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AbstratIn supersymmetri extensions of the standard model there is no basi di�erene be-tween Higgs and matter �elds, whih leads to the well known problem of potentiallylarge baryon and lepton number violating interations. Although these unwantedouplings an be forbidden by ontinuous or disrete global symmetries, a theoretialguiding priniple for their hoie is missing. We examine this problem for a lass ofvaua of the heteroti string ompati�ed on an orbifold. As expeted, in generalthere is no di�erene between Higgs and matter. However, ertain vaua happen topossess unbroken matter parity and disrete R-symmetries whih single out Higgs�elds in the low energy e�etive �eld theory. We present a method how to identifymaximal vaua in whih the perturbative ontribution to the �-term and the expe-tation value of the superpotential vanish. Two vaua are studied in detail, one withtwo pairs of Higgs doublets and one with partial gauge-Higgs uni�ation.
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1 IntrodutionIn the standard model there is a lear distintion between Higgs and matter: Quarks andleptons are hiral fermions whereas a salar �eld desribes the Higgs boson. The mostgeneral renormalizable lagrangian onsistent with gauge and Lorentz invariane yields avery suessful desription of strong and eletroweak interations [1℄. Furthermore, withappropriate oe�ients, the unique dimension-5 operator an aount for Majorana neu-trino masses, and the baryon number violating dimension-6 operators are onsistent withthe experimental bounds on proton deay.In supersymmetri extensions of the standard model the distintion between Higgs andmatter is generially lost. Sine the lepton doublets and one of the Higgs doublets havethe same gauge quantum numbers the most general supersymmetri gauge invariant la-grangian ontains unsuppressed R-parity violating terms whih lead to rapid proton deay.In grand uni�ed models (GUTs) [1℄ olour triplet exhange an also generate dangerousbaryon number violating dimension-5 operators. These problems an be overome by in-troduing ontinuous or disrete symmetries whih distinguish between Higgs and matter�elds, suh as R-symmetry, Peei-Quinn type symmetries or matter parity. However, inthe ontext of four-dimensional (4D) �eld theories the origin and theoretial justi�ationof these symmetries remain unlear.Higher-dimensional theories provide a promising framework for uni�ed extensions of thesupersymmetri standard model [2℄. In partiular the heteroti string [3℄ with gauge groupE8�E8 is the natural andidate for a uni�ed theory inluding gravity. Its ompati�ationson orbifolds [4, 5℄ yield hiral gauge theories in four dimensions inluding the standardmodel as well as GUT gauge groups. During the past years some progress has been madein deriving uni�ed �eld theories from the heteroti string [6�8℄, separating the GUT salefrom the string sale on anisotropi orbifolds [9℄, and a lass of ompati�ations yieldingsupersymmetri standard models in four dimensions have been suessfully onstruted[10�12℄.The heteroti string model [10℄ has a 6D orbifold GUT limit, where two ompatdimensions are muh larger than the other four, with 6D bulk gauge group SU(6) andunbroken SU(5) symmetry at two �xed points. The orresponding supergravity model hasbeen expliitly onstruted in [13℄, and it has been shown that all bulk and brane anomaliesare aneled by the Green-Shwarz mehanism. Furthermore, a lass of vaua has beenfound whih have a pair of bulk Higgs �elds and two SU(5) bulk families in addition tothe two SU(5) brane families. At the SU(5) �xed points these �elds form an SU(5) GUTmodel. In 4D one obtains one quark-lepton `family' and a pair of Higgs doublets from splitbulk multiplets together with the two brane families.What distinguishes Higgs from matter �elds with the same SU(5) quantum numbersin an orbifold GUT? In the vauum studied in [13℄ there is no distintion, whih leadsto unaeptable R-parity violating Yukawa ouplings. In [11℄ interesting 4D vaua withunbroken matter parity were found, whih allow to forbid the dangerous R-parity violatingouplings. Some of these vaua also have gauge-Higgs uni�ation for whih an intriguingrelationship exists between �-term and gravitino mass. Indeed, several vaua with semi-2



realisti Yukawa ouplings ould be identi�ed where to order six in powers of standardmodel singlets �-term and gravitino mass both vanish.In this paper we further analyse the vaua of the 6D orbifold GUT [13℄. SineMGUT �Mstring, we onsider vaua with expetation values (VEVs) of all 6D zero modes. One thenobtains further vaua with unbroken matter parity. The loalized Fayet-Iliopoulos termsof anomalous U(1) symmetries may indeed stabilize two ompat dimensions at the GUTsale [13,14℄ but the study of stabilization and pro�les of bulk �elds [15℄ is beyond the sopeof this paper. In the following we onentrate on loal properties of the model at the GUT�xed points, in partiular the deoupling of exotis and the generation of superpotentialterms.The existene of a matter parity is not su�ient to distinguish Higgs from matter. Onealso needs that the �-term is muh smaller than the deoupling mass of exoti states. Inpriniple, there are two obvious solutions: Either a non-zero �-term is generated at veryhigh powers in standard model singlets, or the perturbative part of the �-term vanishesexatly and a non-perturbative ontribution, possibly related to supersymmetry breaking,yields a orretion of the order of the eletroweak sale. In Setion 4, we shall disuss howto identify `maximal' vaua with vanishing �-term, as well as extended vaua with �-termsgenerated at high orders. This is the main point of our paper.The maximal vaua with vanishing �-term do not inlude the ase of gauge-Higgsuni�ation. Instead, we �nd a vauum with two pairs of massless Higgs doublets and onewith partial gauge-Higgs uni�ation only for Hu whih gives mass to up-type quarks. Thisis perfetly onsistent with the fat that a large top-quark mass is singled out. The originalsymmetry between 5- and �5-plets is violated by seleting vaua where matter belongs to�5- and 10-plets.There are also other promising approahes whih use elements of uni�ation to �ndrealisti string vaua. This inludes ompati�ations on Calabi-Yau manifolds with vetorbundles [16�21℄, whih are related to orbifold onstrutions whose singularities are blownup [22, 23℄. Very reently, also interesting GUT models based on F-theory have beendisussed [24�26℄.The paper is organized as follows. In Setion 2 we reall some symmetry propertiesof e�etive SU(5) �eld theories, whih are relevant for the �-term and baryon numberviolating interations. The relevant features of the 6D orbifold GUT model [13℄ are brie�yreviewed in Setion 3. New vaua of this model with vanishing �-term and gravitinomass are analyzed in Setion 4, and the orresponding unbroken disrete R-symmetries aredetermined. Yukawa ouplings for these vaua are alulated in Setion 5.2 E�etive low energy �eld theoryThe heteroti 6D GUT model [13℄ has loal SU(5) invariane orresponding to Georgi-Glashow uni�ation. Hene, the superpotential of the orresponding low energy 4D �eldtheory has the general form,W = �HuHd + �iHu�5(i) + C(u)ij 10(i)10(j)Hu + C(d)ij �5(i)10(j)Hd3



+C(R)ijk �5(i)10(j)�5(k) + C(L)ij �5(i)Hu�5(k)Hu + C(B)ijkl10(i)10(j)10(k)�5(l) ; (2.1)where we have inluded dimension-5 operators. Here i; j; ::: denote generation indies, andfor simpliity we have kept the SU(5) notation. Note that the olour triplets ontainedin the Higgs �elds Hu = 5 and Hd = �5 are projeted out. �i and C(R) yield the wellknown renormalizable baryon (B) and lepton (L) number violating interations, and theoe�ients C(L) and C(B) of the dimension-5 operators are usually obtained by integratingout states with masses O(MGUT). In supergravity theories also the expetation value ofthe superpotential is important sine it determines the gravitino mass. One expetshW i � � �MEW; (2.2)if the sale MEW of eletroweak symmetry breaking is related to supersymmetry breaking.Experimental bounds on the proton lifetime and lepton number violating proessesimply �i � �, C(R) � 1 and C(B) � 1=MGUT. Furthermore, one has to aommodatethe hierarhy between the eletroweak sale and the GUT sale, MEW=MGUT = O(10�14).On the other hand, lepton number violation should not be too muh suppressed, sineC(L) � 1=MGUT yields the right order of magnitude for neutrino masses.These phenomenologial requirements an be implemented by means of ontinuous ordisrete symmetries. Imposing an additional U(1) fator withSU(5)� U(1)X � SO(10) ;SU(5)� U(1)X � SU(3)� SU(2)� U(1)Y � U(1)B�L ; (2.3)where Y denotes the standard model hyperharge, one has �i = C(R) = C(L) = 0, sinethese operators ontain only B � L violating terms. On the other hand, C(B) onservesB � L and is therefore not a�eted. The anonial U(1)X harges readtX(10) = 15 ; tX(�5) = �35 ; tX(Hu) = �25 ; tX(Hd) = 25 ; (2.4)with tB�L = tX + 45 tY : (2.5)The wanted result, �i = C(R) = 0, C(L) 6= 0, an be obtained with a ZX2 subgroup ofU(1)X , whih ontains the `matter parity' PX [27℄,PX(10) = PX(�5) = �1 ; PX(Hu) = PX(Hd) = 1: (2.6)Matter parity, however, does not solve the problem C(B) 6= 0, and also the hierarhyMEW=MGUT � 1 remains unexplained.In supersymmetri extensions of the standard model, eletroweak symmetry breakingis usually tied to supersymmetry breaking. It is then natural to have � = �i = 0 forunbroken supersymmetry. One easily veri�es that in this ase, for C(R) = C(B) = 0, thesuperpotential aquires a unique Peei-Quinn type U(1)PQ symmetry with hargestPQ(10) = 12 ; tPQ(�5) = 1 ; tPQ(Hu) = �1 ; tPQ(Hd) = �32 ; (2.7)4



