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Abstra
tWe further investigate, in the planar limit of N = 4 supersymmetri
 Yang Mills theories, thehigh energy Regge behavior of six-point MHV s
attering amplitudes. In parti
ular, for the newRegge 
ut 
ontribution found in our previous paper, we 
ompute in the leading logarithmi
 ap-proximation (LLA) the energy spe
trum of the BFKL equation in the 
olor o
tet 
hannel, and we
al
ulate expli
itly the two loop 
orre
tions to the dis
ontinuities of the amplitudes for the tran-sitions 2! 4 and 3! 3. We �nd an expli
it solution of the BFKL equation for the o
tet 
hannelfor arbitrary momentum transfers and investigate the inter
epts of the Regge singularities in this
hannel. As an important result we �nd that the universal 
ollinear and infrared singularities ofthe BDS formula are not a�e
ted by this Regge-
ut 
ontribution. Any improvement of the BDSformula should reprodu
e this 
ut to all orders in the 
oupling.1 Introdu
tionIn a re
ent work [1℄ we have investigated the high energy Regge behavior of MHV s
attering amplitudesin the planar limit of N = 4 supersymmetri
 Yang Mills Theories, and we have found that, for n-pointamplitudes with n > 5 beyond the one loop approximation, the simple fa
torizing stru
ture of theBern-Dixon-Smirnov (BDS) 
onje
ture [2℄ is not valid. In detail, it was shown that for the 
ases of thetransitions 2! 4 and 3! 3 their fa
torized form is violated by Regge 
ut 
ontributions whi
h satisfythe BFKL equation [3℄ in the 
olor o
tet 
hannel. These terms are obtained from spe
i�
 single energydis
ontinuities, and in the s
attering amplitudes they be
ome visible in parti
ular physi
al kinemati
regions only. In the one loop approximation, these terms are 
orre
tly 
ontained in the BDS formula,but in higher orders they 
annot be 
ast into the simple exponential form 
onje
tured by Bern et al.In this paper we further investigate these Regge 
ut 
ontributions. We study the BFKL equationin the 
olor o
tet state, and we 
ompute the two-loop expressions for the 2! 4 and 3! 3 amplitudes.In parti
ular, we show that the 
ollinear and infrared divergen
es of the BDS formula are not a�e
tedby the Regge 
ut 
ontributions.The paper is organized as follows. In se
tion 2 we brie
y review the derivation of the fa
torization-breaking 
ontributions, and we write down the expression for the Regge-
ut 
ontribution, using the
al
ulus of 
omplex momenta. Se
tions 3 - 5 are devoted to the detailed investigation of this Regge-
ut
ontribution: we �rst (se
tion 3) study the stru
ture of the infrared singularities, we then (se
tion4) 
ompute the two loop expressions for the 
ut 
ontributions, and �nally in se
tion 5 we obtainthe expli
it solution of the BFKL equation for the o
tet 
hannel. In the �nal se
tion we present1
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on
lusions and further strategies. Solutions of the BFKL equation for the forward 
ase are presentedin an appendix.2 The Regge 
ut 
ontribution: review and representation interms of 
omplex momentaIn our previous paper we have studied the high energy Regge behavior of s
attering amplitudes of N =4 supersymmetri
 Yang Mills theories. In the leading logarithmi
 approximation (LLA) we 
an makeuse of the QCD 
al
ulations sin
e the supersymmetri
 partners of quarks and gluons do not 
ontribute(in this limit t 
hannel ex
hanges with the highest spin dominate). We now summarize the main resultsof [1℄. For n-point amplitudes with n > 4, the high energy s
attering amplitudes 
an be written as sumsof separate pie
es (named `analyti
 representation' or `dispersion representation'). This de
ompositionre
e
ts the analyti
 stru
ture required by the Steinmann relations [4℄. The di�erent terms appearing inthis representation 
an be 
omputed from single energy dis
ontinuities (`imaginary parts') or multipleenergy dis
ontinuities. To be de�nite, we 
onsider the 2 ! 4 and the 3 ! 3 s
attering amplitudes,illustrated in Figs. 1 and 2. For the 2! 4 s
attering we are interested in the kinemati
 limit (double

Figure 1: Kinemati
s of the 2! 4 amplitudeRegge limit) s� s1; s2; s3 � t1; t2; t3; (1)whereas the 3! 3 s
attering pro
ess will be studied in the limits� s13; s02 � s1; s3; t02 = (pA � pA0 � k2)2 � t1; t2; t3: (2)The analyti
 de
ompositions are illustrated in Figs. 3 and 4.In the physi
al region where all energies are positive, there are, both for the 2 ! 4 and for the3 ! 3 
ase, substantial 
an
ellations of the Regge 
ut 
ontributions between these �ve terms: in thesum their imaginary parts 
an
el, and the amplitude takes the well-known fa
torized Regge form.In other physi
al regions, however, where some energies are positive and others are negative, the
an
ellations are less 
omplete, and pie
es be
ome visible whi
h do not show up in the region of onlypositive energies. For the 2! 4 
ase, the physi
al region of interest iss > 0; s2 > 0; s1 < 0; s3 < 0; s012 < 0 ; s123 < 0: (3)Here non-vanishing dis
ontinuities are only in s and s2, and both of them 
ontain a new term whi
hviolates the simple fa
torizing form. It 
ontains a Regge-
ut stru
ture whi
h is des
ribed in terms ofthe 
olor o
tet BFKL equation. We illustrate these dis
ontinuities in Fig. 5.2



Figure 2: Kinemati
s of the 3! 3 amplitude

Figure 3: Analyti
 representation of the amplitude M2!4
3



Figure 4: Analyti
 representation of the amplitude M3!3

Figure 5: (a) the s2 dis
ontinuity for the 2 ! 4 amplitude; (b) the s dis
ontinuity for the 2 ! 4amplitude
4



Figure 6: The s2 dis
ontinuity for the 2! 4 amplitude. The big blob denotes the BFKL gluon Green'sfun
tion in 
olour o
tet state in
luding the reggeization of the lines with momentum k; q2 � k; k0 andq2� k0. The dots indi
ate the produ
tion verti
es in eqs. (7) and (13). This is equivalent to Fig. 5 (a)indi
ating the momentum notation.For the 3! 3 s
attering amplitude the 
orresponding region iss > 0; t02 > 0; s1 < 0; s3 < 0; s13 < 0 ; s02 < 0: (4)The non-vanishing dis
ontinuities belong to s and t02 > 0, and they, again, 
ontain the Regge 
utpie
es.In [1℄ we have 
ompared these results with the expression given by Bern et al. Whereas for the2! 2 and 2! 3 amplitudes the QCD results are in full agreement with the BDS formula, the 2! 4and 3 ! 3 BDS amplitudes are 
orre
t only in the one loop approximation. For two or more loops,the Regge 
ut pie
e 
annot be reprodu
ed by the BDS expression. As explained above, this impliesthat the BDS formula (in LLA) still gives the 
orre
t result in the physi
al region where all energiesare positive, but it fails (beyond one loop) in the regions (3) and (4).In the following we shall investigate these Regge 
ut pie
es in more detail. Rather than returning tothe �ve terms illustrated in Figs. 3 and 4, we dire
tly present an expli
it Feynman diagram 
al
ulationof the single energy dis
ontinuities in s2 and s for the 2! 4 amplitude and in t02 and s for the 3! 3amplitude. Let us begin with the s2 dis
ontinuity illustrated in Fig. 6. Here the blob in the 
enterdenotes the BFKL Green's fun
tion in the 
olor o
tet 
hannel whi
h sums the s-
hannel emissions inthe 
enter of Fig. 5a, and on both sides we have to 
onvolute this Green's fun
tion with the `impa
tfa
tors' �1 and �2. Introdu
ing 
omplex momentak = kx + iky; k� = kx � iky (5)and making use of the expression for the vertex des
ribing the produ
tion of a gluon with de�niteheli
ity (
f. eq.(6) of [1℄): C�(q2; q1)e��(k1) = p2q�2q1k�1 (6)we obtain for the produ
tion vertex to the left of the Green's fun
tionp2q1(q2 � k)�(k + k1)� : (7)Here we have used that, in Fig. 6, the gluon with momentum k + k1 is on shell (we 
onsider thedis
ontinuity in s2), and at the upper vertex where the gluon with momentum k is atta
hed theoutgoing gluon heli
ity is 
onserved. Sin
e the s
attering amplitude T2!n for the 
ase of the maximalheli
ity violation (MHV) 
an be written as [2℄T2!n = TBorn2!n �M2!n; (8)5



