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Desy 08-070, ZMP-HH/08-10, June 2008Conformal generally ovariant quantum �eld theory:The salar �eld and its Wik produts.Niola PinamontiaII. Institut f�ur Theoretishe Physik, Universit�at Hamburg, Luruper Chaussee 149, D-22761 Hamburg,Germany.a niola.pinamonti�desy.deAbstrat. In this paper we generalize the onstrution of generally ovariant quantum theories given in[BFV03℄ to enompass the onformal ovariant ase. After introduing the abstrat framework, we disussthe massless onformally oupled Klein Gordon �eld theory, showing that its quantization orrespondsto a funtor between two ertain ategories. At the abstrat level, the ordinary �elds, ould be thoughtas natural transformations in the sense of ategory theory. We show that, the Wik monomials withoutderivatives (Wik powers), an be interpreted as �elds in this generalized sense, provided a non trivialhoie of the renormalization onstants is given. A areful analysis shows that the transformation law ofWik powers is haraterized by a weight, and it turns out that the sum of �elds with di�erent weightsbreaks the onformal ovariane. At this point there is a di�erene between the previously given pituredue to the presene of a bigger group of ovariane. It is furthermore shown that the onstrution doesnot depend upon the sale � appearing in the Hadamard parametrix, used to regularize the �elds. Finally,we briey disuss some further examples of more involved �elds.1 IntrodutionThe systemati analysis of quantization in terms of funtors given by Brunetti, Fredenhagen andVerh [BFV03℄, opened an interesting new way to interpret the quantum �eld theory on urvedspaetimes. With this new ideas, the expetation values of �elds in di�erent spaetimes anbe ompared in a mathematially rigorous way. Some interesting new appliations have beendeveloped following this line of thinking, we remind here the work of Buhholz and Shlemmer[BS07℄ and Shlemmer and Verh [SV08℄, where the authors deal onsistently with expetationvalues of �elds in di�erent spaetimes. Another interesting use of similar ideas an be foundin the derivation of loal energy bounds in urved spaetime as performed by Fewster [Fe07℄.The use of these onepts plays a entral role in the development of a perturbative theory ofquantum gravity as well, to this end we would like to remind the interesting paper of Brunettiand Fredenhagen [BF06℄.A entral role in the analysis performed in [BFV03℄ is played by the study of the isometriembeddings between di�erent spaetimes and their interplay with the quantization proedure. It1
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was shown that the quantization of the massive Klein Gordon �elds an be enompassed in thenew sheme. Furthermore, the �eld itself and its Wik powers, as onstruted by Hollands andWald in [HW01, HW02, HW05℄, an be interpreted as generally ovariant quantum �elds. Herewe would like to address the same problem in the ase of �eld theories having a larger groupof symmetry, namely the loally onformally ovariant ase. Hene, we introdue the notionof generally onformally ovariant �elds by enlarging the abstrat setup presented in [BFV03℄.The idea of onsidering more ompliated morphisms than isometries appeared for the �rst timein the work of Brunetti [Br04℄, we would like to follow similar line of reasoning.If the extension of the ovariane to the onformal ovariane is expeted to hold true atthe level of anonial ommutation relations and hene at the level of the simple salar �eld,the situation is expeted to be di�erent onsidering the extended algebra of �elds, namely the�elds de�ned by means of a regularization. It usually happens that the regularization breaks theonformal ovariane, tehnially speaking this is due to the unavoidable presene of a lengthsale in the Hadamard parametrix used to regularize the �elds. It is then an unexpeted fat,that, in the four dimensional ase, despite the presene of this length sale and more generallydespite the presene of quantum anomalies, a proper but large subset of the algebra of loal�elds, ontains loally onformally ovariant �elds. We shall show that the Wik powers (theWik monomial without derivatives) are ontained in this subset, provided a non trivial hoieof renormalization freedom is performed1. At this point it seems interesting to remark that therequirement of being onformally ovariant restrits the renormalization freedom usually presentin the onstrution of these �elds. This fat seems to be a peuliarity of the four dimensionalase, it is in fat known that, for example, in the two dimensional ase, the Wik powers ('n)are not loally onformally ovariant (they are not primary in the language of CFT [DMS97℄),we shall furthermore omment on this restrition in a subsetion devoted to the analyses ofthe extension of this results to general dimensions. Another interesting di�erene that arisesin the ase under investigation is that the transformations rules enjoyed by the Wik powersare haraterized by the presene of a weight. Furthermore, the sum of Wik monomials withdi�erent weight breaks the onformal ovariane.The analysis performed in this paper allows to geometrially relate a larger lass of spaetimesthan in [BFV03℄, namely those that are loally onneted by a onformal transformation. In thisway it is possible, for example, to transplant observables (and states) from the de Sitter spaetimeto the Minkowksi one. This ould be useful in the study of onepts like loal equilibrium states[BOR02℄ in the ase of onformally ovariant theories as well.The paper is organized as follows: at �rst we introdue the notion of loally generallyonformal ovariant quantum �elds. The example of the massless onformally oupled salarKlein Gordon �eld is studied in the seond setion, we shall present the transformation rule of thefundamental solutions and of the Hadamard parametrix in partiular. The third setion ontainsthe analysis of the Wik powers in four dimensions and a subsetion devoted to the disussionof the di�erenes between this ase and the ase of spaetimes with general dimensions. Some1A detailed analysis of the renormalization freedom an be found in the work of Hollands and Wald [HW01,HW05℄. 2



