows that we 
annot always de�ne D-brane transport a
ross the 
enter of the modulispa
e with a �nite set of Wilson line branes, at least with the simple boundary 
ondition(8.33). In su
h a model, a more general boundary 
ondition is needed.However, as an interesting observation, we would like to point out that there is a �niteset of Wilson line branes with just the property (i) in all the examples we 
onsideredso far. For example, in the model of the AN�1 singularity, the set C given in (8.30) ismaximal generating in all the phases.We emphasize that the problem we have dis
ussed in this subse
tion has nothing to dowith �nding a 
orresponden
e between D-branes at di�erent phases |We had establisheda 
ompletely general 
ontru
tion of D-brane transport between arbitrary pair of phases,using paths whi
h stay in the asymptoti
 region. The main point of the present dis
ussionwas how to 
over the 
entral region of the moduli spa
e. We found that there is a simpleway to do so, provided that there is a �nite set of Wilson line branes with the properties(i) and (ii). Su
h a set exists in many examples, but not always.184



9 Some Mathemati
al Ba
kgroundBefore taking the next step into models with superpotentials, we would now like topause to explain some mathemati
al ba
kground that will shed light on the previousdis
ussions and fa
ilitate the subsequent ones. We shall be exploring the relation ofholomorphi
 line bundles, or more generally 
oherent sheaves, to modules and a simple
onstru
tion of D-brane 
ategories whi
h follows. We use the linear sigma model as ourguide throughout. The dis
ussion in this se
tion is a mixture of review material, somenew approa
hes to existing results and also some original material.Consider the manifold Y = Cn with 
oordinates x1; : : : ; xn. The main obje
t of ourdis
ussion will be the ring of polynomial fun
tions on Y , written asR = C[x1; : : : xn℄ : (9.1)Many geometri
 properties of the spa
e Y have a natural algebrai
 des
ription in termsof the ring R.Points of Y are in one-to-one 
orresponden
e with maximal, prime ideals of R. Forexample, the point p : fx1 = a1; : : : ; xn = ang 
orresponds to the set of polynomialsIp � R whi
h vanish at p. This set of polynomials is an ideal of R sin
e it is 
losed underaddition and also under multipli
ation by arbitrary polynomials in R. (It is prime sin
emultiplying two polynomials from outside the set stays outside and maximal sin
e it isnot a subset of any bigger prime ideal | just as a point is inde
omposable and minimalamong 
omplex (algebrai
) subspa
es.)We are interested in D-branes or sheaves on Y . The simplest example is the spa
e�lling brane given by the stru
ture sheaf O. On an open set of Y , the lo
al se
tions of Oare given by holomorphi
 fun
tions with no poles inside the set. (More pre
isely, in the
urrent algebrai
 
ontext we should restri
t to rational fun
tions (ratios of polynomials)with no poles in the open set.)The global se
tions of this sheaf (or any other sheaf on Y ) form a module over R.This simply says that we 
an add global se
tions and multiply them by polynomials. Inthe spe
ial 
ase of the stru
ture sheaf, O, the global se
tions are rational fun
tions on thewhole of Y , i.e., they are just polynomials. Thus the stru
ture sheaf O 
orresponds tothe module R itself, whi
h is the simplest example of a module over R.Ideals of R provide a ri
her 
lass of R-modules. In parti
ular the maximal, primeideals Ip, dis
ussed above, give rise to R-modules Ip for ea
h point of Y . We 
an also
onsider the 
okernel of the map whi
h embeds Ip in R to form a further 
lass of modules185



R=Ip. These 
orrespond to the stru
ture sheaves of points (D0-branes) of Y as 
an be
on�rmed by 
omparing the a
tion of R on global se
tions of the sheaves. (Polynomialsin the ideal Ip annhilitate the module R=Ip just as polynomials vanishing at p a
t asmultipli
ation by zero on the D0-brane at p.)There is more to say here | su
h as how the lo
al se
tions of a sheaf 
an be re
overedfrom the 
orresponding module (by lo
alizing the module on the ring of polynomial fun
-tions whi
h have no zeros on the relevant open set) | but we refer elsewhere for details[82℄.We have tou
hed on an important point above whi
h is that given a map betweenmodules, we 
an always form its 
okernel and kernel whi
h are themselves modules. Thisproperty means that the set of R-modules forms an abelian 
ategory. The same is true(by de�nition) for 
oherent sheaves on Y .The key result for our purposes is the following: i) the set of 
oherent sheaves on Y isin one-to-one 
orresponden
e with the set of R-modules and ii) the set of maps betweena pair of sheaves is identi
al to the set of maps between the 
orresponding modules.More pre
isely the 
ategory of 
oherent sheaves on Y and the 
ategory of R-modules areequivalent as abelian 
ategories.We shall elaborate more on this below but roughly the statement says that on asimple enough spa
e su
h as Y , we 
an learn everything about sheaves by studying globalse
tions. This is an enormous simpli�
ation!The lesson of the linear sigma model approa
h, in this 
ontext, is that we 
an go a longway by working with simple spa
es. The remaining ingredient whi
h we need in order togo further is gauge symmetry.9.1 C� A
tion On Cn | Grading Of The Coordinate RingIn this se
tion we will be des
ribing a 
onstru
tion, due to Serre [83℄, of sheaves onCPn�1 in terms of graded R-modules. Consider the C� a
tion on Yxi ! �xi; i = 1; : : : ; n: (9.2)This indu
es a Z-grading on the ring R su
h that the grading (degree) of a ring elementis given by its representation under C�. Thus the degree zero elements are 
omplexnumbers, the degree one elements are homogeneous linear polynomials in the xi and soon. 186



To mod out by C�, we simply restri
t to graded R-modules and 
onsider only mapsof degree zero between modules. (A graded module of a graded ring is simply a modulewith a grading su
h that multipli
ation by R respe
ts grading in the obvious way.)To �nd the graded R-module M 
orresponding to a parti
ular sheaf M we start asbefore: the degree zero elements of M are given by the global se
tions ofM. However,this information alone will no longer be enough to re
onstru
tM as a sheaf. To see this,
onsider the stru
ture sheaf O on CPn�1, whose global se
tions are C-valued 
onstants.On a lo
al pat
h, there are further gauge invariant se
tions whi
h are rational fun
tions ofdegree zero, realised as a ratio of homogenous polynomials of degree q. In order to retrievethese extra lo
al se
tions it is 
lear that we will need to keep also `global se
tions of degreeq' when we 
onstru
t the module M . More pre
isely, these are the global se
tions ofMtensored with O(q). These provide the degree q elements of the asso
iated module M .In this way it is 
lear that the stru
ture sheaf O on CPn�1 is on
e again asso
iatedwith the moduleR, 
onsidered as a graded module over the graded ringR. Other sheaves
an be identi�ed with graded modules in the same way.We have given a simple des
ription of 
oherent sheaves on Y=C�, as gradedR-modules.The remaining detail to take 
are of is the deletion of the origin, � = fx1= : : :=xn=0g,so that we move to CPn�1 �= (Y � �)=C�. We would like to think of two sheaves asbeing the same on CPn�1 if they disagree only at the origin of Y . Thus, we would liketo mod out by sheaves with support at the origin of Y .Let us examine the stru
ture sheaf of the origin in a little more detail. This 
orrespondsto the graded module given by just the degree zero part of R. As a ve
tor spa
e thismodule is isomorphi
 to C and this is how we shall refer to it. The R-module C isannihilated by R+, the set of all positive degree elements of R (the set of all polynomialsthat vanish at the origin.)There are various other modules whi
h are annihilated by R+, or more subtlely, byhigher powers of R+. In the former 
lass, we 
an 
onsider the module C shifted in degreeso that it lives in degree q. This module is usually labelled C(�q) sin
e it 
orrespondsto the stru
ture sheaf of the origin tensored with O(�q). In the latter 
lass, we 
ould
onsider for example the module given by all the degree zero and degree one elements ofR. We might label this module as R�1, 
onsisting of polynomials of degree � 1. Clearlythis module is not annihilated dire
tly by R+ but is annihilated by (R+)2 and thus shouldalso 
orrespond to a sheaf whi
h vanishes away from the origin (otherwise we should beable to 
onstru
t arbitrary degree polynomials in R+ whi
h do not annihilate the sheaf.)187



In general, it should be 
lear that graded R-modules whi
h are lo
alized at the origin
orrespond to modules whose grading is bounded above. These modules (and only these)will be annihilated by suÆ
iently high powers of R+. These form the sub
ategory of(graded) torsion modules and it is these that we should mod out by in order to re
oversheaves on CPn�1. Modding out by torsion modules simply means that we 
onsider twograded modules as being the same if they agree for suÆ
iently high degree.We are now ready to state Serre's 
lassi
 result: the 
ategory of 
oherent sheaves onCPn�1 is isomorphi
 as an abelian 
ategory to the 
ategory of graded R-modules modulotorsion modules.9.2 Generalization To Tori
 ManifoldsThe generalization to tori
 manifolds is straightfoward. Following the route suggestedby the linear sigma model, we 
onstru
t tori
 manifolds as quotients of Y ��r by (C�)k,where �r is some deleted set. The (C�)k a
tion on Y gives rise to k di�erent gradingson R and we 
onsider modules whi
h are graded with respe
t to all k gradings. (Inparti
ular, maps between modules should be degree zero with respe
t to ea
h grading.)Dealing with the deleted sets in the di�erent phases appears more 
ompli
ated butin fa
t turns out to be just as simple as for CPn�1. First, note that in general we wantto 
onsider Z-gradings on R rather than just N-gradings as before | in other words,some of our 
oordinate �elds, x1; : : : ; xn, may have negative 
harges with respe
t to anysubgroup C� � (C�)k. Asso
iated with a single C� gauge group, we may 
onsider both(+)-torsion and (�)-torsion modules, i.e., modules with bounded above or bounded belowgrading, respe
tively.In ea
h low energy phase of the linear sigma model we shall be deleting the set of points�r where either all positively or all negatively 
harged �elds under parti
ular C�'s areset to zero. (Re
all the des
ription of the deleted set �r given in Se
tion 4.4.) In terms ofmodules this amounts to moding out by either (+)-torsion or (�)-torsion modules underthe 
orresponding gradings. These are the modules whose supports lie in the deleted set�r.At this point we have rea
hed a very simple uni�ed des
ription of sheaves in the variousphases of a linear sigma model. To summarise: the 
ategory of 
oherent sheaves in ea
hphase is equivalent, as an abelian 
ategory, to the 
ategory of multi-graded R-modulesmodulo a parti
ular set of torsion sub
ategories asso
iated to �r.188



This generalization of Serre's 
onstru
tion was originally given by Cox [84℄ in the 
asewhere the quotient Xr = (Y ��r)=(C�)k is smooth. When it has (orbifold) singularities,the above des
ription is simply wrong if we regard Xr as an algebrai
 variety, as shownin [84℄ with an expli
it example. As dis
ussed in Se
tion 4.2, we do not really have a
onvenient des
ription of the low energy theory unless Xr is a smooth manifold or aglobal orbifold, and there is no physi
al reason to believe that we should take 
oherentsheaves of Xr as an algebrai
 variety as the data for D-branes. Rather, we understandthe theory as the low energy limit of our super-renormalizable gauge theory. As su
h, weshould take (C�)k-equivariant 
oherent sheaves over Y ��r as the D-brane data, and weare indeed doing so in the above dis
ussion. Mathemati
ally, the 
ategory of su
h obje
tsis known to be equivalent to the 
ategory of 
oherent sheaves on the so-
alled quotientsta
k [(Y � �r)=(C�)k℄ [70℄. (This last referen
e also gives a des
ription of sheaves asgraded modules mod torsions.) Thus, in the above statement, \
oherent sheaves" shouldbe understood as those on the quotient sta
k.In the next subse
tion we will introdu
e 
omplexes and a des
ription of the derived
ategory whi
h turns out to be very simple in this setting. This will lead us to a straight-forward argument that the derived 
ategories of the di�erent phases are in fa
t equivalentin the Calabi-Yau 
ase.9.3 ComplexesSo far we have been dis
ussing branes 
orresponding to individual sheaves and theirdes
ription in terms of modules. We now wish to dis
uss more general brane 
on�gurations
onsisting of 
omplexes of sheaves. In fa
t, sin
e we already have an equivalen
e betweensheaves and modules we might as well 
arry out the dis
ussion in terms of 
omplexes ofmodules.We start on
e again with the 
ase of Y = Cn where things are parti
ularly simple. Wewill see that by representing arbitrary 
omplexes in terms of `free resolutions' there is noneed to introdu
e any of the 
ompli
ations of the derived 
ategory and in parti
ular noneed for nontrivial quasi-isomorphisms. All branes on Y 
an be represented as 
omplexesof free modules and in this representation, the morphisms (
hiral ring elements) betweenbranes are just ordinary Q-
ohomology 
lasses where Q represents the operator indu
edfrom di�erentials of the 
omplexes.A free R-module, R�a is a dire
t sum of a 
opies of R. Every R-module M has asurje
tion from a free module R�a onto itself for some a. To produ
e su
h a surje
tion189



we simply 
hoose a generating set for the module and map the unit of a di�erent 
opyof R onto ea
h generator, mu
h as we would do for a ve
tor spa
e. The di�eren
e fromthe 
ase of ve
tor spa
es is that there will in general be relations between the generators.We 
an express these relations by writing the kernel K of the surje
tion to form a shortexa
t sequen
e: 0! K !R�a !M ! 0: (9.3)(Note that to avoid 
lutter we do not write expli
it names of maps on arrows unlessneeded for 
larity.) We 
an now start again and take a surje
tion from a free module Ra1onto K, with kernel K1 0! K1 ! R�a1 ! K ! 0: (9.4)If we 
ombine the surje
tion from Ra1 onto K and the inje
tion from K into R�a into asingle step then we form a single exa
t sequen
e as the reader should verify0! K1 !R�a1 !R�a !M ! 0: (9.5)Continuing in this way, taking surje
tions from free modules onto the su

essive kernelswe �nally a
hieve a free resolution of M (the fa
t that this pro
ess terminates in a �nitenumber of steps is a result of Hilbert's syzygy theorem)0!R�aj ! R�aj�1 ! : : :!R�a1 ! R�a !M ! 0: (9.6)Stepping ahead a little, we should think of this as giving a representation of M as a
omplex of free modules in the derived 
ategory of R-modules. We would now like to dothe same for an arbitrary 
omplex of R-modules0!M0 !M1 ! : : :!Mk ! 0: (9.7)We present the argument for a 
omplex of lengh two 0! M ! N ! 0 but the general-ization should be 
lear. We know that for M and N individually we 
an 
onstru
t freeresolutions 0! P�j ! P�j+1! : : :! P�1 ! P 0 !M ! 0; (9.8)0! Q�j ! Q�j+1 ! : : :! Q�1 ! Q0 ! N ! 0: (9.9)We have 
hanged notation so that the P 's and Q's are all free modules of the form R�sfor various values of s. We have also assumed that the two resolutions are of the samelength (otherwise we 
an always pad the shorter one with zeroes at the beginning).So to begin with, let us `turn o�' the map between M and N , allowing us (trivially)to build the following exa
t sequen
e in whi
h all the maps are taken from (9.8) and (9.9)190



above 0! 0 ! Q�j ! Q�1 ! Q0 ! N� � : : : � � �P�j ! P�j+1 ! P 0 ! M ! 0 ! 0: (9.10)Next we would like to turn the map fromM to N ba
k on. We will need to simultaneouslyturn on some maps from the P 's to the Q's in (9.10) so that we still get a 
omplex (i.e.,so that the di�erential still squares to zero.)0! 0 ! Q�j ! Q�1 ! Q0 ! N� % � % : : : � % � % �P�j ! P�j+1 ! P 0 ! M ! 0 ! 0: (9.11)To see that extra maps from P to Q will be ne
essary just inspe
t the rightmost part ofthe diagram and noti
e that the two-step map from P 0 to N through M will not be zeroin general. To 
orre
t this we introdu
e a 
ompensating map from P 0 to N through Q0.As we now explain, the property of P 0 whi
h allows us to 
onstru
t this 
ompensatingmap, is that it is a free module. Suppose for simpli
ity that P 0 is equal to R. To
ompletely spe
ify a map from R to another module it is suÆ
ient to spe
ify the imageof the generating element 1R of R.Consider the map P 0 = R ! N and suppose 1R ! n 2 N . Sin
e Q0 maps surje
tivelyonto N , we must have some q 2 Q0 su
h that q ! n. Then if we map 1R ! �q as ourmap from P 0 to Q0, we 
an 
an
el the unwanted 
ontribution. The generalization to
onstru
t (9.11) is straightforward using the fa
t that all P i are free.On
e again, there is an interpretation of the free resolution (9.11) in the frameworkof the derived 
ategory. As previously noted, the resolutions of M and N individually
orrespond to representations of these modules in the derived 
ategory by 
omplexes of freemodules P � and Q�. Similarly, we should think of the 
ombined 
omplex with P � `bound'to Q� by the additional maps introdu
ed in (9.11) as being an equivalent representationof the obje
t 0!M ! N ! 0 in the derived 
ategory.We have now des
ribed something quite interesting: every obje
t in the derived 
ate-gory of R-modules 
an be represented as a 
omplex of free modules. This is a ni
e resulton its own sin
e it means that to des
ribe arbitrary D-branes on Cn it is suÆ
ient to use
omplexes built only out of 
opies of the stru
ture sheaf O.To go further, we would like to des
ribe the spa
e of 
hiral ring elements. In fa
t, thisis where we really bene�t from writing things in terms of free modules. Working with
omplexes of free modules, there are no non-trivial quasi-isomorphisms to worry about191



and all morphisms between 
omplexes are just ordinary Q-
ohomology 
lasses. We shallnow sket
h a proof of this statement.First we show that there are no non-trivial exa
t sequen
es built out of free modulesonly, or more pre
isely that any su
h exa
t sequen
e is a dire
t sum of trivial exa
tsequen
es of the form 0!R!R! 0 (9.12)where the map in the diagram above is the identity. To see this it is on
e again suÆ
ientto look at the generators 1R. Suppose we have an exa
t sequen
e of free modules and,for simpli
ity, suppose that the `rightmost' non-zero module is a single 
opy of R. Sin
ethis is the rightmost module in an exa
t sequen
e, the map onto it must be a surje
tionand in parti
ular the generator 1R must have a preimage. This preimage 
an only bethe generator 1R0 of the 
orresponding preimage module and this assures that the mapis in fa
t (a C-valued multiple of) the identity as in (9.12). The generalization when therightmost module is Ra is straighforward.Given this property, it then follows by standard arguments1 that all morphisms in thederived 
ategory between 
omplexes of free modules are represented by ordinary 
o
hainmaps modulo homotopies (i.e., Q-
ohomology 
lasses.)This result 
on
ludes our rather lengthy review of the derived 
ategory of Cn! Wehave seen that this derived 
ategory is in fa
t a very simple beast, being equivalent to the
ategory of 
omplexes of freeR-modules with morphisms given by ordinaryQ-
ohomology
lasses. We would now like to extend some of these results to the graded 
ase and usethem to des
ribe branes in more interesting spa
es than Cn. We will �nd that some of theni
e properties of free modules are lost when we mod out by torsion. The resolution tothese problems is intimately related to the grade restri
tion phenomenon whi
h we havealready en
ountered in the physi
al setting.9.4 Graded CaseSome parts of the analysis of the previous se
tion generalize immediately to the graded
ase, in whi
h we treatR as a graded ring and allow only degree zero maps between gradedmodules. It remains true that given a graded module M , there exists a surje
tion from afree module onto M . However, in this 
ase the set of free modules is ri
her sin
e we needto take into a

ount the grading. We label by R(q) the free module whi
h is isomorphi
to R ex
ept that the unit 1R is in degree �q . In the 
ase of CPn�1 this 
orresponds to1See for example Lemma 1.6 in [85℄. 192



the sheaf O(q). A general free module is a dire
t sum of one-dimensional modules of thistype. (In the multi-graded 
ase we have one-dimensional modules R(q1; q2; :::; qk) labelleda