Figure 7: De
omposition of the produ
tion vertex in eq.(7). The dots denote the e�e
tive produ
tionvertex in eq.(6).we will, throughout our paper, 
onsider the fa
torM2!n only. We, therefore, separate the produ
tionvertex of the Born approximation and rewrite (7) as:p2q1q�2k�1 �1(k; q2; q1) (9)with the impa
t fa
tor: �1(k; q2; q1) = k�1(q2 � k)�q�2(k + k1)�= 1� k�q�1q�2(k + k1)� : (10)In the following we shall work with this impa
t fa
tor.In order to make 
onta
t with [1℄ we should note that, with the result in the se
ond line of eq. (10),the produ
tion vertex in (7) 
an be written as a sum of two terms of the formp2q1(q2 � k)�(k + k1)� = p2q1q�2k�1 � q21(k1 + k)2p2(k1 + k)k�k�1 : (11)We illustrate this stru
ture in Fig. 7. The �rst term is `lo
al', i.e. it has no further dependen
e onthe internal momenta, whereas the se
ond one is `nonlo
al'.Similarly, on the right side of the Green's fun
tion in Fig. 6 we havep2(q2 � k0)q�3k2 � k0 = p2q2q�3k2 �2(k0; q2; q3) (12)with the impa
t fa
tor �2(k0; q2; q3) = k2(k0 � q2)q2(k0 � k2)= 1� k0q3(k0 � k2)q2 (13)and p2(q2 � k0)q�3k2 � k0 = p2q2q�3k2 + q23k0(k2 � k0)2p2(k2 � k0)�k2 : (14)The dis
ontinuity in s2, to an arbitrary loop a

ura
y, of the amplitude M2!4 in LLA then hasthe form: 1� =s2 M2!4 = Z �+i1��i1 d!2�i � s2�2�! f2(!) ; (15)where the t2-
hannel partial wave isf2(!) = �̂� q22 Z d2�2�k d2�2�k0 �1(k; q2; q1)G(8A)! (k;k0; q2) �2(k0; q2; q3) (16)6



and �̂� = �sN
�2�(2�)2�2� ; a = �sN
2� �4�e�
�� : (17)The overall fa
tor q22 in front of the integral in (16) takes into a

ount that the Born approximationof the amplitude 
ontains the pole 1=jq2j2 but in our 
al
ulations we are interested in the s
atteringamplitude M2!4 with the Born fa
tor being removed (
f. 8). The Green's fun
tion G(8A)! (k;k0; q2)satis�es the BFKL equation for the 
olor o
tet 
hannel (putting � = 0):!G(8A)! (k;k0; q2) = Æ(2)(k � k0)k2(k � q2)2 + 1k2(k � q2)2 �K(8A) 
G(8A)! � (k;k0; q2); (18)where K(8A) denotes the BFKL kernel in the 
olor o
tet 
hannel, 
ontaining both real emission andthe gluon traje
tory, and the 
onvolution symbol stands for 
 = R d2k(2�)3 . Using 
omplex momentathe kernel 
an be written in the form:K(8A)(k; k0; q2) = Æ(2)(k � k0) �!(�jkj2) + !(�jq2 � kj2)�+ a2 k�(q2 � k)k0(q2 � k0)� + 
:
:jk � k0j2 ; (19)where the gluon traje
tory is !(�k2) = a�1� � ln k2�2� : (20)In 
ontrast to the 
olor singlet BFKL kernel, the 
olor o
tet kernel is not infrared �nite and needsto be dimensionally regularized. It is 
onvenient to separate the singular pie
es by writing the o
tetkernel asK(8A)(k;k0; q2) = Æ(2)(k � k0) �!(�q22) + 12 �!(�k2) + !(�(q2 � k)2)� 2!(�q22)��+12K(1)(k;k0; q2)= Æ(2)(k � k0) �!(�q22)� a2 ln k2(q2 � k)2q22q22 �+ 12K(1)(k;k0; q2): (21)In this expression, K(1)(k;k0; q2) denotes the 
olor singlet BFKL kernel, and infrared singularities are
ontained in the traje
tory fun
tion !(�q22).Inserting this form of the o
tet kernel into (15), the dis
ontinuity takes the form:1�=s2M2!4 = s!(t2)2 Z �+i1��i1 d!2�i � s2�2�! ef2(!) (22)where the redu
ed partial wave ef2(!) is given byef2(!) = �̂� q22 Z d2�2�k d2�2�k0 �1(k; q2; q1) eG!(k;k0; q2) �2(k0; q2; q3) : (23)The Green's fun
tion eG!(k;k0; q2) satis�es the BFKL equation (18) with the redu
ed kernel~K(k;k0; q2) = �Æ(2)(k � k0)a2 ln k2(q2 � k)2q22q22 + 12K(1)(k;k0; q2): (24)From the expli
it form of the fun
tion ef2(!) and of the impa
t fa
tors �i one sees that there arepotential divergen
es only for jkj � jk0j ! 0 (and not for jq2 � kj � jq2 � k0j ! 0). The one loop7




ontribution to the partial wave, ~f (0)2 , takes the form! ef (0)2 (!) = �̂� q22 Z d2�2�k�1(k; q2; q1) 1k2(q2 � k)2�2(k; q2; q3)= a2 �ln k21k22(k1 + k2)2�2 � 1�� : (25)In our previous paper [1℄ we isolated the term whi
h violates the BDS fa
torization ansatz. Thisterm, named V
ut, is 
ontained in (16): in the impa
t fa
tors �1 and �2 one retains only the nonlo
alpie
es (
f. (11) and Fig. 7), and one subtra
ts the Regge pole 
ontribution. The one loop 
ontributionwas given in eqs. (94) and (95) of [1℄. In the normalization of (16) it reads:�̂� q22 Z d2�2�k k�q�1q�2(k + k1)� 1k2(q2 � k)2 kq3q2(k � k2) = a2 �ln q21q23(k1 + k2)2�2 � 1�� (26)and it was shown to 
oin
ide (apart from an overall fa
tor) with the phase fa
tor C in eq.(75) of [1℄.In this paper we address the dis
ontinuity in s2, for whi
h we do not need to split the impa
t fa
torsinto lo
al and nonlo
al pie
es. However, for the dis
ontinuity in s we will 
ome ba
k to the result(26).In the following se
tions we will study the redu
ed partial wave (23) and the redu
ed kernel (24)in some detail. First we will investigate the infrared properties and show that the infrared divergen
eis 
ontained only in the one-loop approximation (25), i.e. the redu
ed kernel is infrared �nite andintrodu
es no further divergen
es. This implies that the divergent term � 1=� is not renormalized.We will then 
ompute expli
itly the two loop approximation to the redu
ed partial wave. Finally, wewill return to the redu
ed kernel and 
al
ulate its eigenfun
tions and eigenvalues.3 Infrared properties and eigenvalues of the o
tet kernelIn this se
tion we 
on
entrate on the infrared properties of the o
tet kernel. By investigating themost singular part of the redu
ed partial wave (23), we �nd the exa
t expression for the eigenvalues,and we prove that the infrared singularity of the redu
ed partial wave 
oin
ides with the 1=� pole ofthe one loop approximation. The exa
t solution of the 
olor o
tet BFKL equation will be derived inse
tion 5, and it allows to �nd a 
losed expression for the redu
ed partial wave.The starting point of our further dis
ussion is eq.(23). During this se
tion we will denote thetransverse momenta by p;p0 and p = px + ipy; p� = px � ipy. The Green's fun
tion eG! satis�es the`renormalized' equation! eG!(p;p0; q) = 1p2(q � p)2 Æ2(p� p0)� a eH eG!(p;p0; q2) ; (27)where eH = ln jpj2jq � pj2jqj2 + 1=pq� � p� ln j�j22 p(q � p)� + 1=p�q � p ln j�j22 p�(q � p) + 2
 : (28)As we stated before, the most interesting region is the infrared divergent region jpj � jp0j � jqj. Inthis asymmetri
 kinemati
 it is possible to �nd eigenvalues and eigenfun
tions of the redu
ed kernel.First, the expression (23) for ~f2 is simpli�ed:ef2(!) = �̂� Z d2p d2p0 eg!(~p; ~p0); (29)and eg! satis�es the equation !eg!(~p; ~p0) = 1jpj2 Æ2(p� p0)� a eH eg!(~p; ~p0) : (30)8