�nal omments and some further non trivial examples of more ompliated �elds are given inthe fourth setion. The appendix ontains some tehnial omputation used in the derivation ofthe results.1.1. Categorial formulation of loally onformally ovariant �eld theory. We aregoing to enumerate the relevant ategories that will be used later for the formulation of aonformal quantum �eld theory in terms of a funtor between ertain ategories. Before doingit, we introdue some small modi�ations to the loally ovariant piture of quantum �eldtheory presented for the �rst time in [BFV03℄, in order to adapt the formalism to inludethe ase of onformal invariant theories. The key obervation is that onformal invariant �eldtheory should be invariant under a reaher group of transformations, namely the loal onformaltransformations. It is interesting to notie that suh transformations share a lot of nie propertieswith isometries, the ausal struture is preserved by suh transformations in partiular and thisfat will play a entral role later on. For a better formalization of these onepts we would liketo introdue the notion of onformal embedding.De�nition 1.1. Consider two globally hyperboli spaetime (M1;g1) and (M2;g2) then, amap  : M1 ! M2 is alled onformal embedding if it is a di�eomorphism between M1 and (M1) and the push forward  � ats on the metri g1 in the following way:  �g1 = 
�2 g2j (M1)where 
 is a stritly positive smooth funtion on  (M1), alled onformal fator.In the following we shall onsider the ase of a onformal embedding  between two globallyhyperboli spaetimes (M1;g1) and (M2;g2) that preserves orientation and time orientation andsuh that the image ( (M1);g2j (M1)) is also an open globally hyperboli subset of (M2;g2).We would like to remark that, under the given hypotheses,  preserves the ausal strutures ofthe spaetime2, mapping for example ausal urves to ausal urves and so on and so forth.At this point it seems important to stress a di�erene between the onformal embeddingsused in this paper and the onformal transformations that form the so alled onformal group.The main di�erene arises beause we are not simply onsidering oordinate transformations butgeneral mappings between di�erent spaetimes. For example, in the four dimensional Minkowskispaetime, the onformal transformations that an arise as oordinate transformations form a�nite-dimensional group SO(2; 4), while muh more freedom is allowed by onformal embeddings.The following ation of weighted onformal transformations on test funtions will play adistinguished role in the de�nition of the weight of the �eld.De�nition 1.2. Let  be a onformal embedding between (M1;g1) and (M2;g2) with onfor-mal fator 
 then, the weighted ation on test funtions  (�)� is the map from C1(M1)to C1( (M1)) suh that,  (�)� (f)(x) := 
�� (x)(f Æ  �1)(x):Where � 2 R is alled the weight of the map.The previously given de�nition deserves some omments regarding its domain of de�nitionand its inversion. While it is lear that  (�)� an also be thought as ating on ompatly supported2See the Appendix D of [Wa84℄ for more details 3



smooth funtion  (�)� : C10 (M1)! C10 (M2), that is not true anymore onsidering smooth fun-tions, in fat  (M1) is in general a proper subset of M2 hene a smooth funtion f that is notompatly supported on M1 is not mapped to a smooth funtion in C1(M2). It is indeed im-possible to extend uniquely  (�)� (f) onM2 outside  (M1). Despite the presene of these domainproblems we would like to notie that  (�)� is invertible either on C10 ( (M1)) or on C1( (M1)).The partiular onformal embedding  : (M;g) ! (M;g0) suh that every p 2 M is mappedto  (p) = p, is alled onformal transformation. Moreover, if the onformal fator 
 of aonformal transformation is a onstant then it is alled rigid onformal transformation orrigid dilation.We enumerate here the ategories used later on; these de�nitions are very similar to those givenin [BFV03℄. For this reason we shall stress, ase by ase, the di�erenes we have to implementin order to enompass also the onformal transformations in the framework.CLo: This is the ategory that enompasses all the geometri strutures of the theory. Theobjet of CLo are all the four dimensional oriented and time oriented globally hyperbolispaetimes. While the morphisms are all the onformal embeddings  : (M1;g1) !(M2;g2) with the following additional properties, that are the same as previously given: (i)( (M1);g2j (M1)) is an open globally hyperboli subset of (M2;g2) and (ii) the morphismspreserve orientation and time orientation3. The omposition of morphisms is de�ned asthe omposition map of onformal embeddings in the usual way. The ategory CLo is anextension of the ategory Lo given in [BFV03℄, in the sense that in CLo there is a largerlass of morphisms then in Lo.Alg: There is no need to modify the ategory of Alg introdued in [BFV℄. The objet ofAlg are all the C�-algebras built on a globally hyperboli spaetime (M;g), possessingthe unit element, while their morphisms are the injetive ��homomorphisms that pre-serve the unit; one again the omposition desends from the usual omposition map of��homomorphism.TAlg: The de�nition of a TAlg follows easily the one of Alg; the di�erene is that the objet ofthis ategory are taken to be only ��algebras with unit, instead of C�-algebras. There isno modi�ation between this and the previously given de�nitions.Test�: The objets of this ategory are the sets of ompatly supported smooth funtions C10 (M)on the spaetimes (M;g). The morphisms are the weighted transformation  (�)� :M !M 0with a �xed � and their ation is like the one presented in de�nition 1.2.It seems interesting to notie that the ategories Alg and TAlg are de�ned in the same way as on[BFV03, Br04℄, in a ertain sense the algebrai formulation of quantum �eld theory is already3The requirement of global hyperboliity for  (M1) is equivalent to the requirement of ausal onvexity of (M1) in M2. In other words every ausal urve with endpoints in  (M1) has to lie inside  (M1) too.4



