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AbstratWe further investigate, in the planar limit of N = 4 supersymmetri Yang Mills theories, thehigh energy Regge behavior of six-point MHV sattering amplitudes. In partiular, for the newRegge ut ontribution found in our previous paper, we ompute in the leading logarithmi ap-proximation (LLA) the energy spetrum of the BFKL equation in the olor otet hannel, and wealulate expliitly the two loop orretions to the disontinuities of the amplitudes for the tran-sitions 2! 4 and 3! 3. We �nd an expliit solution of the BFKL equation for the otet hannelfor arbitrary momentum transfers and investigate the interepts of the Regge singularities in thishannel. As an important result we �nd that the universal ollinear and infrared singularities ofthe BDS formula are not a�eted by this Regge-ut ontribution. Any improvement of the BDSformula should reprodue this ut to all orders in the oupling.1 IntrodutionIn a reent work [1℄ we have investigated the high energy Regge behavior of MHV sattering amplitudesin the planar limit of N = 4 supersymmetri Yang Mills Theories, and we have found that, for n-pointamplitudes with n > 5 beyond the one loop approximation, the simple fatorizing struture of theBern-Dixon-Smirnov (BDS) onjeture [2℄ is not valid. In detail, it was shown that for the ases of thetransitions 2! 4 and 3! 3 their fatorized form is violated by Regge ut ontributions whih satisfythe BFKL equation [3℄ in the olor otet hannel. These terms are obtained from spei� single energydisontinuities, and in the sattering amplitudes they beome visible in partiular physial kinematiregions only. In the one loop approximation, these terms are orretly ontained in the BDS formula,but in higher orders they annot be ast into the simple exponential form onjetured by Bern et al.In this paper we further investigate these Regge ut ontributions. We study the BFKL equationin the olor otet state, and we ompute the two-loop expressions for the 2! 4 and 3! 3 amplitudes.In partiular, we show that the ollinear and infrared divergenes of the BDS formula are not a�etedby the Regge ut ontributions.The paper is organized as follows. In setion 2 we briey review the derivation of the fatorization-breaking ontributions, and we write down the expression for the Regge-ut ontribution, using thealulus of omplex momenta. Setions 3 - 5 are devoted to the detailed investigation of this Regge-utontribution: we �rst (setion 3) study the struture of the infrared singularities, we then (setion4) ompute the two loop expressions for the ut ontributions, and �nally in setion 5 we obtainthe expliit solution of the BFKL equation for the otet hannel. In the �nal setion we present1
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onlusions and further strategies. Solutions of the BFKL equation for the forward ase are presentedin an appendix.2 The Regge ut ontribution: review and representation interms of omplex momentaIn our previous paper we have studied the high energy Regge behavior of sattering amplitudes of N =4 supersymmetri Yang Mills theories. In the leading logarithmi approximation (LLA) we an makeuse of the QCD alulations sine the supersymmetri partners of quarks and gluons do not ontribute(in this limit t hannel exhanges with the highest spin dominate). We now summarize the main resultsof [1℄. For n-point amplitudes with n > 4, the high energy sattering amplitudes an be written as sumsof separate piees (named `analyti representation' or `dispersion representation'). This deompositionreets the analyti struture required by the Steinmann relations [4℄. The di�erent terms appearing inthis representation an be omputed from single energy disontinuities (`imaginary parts') or multipleenergy disontinuities. To be de�nite, we onsider the 2 ! 4 and the 3 ! 3 sattering amplitudes,illustrated in Figs. 1 and 2. For the 2! 4 sattering we are interested in the kinemati limit (double

Figure 1: Kinematis of the 2! 4 amplitudeRegge limit) s� s1; s2; s3 � t1; t2; t3; (1)whereas the 3! 3 sattering proess will be studied in the limits� s13; s02 � s1; s3; t02 = (pA � pA0 � k2)2 � t1; t2; t3: (2)The analyti deompositions are illustrated in Figs. 3 and 4.In the physial region where all energies are positive, there are, both for the 2 ! 4 and for the3 ! 3 ase, substantial anellations of the Regge ut ontributions between these �ve terms: in thesum their imaginary parts anel, and the amplitude takes the well-known fatorized Regge form.In other physial regions, however, where some energies are positive and others are negative, theanellations are less omplete, and piees beome visible whih do not show up in the region of onlypositive energies. For the 2! 4 ase, the physial region of interest iss > 0; s2 > 0; s1 < 0; s3 < 0; s012 < 0 ; s123 < 0: (3)Here non-vanishing disontinuities are only in s and s2, and both of them ontain a new term whihviolates the simple fatorizing form. It ontains a Regge-ut struture whih is desribed in terms ofthe olor otet BFKL equation. We illustrate these disontinuities in Fig. 5.2



Figure 2: Kinematis of the 3! 3 amplitude

Figure 3: Analyti representation of the amplitude M2!4
3



Figure 4: Analyti representation of the amplitude M3!3

Figure 5: (a) the s2 disontinuity for the 2 ! 4 amplitude; (b) the s disontinuity for the 2 ! 4amplitude
4



Figure 6: The s2 disontinuity for the 2! 4 amplitude. The big blob denotes the BFKL gluon Green'sfuntion in olour otet state inluding the reggeization of the lines with momentum k; q2 � k; k0 andq2� k0. The dots indiate the prodution verties in eqs. (7) and (13). This is equivalent to Fig. 5 (a)indiating the momentum notation.For the 3! 3 sattering amplitude the orresponding region iss > 0; t02 > 0; s1 < 0; s3 < 0; s13 < 0 ; s02 < 0: (4)The non-vanishing disontinuities belong to s and t02 > 0, and they, again, ontain the Regge utpiees.In [1℄ we have ompared these results with the expression given by Bern et al. Whereas for the2! 2 and 2! 3 amplitudes the QCD results are in full agreement with the BDS formula, the 2! 4and 3 ! 3 BDS amplitudes are orret only in the one loop approximation. For two or more loops,the Regge ut piee annot be reprodued by the BDS expression. As explained above, this impliesthat the BDS formula (in LLA) still gives the orret result in the physial region where all energiesare positive, but it fails (beyond one loop) in the regions (3) and (4).In the following we shall investigate these Regge ut piees in more detail. Rather than returning tothe �ve terms illustrated in Figs. 3 and 4, we diretly present an expliit Feynman diagram alulationof the single energy disontinuities in s2 and s for the 2! 4 amplitude and in t02 and s for the 3! 3amplitude. Let us begin with the s2 disontinuity illustrated in Fig. 6. Here the blob in the enterdenotes the BFKL Green's funtion in the olor otet hannel whih sums the s-hannel emissions inthe enter of Fig. 5a, and on both sides we have to onvolute this Green's funtion with the `impatfators' �1 and �2. Introduing omplex momentak = kx + iky; k� = kx � iky (5)and making use of the expression for the vertex desribing the prodution of a gluon with de�niteheliity (f. eq.(6) of [1℄): C�(q2; q1)e��(k1) = p2q�2q1k�1 (6)we obtain for the prodution vertex to the left of the Green's funtionp2q1(q2 � k)�(k + k1)� : (7)Here we have used that, in Fig. 6, the gluon with momentum k + k1 is on shell (we onsider thedisontinuity in s2), and at the upper vertex where the gluon with momentum k is attahed theoutgoing gluon heliity is onserved. Sine the sattering amplitude T2!n for the ase of the maximalheliity violation (MHV) an be written as [2℄T2!n = TBorn2!n �M2!n; (8)5