together with an additional U(1)R symmetry with R-hargesR(10) = R(�5) = 1 ; R(Hu) = R(Hd) = 0: (2.8)Note that the U(1)R-symmetry implies the wanted relations � = �i = C(R) = C(B) = 0,with C(L) unonstrained. On the other hand, the Peei-Quinn symmetry only yields� = C(R) = C(B) = 0.The latter relations an also be obtained by imposing only a disrete ZPQ2 subgroupwith PQ-paritiesPPQ(10) = PPQ(Hd) = �1 ; PPQ(�5) = PPQ(Hu) = 1 : (2.9)On the ontrary, the familiar R-parity, whih is preserved by non-zero gaugino masses,PR(10) = PR(�5) = �1 ; PR(Hu) = PR(Hd) = 1 ; (2.10)implies �i = C(R) = 0, whereas �, C(L) and C(B) are all allowed.In summary, the unwanted terms in the lagrangian (2.1) an be forbidden by a ontinu-ous global R-symmetry. Supersymmetry breaking will also break U(1)R to R-parity, whihmay lead to an R-axion. The dangerous terms � and C(B) will then be proportional to thesoft supersymmetry breaking terms and therefore strongly suppressed. Alternatively, theunwanted terms in (2.1) an be forbidden by disrete symmetries, suh as matter parity,PQ-parity or R-parity.In ordinary 4D GUT models ontinuous or disrete symmetries an be introdued byhand. It is interesting to see how proteting global symmetries arise in higher-dimensionaltheories. The global U(1)R symmetry (2.8) indeed ours naturally [28℄, and it has beenused in 5D and 6D orbifold GUTs [29℄. However, as we shall see in the following setions,orbifold ompati�ations of the heteroti string single out disrete symmetries, whih mayor may not ommute with supersymmetry.3 Heteroti SU(6) model in six dimensionsLet us now brie�y desribe the main ingredients of the 6D orbifold GUT model derivedin [13℄. The starting point is the E8 � E8 heteroti string propagating in the spae-timebakground (X4 � Y2)=Z2 � M4. Here X4 = (R4=�G2�SU(3))=Z3, Y2 = (R2=�SO(4)) andM4 represents four-dimensional Minkowski spae; R4=�G2�SU(3) and R2=�SO(4) are the toriassoiated with the root latties of the Lie groups G2� SU(3) and SO(4), respetively. Byonstrution the Z6�II = Z3�Z2 twist yielding the orbifold has Z3 and Z2 subtwists whihat trivially on the SO(4) and the SU(3) plane, respetively. As a onsequene, the modelhas bulk �elds living in ten dimensions and �elds from twisted setors, whih are on�nedto six or four dimensions.The model has twelve �xed points1 where the E8 � E8 symmetry is broken to di�er-ent subgroups whose intersetion is the standard model gauge group up to U(1) fators.1In the following we shall use the terms 'brane' and '�xed point' interhangeably. Furthermore, wefollow the notations and onventions of [13℄. 5
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Figure 1: The six-dimensional orbifold GUT model with the unbroken non-Abelian subgroupsof the `visible' E8 and the orresponding non-singlet hyper- and hiral multiplets in the bulkand at the SU(5) GUT �xed points, respetively. Fixed points under the Z2 subtwist in theSO(4) plane are labelled by tupels (n2; n02), those under the Z3 subtwist in the SU(3) planearry the label n3 = 0; 1; 2. The Z6 �xed point in the G2 plane is loated at the origin.The geometry has an interesting six-dimensional orbifold GUT limit whih is obtainedby shrinking the relative size of X4 as ompared to Y2. Suh an anisotropy an aountgeometrially for the hierahy between the string sale and the GUT sale. The spaegroup embedding [10℄ inludes one Wilson line along a one-yle in X4, and a seond oneas a non-trivial representation of a lattie shift within Y2. This leads to the MSSM in thee�etive 4D theory [10, 11℄ with the 6D orbifold GUT shown in Figure 1 as intermediatestep [13℄. At two equivalent �xed points, labelled as (n2; n02) = (0; 0); (0; 1), the unbrokengroup ontains SU(5); at the two other �xed points, (n2; n02) = (1; 0); (1; 1), the unbrokengroup ontains SU(2)� SU(4).2The 6D orbifold GUT has N = 2 supersymmetry and unbroken gauge groupG6 = SU(6)� U(1)3 � �SU(3)� SO(8)� U(1)2� ; (3.1)with the orresponding massless vetor multiplets(35; 1; 1) + (1; 8; 1) + (1; 1; 28) + 5� (1; 1; 1) : (3.2)In addition one �nds the bulk hypermultiplets(20; 1; 1) + (1; 1; 8) + (1; 1; 8s) + (1; 1; 8) + 4� (1; 1; 1) ; (3.3)where we have dropped the U(1) harges. It is onvenient to deompose all N = 2 6Dmultiplets in terms of N = 1 4D multiplets. The 6D vetor multiplet splits into a pair of2A 5D orbifold GUT model with the same bulk and brane gauge symmetries and gauge-Higgs uni�ationhas been onstruted in [30℄; the matter and Higgs setor, however, is very di�erent from the model [13℄.6



4D vetor and hiral multiplets, A = (V; �), whereas a hypermultiplet ontains of a pairof hiral multiplets, H = (HL; HR); here � and HL are left-handed, HR is right-handed. Itis often onvenient to use the harge onjugate �eld HR instead of HR so that all degreesof freedom are ontained in left-handed hiral multiplets. In the following we use thesame symbol for a hypermultiplet and its left-handed hiral multiplet; the supersript ''indiates that the �eld is the harge onjugate of a right-handed hiral multiplet ontainedin a hypermultiplet. As an example, the hiral multiplets 5 and �5 are both 5-plets of SU(5),but they belong to di�erent hypermultiplets whih transform as 5 and �5, respetively.As we shall see, the four non-Abelian singlets, denoted as U1:::U4, play a ruial role invaua with unbroken matter parity; the SU(6) 20-plet ontains part of one quark-leptongeneration. At the SU(5) �xed points one has35 = 24+ 5+ �5+ 1 ; 20 = 10+ 10 : (3.4)In addition to the vetor and hypermultiplets from the untwisted setor of the string,there are 6D bulk �elds whih originate from the twisted setors T2 and T4 of the Z6�IIorbifold model. They are loalized at the �xed points of the Z3 subtwist in the SU(3) plane,but bulk �elds in the SO(4) plane whih is left invariant by this subtwist. In ontrast, �eldsof the twisted setors T1; T5 and T3 are loalized at �xed points in the SO(4) plane. Forsimpliity, we shall list in the following only the states of the `visible' setor, the ompleteset of �elds an be found in [13℄. For eah of the three �xed points in the SU(3) plane, one�nds 3� (6n3 + �6n3 + Yn3 + �Yn3); n3 = 0; 1; 2; (3.5)where the omitted U(1) harges depend on n3. The multipliity fator 3 is related to threedi�erent loalizations in the G2 plane; Yn3 and �Yn3 denote singlets under the non-Abelianpart of G6. At the SU(5) �xed points n2 = 0, Eq. (3.5) reads3� (5n3 + �5n3 +Xn3 + �Xn3 + Yn3 + �Yn3) ; n3 = 0; 1; 2 ; (3.6)where Xn3 ; �Xn3 denote SU(5) singlets. Note that eah N = 2 hypermultiplet H ontainstwo N = 1 hiral multiplets H and H with opposite gauge quantum numbers.At the two inequivalent �xed points in the SO(4) plane the bulk gauge group G6 isbroken to the subgroups Gn2=0 and Gn2=1, respetively,Gn2=0 = SU(5)� U(1)4 � �SU(3)� SO(8)� U(1)2� ; (3.7)Gn2=1 = SU(2)� SU(4)� U(1)4 � �SU(2)0 � SU(4)0 � U(1)4� : (3.8)At these �xed points N = 1 hiral multiplets from the twisted setors T1=T5 and T3 areloalized. At eah SU(5) �xed point one has�5 + 10+N  + S1 + : : :+ S8 : (3.9)This provides two quark-lepton families and additional singlets whose vauum expetationvalues, together with those ofXn3 and Yn3 an break unwanted U(1) symmetries. Note that7



