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Abstra
tIn supersymmetri
 extensions of the standard model there is no basi
 di�eren
e be-tween Higgs and matter �elds, whi
h leads to the well known problem of potentiallylarge baryon and lepton number violating intera
tions. Although these unwanted
ouplings 
an be forbidden by 
ontinuous or dis
rete global symmetries, a theoreti
alguiding prin
iple for their 
hoi
e is missing. We examine this problem for a 
lass ofva
ua of the heteroti
 string 
ompa
ti�ed on an orbifold. As expe
ted, in generalthere is no di�eren
e between Higgs and matter. However, 
ertain va
ua happen topossess unbroken matter parity and dis
rete R-symmetries whi
h single out Higgs�elds in the low energy e�e
tive �eld theory. We present a method how to identifymaximal va
ua in whi
h the perturbative 
ontribution to the �-term and the expe
-tation value of the superpotential vanish. Two va
ua are studied in detail, one withtwo pairs of Higgs doublets and one with partial gauge-Higgs uni�
ation.

http://arXiv.org/abs/0807.1046v2


1 Introdu
tionIn the standard model there is a 
lear distin
tion between Higgs and matter: Quarks andleptons are 
hiral fermions whereas a s
alar �eld des
ribes the Higgs boson. The mostgeneral renormalizable lagrangian 
onsistent with gauge and Lorentz invarian
e yields avery su

essful des
ription of strong and ele
troweak intera
tions [1℄. Furthermore, withappropriate 
oe�
ients, the unique dimension-5 operator 
an a

ount for Majorana neu-trino masses, and the baryon number violating dimension-6 operators are 
onsistent withthe experimental bounds on proton de
ay.In supersymmetri
 extensions of the standard model the distin
tion between Higgs andmatter is generi
ally lost. Sin
e the lepton doublets and one of the Higgs doublets havethe same gauge quantum numbers the most general supersymmetri
 gauge invariant la-grangian 
ontains unsuppressed R-parity violating terms whi
h lead to rapid proton de
ay.In grand uni�ed models (GUTs) [1℄ 
olour triplet ex
hange 
an also generate dangerousbaryon number violating dimension-5 operators. These problems 
an be over
ome by in-trodu
ing 
ontinuous or dis
rete symmetries whi
h distinguish between Higgs and matter�elds, su
h as R-symmetry, Pe

ei-Quinn type symmetries or matter parity. However, inthe 
ontext of four-dimensional (4D) �eld theories the origin and theoreti
al justi�
ationof these symmetries remain un
lear.Higher-dimensional theories provide a promising framework for uni�ed extensions of thesupersymmetri
 standard model [2℄. In parti
ular the heteroti
 string [3℄ with gauge groupE8�E8 is the natural 
andidate for a uni�ed theory in
luding gravity. Its 
ompa
ti�
ationson orbifolds [4, 5℄ yield 
hiral gauge theories in four dimensions in
luding the standardmodel as well as GUT gauge groups. During the past years some progress has been madein deriving uni�ed �eld theories from the heteroti
 string [6�8℄, separating the GUT s
alefrom the string s
ale on anisotropi
 orbifolds [9℄, and a 
lass of 
ompa
ti�
ations yieldingsupersymmetri
 standard models in four dimensions have been su

essfully 
onstru
ted[10�12℄.The heteroti
 string model [10℄ has a 6D orbifold GUT limit, where two 
ompa
tdimensions are mu
h larger than the other four, with 6D bulk gauge group SU(6) andunbroken SU(5) symmetry at two �xed points. The 
orresponding supergravity model hasbeen expli
itly 
onstru
ted in [13℄, and it has been shown that all bulk and brane anomaliesare 
an
eled by the Green-S
hwarz me
hanism. Furthermore, a 
lass of va
ua has beenfound whi
h have a pair of bulk Higgs �elds and two SU(5) bulk families in addition tothe two SU(5) brane families. At the SU(5) �xed points these �elds form an SU(5) GUTmodel. In 4D one obtains one quark-lepton `family' and a pair of Higgs doublets from splitbulk multiplets together with the two brane families.What distinguishes Higgs from matter �elds with the same SU(5) quantum numbersin an orbifold GUT? In the va
uum studied in [13℄ there is no distin
tion, whi
h leadsto una

eptable R-parity violating Yukawa 
ouplings. In [11℄ interesting 4D va
ua withunbroken matter parity were found, whi
h allow to forbid the dangerous R-parity violating
ouplings. Some of these va
ua also have gauge-Higgs uni�
ation for whi
h an intriguingrelationship exists between �-term and gravitino mass. Indeed, several va
ua with semi-2



realisti
 Yukawa 
ouplings 
ould be identi�ed where to order six in powers of standardmodel singlets �-term and gravitino mass both vanish.In this paper we further analyse the va
ua of the 6D orbifold GUT [13℄. Sin
eMGUT �Mstring, we 
onsider va
ua with expe
tation values (VEVs) of all 6D zero modes. One thenobtains further va
ua with unbroken matter parity. The lo
alized Fayet-Iliopoulos termsof anomalous U(1) symmetries may indeed stabilize two 
ompa
t dimensions at the GUTs
ale [13,14℄ but the study of stabilization and pro�les of bulk �elds [15℄ is beyond the s
opeof this paper. In the following we 
on
entrate on lo
al properties of the model at the GUT�xed points, in parti
ular the de
oupling of exoti
s and the generation of superpotentialterms.The existen
e of a matter parity is not su�
ient to distinguish Higgs from matter. Onealso needs that the �-term is mu
h smaller than the de
oupling mass of exoti
 states. Inprin
iple, there are two obvious solutions: Either a non-zero �-term is generated at veryhigh powers in standard model singlets, or the perturbative part of the �-term vanishesexa
tly and a non-perturbative 
ontribution, possibly related to supersymmetry breaking,yields a 
orre
tion of the order of the ele
troweak s
ale. In Se
tion 4, we shall dis
uss howto identify `maximal' va
ua with vanishing �-term, as well as extended va
ua with �-termsgenerated at high orders. This is the main point of our paper.The maximal va
ua with vanishing �-term do not in
lude the 
ase of gauge-Higgsuni�
ation. Instead, we �nd a va
uum with two pairs of massless Higgs doublets and onewith partial gauge-Higgs uni�
ation only for Hu whi
h gives mass to up-type quarks. Thisis perfe
tly 
onsistent with the fa
t that a large top-quark mass is singled out. The originalsymmetry between 5- and �5-plets is violated by sele
ting va
ua where matter belongs to�5- and 10-plets.There are also other promising approa
hes whi
h use elements of uni�
ation to �ndrealisti
 string va
ua. This in
ludes 
ompa
ti�
ations on Calabi-Yau manifolds with ve
torbundles [16�21℄, whi
h are related to orbifold 
onstru
tions whose singularities are blownup [22, 23℄. Very re
ently, also interesting GUT models based on F-theory have beendis
ussed [24�26℄.The paper is organized as follows. In Se
tion 2 we re
all some symmetry propertiesof e�e
tive SU(5) �eld theories, whi
h are relevant for the �-term and baryon numberviolating intera
tions. The relevant features of the 6D orbifold GUT model [13℄ are brie�yreviewed in Se
tion 3. New va
ua of this model with vanishing �-term and gravitinomass are analyzed in Se
tion 4, and the 
orresponding unbroken dis
rete R-symmetries aredetermined. Yukawa 
ouplings for these va
ua are 
al
ulated in Se
tion 5.2 E�e
tive low energy �eld theoryThe heteroti
 6D GUT model [13℄ has lo
al SU(5) invarian
e 
orresponding to Georgi-Glashow uni�
ation. Hen
e, the superpotential of the 
orresponding low energy 4D �eldtheory has the general form,W = �HuHd + �iHu�5(i) + C(u)ij 10(i)10(j)Hu + C(d)ij �5(i)10(j)Hd3



+C(R)ijk �5(i)10(j)�5(k) + C(L)ij �5(i)Hu�5(k)Hu + C(B)ijkl10(i)10(j)10(k)�5(l) ; (2.1)where we have in
luded dimension-5 operators. Here i; j; ::: denote generation indi
es, andfor simpli
ity we have kept the SU(5) notation. Note that the 
olour triplets 
ontainedin the Higgs �elds Hu = 5 and Hd = �5 are proje
ted out. �i and C(R) yield the wellknown renormalizable baryon (B) and lepton (L) number violating intera
tions, and the
oe�
ients C(L) and C(B) of the dimension-5 operators are usually obtained by integratingout states with masses O(MGUT). In supergravity theories also the expe
tation value ofthe superpotential is important sin
e it determines the gravitino mass. One expe
tshW i � � �MEW; (2.2)if the s
ale MEW of ele
troweak symmetry breaking is related to supersymmetry breaking.Experimental bounds on the proton lifetime and lepton number violating pro
essesimply �i � �, C(R) � 1 and C(B) � 1=MGUT. Furthermore, one has to a