Figure 7: Deomposition of the prodution vertex in eq.(7). The dots denote the e�etive produtionvertex in eq.(6).we will, throughout our paper, onsider the fatorM2!n only. We, therefore, separate the produtionvertex of the Born approximation and rewrite (7) as:p2q1q�2k�1 �1(k; q2; q1) (9)with the impat fator: �1(k; q2; q1) = k�1(q2 � k)�q�2(k + k1)�= 1� k�q�1q�2(k + k1)� : (10)In the following we shall work with this impat fator.In order to make ontat with [1℄ we should note that, with the result in the seond line of eq. (10),the prodution vertex in (7) an be written as a sum of two terms of the formp2q1(q2 � k)�(k + k1)� = p2q1q�2k�1 � q21(k1 + k)2p2(k1 + k)k�k�1 : (11)We illustrate this struture in Fig. 7. The �rst term is `loal', i.e. it has no further dependene onthe internal momenta, whereas the seond one is `nonloal'.Similarly, on the right side of the Green's funtion in Fig. 6 we havep2(q2 � k0)q�3k2 � k0 = p2q2q�3k2 �2(k0; q2; q3) (12)with the impat fator �2(k0; q2; q3) = k2(k0 � q2)q2(k0 � k2)= 1� k0q3(k0 � k2)q2 (13)and p2(q2 � k0)q�3k2 � k0 = p2q2q�3k2 + q23k0(k2 � k0)2p2(k2 � k0)�k2 : (14)The disontinuity in s2, to an arbitrary loop auray, of the amplitude M2!4 in LLA then hasthe form: 1� =s2 M2!4 = Z �+i1��i1 d!2�i � s2�2�! f2(!) ; (15)where the t2-hannel partial wave isf2(!) = �̂� q22 Z d2�2�k d2�2�k0 �1(k; q2; q1)G(8A)! (k;k0; q2) �2(k0; q2; q3) (16)6



and �̂� = �sN�2�(2�)2�2� ; a = �sN2� �4�e��� : (17)The overall fator q22 in front of the integral in (16) takes into aount that the Born approximationof the amplitude ontains the pole 1=jq2j2 but in our alulations we are interested in the satteringamplitude M2!4 with the Born fator being removed (f. 8). The Green's funtion G(8A)! (k;k0; q2)satis�es the BFKL equation for the olor otet hannel (putting � = 0):!G(8A)! (k;k0; q2) = Æ(2)(k � k0)k2(k � q2)2 + 1k2(k � q2)2 �K(8A) 
G(8A)! � (k;k0; q2); (18)where K(8A) denotes the BFKL kernel in the olor otet hannel, ontaining both real emission andthe gluon trajetory, and the onvolution symbol stands for 
 = R d2k(2�)3 . Using omplex momentathe kernel an be written in the form:K(8A)(k; k0; q2) = Æ(2)(k � k0) �!(�jkj2) + !(�jq2 � kj2)�+ a2 k�(q2 � k)k0(q2 � k0)� + ::jk � k0j2 ; (19)where the gluon trajetory is !(�k2) = a�1� � ln k2�2� : (20)In ontrast to the olor singlet BFKL kernel, the olor otet kernel is not infrared �nite and needsto be dimensionally regularized. It is onvenient to separate the singular piees by writing the otetkernel asK(8A)(k;k0; q2) = Æ(2)(k � k0) �!(�q22) + 12 �!(�k2) + !(�(q2 � k)2)� 2!(�q22)��+12K(1)(k;k0; q2)= Æ(2)(k � k0) �!(�q22)� a2 ln k2(q2 � k)2q22q22 �+ 12K(1)(k;k0; q2): (21)In this expression, K(1)(k;k0; q2) denotes the olor singlet BFKL kernel, and infrared singularities areontained in the trajetory funtion !(�q22).Inserting this form of the otet kernel into (15), the disontinuity takes the form:1�=s2M2!4 = s!(t2)2 Z �+i1��i1 d!2�i � s2�2�! ef2(!) (22)where the redued partial wave ef2(!) is given byef2(!) = �̂� q22 Z d2�2�k d2�2�k0 �1(k; q2; q1) eG!(k;k0; q2) �2(k0; q2; q3) : (23)The Green's funtion eG!(k;k0; q2) satis�es the BFKL equation (18) with the redued kernel~K(k;k0; q2) = �Æ(2)(k � k0)a2 ln k2(q2 � k)2q22q22 + 12K(1)(k;k0; q2): (24)From the expliit form of the funtion ef2(!) and of the impat fators �i one sees that there arepotential divergenes only for jkj � jk0j ! 0 (and not for jq2 � kj � jq2 � k0j ! 0). The one loop7



ontribution to the partial wave, ~f (0)2 , takes the form! ef (0)2 (!) = �̂� q22 Z d2�2�k�1(k; q2; q1) 1k2(q2 � k)2�2(k; q2; q3)= a2 �ln k21k22(k1 + k2)2�2 � 1�� : (25)In our previous paper [1℄ we isolated the term whih violates the BDS fatorization ansatz. Thisterm, named Vut, is ontained in (16): in the impat fators �1 and �2 one retains only the nonloalpiees (f. (11) and Fig. 7), and one subtrats the Regge pole ontribution. The one loop ontributionwas given in eqs. (94) and (95) of [1℄. In the normalization of (16) it reads:�̂� q22 Z d2�2�k k�q�1q�2(k + k1)� 1k2(q2 � k)2 kq3q2(k � k2) = a2 �ln q21q23(k1 + k2)2�2 � 1�� (26)and it was shown to oinide (apart from an overall fator) with the phase fator C in eq.(75) of [1℄.In this paper we address the disontinuity in s2, for whih we do not need to split the impat fatorsinto loal and nonloal piees. However, for the disontinuity in s we will ome bak to the result(26).In the following setions we will study the redued partial wave (23) and the redued kernel (24)in some detail. First we will investigate the infrared properties and show that the infrared divergeneis ontained only in the one-loop approximation (25), i.e. the redued kernel is infrared �nite andintrodues no further divergenes. This implies that the divergent term � 1=� is not renormalized.We will then ompute expliitly the two loop approximation to the redued partial wave. Finally, wewill return to the redued kernel and alulate its eigenfuntions and eigenvalues.3 Infrared properties and eigenvalues of the otet kernelIn this setion we onentrate on the infrared properties of the otet kernel. By investigating themost singular part of the redued partial wave (23), we �nd the exat expression for the eigenvalues,and we prove that the infrared singularity of the redued partial wave oinides with the 1=� pole ofthe one loop approximation. The exat solution of the olor otet BFKL equation will be derived insetion 5, and it allows to �nd a losed expression for the redued partial wave.The starting point of our further disussion is eq.(23). During this setion we will denote thetransverse momenta by p;p0 and p = px + ipy; p� = px � ipy. The Green's funtion eG! satis�es the`renormalized' equation! eG!(p;p0; q) = 1p2(q � p)2 Æ2(p� p0)� a eH eG!(p;p0; q2) ; (27)where eH = ln jpj2jq � pj2jqj2 + 1=pq� � p� ln j�j22 p(q � p)� + 1=p�q � p ln j�j22 p�(q � p) + 2 : (28)As we stated before, the most interesting region is the infrared divergent region jpj � jp0j � jqj. Inthis asymmetri kinemati it is possible to �nd eigenvalues and eigenfuntions of the redued kernel.First, the expression (23) for ~f2 is simpli�ed:ef2(!) = �̂� Z d2p d2p0 eg!(~p; ~p0); (29)and eg! satis�es the equation !eg!(~p; ~p0) = 1jpj2 Æ2(p� p0)� a eH eg!(~p; ~p0) : (30)8