�5, 10 and N  form together a 16-plet of SO(10) whih is unbroken at two equivalent �xedpoints of the 6D orbifold T 6=Z6�II [10℄. Hene N  is one of the `right-handed' neutrinos inthe theory.Aording to Eqs. (3.4) and (3.6), the 6D theory dimensionally redued to 4D is ve-torlike. In terms of N = 1 hiral multiplets there are two 10's, two 10's, 19 5's and 19�5's. The hiral spetrum in 4D is a onsequene of the further orbifold ompati�ation.At the �xed points of the SO(4) plane two hiral families, �5 + 10, our. Furthermore,the boundary onditions for the 6D bulk �elds at the �xed points lead to a hiral masslessspetrum. Zero modes require positive `parities' for bulk �elds at all �xed points. Asshown in [13℄, positive parities at the SU(5) �xed points redue the 18 �5's and 18 5's inEq. (3.6) to 10 �5's and 8 5's, i.e., to a hiral spetrum.The model learly has a huge vauum degeneray. In most vaua the standard modelgauge group will be broken. This an be avoided by allowing only VEVs of the SM singlet�elds,U 1 ; :::; U4; X0; :::; �X2; Y0; :::; �Y 2 ; S1; :::; S8 ; (3.10)but most vaua will have a massless spetrum di�erent from the MSSM. An interestingsubset of vaua an be identi�ed by observing that the produts 5n35n3 and �5n3�5n3 aretotal gauge singlets for whih one an easily generate masses at the SU(5) �xed points.This allows the deoupling of 6 pairs of 5's and �5's [13℄,W �M� �5050 + �50�50 + 5151 + �51�51 + 5252 + �52�52� ; (3.11)after whih one is left with three 5-plets, �ve �5-plets and two 10-plets,5; �5; 50; �50; 51; �51; 52; �52; 10; 10 : (3.12)The deoupling sale M� will be disussed in more detail later on. We are now gettingrather lose to the standard model. The bulk �elds, together with the loalized �elds (3.9),an aount for four quark-lepton families, and the additional three pairs of 5- and �5-pletsmay ontain a pair of Higgs �elds.How an one distinguish between Higgs and matter �elds and whih �elds should bedeoupled? The disussion in Setion 2 suggests to searh for the U(1)X symmetry amongthe six U(1) fators at the SU(5) �xed points, so that the extended SU(5)� U(1)X gaugesymmetry ontains U(1)B�L,tX = 5Xi=1 aiti + a6t06; tB�L = tX + 45tY : (3.13)Here t1; : : : ; t06 are generators of the six loal U(1) fators3 at n2 = 0 (f. [13℄), and tY isthe hyperharge generator in SU(5). For ompleteness all harges of the remaining SU(5)multiplets and the singlets (3.10) are listed in Tables 3.2 and 3.3, respetively.3Note that the ti are orthogonal but not normalized, ti � tj = diag(1; 1; 6; 1; 3; 30), where t6 � t06.8



5 �50 51 �5 50 �51 �52 52U(1)X �25 �25 �25 25 25 �35 25 �35SU(3)� SU(2) (1; 2) (3; 1) (1; 2) (1; 2) (�3; 1) (1; 2) (�3; 1) (1; 2)U(1)B�L 0 �23 0 0 23 0 �13 �1MSSM Hu? Hu? Hd? Hd? d3 l3Table 3.1: SU(5) non-singlet hiral multiplets at n2 = 0. SU(3) � SU(2) representations,B � L harges and MSSM identi�ation refer to the zero modes.We an now demand the anonial U(1)X harges (2.4) for the loalized �elds andthe bulk 10- and 10-plets. This �xes four oe�ients: a1 = a2 = 2a4; a3 = �1=3; a6 =1=(15). Two 5- and two �5-plets then have the harges of the Higgs multiplets Hu and Hd,respetively,tX(5) = tX(�50) = �25 ; tX(�5) = tX(50) = 25 : (3.14)This leaves �51, 52 and �52 as andiates for matter �elds. The requirement to identify two�5-plets whih, together with 10 and 10, form two generations, uniquely determines thelast two oe�ents, a1 = 1 and a5 = 1=6, so thattX = t1 + t2 � 13t3 + 12t4 + 16t5 + 115t06: (3.15)The remaining harge assignments readtX(51) = �tX(�51) = �25 ; tX(�52) = tX(52) = �35 : (3.16)One an also embed the U(1)PQ symmetry (2.7) in the produt U(1)6. One �ndstPQ = �12 (t1 + t2) + 16t3 � 12t4 + 16t5 + 115t06: (3.17)However, in the vaua onsidered in the next setion, this symmetry is ompletely broken.To proeed further we now onsider the zero modes of the 5- and �5-plets listed inTable 3.1: �50 and 50 yield exoti olour triplets and therefore have to be deoupled,W �M 0� �5050 : (3.18)where the deoupling sale M 0� will be disussed in more detail later on. �52 and 52 ontaina anonial olour-triplet and lepton doublet, respetively. Finally, 5 and 51 are andidatesfor Hu, whereas �5 and �51 are andidates for Hd.9



For the matter �elds we now have a lear piture. There are two loalized branefamilies4,(n2; n02) = (0; 0) : �5(1); 10(1); (n2; n02) = (0; 1) : �5(2); 10(2); (3.19)and two further families of bulk �elds,�5(3) � 52; 10(3) � 10; �5(4) � �52; 10(4) � 10 : (3.20)At the �xed points n2 = 0, these hiral N = 1 multiplets form a loal SU(5) � U(1)XGUT theory. The orresponding Yukawa ouplings are 4� 4 matries whih are generatedloally [13℄,WYuk = C(u)ij 10(i)10(j)Hu + C(d)ij �5(i)10(j)Hd; (3.21)aording to the string seletion rules. Projeting the bulk �elds to their zero modes,10 : (3; 2) = q; 10 : (�3; 1) = u; (1; 1) = e;�52 : (�3; 1) = d; 52 : (1; 2) = l; (3.22)yields one quark-lepton generation in the e�etive 4D theory. From (3.21) one dedues theorresponding 3� 3 Yukawa matries,WYuk = Y (u)ij uiqjHu + Y (d)ij diqjHd + Y (l)ij liejHd; (3.23)whih avoid the unsuessful SU(5) predition of 4D GUTs.Like all U(1) fators at the SU(5) �xed points, the U(1)X symmetry has to be spon-taneously broken at low energies. As we saw in Setion 2, it is then ruial to maintaina Z2 subgroup, whih inludes matter parity, to distinguish between Higgs and matter�elds. In order to see whether this is possible in the present model one has to examinethe U(1)X harges of the singlet �elds (3.10), whih are listed in Table 3.3. In the vauumseleted in [13℄ �elds with tX = �1 obtained a VEV breaking U(1)X ompletely. This ledto phenomenologially unaeptable R-parity violating ouplings.Varying the disrete Wilson line in the SO(4) plane, in [11℄ 4D models with onservedmatter parity were found. In these models only SM singlets with even B�L harge aquireVEVs. These �elds are zero modes of the 4D theory. In a 6D orbifold GUT model, inpriniple all 6D zero modes an aquire VEVs, even if they do not ontain 4D zero modes,sine the negative mass squared indued by the loal Fayet-Iliopoulos terms an ompensatethe positive Kaluza-Klein GUT mass term. Hene, one an inlude the �elds U2 and U4,whih have tB�L = �2 (see Table 3.3), in the set of vauum �elds. Not allowing VEVs ofsinglets with tB�L = �1 then preserves matter parity. Note that not all vaua of the 6Dorbifold GUT an be obtained from the 4D zero modes.4Note that subsripts without brakets denote the loalization of T2=T4 twisted �elds, n3 = 0; 1; 2.Subsripts with brakets, (1) . . . (4), label the four brane and bulk families de�ned in (3.17) and (3.18).10