suitable to desribe onformal transformations. Furthermore the saling transformations havealready been onsidered as geometri morphisms in the work [Br04℄.1.2. Quantum Conformal Field theory as a Funtor and Conformal �elds as Naturaltransformations. We are now in plae to de�ne the loally ovariant onformal quantum�eld as a funtor between the two ategories CLo and Alg, suh that the objets of CLo aremapped to the objets of Alg whereas the morphisms  of CLo are mapped into the morphisms� of Alg, in suh a way that the following diagram ommutes(M;g)  ����! (M 0;g0)A??y ??yAA(M;g) � ����! A(M 0;g0)and the following omposition property holds:� Æ � 0 = � Æ 0 ; �IM = IA(M) :The same onstrution an be repeated substituting the ategory Alg with TAlg.Despite the meaningfulness of the previously given de�nition and the presene of examplesof the given framework, it is not at all lear if observables with a ertain physial meaning in aspaetime are mapped to observables with the same meaning, on the other spaetime. In generalthis is indeed not the ase and it is preisely beause of this problem that the ordinary �eldsneed to be introdued in an alternative way. In the piture we are going to introdue, they willassume the partiular meaning of natural transformations between ategories.To this end it is useful to onsider the set of weighted test funtions D� as a funtor betweenCLo and Test�. More preisely let's indiate by D�(M;g) the ategory whose elements are thesets of ompatly supported smooth funtions C10 (M), and the morphisms �� between thesesets are de�ned by means of the weighted ation on test funtions as de�ned in 1.2. ClearlyD an also be seen as a funtor between the ategory of CLo to Test. We are now ready tointrodue the notion of onformal quantum �eld as a natural transformation betweentwo funtors.De�nition 1.3. A �eld ��(M;g) of weight � is a linear transformation between the funtorthat realizes the test funtions D4�� : (M;g) ! D4��(M;g) and the funtor that realizes thetopologial algebras A : (M;g)! A(M;g) suh that the following diagram ommutesD4��(M;g) ��(M;g)����! A(M;g) (4��)� ??y ??y�� D4��(M 0;g0) ��(M0;g0)�����! A(M 0;g0)The preeding de�nition an be written more expliitly by means of the following onformalovariane property: �� (��(M;g))(f) = ��(M 0;g0)( (4��)� (f)) ;5



where  (�)� (f) is de�ned as a weighted transformation as given in the de�nition 1.2. We all �the weight of the �eld ��.The di�erene between the weight in the test funtions and the weight in the �elds an beunderstood taking into aount the transformation rule enjoyed by the volume form. Under aonformal embedding  : (M;g)! (M 0;g0),pg0( (x))
�4( (x)) =pg(x)where g0 stands for the determinant of the metri omputed in a hart of M 0 ontaining  (x)and g is for the determinant of  �g omputed in the same hart.As a onsequene of the given de�nitions, linear ombinations of �elds with di�erent weightsare not onformally ovariant �elds. Preisely at this point there is a great di�erene with whatwas addressed in [BFV03℄, where also the linear ombinations of �elds with di�erent \weights"were taken into aount.In two dimensional onformal �eld theory the �elds that posses this property are alledprimary �elds [DMS97℄. Hene there is a relation between the onformal ovariane studiedhere and the primarity addressed in ordinary CFT.2 The model: Free onformal invariant salar �eld.In this setion we present a model that shows the previously presented abstrat struture. Weshall onsider the massless onformally oupled salar �eld theory. Here and in the next setionswe shall onsider only the four dimensional ase, that's beause many of the presented resultshold only in that ase. Later on, we shall briey disuss the diÆulties that arise in generalizingthe outomes to other dimensions.Just to �x some notation let us remind that the lassial equation of motion of the onformalKlein Gordon salar �eld ' on a spaetime (M;g) isPg = �2g + 16Rg; Pg' = 0; (1)where 2g is the d'Alembert opeartor onstruted out of the four dimensional metri g and Rgis the Rii salar of the metri g. We start our analysis with the study of the interplay betweenonformal transformations, the fundamental solutions and the miroloal spetral ondition[Ra96, BFK96℄.2.1. Conformal transformation of the fundamental solutions. Let us start reallingthe transformation law satis�ed by the operator Pg under onformal embeddings.Lemma 2.1. Let  be a onformal embedding of (M1;g1) into (M2;g2), onsider the or-responding weighted transformations  (3)� and  (1)� of test funtions thought as mappings fromC10 (M1)! C10 ( (M1)) � C10 (M2). The following equivalene holds for every f in C10 (M1):Pg2( (1)� (f)) =  (3)� (Pg1(f)): (2)6



Proof. Beause of the support properties of f we know that the supports of the followingsmooth funtions,  (1)� (f) and  (3)� Æ Pg1(f), are ontained in  (M1). Hene we an restrit ourattention to the image of M1 under  , namely to the spaetime ( (M1);g1). Furthermore theonformal embedding  beomes a standard onformal transformation if restrited to  (M1),and the proof of that proposition desends straightforwardly by means of a diret omputation(a detailed analysis is ontained in the appendix D of Wald's book [Wa84℄). 2We an relax the hypotheses written above and use as test funtions only the smooth fun-tions. In this ase the equivalene (2) works if restrited to the image  (M1) � M2. Anotherimportant extent of the transformation law of the wave operator Pg we would like to stress isits interplay with weighted test funtions. Atually, beause of the presene of the onformalfator in the transformation law of the operator de�ning the equations of motion we have thatPg maps test funtions of weight 1 into test funtions of weight 3.In a globally hyperboli spaetime (M;g), the advaned / retarded fundamental solutions�� of the partial di�erential equation Pg� = 0 are the unique maps from C10 (M) to C1(M)suh that Pg��f = f and the domains of ��f are ontained in the ausal future / past of thesupport of f respetively supp ��(f) � J�(supp f). For the issues regarding the uniquenesssee [BGP07℄.Let us study the transformation law enjoyed by the fundamental solutions under onformalembeddings and hene by the ausal propagator.Lemma 2.2. Let  be a morphism in CLo, hene  is a onformal embedding between : (M;g) ! (M 0;g0), let �� and �0� be the uniquely de�ned advaned/retarded fundamentalsolutions of Pg and Pg0 . Consider the following operators from C10 ( (M)) to C1( (M)):� � :=  (1)� Æ�� Æ  (3)� �1then � � are the uniquely de�ned advaned / retarded fundamental solutions of Pg0 in ( (M);g0).Furthermore � � = �( (M))�0�jC10 ( (M)), where �( (M)) is the harateristi funtion of (M).Proof. ( (M);g0) is a global hyperboli subspae of (M 0;g0), then, in order to show that� � are the advaned / retarded fundamental solutions of Pg0 in ( (M);g0), we have to hektwo properties, the �rst one is that Pg0� �f = f and the other one is that the support of� (f) � J�(supp f)j (M) for every f in C10 ( (M)). First of all, onsider the following hainof equalities valid in  (M) for every f 0 2 C10 ( (M)) and f =  (3)� �1(f 0):f 0 =  (3)� (f) =  (3)� Æ Pg(��f) = Pg0 Æ  (1)� (��f) = Pg0 �� � Æ  (3)� (f)� = Pg0 �� �(f 0)� :The seond step is to hek that the domain property are preserved by  . Nonetheless theproperties of  assure the validity of the following hain of inlusions,supp � �f 0 =  (supp ��f) �  (J�(supp f)) � J�( (supp f))7