Here eH = ln jpj2 + 1p ln j�j22 p+ 1p� ln j�j22 p� + 2 (31)and  = � (1) is the Euler onstant.The Hamiltonian for the otet quantum numbers has the property of the holomorphi separabilityeH = eh8 + eh�8 ; eh8 = ln p+ ln �2 + 1p ln �2 p+  : (32)The holomorphi Hamiltonian h8 is slightly di�erent from the orresponding Hamiltonian for thesinglet ase h = hP2 = ln p+ 1p (ln �) p+  : (33)The di�erene is also in the normalization onditions for the wave funtions in these two asesjj	jj28 = Z d2p	�jpj2	 ; jj	jj2BFKL = Z d2p	�jpj4	 : (34)The eigenfuntions belonging to the prinipal series of the unitary representations of the M�obius groupin the holomorphi subspae have the di�erent form	(m)8 = p�3=2+m ; 	(m)BFKL = p�2+m ; m = 12 + i� + n2 : (35)The eigenvalue of the total Hamiltonian for the otet ase is given byE(m;em)8 = �(m)8 + �(em)8 ; �(m)8 = 12  �32 �m�+ 12  �12 +m��  (1) : (36)To verify this result we at on the wave funtion f(k) with amputated propagators with the Hamil-tonian regularized by a mass parameter �2eHf = ln jkj2�2 jkj2i� � kk��n=2 � Z d2k02�jk0j2 kk0� + k�k0(jk � k0j2 + �2) jk0j2i� � k0k0��n2= ln jkj2�2 jkj2i� � kk��n2 � Z 10 dx Z d2k0 (1� x)�i�+n2 (1� i� + n2 ) (kk0� + k�k0) k0n2� (jk0 � xkj2 + x(1� x)jk2j+ x�2)2�i�+n2= 0B�ln jkj2�2 � n2�2 + n24 � Z 10 dx (1� x)�i�+n2 xi�+n2�1� x+ �2jkj2�1�i�+n2 1CA jkj2i� � kk��n=2 : (37)One immediately sees that the result is �nite when �2 is taken to zero.From this expression we an obtain the eigenvalueE�n = 12  1i� � jnj2 � 1i� + jnj2 !+  (1 + i� + jnj=2) +  (1� i� + jnj=2)� 2 (1)= < (1 + i� + n=2) + < (1 + i� � n=2)� 2 (1) : (38)In partiular, for n = 0; 1, we haveE�0 = 2< (1 + i�)� 2 (1);E�1 = 12 1�2 + 14 + 2< (12 + i�)� 2 (1) : (39)9
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Figure 8: Spetrum of the lowest eigenvaluesThe orresponding lowest energies are E(0) = 0 and E(1) = 2� 4 ln 2 < 0 . In Fig. 8 we show the �-dependent eigenvalues for di�erent values of n. Thus, the ground state energy orresponds to jnj = 1,as it was in the ase of the olorless Odderon state [5℄. In setion 5 we will re-derive this spetrum bysolving the eigenvalue problem exatly.The solution of the equation for the Green's funtion an be found with the use of the ompletenessondition for the eigenfuntionseg!(~p; ~p0) = 1jpj2jp0j2 1� 1Xn=�1 ei n (���0) Z 1�1 d�2� � jpj2jp0j2�i� 1! � !(�; n) : (40)Here !(�; n) = �g2N8�2 E�n = g2N8�2 �2 (1)�< �1 + i� + n2��< �1 + i� � n2�� : (41)Inserting this expression into (29) one sees that ~f2, in this approximation, redues to the 1=�-pole ofthe one-loop expression: the redued olor otet BFKL Green's funtion only leads to �nite orre-tions to the one-loop result and introdues no further infrared divergenes. Therefore, the divergentontribution is 1�=s2M2!4jdiv = �a� s!(t2)+!n(0;0)2 = �a� s!(t2)2 ; (42)where !(0; 0) is the leading eigenvalue of the `redued' otet BFKL kernel disussed before (note that,in this 'infrared' approximation, the impat fators are equal to 1, and the solution belonging to theeigenvalue !(0; 1) does not ontribute). Thus, the divergent ontribution � 1=� is not renormalized:its asymptoti behavior orresponds to the usual gluon Regge pole. The reason for this is that theollinear and infrared divergenes are fatorized and that the BDS ansatz is valid in the one-loopapproximation.4 Contributions at two loops in the perturbative expansionLet us return to the redued partial wave ~f2(!) in eq.(23) and ompute the �rst terms in the per-turbative expansion. The one loop approximation has already been given in (25). As mentionedbefore, it ontains the infrared singularity oming from the region jkj ! 0. In this setion we iterate10



the integral equation for the Green's funtion (27) inside the partial wave and, using the alulus ofomplex momenta, ompute the two loop expression. Starting, in Fig. 6, from the impat fator onthe right, given in eq.(13), we have the following expression for the �rst iteration (using the reduedolor otet BFKL Hamiltonian in eq.(24)):eH�2 = �a ln jkj2jq2 � kj2jq2j2 �2 �2(k; q2; q3)+ a Z d2k02� kk0�(q�2 � k�)(q2 � k0) + k�k0(q2 � k)(q�2 � k0�)(jk � k0j2 + �2) jk0j2 jq2 � k0j2 �2(k0; q2; q3) : (43)Here �2 plays the rôle of an intermediate infrared ut-o� whih will be removed at the end of ouralulations. The result of integration an be written in the formeH�2 = k2q2 12 �(k) ; (44)where �(k) = �a � q2 � kk2 � k ln jkj2jq2 � kj2jk2j2jq2j4jk � k2j2 + q2k2 ln jq2j2jkj2 + (q2 � k2)kk2(k2 � k) ln jq2 � k2j2jk2 � kj2 � : (45)Next we perform the integration over k with the impat fator on the right hand side in eq.(10), andwe obtain for the two-loop approximation of the imaginary part in the s2-hannel in (22):As2 = Z �+i1��i1 d!2�i � s2�2�! ef2(!)= ��2 q22 k2q2 a ln s2 Z d2k2� jkj2jq2 � kj2 �1(k; q2; q1)�(k) : (46)With the use of omplex number algebra this two-loop expression an be redued to the formAs2 = ��2 a2 ln s2 Z d2k2� �(k) ; (47)where �(k) = � 1jkj2 � 1k(k� + k�1)� ln jq2 � kj2jk2j2jq2j2jk � k2j2+ � 1k � q2 1k� � 1k � q2 1k� + k�1� ln jq2 � k2j2jkj2jq2j2jk � k2j2+ � 1k � k2 1k� + k�1 � 1k � k2 1k�� ln jq2 � kj2jkj2jq2 � k2j2jk2j2jq2j4jk � k2j4 : (48)One an easily verify that the ultraviolet divergenes anel. Also, in agreement with the previoussetions, the divergene at k = 0 is absent. The above integrals over k an be expressed (with theshift k ! k + ) in terms of the following expression:f(a; b) � Z d2k�(k � a)(k� � b�) ln jkj2 : (49)To regularize the ultraviolet divergene we introdue the ut-o�jkj2 < �2 ; (50)11