Multiplet t1 t2 t3 t4 t5 t06 R1 R2 R3 k kn3 tX ~R1 ~R210 �12 12 0 0 0 3 �1 0 0 0 0 15 �1 110�10 12 �12 0 0 0 3 0 �1 0 0 0 15 �1 1105 0 0 0 0 0 �6 0 0 �1 0 0 �25 0 45�5 0 0 0 0 0 6 0 0 �1 0 0 25 0 6510(1);10(2) 0 �16 �12 13 0 12 �16 �13 �12 1 0 15 �1 110�5(1);�5(2) 0 �16 32 13 0 �32 �16 �13 �12 1 0 �35 1 71050 0 13 �1 �23 0 1 �23 �13 0 4 0 25 1 15�50 0 13 1 �23 0 �1 �23 �13 0 4 0 �25 0 4551 0 �13 �1 �13 �1 �1 �13 �23 0 2 2 �25 0 95�51 12 16 0 �13 �1 1 �13 �23 0 2 2 25 0 6552 �12 �16 0 13 �1 1 �23 �13 0 4 8 �35 1 � 310�52 0 �13 1 �13 1 1 �13 �23 0 2 4 �35 �1 � 310Table 3.2: SU(5) non-singlet hiral multiplets at n2 = 0. The subsripts (1) and (2) denoteloalization at n02 = 0 and n02 = 1, respetively. The harges 12 tX and ~R2 agree mod 1.The pairwise deoupling (3.11), the deoupling of the exoti 5- and �5-plets, and thematter parity preserving breaking of U(1)B�L an be ahieved with the minimal vauumS0 = �X0; �X0; U2; U4; S2; S5	 : (3.24)For the deoupling masses in Eqs. (3.11) and (3.18) one obtains,M� = h �X0S2S5i ; M 0� = hX0S2S5i : (3.25)As we shall disuss in detail in the following setion, the ouplings needed to deouplethe 5�5-pairs satisfy all string seletion rules. Note that no exoti matter is loated at the�xed points n2 = 0. Most of the exoti matter at n2 = 1 an be deoupled by VEVs ofjust a few singlet �elds (f. [13℄). This deoupling takes plae loally at one of the �xedpoints, whih is a ruial di�erene ompared to previous disussions of deoupling in fourdimensions [10,11℄. The uni�ation of gauge ouplings yields important onstraints on thedeoupling masses M� and the GUT sale MGUT. This question goes beyond the sope ofour paper. Detailed studies have reently been arried out for the 6D model [29℄ in [31℄and for a heteroti 6D model similar to the one desribed here in [32℄.The minimal vauum S0 has two pairs of Higgs doublets. In order to have gaugeoupling uni�ation, one pair has to be deoupled. This an be done in various ways byenlarging the minimal vauum. For the deoupling the 6D gauge ouplings are important.11



Singlet t1 t2 t3 t4 t5 t06 R1 R2 R3 k kn3 tXU 1 �12 �12 �3 0 0 0 0 �1 0 0 0 0U2 12 12 �3 0 0 0 �1 0 0 0 0 2U3 1 �1 0 0 0 0 �1 0 0 0 0 0U4 �1 �1 0 0 0 0 �1 0 0 0 0 �2S1; S01 �12 �23 12 13 0 52 56 �13 �12 1 0 �1S2; S02 12 �23 �12 13 0 �52 56 �13 �12 1 0 0S3; S03 12 13 12 13 0 52 �16 23 �12 1 0 1S4; S04 12 13 12 13 0 52 116 �13 �12 1 0 1S5; S05 �12 13 �12 13 0 �52 �16 23 �12 1 0 0S6; S06 �12 13 �12 13 0 �52 116 �13 �12 1 0 0S7; S07 0 �16 �12 �23 1 52 56 �13 �12 1 1 0S8; S08 0 �16 32 �23 �1 52 �16 �13 �12 1 2 �1X0 0 �13 1 23 0 5 �13 �23 0 2 0 0X0 0 13 �1 �23 0 �5 �23 �13 0 4 0 0�X0 0 �13 �1 23 0 �5 �13 �23 0 2 0 0�X0 0 13 1 �23 0 5 �23 �13 0 4 0 0X1 0 �13 �1 �13 �1 5 �13 �23 0 2 2 0X1 0 13 1 13 1 �5 �23 �13 0 4 4 0�X1 12 16 0 �13 �1 �5 �13 �23 0 2 2 0�X1 �12 �16 0 13 1 5 �23 �13 0 4 4 0X2 12 16 0 �13 1 5 �13 �23 0 2 4 1X2 �12 �16 0 13 �1 �5 �23 �13 0 4 8 �1�X2 0 �13 1 �13 1 �5 �13 �23 0 2 4 �1�X2 0 13 �1 13 �1 5 �23 �13 0 4 8 1Y0 1 �13 0 23 0 0 �13 �23 0 2 0 1Y 0 �1 13 0 �23 0 0 �23 �13 0 4 0 �1�Y0 �1 �13 0 23 0 0 �13 �23 0 2 0 �1�Y 0 1 13 0 �23 0 0 �23 �13 0 4 0 1Y1 0 23 �2 �13 �1 0 �13 �23 0 2 2 1Y 1 0 �23 2 13 1 0 �23 �13 0 4 4 �1�Y1 12 �56 1 �13 �1 0 �13 �23 0 2 2 �1�Y 1 �12 56 �1 13 1 0 �23 �13 0 4 4 1Y2 0 23 2 �13 1 0 �13 �23 0 2 4 0Y 2 0 �23 �2 13 �1 0 �23 �13 0 4 8 0�Y2 12 �56 �1 �13 1 0 �13 �23 0 2 4 0�Y 2 �12 56 1 13 �1 0 �23 �13 0 4 8 0Table 3.3: Non-Abelian singlets at n2 = 0. S1; :::; S8 and S01; :::; S08 are loalized at n02 = 0and n02 = 1, respetively.
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For the bulk �elds from the untwisted setor one hasLH � p2g Z d2� HR(20)HL(20)�(35) + h..� p2g Z d2� 1010 5 + h.. : (3.26)Identifying the 5-plet from the gauge multiplet with one Higgs multiplet, Hu = 5, thereforeyields the wanted large top-quark Yukawa oupling [10, 11, 13℄.For the Higgs �eld Hd we shall onsider both options, Hd = �51 and Hd = �5, to whihwe refer as partial and full gauge-Higgs uni�ation, respetively. In the �rst ase, the 6Dgauge interations,LH � p2g Z d2� (HR(6)�(35)HL(6) +HR(�6)�(35)HL(�6)) + h..� p2g Z d2� �X0550 + �X0�5�50 +X151�5 + �X1�515+X2552 + �X2�525� ; (3.27)an be used to deouple the pair �551. The VEV hX1i 6= 0 yields the needed mass term.On the other hand, h �X1i = 0 is required to keep the �eld 5 massless. Full gauge-Higgsuni�ation needs hX1i = �X1 = 0. Note that VEVs of X0, �X0 and X2 do not lead to massterms for zero modes of 5 and �5.The deoupling terms (3.25) require VEVs of both bulk and loalized �elds. Notethat the loalized singlets S2 and S5 orrespond to osillator modes. As we will see inSetion 5, bulk and brane �eld bakgrounds are typially indued by loal FI terms. Thenon-vanishing VEVs of loalized �elds are related to a resolution of the orbifold singularities[22,23℄. The study of the blow-up of the 6D orbifold model to a smooth manifold, and thegeometrial interpretation of the loalized VEVs is beyond the sope of this work.4 Vanishing ouplings and disrete symmetriesThe heteroti landsape has a tremendous number of vaua. Orbifold ompati�ationsorrespond to a subset of vaua with enhaned symmetries. For `non-standard' embeddingsof the spae group into the E8 � E8 lattie, to whih our Z6�II model belongs, Fayet-Iliopoulos terms related to anomalous U(1)'s imply that the orbifold point in moduli spaeis a `false vauum'. In `true vaua' some salar �elds aquire a non-zero VEV, whihspontaneously breaks the large symmetry Gtot at the orbifold point to a sbgroup Gva.For a given orbifold ompati�ation with typially O(100) massless hiral super�elds ahuge vauum degeneray exists. The identi�ation of standard model like vaua and theirstabilization still is a major problem.In the 6D orbifold GUT model desribed in the previous setion, we have identi�ed �eldswhih provide the building bloks of a loal SU(5) GUT. The ouplings of the e�etive �eldtheory are generated by expetation values of produts of SU(5) singlet �elds. The singlet�elds with non-zero VEVs de�ne a vauum S whih is restrited by the requirement thatstates with exoti quantum numbers are deoupled andN = 1 supersymmetry is preserved.13



