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Large x Resummation in Q2 EvolutionS. Albino, B. A. Kniehl, and G. KramerII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany(Dated: November 7, 2007)AbstratThe standard analyti solution to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)equation in Mellin spae is improved by resumming the large x divergenes. Expliit results aregiven to next-to-leading order and next-to-leading logarithmi auray. Numerially, the theoret-ial error is found to be redued by the resummation for a large range of x.
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Parton distribution funtions (PDFs) are indispensable for the perturbative alulation ofall high energy proesses involving inoming hadrons. In partiular, their preise knowledgeis essential for the suessful interpretation of the LHC experiments. Likewise, fragmentationfuntions (FFs) are required for inlusive hadron prodution alulations. By solving thespaelike/timelike DGLAP equation [1℄dd lnQ2D(N;Q2) = P (N; as(Q2))D(N;Q2) (1)for the vetor D of PDFs/FFs (the formulae of this letter apply to either ausality, whihis therefore not spei�ed), their Q2 evolution is determined sine the matrix of splittingfuntions P an be alulated perturbatively as P = P1n=1 ansP (n�1), where as = �s=(2�),�s being the strong oupling. As P reahes next-next-to-leading order (NNLO) preision[2℄, resummation of divergenes at phase spae extremes beomes relevant. This letter isonerned with soft gluon divergenes at large x, whih have a general relevane sine theire�et propagates to all x through the evolution. For example, we show later that, relativeto standard NLO evolution, the redution in the theoretial unertainty due to large xresummation is omparable to that on going to NNLO for a large range of x. In general,these divergenes take the form ans [lnn�r(1� x)=(1� x)℄+ (or ans lnn+1�rN in Mellin spae),and r = 0; :::; n labels the lass of divergene. They fator out of a hard subproess aordingto [3℄ W (as; N) =Wres(as; N) Xn ansW (n)FO (N)! ; (2)where the �xed order (FO) series, in parenthesis, is free of these divergenes sine theyare all ontained in Wres. At large N , W is approximated by Wres if its divergenes areresummed, whih involves writing it as an exponential, then, in the exponent, groupingterms of the same lass, giving a series in as keeping as lnN �xed. Suh expansions existfor oeÆient funtions for various proesses, e.g. inlusive hadron prodution [4℄, deeplyinelasti sattering and the Drell-Yan proess [5℄.In this letter we present an analyti solution to the DGLAP equation whih improves theFO auray by resumming large x divergenes. We work in a minimal subtration (MS)sheme where P is resummed: its diagonal omponents approah [1=(1� x)℄+ (lnN) whilethe o�-diagonal omponents beome onstant [6℄. Our approah is based on the ommonly2



used Mellin spae solution [7℄: The DGLAP evolution is written in the formD(N;Q2) = E(N; as(Q2); as(Q20))D(N;Q20); (3)then the as = as(Q2) and a0 = as(Q20) dependenes in the higher order parts of E arefatored out, E(N; as; a0) = U(N; as)ELO(N; as; a0)U�1(N; a0); (4)where ELO is the LO evolution, given formally byELO(N; as; a0) = exp ��P (0)(N)�0 ln asa0� : (5)Here, �0 is the �rst oeÆient appearing in the perturbative expansion for the evolution ofas, das(�2)=d ln�2 = �P1n=0 �nan+2s (�2). ThendUdas = �R�0 + 1�0as �U; P (0)� (6)replaes the DGLAP equation, whereR = 1Xn=1 an�1s R(n) = ��0�P� + P (0)�0as�U: (7)The auray of the evolution depends on how the matrix U is approximated. The standardapproah is to use the the FO seriesU(N; as) = 1+ 1Xn=1 U (n)(N)ans ; (8)whih an be determined order by order from Eq. (6) sine the R(n) depend on the U (m)for m � n � 1 only. However, the auray may be improved by resumming the large xdivergenes, whih is the main task of this letter. The result is that at large N , its diagonalomponents take the form UII(N; as) ' exp[P1r=1 U [r℄II (as lnN)ar�1s ℄ (reall that r, in thesquare brakets here, labels the lass of divergene).The resummation of the non singlet (or valene quark) omponent of E is triviallyimplemented by solving the DGLAP equation exatly. However, we disuss it in detailsine the resummation in the singlet evolution to be performed later is similar. Equa-tion (4) simpli�es to the salar equation ENS = (as=a0)�P (0)NS =�0 (UNS(as)=UNS(a0)). Inthe unresummed ase, UNS(as)=UNS(a0) is expanded as a series in as; a0, e.g. at NLO3