in  (M). Furthermore,  maps ausal urves into ausal urves preserving the orientation andfrom this it desends the last inlusion. 2The ausal propagator E is de�ned as the advaned minus retarded fundamental solutionE = �+ ���, it is a distribution on ompatly supported smooth funtions uniquely de�nedin a globally hyperboli spaetime one Pg is given. It an be seen as map form C10 (M) toC1(M) namely the set of solutions of Pg� = 0.Knowing the interplay between advaned, retarded fundamental solutions and onformal em-beddings, we an derive straightforwardly the way in whih the ausal propagator E transformsunder onformal transformation, i.e.Lemma 2.3. Let  be a morphism in CLo between the two elements (M;g), (M 0;g0) ofCLo, then �( (M))E0( (3)� (f)) =  (1)� (E(f)) for any f 2 C10 (M).The two point funtions of Hadamard type play a distinguished role in the formulation of aquantum �eld theory in urved spaetime [KW91℄. From the work of Radzikowski [Ra96℄ andBrunetti, Fredenhagen and K�ohler [BFK96℄ we know that an Hadamard two-point funtion isharaterized by the miroloal spetral ondition. Hene we shall say that a two-point distri-bution !2 is of Hadamard type if its antisymmetri part orresponds to the ausal propagatorand if it satis�es the miroloal spetral ondition, whih means that the wave front set of !2has a ertain form:WF(!2) = f(x1; k1; x2; k2) 2 T �M n f0gj(x1; k1) � (x2; k2); k1 2 V+g ; (3)where (x1; k1) � (x2; k2) if it exists a null geodesis [0; a℄ ! M suh that (0) = x1 and(a) = x2 and k1 is the otangent, oparallel vetor to the geodesi at x1 while k2 is equal to theparallel transport along  of �k1 on x2. The next preliminary task we have to aomplish is togive the transformation rule for the Hadamard two-point funtion under onformal embeddings.While we have already seen that the ausal propagator satis�es an homogeneous transformationrule we would like to see what happens to the symmetri part of an !2 of Hadamard type.Lemma 2.4. Let  be a morphism in CLo from (M;g) to (M 0;g0) and !2 a distribution onC10 (M �M) that satisfy the miroloal spetral ondition then, onsider! 2 (f; g) := !2( (3)� �1f;  (3)� �1g):! 2 is a distribution on C10 ( (M)2) and it satisfy the miroloal spetral ondition on ( (M);g0).Proof. Sine  (3)� is a smooth invertible map from C10 (M) to C10 ( (M)), ! 2 is a distribution.Let us analyze its wave front set of ! 2 in ( (M);g0); the de�nition of wave front set does notdepend on the metri g0, we have simply to analyze the relation between M and  (M). Sinethe  (3)� is smooth and invertible, and sine  is a di�eomorphisms we an immediately onludethat (x1; k1; x2; k2) is an element of WF(! 2 ) if and only if ( �1(x1);  �1� (k1);  �1(x2);  �1� (k2)) 2(WF(!2)). Here  �1� : T (p) (M)� ! TpM� de�ned in the standard way. We have to show that8



(x1; k1) � (x2; k2) in ( (M);g0). To this end we are seeking for a future direted null geodesi0 in  (M) whose extreme points are x1 and x2 and whose otangent vetor in x1 is k1 and inx2 is �k2. Notie that, having ( �1(x1);  �1� (k1)) � ( �1(x2);  �1� (k2)) in (M;g), it exists afuture direted null geodesi  with suh properties in (M;g). Beause of the properties of theonformal embedding, k1 and k2 are also null vetors in ( (M);g0). Sine  is an orientationand time orientation preserving onformal embedding, 0 =  () turns out to be also a futurenull geodesis in  (M), furthermore, let � and �0 be the aÆne parameters of  and of  (),then d�0d� = 
2 where  is a onstant and 
 is the onformal fator of  . Notie that if  �1� k1is a otangent vetor of  in  �1(x1), k1 has to be the otangent vetor of  () in x1, the samealso holds for �k2 in x2. Finally, sine the orientation is preserved by  , the thesis turns out tobe proved. 2The singular struture of an Hadamard two point funtion, alled Hadamard parametrix, is�xed [KW91℄, to proeed with our analysis it will be useful to analyze it in more details. TheHadamard parametrix H has the following expansion in a small geodesially onvex neighbor-hood ontaining the points x and y:H(x; y) = 18�2 � u(x; y)��(x; y) + v(x; y) log ��(x; y)�2 � (4)where u and v are ertain smooth funtions that depend only on the geometry of the spaetime(M;g), one the equations of motion are hosen and �� = � + i(T (x) � T (y))� + �2=2, whereT is any time funtion [KW91℄ and � is half of the squared geodesial distane between x andy, taken with sign. We shall give further details on the loal onstrution of u and v in theappendix. The Hadamard parametrix depends on the dimensional parameter �, we shall �x thisparameter one and for every spaetime in CLo. Finally we would like to analyze the di�ereneof the singular strutures in the sense of the following lemma.Lemma 2.5. Let  be a morphism in CLo between the two elements (M;g), (M 0;g0). LetH and H 0 be the Hadamard parametrix respetively on two geodesially omplete neighborhoodO of M and O0 of  (M) suh that O0 �  (O) thenH( (3)� �1f;  (3)� �1g)�H 0(f; g) = ZO0�O0 f(x)A(x; y)g(y) d�g0(x)d�g0(y)where A(x; y) is a smooth symmetri funtion on O0�O0 and f; g 2 C10 (O0�O0). Furthermore,in general it is non vanishing, and its oiniding point limit isA(x; x) = 1(12�)2 �Rg( �1(x))� 
2 (x)Rg0(x)� ;where 
 is the onformal fator assoiated to  .Proof. The distribution H satisfy the miroloal spetral ondition and its antisymmetri partorresponds to the ausal propagator hene, also beause of the preeding lemma,H (f; g) := H( (3)� �1f;  (3)� �1g)9