ording to the degree of 1R for all k gradings.)Whilst swit
hing to graded modules presents no new diÆ
ulties, modding out bytorsion modules does introdu
e 
ompli
ations. The prime diÆ
ulty arises be
ause therenow exist non-trivial exa
t sequen
es of free modules. This will invalidate our argumentthat morphisms between 
omplexes are ordinary Q-
ohomology 
lasses. Furthermore, thenon-trivial exa
t sequen
es whi
h appear will depend on whi
h phase we are in, so thatan equivalen
e between phases might appear unlikely. As we shall see, grade restri
tionprovides a route around the problem. Before we demonstrate the solution, we should �rsttake a 
loser look at the problem.As an example, we set n = 4 and 
onsider the ring R = C[x1; x2; x3; p℄ with degrees(1; 1; 1;�3). (We have 
hosen an example in whi
h the 
harges sum to zero for later
onvenien
e, but for the 
urrent dis
ussion this is not important.) We 
onsider the phasein whi
h we mod out by modules with bounded above grading. Thus we are deleting theset fx1 = x2 = x3 = 0g and 
onsidering branes on OCP2(�3).In order to �nd a non-trivial exa
t sequen
e of free modules after modding out bytorsion modules, we 
an pro
eed as follows. First, take a sheaf whi
h is supported onthe deleted set (a (+)-torsion module) whi
h will be identi�ed with zero after moddingout. The simplest example is the stru
ture sheaf of the deleted set, whi
h 
orresponds tothe module C[p℄ (i.e., the module 
onsisting of polynomials of p only). This module isannihilated by ring elements 
ontaining any of the positively 
harged �elds xi. We mayalso 
onsider a version of this module shifted in degree, C[p℄(q). For the moment let us
hoose q = 3.The idea is to take a free resolution of this module as we have des
ribed earlier. Whenwe then mod out by torsion, the original module gets deleted and we are left with anexa
t sequen
e of free modules. Here is the (minimal) free resolution:0 �! R(0)  x1x2x3!���! R(1)�3  0 �x3 x2x3 0 �x1�x2 x1 0 !�������! R(2)�3 (x1;x2;x3)����! R(3) �! C[p℄(3) �! 0; (9.13)whi
h turns into an exa
t sequen
e of free modules after modding out by torsion0!R(0)!R(1)�3 !R(2)�3 ! R(3)! 0 (9.14)In the other phase of the model we mod out by (�)-torsion modules, i.e., those withbounded below grading. This 
orresponds to deleting the set fp = 0g and studying branes193



on C3=Z3. In this 
ase, the stru
ture sheaf of the deleted set is represented by the moduleC[x1; x2; x3℄, whi
h has free resolution0!R(3) p!R(0)! C[x1; x2; x3℄! 0 (9.15)leading to the exa
t sequen
e of free modules (after modding out by (�)-torsion):0! R(3)! R(0)! 0: (9.16)We have found di�erent `relations' between free modules in the two phases whi
hwould be expe
ted to lead to di�erent derived 
ategories. We shall return to this problemin the next se
tion but �rst 
on
lude this dis
ussion with a 
ouple of positive remarks.Obje
ts in the derived 
ategory modulo torsion modules 
an be represented as ordinary
omplexes of graded R-modules. In other words we 
an pi
k a representative of ea
htorsion equivalen
e 
lass, whi
h is an ordinary 
omplex of modules (by `
utting o�' themodules in the sequen
e below a suÆ
iently high degree.)Furthermore, the isomorphisms whi
h we previously used to represent 
omplexes ofarbitrary modules as 
omplexes of free modules, are still available to us. We should thinkof the pro
ess of modding out as just adding some new isomorphisms, in whi
h 
asewe have not 
hanged the set of underlying obje
ts or lost any of the original morphisms.Thus, the 
on
lusion that obje
ts of the derived 
ategory 
an be represented as 
omplexesof free modules remains true. This is a remarkable statement and so we repeat it: anyobje
t in any of the low energy phases of the linear sigma model 
an be represented as a
omplex of free R-modules.Thus the boundary 
onditions we 
onstru
ted earlier are the most general that weneed to 
onsider in order to des
ribe a general brane 
on�guration. All of the dis
ussionso far applies equally well to the multi-graded U(1)k 
ase.Next we would like to learn more about the morphisms in the di�erent phases inorder to study equivalen
es between phases. In the U(1) 
ase we will surprisingly �nd a
omplete des
ription of the set of morphisms in terms of an ordinary Q-
ohomology ofmaps between 
omplexes of (a restri
ted set of) free modules, whilst in the U(1)k 
asewe will not be able to be so expli
it. In either 
ase, the analysis will be suÆ
ient toprove equivalen
e of the derived 
ategory of the di�erent phases under the Calabi-Yau
ondition. The new ingredient that we shall need is grade restri
tion.
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9.5 Grade Restri
tionWe start by examining the origins of grade restri
tion in the model of the previoussubse
tion. The essential 
ause of our problems is that we have kept too many freemodules of the form R(q). In order to des
ribe general elements of the derived 
ategoryin a `ni
e' way we need to employ a redu
ed set of free modules.The basi
 problem shows up in terms of relations (exa
t sequen
es) between freemodules. We have seen examples of this, in (9.14), relevant to the OCP2(�3) phase andin (9.16), relevant to the C3=Z3 phase.The existen
e of these relations is not only an in
onvenien
e, but is also an obsta
le toproving equivalen
e between phases. This is be
ause, as illustrated in the two examplesabove, the available relations depend on the 
hoi
e of phase.This is where the grade restri
tion 
omes to the res
ue. In both of the 
ases de-s
ibed above we have a relation between R(3) and a 
omplex of modules from the setfR(0);R(1);R(2)g. If we restri
t to the set of free modules fR(0);R(1);R(2)g thenwe 
laim i) to have no notrivial relations (in the shape of exa
t sequen
es) between thisrestri
ted set of free modules and ii) to have just enough modules to generate the mostgeneral obje
t in the derived 
ategory. These statements are supposed to hold in eitherphase.It is easy to 
onvin
e oneself of statement i) - essentially that (9.14) and (9.16) arethe `minimal' relations possible in either phase. A proof 
an be provided, for example, bythe expli
it 
omputation of Ext groups on proje
tive spa
e in arbitrary dimension.So we fo
us on statement ii). The 
laim is that an arbitrary element of the derived
ategory in either phase 
an be represented as a 
omplex of free modules from the setfR(0);R(1);R(2)g: (In general if the sum of positive 
harges of the 
oordinate �elds xiis S+ we restri
t to the set fR(0);R(1); : : :R(S+ � 1)g.)We have already seen that any obje
t in the derived 
ategory 
an be represented asa 
omplex of free modules R(q) if q is allowed to take arbitrary values. So roughly,we need to show that any free module 
an be expressed in terms of the restri
ted setfR(0);R(1);R(2)g.The idea behind this is quite simple. Suppose we are in the OCP2(�3) phase. We mayuse relation (9.14) to write R(3) in terms of the restri
ted set. Re
all that in the derived
ategory this exa
t sequen
e should be thought of as an equivalen
e between R(3) and195



the 
omplex 0!R(0)!R(1)�3 !R(2)�3 ! 0 (9.17)Next we 
onsider R(4). We may use (9.14) shifted in degree in order to write R(4) interms of fR(1);R(2);R(3)g0!R(1)!R(2)�3 !R(3)�3 ! 0 (9.18)To write R(4) in terms of the grade restri
ted set, we may then repla
e ea
h of the R(3)'sby modules from the restri
ted set, as above.To do this expli
itly we want to `bind' (9.18) to three 
opies of (9.14) and then `anni-hilate' pairs of R(3)'s. We show how to bind to the �rst 
opy of (9.14).Consider the identity map from one of the R(3)'s in (9.18) to R(3) in (9.14). We 
laimthat this map 
an be extended to a map between 
omplexes. (Note that we are talkinghere about an honest 
o
hain map between 
omplexes of modules rather than some moregeneral morphism in the derived 
ategory in whi
h 
ase the statement would be trivial.)0! 0 ! R(0) ! R(1)�3 ! R(2)�3 ! R(3)� % � % � % � % �100� �0 ! R(1) ! R(2)�3 ! R(3)�3 ! 0 ! 0 (9.19)Every map in this diagram is an honest map between modules and the whole argument
an be 
arried out even prior to modding out by torsion. However, in that 
ase, the
omplex (9.14) represents a non-zero module and so the obje
t (9.19) produ
ed afterbinding would not be equivalent to (9.18). On
e we mod out, the operation be
omes anequivalen
e sin
e we are binding to an obje
t with support on the deleted set.To 
onstru
t the 
o
hain map used above, we use a small extension of the argumentwe gave earlier in the 
onstru
tion of equation (9.11). That 
onstru
tion allowed us tobuild a map from a 
omplex of free modules to an exa
t sequen
e of modules. In the
urrent situation, we want to build a map from a 
omplex of free modules (9.18), but inthis 
ase the 
omplex we are mapping to fails to be exa
t in the rightmost position (asa 
omplex of modules prior to modding out.) However, the failure of exa
tness is onlyin the lowest degree and does not 
ause a problem sin
e the maps to R(3) in (9.18) areall at least linear in the positively 
harged �elds. We leave it to the reader to 
he
k thedetails.The `annihilation' step is to remove the trivial pair 0 ! R(3) ! R(3) ! 0 from196



(9.19), to leave an equivalent 
omplex in whi
h we have redu
ed the number of R(3)'s0! 0 ! R(0) ! R(1)�3 ! R(2)�3 ! 0� % � % � % � % �0 ! R(1) ! R(2)�3 ! R(3)�2 ! 0 ! 0 (9.20)By repeating twi
e more for the remaining R(3)'s we �nally write R(4) as a 
omplex ofmodules from the grade restri
ted set.It should be 
lear how to extend this argument for R(q), q > 4 by indu
tion. Moregenerally, given any obje
t in the derived 
ategory, represented as a 
omplex of freemodules, we 
an remove step-by-step all of the modules R(q) with q � 3 by repeatingthis 
onstru
tion many times. (At ea
h step we remove the remaining free module ofhighest degree whi
h is positioned furthest to the right in the 
omplex so that all maps tothis module are at least linear in the positively 
harged �elds and we 
an argue as above.)For R(q) with q < 0 there is a similar argument using the sequen
e (9.14) shifted indegree by �1 and read from left to right as a relation between R(�1) and the restri
tedset. On
e again, by shifting degrees and iterating, we may extend this argument to thegeneral 
ase of q < 0. The binding pro
ess in this 
ase involves maps from shifted versionsof (9.14) to the 
omplex that we are grade restri
ting. To 
onstru
t the relevant maps we
an use a tri
k of `dualizing' to put ourselves in the situation above, applying the bindingpro
edure above and then dualizing ba
k. Dualizing in this 
ontext means repla
ing allfree modules R(q) by R(�q) and reversing the dire
tion of all maps.This 
ompletes the proof that all obje
ts in the derived 
ategory in the OCP2(�3)phase 
an be written as 
omplexes of grade restri
ted modules. The same argument holdsin the C3=Z3 phase although in this 
ase it is rather more straightforward to see sin
ea

ording to (9.16), every pair R(q) and R(q + 3) are isomorphi
 and so we 
an alwaysrepla
e q with q mod 3. Also, although we treated a spe
i�
 example, the same argumentswork just as well for the general U(1) linear sigma model. We are now ready to state ourgeneral result:Suppose we have a U(1) linear sigma model with positively 
harged �elds xi and neg-atively 
harged �elds yj, su
h that the sum of 
harges of the xi is S+ and the sum of
harges of the yj is S�. Let R = C[xi; yj℄ be the asso
iated graded polynomial ring.The model has two low energy phases. In the �rst phase, whi
h 
orresponds to deletingthe lo
us fxi = 0; 8 ig the branes are given by the derived 
ategory of graded R-modulesmodulo those with bounded above grading. Every obje
t of this 
ategory 
an be representedas a 
omplex of free modules from the grade restri
ted set fR(0);R(1); : : : ;R(S+ � 1)g.197



Furthermore, morphisms in this representation are ordinary 
o
hain maps modulo homo-topies (Q-
ohomology 
lasses) and there are no non-trivial quasi-isomorphisms.Similar statements hold for the se
ond phase and the general brane in this phase 
an bewritten as a 
omplex of free modules from the grade restri
ted set fR(0);R(1); : : : ;R(S��1)g. In the Calabi-Yau 
ase, S� = S+, this gives an expli
it equivalen
e between thederived 
ategories of the two phases.Parts of this result have appeared previously in the literature. For the 
ase of CPn�1,the des
ription of an arbitrary brane as a 
omplex of fR(0);R(1); : : : ;R(n� 1)g followsfrom Beilinson's work [86℄. The equivalen
e for OCP2(�3) and C3=Z3 is a spe
ial 
aseof the M
Kay 
orresponden
e by Bridgeland-King-Reid [4℄, as already mentioned in Se
-tion 8.4. Bondal-Orlov [87℄ and Bridgeland [77℄ studied 
ases where all �elds have degree�1 and proved equivalen
e between phases under the Calabi-Yau 
ondition.A. King pointed out to the authors that the result as stated above appeared previouslyin a work by Van den Bergh, see [88℄ Se
tion 8. Thus, we 
annot 
laim it as our ownoriginal result, even though we were not aware of that work at the point we obtained it.Nonetheless, our approa
h to the problem, based on the physi
s of linear sigma model,naturally leads to a number of important generalizations. One of them is generalizationto multi-graded 
ases, whi
h we dis
uss next. Another is extension to systems withsuperpotential, whi
h we will dis
uss in Se
tion 10, where we obtain equivalen
es of thederived 
ategory of a Calabi-Yau manifold and di�erent type of triangulated 
ategories,su
h as the 
ategory of matrix fa
torizations. All these equivalen
es are uni�ed under thesame prin
iple | the grade restri
tion rule.9.6 Multi-Graded CaseWe would like to des
ribe the e�e
t of 
rossing phase boundaries in the general U(1)klinear sigma model. Sin
e only a single U(1) is unbroken at ea
h boundary, we alreadyhave all the ne
essary tools at our disposal.We write the general one-dimensional free module as R(q1; : : : ; qk) to display thegrading under ea
h U(1). We fo
us on the �rst U(1) and suppose that the sum of positive(resp. negative) 
harges of the variables under this U(1) is S+ (resp. S�) as before.Suppose that we are in a phase in whi
h we need to mod out by the (+)-torsionmodules (those whose grading is bounded above under this U(1)). A

ording to ourprevious dis
ussion, we 
an des
ribe an arbitrary brane in this phase as a 
omplex of free198



modules R(q1; : : : ; qk), where q1 
an be restri
ted to lie in the range f0; 1; : : : ; S+ � 1g.We treat phases in whi
h the D-term for this U(1) takes the opposite sign in a similarway | restri
ting q1 to lie between 0 and (S��1).Sin
e we still have to mod out by torsion modules for the remaining U(1)'s, we expe
tto have relations (in the form of exa
t sequen
es) between the set of free modules forwhi
h only q1 has been grade restri
ted, i.e., relations within the band restri
ted set.Thus, we 
an no longer 
laim to have a simple des
ription of the derived 
ategory inwhi
h morphisms are ordinary Q-
ohomology 
lasses (homotopy 
lasses of 
o
hain maps).However, for the purposes of des
ribing equivalen
es between neighbouring phases this isnot ne
essary. This is be
ause when we move between adja
ent phases, we only swit
h thesign of a single D-term and so swit
h from (+)-torsion to (�)-torsion for a single U(1). Theremaining U(1)'s are not a�e
ted, and hen
e modding out by remaining torsion modulesis the same pro
edure for both phases. This is manifest in the relation (4.22) between thedeleted sets.Thus it be
omes 
lear how we are to 
ompare branes in di�erent phases. Ea
h timewe wish to 
ross a phase boundary we grade restri
t with respe
t to the asso
iated U(1).We may then pass freely into the next phase. If the sum of positive and negative 
hargesof the variables are equal for the U(1) in question, there will be no new relations betweenbranes after 
rossing the boundary and we will have an equivalen
e of 
ategories. If theCalabi-Yau 
ondition (4.15) holds so that the sum of 
harges is zero, then it follows, by
rossing a boundary at a time, that the derived 
ategories in all low energy phases areequivalent.We emphasize again that, unlike in the single graded 
ase, this proof of equivalen
edoes not imply nor rely on a simple des
ription of derived 
ategories in terms of a �niteset of rank one free modules. In fa
t, there is a tori
 variety whi
h does not admit su
ha set (the 
ounter example [89℄ to King's 
onje
ture [90℄). However, as mentioned inSe
tion 8.5, there is su
h a �nite set in all the Calabi-Yau examples we 
onsidered so far.A di�erent 
onstru
tion of derived equivalen
es in the general multi-graded 
ase hadbeen given by Kawamata in [78℄.9.7 GeneralizationsAlthough we shall not develop these here, there are various dire
tions in whi
h one
ould generalize the pre
eding analysis. One possibility is to allow a non-Abelian groupa
tion G on Y = Cn and thus de
ompose R into representations of G. This line of199



development has been initiated by Kapranov [85, 91℄ who generalizes the Belinson resultfor sheaves on CPn to Grassmanians. Clearly, these developments will be relevant fordes
ribing branes in non-Abelian linear sigma models.Another dire
tion is to 
onsider more general 
hoi
es of the ring R. Mu
h of the basi
theory 
an be developed even in the 
ase of non-
ommutative rings [92℄ and it would befas
inating to develop a physi
al interpretation of this work. However, we leave thesedire
tions to future resear
h and return now to our main fo
us whi
h is the study ofD-branes in Abelian linear sigma models.10 Compa
t ModelsIn this se
tion, we 
onsider the problem of D-brane transport in systems that arisefrom linear sigma models with superpotential. Applying the grade restri
tion rule, we�nd a rule of D-brane transport along paths on the K�ahler moduli spa
e. This leads, forexample, to one-to-one 
orresponden
es between D-isomorphism 
lasses of D-branes inLandau-Ginzburg orbifolds and those in geometri
 regimes. The basi
 idea of transportitself is identi
al to the one in the non-
ompa
t models of Se
tion 8. Besides havingmatrix fa
torizations instead of 
omplexes, the main new feature is that, depending onthe phase, some of the bulk �elds may a
quire masses from superpotential F-terms andtherefore must be integrated out.10.1 The D-Brane TransportTo start with, let us brie
y re
all the rôle of the superpotential in the bulk theory. The
lassi
al va
uum 
on�guration in the Higgs bran
h is govened by the D-term and F-term
ontributions to the potential (4.8). Away from phase boundaries, the D-term potential
on�nes dynami
s to a tori
, non-
ompa
t Calabi-Yau variety Xr. The F-term potentialdetermined by the superpotentialW restri
ts the va
uum further to a 
omplex subvarietyMr � Xr. Depending on the phase, a part of the transverse modes of Mr in Xr maya
quire mass from the superpotential F-terms. In the 
ase where all transverse modes aremassless, the low energy theory is a Landau-Ginzburg model with superpotential W overthe non-
ompa
t tori
 variety Xr. In the other extreme where all transverse modes aremassive, we obtain a non-linear sigma model on the va
uum manifold Mr. The natureof low energy theory depends very mu
h on the phase and the pattern is in general very
omplex. 200