whih at the end anels in the expression for As2 . One an then write f in the formf(a; b) = ln2 �22 + fr(a; b) (51)and use further the regularized value fr beause ln2 � is aneled in the �nal result. To alulate thisfuntion we take derivatives in the omplex oordinates a� and b��a� f = � 1a� � b� ln jaj2 ; ��bf = � 1b� a ln jbj2 : (52)After integrating these expressions we obtainfr(a; b) = � Z 10 dxx� b�a� lnx� Z 10 dyy � ab ln y+ ln jaj2 ln b�a� � b� + ln jbj2 ln ab� a � 12 ln2(a b�) : (53)The last term was obtained as an integration onstant: it an be determined from the onditions thatit must depend upon a and b�, and the full funtion f should depend on the invariantsjaj2 = a a� ; jbj2 = b b� ; a b� = ab� i[a; b℄3 ; a� b = jaj2jbj2a b� : (54)Moreover, from dimensional onsiderations it follows that it ontains the term 12 ln2 s, where theinvariant s has the dimension of �2.The funtion fr an be expressed in terms of the Spene's funtion (dilogarithm)fr(a; b) = �Li2�a�b��� Li2� ba�� 12 ln2(a b�)+ ln jaj2 ln b�a� � b� + ln jbj2 ln ab� a ; (55)where Li2(z) = � Z z0 ln(1� t)t dt : (56)Note that the above expression for f has the following propertiesf(�a;�b) = f(a; b) ; f�(a; b) = f(b;a) : (57)In some partiular ases it an be simpli�ed. For example,fr(0; b) = Z d2k�k (k� � b�) ln jkj2 = �12 ln2(jbj2) : (58)We shall use also the values of the integralsZ d2k�jkj2 ln jk � j2jj2 = 12 ln2 �2jj2 ; Z d2k�(k � a)(k � b�) = ln �2ja� bj2 : (59)With these results we an alulate the two-loop ontribution to the imaginary part of the ampli-tude in the s2-hannel:� 4a2 ln s2 As2� = ln jk1j2jq2j2 ln jk2j2jq2j2 � fr(�q2;�q2 � k1) + fr(�k2;�k1 � k2)+ ln jq2 + k1j2jq2j2 ln jq2 � k2j2jq2j2 + fr(q2; 0)� fr(q2;�k1) + fr(q2 � k2;�k1 � k2)�fr(q2 � k2;�k2) + ln jk2j2jk1 + k2j2 ln jq2 � k2j2jk2j2jq2j4 + fr(k2;�k1)� fr(k2; 0)+fr(k2 � q2;�k1 � q2)� fr(k2 � q2;�q2)� 2fr(0;�k1 � k2) + 2fr(0;�k2) : (60)12



Using the following properties of dilogarithmsLi2�1z� = �Li2(z)� 12 ln2(�z)� �2 ;Li2 (1� z) = �Li2(z)� ln(1� z) ln z + �2 ;Li2� z1� z� = �Li2(z)� 12 ln2(1� z) ;Li2� 11� z� = Li2(z) + ln(1� z) ln(�z)� 12 ln2(1� z) + �2 ;Li2�z � 1z � = Li2(z) + ln(1� z) ln z � 12 ln2 z � �2 ; (61)we an simplify the following sums entering in 2As2� fr(q2; q2 + k1)� fr(q2;�k1) = ln jk1j2 ln jq1j2 � 2�2 ;fr(k2;k1 + k2) + fr(k2;�k1) = � ln jk1j2 ln jq1 � q3j2 + 2�2 ;fr(q3;�k1 � k2) + fr(q3; q1) = � ln jq1j2 ln jq1 � q3j2 + 2�2 ;�fr(q3;�k2)� fr(q3; q2) = ln jk2j2 ln jq2j2 � 2�2 : (62)The �nal result for As2 an be written in the very simple formAs2 = ��a24 ln s2 ln jq1 � q3j2jq2j2jq1j2jk2j2 ln jq1 � q3j2jq2j2jq3j2jk1j2 : (63)It is symmetri with respet to the simultaneous substitutionsk1 $ k2 ; q1 $ �q3 : (64)In a similar way we an alulate the disontinuity in the s-hannel. Starting, in Fig. 5b, from thegluon ladders in the t1 and the t3 hannels, we invoke the bootstrap equation. This equation allowsus to write, instead of the gluon ladders, simple Regge pole exhanges. The resulting s-disontinuityhas the same form as the s2 disontinuity with the impat fators �1 and �2 being replaed bye�1 = k�k� + k�1 q�1q�2 ; e�2 = q3q2 k0k0 � k2 : (65)One easily veri�es that these modi�ed impat fators oinide with the nonloal piees of �1 and �2in eqs.(10) and (13). We also note that As an be obtained from As2 by substitutingk1 $ �q1 ; k2 $ q3; (66)and by hanging, inside Fig.6, the integration variables k ! q2 � k, k0 ! q2 � k0. In fat, in the twoloop approximation, As oinides with As2 :As = ��a24 ln s2 ln jq1 � q3j2jq2j2jq1j2jk2j2 ln jq1 � q3j2jq2j2jq3j2jk1j2 (67)due to the energy-momentum onservationk1 + k2 = q1 � q3 : (68)
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Figure 9: The t02 disontinuity for the 3! 3 amplitude.Let us now onsider the non-fatorisable ontribution for the sattering amplitude 3! 3 (Fig. 2).In this ase we, again, have the imaginary parts in t02 and s-hannel. For the imaginary part in the t02-hannel (Fig. 9) we have, on the left side, a slightly modi�ed impat fator, b�1: the two orrespondingimpat fators are b�1(k; q2; q1) = � k�k� � q�1 k�1q�2 ; �2(k) = k0 � q2k0 � k2 k2q2 (69)and, therefore, the infrared divergene at k = 0 is absent. For ompleteness, we �rst list the one loopresults. The one loop result for the partial wave (analogous to (25)) is:�̂�q22 Z d2�2�k b�1(k; q2; q1) 1k2(q2 � k)2�2(k; q2; q3) = a2 ln q22(q1 + q3 � q2)2q21q23 : (70)Note that, in ontrast to the 2! 4 amplitude, there is no infrared divergene. Next we quote the termanalogous to (26) whih is obtained by retaining, in the impat fators, only the `nonloal' piees:�̂�q22 Z d2�2�k q�1(q2 � k)�q�2(q1 � k)� 1k2(q2 � k)2 kq3q2(k � q2) = a2 ln q22(q1 + q3 � q2)2k21k22 : (71)It oinides (up to an overall fator) with the exponent of C 0 in [1℄ (eq.(80)). In ontrast to the 2! 4amplitude, this one loop result, again, is infrared �nite.For the two loop alulation we proeed in the same way as for the 2! 4 ase. Using our previousresults for the funtion �(k) we obtainAt02 = q22 a ln t02 Z d2k2� jkj2jq2 � kj2 k2q2 b�1(k; q2; q1)�(k) : (72)With the use of omplex number algebra it is possible to transform this expression into the formAt02 = ��2 a2 ln t02 Z d2k2� e�(k) ; (73)where e�(k) = � 1k(k� � q�2) � 1k(k� � q�1)� ln jq2 � kj2jk2j2jq2j2jk � k2j2+ � 1jk � q2j2 � 1k � q2 1k� � q�1� ln jq2 � k2j2jkj2jq2j2jk � k2j2+ � 1k � k2 1k� � q�2 � 1k � k2 1k� � q�1� ln jq2j4jk � k2j4jkj2jk � q2j2jk2j2jq2 � k2j2 : (74)14