ommodatethe hierar
hy between the ele
troweak s
ale and the GUT s
ale, MEW=MGUT = O(10�14).On the other hand, lepton number violation should not be too mu
h suppressed, sin
eC(L) � 1=MGUT yields the right order of magnitude for neutrino masses.These phenomenologi
al requirements 
an be implemented by means of 
ontinuous ordis
rete symmetries. Imposing an additional U(1) fa
tor withSU(5)� U(1)X � SO(10) ;SU(5)� U(1)X � SU(3)� SU(2)� U(1)Y � U(1)B�L ; (2.3)where Y denotes the standard model hyper
harge, one has �i = C(R) = C(L) = 0, sin
ethese operators 
ontain only B � L violating terms. On the other hand, C(B) 
onservesB � L and is therefore not a�e
ted. The 
anoni
al U(1)X 
harges readtX(10) = 15 ; tX(�5) = �35 ; tX(Hu) = �25 ; tX(Hd) = 25 ; (2.4)with tB�L = tX + 45 tY : (2.5)The wanted result, �i = C(R) = 0, C(L) 6= 0, 
an be obtained with a ZX2 subgroup ofU(1)X , whi
h 
ontains the `matter parity' PX [27℄,PX(10) = PX(�5) = �1 ; PX(Hu) = PX(Hd) = 1: (2.6)Matter parity, however, does not solve the problem C(B) 6= 0, and also the hierar
hyMEW=MGUT � 1 remains unexplained.In supersymmetri
 extensions of the standard model, ele
troweak symmetry breakingis usually tied to supersymmetry breaking. It is then natural to have � = �i = 0 forunbroken supersymmetry. One easily veri�es that in this 
ase, for C(R) = C(B) = 0, thesuperpotential aquires a unique Pe

ei-Quinn type U(1)PQ symmetry with 
hargestPQ(10) = 12 ; tPQ(�5) = 1 ; tPQ(Hu) = �1 ; tPQ(Hd) = �32 ; (2.7)4



together with an additional U(1)R symmetry with R-
hargesR(10) = R(�5) = 1 ; R(Hu) = R(Hd) = 0: (2.8)Note that the U(1)R-symmetry implies the wanted relations � = �i = C(R) = C(B) = 0,with C(L) un
onstrained. On the other hand, the Pe

ei-Quinn symmetry only yields� = C(R) = C(B) = 0.The latter relations 
an also be obtained by imposing only a dis
rete ZPQ2 subgroupwith PQ-paritiesPPQ(10) = PPQ(Hd) = �1 ; PPQ(�5) = PPQ(Hu) = 1 : (2.9)On the 
ontrary, the familiar R-parity, whi
h is preserved by non-zero gaugino masses,PR(10) = PR(�5) = �1 ; PR(Hu) = PR(Hd) = 1 ; (2.10)implies �i = C(R) = 0, whereas �, C(L) and C(B) are all allowed.In summary, the unwanted terms in the lagrangian (2.1) 
an be forbidden by a 
ontinu-ous global R-symmetry. Supersymmetry breaking will also break U(1)R to R-parity, whi
hmay lead to an R-axion. The dangerous terms � and C(B) will then be proportional to thesoft supersymmetry breaking terms and therefore strongly suppressed. Alternatively, theunwanted terms in (2.1) 
an be forbidden by dis
rete symmetries, su
h as matter parity,PQ-parity or R-parity.In ordinary 4D GUT models 
ontinuous or dis
rete symmetries 
an be introdu
ed byhand. It is interesting to see how prote
ting global symmetries arise in higher-dimensionaltheories. The global U(1)R symmetry (2.8) indeed o

urs naturally [28℄, and it has beenused in 5D and 6D orbifold GUTs [29℄. However, as we shall see in the following se
tions,orbifold 
ompa
ti�
ations of the heteroti
 string single out dis
rete symmetries, whi
h mayor may not 
ommute with supersymmetry.3 Heteroti
 SU(6) model in six dimensionsLet us now brie�y des
ribe the main ingredients of the 6D orbifold GUT model derivedin [13℄. The starting point is the E8 � E8 heteroti
 string propagating in the spa
e-timeba
kground (X4 � Y2)=Z2 � M4. Here X4 = (R4=�G2�SU(3))=Z3, Y2 = (R2=�SO(4)) andM4 represents four-dimensional Minkowski spa
e; R4=�G2�SU(3) and R2=�SO(4) are the toriasso
iated with the root latti
es of the Lie groups G2� SU(3) and SO(4), respe
tively. By
onstru
tion the Z6�II = Z3�Z2 twist yielding the orbifold has Z3 and Z2 subtwists whi
ha
t trivially on the SO(4) and the SU(3) plane, respe
tively. As a 
onsequen
e, the modelhas bulk �elds living in ten dimensions and �elds from twisted se
tors, whi
h are 
on�nedto six or four dimensions.The model has twelve �xed points1 where the E8 � E8 symmetry is broken to di�er-ent subgroups whose interse
tion is the standard model gauge group up to U(1) fa
tors.1In the following we shall use the terms 'brane' and '�xed point' inter
hangeably. Furthermore, wefollow the notations and 
onventions of [13℄. 5
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Figure 1: The six-dimensional orbifold GUT model with the unbroken non-Abelian subgroupsof the `visible' E8 and the 
orresponding non-singlet hyper- and 
hiral multiplets in the bulkand at the SU(5) GUT �xed points, respe
tively. Fixed points under the Z2 subtwist in theSO(4) plane are labelled by tupels (n2; n02), those under the Z3 subtwist in the SU(3) plane
arry the label n3 = 0; 1; 2. The Z6 �xed point in the G2 plane is lo
ated at the origin.The geometry has an interesting six-dimensional orbifold GUT limit whi
h is obtainedby shrinking the relative size of X4 as 
ompared to Y2. Su
h an anisotropy 
an a

ountgeometri
ally for the hiera
hy between the string s
ale and the GUT s
ale. The spa
egroup embedding [10℄ in
ludes one Wilson line along a one-
y
le in X4, and a se
ond oneas a non-trivial representation of a latti
e shift within Y2. This leads to the MSSM in thee�e
tive 4D theory [10, 11℄ with the 6D orbifold GUT shown in Figure 1 as intermediatestep [13℄. At two equivalent �xed points, labelled as (n2; n02) = (0; 0); (0; 1), the unbrokengroup 
ontains SU(5); at the two other �xed points, (n2; n02) = (1; 0); (1; 1), the unbrokengroup 
ontains SU(2)� SU(4).2The 6D orbifold GUT has N = 2 supersymmetry and unbroken gauge groupG6 = SU(6)� U(1)3 � �SU(3)� SO(8)� U(1)2� ; (3.1)with the 
orresponding massless ve
tor multiplets(35; 1; 1) + (1; 8; 1) + (1; 1; 28) + 5� (1; 1; 1) : (3.2)In addition one �nds the bulk hypermultiplets(20; 1; 1) + (1; 1; 8) + (1; 1; 8s) + (1; 1; 8
) + 4� (1; 1; 1) ; (3.3)where we have dropped the U(1) 
harges. It is 
onvenient to de
ompose all N = 2 6Dmultiplets in terms of N = 1 4D multiplets. The 6D ve
tor multiplet splits into a pair of2A 5D orbifold GUT model with the same bulk and brane gauge symmetries and gauge-Higgs uni�
ationhas been 
onstru
ted in [30℄; the matter and Higgs se
tor, however, is very di�erent from the model [13℄.6



4D ve
tor and 
hiral multiplets, A = (V; �), whereas a hypermultiplet 
ontains of a pairof 
hiral multiplets, H = (HL; HR); here � and HL are left-handed, HR is right-handed. Itis often 
onvenient to use the 
harge 
onjugate �eld H
R instead of HR so that all degreesof freedom are 
ontained in left-handed 
hiral multiplets. In the following we use thesame symbol for a hypermultiplet and its left-handed 
hiral multiplet; the supers
ript '
'indi
ates that the �eld is the 
harge 
onjugate of a right-handed 
hiral multiplet 
ontainedin a hypermultiplet. As an example, the 
hiral multiplets 5 and �5
 are both 5-plets of SU(5),but they belong to di�erent hypermultiplets whi
h transform as 5 and �5, respe
tively.As we shall see, the four non-Abelian singlets, denoted as U1:::U4, play a 
ru
ial role inva
ua with unbroken matter parity; the SU(6) 20-plet 
ontains part of one quark-leptongeneration. At the SU(5) �xed points one has35 = 24+ 5+ �5+ 1 ; 20 = 10+ 10 : (3.4)In addition to the ve
tor and hypermultiplets from the untwisted se
tor of the string,there are 6D bulk �elds whi
h originate from the twisted se
tors T2 and T4 of the Z6�IIorbifold model. They are lo
alized at the �xed points of the Z3 subtwist in the SU(3) plane,but bulk �elds in the SO(4) plane whi
h is left invariant by this subtwist. In 
ontrast, �eldsof the twisted se
tors T1; T5 and T3 are lo
alized at �xed points in the SO(4) plane. Forsimpli
ity, we shall list in the following only the states of the `visible' se
tor, the 
ompleteset of �elds 
an be found in [13℄. For ea
h of the three �xed points in the SU(3) plane, one�nds 3� (6n3 + �6n3 + Yn3 + �Yn3); n3 = 0; 1; 2; (3.5)where the omitted U(1) 
harges depend on n3. The multipli
ity fa
tor 3 is related to threedi�erent lo
alizations in the G2 plane; Yn3 and �Yn3 denote singlets under the non-Abelianpart of G6. At the SU(5) �xed points n2 = 0, Eq. (3.5) reads3� (5n3 + �5n3 +Xn3 + �Xn3 + Yn3 + �Yn3) ; n3 = 0; 1; 2 ; (3.6)where Xn3 ; �Xn3 denote SU(5) singlets. Note that ea
h N = 2 hypermultiplet H 
ontainstwo N = 1 
hiral multiplets H and H
 with opposite gauge quantum numbers.At the two inequivalent �xed points in the SO(4) plane the bulk gauge group G6 isbroken to the subgroups Gn2=0 and Gn2=1, respe
tively,Gn2=0 = SU(5)� U(1)4 � �SU(3)� SO(8)� U(1)2� ; (3.7)Gn2=1 = SU(2)� SU(4)� U(1)4 � �SU(2)0 � SU(4)0 � U(1)4� : (3.8)At these �xed points N = 1 
hiral multiplets from the twisted se
tors T1=T5 and T3 arelo
alized. At ea
h SU(5) �xed point one has�5 + 10+N 
 + S1 + : : :+ S8 : (3.9)This provides two quark-lepton families and additional singlets whose va
uum expe
tationvalues, together with those ofXn3 and Yn3 
an break unwanted U(1) symmetries. Note that7