is of Hadamard type in ( (M);g) too. From this property it is lear that H �H 0 must be asmooth funtion. In the equation (11) of the appendix we have shows that A(x; x), has preiselythe given form, hene, sine A(x; y) is a smooth funtion it annot vanish in general. Finally,beause of the lemma 2.3, the ausal propagator in (M;g) is mapped to the ausal propagator in( (M);g). Sine the antisymmetri part of H orrespond s to the ausal propagator, it desendsthat the antisymmetri part of A must vanish. 2We would like to remark that A(x; x) does not depend upon the dimensional parameter �present in the short distane expansion of the Hadamard parametrix (4). Moreover, a hangeof the length sale �, does not a�et the oiniding point limit of the v oeÆient.Proposition 2.1. Consider a normal neighborhood O and two four dimensional Hadamardparametrix H and H 0 de�ned on O, that di�ers by the length sale � and �0 thenlimx!yH(x; y)�H 0(x; y) = 0:Proof. The di�erene H(x; y)�H 0(x; y) is a smooth funtion and it is proportional to (log ��log �0) v(x; y), hene the proposition desends from the analysis of the oiniding point limit ofthe v oeÆient performed in the appendix, where it is shown that v(x; x) vanishes. 2This result does not hold in general onsidering the oiniding point limit of the derivativesof �elds or in dimensions di�erent then four as we shall briey disuss later. We would like tostress that this is an important issue for having onformally ovariant Wik powers.2.2. Quantization as a funtor. In [BFV03℄ it was shown that the quantization in termsof C� algebras A(M;g) generated by the Weyl operators of the Klein Gordon �eld orrespondto a funtor A from the ategory of isometrially related manifolds Lo to the ategory Alg. Wewould like to briey show that in the ase of massless onformally oupled Klein Gordon �eldsthe funtor A an be extended as a funtor between CLo and Alg as desribed in the setion 1.2.The di�erene between what we are onsidering here and the previously given piture [BFV03℄is that in the de�nition of CLo, we have admitted onformal embeddings as morphisms betweenthe elements of Lo too. Hene we have simply to hek the ovariane of A with respet to thelarger group of morphisms of CLo. In the sense of the disussion presented in setion 1.2 wehave to show that, being  : (M;g) ! (M 0;g0) a onformal embedding in CLo, there exists aorresponding morphism � : A(M;g)! A(M 0;g0) suh that A( (M;g)) = � (A(M;g)).We shall skip many details that an be easily reonstruted knowing the results of [Di80,BFV03℄. For our purpose it will be suÆient to know that the morphism � an be straight-forwardly onstruted one a sympleti map between the two sympleti spaes (S(M;g); �)and (S(M 0;g0); �0) is given. To be more preise let us analyze the onstrution of (S(M;g); �).Using the ausal propagator and the di�erential operator de�ned above we an onstrut theset of wave funtions S as follows: S(M;g) := E(C10 (M)):10



S(M;g) an be equipped with a sympleti form de�ned in the following way. Let 'f = Efthen, sine the spaetime (M;g) is globally hyperboli, onsider the following non degeneratesympleti form �('f ; 'g) = Z� ('f�a'g � 'g�a'f )nad�� = Z f(Eg)d�gwhere � is a Cauhy surfae, moreover � is independent on the partiularly hosen Cauhysurfae �. Furthermore n is the unit vetor normal to �, �g is the volume element indued bythe metri g, and �� is the volume element restrited to the hypersurfae �.We already know that for every isometri embedding  0 : (M;g) ! (M 0;g0) it exists asympleti map from (S(M;g); �) to (S(M 0;g0); �0). A similar sympleti map exists also for aonformal embedding  : (M;g) ! (M 0;g0). In fat, from the transformation properties of theausal propagator seen in the lemma 2.3, we have that for every '1 and '2 in S(M;g)�0( (1)� ('1);  (1)� ('2)) = �('1; '2):It is now a simple task to onstrut the automorphism � from A(M;g) to A(M 0;g0) in thesame way as in [BFV03℄. Hene A an be promoted as onformally ovariant funtor.3 Fields as natural transformationsIn order to build more interesting examples it is important to have an algebra of loal observablesthat enompasses more ompliated objets as the powers of �elds and the omponent of thestress tensor. Here we shall remind the onstrution of the �elds algebra as presented in the book[Wa94℄ and then we would like to show that that salar �eld is really a natural transformationbetween two funtors.3.1. The CCR algebra. We would like to follow the algebrai approah so the starting pointis the abstrat ��algebra A(M;g) generated by the identity I and the smeared quantum �elds'(f), where f is a test funtion (a smooth ompatly supported funtion ontained in the setdenoted by D(M)). Furthermore the abstrat �elds '(f) must satisfy the following furtherrequirements(i) '(�1f1 + �2f2) = �1'(f1) + �2'(f2); where �1; �2 2 C ;(ii) '(f)� = '(f );(iii) '(Pgf) = 0;(iv) '(f1)'(f2)� '(f2)'(f1) = iE(f1; f2)I,where, E is the ausal propagator of the massless onformally oupled Klein Gordon �eld,whose equation of motion is given by the operator Pg given in (1). The sets of A(M;g) with11