The integral over k an be expressed in terms of the funtion fr(a; b) introdued above:2a2 ln t02At02 = fr(�k2;�k2 + q1)� fr(�q2;�q2 + q1)� ln jq2j2jq1j2 ln jk2j2jq2j2 + fr(�q2; 0)�fr(�k2; q3) + fr(q2 � k2;�k2 + q1)� fr(q2;+q1) + ln q23q22 ln q22k21� ln k22q23q42 ln (k2 � q1)2q23 � 2fr(0; q1 � k2)+2fr(0; q2 � k2) + fr(k2; q1)� fr(k2; q2) + fr(k2 � q2;�q2 + q1)� fr(k2 � q2; 0) : (75)With the use of the identities for the sums of the funtions f(a; b) listed in (62), we an signi�antlysimplify At02 : At02 = ��4a2 ln t02 ln jq2 � q1 � q3j2jq2j2jk1j2jk2j2 ln jq2 � q1 � q3j2jq2j2jq3j2jq1j2 : (76)Thus, At02 is di�erent from As2 and As by the substitution q1 $ �k1. In fat, one an also verifythat the same result is obtained for the imaginary part in s for the 3! 3 transitions.A3!3s = ��4 a2 ln t02 ln jq2 � q1 � q3j2jq2j2jk1j2jk2j2 ln jq2 � q1 � q3j2jq2j2jq3j2jq1j2 : (77)As indiated before, all the two loop results are infrared �nite and, hene, do not a�et the infraredsingularities in the BDS formula. In the next setion we �nd the expliit solution at all loops.5 Solution of the BFKL equation in the otet hannelIn this setion we solve the eigenvalue problem for the redued olor otet kernel and derive all-orderexpression for the 2! 4 and 3! 3 amplitudes in the leading-log approximation. For the eigenvalueproblem it is onvenient to return to the symmetri notations of the momenta p1 = p; p2 = q� p andwrite the homogeneous BFKL equation for the wave funtion f with the removed propagators in theotet hannel as follows E f(~p1; ~p2) = eH f(~p1; ~p2) ; (78)where eH has the holomorphi separability propertyeH = eh+ eh� ; eh = ln p1 p2q + 12 �p1 ln �12 1p1 + p2 ln �12 1p2�+  : (79)With the use of the relations (see [6℄)ln(z2�) = ln z + 12 ( (z�) +  (�z� + 1)) ; ln(�) = � ln z + 12 ( (z� + 1) +  (�z�)) (80)one an transform the holomorphi Hamiltonian to the formeh = � ln q + 12 �ln �p21�12�+ ln �p22�12��+  : (81)By introduing the onjugated variablesy = p1p2 ; � = ��y = �i p22q �12 ; (82)eh an be simpli�ed as followseh = 12 �ln(y2�) + ln ��+  = 12 ( (y�) +  (y� + 1)) + ; (83)15



where we negleted pure imaginary terms whih anel in eH .Thus, the solution of the homogeneous BFKL equation in the momentum spae an be found inthe form f�n(~k; ~q) = � kq � k�i�+n2 � k�q� � k��i��n2 : (84)The orresponding energies were alulated aboveE�n = 12 h �i� + n2�+  ��i� � n2�+  �i� � n2�+  ��i� + n2�i� 2 (1) : (85)The orthogonality ondition for the above wave funtions isZ d2k�jkj2jq � kj2 f��0n0(~k; ~q) f�n(~k; ~q) = 2�Æ(�0 � �) Æn0;n : (86)Their ompleteness ondition an be written as follows1Xn=�1 Z 1�1 d� f��n(~k0; ~q0) f�n(~k; ~q) = 2�2Æ2(k0 � k) jkj2jjq � kj2jqj2 : (87)Therefore the Green's funtion for the t-hannel partial waves isG!(~k;~k0; ~q) = 12�2 jqj2jkj2jjq � kj2 1Xn=�1 Z 1�1 d� f��n(~k0; ~q0) f�n(~k; ~q)! � !(�; n) ; (88)where !(�; n) = �g2N8�2 E�n : (89)With these results we an �nd expliit expressions for the s2-disontinuity of the 2! 4 satteringamplitude and for the t02-disontinuity of the 3 ! 3 sattering amplitude. Starting from eq.(23), wehave to onvolute the otet hannel Green's funtion with the orresponding impat fators. Returningto Fig. 6 and to the notation of setion 2 we have to alulate the integral�2 = Z d2k02� jq2j2jk0j2jq2 � k0j2 �q2 � k0k0 �i�+n2 �q�2 � k0�k0� �i��n2 k2(k0 � q2)(k0 � k2)q2 : (90)The simplest way to alulate �2 is its di�erentiation in k�2 with the subsequent integration, whihgives �2 = �12 1�i� � n2 � � q�3k�2�i��n2 � q3k2�i�+n2 : (91)In a similar way the integral over k gives�1 = 12 1�i� + n2 � �� q1k1��i��n2 �� q�1k�1��i�+n2 : (92)As a result, the imaginary part of the prodution amplitude in s2 for the transition 2 ! 4 takes theform1�=s2M2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs2 Z 1�1 d��2 + n24 �q�3k�1k�2q�1�i��n2 �q3k1k2q1�i�+n2 s!(�;n)2 : (93)where the regularization refers to the divergene at � = 0, n = 0. whih appears only in in the one loopapproximation. In appendix B we ompute the one and two loop results (obtained from expandings!(�;n)2 = 1 + ln s2!(�; n)), and verify the agreement with (25) and (63):1�=s2 M2!4 = a2 s!(t2)2 �ln jk1j2jk2j2jk1 + k2j2�2 � 1� � a2 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 � : (94)16



In an analogous way we ompute the disontinuity in s. In (90) we replae the impat fator �2 bye�2 (and similarly for �1 in (92)), and proeed in the same way as before. The result an be writtenin the form1�=sM2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs Z 1�1 d��2 + n24 �q�3k�1k�2q�1 �i��n2 �q3k1k2q1�i�+n2 s!(�;n)2 : (95)with the regularization presription Regs for the singularity at � = 0, n = 0 whih, again, applies tothe one loop approximation and takes are of the di�erene between the disontinuities in s2 and s.As a result, the prodution amplitude 2 ! 4 in the multi-Regge kinematis with s; s2 > 0 ands1; s3 < 0 in the leading approximation an be written as followsA2!4 = ABDS2!4 (1 + i�2!4) ; (96)where �2!4 = a2 1Xn=�1(�1)n Z 1�1 d��2 + n24 �q�3k�1k�2q�1�i��n2 �q3k1k2q1�i�+n2 (s!(�;n)2 � 1) : (97)has no infrared singularities. We mention that in the region s; s2 < 0 and s1; s3 > 0 the satteringamplitude has the similar form A2!4 = ABDS2!4 (1� i�2!4) : (98)We emphasize that the orretion �2!4 does not ontribute outside these physial regions.
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Figure 10: Dual variables for A2!4.It is noteworthy that if we perform the duality transformation shown in Fig. 10 (f. Ref. [7℄)q1 ! z01 ; k1 ! z001 ; q3 ! z02 ; k2 ! z200 ; (99)and introdue `oordinate' variables zi, we see that our results for the imaginary parts depend on theanharmoni ratio x = z02z001z002z01 : (100)The reason why the BFKL equation in the otet hannel an be solved is its invariane under M�obiustransformations in these zi variables. 17



It is interesting to note that the orretion to the BDS formula in our kinematis an be writtenin terms of four dimensional anharmoni ratios [8, 9℄. In partiular, in seond order of perturbationtheory we an write i�(2)2!4 = �2i� a24 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2= a24 Li2(1� �) ln (1� �)�2 ln (1� �)�1 + : : : (101)where the dots indiate orretions beyond the leading logarithmi auray, and we have used thenotation � = ss2s012s123 ; �1 = s1t3s012t2 ; �2 = s3t1s123t2 : (102)An analogous result holds for the 3! 3 amplitudes (for details see Appendix B). The disontinuityin t02 of the sattering amplitude 3! 3 in the multi-Regge kinematis with s; t02 > 0 and s1; s3 < 0 inthe leading approximation is given by1�=t02 M3!3 = a4� t0!(t2)2 1Xn=�1(�1)nRegt02 Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 t0!(�;n)2 ; (103)(where, in this ase, the regularized integral over � for n = 0 and a = 0 does not ontain any 1=�divergene), and the 3! 3 amplitude takes the formA3!3 = ABDS3!3 (1 + i�3!3) ; (104)where �3!3 = a2 1Xn=�1(�1)n Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 (t0!(�;n)2 � 1) : (105)In the region s; t02 < 0 and s1; s3 > 0 we an writeA3!3 = ABDS3!3 (1� i�3!3) : (106)
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Figure 11: Dual variables for A3!3.18