it is taken as 1 � (as � a0)R(1)NS=�0, where R(1)NS = P (1)NS � (�1=�0)P (0)NS . In the re-summed ase, it is alulated in the form given by Eq. (2), e.g. at NLO it beomes(U [1℄NS(as)=U [1℄NS(a0)) h1� (as � a0)�U [1℄(1)NS +R(1)NS=�0�i, where U [1℄(1)NS is the oeÆient of theO(as) term in the FO expansion of U [1℄NS. To obtain the U [r℄NS requires solving the equa-tion dUNS=das = QNSUNS at large N , where QNS = PNS=� + P (0)NS =(�0as). Of ourse thisholds for all N , as an be seen by substituting Eq. (4) into the DGLAP equation. Forexample, at NLO, the next-to-leading logarithms (NLLs), being r = 1 (O(as lnN)) terms,are resummed by taking U [1℄NS = exp[asU [1℄(1)NS ℄ with U [1℄(1)NS = �R(1)NS=�0 + O(1), and takingthe last equation to be exat leads to the exat solution to the NLO DGLAP equation,ENS = (as=a0)�P (0)NS =�0 exp[�(as � a0)R(1)NS=�0℄.Analyti resummation of the singlet E is nontrivial, sine its matrix struture rules outan exat and analyti solution to the DGLAP equation . We will present for the �rst time ananalyti approah for resumming the FO singlet E. We �rst derive in detail the unresummedE, whih will be modi�ed later in order to implement the resummation. To put ELO in Eq.(5) into a form whih an be expliitly evaluated, we diagonalize P (0),P (0) = �+M+ + ��M�; (9)where �� = 12 �P (0)qq + P (0)gg �q(P (0)qq � P (0)gg )2 � 4P (0)qg P (0)gq � ; (10)are the eigenvalues of P (0), and the projetion operatorsM� = 1�� � �� �P (0) � ��1� (11)obey M�M� = 0, M�M� =M�, PiM i = 1. ThenELO(N; as; a0) =Xi M i(N)�asa0���i(N)�0 : (12)To diagonalize all ourrenes of P (0) in U , we work with the ijth \omponents" projetedout by operating on the left by M i and on the right by M j. Note that the sum of all\omponents" of any 2 � 2 matrix A gives bak the full result, i.e. A = PijM iAM j.Mathing oeÆients of as in Eq. (6) givesU (n) =Xij 1�j � �i � �0nM iR(n)M j: (13)4



(Note that P (0)M i =M iP (0) = �iM i, whih follows from Eq. (9), has been used here.) Theright hand side is learly a sum over the \omponents" M iU (n)M j .At NLO, U =Xij M i �1+ 1�j � �i � �0asR(1)�M j ; (14)where R(1) = P (1) � �1�0P (0): (15)In U , and therefore in general in E, there is a simple pole on the positive real axis of N spaewhen �+���� �0 = 0 and 2 simple and 2 double poles o� the real axis when �+��� = 0,whih will limit the hoie of the ontour used for the inverse Mellin transform. Fortunately,they manifest themselves in Eq. (4) as spurious NNLO terms, whih may be subtrated.The NLO expansion in as; a0 with ELO �xed,E = ELO + U (1)ELOas � ELOU (1)a0; (16)is free of these poles, whih is most easily seen in its projetions: The \diagonal" (i = j)omponents read M iEM i = �asa0�� �i�0 M i �1� (as � a0)R(1)�0 �M i; (17)and the \o�-diagonal" (i 6= j) omponents readM iEM j = 1�j � �i � �0 24�asa0���j�0 as � �asa0�� �i�0 a035M iR(1)M j: (18)It is lear that the pole in U for whih �j � �i � �0 = 0 only appears in the \o�-diagonal"omponent M iEM j. Its anellation an be seen by setting �j = �i+ �0+ � and taking thelimit �! 0. The omponents of U ontaining simple and double poles for whih �+��� = 0appear in both the \o�-diagonal" and \diagonal" omponents of E. The 1=(�+���) termsanel sine E is invariant with respet to the interhange �+ $ ��. The 1=(�+ � ��)2terms, whih give rise to both simple and double poles, an be seen to anel by taking�+ = �� + � et. as before.Now we inorporate the resummation in the solution. We require the asymptoti be-haviour of U at large N . This is determined by using Eq. (6), or equivalently (13), to obtainthe U (n) for all n as funtions of the P (m), m = 0; :::; n, whose asymptoti behaviour in5