the algebrai morphisms form a ategory TAlg. We would like to show that the abstrat �eld 'an be interpreted as a natural transformation between that ategory and Test3.Proposition 3.1. A is a funtor between the two ategories Test3 and TAlg, in fat: to every(M;g) it is possible to assoiate A(M;g) and be  a onformal embedding between (M;g) and(M 0;g0) A( ) is de�ned as the morphism that ats on the �elds in the following way� ('(f1) : : : '(fn)) := '0( (3)� (f1) : : :  (3)� (fn)) ; (5)where ', '0 are the �elds that generate A(M;g) and A(M 0;g0) respetively.The proof of the present proposition desends form the de�nitions given above, from thetransformation rules of the ausal propagator and from the omposition rules of the morphismsbetween two algebras. Moreover, exploiting the de�nition of A and D and using (5) for onesingle �eld, we also have the following propositionProposition 3.2. The salar �eld ' is a natural transformation between the ategory Test3and TAlg and hene it is a loally ovariant onformal �eld of weight 1.The di�erene in the weights between the �eld and the test funtions an be understoodexploiting the present heuristi representation of the �eld'(f) := ZM '(x)f(x)d�g;and onsidering the transformation rule enjoyed by the measure �g under onformal transfor-mations.3.2. Extension to the loal algebra of �elds and Wik monomials. As shown in[DF01, HW01℄, in order to study the Wik monomials we have to extend the algebra A(M;g)to a bigger one, that we shall indiate as W(M;g). In this respet we follow the notation andonstrution introdued in [HW01℄ referring to that paper for tehnial details. Essentially thenormal ordered �elds, when evaluated on states satisfying the miroloal spetral ondition, turnout to be distributions with ertain wavefront sets. We an then smear them with more singularobjets, namely the ompatly supported distributions haraterized by a partiular wave frontset. The normal ordering presription plays a distinguished role in this onstrution, we wouldlike to remind its de�nition. The normal ordering with respet to the Hadamard singularity H(where a unit of measure � is hosen) is de�ned as follows: 'n(x1) : : : '(xn) :H := ÆninÆf(x1) : : : Æf(xn) exp�12H(f 
 f) + i'(f)�����f=0 : (6)The algebra A(M;g) an now be enlarged allowing the smearing by more singular objet thensmooth funtions in C10 (Mn). In partiular, let us onsider the following setTn(M) := �t 2 D0(M); t symm. ; supp(t) is ompat ;WF(t) \ V+ [ V� = ;	 ;12



where V� are the forwards or bakwards light ones in T �M whose tip x is inM . The requirementon the wave front set of the elements of Tn(M) is introdued in suh a way that �elds smearedby the distribution t 2 Tn(M) an be unambiguously tested on states satisfying the miroloalspetral ondition. For a more omplete analysis on the subjet we refer to the papers [BF00,HW01℄. The algebra W(M;g) an now by de�ned as the �-algebra generated by the elementsde�ned as in (6) smeared by t 2 Tn(M).Remark: It an be shown ombining the results in [BF00, HW01℄ that the algebra onstrutedin that way is independent on the hoie of the Hadamard two point funtion H. In other words,substituting H in the de�nition of the normal ordering with another two point distribution withthe same singular struture, gives a set of generators of an isomorphi algebra. Part of thisfreedom is enoded in the hoie of the unit length �. It is in any ase possible to add a smoothsymmetri funtion to H without really hanging the �-algebra W(M;g).We are now ready to study the Wik monomials that are de�ned as the normal orderedproduts of �elds smeared by some speial test distributions. More preisely, suppose to have asmooth funtion with ompat support C10 (M) then a Wik monomial 'n(f) of order n an bede�ned as follows:: 'n :H (f) := Z : '(x1) : : : '(xn) :H tf (x1; : : : ; xn) d�g(x1) : : : d�g(xn) (7)where tf (x1; : : : ; xn) is f(x1)�(x1; : : : ; xn) and � is the diagonal distribution �(x1; : : : ; xn)=Æ(x1; x2): : : Æ(xn�1; xn).The Wik powers de�ned in that way satisfy ertain interesting properties, in partiularthey turn out to be loally ovariant �eld in the sense of [BFV03℄. Another important extentshowed by : 'k :H is the almost homogeneous saling under rigid dilations, where the nonhomogenous term is logarithmi in the saling parameter. Hollands and Wald have used anaxiomati approah, i.e., they have promoted these and other physially motivated propertiesto a set of axioms that every reasonable de�nition of Wik powers should satisfy. In [HW01℄,they have furthermore shown that, the previously given de�nition for 'k is the unique one thatsatis�es the axioms up to the following renormalization freedom~'k(x) = 'k(x) + k�2Xi=1 Ci(x)'i(x) (8)where Ci(x) are lassial �elds depending on the parameter of the Lagrangian, and on the metritensor, furthermore it is required that Ci sale homogeneously under rigid dilation while the total�eld 'k sales almost homogeneously, where the non homogeneous term must be of logarithmitype in the saling parameter. Hene, it is not possible to get rid of this non homogeneouslogarithmi saling behavior by a suitable hoie of the renormalization onstants Ci(x).3.3. Wik monomials and onformal ovariane. It is known that the Wik monomialspreviously de�ned are loally ovariant quantum �elds in the sense of the analysis performed in[BFV03℄. Here we would like to see that these �elds are also loally onformal ovariant. Let's13