Here eH = ln jpj2 + 1p ln j�j22 p+ 1p� ln j�j22 p� + 2
 (31)and 
 = � (1) is the Euler 
onstant.The Hamiltonian for the o
tet quantum numbers has the property of the holomorphi
 separabilityeH = eh8 + eh�8 ; eh8 = ln p+ ln �2 + 1p ln �2 p+ 
 : (32)The holomorphi
 Hamiltonian h8 is slightly di�erent from the 
orresponding Hamiltonian for thesinglet 
ase h = hP2 = ln p+ 1p (ln �) p+ 
 : (33)The di�eren
e is also in the normalization 
onditions for the wave fun
tions in these two 
asesjj	jj28 = Z d2p	�jpj2	 ; jj	jj2BFKL = Z d2p	�jpj4	 : (34)The eigenfun
tions belonging to the prin
ipal series of the unitary representations of the M�obius groupin the holomorphi
 subspa
e have the di�erent form	(m)8 = p�3=2+m ; 	(m)BFKL = p�2+m ; m = 12 + i� + n2 : (35)The eigenvalue of the total Hamiltonian for the o
tet 
ase is given byE(m;em)8 = �(m)8 + �(em)8 ; �(m)8 = 12  �32 �m�+ 12  �12 +m��  (1) : (36)To verify this result we a
t on the wave fun
tion f(k) with amputated propagators with the Hamil-tonian regularized by a mass parameter �2eHf = ln jkj2�2 jkj2i� � kk��n=2 � Z d2k02�jk0j2 kk0� + k�k0(jk � k0j2 + �2) jk0j2i� � k0k0��n2= ln jkj2�2 jkj2i� � kk��n2 � Z 10 dx Z d2k0 (1� x)�i�+n2 (1� i� + n2 ) (kk0� + k�k0) k0n2� (jk0 � xkj2 + x(1� x)jk2j+ x�2)2�i�+n2= 0B�ln jkj2�2 � n2�2 + n24 � Z 10 dx (1� x)�i�+n2 xi�+n2�1� x+ �2jkj2�1�i�+n2 1CA jkj2i� � kk��n=2 : (37)One immediately sees that the result is �nite when �2 is taken to zero.From this expression we 
an obtain the eigenvalueE�n = 12  1i� � jnj2 � 1i� + jnj2 !+  (1 + i� + jnj=2) +  (1� i� + jnj=2)� 2 (1)= < (1 + i� + n=2) + < (1 + i� � n=2)� 2 (1) : (38)In parti
ular, for n = 0; 1, we haveE�0 = 2< (1 + i�)� 2 (1);E�1 = 12 1�2 + 14 + 2< (12 + i�)� 2 (1) : (39)9
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Figure 8: Spe
trum of the lowest eigenvaluesThe 
orresponding lowest energies are E(0) = 0 and E(1) = 2� 4 ln 2 < 0 . In Fig. 8 we show the �-dependent eigenvalues for di�erent values of n. Thus, the ground state energy 
orresponds to jnj = 1,as it was in the 
ase of the 
olorless Odderon state [5℄. In se
tion 5 we will re-derive this spe
trum bysolving the eigenvalue problem exa
tly.The solution of the equation for the Green's fun
tion 
an be found with the use of the 
ompleteness
ondition for the eigenfun
tionseg!(~p; ~p0) = 1jpj2jp0j2 1� 1Xn=�1 ei n (���0) Z 1�1 d�2� � jpj2jp0j2�i� 1! � !(�; n) : (40)Here !(�; n) = �g2N
8�2 E�n = g2N
8�2 �2 (1)�< �1 + i� + n2��< �1 + i� � n2�� : (41)Inserting this expression into (29) one sees that ~f2, in this approximation, redu
es to the 1=�-pole ofthe one-loop expression: the redu
ed 
olor o
tet BFKL Green's fun
tion only leads to �nite 
orre
-tions to the one-loop result and introdu
es no further infrared divergen
es. Therefore, the divergent
ontribution is 1�=s2M2!4jdiv = �a� s!(t2)+!n(0;0)2 = �a� s!(t2)2 ; (42)where !(0; 0) is the leading eigenvalue of the `redu
ed' o
tet BFKL kernel dis
ussed before (note that,in this 'infrared' approximation, the impa
t fa
tors are equal to 1, and the solution belonging to theeigenvalue !(0; 1) does not 
ontribute). Thus, the divergent 
ontribution � 1=� is not renormalized:its asymptoti
 behavior 
orresponds to the usual gluon Regge pole. The reason for this is that the
ollinear and infrared divergen
es are fa
torized and that the BDS ansatz is valid in the one-loopapproximation.4 Contributions at two loops in the perturbative expansionLet us return to the redu
ed partial wave ~f2(!) in eq.(23) and 
ompute the �rst terms in the per-turbative expansion. The one loop approximation has already been given in (25). As mentionedbefore, it 
ontains the infrared singularity 
oming from the region jkj ! 0. In this se
tion we iterate10



the integral equation for the Green's fun
tion (27) inside the partial wave and, using the 
al
ulus of
omplex momenta, 
ompute the two loop expression. Starting, in Fig. 6, from the impa
t fa
tor onthe right, given in eq.(13), we have the following expression for the �rst iteration (using the redu
ed
olor o
tet BFKL Hamiltonian in eq.(24)):eH�2 = �a ln jkj2jq2 � kj2jq2j2 �2 �2(k; q2; q3)+ a Z d2k02� kk0�(q�2 � k�)(q2 � k0) + k�k0(q2 � k)(q�2 � k0�)(jk � k0j2 + �2) jk0j2 jq2 � k0j2 �2(k0; q2; q3) : (43)Here �2 plays the rôle of an intermediate infrared 
ut-o� whi
h will be removed at the end of our
al
ulations. The result of integration 
an be written in the formeH�2 = k2q2 12 �(k) ; (44)where �(k) = �a � q2 � kk2 � k ln jkj2jq2 � kj2jk2j2jq2j4jk � k2j2 + q2k2 ln jq2j2jkj2 + (q2 � k2)kk2(k2 � k) ln jq2 � k2j2jk2 � kj2 � : (45)Next we perform the integration over k with the impa
t fa
tor on the right hand side in eq.(10), andwe obtain for the two-loop approximation of the imaginary part in the s2-
hannel in (22):As2 = Z �+i1��i1 d!2�i � s2�2�! ef2(!)= ��2 q22 k2q2 a ln s2 Z d2k2� jkj2jq2 � kj2 �1(k; q2; q1)�(k) : (46)With the use of 
omplex number algebra this two-loop expression 
an be redu
ed to the formAs2 = ��2 a2 ln s2 Z d2k2� �(k) ; (47)where �(k) = � 1jkj2 � 1k(k� + k�1)� ln jq2 � kj2jk2j2jq2j2jk � k2j2+ � 1k � q2 1k� � 1k � q2 1k� + k�1� ln jq2 � k2j2jkj2jq2j2jk � k2j2+ � 1k � k2 1k� + k�1 � 1k � k2 1k�� ln jq2 � kj2jkj2jq2 � k2j2jk2j2jq2j4jk � k2j4 : (48)One 
an easily verify that the ultraviolet divergen
es 
an
el. Also, in agreement with the previousse
tions, the divergen
e at k = 0 is absent. The above integrals over k 
an be expressed (with theshift k ! k + 
) in terms of the following expression:f(a; b) � Z d2k�(k � a)(k� � b�) ln jkj2 : (49)To regularize the ultraviolet divergen
e we introdu
e the 
ut-o�jkj2 < �2 ; (50)11