The appearene of a oupling between some SU(5) non-singlets in the e�etive �eldtheory requires the existene of an operator whih involves additional singlets from thevauum S. Suh operators are strongly restrited by string seletion rules, whih an beexpressed as a symmetry Gtot at the orbifold point. A neessary ondition for the abseneof a ertain oupling is then the requirement that for the singlets of the vauum S theorresponding operators do not exist. The vauum S has unbroken symmetry Gva � Gtot.Obviously, a su�ient ondition for the absene of a oupling between SU(5) non-singletsis its non-invariane under Gva. Both onditions will be studied in the following.The main question in this setion is the absene of unwanted superpotential terms inthe e�etive theory. We fous on the �-term, but the disussion an easily be extendedto dimension-5 proton deay operators as well as other ouplings. We shall provide analgorithm for �nding `maximal vaua' whih are `orthogonal' to unwanted terms, and wepresent a method whih allows to alulate vanishing tree-level ouplings to all orders inpowers of singlets.4.1 Orbifold geometry and disrete symmetriesThe geometry of the ompat spae, its invariane under disrete rotations and the loal-ization of �elds at �xed points and �xed planes lead to disrete symmetries [33℄ of thesuperpotential in 4D as well as in 6D at the orbifold �xed points. The disrete rotations inthe G2, SU(3) and SO(4) planes are assoiated with three R-harges Ri, i = 1; 2; 3, whihare onserved modulo the order li = 6; 3; 2 of the twist in the respetive plane,Xj R(j)1 = �1 mod 6 ; Xj R(j)2 = �1 mod 3 ; Xj R(j)3 = �1 mod 2 ; (4.1)where the sum is over all �elds of the partiular superpotential term.Fields from di�erent twisted setors Tk, k = 1; :::; 6 have di�erent loalization properties.For k = 1; 5 �elds are loalized at �xed points; k = 2; 4 and k = 3 orrespond to brane�elds in the SO(4) and SU(3) planes, respetively. For eah superpotential term one hasXj k(j) = 0 mod 6 : (4.2)Furthermore, ouplings of �elds loalized in the SU(3) and SO(4) planes have to satisfythe onstraintsSU(3) plane : Xj k(j)n(j)3 = 0 mod 3 ; (4.3)SO(4) plane : Xj k(j)n(j)2 = 0 mod 2 ; Xj k(j)n0(j)2 = 0 mod 2 : (4.4)The onstraints (4.1) - (4.4) orrespond to a disrete symmetry whih ats on the 6Dbrane and bulk �elds. From Tables 3.2 and 3.3 one reads o� that R-harges of �elds from14



the twisted setor Tk have the form Ri[�k℄ = �k=limod1. This implies that the disreterotationsg(i)m = e2�imli Ri ; m 2 Z ; (4.5)whih are of order l2i , form the group Zli �Z(k)li . The group element lies in the latter fatorfor m = 0mod li. The superpotential has to transform asg(i)m W = e�2�imliW ; m 2 Z ; (4.6)under this produt group. For i = 1 one dedues that the seletion rule (4.2) is implied bythe disrete R-symmetries (4.1) and not an additional independent ondition.We an make the produt struture expliit by expressing the ations of the two sub-groups asZli : h(i)m = e2�i 1li (mRimodk) ; Z(k)li : ĥ(i)m0 = e2�im0kli ; m;m0 2 Z : (4.7)This deomposition applies for all three disrete R-symmetries. The groups Z(k)3 and Z(k)2are subgroups of Z(k)6 so that the total R-symmetry of the lagrangian is given byGR = ZR16 � ZR23 � ZR32 � Z(k)6 : (4.8)The spae seletion rules (4.3) and (4.4) orrespond to further disrete symmetries Z3and Z2, respetively, whih ommute with supersymmetry. One then obtains for the fulldisrete symmetry,Gdisrete = hZR16 � ZR23 � ZR32 � Z(k)6 iR � Zkn33 � Zkn22 � Zkn202 : (4.9)Introduing the `disrete harge vetor'K = (R1; R2; R3; k; kn3; kn2; kn02); (4.10)all superpotential terms have to obeyK(W ) = Kva; (4.11)where the `disrete vauum harges' are given byKva = (�1mod6;�1mod3;�1mod2; 0mod6; 0mod3; 0mod2; 0mod2) : (4.12)Covariane of the superpotential W orresponds to invariane of the lagrangian W j��.Together with the gauge symmetryGgauge = SU(5)� U(1)4 � �SU(3)� SO(8)� U(1)2� ; (4.13)the full symmetry at the SU(5) �xed points of the 6D orbifold GUT isGtot = Ggauge �Gdisrete: (4.14)15



De�ning for the U(1) symmetries the harge vetorQ = (t1; :::; t06); (4.15)gauge invariane of the superpotential impliesQ(W ) = (0; 0; 0; 0; 0; 0): (4.16)Loalized FI-terms, related to anomalous U(1)'s, lead to nonvanishing VEVs of some6D brane and bulk �elds. This breaks the symmetry of the 6D theory spontaneously,Gtot ! Gva : (4.17)We are interested in vaua whih preserve SU(5). We therefore devide all �elds into twosets, SU(5) non-singlets �i and SU(5) singlets si. A set S of singlets whih aquire VEVs,S = fsij tSU(5)(si) = 0; hsii 6= 0g; (4.18)de�nes a vauum of the 6D orbifold GUT.4.2 Maximal vaua for vanishing ouplingsConsider now a vauum S and a superpotential term whih an lead to a oupling for theprodut � =Qj �mjj of SU(5) non-singlet �elds,W = �� ; � = NYi snii ; si 2 S; ni; N 2 N : (4.19)The two onditions (4.11) and (4.16) an be evaluated separately. First, we fatorize a partof � whih transforms non-trivially under gauge transformations by introduing a `speialmonomial' �s,� = �0�s ; Q(�s�) = 0 ; Q(�0) = 0 : (4.20)Generially, the set of monomialskerQ(S) � (�0 ����0 = NYi snii ; si 2 S; ni 2 Z; Q(�0) = 0) (4.21)is a spae of dimension larger than one. Note that we allow both �0 and �s to have sub-monomials with negative exponents ni, in ontrast to their produt �.5 Clearly, results for� annot depend on the hoie of the speial monomial �s. Covariane of the superpotentialunder the disrete symmetries (4.9) requiresK(�0) = Kva � K(�s�) ; (4.22)5Negative exponents are allowed in order to promote the set of all possible exponents of monomialsf(n1; : : : ; nN ); N 2 Ng to a vetor spae. 16



whih de�nes the subset of monomials in kerQ(S) yielding a non-vanishing oupling �.In order to identify vaua where the superpotential term (4.19) is forbidden we proeedas follows. The elements of kerQ(S) are given by the solutions of the equationsQ(�0) = NXi=1 niQ(si) = 0 (4.23)for the harge vetor Q. The solutions an be represented by vetors (n1; :::; nN) whihare linear ombinations of some basis vetors. These orrespond to basis monomials whoseproduts are the elements of kerQ(S).We now examine the disrete symmetries. After the hoie of a speial monomial �s,Eq. (4.22) an be evaluated for the basis monomials of kerQ(S). Starting from a su�ientlysmall set S whih does not satisfy (4.22), one an subsequently add further singlets until a`maximal vauum' is reahed for whih the term (4.19) is forbidden to all orders in powersof singlets. The generalization of this algorithm to the ase of more than one forbiddenoupling is straightforward.4.2.1 Full gauge-Higgs uni�ationAs a �rst example, onsider the �-term in the ontext of full gauge-Higgs uni�ation inour model, Hu = 5 and Hd = �5. In that ase� � �GHU = HuHd = 5�5; Q(�) = 0; K(�) = 0 : (4.24)Note that � is a omplete singlet. This leads to �s = 1 and the onditionK(�0) = Kva (4.25)for an allowed �-term. Let us now de�ne the vauumS1 = S0 [ �X1; �X1; Y2; S7	 ; (4.26)where S0 was de�ned in (3.24). One easily veri�es that the dimension of kerQ(S1) is four.Basis monomials 
i are listed in Table 4.1 from whih one reads o� that it is impossibleto satisfy R1(
i) = �1mod 6. Hene, the �-term is absent in the vauum S1 to all ordersin the singlets.The vauum S1 is maximal sine adding any further singlet respeting matter parityleads to a �-term. This is demonstrated by Table 4.2 where for eah possible additionalsinglet the order is listed at whih a �-term appears. It is intriguing that for some vauaa �-term only ours at very high orders in the singlets.As disussed in Setion 3, there is another andidate for Hd with even matter parity,�51 from the twisted setor T2. The vauum S1 has only full gauge-Higgs uni�ation if the�eld �51 is deoupled by means of a large mass term together with 51 whih also has evenmatter parity. 17