Similarly to the 2! 4 sattering amplitude, if we perform the duality transformation (see Fig. 11)q1 ! z100 ; k1 ! z01 ; q3 ! z02 ; k2 ! z200 ; (107)the imaginary parts of the 3 ! 3 sattering amplitude in the t02 and s hannels depend on the sameanharmoni ratio (100). Again, the orretions to the BDS formula an be expressed in terms of fourdimensional anharmoni ratios.From these results for the 2 ! 4 and for the 3 ! 3 amplitudes we onlude that the infraredstruture of the inelasti amplitudes is given orretly by the BDS expression, whereas the �nitefators are orret only in the one loop approximation.6 ConlusionsIn this paper we studied, in the leading logarithmi approximation, the ut ontribution whih, in ourprevious paper, was found to violate the simple Regge fatorization of the BDS formula. As a mainresult we have veri�ed that the fatorization of universal infrared singularities is not a�eted, i.e. theviolation of the BDS formula is in the �nite piees. We have omputed the energy spetrum of the olorotet BFKL Hamiltonian, and we have onluded that the infrared divergent gluon trajetory an beseparated from the �nite remainder of the BFKL Green's funtion. We have expliitly omputed thetwo loop approximation of the Regge ut piee. The integral equation for the wave funtion of tworeggeized gluons in the otet hannel is solved expliitly and the interepts of the Regge singularitiesare alulated.Aknowledgements: JB is grateful for the hospitality of CERN where part of this work has beendone, and ASV gratefully aknowledges the hospitality of DESY and Hamburg University. LL issupported by the RFBR grants 06-02-72041-MNTI-a, 07-02-00902-a and RSGSS-5788.2006.2.A Forward sattering with olor otet exhangeIn this appendix we relate the otet equation in the forward ase to the BFKL equation for the singletase. As it will be shown, its physial solution exists only if the gluon Regge trajetory is not expandedin a power series on �.The relevant integral equation to be satis�ed by the gluon Green's funtion in the otet ase reads!G!(~p; ~p0; ~q) = 1jpj2jq � pj2 Æ2�2�(p� p0)� aH�G!(~p; ~p0; ~q2) ; (A.1)where a = �sN2� �4�e��� ; (A.2)and  is the Euler's onstant. From now on we shall use the notation ~p1 � ~p and ~p2 � ~q � ~p for thetransverse momenta of the two Reggeized gluons.The BFKL Hamiltonian for the hannel with the otet quantum numbers an be written in operatorform as H� = ln jp1j2�2 � 1� + ln jp2j2 + 1p1p�2 ln j�12j22 p1p�2 + 1p�1p2 ln j�12j22 p�1p2 + 2 ; (A.3)where we have negleted terms of O(�) and introdued for the two Reggeized gluons the omplexvariables �k; ��k (�12 = �1� �2) and their anonially onjugated momenta pk; p�k. The dependene onthe divergene 1=� an be removed by the following shift in the parameter !:! ! ! + a� ; (A.4)19



whih leads to the appearane of a Sudakov-type infrared divergent fator in the amplitude M2!4,i.e. M2!4 ! ZM2!4 ; Z = exp�a� ln s2�2� : (A.5)We an then work with the renormalized Hamiltonian H removing the divergent termH = H� + 1� : (A.6)It is known that the BFKL equation in the olor singlet hannel is M�obius invariant in oordinatespae. Its solutions are Em;em(~�10; ~�20) = � �12�10�20�m� ��12��10��20�em ; (A.7)where m; em are onformal weightsm = 12 + i� + n2 ; em = 12 + i� � n2 (A.8)and ~�0 is the Pomeron oordinate. The expression (A.7) orresponds to the three-point Green'sfuntion with non-amputated legs. The salar produt of two of these funtions is de�ned by< Em;emjjEm0;em0 >= Z d2�1 d2�2Em;em(~�10; ~�20)�1�2E�m0;fm0(~�100 ; ~�200) ; (A.9)where �k are the orresponding Laplae operators.A.1 The solution for the otet ase at q2 = 0The solution in momentum spae for q2 = 0 in the olor singlet ase an be obtained by using theFourier transform of the singlet solution (A.7), i.e.fm;em(~p) = Z d2�12 d2�0ei~p~�12 Em;em(~�10; ~�20) � pm�2 (p�)em�2 : (A.10)It is onvenient to introdue the new funtion ��;n(~p) as followsfm;em(~p) = jpj�3��;n(~p) ; (A.11)with normalization ��;n(~p) = � jpj2�2 �i� ei�n ; p = jpjei� : (A.12)These funtions satisfy the following orthonormality and ompleteness propertiesZ d2pjpj2 ��;n(~p)���0;n0(~p) = 2�2 Æ(� � �0) Æn;n0 ; (A.13)1Xn=�1 Z 1�1 d� ��;n(~p)���;n(~p0) = 4�2 Æ(ln jpj2 � ln jp0j2) Æ(�� �0) : (A.14)The homogeneous BFKL equation for the otet ase an be written in the form! = �aH ; H = ln jpj2�2 + 12H0 ; (A.15)20



where H0 is the Hamiltonian for the singlet ase. Its solution an be onstruted in terms of the linearombination of the funtions ��;n(~p) !;n(~p) = ei�n Z 1�1 d� � jpj2�2 �i� a!;n(�) : (A.16)Taking into aount (A.15) the funtion a!;n(�) should satisfy the equation!a!;n(�) = �a �i ��� +  �12 + i� + jnj2 �+  �12 � i� + jnj2 �+ 2�a!;n(�): (A.17)Its solution is a!;n(�) = exp hi� �!a + 2�i ��12 + i� + jnj2 ���12 � i� + jnj2 � : (A.18)For a!;n(�) we have the following normalizationZ 1�1 d� a!;n(�) a�!0;n(�) = 2�aÆ(! � !0) (A.19)and ompleteness onditions Z 1�1 d! a!;n(�) a�!;n(�0) = 2�aÆ(� � �0) : (A.20)Therefore the ompleteness relation for the eigenfuntions  !;n(~p) has the form1Xn=�1 Z 1�1 d!2�  !;n(~p) �!;n(~p0) = a (2�)2 Æ(ln jpj2 � ln jp0j2) Æ(�� �0) : (A.21)Using these expressions, we an solve the inhomogeneous equation for the Green's funtion g!(~p; ~p0; 0)!g!(~p; ~p0; 0) = (2�)2 a2 jpj2 Æ2(p� p0)� aH g!(~p; ~p0; 0) (A.22)in terms of a superposition of eigenfuntions of the homogeneous equation, i.e.g!(~p; ~p0; 0) = 1Xn=�1P Z 1�1 d!02�  !0;n(~p) �!0;n(~p0)! � !0 ; (A.23)where P means that the integral over ! is taken with the prinipal value presription.In terms of this Green's funtion the t2-hannel partial wave an be written asf2(!) = Z4� Z 10 djkj2jkj3 Z 2�0 d� k�k�1k� + k�1 Z 10 djk0j2jk0j3 Z 2�0 d�0 k0k2k2 � k0 g!(~k;~k0; 0) ; (A.24)where Z is the divergent fator disussed in (A.5). We an now write f2(!) in a di�erent form usingthe expliit expression for g!(~k;~k0; 0):f2(!) = Z4� 1Xn=�1P Z 1�1 d!02�i(! � !0) b!0n(~k) (A.25)where b!n(~k1) = Z 1�1 d� K�n(~k1) a!;n(�) ; (A.26)21