MS shemes was given in the quark-gluon basis earlier. Fortunately, this basis' omponentsoinide with the projetions we have been using: From Eq. (10), the large N behaviour ofP implies that �+(�) � P (0)qq(gg), thereforeM+(�) � 0� 1(0) 00 0(1)1A+O � 1lnN � : (19)This means that performing the projetion M iAM j has the same e�et as setting all om-ponents to zero exept A�i�j , where �+(�) = q(g). One immediately �nds from Eq. (13)that the \o�-diagonal" omponents of U fall like 1= lnN and may therefore be left as a se-ries in as, while the \diagonal" omponents of U annot be approximated in this way sineM iU (n)M i grows like lnnN . To resum it, we solve the \diagonal" omponents of Eq. (6) inthe large N limit. The matrix multipliations on the right hand side an be deomposedaording to AB = Pijk(M iAM j)(M jBMk), where B is also any 2�2 matrix. Then anyprodut of an \o�-diagonal" omponent of U with an \o�-diagonal" omponent of R or P (0)in either order ontains no divergenes and thus is negleted. Negleting O(1) terms, theresult is ddas (M iUM i) = Qii(M iUM i); (20)where the matrix Qii =M i �P=� + P (0)=(�0as)�M i at large N . This an be solved order byorder to obtain a series for M iUM i whih an be identi�ed and resummed. The diagonalomponent (Qii)�i�i grows like lnN , while the other diagonal omponent falls like 1= lnN .The o�-diagonal omponents both approah a onstant.The NLO evolution ontains divergenes up to the NLL level. The r = 0 (LL) terms areall ontained in ELO. The r = 1 terms are all ontained in U , and aording to Eq. (20) anbe aounted for by takingM iUM i = U [1℄i M i +O(as(as lnN)m); (21)where the U [1℄i are onstrained at large N by writingU [1℄i = exp hasU [1℄(1)i i (22)and requiring that U [1℄(1)i = � 1�0R(1)�i�i +O(1): (23)6



The O(1) terms in U [1℄(1)ii are not onstrained, and will be hosen later. In this approximation,R(1)�i�i is alulated with P (n)�i�i � P̂ (n)�i�i lnN in Eq. (15), where [8℄P̂ (0)qq =� 2CF ;P̂ (1)qq =CF �CA��23 � 679 � + 209 TRnf� ;P̂ (0;1)gg =CACF P (0;1)qq : (24)
From these results, and using the form in Eq. (2), the LL and NLL resummed U at NLOwill be hosen asU =Xi U [1℄i M i h1+ as �U (1) � U [1℄(1)i 1�iM i + asXi 6=j M iU (1)M j: (25)The �rst line gives the resummed form for the \diagonal" omponents, while the \o�-diagonal" omponents ontained in the last line are as for no resummation. This agreeswith the FO series when expanded to NLO, and gives the orret large N behaviour, not-ing that the lnN divergene in M iU (1)M i anels that in U [1℄(1)i M i. Analogously, U�1 isfound to be equal to Eq. (25) with U (1) and U [1℄(1)i everywhere multiplied by �1. ThenUU�1 = 1 + O(a2s) + O(as(as lnN)m), as required. As in the unresummed ase, the re-summed U and thus E ontains problemati poles at �+ � �� � �0 = 0 and �+ � �� = 0.To deal with this problem, and remain lose to the unresummed approah of Ref. [7℄, weexpand E. Note however that U [1℄i must be kept �xed to preserve the resummation. Thenthe \diagonal" omponents readM iEM i = U [1℄i (as)U [1℄i (a0) �asa0�� �i�0 M i �1� (as � a0)�R(1)�0 + U [1℄(1)i 1��M i (26)while the \o�-diagonal" omponents readM iEM j = 1�j � �i � �0 24as�asa0���j�0 1U [1℄j (a0) � a0 �asa0�� �i�0 U [1℄i (as)35M iR(1)M j : (27)These last two equations, together with Eq. (23), are our main results. They agree withEq. (16) when expanded to NLO without keeping U [1℄i �xed, i.e. when the resummation isundone, and obey the normalization onditionE(N; as; as) = 1: (28)7