Name Monomial R1 R2 R3 k kn3
1 �X0S2S5 0 0 �1 6 0
2 X1Y2S2S5 0 �1 �1 6 6
3 X0 �X1S5S7 0 �1 �1 6 3
4 X0 �X1Y2U2U4 �3 �2 0 6 6Table 4.1: Basis monomials of kerQ(S1) and the orresponding disrete harges. All mono-mials have kn2 = kn02 = 0.Add Mass term for 5�5 Order Mass term for 51�51 Order�Y2 (X0 �X0 �X1 �Y2(S5)2)2
1
4 20 (X0)2X1 �X1(Y2)2( �Y2)2(S5)4
2
4 21�Y 2 ( �Y 2 S2S7)2
1
4 14 X0Y2( �Y 2 )2(S2)3(S5)2(S7)3
2
4 21U 1 (X0 �X1Y2U 1)
2 8 X0(Y2)2U 1S2S5 6U3 ( �X0U3(S5)2)2
2
4 17 X0 �X0(Y2)2U2(U3)2U4(S5)4
1 15S6 (X1Y2S2S6)
4 9 X0(Y2)2U2U4S2S6 7Table 4.2: Addition of any further �eld to S1 generates monomials whih indue mass termsfor 5�5 and 51�51. Shown are lowest order examples. The monomials 
i are de�ned in table4.1. Singlets whih omplete pairs AA are not listed, sine they allways allow to form massterms proportional to 
1AA. We do only onsider singlets whih onserve matter parity.Using the method desribed above we an easily study the mass term � = 51�51. Choos-ing as speial monomial �s = (X1 �X1)�1, whih has the onvenient feature Q(�s51�51) = 0,one obtainsK(�s51�51) = 0: (4.27)The onditions for the existene of a �-term then readK(�0) = Kva; ns(�) � 0; (4.28)where ns(�) is the exponent of the singlet s 2 S1 in the monomial � = �0�s. The lastondition requires the appearane of at least one fator of 
2, and 
3 or 
4 from Table 4.1in the monomial �0. However, the R-harges of these monomials imply that again it isimpossible to satisfy the �rst ondition (4.28) for the vauum S1. Hene, also the massterm 51�51 vanishes to all orders in the singlets. Analogously, one easily veri�es that themass terms 5�51 and 51�5 vanish as well.Adding further singlets to the vauum S1 leads to a non-zero 51�51 mass term as demon-strated in Table 4.2. The mass terms for 5�5 and 51�51 are roughly of the some order in thesinglets. It is intriguing that in some ases very high orders our, whih ould explain thehierarhy between the eletroweak sale and the GUT sale. However, the main result ofthis setion is that the vauum S1 does not orrespond to gauge-Higgs uni�ation. Instead,it represents a model with two pairs of Higgs doublets. This may be phenomenologiallyaeptable, but it is inonsistent with gauge oupling uni�ation.18



Name Monomial R1 R2 R3 k kn3
01 �X0S2S5 0 0 �1 6 0
02 �X0X1Y 2 �2 �1 0 12 12
03 �X0(S5)2U3 �2 1 �1 6 0
04 X0 �X1S5S7 0 �1 �1 6 3
05 X0 �X0X1 �X1U 1 �2 �3 0 12 6
06 X0 �X0 �X1 �Y2(S5)2 �2 �1 �1 12 6
07 X0 �X0 �X1 �Y2(S6)2 2 �3 �1 12 6
08 X0 �X0X1 �X1U2U4 �4 �2 0 12 6Table 4.3: Basis monomials of kerQ(S2) and their disrete harges. All monomials havekn2 = kn02 = 0.4.2.2 Partial gauge-Higgs uni�ationConsider now the ase of partial gauge-Higgs uni�ation, Hu = 5 and Hd = �51,� � �PGHU = HuHd = 5�51; (4.29)whih an be realized with the vauumS2 = S0 [ �X1; �X1; Y 2 ; �Y2; U 1 ; U3; S6; S7	 : (4.30)As disussed in Setion 3, the 51�5 pair an be deoupled with the VEV hX1i 6= 0. Forthe new vauum kerQ(S2) is again easily alulated, it has dimension eight. A set of basismonomials is listed in Table 4.3.For partial gauge-Higgs uni�ation the �-term is the 5�51 mass term. Choosing asspeial monomial �s = ( �X1)�1, with Q(�s5�51) = 0, one obtainsK(�s5�51) = (0; 0;�1; 0; 0; 0; 0): (4.31)The onditions for the existene of a �-term now readK(�0) = (�1mod 6;�1mod3; 0mod2; 0mod6; 0mod3; 0mod2; 0mod2) ;ns(�) � 0; (4.32)where ns(�) is the exponent of the singlet s 2 S2 in the monomial � = �0�s. The lastondition requires the presene of at least one fator of 
04, 
05, 
06, 
07 or 
08. Sine all basismonomials have even R1 harge the �rst ondition (4.32) is always violated by monomialsin kerQ(S2). Hene, the �-term vanishes again to all orders in the singlets.The vauum S2 is also maximal, sine the only possibility to enlarge it without breakingmatter parity is to add singlets A (A) whose N = 2 superpartners A (A) already belongto S2. One then obtains the �-term� = �0�s; �0 = AA(
05)3; (4.33)whih is of order 16 in the singlets. This power may be su�iently high to provide anexplanation of the hierarhy between the eletroweak and the GUT sale.19



4.2.3 �-term and gravitino massThe method of maximal vaua also allows to relate the existene of di�erent ouplings. Inpartiular, one an show for full and partial gauge-Higgs uni�ation that the existene of a�-term and a singlet ontributionW0 to the superpotential, whih determines the gravitinomass m3=2 / hW0i, are equivalent.For full gauge-Higgs uni�ation the equivalene follows diretly from the fat that �and W0 are given by invariant monomials in kerQ(S) [11℄,��GHU allowed , W0 = � allowed : (4.34)For partial gauge-Higgs uni�ation the ondition for a �-term � � �0�s depends on thequantum numbers of the Higgs �elds,K(�0) = Kva � K(�s�PGHU) = K(W0)� K(�s�PGHU): (4.35)From Eq. (4.31) and Table 4.3 one reads o�K(�s�PGHU) = K(
01) = K((
04)3); (4.36)whih implies��PGHU = �0(�s�PGHU) allowed ) W0 = �0
01 allowed ; (4.37)W0 allowed ) ��PGHU =W0(
04)3(�s�PGHU) allowed: (4.38)Note that 
01 = �X0S2S5 is the monomial used for the deoupling of 5�5 pairs in Setion 3.Our analysis demonstrates that the �-term and the gravitino mass are losely related,in partiular for vaua with full and partial gauge-Higgs uni�ation.4.3 Unbroken symmetriesIn a given vauum S the symmetry at the SU(5) �xed pointsGtot = Ggauge �Gdisrete (4.39)is spontaneously broken to some subgroup,Gtot ! Gva(S); (4.40)whih an be identi�ed in the standard manner. Knowledge of Gva(S) is obviously veryvaluable sine it restrits possible terms in the superpotential. Forbidden ouplings forYukawa matries orrespond to `texture zeros'.Consider a singlet si 2 S. Under the symmetry Gtot it transforms assi ! e2�i(��Q+r�K)si : (4.41)Here the vetors � and r,� = (�1; :::; �6) ; �i 2 R; r = �r16 ; r23 ; r32 ; r46 ; r53 ; r62 ; r72 � ; ri 2 Z; (4.42)20