whi
h at the end 
an
els in the expression for As2 . One 
an then write f in the formf(a; b) = ln2 �22 + fr(a; b) (51)and use further the regularized value fr be
ause ln2 � is 
an
eled in the �nal result. To 
al
ulate thisfun
tion we take derivatives in the 
omplex 
oordinates a� and b��a� f = � 1a� � b� ln jaj2 ; ��bf = � 1b� a ln jbj2 : (52)After integrating these expressions we obtainfr(a; b) = � Z 10 dxx� b�a� lnx� Z 10 dyy � ab ln y+ ln jaj2 ln b�a� � b� + ln jbj2 ln ab� a � 12 ln2(a b�) : (53)The last term was obtained as an integration 
onstant: it 
an be determined from the 
onditions thatit must depend upon a and b�, and the full fun
tion f should depend on the invariantsjaj2 = a a� ; jbj2 = b b� ; a b� = ab� i[a; b℄3 ; a� b = jaj2jbj2a b� : (54)Moreover, from dimensional 
onsiderations it follows that it 
ontains the term 12 ln2 s, where theinvariant s has the dimension of �2.The fun
tion fr 
an be expressed in terms of the Spen
e's fun
tion (dilogarithm)fr(a; b) = �Li2�a�b��� Li2� ba�� 12 ln2(a b�)+ ln jaj2 ln b�a� � b� + ln jbj2 ln ab� a ; (55)where Li2(z) = � Z z0 ln(1� t)t dt : (56)Note that the above expression for f has the following propertiesf(�a;�b) = f(a; b) ; f�(a; b) = f(b;a) : (57)In some parti
ular 
ases it 
an be simpli�ed. For example,fr(0; b) = Z d2k�k (k� � b�) ln jkj2 = �12 ln2(jbj2) : (58)We shall use also the values of the integralsZ d2k�jkj2 ln jk � 
j2j
j2 = 12 ln2 �2j
j2 ; Z d2k�(k � a)(k � b�) = ln �2ja� bj2 : (59)With these results we 
an 
al
ulate the two-loop 
ontribution to the imaginary part of the ampli-tude in the s2-
hannel:� 4a2 ln s2 As2� = ln jk1j2jq2j2 ln jk2j2jq2j2 � fr(�q2;�q2 � k1) + fr(�k2;�k1 � k2)+ ln jq2 + k1j2jq2j2 ln jq2 � k2j2jq2j2 + fr(q2; 0)� fr(q2;�k1) + fr(q2 � k2;�k1 � k2)�fr(q2 � k2;�k2) + ln jk2j2jk1 + k2j2 ln jq2 � k2j2jk2j2jq2j4 + fr(k2;�k1)� fr(k2; 0)+fr(k2 � q2;�k1 � q2)� fr(k2 � q2;�q2)� 2fr(0;�k1 � k2) + 2fr(0;�k2) : (60)12



Using the following properties of dilogarithmsLi2�1z� = �Li2(z)� 12 ln2(�z)� �2 ;Li2 (1� z) = �Li2(z)� ln(1� z) ln z + �2 ;Li2� z1� z� = �Li2(z)� 12 ln2(1� z) ;Li2� 11� z� = Li2(z) + ln(1� z) ln(�z)� 12 ln2(1� z) + �2 ;Li2�z � 1z � = Li2(z) + ln(1� z) ln z � 12 ln2 z � �2 ; (61)we 
an simplify the following sums entering in 2As2� fr(q2; q2 + k1)� fr(q2;�k1) = ln jk1j2 ln jq1j2 � 2�2 ;fr(k2;k1 + k2) + fr(k2;�k1) = � ln jk1j2 ln jq1 � q3j2 + 2�2 ;fr(q3;�k1 � k2) + fr(q3; q1) = � ln jq1j2 ln jq1 � q3j2 + 2�2 ;�fr(q3;�k2)� fr(q3; q2) = ln jk2j2 ln jq2j2 � 2�2 : (62)The �nal result for As2 
an be written in the very simple formAs2 = ��a24 ln s2 ln jq1 � q3j2jq2j2jq1j2jk2j2 ln jq1 � q3j2jq2j2jq3j2jk1j2 : (63)It is symmetri
 with respe
t to the simultaneous substitutionsk1 $ k2 ; q1 $ �q3 : (64)In a similar way we 
an 
al
ulate the dis
ontinuity in the s-
hannel. Starting, in Fig. 5b, from thegluon ladders in the t1 and the t3 
hannels, we invoke the bootstrap equation. This equation allowsus to write, instead of the gluon ladders, simple Regge pole ex
hanges. The resulting s-dis
ontinuityhas the same form as the s2 dis
ontinuity with the impa
t fa
tors �1 and �2 being repla
ed bye�1 = k�k� + k�1 q�1q�2 ; e�2 = q3q2 k0k0 � k2 : (65)One easily veri�es that these modi�ed impa
t fa
tors 
oin
ide with the nonlo
al pie
es of �1 and �2in eqs.(10) and (13). We also note that As 
an be obtained from As2 by substitutingk1 $ �q1 ; k2 $ q3; (66)and by 
hanging, inside Fig.6, the integration variables k ! q2 � k, k0 ! q2 � k0. In fa
t, in the twoloop approximation, As 
oin
ides with As2 :As = ��a24 ln s2 ln jq1 � q3j2jq2j2jq1j2jk2j2 ln jq1 � q3j2jq2j2jq3j2jk1j2 (67)due to the energy-momentum 
onservationk1 + k2 = q1 � q3 : (68)
13



Figure 9: The t02 dis
ontinuity for the 3! 3 amplitude.Let us now 
onsider the non-fa
torisable 
ontribution for the s
attering amplitude 3! 3 (Fig. 2).In this 
ase we, again, have the imaginary parts in t02 and s-
hannel. For the imaginary part in the t02-
hannel (Fig. 9) we have, on the left side, a slightly modi�ed impa
t fa
tor, b�1: the two 
orrespondingimpa
t fa
tors are b�1(k; q2; q1) = � k�k� � q�1 k�1q�2 ; �2(k) = k0 � q2k0 � k2 k2q2 (69)and, therefore, the infrared divergen
e at k = 0 is absent. For 
ompleteness, we �rst list the one loopresults. The one loop result for the partial wave (analogous to (25)) is:�̂�q22 Z d2�2�k b�1(k; q2; q1) 1k2(q2 � k)2�2(k; q2; q3) = a2 ln q22(q1 + q3 � q2)2q21q23 : (70)Note that, in 
ontrast to the 2! 4 amplitude, there is no infrared divergen
e. Next we quote the termanalogous to (26) whi
h is obtained by retaining, in the impa
t fa
tors, only the `nonlo
al' pie
es:�̂�q22 Z d2�2�k q�1(q2 � k)�q�2(q1 � k)� 1k2(q2 � k)2 kq3q2(k � q2) = a2 ln q22(q1 + q3 � q2)2k21k22 : (71)It 
oin
ides (up to an overall fa
tor) with the exponent of C 0 in [1℄ (eq.(80)). In 
ontrast to the 2! 4amplitude, this one loop result, again, is infrared �nite.For the two loop 
al
ulation we pro
eed in the same way as for the 2! 4 
ase. Using our previousresults for the fun
tion �(k) we obtainAt02 = q22 a ln t02 Z d2k2� jkj2jq2 � kj2 k2q2 b�1(k; q2; q1)�(k) : (72)With the use of 
omplex number algebra it is possible to transform this expression into the formAt02 = ��2 a2 ln t02 Z d2k2� e�(k) ; (73)where e�(k) = � 1k(k� � q�2) � 1k(k� � q�1)� ln jq2 � kj2jk2j2jq2j2jk � k2j2+ � 1jk � q2j2 � 1k � q2 1k� � q�1� ln jq2 � k2j2jkj2jq2j2jk � k2j2+ � 1k � k2 1k� � q�2 � 1k � k2 1k� � q�1� ln jq2j4jk � k2j4jkj2jk � q2j2jk2j2jq2 � k2j2 : (74)14