�5, 10 and N 
 form together a 16-plet of SO(10) whi
h is unbroken at two equivalent �xedpoints of the 6D orbifold T 6=Z6�II [10℄. Hen
e N 
 is one of the `right-handed' neutrinos inthe theory.A

ording to Eqs. (3.4) and (3.6), the 6D theory dimensionally redu
ed to 4D is ve
-torlike. In terms of N = 1 
hiral multiplets there are two 10's, two 10's, 19 5's and 19�5's. The 
hiral spe
trum in 4D is a 
onsequen
e of the further orbifold 
ompa
ti�
ation.At the �xed points of the SO(4) plane two 
hiral families, �5 + 10, o

ur. Furthermore,the boundary 
onditions for the 6D bulk �elds at the �xed points lead to a 
hiral masslessspe
trum. Zero modes require positive `parities' for bulk �elds at all �xed points. Asshown in [13℄, positive parities at the SU(5) �xed points redu
e the 18 �5's and 18 5's inEq. (3.6) to 10 �5's and 8 5's, i.e., to a 
hiral spe
trum.The model 
learly has a huge va
uum degenera
y. In most va
ua the standard modelgauge group will be broken. This 
an be avoided by allowing only VEVs of the SM singlet�elds,U 
1 ; :::; U4; X0; :::; �X
2; Y0; :::; �Y 
2 ; S1; :::; S8 ; (3.10)but most va
ua will have a massless spe
trum di�erent from the MSSM. An interestingsubset of va
ua 
an be identi�ed by observing that the produ
ts 5n35
n3 and �5n3�5
n3 aretotal gauge singlets for whi
h one 
an easily generate masses at the SU(5) �xed points.This allows the de
oupling of 6 pairs of 5's and �5's [13℄,W �M� �505
0 + �50�5
0 + 515
1 + �51�5
1 + 525
2 + �52�5
2� ; (3.11)after whi
h one is left with three 5-plets, �ve �5-plets and two 10-plets,5; �5; 5
0; �5
0; 51; �51; 5
2; �52; 10; 10
 : (3.12)The de
oupling s
ale M� will be dis
ussed in more detail later on. We are now gettingrather 
lose to the standard model. The bulk �elds, together with the lo
alized �elds (3.9),
an a

ount for four quark-lepton families, and the additional three pairs of 5- and �5-pletsmay 
ontain a pair of Higgs �elds.How 
an one distinguish between Higgs and matter �elds and whi
h �elds should bede
oupled? The dis
ussion in Se
tion 2 suggests to sear
h for the U(1)X symmetry amongthe six U(1) fa
tors at the SU(5) �xed points, so that the extended SU(5)� U(1)X gaugesymmetry 
ontains U(1)B�L,tX = 5Xi=1 aiti + a6t06; tB�L = tX + 45tY : (3.13)Here t1; : : : ; t06 are generators of the six lo
al U(1) fa
tors3 at n2 = 0 (
f. [13℄), and tY isthe hyper
harge generator in SU(5). For 
ompleteness all 
harges of the remaining SU(5)multiplets and the singlets (3.10) are listed in Tables 3.2 and 3.3, respe
tively.3Note that the ti are orthogonal but not normalized, ti � tj = diag(1; 1; 6; 1; 3; 30), where t6 � t06.8



5 �5
0 51 �5 5
0 �51 �52 5
2U(1)X �25 �25 �25 25 25 �35 25 �35SU(3)� SU(2) (1; 2) (3; 1) (1; 2) (1; 2) (�3; 1) (1; 2) (�3; 1) (1; 2)U(1)B�L 0 �23 0 0 23 0 �13 �1MSSM Hu? Hu? Hd? Hd? d3 l3Table 3.1: SU(5) non-singlet 
hiral multiplets at n2 = 0. SU(3) � SU(2) representations,B � L 
harges and MSSM identi�
ation refer to the zero modes.We 
an now demand the 
anoni
al U(1)X 
harges (2.4) for the lo
alized �elds andthe bulk 10- and 10
-plets. This �xes four 
oe�
ients: a1 = a2 = 2a4; a3 = �1=3; a6 =1=(15). Two 5- and two �5-plets then have the 
harges of the Higgs multiplets Hu and Hd,respe
tively,tX(5) = tX(�5
0) = �25 ; tX(�5) = tX(5
0) = 25 : (3.14)This leaves �51, 5
2 and �52 as 
andiates for matter �elds. The requirement to identify two�5-plets whi
h, together with 10 and 10
, form two generations, uniquely determines thelast two 
oe�
ents, a1 = 1 and a5 = 1=6, so thattX = t1 + t2 � 13t3 + 12t4 + 16t5 + 115t06: (3.15)The remaining 
harge assignments readtX(51) = �tX(�51) = �25 ; tX(�52) = tX(5
2) = �35 : (3.16)One 
an also embed the U(1)PQ symmetry (2.7) in the produ
t U(1)6. One �ndstPQ = �12 (t1 + t2) + 16t3 � 12t4 + 16t5 + 115t06: (3.17)However, in the va
ua 
onsidered in the next se
tion, this symmetry is 
ompletely broken.To pro
eed further we now 
onsider the zero modes of the 5- and �5-plets listed inTable 3.1: �5
0 and 5
0 yield exoti
 
olour triplets and therefore have to be de
oupled,W �M 0� �5
05
0 : (3.18)where the de
oupling s
ale M 0� will be dis
ussed in more detail later on. �52 and 5
2 
ontaina 
anoni
al 
olour-triplet and lepton doublet, respe
tively. Finally, 5 and 51 are 
andidatesfor Hu, whereas �5 and �51 are 
andidates for Hd.9



For the matter �elds we now have a 
lear pi
ture. There are two lo
alized branefamilies4,(n2; n02) = (0; 0) : �5(1); 10(1); (n2; n02) = (0; 1) : �5(2); 10(2); (3.19)and two further families of bulk �elds,�5(3) � 5
2; 10(3) � 10; �5(4) � �52; 10(4) � 10
 : (3.20)At the �xed points n2 = 0, these 
hiral N = 1 multiplets form a lo
al SU(5) � U(1)XGUT theory. The 
orresponding Yukawa 
ouplings are 4� 4 matri
es whi
h are generatedlo
ally [13℄,WYuk = C(u)ij 10(i)10(j)Hu + C(d)ij �5(i)10(j)Hd; (3.21)a

ording to the string sele
tion rules. Proje
ting the bulk �elds to their zero modes,10
 : (3; 2) = q; 10 : (�3; 1) = u
; (1; 1) = e
;�52 : (�3; 1) = d
; 5
2 : (1; 2) = l; (3.22)yields one quark-lepton generation in the e�e
tive 4D theory. From (3.21) one dedu
es the
orresponding 3� 3 Yukawa matri
es,WYuk = Y (u)ij u
iqjHu + Y (d)ij d
iqjHd + Y (l)ij lie
jHd; (3.23)whi
h avoid the unsu

essful SU(5) predi
tion of 4D GUTs.Like all U(1) fa
tors at the SU(5) �xed points, the U(1)X symmetry has to be spon-taneously broken at low energies. As we saw in Se
tion 2, it is then 
ru
ial to maintaina Z2 subgroup, whi
h in
ludes matter parity, to distinguish between Higgs and matter�elds. In order to see whether this is possible in the present model one has to examinethe U(1)X 
harges of the singlet �elds (3.10), whi
h are listed in Table 3.3. In the va
uumsele
ted in [13℄ �elds with tX = �1 obtained a VEV breaking U(1)X 
ompletely. This ledto phenomenologi
ally una

eptable R-parity violating 
ouplings.Varying the dis
rete Wilson line in the SO(4) plane, in [11℄ 4D models with 
onservedmatter parity were found. In these models only SM singlets with even B�L 
harge aquireVEVs. These �elds are zero modes of the 4D theory. In a 6D orbifold GUT model, inprin
iple all 6D zero modes 
an aquire VEVs, even if they do not 
ontain 4D zero modes,sin
e the negative mass squared indu
ed by the lo
al Fayet-Iliopoulos terms 
an 
ompensatethe positive Kaluza-Klein GUT mass term. Hen
e, one 
an in
lude the �elds U2 and U4,whi
h have tB�L = �2 (see Table 3.3), in the set of va
uum �elds. Not allowing VEVs ofsinglets with tB�L = �1 then preserves matter parity. Note that not all va
ua of the 6Dorbifold GUT 
an be obtained from the 4D zero modes.4Note that subs
ripts without bra
kets denote the lo
alization of T2=T4 twisted �elds, n3 = 0; 1; 2.Subs
ripts with bra
kets, (1) . . . (4), label the four brane and bulk families de�ned in (3.17) and (3.18).10