eb!n(~k2) = Z 1�1 d� eK�n(~k2) a�!;n(�) : (A.27)The funtions K and eK readK�n(~k1) = Z 10 djkj2 k�1jkj3 jkj2i��2i� Z 2�0 d� k�ei�nk� + k�1 = (�1)n�12���;jnj(~k1)jnj�12 + i� ; (A.28)eK�n(~k2) = Z 10 djk0j2 k2jk0j3 jk0j�2i���2i� Z 2�0 d�0 k0e�i�0nk2 � k0 = (�2�) ���;jnj(~k2)jnj�12 � i� ; (A.29)where ��;jnj(~k1) = � jk1j2�2 �i� ei�1(jnj�1): (A.30)Thus, one an obtain the following simple representation for the funtions b and ebb!n(~k1) = �2�(�1)n ei�1(jnj�1)!n(~k1) ; (A.31)eb!n(~k2) = �2� e�i�2(jnj�1)�!n(~k1) ; (A.32)where !n(~k1) = Z 1�1 d� ei� �!a+2+ln jk1j2�2 � �( jnj�12 + i�)�( jnj+12 � i�) : (A.33)The �nal result for the imaginary part of the amplitude in the variable s2 reads=s2M2!4� = Z� 1Xn=�1(�1)nei�12(jnj�1) Z 1�1 d! � s2�2�! !n(~k1) �!n(~k2) ; (A.34)where �12 = �1��2. There is an ambiguity in the integration over � at � = 0 for jnj = 1, but at thatpoint !n(~k1) does not depend on !.A.2 Spetrum quantizationIt is important to note that in the region ~p ! 0 we an not use the simplest form for the Reggetrajetory in the Born approximation and we should write the exat expression instead:ln jpj2 � 1� ! Eg(jpj) = �1� � jpj2�2 ��� : (A.35)The reason for this is that the solution  !;n(~p) has a good behavior only for large jpj, i.e.limjpj!1  !;n(~p) � ei�n � jpj2�2 �� 1+jnj2 : (A.36)In the region of small jpj its asymptotis is given by the saddle point ontribution in the integral over� and is not stable for the simpli�ed expression Eg(jpj) at �! 0. The position of this saddle point �is de�ned by the solution of the BFKL equation in the lassial approximation! = �a �Eg(jpj) + 1� +  �12 + i� + jnj2 �+  �12 � i� + jnj2 �+ 2� : (A.37)In this expression we have used the exat expression Eg(jpj) for the gluon energy. Let us indiate that,due to the symmetry of E0(�) under the substitution � ! ��, there are two solutions of this equationrelated by this symmetry and the semilassial expression for  !;n(~p) osillates in this region.22



The interept � of the orresponding singularity in the j � 1-plane of the t-hannel orrespondsto the values � = 0; n = 0 of the M�obius parameters (for � < 0)� = �aminjpj (Eg(jpj)� 4 ln 2) = !P2 ; !P = g2�2 N ln 2 ; (A.38)where !P is the interept of the BFKL Pomeron.Let us solve the Shr�odinger equation for the wave funtion with the modi�ed expression for theRegge trajetory analytially. For this purpose we shall use the representation where the oordinateis x = ln jpj2�2 : (A.39)The Shr�odinger equation has the formE0(�; n)	�;n(x) = ��e�� x� + H02 � 	�;n(x) ; (A.40)where �! �0 and E0(�; n) is the total energy at x! �1E0(�; n) =  �12 + i� + jnj2 �+  �12 � i� + jnj2 �+ 2 : (A.41)At x! �1 the potential energy goes to zero and we an searh for two solutions of this equation ofthe form 	��;n(x) = e�i�x 1Xr=0C�r (�) e�� r x ; (A.42)where C�r (�) satis�es the reurrene relationE0(�; n)C�r (�) = �1� C�r�1(�) +E0(� � i r; n)C�r (�): (A.43)Therefore one an write the following expression for the oeÆients C�r (�)C�r (�) = ��1� �r rYt=1 1E0(�; n)�E0(� � i t; n) : (A.44)In priniple, the expansion in (A.42) with these oeÆients is onvergent for all values of x andtherefore we ould �nd at least numerially the linear ombination of 	+ and 	� for whih the wavefuntion dereases at x!1.We onsider now the ase of small �, where we an use the di�usion approximation for E0:E0(�; n) = 2 �12 + jnj2 �+ 2 �  00�12 + jnj2 � �22 : (A.45)In partiular for n = 0 we have E0(�; n) = �4 ln 2 + 14 �(3) �2 : (A.46)In this ase one obtainsC�r (�) = � �114 �(3) ��r rYt=1 1t(t� 2i�) = (�14 �(3) �)�r�(1� 2i�)�(r + 1)�(r + 1� 2i�) : (A.47)23



As a result, we an express 	� with an appropriate normalization onstant in terms of the Besselfuntion with imaginary argument (for � < 0)	��;0(x) = I�2i�  s2 exp(��x)�7�(3)� ! : (A.48)The solution, whih has the good asymptoti behavior at x!1	�;0(x) � e�q 2 exp(��x)(�7�(3)�) ; (A.49)is 	�;0(x) = K2i�  s2 exp(��x)�7�(3)� ! ; (A.50)where K2i�(z) = �2 I�2i�(z)� I2i� (z)sin(2�i�) : (A.51)
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B Calulation of the one and two loop ontributionsIn this appendix we alulate, starting from (93), the one and two loop approximations. For the oneloop approximation we ompute the integral:M = 1Xn=�1(�1)n Z 1�1 d��2 + n2=4 � i��n=2 ; (B.1)where � = q3k1q�1k�2q�3k�1q1k2 (B.2)and � = jq3j2jk1j2jk2j2jq1j2 : (B.3)We begin with the terms n 6= 0 and integrate over �:Mn6=0 = = �(� � 1) 1Xn=1 2�n (�1)n��n=2 ��n=2 + ��n=2�!+�(1� �) 1Xn=1 2�n (�1)n�n=2 ��n=2 + ��n=2�!= ��(� � 1)2� �ln�(1 +p�=p�)(1 + 1=p��)����(1� �)2� �ln�(1 +p�=p�)℄(1 +p��)�� (B.4)Using (B.2) and (B.3) we obtain:Mn6=0 = �2��ln jk1 + k2j2jq2j2jk1k2q1q3j � 12 j ln�j� (B.5)For the term n = 0 the divergene at � = 0 needs to be regularized. In order to reprodue the oneloop result (25) derived in dimensional regularization we needRegs2 Z 1�1 d��2 ����q3k1k2q1 ����2i� = 2���1� + ln jq2j2�2 � ln ���� q3q1k1k2 ����� ����ln jq3jjk1jjk2jjq1j ����� : (B.6)The sum of this ontribution for n = 0 and Mn6=0 is (apart from the overall fator) in agreement withthe one loop result in (25).Next let us onsider the two-loop ontribution. We need to alulate the following integral:R = 1Xn=�1(�1)n Z 1�1 d� E�n�2 + n2=4 � i��n=2 (B.7)where aording to eq. (38) and (85)E�n = � jnj�2 + n24 + 1Xk=0� 2k + 1 � 1k + 1 + i� + jnj=2 � 1k + 1� i� + jnj=2� : (B.8)The integral over � an be alulated by residues, and we take into aount that the ontributionsfrom the poles � = �ijnj=2 exist only for n 6= 0. As for the other poles, they give ontributions also25