The integral over k 
an be expressed in terms of the fun
tion fr(a; b) introdu
ed above:2a2 ln t02At02 = fr(�k2;�k2 + q1)� fr(�q2;�q2 + q1)� ln jq2j2jq1j2 ln jk2j2jq2j2 + fr(�q2; 0)�fr(�k2; q3) + fr(q2 � k2;�k2 + q1)� fr(q2;+q1) + ln q23q22 ln q22k21� ln k22q23q42 ln (k2 � q1)2q23 � 2fr(0; q1 � k2)+2fr(0; q2 � k2) + fr(k2; q1)� fr(k2; q2) + fr(k2 � q2;�q2 + q1)� fr(k2 � q2; 0) : (75)With the use of the identities for the sums of the fun
tions f(a; b) listed in (62), we 
an signi�
antlysimplify At02 : At02 = ��4a2 ln t02 ln jq2 � q1 � q3j2jq2j2jk1j2jk2j2 ln jq2 � q1 � q3j2jq2j2jq3j2jq1j2 : (76)Thus, At02 is di�erent from As2 and As by the substitution q1 $ �k1. In fa
t, one 
an also verifythat the same result is obtained for the imaginary part in s for the 3! 3 transitions.A3!3s = ��4 a2 ln t02 ln jq2 � q1 � q3j2jq2j2jk1j2jk2j2 ln jq2 � q1 � q3j2jq2j2jq3j2jq1j2 : (77)As indi
ated before, all the two loop results are infrared �nite and, hen
e, do not a�e
t the infraredsingularities in the BDS formula. In the next se
tion we �nd the expli
it solution at all loops.5 Solution of the BFKL equation in the o
tet 
hannelIn this se
tion we solve the eigenvalue problem for the redu
ed 
olor o
tet kernel and derive all-orderexpression for the 2! 4 and 3! 3 amplitudes in the leading-log approximation. For the eigenvalueproblem it is 
onvenient to return to the symmetri
 notations of the momenta p1 = p; p2 = q� p andwrite the homogeneous BFKL equation for the wave fun
tion f with the removed propagators in theo
tet 
hannel as follows E f(~p1; ~p2) = eH f(~p1; ~p2) ; (78)where eH has the holomorphi
 separability propertyeH = eh+ eh� ; eh = ln p1 p2q + 12 �p1 ln �12 1p1 + p2 ln �12 1p2�+ 
 : (79)With the use of the relations (see [6℄)ln(z2�) = ln z + 12 ( (z�) +  (�z� + 1)) ; ln(�) = � ln z + 12 ( (z� + 1) +  (�z�)) (80)one 
an transform the holomorphi
 Hamiltonian to the formeh = � ln q + 12 �ln �p21�12�+ ln �p22�12��+ 
 : (81)By introdu
ing the 
onjugated variablesy = p1p2 ; � = ��y = �i p22q �12 ; (82)eh 
an be simpli�ed as followseh = 12 �ln(y2�) + ln ��+ 
 = 12 ( (y�) +  (y� + 1)) + 
; (83)15



where we negle
ted pure imaginary terms whi
h 
an
el in eH .Thus, the solution of the homogeneous BFKL equation in the momentum spa
e 
an be found inthe form f�n(~k; ~q) = � kq � k�i�+n2 � k�q� � k��i��n2 : (84)The 
orresponding energies were 
al
ulated aboveE�n = 12 h �i� + n2�+  ��i� � n2�+  �i� � n2�+  ��i� + n2�i� 2 (1) : (85)The orthogonality 
ondition for the above wave fun
tions isZ d2k�jkj2jq � kj2 f��0n0(~k; ~q) f�n(~k; ~q) = 2�Æ(�0 � �) Æn0;n : (86)Their 
ompleteness 
ondition 
an be written as follows1Xn=�1 Z 1�1 d� f��n(~k0; ~q0) f�n(~k; ~q) = 2�2Æ2(k0 � k) jkj2jjq � kj2jqj2 : (87)Therefore the Green's fun
tion for the t-
hannel partial waves isG!(~k;~k0; ~q) = 12�2 jqj2jkj2jjq � kj2 1Xn=�1 Z 1�1 d� f��n(~k0; ~q0) f�n(~k; ~q)! � !(�; n) ; (88)where !(�; n) = �g2N
8�2 E�n : (89)With these results we 
an �nd expli
it expressions for the s2-dis
ontinuity of the 2! 4 s
atteringamplitude and for the t02-dis
ontinuity of the 3 ! 3 s
attering amplitude. Starting from eq.(23), wehave to 
onvolute the o
tet 
hannel Green's fun
tion with the 
orresponding impa
t fa
tors. Returningto Fig. 6 and to the notation of se
tion 2 we have to 
al
ulate the integral�2 = Z d2k02� jq2j2jk0j2jq2 � k0j2 �q2 � k0k0 �i�+n2 �q�2 � k0�k0� �i��n2 k2(k0 � q2)(k0 � k2)q2 : (90)The simplest way to 
al
ulate �2 is its di�erentiation in k�2 with the subsequent integration, whi
hgives �2 = �12 1�i� � n2 � � q�3k�2�i��n2 � q3k2�i�+n2 : (91)In a similar way the integral over k gives�1 = 12 1�i� + n2 � �� q1k1��i��n2 �� q�1k�1��i�+n2 : (92)As a result, the imaginary part of the produ
tion amplitude in s2 for the transition 2 ! 4 takes theform1�=s2M2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs2 Z 1�1 d��2 + n24 �q�3k�1k�2q�1�i��n2 �q3k1k2q1�i�+n2 s!(�;n)2 : (93)where the regularization refers to the divergen
e at � = 0, n = 0. whi
h appears only in in the one loopapproximation. In appendix B we 
ompute the one and two loop results (obtained from expandings!(�;n)2 = 1 + ln s2!(�; n)), and verify the agreement with (25) and (63):1�=s2 M2!4 = a2 s!(t2)2 �ln jk1j2jk2j2jk1 + k2j2�2 � 1� � a2 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 � : (94)16



In an analogous way we 
ompute the dis
ontinuity in s. In (90) we repla
e the impa
t fa
tor �2 bye�2 (and similarly for �1 in (92)), and pro
eed in the same way as before. The result 
an be writtenin the form1�=sM2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs Z 1�1 d��2 + n24 �q�3k�1k�2q�1 �i��n2 �q3k1k2q1�i�+n2 s!(�;n)2 : (95)with the regularization pres
ription Regs for the singularity at � = 0, n = 0 whi
h, again, applies tothe one loop approximation and takes 
are of the di�eren
e between the dis
ontinuities in s2 and s.As a result, the produ
tion amplitude 2 ! 4 in the multi-Regge kinemati
s with s; s2 > 0 ands1; s3 < 0 in the leading approximation 
an be written as followsA2!4 = ABDS2!4 (1 + i�2!4) ; (96)where �2!4 = a2 1Xn=�1(�1)n Z 1�1 d��2 + n24 �q�3k�1k�2q�1�i��n2 �q3k1k2q1�i�+n2 (s!(�;n)2 � 1) : (97)has no infrared singularities. We mention that in the region s; s2 < 0 and s1; s3 > 0 the s
atteringamplitude has the similar form A2!4 = ABDS2!4 (1� i�2!4) : (98)We emphasize that the 
orre
tion �2!4 does not 
ontribute outside these physi
al regions.
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Figure 10: Dual variables for A2!4.It is noteworthy that if we perform the duality transformation shown in Fig. 10 (
f. Ref. [7℄)q1 ! z01 ; k1 ! z001 ; q3 ! z02 ; k2 ! z200 ; (99)and introdu
e `
oordinate' variables zi, we see that our results for the imaginary parts depend on theanharmoni
 ratio x = z02z001z002z01 : (100)The reason why the BFKL equation in the o
tet 
hannel 
an be solved is its invarian
e under M�obiustransformations in these zi variables. 17