However, one 
ould always 
hoose to use the des
ription as a LG model on the non-
ompa
t tori
 variety Xr. This des
ription is most natural if the energy s
ale, epr, setby the D-terms is mu
h higher than the one, mW , set by the F-terms, and we 
onsider anintermediate s
ale, epr � �� mW .Like in the non-
ompa
t situation we are taking the large gauge 
oupling limit, so thatwe 
an integrate out the gauge multiplet algebrai
ally (
f. (4.12) and (4.14)). The matrixfa
torization (V; Q; �; R) in the linear sigma model then be
omes a matrix fa
torization ofW over the tori
 variety Xr. Let us denote the set of matrix fa
torizations of W over Xrby MFW (Xr), and refer to the set of matrix fa
torizations in the linear sigma model asMFW (CN ; T ). Two D-branes in MFW (CN ; T ) that are related by D-isomorphisms will
ow to the same D-brane in the infra-red limit, so that we de�ne MFW (Xr) as the set ofmatrix fa
torizations of the linear sigma model up to D-isomorphisms. Let us introdu
ethe 
orresponding proje
tion:�r :MFW (CN ; T )!MFW (Xr):Similarly to Se
tion 8.1 we have a pyramid of maps:MFW (CN ; T )
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BBBBBBBBN
JJJJJĴ�I �II �III �IVMFW (XI)MFW (XII) MFW (XIII)MFW (XIV)PPPPPP ������ DDDDhhhhhhh������p p p p p (10.1)Let us illustrate these proje
tions in Example (A) with N = 3. We pi
k the su-perpotential W = p � G(x) with the 
ubi
 fermat polynomial G(x) = x31 + x32 + x33. Inthe r ! �1 limit, this gives the LG-model with superpotential G(x) over the orbifoldX� �= C3=Z3, namely, a LG orbifold. At r � 0 and at the intermediate energy s
ale � wehave a LG-model with potential W = pG(x) over X+, the total spa
e of the line bundleO(�3) ! CP2. This superpotential gives masses to the �bre 
oordinate p and to thetransverse mode of x's to the hypersufa
e G(x) = 0, but we 
hoose to keep both of them.At lower energies �� mF , it is more appropriate to integrate them out, and we have thesigma model on the ellipti
 
urve, fp=G=0g � X+.)In order to des
ribe D-isomorphism realtions in the two phases, we �rst 
onsidermatrix fa
torizations that are infra-red empty, i.e., the ones for whi
h the boundarypotential fQ;Qyg is stri
tly positive over Xr. They 
an be 
onstru
ted from the Koszul201




omplexes for the deleted sets, and will play the analogous rôle as the latter playedin the non-
ompa
t models. Re
all that our R-
harge assignment is R�(p; x1; x2; x3) =(�2p; x1; x2; x3).In the r � 0 phase, the deleted set is �� = fp = 0g. Let us 
onsider the brane B�given by Q =  0 G(x)p 0 ! ; �(g) =  g2 00 g�1 ! ; R(�) =  1 00 ��1 ! :For simpli
ity, we use the following notation to en
ode this data:B� :  W(2)0 p -� G W(�1)�1! (10.2)The subs
ript of ea
h Wilson line brane labels the R-
harge. This brane has stri
tlypositive potential fQ;Qyg = (jpj2 + jGj2) � id2 over X� where p is non-zero, and thereforeis infra-red empty. Note that this matrix fa
torization is obtained from the 
omplexW(2) p�!W(�1), whi
h de�ned an empty brane in the non-
ompa
t model with W = 0,by adding the arrow in the opposite dire
tion, W(2) �G W(�1).Let us next 
onsider the r � 0 phase where the deleted set is �+ = fx1=x2=x3=0g.Just as above, we 
onsider adding some arrows to a 
omplex 
orresponding to an emptybrane in the non-
ompa
t model, su
h as W(�1) X! W(0)�3 X! W(1)�3 X! W(2); whi
h
an be realized as X = P3i=1 xi�i on the Cli�ord module. If we add the arrows pX2 =P3i=1 px2i �i in the opposite dire
tion, we �nd a matrix fa
torization Q = X + pX2 ofW =P3i=1 px3i . With an appropriate 
hoi
e of R-
harge, say �2 on the Cli�ord va
uumj0i, we have a graded matrix fa
torization. Presented in the similar way as (10.2), it isB+ :  W(�1)�2�W(1)�30 g+-� f+ W(0)�3�1�W(2)1 !; (10.3)with g+ = 0BBB�x1 0 px23 �px22x2 �px23 0 px21x3 px22 �px21 00 x1 x2 x3
1CCCA ; f+ = 0BBB� px21 px22 px23 00 �x3 x2 px21x3 0 �x1 px22�x2 x1 0 px23

1CCCA :The boundary potential is stri
tly positive on X+, fQ;Qyg = P3i=1(jxij2 + jpx2i j2) > 0,and the brane is indeed infra-red empty in the r � 0 phase.202



Let us bind these two branes using a map from B� to B+:W(2)0 �p -��G W(�1)�1� X2 ����+QQQQsid �W(�1)�2 X -� pX2 W(0)�3�1 X -� pX2 W(1)�30 X -� pX2 W(2)1 (10.4)Following the pro
edure from (3.7) to (3.8), whi
h applies also to matrix fa
torizations,we 
an erase the trivial pair W(2) id!W(2). The result isW(�1)�2 X -� pX2 W(0)�3�1 X -� pX2 W(1)�30 pX-� X2 W(�1)�1 ;or more expli
itly B0 :  W(�1)�2�W(1)�30 g0 -� f0 W(0)�3�1�W(�1)�1 !;with g0 = 0BBB�x1 0 px23 �px22x2 �px23 0 px21x3 px22 �px21 00 px1 px2 px3
1CCCA ; f0 = 0BBB� px21 px22 px23 00 �x3 x2 x21x3 0 �x1 x22�x2 x1 0 x23

1CCCA : (10.5)In the r � 0 phase where the brane B� is empty, this pro
ess results in the low energyD-isomorphism ���B+� �= ���B0�; (10.6)whi
h trades the Wilson line 
omponent W(2)1 for W(�1)�1. The shift in the R-
hargeis due to the fa
t that the varibale p 
arries R-
harge 2 and that (f0; g0) is obtained from(f+; g+) by relo
ating p. In general, given a matrix fa
torization in the Landau-Ginzburgphase, we 
an always eliminate the Wilson line 
omponent with largest 
hargeW(qmax) infavour of W(qmax�3), as well as the smallest 
harge 
omponent W(qmin) by W(qmin+3).This re
e
ts the broken gauge symmetry in the Landau-Ginzburg orbifold model, andtells us that we 
an simply set p = 1 in order to obtain Z3-graded matrix fa
torizations.In the next subse
tion. we will see how this works in a general model.In the r � 0 phase where the brane B+ is infra-red empty, the above pro
ess resultsin the D-isomorphism �+�B�� �= �+�B0�: (10.7)203



The Wilson line 
omponentW(2) in B� is traded for othersW(q) with q = �1; 0; 1. Justas in this 
ase, we 
an always lower (and in
rease) the gauge 
harges q, by binding withB+ or with its shifts in gauge and R-
harges. Ea
h binding pro
ess 
hanges the 
hargeby at most 3.Grade Restri
iton RuleWe now transport D-branes a
ross phase boundaries. Let us 
onsider two adja
entphases, say Phase I and Phase II, and �x a window w at the phase boundary. The graderestri
iton rule (or more generally the band restri
tion rule) of Se
tion 7 tells us thatwe 
annot transport arbitrary matrix fa
torizations along a path that goes through w.Only those branes whose Wilson line 
omponentsW(q1; : : : ; qk) are 
ontained in the bandrestri
tion rule 
an be transported, i.e., (q1; : : : ; qk) must be in the band CwI;II � Zk. Wedenote the set of matrix fa
torizations in the band by MFW (T wI;II). Just like (8.6) in thenon-
ompa
t 
ase, we 
an asso
iate to a given window w, a hat diagram:MFW (CN ; T )[MFW (T wI;II)
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� JJJJ℄!wI;II !wII;IMFW (XI) MFW (XII) (10.8)The lifts and proje
tions 
ompose to the mapsFwI;II = �II Æ !wI;II :MFW (XI) �!MFW (XII);FwII;I = �I Æ !wII;I :MFW (XII) �!MFW (XI);whi
h are inverse to ea
h other, FwII;I ÆFwI;II �= idMFW (XI) and FwI;II ÆFwII;I �= idMFW (XII). Theyindu
e a one-to-one 
orresponden
e between D-isomorphisms 
lasses in MFW (XI) andMFW (XII). The key step in the hat diagram (10.8) is the lift from the low energy matrixfa
torizations in a given phase, say MFW (XI), to the grade restri
ted subsetMFW (T wI;II).A random lift B = (V; Q; �; R) of a matrix fa
torization in MFW (XI) to the linear sigmamodel does not 
omply with the band restri
tion rule. We 
an, however, bind trivial D-branes to B in orde to eliminate Wilson line 
omponentsW(q) outside the band, without
hanging the D-isomorphism 
lass in MFW (XI).In the example at hand, the trivial branes at small volume, r � 0, are the matrix204



fa
torizations  W(q + 3)j+1 p -� G W(q)j!for any q 2 Z and j 2 Z. In the large volume phase, r � 0, the trivial branes are W(q)j�1�W(q + 2)�3j+1 g+-� f+ W(q + 1)�3j�W(q + 3)j+2 !for any q 2 Z and j 2 Z. Note that both D-branes have just the right width in the rangeof gauge 
harges in order to enable the restri
tion to Cw for some window w at the phaseboundary. The binding pro
ess (10.4) is an example where the Wilson line 
omponentW(2) is eliminated in order to �t the matrix fa
torization into the grade restri
tion ruleCw = f�1; 0; 1g asso
iated to the window w = f�� < � < �g. Indeed, the matrixfa
torization B0 is an obje
t in MFW (T w), and as a result of relations (10.6) and (10.7)we �nd:Fw+;� : �+�W(2)0 p -� G W(�1)�1� 7�! �� W(�1)�2�W(1)�30 g+-� f+ W(0)�3�1�W(2)1 !: (10.9)Just as in this example, in any model, the trivial matrix fa
torizations to be usedfor grade or band restri
tion pro
esses are obtained from the trivial 
omplexes in thenon-
ompa
t version. For the general model with U(1) gauge group (using the notationin Se
tion 8.2), they are obtained from the X-Koszul and Y -Koszul 
omplexes by addingarrows in the oppostite dire
tionsKmf+ = W(0) X-�a W+ X-�a ^2W+ X-�a � � � X-�a ^lW+! ; (10.10)Kmf� = W(0) Y-�b W� Y-�b ^2W� Y-�b � � � Y-�b ^l0 W�! : (10.11)Here a = (a1; :::; al) and b = (b1; :::; bl0) are su
h thatW = lXi=1 xiai(x; y) = l0Xj=1 yjbj(x; y):Sin
e W is gauge invariant, su
h ai's and bj's always exist if W is assumed to be redu
edwith respe
t to the non-trivially 
harged �elds (i.e. W = 0 for x = y = 0). We havenegle
ted to put the R-
harge information in (10.10) and (10.11).205



For a model with higher rank gauge group, T = U(1)k with k > 1, at ea
h phaseboundary we 
an 
onstru
t similar matrix fa
torizations of the part ofW whi
h is redu
edwith respe
t to the relevant �elds at that phase boundary. Then, we 
an take the tensorprodu
t with any matrix fa
torization for the remaining part of W to make a trivial D-brane. As in the non-
ompa
t version, there are amibuities in the grade restri
ted lifts!wI;II and !wII;I, but they are due to 
ommon deleted sets of the two pahses and hen
e donot matter in the end.Integrating Out Heavy FieldsWe have a
hieved our goal also in models with superpotential | we have a 
ompleterule of D-brane transport a
ross phase boundaries. However, the \low energy" theories inthe above dis
ussion are non-linear LG models on tori
 verieties Xr, whi
h are in generaldi�erent from the typi
al des
ription, su
h as nonilinear sigma models without potentialor LG models on linear spa
e. In order to have a useful transportation rule, we need to�ll this gap.The main gap exists in large volume phases where all the modes transverse to Mr inXr a
quire masses from the F-term superpotential W . For s
ales below the F-term mass,we 
an integrate out these massive modes and we obtain the non-linear sigma model onMr. Matrix fa
torizations must turn into 
omplexes of holomorphi
 ve
tor bundles overMr. The pyramid (10.1) is then enhan
ed by maps MFW (Xr)! D(Mr) in su
h phases,whi
h asso
iate to ea
h matrix fa
torization at the intermediate s
ale a geometri
 D-braneon the subvariety Mr: MFW (CN ; T )
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We will �nd what the mapsMFW (Xr) �! D(Mr) are, and see that they indu
e a one-to-one 
orresponden
e between geometri
 D-branes in D(Mr) and matrix fa
torizations inMFW (Xr). Unlike in the bulk theory, where integrating out the massive �elds essentially206




orresponds to setting them equal to zero, the presen
e of a boundary enri
hes the storysigni�
antly.A gap also exists at Landau-Ginzburg orbifold points where the usual low energydes
ription is in terms of LG models on linear spa
es. This has nothing to do with F-terms but has to do with D-terms. At a LG orbifold point, some of the linear sigma model�elds simply de
ouple by a
quiring in�nite mass from the Higgs me
hanism, and we areleft with the LG model for the rest of the �elds. Thus, it is more 
onvenient to use thedes
ription that in
ludes only those massless linear �elds, rather than to work with theset of all �elds and implement the D-isomorphism relation, su
h as (10.6), all the time.Before atta
king the main problem to �nd the maps MFW (X) �! D(M) in largevolume phases, we �rst �ll this gap at LG orbifold points.10.2 Landau-Ginzburg Orbifold PointWe need to establish the equivalen
e of the two des
riptions at a Landau-Ginzburgpoint, one with the full set of �elds subje
t to the D-term relation and the other with theredu
ed set of �elds without any relation. This problem also exists in the model withoutsuperpotentialW = 0, at a free orbifold point, and 
ould have been dis
ussed in Se
tion 8.The treatment we will provide below 
an be easily adapted for that 
ase as well, and wewill leave that to the reader.We �rst dis
uss the problem in a spe
i�
 
lass of examples | Example (A). On
e thatis done, the generalization is straightforward and will be des
ribed only brie
y.10.2.1 The U(1) TheoryEaxmple (A) is a U(1) gauge theory with (N + 1) �elds P;X1; : : : ; XN of 
harge�N; 1; : : : ; 1. The superpotential is W = PG(X) where G(X) is a degree N polynomialof X1; : : : ; XN . The limit r ! �1 is the Landau-Ginzburg orbifold point where p has ava
uum expe
tation value that breaks the gauge group U(1) to the subgroup ZN of N -throots of unity. The P and the gauge multiplets de
ouple together by a
quiring in�niteHiggs mass.
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Elimination Of PElimination of P is straightforward | simply set it equal to its expe
tation valuewhi
h 
an be 
hosen to be 1. Of 
ourse, sin
e the �eld p 
arries R-
harge 2, we must
hange the gauge for the R-symmetry transformation. It is done as follows.Let (V; Q; �; R) be a D-brane in the linear sigma model. We setQ(x) := Q(1; x);�(!) := �(!); with !N = 1; (10.12)R(�) := R(�)�(��2=N):Q(x) is of 
ourse a matrix fa
torization of W = G(x). It is invariant under the orbifoldgroup a
tion, �(!)Q(! � x)�(!)�1 = Q(x), and has R-
harge 1,R(�)Q(�2=Nx)R(�)�1 = R(�)�(�2=N )�1Q(1; �2=Nx)�(�2=N )R(�)�1= R(�)Q(�2; x)R(�)�1= �Q(1; x) = �Q(x):The operators �(!) and R( ei�) of 
ourse 
ommute and satisfyR( e�i)�( e2�i=N) = R( e�i)�( e�2�i=N)�( e2�i=N ) = �V;Thus, we obtained a D-brane (V; Q; �; R) in the LG orbifold.In
lusion Of PLet us next �nd the map in the opposite dire
tion | from a D-brane in the LG orbifoldto a D-brane in MFW (Xorb). A
tually, we will be able to �nd a map dire
tly into thegrade restri
ted subset MFW (T w) in the linear sigma model, for any window w at thephase boundary. This will be parti
ularly useful for D-brane transport from the LG pointto the large volume regime. We re
all that the set Cw of admissible 
harges for a windoww is a set of N 
onsequetive integers. In parti
ular, it has the propertyq; q0 2 Cw =) jq � q0j � N � 1: (10.13)Let (V; Q; �; R) be a D-brane in the LG orbifold. One 
an 
hoose a basis in whi
hR(�) and �(!) are simultaneously diagionalized, with eigenvalues �Ri and !qi respe
tively.Here we use the indi
es i, j; : : : to label the Chan-Paton basis ve
tors. Ri is a rational208



number and qi is a mod N integer. Sin
e R( e�i)�( e2�i=N ) = �V, we �nd that e�iRi e2�iqi=Nis 1 or �1 depending on whether the basis element is even (�i = +1) or odd (�i = �1).Namely, Ri + 2qi=N is an even or odd integer depending on �i = +1 or �i = �1. In fa
t,for su
h an Ri the equation Ri = Ri � 2qiN ; (10.14)is uniquely solved by integers (Ri; qi) from the rangeqi 2 Cw;Ri 2 ( 2Z �i = +12Z + 1 �i = �1:Let us now put�(g) := 0B� gq1 0. . .0 gq2` 1CA ; R(�) := 0B� �R1 0. . .0 �R2` 1CA : (10.15)Then we have R(�) = R(�)�(��2=N ) and qi = qi mod N , that is, �(!) = �(!) for an N -throot of unity !. Hen
e, by the orbifold invarian
e of Q(x) we have�(!)�1Q(!x)�(!) = Q(x); if !N = 1:This means that �(z)�1Q(zx)�(z) depends on z only though zN . Sin
e Q(zx) is a poly-nomial of zxi's and sin
e 
onjugation by �(z) 
an 
hange the power of z only at most byz�(N�1) (see (10.13)), we �nd that �(z)�1Q(zx)�(z) has no negative powers of zN , thatis, it is a polynomial in zN ,�(z)�1Q(zx)�(z) = Q0(x) + zNQ1(x) + z2NQ2(x) + � � � :Qi(x) is the 
omponent of Q(x) su
h that �(z)�1Qi(zx)�(z) = zi NQi(x). Now we de�neQ(p; x) by repla
ing zN by p:Q(p; x) := Q0(x) + pQ1(x) + p2Q2(x) + � � � : (10.16)Let us perform some 
he
ks on this Q(p; x). Using the gauge transformation property ofQi(x), we see that the equation Q(x)2 = G(x) � idV de
omposes into the following set ofequations Q0(x)2 = 0;Q0(x)Q1(x) +Q1(x)Q0(x) = G(x)idV;Q0(x)Q2(x) +Q1(x)2 +Q2(x)Q0(x) = 0;� � � � � � 209