Multiplet t1 t2 t3 t4 t5 t06 R1 R2 R3 k kn3 tX ~R1 ~R210 �12 12 0 0 0 3 �1 0 0 0 0 15 �1 110�10
 12 �12 0 0 0 3 0 �1 0 0 0 15 �1 1105 0 0 0 0 0 �6 0 0 �1 0 0 �25 0 45�5 0 0 0 0 0 6 0 0 �1 0 0 25 0 6510(1);10(2) 0 �16 �12 13 0 12 �16 �13 �12 1 0 15 �1 110�5(1);�5(2) 0 �16 32 13 0 �32 �16 �13 �12 1 0 �35 1 7105
0 0 13 �1 �23 0 1 �23 �13 0 4 0 25 1 15�5
0 0 13 1 �23 0 �1 �23 �13 0 4 0 �25 0 4551 0 �13 �1 �13 �1 �1 �13 �23 0 2 2 �25 0 95�51 12 16 0 �13 �1 1 �13 �23 0 2 2 25 0 655
2 �12 �16 0 13 �1 1 �23 �13 0 4 8 �35 1 � 310�52 0 �13 1 �13 1 1 �13 �23 0 2 4 �35 �1 � 310Table 3.2: SU(5) non-singlet 
hiral multiplets at n2 = 0. The subs
ripts (1) and (2) denotelo
alization at n02 = 0 and n02 = 1, respe
tively. The 
harges 12 tX and ~R2 agree mod 1.The pairwise de
oupling (3.11), the de
oupling of the exoti
 5- and �5-plets, and thematter parity preserving breaking of U(1)B�L 
an be a
hieved with the minimal va
uumS0 = �X0; �X
0; U2; U4; S2; S5	 : (3.24)For the de
oupling masses in Eqs. (3.11) and (3.18) one obtains,M� = h �X
0S2S5i ; M 0� = hX
0S2S5i : (3.25)As we shall dis
uss in detail in the following se
tion, the 
ouplings needed to de
ouplethe 5�5-pairs satisfy all string sele
tion rules. Note that no exoti
 matter is lo
ated at the�xed points n2 = 0. Most of the exoti
 matter at n2 = 1 
an be de
oupled by VEVs ofjust a few singlet �elds (
f. [13℄). This de
oupling takes pla
e lo
ally at one of the �xedpoints, whi
h is a 
ru
ial di�eren
e 
ompared to previous dis
ussions of de
oupling in fourdimensions [10,11℄. The uni�
ation of gauge 
ouplings yields important 
onstraints on thede
oupling masses M� and the GUT s
ale MGUT. This question goes beyond the s
ope ofour paper. Detailed studies have re
ently been 
arried out for the 6D model [29℄ in [31℄and for a heteroti
 6D model similar to the one des
ribed here in [32℄.The minimal va
uum S0 has two pairs of Higgs doublets. In order to have gauge
oupling uni�
ation, one pair has to be de
oupled. This 
an be done in various ways byenlarging the minimal va
uum. For the de
oupling the 6D gauge 
ouplings are important.11



Singlet t1 t2 t3 t4 t5 t06 R1 R2 R3 k kn3 tXU 
1 �12 �12 �3 0 0 0 0 �1 0 0 0 0U2 12 12 �3 0 0 0 �1 0 0 0 0 2U3 1 �1 0 0 0 0 �1 0 0 0 0 0U4 �1 �1 0 0 0 0 �1 0 0 0 0 �2S1; S01 �12 �23 12 13 0 52 56 �13 �12 1 0 �1S2; S02 12 �23 �12 13 0 �52 56 �13 �12 1 0 0S3; S03 12 13 12 13 0 52 �16 23 �12 1 0 1S4; S04 12 13 12 13 0 52 116 �13 �12 1 0 1S5; S05 �12 13 �12 13 0 �52 �16 23 �12 1 0 0S6; S06 �12 13 �12 13 0 �52 116 �13 �12 1 0 0S7; S07 0 �16 �12 �23 1 52 56 �13 �12 1 1 0S8; S08 0 �16 32 �23 �1 52 �16 �13 �12 1 2 �1X0 0 �13 1 23 0 5 �13 �23 0 2 0 0X
0 0 13 �1 �23 0 �5 �23 �13 0 4 0 0�X0 0 �13 �1 23 0 �5 �13 �23 0 2 0 0�X
0 0 13 1 �23 0 5 �23 �13 0 4 0 0X1 0 �13 �1 �13 �1 5 �13 �23 0 2 2 0X
1 0 13 1 13 1 �5 �23 �13 0 4 4 0�X1 12 16 0 �13 �1 �5 �13 �23 0 2 2 0�X
1 �12 �16 0 13 1 5 �23 �13 0 4 4 0X2 12 16 0 �13 1 5 �13 �23 0 2 4 1X
2 �12 �16 0 13 �1 �5 �23 �13 0 4 8 �1�X2 0 �13 1 �13 1 �5 �13 �23 0 2 4 �1�X
2 0 13 �1 13 �1 5 �23 �13 0 4 8 1Y0 1 �13 0 23 0 0 �13 �23 0 2 0 1Y 
0 �1 13 0 �23 0 0 �23 �13 0 4 0 �1�Y0 �1 �13 0 23 0 0 �13 �23 0 2 0 �1�Y 
0 1 13 0 �23 0 0 �23 �13 0 4 0 1Y1 0 23 �2 �13 �1 0 �13 �23 0 2 2 1Y 
1 0 �23 2 13 1 0 �23 �13 0 4 4 �1�Y1 12 �56 1 �13 �1 0 �13 �23 0 2 2 �1�Y 
1 �12 56 �1 13 1 0 �23 �13 0 4 4 1Y2 0 23 2 �13 1 0 �13 �23 0 2 4 0Y 
2 0 �23 �2 13 �1 0 �23 �13 0 4 8 0�Y2 12 �56 �1 �13 1 0 �13 �23 0 2 4 0�Y 
2 �12 56 1 13 �1 0 �23 �13 0 4 8 0Table 3.3: Non-Abelian singlets at n2 = 0. S1; :::; S8 and S01; :::; S08 are lo
alized at n02 = 0and n02 = 1, respe
tively.
12



For the bulk �elds from the untwisted se
tor one hasLH � p2g Z d2� H
R(20)HL(20)�(35) + h.
.� p2g Z d2� 10
10 5 + h.
. : (3.26)Identifying the 5-plet from the gauge multiplet with one Higgs multiplet, Hu = 5, thereforeyields the wanted large top-quark Yukawa 
oupling [10, 11, 13℄.For the Higgs �eld Hd we shall 
onsider both options, Hd = �51 and Hd = �5, to whi
hwe refer as partial and full gauge-Higgs uni�
ation, respe
tively. In the �rst 
ase, the 6Dgauge intera
tions,LH � p2g Z d2� (H
R(6)�(35)HL(6) +H
R(�6)�(35)HL(�6)) + h.
.� p2g Z d2� �X055
0 + �X0�5�5
0 +X
151�5 + �X
1�515+X255
2 + �X
2�525� ; (3.27)
an be used to de
ouple the pair �551. The VEV hX
1i 6= 0 yields the needed mass term.On the other hand, h �X
1i = 0 is required to keep the �eld 5 massless. Full gauge-Higgsuni�
ation needs hX
1i = �X
1 = 0. Note that VEVs of X0, �X0 and X
2 do not lead to massterms for zero modes of 5 and �5.The de
oupling terms (3.25) require VEVs of both bulk and lo
alized �elds. Notethat the lo
alized singlets S2 and S5 
orrespond to os
illator modes. As we will see inSe
tion 5, bulk and brane �eld ba
kgrounds are typi
ally indu
ed by lo
al FI terms. Thenon-vanishing VEVs of lo
alized �elds are related to a resolution of the orbifold singularities[22,23℄. The study of the blow-up of the 6D orbifold model to a smooth manifold, and thegeometri
al interpretation of the lo
alized VEVs is beyond the s
ope of this work.4 Vanishing 
ouplings and dis
rete symmetriesThe heteroti
 lands
ape has a tremendous number of va
ua. Orbifold 
ompa
ti�
ations
orrespond to a subset of va
ua with enhan
ed symmetries. For `non-standard' embeddingsof the spa
e group into the E8 � E8 latti
e, to whi
h our Z6�II model belongs, Fayet-Iliopoulos terms related to anomalous U(1)'s imply that the orbifold point in moduli spa
eis a `false va
uum'. In `true va
ua' some s
alar �elds aquire a non-zero VEV, whi
hspontaneously breaks the large symmetry Gtot at the orbifold point to a sbgroup Gva
.For a given orbifold 
ompa
ti�
ation with typi
ally O(100) massless 
hiral super�elds ahuge va
uum degenera
y exists. The identi�
ation of standard model like va
ua and theirstabilization still is a major problem.In the 6D orbifold GUT model des
ribed in the previous se
tion, we have identi�ed �eldswhi
h provide the building blo
ks of a lo
al SU(5) GUT. The 
ouplings of the e�e
tive �eldtheory are generated by expe
tation values of produ
ts of SU(5) singlet �elds. The singlet�elds with non-zero VEVs de�ne a va
uum S whi
h is restri
ted by the requirement thatstates with exoti
 quantum numbers are de
oupled andN = 1 supersymmetry is preserved.13