It is interesting to note that the 
orre
tion to the BDS formula in our kinemati
s 
an be writtenin terms of four dimensional anharmoni
 ratios [8, 9℄. In parti
ular, in se
ond order of perturbationtheory we 
an write i�(2)2!4 = �2i� a24 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2= a24 Li2(1� �) ln (1� �)�2 ln (1� �)�1 + : : : (101)where the dots indi
ate 
orre
tions beyond the leading logarithmi
 a

ura
y, and we have used thenotation � = ss2s012s123 ; �1 = s1t3s012t2 ; �2 = s3t1s123t2 : (102)An analogous result holds for the 3! 3 amplitudes (for details see Appendix B). The dis
ontinuityin t02 of the s
attering amplitude 3! 3 in the multi-Regge kinemati
s with s; t02 > 0 and s1; s3 < 0 inthe leading approximation is given by1�=t02 M3!3 = a4� t0!(t2)2 1Xn=�1(�1)nRegt02 Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 t0!(�;n)2 ; (103)(where, in this 
ase, the regularized integral over � for n = 0 and a = 0 does not 
ontain any 1=�divergen
e), and the 3! 3 amplitude takes the formA3!3 = ABDS3!3 (1 + i�3!3) ; (104)where �3!3 = a2 1Xn=�1(�1)n Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 (t0!(�;n)2 � 1) : (105)In the region s; t02 < 0 and s1; s3 > 0 we 
an writeA3!3 = ABDS3!3 (1� i�3!3) : (106)
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Figure 11: Dual variables for A3!3.18



Similarly to the 2! 4 s
attering amplitude, if we perform the duality transformation (see Fig. 11)q1 ! z100 ; k1 ! z01 ; q3 ! z02 ; k2 ! z200 ; (107)the imaginary parts of the 3 ! 3 s
attering amplitude in the t02 and s 
hannels depend on the sameanharmoni
 ratio (100). Again, the 
orre
tions to the BDS formula 
an be expressed in terms of fourdimensional anharmoni
 ratios.From these results for the 2 ! 4 and for the 3 ! 3 amplitudes we 
on
lude that the infraredstru
ture of the inelasti
 amplitudes is given 
orre
tly by the BDS expression, whereas the �nitefa
tors are 
orre
t only in the one loop approximation.6 Con
lusionsIn this paper we studied, in the leading logarithmi
 approximation, the 
ut 
ontribution whi
h, in ourprevious paper, was found to violate the simple Regge fa
torization of the BDS formula. As a mainresult we have veri�ed that the fa
torization of universal infrared singularities is not a�e
ted, i.e. theviolation of the BDS formula is in the �nite pie
es. We have 
omputed the energy spe
trum of the 
oloro
tet BFKL Hamiltonian, and we have 
on
luded that the infrared divergent gluon traje
tory 
an beseparated from the �nite remainder of the BFKL Green's fun
tion. We have expli
itly 
omputed thetwo loop approximation of the Regge 
ut pie
e. The integral equation for the wave fun
tion of tworeggeized gluons in the o
tet 
hannel is solved expli
itly and the inter
epts of the Regge singularitiesare 
al
ulated.A
knowledgements: JB is grateful for the hospitality of CERN where part of this work has beendone, and ASV gratefully a
knowledges the hospitality of DESY and Hamburg University. LL issupported by the RFBR grants 06-02-72041-MNTI-a, 07-02-00902-a and RSGSS-5788.2006.2.A Forward s
attering with 
olor o
tet ex
hangeIn this appendix we relate the o
tet equation in the forward 
ase to the BFKL equation for the singlet
ase. As it will be shown, its physi
al solution exists only if the gluon Regge traje
tory is not expandedin a power series on �.The relevant integral equation to be satis�ed by the gluon Green's fun
tion in the o
tet 
ase reads!G!(~p; ~p0; ~q) = 1jpj2jq � pj2 Æ2�2�(p� p0)� aH�G!(~p; ~p0; ~q2) ; (A.1)where a = �sN
2� �4�e�
�� ; (A.2)and 
 is the Euler's 
onstant. From now on we shall use the notation ~p1 � ~p and ~p2 � ~q � ~p for thetransverse momenta of the two Reggeized gluons.The BFKL Hamiltonian for the 
hannel with the o
tet quantum numbers 
an be written in operatorform as H� = ln jp1j2�2 � 1� + ln jp2j2 + 1p1p�2 ln j�12j22 p1p�2 + 1p�1p2 ln j�12j22 p�1p2 + 2
 ; (A.3)where we have negle
ted terms of O(�) and introdu
ed for the two Reggeized gluons the 
omplexvariables �k; ��k (�12 = �1� �2) and their 
anoni
ally 
onjugated momenta pk; p�k. The dependen
e onthe divergen
e 1=� 
an be removed by the following shift in the parameter !:! ! ! + a� ; (A.4)19



whi
h leads to the appearan
e of a Sudakov-type infrared divergent fa
tor in the amplitude M2!4,i.e. M2!4 ! ZM2!4 ; Z = exp�a� ln s2�2� : (A.5)We 
an then work with the renormalized Hamiltonian H removing the divergent termH = H� + 1� : (A.6)It is known that the BFKL equation in the 
olor singlet 
hannel is M�obius invariant in 
oordinatespa
e. Its solutions are Em;em(~�10; ~�20) = � �12�10�20�m� ��12��10��20�em ; (A.7)where m; em are 
onformal weightsm = 12 + i� + n2 ; em = 12 + i� � n2 (A.8)and ~�0 is the Pomeron 
oordinate. The expression (A.7) 
orresponds to the three-point Green'sfun
tion with non-amputated legs. The s
alar produ
t of two of these fun
tions is de�ned by< Em;emjjEm0;em0 >= Z d2�1 d2�2Em;em(~�10; ~�20)�1�2E�m0;fm0(~�100 ; ~�200) ; (A.9)where �k are the 
orresponding Lapla
e operators.A.1 The solution for the o
tet 
ase at q2 = 0The solution in momentum spa
e for q2 = 0 in the 
olor singlet 
ase 
an be obtained by using theFourier transform of the singlet solution (A.7), i.e.fm;em(~p) = Z d2�12 d2�0ei~p~�12 Em;em(~�10; ~�20) � pm�2 (p�)em�2 : (A.10)It is 
onvenient to introdu
e the new fun
tion ��;n(~p) as followsfm;em(~p) = jpj�3��;n(~p) ; (A.11)with normalization ��;n(~p) = � jpj2�2 �i� ei�n ; p = jpjei� : (A.12)These fun
tions satisfy the following orthonormality and 
ompleteness propertiesZ d2pjpj2 ��;n(~p)���0;n0(~p) = 2�2 Æ(� � �0) Æn;n0 ; (A.13)1Xn=�1 Z 1�1 d� ��;n(~p)���;n(~p0) = 4�2 Æ(ln jpj2 � ln jp0j2) Æ(�� �0) : (A.14)The homogeneous BFKL equation for the o
tet 
ase 
an be written in the form! = �aH ; H = ln jpj2�2 + 12H0 ; (A.15)20



where H0 is the Hamiltonian for the singlet 
ase. Its solution 
an be 
onstru
ted in terms of the linear
ombination of the fun
tions ��;n(~p) !;n(~p) = ei�n Z 1�1 d� � jpj2�2 �i� a!;n(�) : (A.16)Taking into a