These are 
ompiled into a single equationQ(p; x)2 = pG(x) � idV;whi
h says that Q(p; x) is indeed a matrix fa
torization of pG(x). Gauge invarian
e andR-symmetry simply follow from the de�nition,�(g)�1Q(g�Np; gx)�(g)= Q0(x) + (g�Np)(gNQ1(x)) + (g�Np)2(g2NQ2(x)) + � � �= Q(p; x);R(�)Q(�2p; x)R(�)�1= R(�)�(�2=N )Q(�2p; x)�(�2=N )�1R(�)�1= R(�)Q(p; �2=Nx)R(�)�1 = �Q(p; x):To summarize, (V; Q; �; R) given by (10.15) and (10.16) has all the properties to de�nea D-brane in the linear sigma model. We have 
onstru
ted a map that sends D-branes inthe LG orbifold to grade restri
ted D-branes in the linear sigma model. It is 
lear thatthis is the inverse of the map (V; Q; �; R) 7! (V; Q; �; R) whi
h was obtained by settingp = 1 and modi�ying the R-symmetry by an appropriate gauge transformation.ExampleIf we apply the map (V; Q; �; R) 7! (V; Q; �; R) to the D-branes B�, B+ and B0 thatwere introdu
ed in (10.2), (10.3) and (10.5), we �ndB� 7�!  O(2)� 43 id -� G O(2)� 13!;B+;B0 7�!  O(2)� 43�O(1)�3� 23 g -� f O(0)�3�1�O(2)� 13 !;where (f; g) are obtained from (f+; g+) or (f0; g0) by setting p = 1. The subs
ripts are theChan-Paton R-
harges Ri in the low energy theory. We indeed �nd the empty brane (1; G)as the image of B�. Also, B+ and B0 are mapped to the same D-brane. (The image isequal to the Re
knagel-S
homerus brane B(0;0;0);2;1 in the notation of Se
tion 2.4.1.) If weapply the inverse map to the two LG branes obtained above, with the grade restri
tion210



rule Cw = f�1; 0; 1g, we �nd respe
tively W(�1)�2 id -� pG W(�1)�1!;  W(�1)�2�W(1)�30 g0 -� f0 W(0)�3�1�W(�1)�1 !:The latter is B0.10.2.2 General CaseIn a general linear sigma model, a Landau-Ginzburg orbifold phase o

urs when thegauge group U(1)k is broken to a �nite subgroup � by non-zero values of k �elds, sayY1; : : : ; Yk, and the D-term equation 
an be solved for arbitrary values of the remaining�elds, X1; : : : ; XN�k. The deleted set is then� = k[i=1 fyi = 0g: (10.17)There is a fra
tional 
hange of basis of the gauge group that brings the 
harges into thefollowing form eQaYi = �Æai ; eQaXj � 0:In su
h a basis, the orbifold phase is ra < 0. Indeed, the D-term equation 
an be solvedat ra < 0 for arbitrary xj's by setting jyij2 = Pj eQiXj jxjj2 � ri > 0. In what follows, weuse the original integral basis, with Qaj 2 Z. The only thing we need to know is that thek � k matrix QaYi is invertible over rational numbers and that eQbXj := �[(QY )�1QX ℄bj arenon-negative.The low energy theory is the LG orbifold with variables X = (X1; :::; XN�k) andsuperpotential W (X) = W (X1; : : : ; XN�k; 1; :::; 1):The orbifold group � 
onsists of elements g = (g1; :::; gk) of U(1)k obeyingkYa=1 gaQaYi = 1; 8i = 1; : : : ; k:Re
all from (5.27) that the R-
harges RXj ; RYi of the �elds Xj; Yi are even integers. TheR-symmetry a
tion on Yj's 
an be trivialized by dressing with the gauge transformationgs(�) = (�s1; : : : ; �sk) where (s1; : : : ; sk) is the unique rational solution to the system ofQ-linear equations kXa=1 saQaYi +RYi = 0; 8i = 1; : : : ; k:211



The R-
harges of Xi in the low energy LG model are thusRXj = RXj + kXa=1 saQaXj :The element gs( e�i) = ( e�is1 ; : : : ; e�isk) a
ts trivially on yi's, Qa e�isaQqYj = e��iRYj = 1,and a
ts on xi's by the phase Qa e�isaQaXj = e�iRXj e�iPa saQaXj = e�iRXj ; where we usedthe fa
t that the RYi 's and the RXj 's are even integers. Namely, it belongs to the orbifoldgroup � and a
ts on the Landau-Ginzburg �elds xj in the same way as the R-symmetryat � = e�i. Therefore, we 
an identify gs( e�i) = ( e�is1; : : : ; e�isk) as the element !�1 2 �that was de�ned in Se
tion 2.4.1.Elimination Of Yi'sGiven a brane (V; Q; �; R) in the theory with full set of variables, we setQ(x) := Q(x1; :::; xn�k; 1; :::; 1)�(!) := �(!); with ! 2 �; (10.18)R(�) := R(�)�(gs(�))�1:This (V; Q; �; R) de�nes a D-brane in the LG orbifold.In
lusion Of Yi'sLet (V; Q; �; R) be a D-brane in the LG orbifold. We denote the eigenvalues of R(�)and �(!) as �Ri and Qa !qaia . It follows from R( e�i)�(!�1) = �V that Ri +Pka=1 saqai isan even (odd) integer if i labels an even (odd) Chan-Paton ve
tor. Analogously to theT = U(1) 
ase, we would like to �nd an even (odd) integer Ri and a set of integers qai � qaisatisfying the equation Ri = Ri � kXa=1 saqai :There is a unique solution if we require qai to be in a bounded range su
h that eqai :=�[Q�1Y q℄ai is in an open interval of width 1. Sin
e the deleted set is the union of thehypersurfa
es yj = 0, (10.17), this bound pre
isely mat
hes with a fundamental domainof the Chan-Paton 
harges with respe
t to the D-isomorphism relations of the Wilson linebranes. 212



On
e the solution (qai ; Ri) is found for ea
h i, we de�ne �(g) and R(�) as in theT = U(1) 
ase. It follows from the orbifold invarian
e of Q(x) that �(g)�1Q(gx)�(g)depends on g = (g1; : : : ; gk) only throughhj := kYa=1 ga�QaYj ; i = 1; : : : ; k:It is in fa
t a polynomial of h1; : : : ; hk, due to the bound on qai , as one 
an see in thefra
tional basis of U(1)k mentioned at the beginning. In parti
ular, one 
an write Q(x) =P~nQ~n(x) su
h that �(g)�1Q~n(gx)�(g) = h~n �Q~n(x) where ~n is a k-tuple of non-negativeintegers n1; :::; nk, and h~n is a short-hand notation for the produ
t hn11 � � �hnkk . SettingQ(x; y) =X~n yn11 � � � ynkk Q~n(x);we obtain a D-brane data (V; Q; �; R) in the linear sigma model. We have 
onstru
tedthe inverse to the map (V; Q; �; R) 7! (V; Q; �; R) in (10.18).10.3 Geometri
 PhaseWe now atta
k the problem of integrating out the bulk �elds that a
quire mass fromthe superpotential F-term. In fa
t, we had already 
onsidered the same problem in the
ontext of a simple Landau-Ginzburg model in Se
tion 3.4, where we integrated out twovariables, U and V , whi
h enter into the term UV of superpotential. We shall refer toour result of Se
tion 3.4, (V; Q) 7! (bV; bQ) given in (3.35) and (3.36), as the Kn�orrer map.Our 
urrent situation 
an be regarded as a massive LG model �bred over the subvarietyM � X, with a non-degenerate quadrati
 superpotential as a fun
tion of the transverse
oordinates. Thus, we may simply apply the Kn�orrer map �brewise in this setup.In the �rst part of this subse
tion, we dire
tly apply the Kn�orrer map and obtain themap of matrix fa
torizations in MFW (X) to geometri
 D-branes in D(M). In the se
ondpart, we reformulate the Kn�orrer map and �nd the inverse map, from geometri
 D-branesin D(M) to matrix fa
torizations in MFW (X).10.3.1 MFW (X)! D(M)We �rst 
onsider Example (A) with the superpotentialW = PG(X1; : : : ; XN): (10.19)213



The geometri
 phase is r � 0, and the des
ription at the intermediate s
ale is the LGmodel with this superpotential over the total spa
e X = X+ of the holomorphi
 linenumdle O(�N) ! CPN�1. The superpotential is 
riti
al at the submanifold fP = G =0g � X, whi
h is a degree N hypersurfa
eM of the proje
tive spa
e CPN�1. We may saythat we have a LG model with superpotential W = PG �bred over the hypersurfa
e M .Thus, we 
an simply apply the Kn�orrer map �brewise. We obviously have two options,one with the identi�
ation U = P and V = G and the other with U = G and V = P .The two must give rise to the same answer provided we do everything 
orre
tly. In this�rst part, we take the former option. The latter option turns out to be useful to �nd theinverse map and will be 
onsidered in the se
ond part.Let (V; Q; �; R) be a linear sigma model brane representing an element of MFW (X).Following the Kn�orrer map we putbV = V� pV� p2V� p3V� � � � ; (10.20)bQ = QjG(x)=0: (10.21)bQ is regarded as a
ting on the in�nite dimensional spa
e bV. The gauge and the R-symmetry a
tions b�, bR on the new Chan-Paton spa
e bV are naturally determined by therespe
tive 
harges of p, up to an overall shift ambiguity. This ambiguity is �xed by settingb� = � on V � bV; (10.22)bR = R on V � bV: (10.23)As we have dis
ussed in Se
tion 3.4, we need to make a 
hoi
e of the overall R-
hargeassignment, and (10.23) is just one 
hoi
e. As for the gauge group a
tion, on the otherhand, there is no su
h ambiguity. We will see that (10.22) is the 
orre
t identi�
ation, aslong as the B-�eld on M is given in terms of the theta parameter byB = � +N�: (10.24)(bV; bQ; b�; bR) is the data of the D-brane in the low energy sigma model. The Chan-Patonspa
e bV with representations (b�; bR) 
orresponds to a graded ve
tor bundle bE over M ; aone-dimensional subspa
e of bV of gauge 
harge q and R-
harge j 
orresponds to a rankone subbundle of bE at degree j whi
h is isomorphi
 to the line bundle O(q) on M . bQ a
tson bE as a degree 1 bundle map. Sin
e we are on the hypersurfa
e fG(x) = 0g it squaresto zero bQ2 = 0:214



Thus, we have a 
omplex of ve
tor bundles. Sin
e p has R-
harge 2 > 0, the subspa
epmV � bV for larger m 
orresponds to a subbundle with larger R-degree. Therefore, if theoriginal Chan-Paton spa
e V was �nite dimensional, the degree j subbundle E j has �niterank for ea
h j, and the 
omplex (bE ; bQ) is bounded from the left, but unbounded to theright; 0! E jm djm�! E jm+1 ! � � � ! E j dj�! E j+1 ! � � � : (10.25)Here jm is the minimum of the R-
harges of V. Although it is an unbounded 
omplex, itis exa
t at large enough R-degrees. This follows from the 
orresponding property of theKn�orrer map, see Se
tion 3.4. Indeed, the infra-red empty blo
ks of the matrix bQ shownin (3.37) are on subspa
es of large R-
harges if we assign R-
harge 2 to the variable u.There is also an alternative, algebrai
 proof of the exa
tness at large degrees, whi
h willbe given momentarily. In either way, we know that it is quasi-isomorphi
 to a bounded
omplex of 
oherent sheaves, su
h as0! E jm djm�! E jm+1 ! � � � ! E l dl�! Ker dl+1 ! 0;for some large l.Let us illustrate the pro
edure using the brane B� in the N = 3 
ase, whi
h wasintrodu
ed in (10.2). The original Chan-Paton spa
e V is two-dimensional, and let usdenote the basis ve
tors by e2;0, e�1;�1. The basis elements pme2;0, pme�1;�1 of the newChan-Paton spa
e bV have (gauge,R)-
harges (2+3m; 2m), (�1+3m;�1+2m) respe
tivelyand thus 
orrespond to the line bundles O(2 + 3m)2m , O(�1 + 3m)�1+2m over the ellipti

urve M . bQ maps the basis elements as followspme2;0 7! pm+1e�1;�1; pme�1;�1 7! 0:Thus, we �nd the 
omplex0! O(�1)�1 0�! O(2)0 id�! O(2)1 0�! O(5)2 id�! O(5)3 0�! � � �We �nd in�nite 
opies of trivial brane-antibrane pairs. Eliminating them all, we are leftwith the �nite 
omplex 0! O(�1)�1 ! 0. Hen
e, the Kn�orrer map yields�+(B�) 7�! O(�1)[1℄:Let us 
onsider another example, the brane B+ given in (10.3). As above, for ea
h Wilsonline brane W(q)i we have an in�nite series of line bundles O(q + 3m)i+2m on the ellipti

urve. We �rst write the entries in (10.3), from left to right with respe
t to the R-
harge,215



draw the arrows from the p-independent part of (f+; g+), and repla
e the notation \W"by \O": O(�1)�2 X! O(0)�3�1 &XO(1)�30 X! O(2)1We next write its 
opies, shifted to the right by two and tensored by O(3), and draw thearrows in
luding the p-dependent part of (f+; g+):O(�1)�2 X! O(0)�3�1 X2! O(2)0 X! O(3)�31 X2! O(5)2 X! O(6)�33 X2!&X � X2% � &X � X2% � &XO(1)�30 X! O(2)1 X2! O(4)�32 X! O(5)3 X2! � � �This is the 
omplex (bE+; bQ+). It is exa
t. The exa
tness 
an be proven algebrai
ally, butone may also prove it by 
omputing the potential f bQ+; bQy+g and showing that it is positiveeverywhere: The potential is jxj2 + jxj4 =Pi(jxij2 + jxij4) ex
ept at the �rst few terms,O(�1)�2 , O(0)�3�1 , and O(1)�30 , where it is jxj2, jxj2Æi;j + �x2ix2j , and (jxj2 + jxj4)Æi;j � x2i �x2jrespe
tively. All the eigenvalues are bounded from below by jxj2 and are positive as longas (x1; x2; x3) 6= (0; 0; 0). Therefore, the brane determined by (bE+; bQ+) is infra-red empty,whi
h is indeed expe
ted from �+(B+) �= 0.If we apply this pro
edure to the brane B0 given in (10.5), we immediately �nd the
omplex (bE0; bQ0):O(�1)�2 X! O(0)�3�1 X2! O(2)0 X! O(3)�31 X2! O(5)2 X! O(6)�33 X2!� &X � X2% � &X � X2% � &XO(�1)�1 X2! O(1)�30 X! O(2)1 X2! O(4)�32 X! O(5)3 X2! � � �Noti
e that it is almost the same as (bE+; bQ+) ex
ept for the term O(�1)�1 with a map toO(1)�30 . Namely, it is the 
one of this map:(bE0; bQ0) = Cone�O(�1) X2�! (bE+; bQ+)�:Sin
e (bE+; bQ+) is empty, we see that our brane (bE0; bQ0) is D-isomorphi
 to just O(�1)[1℄whi
h is the same as the result for B�. This is exa
tly what is expe
ted from (10.7).Theta ShiftWe now show that the Chan-Paton gauge 
harges of the low energy D-brane are givenby (10.22) with theta parameter shift (10.24). To this end, we put the derivation of the216



Kn�orrer map in Se
tion 3.4 into the 
ontext of a U(1) gauge theory. Thus, we assume thatthe variables X1; :::; Xn; U; V 
arry some U(1) gauge 
harges so that the superpotentialW = WL(X) + UV is gauge invariant. We suppose that U and V have 
harges Qu and�Qu respe
tively. Then, the boundary variables � and � of the brane (3.32) must 
arrygauge 
harges �Qu and +Qu respe
tively. A

ordingly, the Chan-Paton ve
tors from the(U; V ) se
tor have the following gauge 
harges:ve
tor j0i �j0iq Qu2 �Qu2 (10.26)Now suppose we have some brane AL in the low energy theory and 
onsider the brane(3.33) in the high energy theory. If we integrate out the (U; V; �)-system, we get ba
kexa
tly the original brane AL sin
e the ground state of the (U; V; �)-system has zeroe�e
tive energy and zero e�e
tive 
harge, see Se
tion 6.10. Let us look into the formof Chan-Paton ve
tors in this 
ontext. If ei are Chan-Paton ve
tors of the original lowenergy brane AL, then the Chan-Paton ve
tors of the high energy brane (3.33) are of theform ei 
 j0i; ei 
 �j0i. If ei's have gauge 
harge qi, then the latter have gauge 
hargesqi + Qu2 ; qi � Qu2 . These are the Chan-Paton 
harges that we see before integrating out Uand V . The Kn�orrer map is the pro
edure that takes out ei
j0i. However, what we wantas the Chan-Paton ve
tors in the low energy theory are just ei, but not ei 
 j0i. Thus,to �nd the 
orre
t 
harge of the low energy Chan-Paton ve
tors we need to subtra
t the
harge of j0i from the high energy Chan-Paton ve
tors. This yields the ruleqLi = qHi � Qu2 :Sin
e the theta parameter 
ontributes to the boundary 
harge in the form q+ �2� , one 
anrelo
ate this shift to a shift of the theta parameter�L = �H �Qu�;now without shifting the qi's. In the 
urrent set up where U = P and hen
e Qu = �N ,this rule leads to (10.22) with (10.24).A shift of the theta angle due to integration of massive �elds was �rst found in the
ontext of 
losed string topologi
al A-model by Morrison and Plesser [58℄. There, only theshift modulo 2� matters and indeed their result is 
onsistent with ours: ei�� = (�1)N . Inthe present 
ontext of (physi
al or topologi
al) open string theoy with B-type boundary
onditions, a shift by an integer multiple of 2� also matters. The above result shows thepre
ise shift, in
luding the integral part. 217



Left Semi-In�nite ComplexesThat the semi-in�nite 
omplex (10.25) is exa
t at large enough degrees 
an also beproven purely algebrai
ally. The essential point is a well known fa
t in the theory ofmatrix fa
torizations (Eisenbud [11℄, Proposition 5.1): LetQ =  0 f(x)g(x) 0 !be a matrix fa
torization of some polynomial W (x) = W (x1; :::; xn), of size 2`� 2`. Thisindu
es an in�nite, 2-periodi
 
omplex of modules over the ring B = C[x1; :::; xn℄=W (x)� � � �g�! B�` �f�! B�` �g�! B�` �f�! � � � : (10.27)Then this 
omplex is exa
t. This is proven as follows. Suppose some homomorphism�� : B�k ! B�`, indu
ed by an `� k polynomial matrix �, obeys the equation �f Æ �� = 0.This means that the matrix f Æ� is divisible by W , that is, there is a `� k matrix 
 su
hthat f Æ � = W
. Then we have W� = g Æ f Æ � = Wg Æ 
, whi
h means � = g Æ 
. Inparti
ular �� = �g Æ �
. This shows the exa
tness at B�` �g�! B�` �f�! B�`. The exa
tnessat the other position 
an be shown in the same way.In fa
t, this in�nite 
omplex is the totally a
y
li
 
omplex (2.72) that we met beforein Se
tion 2.4, where we studied the 
hiral ring for matrix fa
torizations. We re
all thatwe denoted it by CQ.If we repla
e bV byMm2Z pmV = � � � � p�2V� p�1V� V� pV� p2V� � � � (10.28)in the de�nition of (bV; bQ; b�; bR) for B = (V; Q; �; R), then we obtain an in�nite 
omplexof ve
tor bundles unbounded both in the left and right. If we regard it as a 
omplexof modules over the ring B = C[x1; : : : ; xN ℄=G(x), and if we ignore the grading, it is2-periodi
 and 
oin
ides with the totally a
y
li
 
omplex CQ asso
iated with the matrixfa
torization Q = Qjp=1 of the polynomial G(x). In parti
ular, it is exa
t and 
an beregarded as a graded version of CQ. We denote it by CB. Our semi-in�nite 
omplex (10.25)is obtained from this exa
t 
omplex by 
hopping o� the semi-in�nite part 
orrespondingto the negative power 
omponents p�mV. This proves that (10.25) is exa
t at large enoughdegrees.The fa
t that the 
omplex (bE; bQ) is a part of the exa
t 
omplex CB also shows thatthere is an alternative des
ription: Take the remaining part (i.e. the negative power part218



�m>0p�mV) and shift it by 1 to the right. This produ
es a semi-in�nite 
omplex whi
his unbounded to the left, but bounded from the right. Of 
ourse, this left semi-in�nite
omplex is quasi-isomorphi
 to the right semi-in�nite 
omplex (bE; bQ). For example, theleft semi-in�nite version of the 
omplex (bE0; bQ0) that represents �+(B0) is� � � O(�7)�5 X! O(�6)�3�4 X2! O(�4)�3 X! O(�3)�3�2� X2% � &X � X2% � &XO(�8)�3�5 X! O(�7)�4 X2! O(�5)�3�3 X! O(�4)�2 X2! O(�2)�3�1If we attat
h O(�1)0 to this 
omplex with the map (x1; x2; x3) from the right-most entry,O(�2)�3�1 , the result is an exa
t 
omplex. (This 
an be seen by showing that the boundaypotential fQ;Qyg is positive, or by noting that it is the 
omplement of the exa
t 
omplex( bE+; bQ+) in the exa
t 
omplex CB+.) Namely, there is a quasi-isomorphism from this
omplex to O(�1)[1℄. Thus, we obtain again the same result for �+(B0).Complete Interse
tion Of Hypersurfa
es In Tori
 VarietyIt is straighforward to generalize the above 
onstru
tion to the 
ase whereM is a 
om-plete interse
tion of hypersurfa
es in a tori
 variety. Let us 
onsider a U(1)k gauge theorywhi
h has (N + l) �elds X1; : : : ; XN , P1; : : : ; Pl with 
harge Qa1; : : : ; QaN , �da1; : : : ;�dal ,and the superpotential W = lX�=1 P�G�(X1; :::; XN) (10.29)where G(X)� are homogeneous polynomials of degree da� with respe
t to the a-th gaugegroup. We assign R-
harges 0 to Xi's and 2 to P�'s. We suppose that there is a phase inwhi
h the gauge group is 
ompletely broken by the values of the Xi's and the non-
ompa
tvariety X is the total spa
e of the rank l ve
tor bundle �l�=1O(�~d�) over a 
ompa
t tori
manifold XB. Then, the low energy theory is the non-linear sigma model on the 
riti
allo
us P� = G� = 0 (� = 1; : : : ; l), whi
h is the 
omplete interse
tion M of hypersurfa
esG�(x) = 0 in the tori
 variety XB. If we have a D-brane (V; Q; �; R) in the linear sigmamodel, then the brane in the low energy sigma model is given bybV = Mm1;:::;ml�0 pm11 � � � pmll V; (10.30)bQ = QjG1=���=Gl=0: (10.31)The gauge and R-symmetry representations b� and bR are determined by the 
harges ofp�'s and by the initial 
ondition: b� = �, bR = R in the subspa
e V � bV, provided the219