The appearen
e of a 
oupling between some SU(5) non-singlets in the e�e
tive �eldtheory requires the existen
e of an operator whi
h involves additional singlets from theva
uum S. Su
h operators are strongly restri
ted by string sele
tion rules, whi
h 
an beexpressed as a symmetry Gtot at the orbifold point. A ne
essary 
ondition for the absen
eof a 
ertain 
oupling is then the requirement that for the singlets of the va
uum S the
orresponding operators do not exist. The va
uum S has unbroken symmetry Gva
 � Gtot.Obviously, a su�
ient 
ondition for the absen
e of a 
oupling between SU(5) non-singletsis its non-invarian
e under Gva
. Both 
onditions will be studied in the following.The main question in this se
tion is the absen
e of unwanted superpotential terms inthe e�e
tive theory. We fo
us on the �-term, but the dis
ussion 
an easily be extendedto dimension-5 proton de
ay operators as well as other 
ouplings. We shall provide analgorithm for �nding `maximal va
ua' whi
h are `orthogonal' to unwanted terms, and wepresent a method whi
h allows to 
al
ulate vanishing tree-level 
ouplings to all orders inpowers of singlets.4.1 Orbifold geometry and dis
rete symmetriesThe geometry of the 
ompa
t spa
e, its invarian
e under dis
rete rotations and the lo
al-ization of �elds at �xed points and �xed planes lead to dis
rete symmetries [33℄ of thesuperpotential in 4D as well as in 6D at the orbifold �xed points. The dis
rete rotations inthe G2, SU(3) and SO(4) planes are asso
iated with three R-
harges Ri, i = 1; 2; 3, whi
hare 
onserved modulo the order li = 6; 3; 2 of the twist in the respe
tive plane,Xj R(j)1 = �1 mod 6 ; Xj R(j)2 = �1 mod 3 ; Xj R(j)3 = �1 mod 2 ; (4.1)where the sum is over all �elds of the parti
ular superpotential term.Fields from di�erent twisted se
tors Tk, k = 1; :::; 6 have di�erent lo
alization properties.For k = 1; 5 �elds are lo
alized at �xed points; k = 2; 4 and k = 3 
orrespond to brane�elds in the SO(4) and SU(3) planes, respe
tively. For ea
h superpotential term one hasXj k(j) = 0 mod 6 : (4.2)Furthermore, 
ouplings of �elds lo
alized in the SU(3) and SO(4) planes have to satisfythe 
onstraintsSU(3) plane : Xj k(j)n(j)3 = 0 mod 3 ; (4.3)SO(4) plane : Xj k(j)n(j)2 = 0 mod 2 ; Xj k(j)n0(j)2 = 0 mod 2 : (4.4)The 
onstraints (4.1) - (4.4) 
orrespond to a dis
rete symmetry whi
h a
ts on the 6Dbrane and bulk �elds. From Tables 3.2 and 3.3 one reads o� that R-
harges of �elds from14



the twisted se
tor Tk have the form Ri[�k℄ = �k=limod1. This implies that the dis
reterotationsg(i)m = e2�imli Ri ; m 2 Z ; (4.5)whi
h are of order l2i , form the group Zli �Z(k)li . The group element lies in the latter fa
torfor m = 0mod li. The superpotential has to transform asg(i)m W = e�2�imliW ; m 2 Z ; (4.6)under this produ
t group. For i = 1 one dedu
es that the sele
tion rule (4.2) is implied bythe dis
rete R-symmetries (4.1) and not an additional independent 
ondition.We 
an make the produ
t stru
ture expli
it by expressing the a
tions of the two sub-groups asZli : h(i)m = e2�i 1li (mRimodk) ; Z(k)li : ĥ(i)m0 = e2�im0kli ; m;m0 2 Z : (4.7)This de
omposition applies for all three dis
rete R-symmetries. The groups Z(k)3 and Z(k)2are subgroups of Z(k)6 so that the total R-symmetry of the lagrangian is given byGR = ZR16 � ZR23 � ZR32 � Z(k)6 : (4.8)The spa
e sele
tion rules (4.3) and (4.4) 
orrespond to further dis
rete symmetries Z3and Z2, respe
tively, whi
h 
ommute with supersymmetry. One then obtains for the fulldis
rete symmetry,Gdis
rete = hZR16 � ZR23 � ZR32 � Z(k)6 iR � Zkn33 � Zkn22 � Zkn202 : (4.9)Introdu
ing the `dis
rete 
harge ve
tor'K = (R1; R2; R3; k; kn3; kn2; kn02); (4.10)all superpotential terms have to obeyK(W ) = Kva
; (4.11)where the `dis
rete va
uum 
harges' are given byKva
 = (�1mod6;�1mod3;�1mod2; 0mod6; 0mod3; 0mod2; 0mod2) : (4.12)Covarian
e of the superpotential W 
orresponds to invarian
e of the lagrangian W j��.Together with the gauge symmetryGgauge = SU(5)� U(1)4 � �SU(3)� SO(8)� U(1)2� ; (4.13)the full symmetry at the SU(5) �xed points of the 6D orbifold GUT isGtot = Ggauge �Gdis
rete: (4.14)15



De�ning for the U(1) symmetries the 
harge ve
torQ = (t1; :::; t06); (4.15)gauge invarian
e of the superpotential impliesQ(W ) = (0; 0; 0; 0; 0; 0): (4.16)Lo
alized FI-terms, related to anomalous U(1)'s, lead to nonvanishing VEVs of some6D brane and bulk �elds. This breaks the symmetry of the 6D theory spontaneously,Gtot ! Gva
 : (4.17)We are interested in va
ua whi
h preserve SU(5). We therefore devide all �elds into twosets, SU(5) non-singlets �i and SU(5) singlets si. A set S of singlets whi
h aquire VEVs,S = fsij tSU(5)(si) = 0; hsii 6= 0g; (4.18)de�nes a va
uum of the 6D orbifold GUT.4.2 Maximal va
ua for vanishing 
ouplingsConsider now a va
uum S and a superpotential term whi
h 
an lead to a 
oupling for theprodu
t � =Qj �mjj of SU(5) non-singlet �elds,W = �� ; � = NYi snii ; si 2 S; ni; N 2 N : (4.19)The two 
onditions (4.11) and (4.16) 
an be evaluated separately. First, we fa
torize a partof � whi
h transforms non-trivially under gauge transformations by introdu
ing a `spe
ialmonomial' �s,� = �0�s ; Q(�s�) = 0 ; Q(�0) = 0 : (4.20)Generi
ally, the set of monomialskerQ(S) � (�0 ����0 = NYi snii ; si 2 S; ni 2 Z; Q(�0) = 0) (4.21)is a spa
e of dimension larger than one. Note that we allow both �0 and �s to have sub-monomials with negative exponents ni, in 
ontrast to their produ
t �.5 Clearly, results for� 
annot depend on the 
hoi
e of the spe
ial monomial �s. Covarian
e of the superpotentialunder the dis
rete symmetries (4.9) requiresK(�0) = Kva
 � K(�s�) ; (4.22)5Negative exponents are allowed in order to promote the set of all possible exponents of monomialsf(n1; : : : ; nN ); N 2 Ng to a ve
tor spa
e. 16



whi
h de�nes the subset of monomials in kerQ(S) yielding a non-vanishing 
oupling �.In order to identify va
ua where the superpotential term (4.19) is forbidden we pro
eedas follows. The elements of kerQ(S) are given by the solutions of the equationsQ(�0) = NXi=1 niQ(si) = 0 (4.23)for the 
harge ve
tor Q. The solutions 
an be represented by ve
tors (n1; :::; nN) whi
hare linear 
ombinations of some basis ve
tors. These 
orrespond to basis monomials whoseprodu
ts are the elements of kerQ(S).We now examine the dis
rete symmetries. After the 
hoi
e of a spe
ial monomial �s,Eq. (4.22) 
an be evaluated for the basis monomials of kerQ(S). Starting from a su�
ientlysmall set S whi
h does not satisfy (4.22), one 
an subsequently add further singlets until a`maximal va
uum' is rea
hed for whi
h the term (4.19) is forbidden to all orders in powersof singlets. The generalization of this algorithm to the 
ase of more than one forbidden
oupling is straightforward.4.2.1 Full gauge-Higgs uni�
ationAs a �rst example, 
onsider the �-term in the 
ontext of full gauge-Higgs uni�
ation inour model, Hu = 5 and Hd = �5. In that 
ase� � �GHU = HuHd = 5�5; Q(�) = 0; K(�) = 0 : (4.24)Note that � is a 
omplete singlet. This leads to �s = 1 and the 
onditionK(�0) = Kva
 (4.25)for an allowed �-term. Let us now de�ne the va
uumS1 = S0 [ �X1; �X1; Y2; S7	 ; (4.26)where S0 was de�ned in (3.24). One easily veri�es that the dimension of kerQ(S1) is four.Basis monomials 
i are listed in Table 4.1 from whi
h one reads o� that it is impossibleto satisfy R1(
i) = �1mod 6. Hen
e, the �-term is absent in the va
uum S1 to all ordersin the singlets.The va
uum S1 is maximal sin
e adding any further singlet respe
ting matter parityleads to a �-term. This is demonstrated by Table 4.2 where for ea
h possible additionalsinglet the order is listed at whi
h a �-term appears. It is intriguing that for some va
uaa �-term only o

urs at very high orders in the singlets.As dis
ussed in Se
tion 3, there is another 
andidate for Hd with even matter parity,�51 from the twisted se
tor T2. The va
uum S1 has only full gauge-Higgs uni�
ation if the�eld �51 is de
oupled by means of a large mass term together with 51 whi
h also has evenmatter parity. 17