start our disussion analyzing the simplest ase of '2(x). Here the freedom (8) onsists of thefollowing rede�nition '2�(x) =: '2 :H (x) + �R(x) (9)where R is the salar urvature and � is a onstant.We would like to stress that this freedom is not inluded in the hoie of a partiular lengthsale � in the Hadamard parametrix, in fat, as disussed in proposition 2.1, the hange of thelength sale � does not a�et the expetation value of : '2 :H , while hanging the parameter �in (9) modi�es its expetation value.An interesting observation is the fat that both : '2 :H (x) and '2�(x) sale homogeneouslyunder rigid dilations, as an be seen from the transformation rules of the salar urvature andthe Hadamard singularity. Let Hg be the Hadamard singularity in the spaetime (M;g), usuallyunder rigid saling � it should transform in the following way��2H��2g(x; y) = Hg(x; y) + vg(x; y) log �2;notie that in the ase under onsideration vg(x; x) = 0, as an be seen form the appendix.Furthermore, Rg transforms homogeneously under rigid re-saling too��2R��2g = Rg;hene the Wik monomial (9) transforms homogeneously under rigid dilation.The seond step in the analysis onsists of testing '2� under loal transformation. Let  be aonformal transformation from (M;g) to (M;g0), then, taking into aount the transformationrule of the Hadamard singularity H as given in the appendix, we have'02�( (2)� (f)) = '2�(f)�� 1(12�)2 + ��ZM (Rg � (
 Æ  )2R g)fd�g;where '2� is the �eld on (M;g) while '02� is the one on (M;g0) The partiular hoie � =�1=(12�)2 makes the �eld onformally ovariant. We would like to see if this is the ase also formore involved �elds. Namely we shall look for a partiular rede�nition of the Wik monomials, bya suitable hoie of the renormalization onstants Ci(x) in (8), to get rid of the non homogeneousbehavior whih is in general present in suh ases. We are going to show that this is the aseby the following Theorem.Theorem 3.1. Let 'k be a Wik power as given in (7), there is a non trivial hoie of therenormalization onstants Ci in (8) that makes 'k a onformal loally ovariant �eld with weightk in the sense of the De�nition 1.3.Proof. The proof is onstrutive: let us onsider the following smooth funtion B(x; y) =12(12�)2 (Rg(x) +Rg(y)), then rede�ne the Wik monomials in the following way,'k := : 'k :H+B14



where : '(x1) : : : '(xk) :H+B= ÆkikÆf(x1) : : : Æf(xk) exp�12(H +B)(f 
 f) + i'(f)�����f=0 :The algebra generated using this new normal ordering is isomorphi to W(M;g), the proofis similar to the one of the independene of the state given in [HW01℄; furthermore, it anbe shown that : ' :H+B is related to : ' :H by a hoie of the renormalization onstants asin (8). The diÆult part is to show that the Wik monomials de�ned with respet to thenew normal ordering, satisfy the ovariane ondition with respet to the onformal embedding : (M;g)! (M 0;g0) in CLo and its orresponding algebrai morphism � de�ned as in (5)� (: 'k :H+B (f))� : '0k :H0+B0 ( (4�k)� (f)) = 0:To this end, onsider a general element W of the Wik expansion of : 'k :H+B (f)W (x1; : : : ; xk) := Z '(x1) : : : '(xn)(H +B)(xn+1; xn+2) : : : (H +B)(xk�1; xk)tf (x1; : : : ; xk)d�1g : : : d�kg (10)where tf (x1; : : : ; xk) = f(x1)�(x1; : : : ; xk). We would like to show that on  (M)kS(f 0) := � (W (tf ))�W 0(t0f 0) = 0whereW is as in (10) andW 0(x1; : : : ; xk) is the orresponding term of the expansion of : '0k :H0+B0(f 0)on ( (M);g) with f 0 :=  (4�k)� (f). First of all notie that � has no ation on (H +B) while� ('(x)) = 
�1( (x))'0( (x)) :Hene S(f 0) := Z '0(x1) : : : '0(xn)�
�1(xn+1) : : :
�1(xk)(H +B)(xn+1; xn+2) : : : (H +B)(xk�1; xk)�(H 0 +B0)(xn+1; xn+2) : : : (H 0 +B0)(xk�1; xk)�f 0�0(x1; : : : ; xk)d�1g0 : : : d�kg0where we have used the fat that f(x1)�(x1; x2) = f(x2)�(x1; x2). The proof an be on-luded using the analysis presented in the appendix (11), hene for y in a geodesially onvexneighborhood O of the point x in  (M), we have thatlimy!x 1
(x)(H +B)( �1(x);  �1(y)) 1
(y) � (H 0 +B0)(x; y) = 0 :With this observation, the proof an be onluded. 215



The funtion B does not depend on the length sale � present in the Hadamard parametrix.Hene even if the regularization proedure depends on that length sale, it does not appearexpliitly in the Wik powers. One again, this is an unexpeted result that permits the on-strution of an in�nite series of onformally ovariant �elds in the four dimensional ase. Onthe other hand, onsidering a general Wik monomial that ontains also derivatives the lengthsale � beomes important, in the sense that it a�ets the expetation value of suh monomial.3.4. Extension of the results on di�erent dimensions. In this subsetion we wouldlike to emphasize the diÆulties that appear in a possible generalization of the found resultsto spaetimes with general dimension d di�erent than four. We shall disuss some aspets ofthe two dimensional ase and we shall stress the di�erenes with the four dimensional ase inpartiular. We start realling that, in analogy with (1), in a d dimensional spaetime (Md;gd)the onformal invariant fundamental salar �eld ' has to satisfy the following equation�2'd + d� 24(d� 1)R 'd = 0where 2 is the d'Alembert operator and R the salar urvature of (Md;gd).Following the disussion presented above for the four dimensional ase and the propositions3.1 and 3.2 in partiular, it is a straightforward task to onstrut the CCR algebra of this�eld and to interpret it as a funtor. Similarly, the onformal ovariane of the miroloalspetral ondition on d dimensions an be shown to hold along the guidelines given in Lemma2.4. The diÆulties arise in onsidering the extended algebra of �elds Wd as done in fourdimensions in the subsetion 3.2. This beome manifest in the analysis of the transformationrules enjoyed by the Wik powers 'kd under onformal embeddings. In order to touh this fatand to enlighten the di�erene it is helpful to onsider one again the partiular �eld '2d, andthe Hadamard parametrix Hd(x; y) in partiular. In the even d dimensional ase, similarly to(4), the Hadamard parametrix takes the formHd(x; y) = Cd ud(x; y)�d=2�1� + vd(x; y) log ���2! ;where ud and vd are again smooth funtions and �� is half of the squared geodesi distane takenwith sign regularized as in (4), Cd is a dimensional dependent onstant. For a detailed analysisof the Hadamard parametrix we refer to the paper [Mo03℄ and to the referenes therein.Notie that in the even dimensional ase the Hadamard parametrix ontains a length salein the logarithmi part, and this length sale breaks the onformal ovariane already at thelevel of '2. To see this extent expliitly onsider two Hadamard di�erent parametrix Hd andH 0d onstruted respetively with � and �0, the di�erene between the two is simply the smoothfuntion 2Cd vd(x; y) log ��0 ;and the hange in the expetation value of : '2d :Hd is 2Cd vd(x; x) log ��0 :16