ount (A.15) the fun
tion a!;n(�) should satisfy the equation!a!;n(�) = �a �i ��� +  �12 + i� + jnj2 �+  �12 � i� + jnj2 �+ 2
�a!;n(�): (A.17)Its solution is a!;n(�) = exp hi� �!a + 2
�i ��12 + i� + jnj2 ���12 � i� + jnj2 � : (A.18)For a!;n(�) we have the following normalizationZ 1�1 d� a!;n(�) a�!0;n(�) = 2�aÆ(! � !0) (A.19)and 
ompleteness 
onditions Z 1�1 d! a!;n(�) a�!;n(�0) = 2�aÆ(� � �0) : (A.20)Therefore the 
ompleteness relation for the eigenfun
tions  !;n(~p) has the form1Xn=�1 Z 1�1 d!2�  !;n(~p) �!;n(~p0) = a (2�)2 Æ(ln jpj2 � ln jp0j2) Æ(�� �0) : (A.21)Using these expressions, we 
an solve the inhomogeneous equation for the Green's fun
tion g!(~p; ~p0; 0)!g!(~p; ~p0; 0) = (2�)2 a2 jpj2 Æ2(p� p0)� aH g!(~p; ~p0; 0) (A.22)in terms of a superposition of eigenfun
tions of the homogeneous equation, i.e.g!(~p; ~p0; 0) = 1Xn=�1P Z 1�1 d!02�  !0;n(~p) �!0;n(~p0)! � !0 ; (A.23)where P means that the integral over ! is taken with the prin
ipal value pres
ription.In terms of this Green's fun
tion the t2-
hannel partial wave 
an be written asf2(!) = Z4� Z 10 djkj2jkj3 Z 2�0 d� k�k�1k� + k�1 Z 10 djk0j2jk0j3 Z 2�0 d�0 k0k2k2 � k0 g!(~k;~k0; 0) ; (A.24)where Z is the divergent fa
tor dis
ussed in (A.5). We 
an now write f2(!) in a di�erent form usingthe expli
it expression for g!(~k;~k0; 0):f2(!) = Z4� 1Xn=�1P Z 1�1 d!02�i(! � !0) b!0n(~k) (A.25)where b!n(~k1) = Z 1�1 d� K�n(~k1) a!;n(�) ; (A.26)21



eb!n(~k2) = Z 1�1 d� eK�n(~k2) a�!;n(�) : (A.27)The fun
tions K and eK readK�n(~k1) = Z 10 djkj2 k�1jkj3 jkj2i��2i� Z 2�0 d� k�ei�nk� + k�1 = (�1)n�12���;jnj(~k1)jnj�12 + i� ; (A.28)eK�n(~k2) = Z 10 djk0j2 k2jk0j3 jk0j�2i���2i� Z 2�0 d�0 k0e�i�0nk2 � k0 = (�2�) ���;jnj(~k2)jnj�12 � i� ; (A.29)where ��;jnj(~k1) = � jk1j2�2 �i� ei�1(jnj�1): (A.30)Thus, one 
an obtain the following simple representation for the fun
tions b and ebb!n(~k1) = �2�(�1)n ei�1(jnj�1)
!n(~k1) ; (A.31)eb!n(~k2) = �2� e�i�2(jnj�1)
�!n(~k1) ; (A.32)where 
!n(~k1) = Z 1�1 d� ei� �!a+2
+ln jk1j2�2 � �( jnj�12 + i�)�( jnj+12 � i�) : (A.33)The �nal result for the imaginary part of the amplitude in the variable s2 reads=s2M2!4� = Z� 1Xn=�1(�1)nei�12(jnj�1) Z 1�1 d! � s2�2�! 
!n(~k1) 
�!n(~k2) ; (A.34)where �12 = �1��2. There is an ambiguity in the integration over � at � = 0 for jnj = 1, but at thatpoint 
!n(~k1) does not depend on !.A.2 Spe
trum quantizationIt is important to note that in the region ~p ! 0 we 
an not use the simplest form for the Reggetraje
tory in the Born approximation and we should write the exa
t expression instead:ln jpj2 � 1� ! Eg(jpj) = �1� � jpj2�2 ��� : (A.35)The reason for this is that the solution  !;n(~p) has a good behavior only for large jpj, i.e.limjpj!1  !;n(~p) � ei�n � jpj2�2 �� 1+jnj2 : (A.36)In the region of small jpj its asymptoti
s is given by the saddle point 
ontribution in the integral over� and is not stable for the simpli�ed expression Eg(jpj) at �! 0. The position of this saddle point �is de�ned by the solution of the BFKL equation in the 
lassi
al approximation! = �a �Eg(jpj) + 1� +  �12 + i� + jnj2 �+  �12 � i� + jnj2 �+ 2
� : (A.37)In this expression we have used the exa
t expression Eg(jpj) for the gluon energy. Let us indi
ate that,due to the symmetry of E0(�) under the substitution � ! ��, there are two solutions of this equationrelated by this symmetry and the semi
lassi
al expression for  !;n(~p) os
illates in this region.22



The inter
ept � of the 
orresponding singularity in the j � 1-plane of the t-
hannel 
orrespondsto the values � = 0; n = 0 of the M�obius parameters (for � < 0)� = �aminjpj (Eg(jpj)� 4 ln 2) = !P2 ; !P = g2�2 N
 ln 2 ; (A.38)where !P is the inter
ept of the BFKL Pomeron.Let us solve the S
hr�odinger equation for the wave fun
tion with the modi�ed expression for theRegge traje
tory analyti
ally. For this purpose we shall use the representation where the 
oordinateis x = ln jpj2�2 : (A.39)The S
hr�odinger equation has the formE0(�; n)	�;n(x) = ��e�� x� + H02 � 	�;n(x) ; (A.40)where �! �0 and E0(�; n) is the total energy at x! �1E0(�; n) =  �12 + i� + jnj2 �+  �12 � i� + jnj2 �+ 2
 : (A.41)At x! �1 the potential energy goes to zero and we 
an sear
h for two solutions of this equation ofthe form 	��;n(x) = e�i�x 1Xr=0C�r (�) e�� r x ; (A.42)where C�r (�) satis�es the re
urren
e relationE0(�; n)C�r (�) = �1� C�r�1(�) +E0(� � i r; n)C�r (�): (A.43)Therefore one 
an write the following expression for the 
oeÆ
ients C�r (�)C�r (�) = ��1� �r rYt=1 1E0(�; n)�E0(� � i t; n) : (A.44)In prin
iple, the expansion in (A.42) with these 
oeÆ
ients is 
onvergent for all values of x andtherefore we 
ould �nd at least numeri
ally the linear 
ombination of 	+ and 	� for whi
h the wavefun
tion de
reases at x!1.We 
onsider now the 
ase of small �, where we 
an use the di�usion approximation for E0:E0(�; n) = 2 �12 + jnj2 �+ 2
 �  00�12 + jnj2 � �22 : (A.45)In parti
ular for n = 0 we have E0(�; n) = �4 ln 2 + 14 �(3) �2 : (A.46)In this 
ase one obtainsC�r (�) = � �114 �(3) ��r rYt=1 1t(t� 2i�) = (�14 �(3) �)�r�(1� 2i�)�(r + 1)�(r + 1� 2i�) : (A.47)23