Name Monomial R1 R2 R3 k kn3
1 �X
0S2S5 0 0 �1 6 0
2 X1Y2S2S5 0 �1 �1 6 6
3 X0 �X1S5S7 0 �1 �1 6 3
4 X0 �X1Y2U2U4 �3 �2 0 6 6Table 4.1: Basis monomials of kerQ(S1) and the 
orresponding dis
rete 
harges. All mono-mials have kn2 = kn02 = 0.Add Mass term for 5�5 Order Mass term for 51�51 Order�Y2 (X0 �X
0 �X1 �Y2(S5)2)2
1
4 20 (X0)2X1 �X1(Y2)2( �Y2)2(S5)4
2
4 21�Y 
2 ( �Y 
2 S2S7)2
1
4 14 X0Y2( �Y 
2 )2(S2)3(S5)2(S7)3
2
4 21U 
1 (X0 �X1Y2U 
1)
2 8 X0(Y2)2U 
1S2S5 6U3 ( �X
0U3(S5)2)2
2
4 17 X0 �X
0(Y2)2U2(U3)2U4(S5)4
1 15S6 (X1Y2S2S6)
4 9 X0(Y2)2U2U4S2S6 7Table 4.2: Addition of any further �eld to S1 generates monomials whi
h indu
e mass termsfor 5�5 and 51�51. Shown are lowest order examples. The monomials 
i are de�ned in table4.1. Singlets whi
h 
omplete pairs A
A are not listed, sin
e they allways allow to form massterms proportional to 
1A
A. We do only 
onsider singlets whi
h 
onserve matter parity.Using the method des
ribed above we 
an easily study the mass term � = 51�51. Choos-ing as spe
ial monomial �s = (X1 �X1)�1, whi
h has the 
onvenient feature Q(�s51�51) = 0,one obtainsK(�s51�51) = 0: (4.27)The 
onditions for the existen
e of a �-term then readK(�0) = Kva
; ns(�) � 0; (4.28)where ns(�) is the exponent of the singlet s 2 S1 in the monomial � = �0�s. The last
ondition requires the appearan
e of at least one fa
tor of 
2, and 
3 or 
4 from Table 4.1in the monomial �0. However, the R-
harges of these monomials imply that again it isimpossible to satisfy the �rst 
ondition (4.28) for the va
uum S1. Hen
e, also the massterm 51�51 vanishes to all orders in the singlets. Analogously, one easily veri�es that themass terms 5�51 and 51�5 vanish as well.Adding further singlets to the va
uum S1 leads to a non-zero 51�51 mass term as demon-strated in Table 4.2. The mass terms for 5�5 and 51�51 are roughly of the some order in thesinglets. It is intriguing that in some 
ases very high orders o

ur, whi
h 
ould explain thehierar
hy between the ele
troweak s
ale and the GUT s
ale. However, the main result ofthis se
tion is that the va
uum S1 does not 
orrespond to gauge-Higgs uni�
ation. Instead,it represents a model with two pairs of Higgs doublets. This may be phenomenologi
allya

eptable, but it is in
onsistent with gauge 
oupling uni�
ation.18



Name Monomial R1 R2 R3 k kn3
01 �X
0S2S5 0 0 �1 6 0
02 �X
0X
1Y 
2 �2 �1 0 12 12
03 �X
0(S5)2U3 �2 1 �1 6 0
04 X0 �X1S5S7 0 �1 �1 6 3
05 X0 �X
0X
1 �X1U 
1 �2 �3 0 12 6
06 X0 �X
0 �X1 �Y2(S5)2 �2 �1 �1 12 6
07 X0 �X
0 �X1 �Y2(S6)2 2 �3 �1 12 6
08 X0 �X
0X
1 �X1U2U4 �4 �2 0 12 6Table 4.3: Basis monomials of kerQ(S2) and their dis
rete 
harges. All monomials havekn2 = kn02 = 0.4.2.2 Partial gauge-Higgs uni�
ationConsider now the 
ase of partial gauge-Higgs uni�
ation, Hu = 5 and Hd = �51,� � �PGHU = HuHd = 5�51; (4.29)whi
h 
an be realized with the va
uumS2 = S0 [ �X
1; �X1; Y 
2 ; �Y2; U 
1 ; U3; S6; S7	 : (4.30)As dis
ussed in Se
tion 3, the 51�5 pair 
an be de
oupled with the VEV hX
1i 6= 0. Forthe new va
uum kerQ(S2) is again easily 
al
ulated, it has dimension eight. A set of basismonomials is listed in Table 4.3.For partial gauge-Higgs uni�
ation the �-term is the 5�51 mass term. Choosing asspe
ial monomial �s = ( �X1)�1, with Q(�s5�51) = 0, one obtainsK(�s5�51) = (0; 0;�1; 0; 0; 0; 0): (4.31)The 
onditions for the existen
e of a �-term now readK(�0) = (�1mod 6;�1mod3; 0mod2; 0mod6; 0mod3; 0mod2; 0mod2) ;ns(�) � 0; (4.32)where ns(�) is the exponent of the singlet s 2 S2 in the monomial � = �0�s. The last
ondition requires the presen
e of at least one fa
tor of 
04, 
05, 
06, 
07 or 
08. Sin
e all basismonomials have even R1 
harge the �rst 
ondition (4.32) is always violated by monomialsin kerQ(S2). Hen
e, the �-term vanishes again to all orders in the singlets.The va
uum S2 is also maximal, sin
e the only possibility to enlarge it without breakingmatter parity is to add singlets A (A
) whose N = 2 superpartners A
 (A) already belongto S2. One then obtains the �-term� = �0�s; �0 = AA
(
05)3; (4.33)whi
h is of order 16 in the singlets. This power may be su�
iently high to provide anexplanation of the hierar
hy between the ele
troweak and the GUT s
ale.19



4.2.3 �-term and gravitino massThe method of maximal va
ua also allows to relate the existen
e of di�erent 
ouplings. Inparti
ular, one 
an show for full and partial gauge-Higgs uni�
ation that the existen
e of a�-term and a singlet 
ontributionW0 to the superpotential, whi
h determines the gravitinomass m3=2 / hW0i, are equivalent.For full gauge-Higgs uni�
ation the equivalen
e follows dire
tly from the fa
t that �and W0 are given by invariant monomials in kerQ(S) [11℄,��GHU allowed , W0 = � allowed : (4.34)For partial gauge-Higgs uni�
ation the 
ondition for a �-term � � �0�s depends on thequantum numbers of the Higgs �elds,K(�0) = Kva
 � K(�s�PGHU) = K(W0)� K(�s�PGHU): (4.35)From Eq. (4.31) and Table 4.3 one reads o�K(�s�PGHU) = K(
01) = K((
04)3); (4.36)whi
h implies��PGHU = �0(�s�PGHU) allowed ) W0 = �0
01 allowed ; (4.37)W0 allowed ) ��PGHU =W0(
04)3(�s�PGHU) allowed: (4.38)Note that 
01 = �X
0S2S5 is the monomial used for the de
oupling of 5�5 pairs in Se
tion 3.Our analysis demonstrates that the �-term and the gravitino mass are 
losely related,in parti
ular for va
ua with full and partial gauge-Higgs uni�
ation.4.3 Unbroken symmetriesIn a given va
uum S the symmetry at the SU(5) �xed pointsGtot = Ggauge �Gdis
rete (4.39)is spontaneously broken to some subgroup,Gtot ! Gva
(S); (4.40)whi
h 
an be identi�ed in the standard manner. Knowledge of Gva
(S) is obviously veryvaluable sin
e it restri
ts possible terms in the superpotential. Forbidden 
ouplings forYukawa matri
es 
orrespond to `texture zeros'.Consider a singlet si 2 S. Under the symmetry Gtot it transforms assi ! e2�i(��Q+r�K)si : (4.41)Here the ve
tors � and r,� = (�1; :::; �6) ; �i 2 R; r = �r16 ; r23 ; r32 ; r46 ; r53 ; r62 ; r72 � ; ri 2 Z; (4.42)20