B-�eld is given by Ba = �a + lX�=1 da�!�: (10.32)The brane (bV; bQ; b�; bR) de�nes a semi-in�nite 
omplex (bE ; bQ) of ve
tor bundles over Mwhi
h is bounded from the left but unbounded to the right. It is exa
t at large enoughdegrees and hen
e is quasi-isomorphi
 to a �nite 
omplex. This follows from the propertyof the Kn�orrer map, but also 
an be shown algebrai
ally. Indeed, if we relax the 
onditionon the range of the sum in (10.30), for example, if we in
lude the sum over negative m1as well, then we have an exa
t 
omplex of modules over the 
omplete interse
tion ringB = C[x1; : : : ; xN ℄=(G1; : : : ; Gl). To see that, just regard B as the hypersurfa
e ring ofA = C[x1; : : : ; xN ℄=(G2; : : : ; Gl) and apply Eisenbud's proof to the matrix fa
torization ofG1(x) over the ring A. In parti
ular, we have various other versions of (bE; bQ) 
orrespond-ing to various di�erent ranges of the sum (10.30). As an example, 
onsider the sum whereall mi's run over negative integers. From this, with shift by l to the right, we obtain aleft semi-in�nite 
omplex that is quasi-isomorphi
 to (bE; bQ).10.3.2 D(M) �!MFW (X)We now 
onstru
t the inverse map. The key is to 
onsider the opposite identi�
ationin the Kn�orrer map, U = G, V = P . Setting p = 0 is straightforward, but extra
tingpower series of G from a given matrix fa
torization is hardly pra
ti
al. This motivates usto reformulate the Kn�orrer map.Reformulation Of The Kn�orrer MapThe reformulation is best des
ribed using the language of rings and modules that weintrodu
ed in Se
tion 9. Let us �rst des
ribe the original formulation of the Kn�orrer mapin that language.A matrix fa
torization (V; Q) of the superpotential W =WL(x) + uv 
an be regardedas the pair (M;Q) where M is a Z2-graded free module over the polynomial ring R =C[x1; :::; xn; u; v℄ and Q is an odd endomorphism of M that squares to the multipli
ationmap byW . Setting v = 0 
orresponds to repla
ingM by the moduleM=v =M
R(R=(v))over the ring R=(v) whi
h is isomorphi
 toA = C[x1; : : : ; xn; u℄:220



The Kn�orrer map image (
M; bQ) is then obtained by regarding M=v as a module over thering B = C[x1; :::; xn℄ whi
h does not in
lude the variable u. IfM has rank r over R, then
M has in�nite rank, 
M = B�r � uB�r � u2B�r � � � � : As we have seen, this in�nite-sizematrix fa
torization is isomorphi
 to a �nite one, whi
h we denote by (ML; QL).Now let us des
ribe the new formulation. The key step is to view B as the quotientof A by the ideal (u), B = A=(u);and to regard the B-module ML as an A-module by the rule a �m := [a℄m, for a 2 A and[a℄ 2 B. We denote the result by i�(ML; QL). It is a matrix fa
torization of WL(x) overA. By itself, i�ML is not a free A-module but one 
an �nd its free resolution, using the
anoni
al resolution of B = A=(u),0 �! A u��! A �! B �! 0:Namely, we repla
e ea
h B in ML �= B�s by A� A and add the map A u��! A to QL. Inother words, we take the graded tensor produ
t VL 
C (Cj0i �C�j0i) and 
onsider thesum QL + u�. This free resolution is nothing but (M=(v); Qjv=0), if Q is obtained fromQL in the way des
ribed in Se
tion 3.4. In general, Q is of su
h a form up to the trivialmatrix fa
torizations (1;W ), (W; 1), and the trivial pie
es are 
ertainly trivial even aftersetting v = 0. Thus, we �nd(M=(v); Qjv=0) �= free resolution of i�(ML; QL): (10.33)This is the property that the low energy brane (ML; QL) must have. This 
an be usedto �nd the inverse map: given a matrix fa
torization (ML; QL) of WL(x) over the ring B,we push it forward by i� to a matrix fa
torization over the ring A, and then take its freeresolution. The �nal step is to re
over the variable v.Hypersurfa
e In Proje
tive Spa
eLet us apply the above reformulation to Example (A). With the identi�
ation u = G(x)and v = p, the rings that appear are R = C[x1; : : : ; xN ; p℄,A = C[x1; : : : ; xN ℄; andB = C[x1; : : : ; xN ℄=G(x):Of 
ourse, everything is graded with respe
t to the gauge 
harge, and we also work inthe large volume phase r � 0 where the lo
us fx1 = � � � = xN = 0g is deleted. Namely221



instead of graded A-modules (resp. B-modules) we 
onsider 
oherent sheaves over theproje
tive spa
e CPN�1 (resp. the hypersurfa
e fG(x) = 0g). In this 
ontext, the map i�sending B-modules to A-modules be
omes the pushforward of sheaves by the embeddingi : fG(x) = 0g ,! CPN�1. Let (EL; QL) be a bounded 
omplex of 
oherent sheaves overthe hypersurfa
e M = fG = 0g. The �rst step is to push it forward to CPN�1 andtake its free resolution. At this stage, we have a bounded 
omplex of ve
tor bundles overCPN�1 of the formC : 0! � � � �! bj�1Mi=1 O(qi;j�1) �! bjMi=1 O(qi;j) �! bj+1Mi=1 O(qi;j+1) �! � � � ! 0This determines the data (V; Q0; �; R) where Q0 is a matrix polynomial of x1; :::; xN obey-ing Q0(x)2 = 0:Of 
ourse, Q0 is gauge invariant and has R-
harge 1 with respe
t to the representation(�; R) of the gauge and R-symmetry group. The �nal step is to re
over the variable p,that is, to �nd the extension of Q0(x) to a matrix fa
torization of pG(x),Q(p; x) = Q0(x) + pQ1(x) + p2Q2(x) + � � � ;whi
h is gauge invariant and has R-
harge 1. The 
ondition Q(p; x)2 = pG(x) � idV 
anbe de
omposed into a set of equationsfQ0; Q1g = G � idV; (10.34)fQ0; Qng = �12 Xl+k=nl;k�1 QlQk; n � 2: (10.35)The (gauge,R)-
harge ofQm(x) must be (Nm; 1�2m). We shall �nd su
hQm's re
ursively,starting with Q1. Multipli
ation by G(x) de�nes a 
o
hain map C ! C(N). Sin
e C isa resolution of the 
omplex i�(EL; QL) supported at G(x) = 0, this map has to be nullhomotopi
. This shows that there is a mapQ1 : C ! C(N) of degree�1 su
h that fQ0; Q1gequals the G(x)-multipli
ation. Thus, we found Q1(x) of 
harge (N;�1) obeying (10.34).The rest of Ql(x) are found by indu
tion. Suppose that we found Q2; :::; Qm�1 that solves(10.35) for all n below m. Then[Q0; Xl+k=ml;k�1 fQl; Qkg℄ = Xl+k=ml;k�1 �[fQ0; Qlg; Qk℄� [Ql; fQ0; Qkg℄� = 0This means that PfQl; Qkg : C ! C(Nm) is a 
o
hain map. The degree of this map is2� 2m whi
h is negative. Sin
e the Ext group Extj(C; C) is zero for any negative degree222



j, the 
o
hain map PfQl; Qkg has to be null-homotopi
. This shows the existen
e of adegree 1� 2m map Qm : C ! C(Nm) that satis�es (10.35) for n = m.In this way we obtain the data (V; Q; �; R) of a brane in the linear sigma model.Obviously, this is the one that must des
end to the 
omplex (EL; QL) that we startedwith. There is one subtlety though, 
on
erning the value of the theta parameter and theoverall shift of R-
harge. The theta parameter must be related to the B-�eld of the lowenergy sigma model by � = B +N�: (10.36)The 
hoi
e of R-symmetry is a matter of 
onvention. However, if we want to be 
onsistentwith the one in (10.23) that was used in the map MFW (X)! D(M), we need to repla
eR(�) by R(�)! R(�)�: (10.37)To see this, let us 
ome ba
k to the derivation of the Kn�orrer map and its reformulation.The lift of a low energy brane (VL; QL) to the high energy theory is given by V = VL 
(Cj0i �C�j0i) and Q = QL + u� + v�. In the dis
ussion of the map MFW (X)! D(M)we used the identi�
ation u = p; v = G, while we used u = G; v = p for the inverse mapD(M) ! MFW (X). However, to 
ompare the two stories, it is better to use a 
ommonframework. We 
an a
tually use u = p; v = G also in the dis
ussion of the inverse map |we just have to 
hange the notation as � = �0; � = �0; j0i = �0j0i0. The 
harge assignmentfor j0i; �j0i was (q; R) = (�N2 ; 0); (N2 ; 1). The gauge 
harge is 
anoni
al but the R-
hargeis a 
hoi
e. This 
hoi
e is the one 
orresponding to (10.23). Thus, in the inverse map, wemust use ve
tor j0i0 �0j0i0(q; R) (N2 ; 1) (�N2 ; 0)In view of this 
harge assignment, the free resolution of B = A=(v) must bev�0 : A(�N2 )0�!A(N2 )1 ;instead of the standard one A(�N)�1�!A(0)0 whi
h was used above in obtaining (�; R).Thus, we must shift the 
harges as(qi; Ri)! (qi + N2 ; Ri + 1): (10.38)The shift of the R-
harge is nothing but (10.37). The shift of the gauge 
harge 
an betraded for the shift of the B-�eld B ! B +N� whi
h gives (10.36).As an example we 
onsider D-branes on the Fermat type ellipti
 
urve, M = fG(x) =x31 + x32 + x33 = 0g � CP2. We �rst 
onsider the D2-brane with trivial gauge �eld, the223



stru
ture sheaf O of the 
urve, with some value B� 2 R of the B-�eld. Its pushforwardto CP2 is the sheaf OM supported at M � CP2, and its free resolution is given byC : O(�3) G�! O(0). It is easy to �nd its lift to the linear sigma model: W(�3)0 G -� p W(0)1!; � = B� + 3�:If we apply the map MFW (X) ! D(M) to this brane, we obtain the 
omplex on the
urve M ,O(�3)0 0�! O(0)1 id�! O(0)2 0�! O(3)3 id�! O(3)4 0�! � � � ; B = B� + 6�:This is quasi-isomorphi
 to O(�3) with B = B� + 6� and that is indeed equivalent toO(0) with the original value B = B� of the B-�eld, the brane we started with. A moreelaborate example is the D0-brane at the point p = fx1 + x2 = x3 = 0g, the skys
rapersheaf Op on M . A free resolution of its pushforward i�Op to CP2 is given byO(q � 1) � �x3x1+x2��! O(q)2 (x1+x2;x3)�! O(q + 1)for any q 2 Z. This readily lifts to the matrix fa
torizationBp :  W(q)�20 g -� f W(q + 1)1�W(q � 1)�1 !; � � B� + 3�;withg =  x1+x2 x3�px23 p(x21 � x1x2 + x22) ! ; f =  p(x21 � x1x2 + x22) �x3px23 x1+x2 ! : (10.39)Complete Interse
tion Of Hypersurfa
es In A Tori
 VarietyThe above 
onstru
tion extends straightforwardly to the 
ase of a 
omplete interse
tionM of hypersurfa
es in a tori
 variety: Given a 
omplex of sheaves onM , push it forward tothe ambient tori
 variety, and then take its free resolution. This de�nes a data (V; Q0; �; R)su
h that Q20 = 0. The step to �nd its extension to a matrix fa
torizationQ = Xn1;:::;nl�0 pn11 � � � pnll Q~n(x)
224



of Pl�=1 p�G�(x) is a line by line generalization of the 
ase of proje
tive hypersyrfa
e.The shift of the theta parameter is opposite to (10.32):�a = Ba + lX�=1 da�!�:In order to be 
onsistent with the map MFW (X)! D(M) given earlier, we also need toshift the R-
harge by l.At this point, we would like to a
knowledge the work by Avramov and Bu
hweitz [93℄on the relation between matrix fa
torizations and modules on hypersurfa
e rings, whi
hfollows earlier works by Shamash [94℄ and Eisenbud [11℄. Later, in [95℄ their results wereturned into 
omputer algorithms. In the following we 
ompare our formulations of theKn�orrer map to the latter referen
e.In the terminology adapted to the 
urrent 
ontext, (i) they 
onstru
ted a matrixfa
torization (V; Q; �; R) from a given module over the 
omplete interse
tion ring B =C[x1; :::; xN ℄=(G1; :::; Gl), (ii) 
onstru
ted the left semi-in�nite 
omplex of graded freeB-modules 
orresponding to that matrix fa
torization, and (iii) proved that that semi-in�nite 
omplex is quasi-isomorphi
 to the original B-module. The 
onstru
tion of theinverse map D(M) ! MFW (X) presented here is inspired from their work. Espe
iallythe re
onstru
tion of Q(p; x) from Q0(x) is a 
opy of their proof for the part (i). On theother hand, we 
onstru
ted the mapMFW (X)! D(M), 
orresponding to their part (ii),using a 
ompletely di�erent method, and that was done when we were not aware of theirwork. Finally, we hope that it is 
lear that we have given an independent derivation oftheir isomorphism (iii) whi
h is physi
ally transparent | the original B-module and thesemi-in�nite 
omplex are simply two di�erent ways to des
ribe the low energy behaviourof the same brane in the linear sigma model.10.4 CY/LG Corresponden
e | More ExamplesCombining the brane transportation rule des
ribed in Se
tion 10.1 with the redu
tionand lift maps found in Se
tions 10.2 and 10.3, we obtain a very expli
it map betweenD-branes of a LG orbifold point and those in a large volume phase. Given a branein the initial phase, we lift it to the linear sigma model and �nd its grade or bandrestri
ted representative with respe
t to the 
hosen path in the K�ahler moduli spa
e.After transportation through phase boundaries, we redu
e it to the low energy theory inthe �nal phase. 225



For example, let us 
onsider D-brane transport in Example (A) with Fermat-
ubi
polynomial G = x31 + x32 + x33, along a path in the K�ahler moduli spa
e through thewindow �� < � < � whi
h 
orresponds to the grade restri
tion rule f�1; 0; 1g. Take theRe
knagel-S
homerus brane B(0;0;0);2;1 at the orbifold theory. We have seen in Se
tion 10.2that it lifts to the brane B0 given in (10.5) whi
h is already grade restri
ted. In the largevolume phase, we have seen that this redu
es to O(�1)[1℄. Thus the transportation givesB(0;0;0);2;1 2 MFZ3(G) 7�! O(�1)[1℄ 2 D(M):As another example, let us 
onsider the D0-brane on the ellipti
 
urve M at the point pgiven by x1 + x2 = 0; x3 = 0. It is given by the skys
raper sheaf Op of M and lifts to thebrane Bp given in (10.39) with any value of q. The one with q = 0 is grade restri
ted and
an be transported to the LG phase. By redu
tion, we �nd the brane at the LG orbifoldpoint. This pro
ess givesOp 2 D(M) 7�! 0B�O(0)�20 g -� f O(1) 13�O(2)� 13 1CA 2MFZ3(G)where g and f are obtained by setting p = 1 in (10.39).In what follows, we 
onsider more examples of D-brane transport.10.4.1 Fermat Quinti
We �rst 
onsider the Fermat quinti
G(x1; :::; x5) = x51 + x52 + x53 + x54 + x55:We will �nd the large volume image of the RS-branes with L = (0; 0; 0; 0; 0) and of a 
lassof permutation branes at the LG orbifold point, as well as the LG image of the D4-branewrapped on a divisor of the quinti
. Throughout, we 
onsider the paths through thewindow w : �5� < � < �3� with the grade restri
tion rule Cw = f0; 1; 2; 3; 4g.L = 05 RS-BranesWe �rst 
onsider the Re
knagel-S
homerus branes BL;q;r with L = (0; 0; 0; 0; 0):Q05 = 5Xi=1�xi�i + x4i �i�226



represented on the Cli�ord module V5. Re
all from Se
tion 2.4.1 that the labels q and rspe
ify the representations of the orbifold group and the R-symmetry group. In parti
ularthe R-
harge of the ve
tor j0i is Rj0i = �q5 + r:We will only look at those with r = 0, as the others 
an be re
overed by overall shifts ofthe R-degree. The ve
tor j0i is even for this 
hoi
e.We �rst 
onsider the brane B05;0;0 for whi
h Rj0i = 0. The R-
harges of the other basiselements of V5 
an be found by noting that the �i's have R-
harge �35 :ve
tor j0i �ij0i �i�jj0i �i�j�kj0i �i�j�k�lj0i �1 � � ��5j0iRi 0 �35 �65 �95 �125 �3The �rst step is to lift it to a grade restri
ted brane in the linear sigma model. This isdone by solving the equation (10.14), that is,Ri = Ri � 2qi=5where Ri is an even (odd) integer for an even (odd) Chan-Paton ve
tor and qi must betaken from the grade restri
tion range Cw = f0; 1; 2; 3; 4g. For the even ve
tor j0i withR = 0 the equation is solved by R = 0 and q = 0. This 
orresponds to the Wilson linebrane W(0)0. For the odd ve
tors �ij0i with R = �3=5, the solution must have odd Rand is given by R = 1, q = 4, whi
h yields W(4)1. Sin
e we have �ve elements �1j0i, ...,�5j0i, we have the sum of �ve 
opies W(4)�51 . The solutions for all the basis ve
tors of V5are listed in the following table:ve
tor j0i �ij0i �i�jj0i �i�j�kj0i �i�j�k�lj0i �1 � � � �5j0iRi 0 1 0 �1 �2 �3qi 0 4 3 2 1 0W(0)0 W(4)�51 W(3)�100 W(2)�10�1 W(1)�5�2 W(0)�3The variable p 
an be in
luded to Q05 simply by multiplying ea
h entry by the rightpower of p so that the degrees Ri; qi mat
h. For example, the map x4i �i sending W(0)0 toW(4)�51 needs no power of p while the map x4i �i sending W(4)�51 to W(3)�100 needs to bemultiplied by a single power of p. In this way, we �nd the matrix fa
torization Q(p; x) ofpG(x). This 
ompletes the 
onstru
tion of grade restri
ted lift (V5; Q; �; R) of the braneB05;0;0.The next step is to redu
e (V5; Q; �; R) down to the low energy theory in the largevolume phase, applying the map MFW (X)! D(M) in Se
tion 10.3.1: We �rst write the227