parametrize the ontinuous and disrete symmetries of the theory.A parametrization of the unbroken group Gva(S) in terms of vetors �0 and r0 an befound by solving the equationssi = e2�i(�0�Q+r0�K)si; 8 si 2 S: (4.43)Knowing the allowed vetors �0 and r0, the group Gva(S) an be determined.One unbroken disrete subgroup in both vaua S1 and S2 is easily identi�ed sine U2and U4 are the only �elds with non-zero U(1)X harge,tX(U2) = �tX(U4) = 2: (4.44)The smallest U(1)X harge is tX(10) = 1=5. Hene, U(1)X is broken to the disretesubgroup ZX10 with elements gXm = exp (2�im2 tX), m 2 Z, whih ontains matter parity,PX = e2�i( 52 tX): (4.45)The identi�ation of the further unbroken symmetries is more umbersome. We �ndthat in both vaua no ontinuous U(1) symmetry survives. Solving expliitly equations(4.43) we �nd for the vauum S1,Gva(S1) = Z ~R13 � ZX10: (4.46)The elements of the Z3 R-symmetry are ~g(1)m = exp (2�im3 ~R1), m 2 Z, with~R1 = �1 �Q+ r1 � K; �1 = �52 ; 152 ; 0; 52 ;�52 ; 12� ; r1 = (5; 0; 0; 0; 0; 0; 0) : (4.47)The `vauum R-harge' is given byr1 � Kva = 1mod3 : (4.48)The ~R1 harges of the SU(5) non-singlets are listed in Table 3.2. Note that ~R1 is embeddedin the R-symmetry as well as the U(1) symmetries of the theory.Following the same proedure for the vauum S2, one obtains the unbroken groupGva(S2) = Z ~R22 � ZX10: (4.49)The elements of the Z2 R-symmetry are ~g(2)m = exp �2�i12 �m ~R2mod tX��, m 2 Z, with~R2 = �2 �Q+ r2 � K; �2 = �7; 0;�76 ; 354 ; 712 ;� 715� ; r2 = (7; 0; 0; 0; 0; 0; 0) ; (4.50)and vauum R-harger2 � Kva = 1mod2 : (4.51)~R2 is again a non-trivial linear ombination of U(1) and disrete R-harges. The ~R2-hargesof the SU(5) non-singlets are listed in Table 3.2.21



One the unbroken subgroups are known one an alulate the orresponding zeros ofthe superpotential. Consider again a term of the form (4.19), whih transforms under thedisrete symmetry Zli , li = 3; 2, generated by ~Ri, with i = 1; 2, respetively, asW = ��! � ~g(i)m gXn � = e2�imli ri�Kva W ; m; n 2 Z : (4.52)We thus obtain as su�ient ondition for the appearane of a vanishing oupling,~Ri(�) 6= ri � Kva mod li _ 12tX(�) 6= 0mod10 ) h�i = 0: (4.53)Given the ~Ri harges of the SU(5) non-singlet �elds �j this ondition is easily evaluated.We an now on�rm the result from the previous setion that the vauum S1 has twomassless Higgs pairs. From Table 3.2 we read o�~R1(5�5) = ~R1(51�5) = ~R1(5�51) = ~R1(51�51) = 0mod36= 1mod3 = r1 � Kva: (4.54)Extending the vauum S1 by one of the singlets listed in Table 4.2 preserves ZX10 but breaksZ ~R13 . As a onsequene, Higgs mass terms are generated.Likewise we an study the symmetry transformations of the above terms in the vauumS2, ~R2(5�5) = ~R2(5�51) = 0mod2 ; ~R2(51�5) = ~R2(51�51) = 1mod2 : (4.55)Furthermore, all ZX10 harges vanish. Realling (4.51), this shows that the unbroken R-symmetry forbids the generation of mass terms for 5�5 and 5�51, but allows them for thetwo remaining ombinations. Indeed, at lowest order we �nd the mass termW = hX1i 51(�5+ � �51) ; � = hX0 �X0X1Y 2 S6S7i : (4.56)This shows that 51 deouples together with a linear ombination of �5 and �51. The orthog-onal linear ombination is the down-type Higgs,Hd = �51 � � �5 : (4.57)It is interesting that the vauum S2 leads to a down-type Higgs with dominant omponentfrom a twisted setor. In ontrast, the up-type Higgs Hu = 5 is a pure gauge �eld in sixdimensions, whih is the reason for the large top-quark mass. Compared to the ase offull gauge-Higgs uni�ation, where both Higgs �elds arise from the untwisted setor, thisindues non-trivial disrete R-harges for the produt HuHd.The disrete R-symmetries ~R1 and ~R2 of the vaua S1 and S2, respetively, may beanomalous [32℄. This question is important sine in the ase of an anomaly one an expetthe generation of �-term and gravitino mass by nonperturbative e�ets. These questionswill be studied elsewhere. 22



5 Loal Yukawa CouplingsIn the previous setion we have identi�ed two vaua with onserved matter parity andvanishing �-terms. The �rst vauum S1 orresponds to a model with two pairs of masslessHiggs doublets, and thus without gauge oupling uni�ation. We therefore fous on theseond vauum S2 with partial gauge-Higgs uni�ation.The vauum S2 ontains the brane �elds S2; S5; S6; S7 loalized at (n2; n02) = (0; 0), towhih we now add the �elds S 02; S 05; S 06; S 07 at the equivalent �xed point (n2; n02) = (0; 1),S0 = �X0; �X0; U2; U4; S2; S5; S 02; S 05	 ; (5.1)S2 = S0 [ �X1; �X1; Y 2 ; �Y2; U 1 ; U3; S6; S7; S 06; S 07	 : (5.2)The Higgs �elds are Hu = 5 and Hd ' �51. The vauum S2 has the following properties:� U(1)X is spontaneously broken to ZX10 ontaining matter parity,� all vetor-like exotis at n2 = 0 deouple,� all D-terms at n2 = 0 vanish loally,� the �-term vanishes to all orders in the singlets,� hW i vanishes to all orders in the singlets.The remarkable last two features are a onsequene of an unbroken disrete R-symmetry.The vauum S2 is maximal in the sense that adding more singlets either breaks matterparity or generates a �-term.Low-energy supersymmetry requires vanishing F - and D-terms. In the 6D theory withloalized FI-terms the orresponding equations have ompliated solutions, leading to non-trivial pro�les for bulk �elds [15℄. We do not study the full problem here but fous on theloal onditions at the GUT �xed points n2 = 0. We expet that the loal VEVs an beextended to full dynamial solutions in six dimensions.The N = 2 vetor multiplet has three auxilliary �elds D1; D2; D3 whih form a tripletunder SU(2)R and must all vanish in the bulk. However, at the �xed points half of thesupersymmetry is broken and the loal N = 1 vetor multiplet has an e�etive D-termD � �D3+F56, where F56 is the assoiated �eld strength in the y5; y6 diretion. Thus theloal D-term anelation ondition at n2 = 0 (f. [15℄),Da3 = F a56 = gM2P384�2 tr tajtaj2 +Xi qai jsij2; (5.3)where qai is the U(1)a harge of the singlet si, has always a solution, even for non-vanishingright-hand-side. This means that in priniple loalized FI-terms do not neessarily induesinglet VEVs and the orresponding U(1) an remain unbroken. However, sine our modelhas distint anomalous U(1) fators at the inequivalent �xed points n2 = 0; 1 and a non-vanishing net anomalous U(1) in 4D [13℄, its global D-�at solution annot be of that kind.We rather expet a mixture of singlet VEVs and a nontrivial gauge bakround hF an56 i.23



For non-anomalous U(1)'s the loal �eld strength in (5.3) in the vauum S2 an vanishsine eah of the singlets appears in one of the gauge invariant basis monomials 
0i ofkerQ(S2) (f. Table 4.3). At n2 = 0 the model has an anomalous U(1)an [13℄,t0an = �4t2 + 5t4 � t5 + t06; tr t0an=jt0anj2 = 2: (5.4)In fat, also hF an56 i an vanish sine one an form monomials of singlets with negativeanomalous harge, whih are gauge invariant otherwise. An example is�X0X1( �X1)2S5S6(S7)2; (5.5)whih has qan = �74=3.We note that the extension of the vauum S2 to a global solution is not straightforward.As demonstrated in Table 4.3, it does not provide unharged monomials of bulk �elds only,whih inlude �Y2 or U3. Thus VEVs of these �elds are inompatible with Da3 = 0. Onemay redue the vauum to S2 nf �Y2; U3g, or inorporate pro�les of (partly) odd �elds. Herewe restrain our attention to loal properties of the vauum S2 at the GUT �xed points,leaving the problem of global solutions to further studies.The F -terms Fi = �W=�si vanish trivially for all vauum �elds si 2 S2, sine theyonly arise from monomials whih ontain at least one other singlet with zero vauumexpetation value. Thus only monomials of the form W = (Qi si)u, with si 2 S2 andhui = 0, indue non-trivial F -terms. For the vauum S2 there are six suh terms, arisingfrom u 2 �X0; �X0; X1; �X1; Y2; �Y 2 	. Eah of these singlets u has a partner u whih isontained in S2 and thus has a non-vanishing vev. Note that u annot be a singlet withodd matter parity sine the latter is preserved by S2. The relevant part of the superpotentialis then given byW = �au1 + au2(
01)2 + au3(
02)3 + � � � �
01uu ; (5.6)where the 
0i were introdued in Table 4.3, and auj are oe�ients labeling all ompletelyinvariant monomials whih an be onstruted from vauum singlets. The F -term ondi-tions beomeFu / au1 + au2(
01)2 + au3(
02)3 + � � � = 0 : (5.7)We expet the existene of non-trivial solutions, with VEVs of the singlets si 2 S2 de-termined by the oe�ients auj. Expliit �nite order examples for similar models weredisussed in [11℄.In the framework of heteroti orbifold ompati�ations, all ouplings of SU(5) non-singlet �elds arise from higher dimensional operators. In the vauum S2, to lowest order inthe singlets, we �nd the SU(5) Yukawa ouplings for the two brane and two bulk families,C(u) = (aij) = 0BB� ~s4 ~s4 ~s5 ~s5~s4 ~s4 ~s5 ~s5~s5 ~s5 ~s6 g~s5 ~s5 g ~s6 1CCA ; C(d) = (bij) = 0BB� 0 0 0 00 0 0 0~s10 ~s10 ~s6 ~s6~s1 ~s1 ~s2 ~s2 1CCA : (5.8)24