parametrize the 
ontinuous and dis
rete symmetries of the theory.A parametrization of the unbroken group Gva
(S) in terms of ve
tors �0 and r0 
an befound by solving the equationssi = e2�i(�0�Q+r0�K)si; 8 si 2 S: (4.43)Knowing the allowed ve
tors �0 and r0, the group Gva
(S) 
an be determined.One unbroken dis
rete subgroup in both va
ua S1 and S2 is easily identi�ed sin
e U2and U4 are the only �elds with non-zero U(1)X 
harge,tX(U2) = �tX(U4) = 2: (4.44)The smallest U(1)X 
harge is tX(10) = 1=5. Hen
e, U(1)X is broken to the dis
retesubgroup ZX10 with elements gXm = exp (2�im2 tX), m 2 Z, whi
h 
ontains matter parity,PX = e2�i( 52 tX): (4.45)The identi�
ation of the further unbroken symmetries is more 
umbersome. We �ndthat in both va
ua no 
ontinuous U(1) symmetry survives. Solving expli
itly equations(4.43) we �nd for the va
uum S1,Gva
(S1) = Z ~R13 � ZX10: (4.46)The elements of the Z3 R-symmetry are ~g(1)m = exp (2�im3 ~R1), m 2 Z, with~R1 = �1 �Q+ r1 � K; �1 = �52 ; 152 ; 0; 52 ;�52 ; 12� ; r1 = (5; 0; 0; 0; 0; 0; 0) : (4.47)The `va
uum R-
harge' is given byr1 � Kva
 = 1mod3 : (4.48)The ~R1 
harges of the SU(5) non-singlets are listed in Table 3.2. Note that ~R1 is embeddedin the R-symmetry as well as the U(1) symmetries of the theory.Following the same pro
edure for the va
uum S2, one obtains the unbroken groupGva
(S2) = Z ~R22 � ZX10: (4.49)The elements of the Z2 R-symmetry are ~g(2)m = exp �2�i12 �m ~R2mod tX��, m 2 Z, with~R2 = �2 �Q+ r2 � K; �2 = �7; 0;�76 ; 354 ; 712 ;� 715� ; r2 = (7; 0; 0; 0; 0; 0; 0) ; (4.50)and va
uum R-
harger2 � Kva
 = 1mod2 : (4.51)~R2 is again a non-trivial linear 
ombination of U(1) and dis
rete R-
harges. The ~R2-
hargesof the SU(5) non-singlets are listed in Table 3.2.21



On
e the unbroken subgroups are known one 
an 
al
ulate the 
orresponding zeros ofthe superpotential. Consider again a term of the form (4.19), whi
h transforms under thedis
rete symmetry Zli , li = 3; 2, generated by ~Ri, with i = 1; 2, respe
tively, asW = ��! � ~g(i)m gXn � = e2�imli ri�Kva
 W ; m; n 2 Z : (4.52)We thus obtain as su�
ient 
ondition for the appearan
e of a vanishing 
oupling,~Ri(�) 6= ri � Kva
 mod li _ 12tX(�) 6= 0mod10 ) h�i = 0: (4.53)Given the ~Ri 
harges of the SU(5) non-singlet �elds �j this 
ondition is easily evaluated.We 
an now 
on�rm the result from the previous se
tion that the va
uum S1 has twomassless Higgs pairs. From Table 3.2 we read o�~R1(5�5) = ~R1(51�5) = ~R1(5�51) = ~R1(51�51) = 0mod36= 1mod3 = r1 � Kva
: (4.54)Extending the va
uum S1 by one of the singlets listed in Table 4.2 preserves ZX10 but breaksZ ~R13 . As a 
onsequen
e, Higgs mass terms are generated.Likewise we 
an study the symmetry transformations of the above terms in the va
uumS2, ~R2(5�5) = ~R2(5�51) = 0mod2 ; ~R2(51�5) = ~R2(51�51) = 1mod2 : (4.55)Furthermore, all ZX10 
harges vanish. Re
alling (4.51), this shows that the unbroken R-symmetry forbids the generation of mass terms for 5�5 and 5�51, but allows them for thetwo remaining 
ombinations. Indeed, at lowest order we �nd the mass termW = hX
1i 51(�5+ � �51) ; � = hX0 �X
0X
1Y 
2 S6S7i : (4.56)This shows that 51 de
ouples together with a linear 
ombination of �5 and �51. The orthog-onal linear 
ombination is the down-type Higgs,Hd = �51 � � �5 : (4.57)It is interesting that the va
uum S2 leads to a down-type Higgs with dominant 
omponentfrom a twisted se
tor. In 
ontrast, the up-type Higgs Hu = 5 is a pure gauge �eld in sixdimensions, whi
h is the reason for the large top-quark mass. Compared to the 
ase offull gauge-Higgs uni�
ation, where both Higgs �elds arise from the untwisted se
tor, thisindu
es non-trivial dis
rete R-
harges for the produ
t HuHd.The dis
rete R-symmetries ~R1 and ~R2 of the va
ua S1 and S2, respe
tively, may beanomalous [32℄. This question is important sin
e in the 
ase of an anomaly one 
an expe
tthe generation of �-term and gravitino mass by nonperturbative e�e
ts. These questionswill be studied elsewhere. 22



5 Lo
al Yukawa CouplingsIn the previous se
tion we have identi�ed two va
ua with 
onserved matter parity andvanishing �-terms. The �rst va
uum S1 
orresponds to a model with two pairs of masslessHiggs doublets, and thus without gauge 
oupling uni�
ation. We therefore fo
us on these
ond va
uum S2 with partial gauge-Higgs uni�
ation.The va
uum S2 
ontains the brane �elds S2; S5; S6; S7 lo
alized at (n2; n02) = (0; 0), towhi
h we now add the �elds S 02; S 05; S 06; S 07 at the equivalent �xed point (n2; n02) = (0; 1),S0 = �X0; �X
0; U2; U4; S2; S5; S 02; S 05	 ; (5.1)S2 = S0 [ �X
1; �X1; Y 
2 ; �Y2; U 
1 ; U3; S6; S7; S 06; S 07	 : (5.2)The Higgs �elds are Hu = 5 and Hd ' �51. The va
uum S2 has the following properties:� U(1)X is spontaneously broken to ZX10 
ontaining matter parity,� all ve
tor-like exoti
s at n2 = 0 de
ouple,� all D-terms at n2 = 0 vanish lo
ally,� the �-term vanishes to all orders in the singlets,� hW i vanishes to all orders in the singlets.The remarkable last two features are a 
onsequen
e of an unbroken dis
rete R-symmetry.The va
uum S2 is maximal in the sense that adding more singlets either breaks matterparity or generates a �-term.Low-energy supersymmetry requires vanishing F - and D-terms. In the 6D theory withlo
alized FI-terms the 
orresponding equations have 
ompli
ated solutions, leading to non-trivial pro�les for bulk �elds [15℄. We do not study the full problem here but fo
us on thelo
al 
onditions at the GUT �xed points n2 = 0. We expe
t that the lo
al VEVs 
an beextended to full dynami
al solutions in six dimensions.The N = 2 ve
tor multiplet has three auxilliary �elds D1; D2; D3 whi
h form a tripletunder SU(2)R and must all vanish in the bulk. However, at the �xed points half of thesupersymmetry is broken and the lo
al N = 1 ve
tor multiplet has an e�e
tive D-termD � �D3+F56, where F56 is the asso
iated �eld strength in the y5; y6 dire
tion. Thus thelo
al D-term 
an
elation 
ondition at n2 = 0 (
f. [15℄),Da3 = F a56 = gM2P384�2 tr tajtaj2 +Xi qai jsij2; (5.3)where qai is the U(1)a 
harge of the singlet si, has always a solution, even for non-vanishingright-hand-side. This means that in prin
iple lo
alized FI-terms do not ne
essarily indu
esinglet VEVs and the 
orresponding U(1) 
an remain unbroken. However, sin
e our modelhas distin
t anomalous U(1) fa
tors at the inequivalent �xed points n2 = 0; 1 and a non-vanishing net anomalous U(1) in 4D [13℄, its global D-�at solution 
annot be of that kind.We rather expe
t a mixture of singlet VEVs and a nontrivial gauge ba
kround hF an56 i.23



For non-anomalous U(1)'s the lo
al �eld strength in (5.3) in the va
uum S2 
an vanishsin
e ea
h of the singlets appears in one of the gauge invariant basis monomials 
0i ofkerQ(S2) (
f. Table 4.3). At n2 = 0 the model has an anomalous U(1)an [13℄,t0an = �4t2 + 5t4 � t5 + t06; tr t0an=jt0anj2 = 2: (5.4)In fa
t, also hF an56 i 
an vanish sin
e one 
an form monomials of singlets with negativeanomalous 
harge, whi
h are gauge invariant otherwise. An example is�X
0X
1( �X1)2S5S6(S7)2; (5.5)whi
h has qan = �74=3.We note that the extension of the va
uum S2 to a global solution is not straightforward.As demonstrated in Table 4.3, it does not provide un
harged monomials of bulk �elds only,whi
h in
lude �Y2 or U3. Thus VEVs of these �elds are in
ompatible with Da3 = 0. Onemay redu
e the va
uum to S2 nf �Y2; U3g, or in
orporate pro�les of (partly) odd �elds. Herewe restrain our attention to lo
al properties of the va
uum S2 at the GUT �xed points,leaving the problem of global solutions to further studies.The F -terms Fi = �W=�si vanish trivially for all va
uum �elds si 2 S2, sin
e theyonly arise from monomials whi
h 
ontain at least one other singlet with zero va
uumexpe
tation value. Thus only monomials of the form W = (Qi si)u, with si 2 S2 andhui = 0, indu
e non-trivial F -terms. For the va
uum S2 there are six su
h terms, arisingfrom u 2 �X
0; �X0; X1; �X
1; Y2; �Y 
2 	. Ea
h of these singlets u has a partner u
 whi
h is
ontained in S2 and thus has a non-vanishing vev. Note that u 
annot be a singlet withodd matter parity sin
e the latter is preserved by S2. The relevant part of the superpotentialis then given byW = �au1 + au2(
01)2 + au3(
02)3 + � � � �
01u
u ; (5.6)where the 
0i were introdu
ed in Table 4.3, and auj are 
oe�
ients labeling all 
ompletelyinvariant monomials whi
h 
an be 
onstru
ted from va
uum singlets. The F -term 
ondi-tions be
omeFu / au1 + au2(
01)2 + au3(
02)3 + � � � = 0 : (5.7)We expe
t the existen
e of non-trivial solutions, with VEVs of the singlets si 2 S2 de-termined by the 
oe�
ients auj. Expli
it �nite order examples for similar models weredis
ussed in [11℄.In the framework of heteroti
 orbifold 
ompa
ti�
ations, all 
ouplings of SU(5) non-singlet �elds arise from higher dimensional operators. In the va
uum S2, to lowest order inthe singlets, we �nd the SU(5) Yukawa 
ouplings for the two brane and two bulk families,C(u) = (aij) = 0BB� ~s4 ~s4 ~s5 ~s5~s4 ~s4 ~s5 ~s5~s5 ~s5 ~s6 g~s5 ~s5 g ~s6 1CCA ; C(d) = (bij) = 0BB� 0 0 0 00 0 0 0~s10 ~s10 ~s6 ~s6~s1 ~s1 ~s2 ~s2 1CCA : (5.8)24