Wilson line branes in the above table in the order of the R-
harges Ri and then write its
opies su

essively, shifting the position by 2 and the gauge degree q by 5 at ea
h step.The arrows are determined by Q(p; x) but they 
an also be read dire
tly from the originalmatrix fa
troization Q05 with the aid of the gauge degree information. This yields thefollowing semi-in�nite 
omplex over the quinti
 hypersurfa
e M
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 part is exa
t and we 
an take out a �nite length 
omplex of 
oherent sheaves.One way is to repla
e the in�nite part of non-negative R-degrees by the kernel sheafof the map E0 ! E1. However, in the present 
ase there is a simpler 
omplex that isquasi-isomorphi
 to C.To see this, let us digress for a moment to study the following brane B1 in the linearsigma model: Q1 = 5Xi=1�xi�i + px4i �i�We assign, say, 
harge (q; R) = (5; 5) to the Cli�ord va
uum j0i, so that the other ve
tors�ij0i, �i�jj0i, ..., �1 � � ��5j0i have 
harges (4; 4), (3; 3), ..., (0; 0) respe
tively. Note thatthe boundary potential fQ1; Qy1g =P5i=1(jxij2+ jpx4i j2) is positive everywhere in the largevolume phase where fx1 = � � � = x5 = 0g is deleted. Thus, we know that this brane isempty at low energies. It is the analog of the brane B+ in the model for the Fermat 
ubi

urve. Applying the redu
tion map MFW (X)! D(M), we obtain the following 
omplex
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omputing the potential f bQ1; bQy1g or algebrai
ally that it is exa
tand hen
e trivial at low energies, as expe
ted. We denote this 
omplex by K.Let us 
ome ba
k to the 
omplex C. If we omit O(0) inside the box of dashed lines,the remaning part is nothing but the 
omplex K shifted to the left by 3. Sin
e the228



latter is empty, we are simply left with O(0) in that box. In other words, we have thequasi-isomorphism relationC = Cone(O(0)[�1℄ �! K[3℄) �= O(0)[0℄:Thus, the large volume image of the brane B05;0;0 is the stru
ture sheaf O of the quinti
hypersurfa
e, that is, the D6-brane with trivial gauge bundle on it.The large volume images of the other L = 05 RS-branes B05;q;0 
an be found in asimilar way. The semi-in�nite 
omplexes that we obtain for q = 1; 2; 3; 4 are respe
tively
PSfrag repla
ements

O(1) O(1)O(2)�5 O(6)O(6)O(3)�10O(0)�5 O(7)�5O(4)�10 O(11)O(8)�10O(5)�5 O(12)�5O(9)�10� �������

PSfrag repla
ementsO(1)O(2)�5O(6)O(3)�10O(0)�5O(7)�5O(4)�10O(11)O(8)�10O(5)�5O(12)�5O(9)�10�

O(2) O(2)O(3)�5O(0)�10 O(7)O(7)O(4)�10O(1)�5 O(8)�5O(5)�10 O(12)O(9)�10O(6)�5 O(13)�5O(10)�10� � �������

PSfrag repla
ementsO(1)O(2)�5O(6)O(3)�10O(0)�5O(7)�5O(4)�10O(11)O(8)�10O(5)�5O(12)�5O(9)�10�O(2)O(3)�5O(0)�10O(7)O(4)�10O(1)�5O(8)�5O(5)�10O(12)O(9)�10O(6)�5O(13)�5O(10)�10�

O(3)O(3)O(0)�10 O(4)�5O(1)�10 O(8)O(8)O(5)�10O(2)�5 O(9)�5O(6)�10 O(13)O(10)�10O(7)�5 O(14)�5O(11)�10� � � �������

PSfrag repla
ementsO(1)O(2)�5O(6)O(3)�10O(0)�5O(7)�5O(4)�10O(11)O(8)�10O(5)�5O(12)�5O(9)�10�O(2)O(3)�5O(0)�10O(7)O(4)�10O(1)�5O(8)�5O(5)�10O(12)O(9)�10O(6)�5O(13)�5O(10)�10�O(3)O(0)�10O(4)�5O(1)�10O(8)O(5)�10O(2)�5O(9)�5O(6)�10O(13)O(10)�10O(7)�5O(14)�5O(11)�10�

O(0)�5 O(4) O(4)O(1)�10 O(5)�5O(2)�10 O(9)O(9)O(6)�10O(3)�5 O(10)�5O(7)�10 O(14)O(11)�10O(8)�5 O(15)�5O(12)�10� � � �������We see that they are the same as the exa
t 
omplexes K(q)[3℄ for q = 1; 2; 3; 4, if we ignorethe �nite parts in the dashed box. Thus, only the latterO(0)�5 X�! O(1);O(0)�10 X�! O(1)�5 X�! O(2);O(0)�10 X�! O(1)�10 X�! O(2)�5 X�! O(3);O(0)�5 X�! O(1)�10 X�! O(2)�10 X�! O(3)�5 X�! O(4);229



remain. We further noti
e that they are quasi-isomorphi
 to the sheaves of se
tions of theve
tor bundles ^q(T �P4(1)) of the ambient spa
e CP4, at R-degree �q, whi
h are restri
tedto the hypersurfa
eM . Thus, the large volume images of the L = 05 Re
knagel-S
homerusbranes are: B05;q;0 7�! 
qP4(q)[q℄���M ; for q = 0; 1; 2; 3; 4. (10.40)The value of the B-�eld is related to the theta parameter byB = � + 5�:In parti
ular, it is in the domain 0 < B < 2� for the 
hosen window.We noti
e that the images (10.40) are very similar to the results (8.27) of the transportof the fra
tional branes Op(�q) in the non-
ompa
t version of the theory. This observationleads us to an alternative way to derive the same result. We �rst noti
e that the graderestri
ted lift of the RS-brane B05 ;q;0 is the same as the grade restri
ted lift B0�q of thefra
tional brane Op(�q) shown in (8.25), ex
ept that we need to add the oppositely orientedarrows, either X4 or pX4. We next re
all that B0�q is presented as the bound state of theX-Koszul 
omplex B�q and another 
omplex B00�q . It is straightforward to �nd the matrixfa
torization version of this bound state. It is a bound state of the matrix fa
torizationB1, obtained from the X-Koszul 
omplex B�q by adding the opposite arrows pX4, andthe matrix fa
torization B0005;q;0 given byAq(5)[�1℄ p -� G Aq:Here Aq is the 
omplex de�ned in (8.26). Sin
e the brane B1 is trivial in the large volumeregime, we 
an simply take the brane B0005;q;0 as a lift of the large volume image of the RS-brane. At this stage, we apply the se
ond formulation of the Kn�orrer map: Set p = 0 andask if that is presented as the pushforward of some 
omplex over the quinti
 hypersurfa
eG = 0. And yes it is! It is the pushforward of the 
omplex asso
iated with Aq(5)[�1℄:O(5)�(5q)�q+1 X�! � � � X�! O(q + 4)�50 X�! O(q + 5)1Applying the R-
harge shift (10.38) (ba
kwards of 
ourse) and trading the di�eren
e inthe B-�eld shifts, (10.24) versus (10.36), for a 
harge shift, we haveO(0)�(5q)�q X�! � � � X�! O(q � 1)�5�1 X�! O(q)0 :This is pre
isely the result obtained above.The pattern (10.40) was 
onje
ted in [1℄ based on the analysis of R-R 
harge and usingmirror symmetry. We have given a proof of the 
onje
ture.230



Other RS-BranesWe do not expli
itly write down the large volume images of RS-branes for other L's,sin
e it is very straightforward. However, we do indi
ate a way to extra
t a �nite pie
efrom the semi-in�nite 
omplex. Analogously to B+ for the ellipti
 
urve and to B1 forthe L = 05 RS-branes, we 
onsider the brane BtrivL given byQtrivL = 5Xi=1�xLi+1i �i + px4�Lii �i�with any 
onsistent 
hoi
e of gauge and R-
harge of Chan-Paton ve
tors. The potentialfQtrivL ; QtrivyL g = 5Xi=1�jxij2(Li+1) + jpj2jxij2(4�Li)�is everywhere positive in the large volume phase. Therefore, the semi-in�nite 
omplex KLobtained from this brane must be exa
t. The large volume image of a general RS-braneBL;q;r is �rst given by a semi-in�nite 
omplex, and this is presented as a bound state of a�nite length 
omplex FL;q;r and the exa
t 
omplex KL possibly with some shifts in gaugeand R-degrees. Thus, one 
an extra
t the �nite pie
e FL;q;r as the large volume image ofthe RS-brane. Sin
e it is a 
omplex of sums of line bundles O(q), we have proved that thelarge volume images of the RS-branes are always restri
tion of �nite 
omplexes of ve
torbundles of the ambient spa
e CP4.Permutation BranesNext we 
onsider some examples of permutation branes of the Gepner model [96℄ whi
hwere re
ently studied in terms of matrix fa
torizations in [97, 98℄. Take the followingmatrix fa
torization of W = G(x);Q = 3Xi=1� ai�i + bi��i �;whi
h is represented on the Cli�ord module V3, wherea1 = x1 + x2; b1 = x41 � x1x32 + x21x22 � x1x32 + x42;a2 = x3 + x4; b2 = x43 � x3x34 + x23x24 � x3x34 + x44;a3 = x5; b3 = x45:The brane at the Landau-Ginzburg orbifold point is spe
i�ed by the orbifold a
tion andthe R-
harge of the Cli�ord va
uum j0i. Let Pq;r be the brane su
h that �(!)j0i = !qj0i231



and Rj0i = �2q=5 + r. Let us start with the brane P0;0. The R-
harges Ri of all theChan-Paton ve
tors in the Landau-Ginzburg model as well as their grade restri
ted liftsin the linear sigma model are listed in the following table:ve
tor j0i �ij0i �i�jj0i �1�2�3j0iRi 0 �35 �65 �95Ri 0 1 0 �1qi 0 4 3 2W(0)0 W(4)�31 W(3)�30 W(2)�1More expli
itly, the grade restri
ted lift is given by0BBB� W(0)0 b -� pa W(4)�31� pb ���������*a �W(3)�30 pb-� a W(2)�1
1CCCA ;where a and b 
orrespond toPi ai�i andPi bi�i. Let us apply the redu
tion map to thisbrane in the large volume phase. This time, we take the left semi-in�nite version:� � � b! O(�6)�3 a! O(�5) b! O(�1)�3 :%a � &b � %ab! O(�3) a! O(�2)�3 (10.41)This is the large volume image of the permutation brane P0;0. The two-periodi
 part isexa
t and thus we 
an 
ut o� the degree � �2 parts and repla
e the degree �1 
omponentby the 
okernel of the map from the degree �2 
omponent. This is one way to �nd a �nite
omplex of 
oherent sheaves. Alternatively, we may try to pro
eed as in the RS-branes:Take the matrix fa
torization Q = Pi(ai�i + pbi�i) and 
ompare its geometri
 image Kwith (10.41). This time, however, the potential for Q is fQ;Qyg =Pi jaij2 for p = 0 andfails to be positive everywhere. As a 
onsequen
e the 
omplex K fails to be exa
t. Butthe potential is positive ex
ept at a1 = a2 = a3 = 0, whi
h is a rational 
urve D on thequinti
 M . A

ordingly, the 
omplex K 
an be made exa
t by adjoining the sheaf ODsupported at D. In this way we obtain the following exa
t 
omplex� � � b! O(�6)�3 a! O(�5) b! O(�1)�3 a! O q! OD%a � &b � %ab! O(�3) a! O(�2)�3Here q is the restri
tion map to D. We see that the 
omplex (10.41) sits inside it. Inparti
ular, there is a quasi-isomorphism of (10.41) to the 
omplex O q! OD, mapping the232



right-most O(�1)�3 to O by a. Thus, we 
an take O q! OD as the large volume image ofP0;0.Repeating this pro
edure, we �nd the following simple images of the permutationbranes Pq;0 for q = 0; 1; 2; 3; 4:P0;0 7�! �O q�! OD�P1;0 7�! �O�3 a�! O(1) q�! OD(1)�P2;0 7�! �O�3 a�! O(1)�3 a�! O(2) q�! OD(2)�P3;0 7�! OD(�2)[1℄P4;0 7�! OD(�1)[1℄Note that the images of P3;0 and P4;0 are the (anti-)D2-branes wrapped on the 
urve D.The Chern 
hara
ters of these 
omplexes FPq;0 are
h(FP0;0) = 1� 15H2 � 15H3;
h(FP1;0) = �2 +H + 310H2 � 730H3;
h(FP2;0) = 1�H + 310H2 + 730H3;
h(FP3;0) = �15H2 + 15H3;
h(FP4;0) = �15H2:where we used that 
h(OD) = 15H2 + 15H3. This reprodu
es the result of [98℄ on theK-theory 
harges of the large volume images of the permutation branes (up to an overallsign whi
h 
an be tra
ed to the shift Pq;0 ! Pq;1).D4-BraneAs a �nal example for a D-brane on the quinti
 hypersurfa
e (not ne
essarily of Fermattype), let us 
onsider a D4-brane OH(0) on a hyperplane H, whi
h is determined by alinear form h(x) = � �X =P5i=1 �ixi with parameters � 2 CP4. We take the B-�eld inthe interval B 2 (0; 2�).We would like to �nd its image at the LG orbifold point. In order to apply the mapD(M) �! MFW (X), we noti
e that, as an obje
t on the ambient spa
e CP4, this D-brane is supported on the 
omplete intersetion fh(x) = 0g \ fG(x) = 0g and thus 
anbe realized as Koszul 
omplex of these two polynomials. For the lift to the linear sigmamodel, we have to �ll in the �eld p to obtain a matrix fa
torization. Taking into a

ount233



the shifts (10.36) and (10.37) of the B-�eld and the R-
harge, respe
tively, the lift issimply W(�1)�1 � h�G�-�(0;�p) W(0)0�W(4)0 (G;h)-� �p0� W(5)1:Here, we shifted the 
harges so that the theta parameter lies in the window w : �5� <� < �3�, with the grade restri
tion range Cw = f0; 1; 2; 3; 4g. We see that the Wilson linebranes W(�1)�1 and W(5)1 must be eliminated when we want to transport the D4-branethrough w. This 
an be done by binding the infra-red empty branes Kmf+ (�1) and Kmf+ ,de�ned in (10.10), to the matrix fa
torization. Let us 
onsider the former pro
ess �rst:W(0)0W(�1)�1 -� � -� W(5)1W(4)0����*id ����*'1 ����*'2W(�1)�2 X -� pG0 W(0)�5�1 X -� pG0 W(1)�100 X -� pG0 W(2)�101 X -� pG0 W(3)�52 � � � :Here, X and G0 are the short-hand notation forPi xi�i and 15Pi �i�iG respe
tively, where�i and �i are the Cli�ord generators that are used to 
onstru
t Kmf+ . The binding map isgiven by '1 = ���G0 �; '2 = �G0;in whi
h � =Pi �i�i. Following the pro
edure from (3.7) to (3.8), we eliminate the trivialbrane-antibrane pair W(�1)�2 id�!W(�1)�1:W(0)0� -� W(5)1W(4)0(0; pX) ���������*'1 ����*'2W(0)�5�1 X -� pG0 W(1)�100 X -� pG0 W(2)�101 X -� pG0 W(3)�52 X -� pG0 W(4)3:Let us next adjoin the matrix fa
torizationKmf+ in order to eliminiate theW(5)1. Startingwith the identity toW(5)2 in Kmf+ , we �rst �nd the arrows in the ordinary dire
tion, fromleft to right, so that we obtain a 
omplex if we ignore the arrows linear in p that goes inthe opposite way. Unlike in the �rst binding shown above, this does not yet make a matrixfa
torization of pG(x) | Q2 has entries other than pG(x) � id. This problem itself 
an be�xed by introdu
ing arrows linear in p, but the new arrows pro
ude a problem at di�erententries. This pro
ess terminates by �nding arrows whi
h are 
ubi
 in p. The �nal form ofthe grade restri
ted matrix fa
torization, obtained after elimination of W(5)1 id�!W(5)2,is 234



W(0)�3 -� W(1)�5�2 -� W(2)�10�1 -� W(3)�100 -� W(4)�51�����*������W(0)0������W(4)0
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W(0)�5�1 -� W(1)�100 -� W(2)�101 -� W(3)�52 -� W(4)3To avoid 
luttering the diagram, we do not in
lude the detail of the arrows. It is left asan exer
ise to the reader.We 
an now perform the transport to the LG orbifold point, where we set p = 1 andshift the R-symmetry as Ri = Ri � 2qi=5. The �nal result is the matrix fa
torization ofG(x) on R-graded Z5-equivariant ve
tor bundles on C5, E0 g -� f E1! ;E0 = O(�0)0 �O(�4)� 85 �O(�1)�10� 52 �O(�3)�545 �O(�1)�5� 125 �O(�3)�10� 65 ;E1 = O(�0)�5�1 �O(�2)�1015 �O(�4) 75 �O(�0)�3 �O(�2)�10� 95 �O(�4)�5� 35 ;where the matri
es are

g = 0BBBBBBBB�
0 X G0 0 0 00 0 X G0 0 00 0 0 X 0 00 0 0 � 14!(G00)4� G0 00 0 �12�(G00)2 13(G00)3� X G0�G0 �� G00� 0 0 X

1CCCCCCCCA ;
f = 0BBBBBBBB�

�� 0 0 0 0 �XG0 0 0 0 0 0X G0 0 0 0 00 X G0 0 0 00 � 13!�(G00)3 14!(G00)4� X G0 0��G00 12(G00)2� 0 0 X G0
1CCCCCCCCA :

Here G00 = 15�4Pij �i�j�i�jG in whi
h �i and �i are the Cli�ord generators to realize these
ond Kmf+ as Q = Pi ��ixi + 15�ip�iG�. The X, G0, � in parts of the entries of the235



matri
es are X =Pi �ixi, G0 = 15Pi �i�iG and � =Pi �i�i, and the remaining parts arethose using the �i's and the �i's. Whi
h is whi
h should be obvious.This is a 
ompletely new result. Unlike the previous examples, there was no attemptin the literature to make an edu
ated guess for the LG image of the D4-brane OH(0) fromR-R 
harge and mirror symmetry 
onsiderations.10.4.2 Two-Parameter ModelLet us 
onsider the two parameter model | Example (C) | with superpotentialW = PG(X) where G(x1; :::; x6) = x81x46 + x82x46 + x43 + x44 + x45:This model has four phases as depi
ted in Fig. 3. Phase I is the large volume regime wherethe low energy theory is the non-linear sigma model on the hypersurfa
e M = fG = 0gin a tori
 variety. At the point e�t1 = e�t2 = 0 in Phase III, the theory redu
es to theLG model of �ve variables X1; ::; X5 with Fermat type superpotentialW = X81 +X82 +X43 +X44 +X45 ;modulo the Z8 orbifold group Xa 7! !Xa, Xi 7! !2Xi (!8 = 1) for a = 1; 2; i = 3; 4; 5.The R-
harges of the variables are R[xa℄ = 14 , R[xi℄ = 12 . We 
onsider paths in the K�ahlermoduli spa
e between the LG orbifold point and the large volume phase via Phase II.For a suitable 
hoi
e of windows at the two phase boundaries (i.e. window w1 at theIII-II boundary and window w0 at the II-I boundary; see Se
tion 8.4.2), we have the graderestri
tion rule: Cw = f(0; 0); (0; 1); (1; 0); (1; 1); (2; 0); (2; 1); (3; 0); (3; 1)g: (10.42)L = 05 RS-BranesWe 
onsider the L = (0; 0; 0; 0; 0) RS-branes B05;q;r at the LG orbifold point given bythe matrix fa
torizationQ05 = Xa=1;2 �xa�a + x7a�a�+ Xi=3;4;5 �xi�i + x3i �i� : (10.43)The R-
harges of the Cli�ord generators are R[�a℄ = �34 , R[�i℄ = �12 . Using these, we�nd the R-
harges of the Chan-Paton ve
tors in terms of the one Rj0i for the va
uum236



ve
tor j0i. For example, R[�aj0i℄ = Rj0i � 34 , R[�ij0i℄ = Rj0i � 12 . We fo
us on the branesB05;q;0 where j0i is even.Now let us 
onsider the lift to the linear sigma model. The �rst step is to solve theequation Ri = Ri � 2(2q1i + q2i )8 (10.44)for ea
h Chan-Paton ve
tor. There is a unique solution if we require (q1i ; q2i ) to be in thegrade restri
tion range (10.42). On
e (Ri; q1i ; q2i ) are determined, we multiply ea
h entryof the matrix Q05 by an appropriate power of p and x6 so that the gauge invarian
e holds.This leads to the matrix fa
torization Q(p; x1; ::; x6) of W = pG(x) for the linear sigmamodel brane.Let us �rst 
onsider the brane B05;0;0 with Rj0i = 0. The solution to the equation(10.44) is listed in the table below.ve
tor j0i �aj0i �ij0i �1�2j0i �a�ij0i �i�jj0iR 0 �34 �12 �32 �54 �1R 0 1 1 0 0 0(q1; q2) (0,0) (3,1) (3,0) (3,0) (2,1) (2,0)image W(0; 0) W(3; 1)�2 W(3; 0)�3 W(3; 0) W(2; 1)�6 W(2; 0)�3�1�2�ij0i �a�i�jj0i �3�4�5j0i �1�2�i�jj0i �a�3�4�5j0i �1 � � � �5j0i�2 �74 �32 �52 �94 �3�1 �1 �1 �2 �2 �3(2,0) (1,1) (1,0) (1,0) (0,1) (0,0)W(2; 0)�3 W(1; 1)�6 W(1; 1) W(1; 0)�3 W(0; 1)�2 W(0; 0)Applying the redu
tion map in the large volume regime, we �nd the following semi-in�nite
omplex of ve
tor bundles on the hypersurfa
e M :
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Ea
h arrow 
orresponds toX = Xa=1;2 xa�a; X7 = Xa=1;2 x7a�a; Y = Xi=3;4;5 xi�i; Y 3 = Xi=3;4;5x3i �ipossibly with multipli
ation by a power of x6. The power of x6 
an be found by mat
hingthe gauge 
harges of the sour
e and the target. For example, the arrows for the �rst fewparts of the 
omplex is given as follows:
PSfrag repla
ements