As a result, we 
an express 	� with an appropriate normalization 
onstant in terms of the Besselfun
tion with imaginary argument (for � < 0)	��;0(x) = I�2i�  s2 exp(��x)�7�(3)� ! : (A.48)The solution, whi
h has the good asymptoti
 behavior at x!1	�;0(x) � e�q 2 exp(��x)(�7�(3)�) ; (A.49)is 	�;0(x) = K2i�  s2 exp(��x)�7�(3)� ! ; (A.50)where K2i�(z) = �2 I�2i�(z)� I2i� (z)sin(2�i�) : (A.51)
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B Cal
ulation of the one and two loop 
ontributionsIn this appendix we 
al
ulate, starting from (93), the one and two loop approximations. For the oneloop approximation we 
ompute the integral:M = 1Xn=�1(�1)n Z 1�1 d��2 + n2=4 � i��n=2 ; (B.1)where � = q3k1q�1k�2q�3k�1q1k2 (B.2)and � = jq3j2jk1j2jk2j2jq1j2 : (B.3)We begin with the terms n 6= 0 and integrate over �:Mn6=0 = = �(� � 1) 1Xn=1 2�n (�1)n��n=2 ��n=2 + ��n=2�!+�(1� �) 1Xn=1 2�n (�1)n�n=2 ��n=2 + ��n=2�!= ��(� � 1)2� �ln�(1 +p�=p�)(1 + 1=p��)����(1� �)2� �ln�(1 +p�=p�)℄(1 +p��)�� (B.4)Using (B.2) and (B.3) we obtain:Mn6=0 = �2��ln jk1 + k2j2jq2j2jk1k2q1q3j � 12 j ln�j� (B.5)For the term n = 0 the divergen
e at � = 0 needs to be regularized. In order to reprodu
e the oneloop result (25) derived in dimensional regularization we needRegs2 Z 1�1 d��2 ����q3k1k2q1 ����2i� = 2���1� + ln jq2j2�2 � ln ���� q3q1k1k2 ����� ����ln jq3jjk1jjk2jjq1j ����� : (B.6)The sum of this 
ontribution for n = 0 and Mn6=0 is (apart from the overall fa
tor) in agreement withthe one loop result in (25).Next let us 
onsider the two-loop 
ontribution. We need to 
al
ulate the following integral:R = 1Xn=�1(�1)n Z 1�1 d� E�n�2 + n2=4 � i��n=2 (B.7)where a

ording to eq. (38) and (85)E�n = � jnj�2 + n24 + 1Xk=0� 2k + 1 � 1k + 1 + i� + jnj=2 � 1k + 1� i� + jnj=2� : (B.8)The integral over � 
an be 
al
ulated by residues, and we take into a

ount that the 
ontributionsfrom the poles � = �ijnj=2 exist only for n 6= 0. As for the other poles, they give 
ontributions also25



at n = 0. Thus, we obtainR = ��(� � 1) 1Xn=1(�1)n(�n2 + ��n2 )��n2  � ln�n � 2n2 + 2n 1Xk=0� 1k + 1 � 1k + 1+ n�!+��(1� �) 1Xn=1(�1)n(�n2 + ��n2 )� n2  ln�n � 2n2 + 2n 1Xk=0� 1k + 1 � 1k + 1 + n�!+2��(� � 1) 1Xn=�1(�1)n�n2 1Xk=0��(k+1+ jnj2 ) 1(k + 1)(k + 1+ jnj)+2��(1� �) 1Xn=�1(�1)n�n2 1Xk=0�k+1+ jnj2 1(k + 1)(k + 1 + jnj)= �� ln� 1Xn=1 (�1)nn (�n2 + ��n2 ) ��(� � 1)��n2 � �(1� �)� n2 �+2� 1Xn=1(�1)n(�n2 + ��n2 )  � 1n2 + 1n nXr=1 1r! ��(� � 1)��n2 + �(1� �)� n2 �+2��(� � 1)0� 1Xn=1(�1)n ��n2 + ��n2 � 1Xm=1+n2 ��m(m� n2 )(m+ n2 ) + 1Xm=1 ��mm2 1A= �� ln� 1Xn=1 (�1)nn (�n2 + ��n2 ) ��(� � 1)��n2 � �(1� �)� n2 ���(� � 1)0� 1Xn=1 (�1)nn �n2 ��n2!2 + 1Xn=1 (�1)nn ��n2 ��n2!21A+��(1� �)0� 1Xn=1 (�1)nn �n2 � n2!2 + 1Xn=1 (�1)nn ��n2 � n2!21A+2��(� � 1) 1Xn1=1 (�1)n1n1 �n12 ��n12 1Xn2=1 (�1)n2n2 ��n22 ��n22+2��(1� �) 1Xn1=1 (�1)n1n1 �n12 � n12 1Xn2=1 (�1)n2n2 ��n22 � n22 : (B.9)In obtaining two last 
ontributions we passed to the new summation variables n1 = m + n=2 andn2 = m�n=2. These transformations give a possibility to write the total result for R in the following
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simple formR = ��(� � 1)0�� ln� 1Xn=1 (�1)nn (�n2 + ��n2 )��n2 + 1Xn=1 (�1)nn (�n2 + ��n2 )��n2!21A+��(1� �)0�ln� 1Xn=1 (�1)nn (�n2 + ��n2 )� n2 + 1Xn=1 (�1)nn (�n2 + ��n2 )� n2!21A= ��(� � 1)  1Xn=1 (�1)nn (�n2 + ��n2 )��n2! 1Xn=1 (�1)nn (�n2 + ��n2 )��n2 � ln�!+��(1� �)  1Xn=1 (�1)nn (�n2 + ��n2 )� n2! 1Xn=1 (�1)nn (�n2 + ��n2 )� n2 + ln�!= ��(� � 1) ln�(1 +p�=p�)(1 + 1=p��)��ln�(1 +p�=p�)(1 + 1=p��)�+ ln��+��(1� �) ln�(1 +p�=p�)(1 +p��)��ln�(1 +p�=p�)(1 +p��)�� ln�� :(B.10)Using �nally the above expression for Mn6=0 we obtainR = � ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 : (B.11)Combination of the one and two loop results leads to:1�=s2 M2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs2 Z 1�1 d��2 + n24 �q�3k�1k�2q�1�i��n2 �q3k1k2q1�i�+n2 s!(�;n)2= a2 s!(t2)2 �ln jk1j2jk2j2jk1 + k2j2�2 � 1� � a2 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 +O(a2)� : (B.12)Indeed, the se
ond term of the expansion in a 
oin
ides with the result (63), obtained by an indepen-dent 
al
ulation.In an analogous way the imaginary part in s 
an be written in the form1�=sM2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs Z 1�1 d��2 + n24 �q�3k�1k�2q�1 �i��n2 �q3k1k2q1�i�+n2 s!(�;n)2 ; (B.13)where Regs Z 1�1 d��2 ����q3k1k2q1 ����2i� = 2���1� + ln jq2j2�2 + ln ���� q3q1k1k2 ����� ����ln ����q3k1q1k2 ��������� : (B.14)It 
orresponds to the following expansion in a1�=sM2!4 =a2 s!(t2)2 �ln jq1j2jq3j2jk1 + k2j2�2 � 1� � a2 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 +O(a2)� : (B.15)For the imaginary part of the amplitude M3!3 in the variable t02 we obtain the similar result1�=t02 M3!3 = a4� t0!(t2)2 1Xn=�1(�1)nRegt02 Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 t0!(�;n)2 ; (B.16)27



where in this 
ase the regularized integral over � for n = 0 and a = 0 does not 
ontain any 1=�divergen
e Regt02 Z 1�1 d��2 ���� q3q1k2k1 ����2i� = 2��ln ���� q3q1k1k2 ����� ����ln ���� q3q1k1k2 ��������� : (B.17)It gives the following a-expansion of =t02 M3!31�=t02 M3!3 =a2 t0!(t2)2 �ln jq1j2jq3j2jq1 + q3 � q2j2jq2j2 � a2 ln t02 ln jq1 + q3 � q2j2jq2j2jk2j2jk1j2 ln jq1 + q3 � q2j2jq2j2jq1j2jq3j2 +O(a2)� :(B.18)Analogously we �nd the the imaginary part of the amplitude M3!3 in the variable s1�=sM3!3 = a4� t0!(t2)2 1Xn=�1(�1)nRegs Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 t0!(�;n)2 ; (B.19)where Regs Z 1�1 d��2 ���� q3q1k2k1 ����2i� = �2��� ln ���� q3q1k1k2 ����� ����ln ���� q3q1k1k2 ��������� : (B.20)The expansion in a beyond the one loop approximation 
oin
ides with that of =t02 M3!3:1�=sM3!3 =a2 t0!(t2)2 �ln jk1j2jk2j2jq1 + q3 � q2j2jq2j2 � a2 ln t02 ln jq1 + q3 � q2j2jq2j2jk2j2jk1j2 ln jq1 + q3 � q2j2jq2j2jq1j2jq3j2 +O(a2)� :(B.21)Referen
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