As already disussed above, in four dimensions, it happens that v4(x; x) = 0 and hene ahange of � has no e�et on : '24 :Hd . Unfortunately this is not a general fat, and usuallyvd(x; x) 6= 0. This omputation is partiularly easy in two and six dimensions. Being vd(x; x) 6=0, it happens that the �eld '2d transforms non-homogeneously under rigid dilations where inthe non-homogenous part a logarithmi term in the saling parameter � appears. Following thedisussion of Hollands and Wald, it is then not possible to anel this logarithmi term by ajudiious hoie of other renormalization onstants. The same extent is shown by the othersWik powers 'kd.On the other hand, in two dimensional onformal �eld theories , it is known that the �elds'k are only quasi-primary but not primary, and hene they annot be thought as natural trans-formations in the sense disussed in the present paper. As a �nal omment we would like tostress that the study of onformal ovariane in general dimensions requires a detailed ase byase analysis of the Hadamard oeÆient vd that is out of the sope of the present paper.4 Final ommentsWe have generalized the notion of generally ovariant �elds to enompass the onformally o-variant transformations. This was done exploiting the theory of ategory in a similar way asin [BFV03℄. We have furthermore analyzed the ase of the onformally oupled massless KleinGordon �eld, studying its Wik powers. Partiularly we have shown that, using in a suitableway the renormalization freedom, it is possible to get rid of the non homogeneous part arriedby the onformal transformation of those �elds. In a ertain sense the larger group of ovarianeredues the renormalization freedom. The situation presented here is di�erent than the one givenin [BFV03℄, due to the presene of the weights in front of the �elds. It is indeed not possible tolinearly ombine �elds with di�erent weights without breaking the onformal ovariane, unlessposition dependent oupling onstants are taken into aount.Before onluding the disussion we would like to give some simple examples of other type of�elds that �t into the presented framework. As an example of onformally ovariant �eld withnon onstant ouplings onsider�1 : '4 :H+B +(W 2)1=2�2 : '2 :H+B +W 2 �3where �1; �2; �3 are onstants and W 2 is the square of the Weyl tensor Wabd , namely W 2 =WabdW abd. Suh a �eld is a onformally ovariant �eld in the sense of de�nition 1.3 and itsweight is 4.Other interesting ases arise taking into aount �elds ontaining ovariant derivatives. Usu-ally that kind of �elds are more ompliated and it is diÆult to draw some general onlusionsbeause of the presene of quantum anomalies, but also beause of the non homogeneous trans-formation rule enjoyed by the ovariant derivatives. Nevertheless, also in that ase it is possibleto onstrut �elds that are onformally ovariant, provided a renormalization onstant is hosen.As an example of these �elds onsider� : ra'2' :H +Rg12 ra : '2 :H ;17



notie that their lassial ounterparts are quite trivial sine they vanish. On the other hand, alsoin that ase there is a renormalization freedom of the form (8); we an add to it an homogeneoussaling onstant C. If C is hosen as C(x) = �2rav1(x; x) 4 that �eld turns out to vanish alsoquantum mehanially and, even if it is a trivial �eld, it an be interpreted as a onformallyovariant �eld in the sense of de�nition 1.3.Aknowledgements.I would like to thank Romeo Brunetti, Claudio Dappiaggi, Klaus Fredenhagen, Valter Morettiand Karl-Henning Rehren for useful disussions, suggestions and omments on the topi. Thiswork has been supported by the German DFG Researh Program SFB 676.A Some tehnial omputationsA.1. Transport equations. The oeÆients u and v given in the Hadamard parametrix (4)are symmetri smooth funtions [Mo00℄ that satisfy the following relations:2r�(x; y)ru(x; y) + (2x� � 4)u(x; y) = 0; �Pxv = 0:Moreover the oeÆient u is twie the square root of the van Vlek Morette determinant u =2�1=2, for de�nition and details see [DB60, Fr75, Fu89, Ta89℄. Furthermore, on a geodesiallyomplete neighborhood, the funtion v an be expanded as followsv = pXn=0 vn�n +O(�n):We have trunated the series at some order p beause, in general, the whole series does notonverge, unless the oeÆients of the metri are analyti funtions. Furthermore, the oeÆientsvn an be found, using the following two reursive relations valid for n > 02g(x)rx�rxv0 + (2x�(x; y)� 2)v0 = P (x)g u(x; y) ;2n g(x)rx�rxvn + n (2x�(x; y) + 2n� 2)vn = P (x)g vn�1(x; y) :A.2. Transformation laws for the Hadamard oeÆients. Consider a onformal trans-formation  : (M;g) ! (M;g0) with onformal fator 
. Let H and H 0 be the Hadamardsingularities, as given in (4), on a (M;g) and (M;g0) respetively. For y in a geodesially om-plete neighborhood of the point x, we would like to ompute the oiniding point limit of thesubtration 1
(x)H(x; y) 1
(y) �H 0(x; y):4For tehnial details we refer to [Mo03, HW05℄ 18



Beause of the Lemma 2.4 we know that the subtration is a smooth funtion, hene we anompute the following limit diretlylimy!x u(x; y)
(x)�(x; y)
(y) + v(x; y)
(x)
(y) log � � u0�0 � v0 log �0 = Rg(x)18
2(x) � Rg0(x)18 ; (11)where we have used the following expansions around x. Let �� = r�x�, and L� := r� log 
 thenwe an write the Taylor expansion
(y) = 
(x)�1� L��� + 12 (L�� + L�L�) �����+O(�3=2):Furthermore using the notation of the book of Fulling [Fu89℄�0(x; y) = 
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