O O(0; 1)�2O(1; 0)�3 O(4; 0)O(1; 0)O(1; 1)�6O(2; 0)�3
X

XYYY X7x46Xx6 Y 3The part of the 
omplex other than O in the dashed box is exa
t. Thus, the whole
omplex is quasi-isomorphi
 to O at R-degree 0.One may repeat this pro
edure to �nd the large volume images of the other L = 05 RS-branes. However, as we have done in the quinti
 
ase, we may pro
eed more e
onomi
ally,using what we have done for M
Kay 
orresponden
e. The grade restri
ted lift of the RS-brane B05;q;0, obtained by solving (10.44), is the same as the grade restri
ted lift B0�q ofthe fra
tional brane Op(�q), when we supplement it by extra arrows going in the oppositedire
tion. For example, 
ompare the above table with the 
omplex B0�0 written in page177. As we have seen in Se
tion 8.4.2, the 
omplex B0�q is presented as the bound state ofa 
omplex that is trivial in the large volume regime and another 
omplex of the formAq(4; 0)[1℄ p�! Aq:Here Aq is the Wilson line 
ounterpart of the 
omplexAq of ve
tor bundles shown in (8.29).There is a 
omplete parallel in the matrix fa
torization version: the grade restri
ted liftof the RS-brane 
an be presented as a bound state of a matrix fa
torization that is trivialat large volume and another matrix fa
torization given byAq(4; 0)[�1℄ p -� G Aq:Applying the se
ond Kn�orrer map to this 
omplex, we �nd the large volume image. Theresult is simply the restri
tion of the large volume image of the fra
tional brane to the238



hypersurfa
e M = fG = 0g. To summarize, the transport of the L = 05 RS-branes fromthe LG orbifold to the large volume regime results in the mapsB05;q;0 7�! Aq���M ; for q = 0; 1; :::; 7.This 
an also be obtained from the semi-in�nite 
omplex by eliminating the exa
t pie
es.The Chern 
hara
ter of these branes are obtained from those of AqjE listed in (8.29) byrestri
tion to M . It mat
hes with the one in [79℄, up to a translation of labelling.Short Orbit BranesWe next 
onsider the short orbit branes in the LG orbifold with Li + 1 = di2 for all i,that is, L = (3; 3; 1; 1; 1) =: k2 . Re
all from Se
tion 2.4.1 that they are denoted by bBk2 ;q;r.The asso
iated matrix fa
torization isQ = x41 �1 + x42 �2 + x23 �3 + x24 �4 + x25 �5represented on a 
omplex module V3 over the real Cli�ord algebraf�i; �jg = 2Æi;j for 0 � i; j � 5.The �i's are invariant under the R-symmetry and transform as �i ! ��i under the orbifoldgroup generator. The module V3 is generated by a ve
tor j0i whi
h is annihilated by�1 + i�2, �3 + i�4, �5 + i�0. It has dimension 23 = 8. The Z2-grading is su
h that evenmultiples of the �i's on j0i are even.Let us �rst 
onsider bBk2 ;0;0 where all the ve
tors of V3 have R = 0. The grade restri
tedlift to the linear sigma model is found by solving Ri = Ri � 2(2q1i + q2i )=8:ve
tor even oddRi 0 0Ri 0 1qi (0,0) (2,0)W(0; 0)�4 W(2; 0)�4The expli
it fa
torization is W(0; 0)�40 g -� pg W(2; 0)�41 !
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with g = x41x26 �1 + x42x26 �2 + x23 �3 + x24 �4 + x25 �5:The large volume image is0! O(0; 0)�4 g�! O(2; 0)�4 g�! O(4; 0)�4 g�! � � � :Or, we may simply take the kernel of the �rst map. Repeating the same pro
edure, we�nd the following transportarion rule for the L = k2 short orbit branesbBk2 ;0;0 7�! Ker�g : O(0; 0)�4 �! O(2; 0)�4�;bBk2 ;1;0 7�! Ker�g : O(0; 1)�4 �! O(2; 1)�4�;bBk2 ;2;0 7�! Ker�g : O(1; 0)�4 �! O(3; 0)�4�;bBk2 ;3;0 7�! Ker�g : O(1; 1)�4 �! O(3; 1)�4�:The images of the remaining branes 
an be found using bBk2 ;q+4;r �= bBk2 ;q;r�1.10.5 MonodromyLet us now study monodromies in the 
ompa
t models, that is, D-brane transportalong non-trivial loops in the moduli spa
e MK. For this purpose it is best to stay atthe intermediate energy s
ale �� mW and simply work with the des
ription of D-branesthrough matrix fa
torizations, i.e., study the hat diagram (10.8). Then, the essential ideas
arry over from the non-
ompa
t models. When ne
essary, we 
an always translate theresult in terms of the low energy des
ription.Example (A)Let us �rst 
onsider Example (A) with superpotential W = PG(X1; :::; XN) for adegree N polynomial G(x1; :::; xN). The K�ahler moduli spa
e is the same as for thetheory without superpotential. It is 
omplex one dimsnional and has three spe
ial points:the large volume limit r ! +1, the LG orbifold point r ! �1 and a singular pointet = (�N)N .The monodromies around the large volume limit and LG orbifold point 
ome fromshifting the theta parameter, � ! �+2�. This is equivalent to keeping the theta parameter�xed and shifting the representation of the gauge group:M�!�+2���r(V; Q; �(g); R)� = �r(V; Q; g�(g); R); (10.45)240
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Figure 29: A loop around the singular point in MKi.e., the matrix fa
torization is tensored by W(1). In the large volume regime we 
anexpress the monodromy in terms of D-branes in D(M), so that (10.45) simply be
omestensoring by O(1). In the Landau-Ginzburg phase, as en
ountered in Se
tion 10.2, theva
uum expe
tation value, p = 1, enfor
es a shift of the R-symmetry a
tion, i.e., Ri =Ri � 2qi=N . Therefore, for a loop around the LG orbifold point, the monodromy a
tion(10.45) on ZN -graded matrix fa
torizations be
omesMGP (V; �Q; ��(!); �R(�)) = (V; �Q; !��(!); ��2=N �R(�)):This yields the relation (MGP )N �= [2℄;where [2℄ denotes the shift of R-
harge by �2. From the linear sigma model point of viewthis is a 
onsequen
e of the D-isomorphism ��(V; Q; gN�(g); R) �= ��(V; Q; �(g); ��2R),whi
h is a 
onsequen
e of the fa
t that the 
one of the mapVod(N) f -� g Vev(N)?p � idod ?p � idevVod[2℄ f -� g Vev[2℄is an empty D-brane.Next, we 
onsider the monodromy around the singular point. To be spe
i�
, we takethe example with N = 3 and the Fermat polynomial G = x31 + x32 + x33. Consider the241



loop L as depi
ted in Fig 29 whi
h is based at large volume and goes around the singularpoint. As we follow L we have to grade restri
t �rst a

ording to the window w0 and thenwith respe
t to the window w�1. The grade restri
tion rules for these windows are:Cw0 = f�1; 0; 1g and Cw�1 = f0; 1; 2g:Let us illustrate the monodromy around the singular point by looking at its a
tion onthe D0-brane, Op 2 D(M), at the point p = fx1 + x2 = x3 = 0g of the ellipti
 
urve. InSe
tion 10.3.2 we found that it is lifted to the matrix fa
torizationBp :  W(0)0�W(0)0 g -� f W(1)1�W(�1)�1 !;where f and g are given in (10.39). Following the loop L we note that Bp indeed �ts intothe grade restri
ted setMFW (T w0), and thus 
an be transported to the Landau-Ginzburgphase. When going ba
k to the large volume phase through the window w�1 we note thatthe Wilson line 
omponentW(�1) is in 
on
i
t with Cw�1. So, we have to eliminate it �rstby binding Bp with the brane B� given in (10.2) that is trivial in the Landau-Ginzburgphase. The resulting matrix fa
torization isB0p :  W(0)0�W(0)0 g0 -� f 0 W(1)1�W(2)1 !;with g0 =  x1+x2 x3�x23 x21 � x1x2 + x22 ! ; f 0 = p x21 � x1x2 + x22 �x3x23 x1+x2 ! :Ba
k at the large volume regime, as a geometri
 D-brane inD(M) this matrix fa
torizationbe
omes O(1)�2 (x1+x2;x3)����! O(2) �! Opwith the B-�eld in the range B 2 (0; 2�). The monodromy along the loop L is therefore:ML(Op) �= �O(1)�2 (x1+x2;x3)����! O(2) �! Op� :In the spirit of [71℄ let us understand the monodromy a
tion in terms of bindingmassless D-branes to the original brane. For that let us start with a D-brane inMFW (M)represented via its lift in the grade restri
ted set MFW (T w0). When we follow the loopwe have to apply grade restri
tion with respe
t to the window w�1, whi
h means that242



we have to eliminate all 
omponents W(�1) by binding of the matrix fa
torization B�given in (10.2). When we are ba
k to the large volume phase we try to �nd again arepresentative in MFW (T w0). So, we have to eliminate the 
omponent W(2) in B� interms of binding B+ given in (10.3). In total, to every Wilson line 
omponent W(�1) atR-degree j in the original D-brane B we have to bind the matrix fa
torization,B0 :  W(�1)�2�W(1)�30 g0 -� f0 W(0)�3�1�W(�1)�1 !;with appropriate shifts in R-degree. The matri
es f0 and g0 are de�ned in (10.5). Chiralring elements in Hj(�+(B); �+(B0)[�1℄) are in one-to-one 
orresponden
e with the num-ber of Wilson line 
omponent W(�1) at R-degree �j. This lets us write the monodromya
tion around the singular point asML(�+(B)) = Cone �+(B) �!Mj2Z Hj(�+(B); �+(B0))
 �+(B0)[j℄! [�1℄: (10.46)If we want to express this monodromy a
tion in terms of obje
ts in D(M), we need tomap B0 to its image as geometri
 D-brane. We know that the image is the line bundle Owith the B-�eld in the interval (0; 2�). On a general D-brane B 2 D(M) the monodromya
tion is therefore ML(B) = Cone B �!Mj2Z Hj(B;O)
O[j℄! [�1℄:In the 
ontext of derived 
ategories this monodromy a
tion was �rst suggested by Kont-sevi
h and further studied in [6, 72{75℄. Indeed, from 
onsiderations in the mirror dualtheory the D-brane O was found to be
ome massless at the singular point, see for instan
e[76℄.Similar arguments show that the monodromy around the singular point following theloop L1 in Fig. 30, whi
h has its base point at small volume, is given by:ML1(��(B)) = Cone Mj2ZHj(��(B0); ��(B))
 ��(B0)[�j℄ �! ��(B)! : (10.47)This monodromy a
tion on matrix fa
torizations in Landau-Ginzburg orbifold models wasre
ently suggested in [99℄. In fa
t, ��(B0) is one of the L = 03 RS-branes of the Gepnermodel asso
iated with the LG orbifold. 243
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Figure 30: Another loop around the singular lo
us inMKFor general N , the brane that plays the rôle of B0 is W(q+N)�1 �p�G-� W(q)�2id���RG0���	W(q)�N XpG0-� W(q+1)�N�N+1 XpG0-� W(q+2)�(N2 )�N+2 XpG0-� � � � XpG0-� W(q+N�1)�N�1 XpG0-� W(q+N)0 :It satis�es the grade restri
tion for Cw = fq; q + 1; : : : ; q + N � 1g after eliminatingthe trivial pair and, therefore, B0 indu
es the monodromy around the singular pointr = N logN , �=2� = �q �N=2. In the large volume phase it be
omes the D-brane O(q)with B = �+N�, and at the LG orbifold point it be
omes one of the Re
knagel-S
homerusL = 0N RS-branes if G is the Fermat polynomial.The General CaseIt is straightforward now to �nd \the vanishing 
y
le", the D-brane that indu
es themonodromy around the singular point, in a general theory with one-dimensional modulispa
e MK. It is obtained by binding two D-branes that are trivial at r � 0 and r � 0.Su
h trivial branes had been written down in (10.11) and (10.10) respe
tively. The map244



whi
h binds them together is ' : Kmf� (S)! Kmf+that sends the leftmost W(S) to the rightmost ^kW+ �= W(S) by the identity and sendsW�(S) to ^k�1W+ by the map 
 asso
iated with 
ij(x; y) satisfying the identitiesai = lXj=1 
ij(x; y)yj; bj = kXi=1 xi
ij(x; y):Su
h 
ij exists sin
e ai have negative and bj have positive 
harges. (In parti
ular, we haveW =Pi;j xi
ij(x; y)yj.) Here we have de�ned the R-
harge of the trivial branes in su
ha way that W(S) has R-
harge zero in both Kmf� and Kmf+ . It is easy to see that ' is thena degree zero map. The vanishing 
y
le is thusVmf = Cone�' : Kmf� (S) �! Kmf+ � (10.48)Monodromies in theories with higher dimensional moduli spa
e MK are des
ribed inthe same way as in one-parameter models. Loops around spe
ial points deep inside aK�ahler 
one 
orrespond to shifts of the gauge 
harges: the loop �a ! �a + 2� indu
esW(q1; : : : ; qa; : : : ; qk) ! W(q1; : : : ; qa+1; : : : ; qk) on every Wilson line 
omponent of thematrix fa
torization. The monodromy around the singular lo
us S between two phasesis 
ontrolled by the asso
iated band restri
tion rule, say CwI;II. We start with a D-brane inPhase I and take its representative in the band restri
ted setMFW (T wI;II). When we 
ir
learound the singular lo
us the band will be shifted and some Wilson line 
omponents willfall out of the new band. These 
omponents must be eliminated through binding matrixfa
torizations Kmf�;A asso
iated with �I;II� , whi
h appears in the relation (4.22) betweenthe deleted sets. The subs
ript \A" stems from the fa
t that there are a multitude of D-branes Kmf�;A, whi
h are related by shifts of the gauge 
harges along the band. Then, ba
kin Phase I we may band restri
t again with respe
t to CwI;II using the matrix fa
torizationKmf+;A that 
omes with �I;II+ . Altogether we bind D-branes VmfA = Cone(Kmf�;A ! Kmf+;A) tothe original D-brane. For the loop in the opposite dire
tion, the branes that are bound areV0mfA = Cone(Kmf+;A ! Kmf�;A). One may �nd formulas analogous to (10.46) and (10.47).However, we point out on
e again that our approa
h does not rely on determining 
hiralring spe
tra between D-branes and, therefore, fa
ilidates 
omputations 
onsiderably.10.6 Relation To Orlov's Fun
torsSuppose a linear sigma model redu
es in one phase to the non-linear sigma model on aCalabi-Yau manifold MLV and in another phase to the Landau-Ginzburg orbifold with a245



superpotential WLG and an orbifold group �. We know how to transport D-branes alongany path � in the moduli spa
e MK that passes through phase boundaries and 
onne
tsthese two phases. This leads to a map of low energy D-branesF� :MF�(WLG) �! D(MLV); (10.49)and its inverse. Sin
e the parallel transport preserves the 
hiral se
tor, as the trun
atedversion of the above map, we have a fun
tor between the 
ategories of D-branes�� :MF�(WLG) �! D(MLV); (10.50)and its inverse, that is, an equivalen
e of the two 
ategories. Of 
ourse, this is just anexample | we have an equivalen
e of D-brane 
ategories for any pair of phases. Forexample, if the model has two large volume phases 
orresponding to di�erent Calabi-Yaumanifolds, M1 and M2, we have an equivalen
e of the derived 
ategories, D(M1) �=�!D(M2). If it has two LG phases, we have an equivalen
e MF�1(W1) �=�!MF�2(W2).Equivalen
es of the type (10.50) were 
onstru
ted by Dmitri Orlov [5℄ in the 
ase ofproje
tive hypersurfa
es. Here we would like to 
omment on the relation of that workto ours. Thus, we 
onsider Example (A) with superpotential W = PG(X1; : : : ; XN) forwhi
h � = ZN andWLG = G(X1; : : : ; XN). We shall denote the 
orrespinding Calabi-Yauhypersurfa
e fG = 0g � CPN�1 by MG.Early Constru
tionsAs ba
kgrounds, we �rst list various di�erent ways to des
ribe the 
ategoryMF(G) ofmatrix fa
torizations of G(x), that is, the 
ategory of B-type D-branes in LG model withsuperpotential G(x) (without orb�old for now). The basi
 referen
es for this material areEisenbud [11℄ and Bu
hweitz [12℄. See also the book [100℄. The main players are �nitelygenerated modules over the ringB = C[x1; : : : ; xN ℄=G(x): (10.51)The grading that exists in this ring, asso
iated with the U(1) gauge symmetry, plays norôle in the present dis
ussion.Let us 
onsider a matrix fa
torization of G(x)Q =  0 f(x)g(x) 0 ! ; Q(x)2 = G(x) � 12`:246