Coupling Order Monomiala11 4 ( �X0 )2 S2 S5a12 4 ( �X0 )2 S 02 S5a13 5 ( �X0 )2 (S2)2 S5a14 5 ( �X0 )2 S2 (S5)2a22 4 ( �X0 )2 S 02 S 05a23 5 ( �X0 )2 (S 02)2 S 05a24 5 ( �X0 )2 S 02 (S5)2a33 6 ( �X0 )2 ( S2 )3 S5a34 0 ga44 6 ( �X0 )2 S2 ( S5 )3Table 5.1: Examples of lowest order monomials for C(u)ij = aij in the vauum S2.Coupling Order Monomialb31 10 X0 ( �X0 )2 ( X1 )2 �X1 �Y2 U2 U4 S5b32 10 X0 ( �X0 )2 ( X1 )2 �X1 �Y2 U2 U4 S 05b33 6 X0 X1 �X1 �Y2 S6 S7b34 6 �X0 ( X1 )2 Y 2 S6 S7b41 1 S5b42 1 S 05b43 2 S2 S5b44 2 ( S5 )2Table 5.2: Examples of lowest order monomials for C(d)ij = bij in the vauum S2.Here ~sn denotes one or more monomial of order n. Expliit lowest order monomials aregiven in Tables 5.1 and 5.2. Note that all vanishing terms are texture zeros whih are pro-teted by the unbroken disrete R-symmetry to arbitrary order. After orbifold projetionto four dimensions the Yukawa ouplings for the zero modes readY (u) = 0� a11 a12 a14a21 a22 a24a31 a32 a34 1A = 0� ~s4 ~s4 ~s5~s4 ~s4 ~s5~s5 ~s5 g 1A ; (5.9)Y (d) = 0� b11 b12 b14b21 b22 b24b41 b42 b44 1A = 0� 0 0 00 0 0~s1 ~s1 ~s2 1A ; (5.10)Y (l) = 0� b11 b12 b13b21 b22 b23b31 b32 b33 1A = 0� 0 0 00 0 0~s10 ~s10 ~s6 1A : (5.11)Clearly, these matries are not fully realisti sine me = m� = md = ms = 0. On the other25



Coupling Order Monomial11 11 ( X0 )2 ( �X0 )2 �X1 Y 2 U2 S5 S6 (S7)212 11 ( X0 )2 ( �X0 )2 �X1 Y 2 U2 S 05 S6 (S7)222 11 ( X0 )2 ( �X0 )2 �X1 Y 2 U2 S 05 S 06 (S 07)233 12 X0( �X0)4(X1)2U 1U2U3S2S534 7 ( X0 )2 �X0 �X1 U2 S6 S744 11 ( X0 )3 ( �X0 )2 ( �X1 )2 U 1 U2 ( S6 )2Table 5.3: Examples of lowest order monomials for C(L)ij = ij in the vauum S2.hand, they show the wanted hierarhial struture with a large top-quark mass singled out.Unsuessful SU(5) mass preditions are avoided sine the third 4D quark-lepton family isa ombination of split multiplets from two 6D families.Sine U(1)B�L is broken the model also predits Majorana neutrinos. `Right-handed'neutrinos with tB�L = 1 an be inferred from Table 3.3. Via the seesaw mehanismthey generate light neutrino masses. We obtain for the oe�ients C(L) (f. (2.1)) of theorresponding dimension-5 operator, whih an be alulated diretly,C(L) = (ij) = 0BB� ~s11 ~s11 0 0~s11 ~s11 0 00 0 ~s12 ~s70 0 ~s7 ~s11 1CCA : (5.12)Examples of lowest order monomials are given in Table 5.3. Projetion to four dimensionsyields for SU(2) doublet zero modes the 3� 3 sub-matrix with i; j = 1; 2; 3.By onstrution, the �-term vanishes to all orders in the vauum S2 sine it is protetedby an unbroken disrete R-symmetry. However, this symmetry is not su�ient to forbiddangerous dimension-5 proton deay operators. This an be seen from the ~R2-harges inTable 3.2, e.g.,~R2(�5(1)10(1)10(1)10(1)) = 1mod2 ; ~R2(Kva) = 1mod2 : (5.13)Sine these harges agree and the total ZX10 harge vanishes, the proton deay term is notforbidden in the superpotential (2.1). Indeed, we �nd a lowest order monomial at O(7),C(B)1111 = ( �X0)2X1 �X1Y 2 S6S7.Note that the methods presented in Setion 4 allow to design vaua with vanishing�-term and dimension-5 proton deay terms to all orders in the singlets. An example isthe vauum S0, leading to � = C(B)ijkl = 0. However, this vauum has other problems.It is inompatible with loal D-term anelation, has no gauge-oupling uni�ation andvanishing down-type Yukawa ouplings, C(d)ij = 0. This demonstrates that the variousphenomenologial properties of a vauum are losely interrelated.In summary, the vauum S2 leads to too rapid proton deay, and also the quark andlepton mass matries are not fully realisti. However, they show the orret qualitative26



features of the standard model, and we are optimisti that a systemati san of the heteroti`mini-landsape' an lead to phenomenologially more viable models.6 ConlusionsHow to distinguish between Higgs and matter is a ruial question in supersymmetriextensions of the standard model, in partiular in ompati�ations of the heteroti string.We have analyzed this question for vaua of an anisotropi orbifold ompati�ation whihhas an e�etive 6D supergravity theory as intermediate step between the GUT sale andthe string sale.Our main result is that for generi vaua, there is no di�erene between Higgs andmatter, as there is nothing speial about the standard model gauge group. However,ertain vaua with standard model gauge group and partile ontent an possess disretesymmetries whih single out Higgs �elds. They are distinguished from matter �elds by amatter parity, and a mass term allowed by gauge symmetries is forbidden by an elusivedisrete R-symmetry, a remnant of the large symmetry exhibited by the fundamentaltheory.We have identi�ed maximal vaua of a heteroti orbifold model with loal SU(5) uni-�ation for whih the perturbative ontribution to the �-term vanishes. Nonperturbativeorretions, possibly related to supersymmetry breaking, may then have the size of theeletroweak sale. Alternatively, a non-zero �-term suppressed by high powers of singlet�elds an appear in extensions of the maximal vaua.We have also determined the unbroken disrete R-symmetries of the maximal vaua.They are judiiously embedded into the large symmetry of the theory, whih is a on-sequene of the large number of singlet �elds forming the vauum. It is intriguing thatthe maximal vaua do not inlude gauge-Higgs uni�ation, but rather partial gauge-Higgsuni�ation for the Higgs �eld Hu whih gives mass to the up-type quarks. The originalsymmetry between 5- and �5-plets is broken by seleting vaua where matter belongs to �5-and 10-plets.The method developed to �nd maximal vaua an be applied to all theories whereouplings are generated by higher-dimensional operators. We have foussed on the �-term, but one an also determine maximal vaua for several ouplings, like the �-termand dimension-5 proton deay operators. In addition to the vanishing of some ouplingsone may require the appearane of ertain ouplings, like Yukawa ouplings or Majorananeutrino masses.The features of the standard model imply strong onstraints on phenomenoloiallyallowed vaua. Further important restritions will follow from supersymmetry breakingand stabilization of the ompat dimensions. Given the �nite number of heteroti stringvaua one may then hope to identify some generi features of standard model vaua, whihan eventually be experimentally tested.
27
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