at n = 0. Thus, we obtainR = ��(� � 1) 1Xn=1(�1)n(�n2 + ��n2 )��n2  � ln�n � 2n2 + 2n 1Xk=0� 1k + 1 � 1k + 1+ n�!+��(1� �) 1Xn=1(�1)n(�n2 + ��n2 )� n2  ln�n � 2n2 + 2n 1Xk=0� 1k + 1 � 1k + 1 + n�!+2��(� � 1) 1Xn=�1(�1)n�n2 1Xk=0��(k+1+ jnj2 ) 1(k + 1)(k + 1+ jnj)+2��(1� �) 1Xn=�1(�1)n�n2 1Xk=0�k+1+ jnj2 1(k + 1)(k + 1 + jnj)= �� ln� 1Xn=1 (�1)nn (�n2 + ��n2 ) ��(� � 1)��n2 � �(1� �)� n2 �+2� 1Xn=1(�1)n(�n2 + ��n2 )  � 1n2 + 1n nXr=1 1r! ��(� � 1)��n2 + �(1� �)� n2 �+2��(� � 1)0� 1Xn=1(�1)n ��n2 + ��n2 � 1Xm=1+n2 ��m(m� n2 )(m+ n2 ) + 1Xm=1 ��mm2 1A= �� ln� 1Xn=1 (�1)nn (�n2 + ��n2 ) ��(� � 1)��n2 � �(1� �)� n2 ���(� � 1)0� 1Xn=1 (�1)nn �n2 ��n2!2 + 1Xn=1 (�1)nn ��n2 ��n2!21A+��(1� �)0� 1Xn=1 (�1)nn �n2 � n2!2 + 1Xn=1 (�1)nn ��n2 � n2!21A+2��(� � 1) 1Xn1=1 (�1)n1n1 �n12 ��n12 1Xn2=1 (�1)n2n2 ��n22 ��n22+2��(1� �) 1Xn1=1 (�1)n1n1 �n12 � n12 1Xn2=1 (�1)n2n2 ��n22 � n22 : (B.9)In obtaining two last ontributions we passed to the new summation variables n1 = m + n=2 andn2 = m�n=2. These transformations give a possibility to write the total result for R in the following
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simple formR = ��(� � 1)0�� ln� 1Xn=1 (�1)nn (�n2 + ��n2 )��n2 + 1Xn=1 (�1)nn (�n2 + ��n2 )��n2!21A+��(1� �)0�ln� 1Xn=1 (�1)nn (�n2 + ��n2 )� n2 + 1Xn=1 (�1)nn (�n2 + ��n2 )� n2!21A= ��(� � 1)  1Xn=1 (�1)nn (�n2 + ��n2 )��n2! 1Xn=1 (�1)nn (�n2 + ��n2 )��n2 � ln�!+��(1� �)  1Xn=1 (�1)nn (�n2 + ��n2 )� n2! 1Xn=1 (�1)nn (�n2 + ��n2 )� n2 + ln�!= ��(� � 1) ln�(1 +p�=p�)(1 + 1=p��)��ln�(1 +p�=p�)(1 + 1=p��)�+ ln��+��(1� �) ln�(1 +p�=p�)(1 +p��)��ln�(1 +p�=p�)(1 +p��)�� ln�� :(B.10)Using �nally the above expression for Mn6=0 we obtainR = � ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 : (B.11)Combination of the one and two loop results leads to:1�=s2 M2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs2 Z 1�1 d��2 + n24 �q�3k�1k�2q�1�i��n2 �q3k1k2q1�i�+n2 s!(�;n)2= a2 s!(t2)2 �ln jk1j2jk2j2jk1 + k2j2�2 � 1� � a2 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 +O(a2)� : (B.12)Indeed, the seond term of the expansion in a oinides with the result (63), obtained by an indepen-dent alulation.In an analogous way the imaginary part in s an be written in the form1�=sM2!4 = a4� s!(t2)2 1Xn=�1(�1)nRegs Z 1�1 d��2 + n24 �q�3k�1k�2q�1 �i��n2 �q3k1k2q1�i�+n2 s!(�;n)2 ; (B.13)where Regs Z 1�1 d��2 ����q3k1k2q1 ����2i� = 2���1� + ln jq2j2�2 + ln ���� q3q1k1k2 ����� ����ln ����q3k1q1k2 ��������� : (B.14)It orresponds to the following expansion in a1�=sM2!4 =a2 s!(t2)2 �ln jq1j2jq3j2jk1 + k2j2�2 � 1� � a2 ln s2 ln jk1 + k2j2jq2j2jk2j2jq1j2 ln jk1 + k2j2jq2j2jk1j2jq3j2 +O(a2)� : (B.15)For the imaginary part of the amplitude M3!3 in the variable t02 we obtain the similar result1�=t02 M3!3 = a4� t0!(t2)2 1Xn=�1(�1)nRegt02 Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 t0!(�;n)2 ; (B.16)27



where in this ase the regularized integral over � for n = 0 and a = 0 does not ontain any 1=�divergene Regt02 Z 1�1 d��2 ���� q3q1k2k1 ����2i� = 2��ln ���� q3q1k1k2 ����� ����ln ���� q3q1k1k2 ��������� : (B.17)It gives the following a-expansion of =t02 M3!31�=t02 M3!3 =a2 t0!(t2)2 �ln jq1j2jq3j2jq1 + q3 � q2j2jq2j2 � a2 ln t02 ln jq1 + q3 � q2j2jq2j2jk2j2jk1j2 ln jq1 + q3 � q2j2jq2j2jq1j2jq3j2 +O(a2)� :(B.18)Analogously we �nd the the imaginary part of the amplitude M3!3 in the variable s1�=sM3!3 = a4� t0!(t2)2 1Xn=�1(�1)nRegs Z 1�1 d��2 + n24 � q�3q�1k�2k�1�i��n2 � q3q1k2k1�i�+n2 t0!(�;n)2 ; (B.19)where Regs Z 1�1 d��2 ���� q3q1k2k1 ����2i� = �2��� ln ���� q3q1k1k2 ����� ����ln ���� q3q1k1k2 ��������� : (B.20)The expansion in a beyond the one loop approximation oinides with that of =t02 M3!3:1�=sM3!3 =a2 t0!(t2)2 �ln jk1j2jk2j2jq1 + q3 � q2j2jq2j2 � a2 ln t02 ln jq1 + q3 � q2j2jq2j2jk2j2jk1j2 ln jq1 + q3 � q2j2jq2j2jq1j2jq3j2 +O(a2)� :(B.21)Referenes[1℄ J. Bartels, L. N. Lipatov, A. Sabio Vera, arXiv:0802.2065 [hep-th℄.[2℄ Z. Bern, L. J. Dixon, V. A. Smirnov, Phys. Rev. D 72 (2005) 085001 [arXiv:hep-th/0505205℄.[3℄ L. N. Lipatov, Sov. J. Nul. Phys. 23 (1976) 338;V. S. Fadin, E. A. Kuraev, L. N. Lipatov, Phys. Lett. B 60 (1975) 50;E. A. Kuraev, L. N. Lipatov, V. S. Fadin, Sov. Phys. JETP 44 (1976) 443; 45 (1977) 199;I. I. Balitsky, L. N. Lipatov, Sov. J. Nul. Phys. 28 (1978) 822.[4℄ O. Steinmann, Helv. Physia Ata 33 (1960) 257, 349.[5℄ J. Bartels, L. N. Lipatov, G.P. Vaa, Phys.Lett. B477, 178 (2000).[6℄ L. N. Lipatov, Phys.Lett. B309, 394 (1993).[7℄ L. N. Lipatov, Nul.Phys. B548, 328 (1999).[8℄ J. M. Drummond, J. Henn, V. A. Smirnov, E. Sokathev, JHEP 0701 064 (2007).[9℄ J. M. Drummond, G. P. Korhemsky, E. Sokatehv, Nul.Phys. B795 385 (2008).
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