To this, we shall asso
iated a B-moduleMQ = 
oker � �f : B�` ! B�`� :This is an example of a maximal Cohen-Ma
aulay (MCM) module over B. There are sev-eral ways to de�ne the MCM 
ondition, but for the ring B as above, it is enough to de�neit as a module whi
h admits su
h a presentation. To the trivial matrix fa
torizations,(f; g) = (1; G) and (G; 1), we have the trivial module M(1;G) = 0 and the free moduleM(G;1) = B respe
tively. The 
ategory MF(G) is equivalent to the 
ategory of MCMB-modules modulo the sub
ategory of proje
tive modules.As we have dis
ussed in Se
tion 2.4 and 10.3.1, we 
an also asso
iate to a matrixfa
torization Q a 2-periodi
 exa
t sequen
e of free modulesCQ : � � � �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! � � � : (10.52)As a matter of 
onvention we pla
e the target of one of �f 's at degree 0 (the underlinedB�`). This is an example of a totally a
y
li
 
omplex. In general, a totally a
y
li

omplex of B-modules is an exa
t 
omplex of proje
tive modules of �nite ranks, whose B-dual 
omplex is also exa
t. We have seen in Se
tion 2.4 that 
hiral ring elements betweenthe D-branes 
orresponding to two matrix fa
torizations, Q1 and Q2, are in one-to-one
orresponden
e with homotopy 
lasses of 
o
hain maps of the 
orresponding 
omplexes,CQ1 and CQ2 , see (2.73). In fa
t, the 
ategory MF(G) is equivalent to the homotopy
ategory of totally a
y
li
 
omplexes of B-modules, denoted by TAC(B).The MCM module MQ \�ts in the middle" of the 
omplex CQ,� � � �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! B�` �g�! B�` �f�! � � �& %MQ% &0 0Namely, the two sequen
es, one ending at MQ and the other starting with MQ, are bothexa
t, and the triangle in the middle 
ommutes. In general, any MCM module �ts in themiddle of a totally a
y
li
 
omplex. Su
h a 
omplex is 
alled the 
omplete resolution ofthe MCM module.As the �nal ingredient, we dis
uss the rôle of perfe
t 
omplexes, that is, bounded 
om-plexes of proje
tive modules. Let D(B) be the derived 
ategory of B-modules 
onsistingof 
omplexes with bounded 
ohomologies. The main 
laim is that the 
ategory MF(G)is equivalent to the derived 
ategory D(B) modulo the sub
ategory P(B) 
onsisting of247



perfe
t 
omplexes. The fun
torMF(G)! D(B)=P(B) is straighforward: To ea
h matrixfa
torization Q we asso
iate the one-term 
omplex MQ[0℄. Sin
e MQ �ts in the middleof the totally a
y
li
 
omplex CB, this obje
t is quasi-isomorphi
 to the left-half of it,C�0B , and also to a shift of the right-half, C�1B [1℄. Sin
e we are modding out by perfe
t
omplexes, we 
an take any position to trun
ate CQ into a half. Namely, as the imageof Q, we 
an take the left semi-in�nite 
omplex C�jQ or the right semi-in�nite 
omplexC�jQ [1℄ for any j 2 Z | they are all isomorphi
 in D(B)=P(B). The other dire
tionD(B)=P(B) ! MF(G) is less straighforward, but the idea is simple. To ea
h 
omplexC 2 D(B), we �rst �nd a 
omplex P � of proje
tive modules, bounded from the right, thatis quasi-isomorphi
 to it. It is unbounded to the left unless C was perfe
t. Sin
e it hasbounded 
ohomologies, it is exa
t at low enough degrees, say, at degrees j � �j�. Dis-
arding a perfe
t part, it is isomorphi
 in D(B)=P(B) to the trun
ated 
omplex P ���j��1whi
h is exa
t ex
ept at the right-most term P�j��1. In fa
t, it is a trun
ated version ofa totally a
y
li
 
omplex. This gives an obje
t of TAC(B) and hen
e of MF(G).To summarize, we have equivalen
es of 
ategoriesMF(G) �= TAC(B) �= MCM(B)proje
tives �= D(B)=P(B): (10.53)Some of these 
ategories are naturally triangulated, and these are equivalen
es of trian-gulated 
ategories. The part other than MF(G) holds also for a more general ring than(10.51), see [12℄. The 
ategory D(B)=P(B) is also dis
ussed more re
ently in [101℄ whereit is 
alled the 
ategory of singulariries.Orlov's Constru
tionLet us now des
ribe the 
onstru
tion of [5℄. The main players are �nitely generatedgraded modules over the graded ringB = C[x1; : : : ; xN ℄=G(x); (10.54)where the xi's have degree 1. They form an Abelian 
ategory and we denote by D(gr-B)the derived 
ategory 
onsisting of 
omplexes with bounded 
ohomologies. If we mod outthese 
ategories by the sub
ategories 
onsisting of (
omplexes of) torsion modules, weobtain the 
ategory of 
oherent sheaves on the hypersurfa
e MG and its derived 
ategoryD(MG), just as in the 
ase of tori
 varieties as des
ribed in Se
tion 9. If we mod out thederived 
ategory D(gr-B) by the sub
ategory P(gr-B) 
onsisting of perfe
t 
omplexes,then we obtain a 
ategory whi
h is equivalent to MFZN (G). The last 
onne
tion is the248



graded version of (10.53) (see below for the pre
ise mapping). Thus, we have proje
tionsto the 
ategories of our interest: D(gr-B)



� JJJĴperfe
t torsionMFZN (G) D(MG)The next step is to 
onsider lifts of the downstairs 
ategories, MFZN (G) and D(MG),into the derived 
ategory of modules. To obtain a �nitely generated modules for thelatter, we need to 
hoose a 
ut-o� i 2 Z, that is, we restri
t our attention to moduleswhi
h are trivial at (gauge) degree less than i. There is a natural fun
tor from D(MG)to the sub
ategory D(gr-B�i) of 
omplexes of su
h modules. The image of this fun
toris denoted by Di. On the other hand, MFZN (G) is still obtained from D(gr-B�i) bymodding out by a 
ertain sub
ategory P�i. There is a 
omplement of P�i in D(gr-B�i),denoted by Ti, whi
h is equivalent toMFZN (G) under the proje
tion fun
tor. The pre
iseP�i and Ti will be des
ribed momentarily. The fa
t is that the two sub
ategroies, Diand Ti, are equal under the Calabi-Yau 
ondition, i.e., when the degree of G is equal tothe number N of variables. Thus, we have a \hat-diagram"D(gr-B�i)[Ti = Di






� JJJJJJĴperfe
t torsion



� JJJJ℄�= �=MFZN (G) D(MG) (10.55)whi
h proves the equivalen
e. (There is also a simple relation between Ti and Di in thenon-Calabi-Yau 
ases, whi
h results in a simple relation between MFZN (G) and D(MG).)The sub
ategories P�i and Ti of D(gr-B�i) are de�ned as follows. P�i is the 
ategorygenerated by free modules B(�) for � � �i. (Note that the lowest degree element, 1,of B(�) has degree ��, and therefore B(�) belongs to D(gr-B�i) if � � �i.) Ti is the\left-orthogonal" of P�i in D(gr-B�i), that is, the sub
ategory 
onsisting of all obje
tsL� su
h that HomD(gr-B�i)(L�; P �) = 0 for all P � 2 P�i.In order to use this 
onstru
tion, we would better have some understanding of thesub
ategory Ti. If we were working in the full D(gr-B) without a 
ut-o�, an example ofan obje
t in Ti would be B(�) for � > �i sin
e there are no morphisms from B(a) to B(b)if a > b. Similarly any 
omplex built out of the B(�) for � > �i would be in Ti. The latter249



remark is useful when the resulting 
omplex happens to be quasi-isomorphi
 to an obje
tin D(gr-B�i) sin
e this provides a way to 
onstru
t obje
ts in the real Ti � D(gr-B�i).The Fun
tor MFZN (G)! D(MG)Let us try to expli
itly evaluate the fun
tor �Orlovi : MFZN (G) ! D(MG) indu
edby the 
ontru
tion (10.55). The key step is of 
ourse to �nd a lift of a given obje
t inMFZN (G) to the sub
ategory Ti. But �rst we need a lift to D(gr-B), or more pre
isely,to D(gr-B�i).Let us pi
k a ZN -equivariant matrix fa
torization B = (V; Q; �; R) 2 MZN (G). Tothis we 
an asso
iate a totally a
y
li
 
omplex CB of graded B-modules:CB : � � � �f�! C�2B �g�! C�1B �f�! C0B �g�! C1B �f�! C2B �g�! C3B �f�! � � � : (10.56)Namely, we �rst 
onstru
t the 
omplex CQ of ungraded B-modules as before (10.52), andthen provide it with a grading using the information of R-symmetryCjB = M�i=(�1)j B(N2 (j �Ri)); for j 2 Z: (10.57)The numbers N2 (j�Ri) that appear here are all integers, sin
e e2�i(j�Ri)=2 = �i e��iRi areeigenvalues of �VR( e��i) = �( e2�i=N ) and hen
e must have order N . The 
omplex CB is2-periodi
 up to a shift, Cj+2B = CjB(N). As the obje
t in D(gr-B)=P(gr-B) 
orrespondingto B 2MFZN (G) we 
an take the trun
ation of CB at any position, that is, the left semi-in�nite C�jB or the right semi-in�nite C�jB [1℄ for any j 2 Z. A representative that landsin D(gr-B�i) is obtained by trun
ating far enough to the left. For example, take the leftsemi-in�nite 
omplex C�j0B with suÆ
iently small j0 so that it in
ludes only B(�)'s with� < �i.Next, let us �nd an obje
t L whi
h lies in Ti and �ts into a distinguished triangleP �! L �! C�j0B (10.58)for some P 2 P�i. As su
h an L, we propose to take the left semi-in�nite 
omplexobtained from CB by keeping all B(�)'s with � � �i and dis
arding all higher B(�)'s.It is obviously an obje
t of D(gr-B�i). Also, C�j0B is obtained from L by dis
arding itssub
omplex P 
onsisting of �nitely many B(�)'s (with � � �i of 
ourse). Thus, L indeed�ts into a triangle (10.58) with P 2 P�i. What is less obvious is that L lies in Ti.To see this, let us 
onsider the 
omplement L
 of L in CB, whi
h is a right semi-in�nite250




omplex. Sin
e CB is exa
t, L
[1℄ is quasi-isomorphi
 to L 2 D(gr-B�i). Obviously, it
onsists of B(�)'s with � > �i. By the remark at the end of the des
ription of Orlov's
onstru
tion, the obje
t L �= L
[1℄ belongs to Ti. Thus, L or equivalently L
[1℄ is the liftof B 2MFZN (G) that lands in Ti.To �nd its image in D(MG), we just regard the 
omplex of B-modules as a 
omplexof ve
tor bundles on the hypersurfa
e MG, by the repla
ement B(�)! O(�).To summarize, we have a simple way to �nd the large volume image of a given branein the LG orbifold, under the fun
tor �Orlovi indu
ed by (10.55): Take the 
orrespondingtotally a
y
li
 
omplex and keep only B(�)'s with � � �i. (Alternatively, keep only B(�)'swith � � �i+ 1 and shift by one to the left.) Then, regard the semi-in�nite 
omplex as a
omplex of ve
tor bundles on MG.ComparisonThis is essentially the same as the result of our transport for a 
ertain 
hoi
e ofwindow. The key point is that for any linear sigma model lift B = (V; Q; �; R) of a braneB = (V; Q; �; R) of the LG orbifold, the totally a
y
li
 
omplex CB that was introdu
edaround Eqn (10.28) pre
isely mat
hes with the totally a
y
li
 
omplex CB de�ned by(10.56) and (10.57). To see this, it is enough to rewrite the equation (10.14) that relatesB and B as qi = N2 (Ri � Ri);and 
ompare it with (10.57). The a
tual low energy image (bE; bQ) 2 D(MG) of B isobtained from the trun
tion of CB that 
orresponds to the trun
ationMm2Z pmV 7�! bV =Mm�0 pmV;see (10.28) and (10.20). If the lift B obeys the grade restri
tion rule fa; : : : ; a+N � 1g,the trun
ation is to keep all B(�)'s with � � a and to dis
ard all lower B(�)'s. Theresult is pre
isely the image of B in the sub
ategory Ti with a = �i + 1, shifted by oneto the right. Note that the above grade restri
tion rule 
orresponds to to the window,�N2 � a < �2� < �N2 � a + 1. To summarize, the fun
tor indu
ed by the 
onstru
tion(10.55) is related to ours (10.50) by �Orlovi = [1℄ Æ �� (10.59)where � is a path through the window i� N2 � 1 < �2� < i� N2 .251
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A SupersymmetryHere we re
ord the supersymmetry variation of the bulk a
tion.A.1 Non-Linear Sigma Models And Landau-Ginzburg ModelsWe 
onsider the non-linear sigma model on a K�ahler manifold (M; g) with a super-potential W . We suppose that the metri
 is given in terms of a K�ahler potential K ina 
oordinate pat
h, gi| = �i�|K. The bulk Lagrangian is the sum of the following twoterms (no partial integration to be used):LK = Z K(�;�)d4� + �+��K(�; �)= 2gi| ��+�i���| + ���i�+�| + i |� �D�!+ i� + i |+ �D�!� i+� +Ri|kl i+ k� |� l++gi| eF i eF | (A.1)= gi| ��0�i�0�| � �1�i�1�| + i |�( �D�!0 + �D�!1) i� + i |+( �D�!0 � �D�!1) i+�+Ri|kl i+ k� |� l+ + gi| eF i eF |LW = 12 Z W (�)d2� + 
:
:= 12 �F i�iW (�)� �i�jW (�) i+ j� + 
:
: �= 12 � eF i�iW (�)�Di�jW (�) i+ j� + 
:
:� (A.2)Here eF i are the 
ovariantized auxiliary �eldseF i = F i � �ijk j+ k�: (A.3)Under (2; 2) supersymmetry transformation Æ = i�+Q� � i��Q+ � i�+Q� + i��Q+,Æ�i = �+ i� � �� i+; i� = �2i�����i + ��F i; (A.4)ÆF i = �2i�+�� i+ � 2i���+ i�;LK and LW transform asÆLK = �� h�+gi| �2 i��+�| � i eF i |+�i� �+ h��gi| �2 i+���| + i eF i |��i+�+�+ h4gij i����|i� ���� h4gij i+�+�|i + 
:
: (A.5)ÆLW = ��+�� hi {+�{Wi� ���+ hi {��{Wi + 
:
: (A.6)253



We see that the super
urrent G��; G�� de�ned byÆS = Z d2x (���+G�� � ����G�+ + 
:
:)is given by G�� : G +� = 4gi| i����|; G �� = i {+�{W; (A.7)G�+ : G ++ = �i {��{W; G �+ = 4gi| i+�+�|: (A.8)Let us formulate this theory on the left half spa
e S = f(t; s)js � 0g whi
h has onetimelike boundary line at s = 0. We fo
us on the N = 2B supersymmetry generated byQ = Q+ +Q, Qy = Q+ +Q. The 
orresponding variation Æ = i�Qy � i�Q is obtainedfrom the (2; 2) variation by setting�+ = ��� = �; �+ = ��� = �:The bulk a
tion variation is found from (A.5)-(A.6):ÆSbulk = Re Z�Sdt ��2gi| |��+�i � 2gi| |+���i + igi| eF |( i+ +  i�) + i( i+ +  i�)�iW� :(A.9)The standard boundary term is de�ned byL(0)bdry = � i2gi| � i+ |� +  |+ i�� (A.10)and its N = 2B variation isÆL(0)bdry = Re ���+2gi| |+���i � 2gi| |��+�i � igi| eF |( i+ +  i�)�� (A.11)The sum of (A.9) and (A.11) is simplyÆSbulk + Æ Z�SL(0)bdry = Re Z�Sdt ��i( i+ +  i�)�iW�: (A.12)This is the Warner term [32℄.
254



A.2 Linear Sigma ModelThe gauge kineti
 term, the matter kineti
 term and the FI-theta term are given byLg = Z d4��� 12e2��� + total derivative= 12e2 hj�0�j2 � j�1�j2 + i��( ���!0 + ���!1)�� + i�+( ���!0 � ���!1)�+ + v201 +D2i ;(A.13)Lm = Z d4� � eV � + total derivative= jD0�j2 � jD1�j2 + i �( �D�!0 + �D�!1) � + i +( �D�!0 � �D�!1) + + �D�+ jF j2�j��j2 �  �� + �  +� � � i��� + + i��+ � + i +���� i ��+�;(A.14)LFI � = Re Z d2e���t�� = �rD + �v01: (A.15)Only the spe
ial 
ase of T = U(1) and with just one 
harge 1 matter �eld is presented,sin
e the generalization is obvious. The superpotential term isLW = Re Z d2�W (�) = Re" NXi=1 Fi�W��i (�)� NXi;j=1 �2W��i��j (�) i+ j� # : (A.16)The (2; 2) supersymmetry transformation of the 
omponent �elds is given by (wherev� := 12(v0 � v1))Æv� = i2���� + i2����;Æ� = �i�+�� � i���+;ÆD = 12���+(�0 � �1)�+ � ��(�0 + �1)�� + �+(�0 � �1)�+ + ��(�0 + �1)���:Æ�+ = i�+(D + iv01) + ��(�0 + �1)�;Æ�� = i��(D � iv01) + �+(�0 � �1)�; (A.17)and Æ� = �+ � � �� +;Æ + = i��(D0 +D1)�+ �+F � �+��;Æ � = �i�+(D0 �D1)�+ ��F + ����;ÆF = �i�+(D0 �D1) + � i��(D0 +D1) � + (�+� � + ��� +) + i(���+ � �+��)�:(A.18)255



Under this, the Lagrangians vary as follows:ÆLg = �+�+��2ie2������� �����2ie2�+�+�� + ���+� ie2v01�+�� �+��� ie2 v01���+�� h �+2e2 ��2i���+� + �+(D + iv01)�i� �+ h ��2e2 �2i�+��� � ��(D � iv01)�i+
:
: (A.19)ÆLm = �+�+4D�� � � ����4D+� + + ���+(���+�)� �+������+�� ��+ �2D+� � + ��+�� i�� + � i +F ����+ ��� �2D�� + � ����� i�� � + i �F ��+
:
: (A.20)ÆLFI;� = ���+(r�+)� �+��(�r��) + �� ��t�+�+�� �+ �t�����+
:
: (A.21)ÆLW = ���+ �i {+�{W�� �+�� ��i {��{W�+�� ��i�+ {+�{W�� �+ �i�� {��{W�+
:
: (A.22)This shows that the super
urrent is given byG+� = �2ie2����� + 4D�� � (A.23)G�� = �r � j�j2 + ie2 v01��+ + i {+�{W; (A.24)G++ = ��r � j�j2 � ie2v01��� � i {��{W; (A.25)G�+ = 2ie2�+�+� + 4D+� +: (A.26)Let us formulate the model on the left-half spa
e S and 
onsider the N = 2B super-
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symmetry �� = ��, �� = ��:Æv0 = i2�(�+ � ��) + i2�(�+ � ��);Æv1 = i2�(�+ + ��) + i2�(�+ + ��);Æ� = �i��� + i��+;ÆD = �����+ + ��+�� + ����+ � ��+��;Æ�+ = i�(D + iv01 + 2i�+�);Æ�� = �i�(D � iv01 + 2i���):Æ� = �( + +  �);Æ + = �i�(D0 +D1)�+ �F � ���;Æ � = �i�(D0 �D1)�� �F � ���;ÆF = �i�(D0 �D1) + + i�(D0 +D1) � + �� � � �� + � i�(�+ + ��)�;(A.27)The variation of the terms of the a
tion 
an be easily read from (A.19)-(A.22).Gauge kineti
 term Variation of the gauge kineti
 term 
an be written su

in
tly interms of the N = 2B boundary superspa
e [9, 10℄ asÆ 12� ZSd2sLg = � 12�Re � i2e2 Z�BSdtd� �D�D� � : (A.28)The following 
ounter term 
an 
an
el it:S
:t:g = � 12�ReZ�BSdtd�  Xi aiDbi! (A.29)where ai and bi are fun
tions of � and � su
h that� :=Xi aidbi obeys d� = i2e2d� ^ d�:The boundary 
ounter term in (5.2) 
orresponds to the 
hoi
e � = i4e2 (�d� � �d�) :Other
hoi
e of � di�ers from this by an exa
t 1-form and hen
e the 
orresponding 
ounter termdi�ers from (5.2) by a boundary D-term.Matter kineti
 term Variation of the matter kineti
 term isÆ 12� ZSd2sLm = 12�Re Z�Sdt �h�(�+ + ��)�+  �(D0 +D1)��  +(D0 �D1)�+i +��� i ���+ iF ( + +  �)i (A.30)257



This is 
an
eled by a simple boundary LagrangianS
:t:m = 12� Z�Sdt � i2( � + �  + �)� i2�(� � �)�� : (A.31)FI-theta term Variation of the FI-theta term isÆ 12� ZSd2sLFI � = 12�Re Z�Sdt �t��+ � t���� = 12� Im Z�Sdt (tÆ�) (A.32)This is 
an
elled by the variation of the 
ounter termS
:t:FI � = 12� Z�Sdt Im��t� �; (A.33)Referen
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