Coupling Order Monomiala11 4 ( �X
0 )2 S2 S5a12 4 ( �X
0 )2 S 02 S5a13 5 ( �X
0 )2 (S2)2 S5a14 5 ( �X
0 )2 S2 (S5)2a22 4 ( �X
0 )2 S 02 S 05a23 5 ( �X
0 )2 (S 02)2 S 05a24 5 ( �X
0 )2 S 02 (S5)2a33 6 ( �X
0 )2 ( S2 )3 S5a34 0 ga44 6 ( �X
0 )2 S2 ( S5 )3Table 5.1: Examples of lowest order monomials for C(u)ij = aij in the va
uum S2.Coupling Order Monomialb31 10 X0 ( �X
0 )2 ( X
1 )2 �X1 �Y2 U2 U4 S5b32 10 X0 ( �X
0 )2 ( X
1 )2 �X1 �Y2 U2 U4 S 05b33 6 X0 X
1 �X1 �Y2 S6 S7b34 6 �X
0 ( X
1 )2 Y 
2 S6 S7b41 1 S5b42 1 S 05b43 2 S2 S5b44 2 ( S5 )2Table 5.2: Examples of lowest order monomials for C(d)ij = bij in the va
uum S2.Here ~sn denotes one or more monomial of order n. Expli
it lowest order monomials aregiven in Tables 5.1 and 5.2. Note that all vanishing terms are texture zeros whi
h are pro-te
ted by the unbroken dis
rete R-symmetry to arbitrary order. After orbifold proje
tionto four dimensions the Yukawa 
ouplings for the zero modes readY (u) = 0� a11 a12 a14a21 a22 a24a31 a32 a34 1A = 0� ~s4 ~s4 ~s5~s4 ~s4 ~s5~s5 ~s5 g 1A ; (5.9)Y (d) = 0� b11 b12 b14b21 b22 b24b41 b42 b44 1A = 0� 0 0 00 0 0~s1 ~s1 ~s2 1A ; (5.10)Y (l) = 0� b11 b12 b13b21 b22 b23b31 b32 b33 1A = 0� 0 0 00 0 0~s10 ~s10 ~s6 1A : (5.11)Clearly, these matri
es are not fully realisti
 sin
e me = m� = md = ms = 0. On the other25



Coupling Order Monomial
11 11 ( X0 )2 ( �X
0 )2 �X1 Y 
2 U2 S5 S6 (S7)2
12 11 ( X0 )2 ( �X
0 )2 �X1 Y 
2 U2 S 05 S6 (S7)2
22 11 ( X0 )2 ( �X
0 )2 �X1 Y 
2 U2 S 05 S 06 (S 07)2
33 12 X0( �X
0)4(X
1)2U 
1U2U3S2S5
34 7 ( X0 )2 �X
0 �X1 U2 S6 S7
44 11 ( X0 )3 ( �X
0 )2 ( �X1 )2 U 
1 U2 ( S6 )2Table 5.3: Examples of lowest order monomials for C(L)ij = 
ij in the va
uum S2.hand, they show the wanted hierar
hi
al stru
ture with a large top-quark mass singled out.Unsu

essful SU(5) mass predi
tions are avoided sin
e the third 4D quark-lepton family isa 
ombination of split multiplets from two 6D families.Sin
e U(1)B�L is broken the model also predi
ts Majorana neutrinos. `Right-handed'neutrinos with tB�L = 1 
an be inferred from Table 3.3. Via the seesaw me
hanismthey generate light neutrino masses. We obtain for the 
oe�
ients C(L) (
f. (2.1)) of the
orresponding dimension-5 operator, whi
h 
an be 
al
ulated dire
tly,C(L) = (
ij) = 0BB� ~s11 ~s11 0 0~s11 ~s11 0 00 0 ~s12 ~s70 0 ~s7 ~s11 1CCA : (5.12)Examples of lowest order monomials are given in Table 5.3. Proje
tion to four dimensionsyields for SU(2) doublet zero modes the 3� 3 sub-matrix with i; j = 1; 2; 3.By 
onstru
tion, the �-term vanishes to all orders in the va
uum S2 sin
e it is prote
tedby an unbroken dis
rete R-symmetry. However, this symmetry is not su�
ient to forbiddangerous dimension-5 proton de
ay operators. This 
an be seen from the ~R2-
harges inTable 3.2, e.g.,~R2(�5(1)10(1)10(1)10(1)) = 1mod2 ; ~R2(Kva
) = 1mod2 : (5.13)Sin
e these 
harges agree and the total ZX10 
harge vanishes, the proton de
ay term is notforbidden in the superpotential (2.1). Indeed, we �nd a lowest order monomial at O(7),C(B)1111 = ( �X
0)2X
1 �X1Y 
2 S6S7.Note that the methods presented in Se
tion 4 allow to design va
ua with vanishing�-term and dimension-5 proton de
ay terms to all orders in the singlets. An example isthe va
uum S0, leading to � = C(B)ijkl = 0. However, this va
uum has other problems.It is in
ompatible with lo
al D-term 
an
elation, has no gauge-
oupling uni�
ation andvanishing down-type Yukawa 
ouplings, C(d)ij = 0. This demonstrates that the variousphenomenologi
al properties of a va
uum are 
losely interrelated.In summary, the va
uum S2 leads to too rapid proton de
ay, and also the quark andlepton mass matri
es are not fully realisti
. However, they show the 
orre
t qualitative26



features of the standard model, and we are optimisti
 that a systemati
 s
an of the heteroti
`mini-lands
ape' 
an lead to phenomenologi
ally more viable models.6 Con
lusionsHow to distinguish between Higgs and matter is a 
ru
ial question in supersymmetri
extensions of the standard model, in parti
ular in 
ompa
ti�
ations of the heteroti
 string.We have analyzed this question for va
ua of an anisotropi
 orbifold 
ompa
ti�
ation whi
hhas an e�e
tive 6D supergravity theory as intermediate step between the GUT s
ale andthe string s
ale.Our main result is that for generi
 va
ua, there is no di�eren
e between Higgs andmatter, as there is nothing spe
ial about the standard model gauge group. However,
ertain va
ua with standard model gauge group and parti
le 
ontent 
an possess dis
retesymmetries whi
h single out Higgs �elds. They are distinguished from matter �elds by amatter parity, and a mass term allowed by gauge symmetries is forbidden by an elusivedis
rete R-symmetry, a remnant of the large symmetry exhibited by the fundamentaltheory.We have identi�ed maximal va
ua of a heteroti
 orbifold model with lo
al SU(5) uni-�
ation for whi
h the perturbative 
ontribution to the �-term vanishes. Nonperturbative
orre
tions, possibly related to supersymmetry breaking, may then have the size of theele
troweak s
ale. Alternatively, a non-zero �-term suppressed by high powers of singlet�elds 
an appear in extensions of the maximal va
ua.We have also determined the unbroken dis
rete R-symmetries of the maximal va
ua.They are judi
iously embedded into the large symmetry of the theory, whi
h is a 
on-sequen
e of the large number of singlet �elds forming the va
uum. It is intriguing thatthe maximal va
ua do not in
lude gauge-Higgs uni�
ation, but rather partial gauge-Higgsuni�
ation for the Higgs �eld Hu whi
h gives mass to the up-type quarks. The originalsymmetry between 5- and �5-plets is broken by sele
ting va
ua where matter belongs to �5-and 10-plets.The method developed to �nd maximal va
ua 
an be applied to all theories where
ouplings are generated by higher-dimensional operators. We have fo
ussed on the �-term, but one 
an also determine maximal va
ua for several 
ouplings, like the �-termand dimension-5 proton de
ay operators. In addition to the vanishing of some 
ouplingsone may require the appearan
e of 
ertain 
ouplings, like Yukawa 
ouplings or Majorananeutrino masses.The features of the standard model imply strong 
onstraints on phenomenolo
iallyallowed va
ua. Further important restri
tions will follow from supersymmetry breakingand stabilization of the 
ompa
t dimensions. Given the �nite number of heteroti
 stringva
ua one may then hope to identify some generi
 features of standard model va
ua, whi
h
an eventually be experimentally tested.
27
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