The next step in eliminating these problemati poles involves tuning the U [1℄(1)i at �niteN . The in�nite number of sheme hoies reets the unertainty of the unknown higherorder terms, a ubiquitous feature of perturbation theory. The pole anellation is easierto ahieve by imposing \ommon sense" onstraints obeyed by the unresummed evolution,e.g. the requirements that U [1℄(1)i = 0 at eah pole so that the resummed evolution oinideswith the unresummed one there, that the N dependene of U ours only through the ��and R(1), and that the evolution is invariant under the interhange �+ $ ��. Of ourse,there is also the resummation ondition of Eq. (23). One possibility that enfores all theseonditions and leads to the pole anellation isU [1℄(1)�� = K�� (�+ � ��)2 [(�+ � ��)2 � �20 ℄(�+ + ��)4 ; (29)where, for either i = � (de�ning (C+; C�) = (CF ; CA)),K = 12Ci�0 �CF + CACA � CF �4�P̂ (1)�i�i � �1�0 P̂ (0)�i�i� : (30)Finally, to study the e�et of resummation on the theoretial error we vary the renor-malization sale � by �xing �2 = kQ2 and varying k. We also set �20 = kQ20 in a0 asrequired by Eq. (28). This means that as(0) = as(kQ2(0)) are the new expansion variablesinstead of as(Q2(0)), and (as=a0)��i=�0 and U [1℄i (as(0)) are treated as �xed. The NLO relationas(Q2(0)) = as(0)(1+as(0)�0 ln k) implies the replaement P (1) ! P (1)+P (0)�0 ln k everywhere.Note that P̂ (1)�i�i ! P̂ (1)�i�i � 2Ci�0 ln k in Eq. (24).For our numerial analysis, we �x the number of ative quark avours nf = 5, put �(5) =200 MeV and Q0 = 2 GeV, and apply spaelike evolution to the non singlet distributionDNS(x;Q20) / (1 � x)3, being a typial large x behaviour. Resummation redues the salevariation over a wide range of x (see Fig. 1), as antiipated in the introdution. Awayfrom the large x region, the sale variation is even redued to around that of the NNLOalulation [2℄, for low Q2 values in partiular. For further analysis we refer the reader to afuture publiation where also resummation at NNLO will be studied. Fortunately, the threealulations aidentally give similar results around the ommonly hosen value k = 1, sothat unresummed divergenes should not have harmed global �ts of PDFs/FFs.In onlusion, we have presented an analyti approah for resumming large x divergenesin Q2 evolution. This makes a substantial numerial di�erene to the evolution away fromk = 1. Sine we perform the resummation in the \diagonalization" sheme of Ref. [7℄8
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FIG. 1: Renormalization sale variation of the non singlet evolved with our resummed NLO ap-proah (solid line), as well as with the usual unresummed NLO (dotted) and NNLO (dashed)approahes.that is used to solve the FO DGLAP equation, our approah is the simplest one. Sine itprovides both an important oneptual improvement to perturbative QCD and leads to amore aurate determination of PDFs and FFs, our approah is valuable for the desriptionof phenomenology at the LHC and other olliders of the foreseeable future.This work was supported in part by the German Federal Ministry for Eduation andResearh BMBF through Grant No. 05 HT6GUA.
[1℄ V. N. Gribov and L. N. Lipatov, Sov. J. Nul. Phys. 15, 438 (1972) [Yad. Fiz. 15, 781 (1972)℄;L. N. Lipatov, Sov. J. Nul. Phys. 20, 94 (1975) [Yad. Fiz. 20, 181 (1974)℄; G. Altarelli andG. Parisi, Nul. Phys. B126, 298 (1977); Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)9



[Zh. Eksp. Teor. Fiz. 73, 1216 (1977)℄.[2℄ S. Moh, J. A. M. Vermaseren, and A. Vogt, Nul. Phys. B688, 101 (2004); B691, 129 (2004);A. Mitov, S. Moh, and A. Vogt, Phys. Lett. B 638, 61 (2006).[3℄ H. Contopanagos, E. Laenen, and G. Sterman, Nul. Phys. B484, 303 (1997).[4℄ M. Caiari and S. Catani, Nul. Phys. B617, 253 (2001).[5℄ S. Catani and L. Trentadue, Nul. Phys. B327, 323 (1989).[6℄ G. P. Korhemsky, Mod. Phys. Lett. A4, 1257 (1989); S. Albino and R. D. Ball, Phys. Lett. B513, 93 (2001).[7℄ W. Furmanski and R. Petronzio, Z. Phys. C 11, 293 (1982); R. K. Ellis, Z. Kunszt, andE. M. Levin, Nul. Phys. B420, 517 (1994); B433, 498(E) (1995).[8℄ E. G. Floratos, C. Kounnas, and R. Laaze, Nul. Phys. B192, 417 (1981); M. Gluk, E. Reya,and A. Vogt, Phys. Rev. D 48, 116 (1993).

10


	References

