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Desy 08-070, ZMP-HH/08-10, June 2008Conformal generally 
ovariant quantum �eld theory:The s
alar �eld and its Wi
k produ
ts.Ni
ola PinamontiaII. Institut f�ur Theoretis
he Physik, Universit�at Hamburg, Luruper Chaussee 149, D-22761 Hamburg,Germany.a ni
ola.pinamonti�desy.deAbstra
t. In this paper we generalize the 
onstru
tion of generally 
ovariant quantum theories given in[BFV03℄ to en
ompass the 
onformal 
ovariant 
ase. After introdu
ing the abstra
t framework, we dis
ussthe massless 
onformally 
oupled Klein Gordon �eld theory, showing that its quantization 
orrespondsto a fun
tor between two 
ertain 
ategories. At the abstra
t level, the ordinary �elds, 
ould be thoughtas natural transformations in the sense of 
ategory theory. We show that, the Wi
k monomials withoutderivatives (Wi
k powers), 
an be interpreted as �elds in this generalized sense, provided a non trivial
hoi
e of the renormalization 
onstants is given. A 
areful analysis shows that the transformation law ofWi
k powers is 
hara
terized by a weight, and it turns out that the sum of �elds with di�erent weightsbreaks the 
onformal 
ovarian
e. At this point there is a di�eren
e between the previously given pi
turedue to the presen
e of a bigger group of 
ovarian
e. It is furthermore shown that the 
onstru
tion doesnot depend upon the s
ale � appearing in the Hadamard parametrix, used to regularize the �elds. Finally,we brie
y dis
uss some further examples of more involved �elds.1 Introdu
tionThe systemati
 analysis of quantization in terms of fun
tors given by Brunetti, Fredenhagen andVer
h [BFV03℄, opened an interesting new way to interpret the quantum �eld theory on 
urvedspa
etimes. With this new ideas, the expe
tation values of �elds in di�erent spa
etimes 
anbe 
ompared in a mathemati
ally rigorous way. Some interesting new appli
ations have beendeveloped following this line of thinking, we remind here the work of Bu
hholz and S
hlemmer[BS07℄ and S
hlemmer and Ver
h [SV08℄, where the authors deal 
onsistently with expe
tationvalues of �elds in di�erent spa
etimes. Another interesting use of similar ideas 
an be foundin the derivation of lo
al energy bounds in 
urved spa
etime as performed by Fewster [Fe07℄.The use of these 
on
epts plays a 
entral role in the development of a perturbative theory ofquantum gravity as well, to this end we would like to remind the interesting paper of Brunettiand Fredenhagen [BF06℄.A 
entral role in the analysis performed in [BFV03℄ is played by the study of the isometri
embeddings between di�erent spa
etimes and their interplay with the quantization pro
edure. It1
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was shown that the quantization of the massive Klein Gordon �elds 
an be en
ompassed in thenew s
heme. Furthermore, the �eld itself and its Wi
k powers, as 
onstru
ted by Hollands andWald in [HW01, HW02, HW05℄, 
an be interpreted as generally 
ovariant quantum �elds. Herewe would like to address the same problem in the 
ase of �eld theories having a larger groupof symmetry, namely the lo
ally 
onformally 
ovariant 
ase. Hen
e, we introdu
e the notionof generally 
onformally 
ovariant �elds by enlarging the abstra
t setup presented in [BFV03℄.The idea of 
onsidering more 
ompli
ated morphisms than isometries appeared for the �rst timein the work of Brunetti [Br04℄, we would like to follow similar line of reasoning.If the extension of the 
ovarian
e to the 
onformal 
ovarian
e is expe
ted to hold true atthe level of 
anoni
al 
ommutation relations and hen
e at the level of the simple s
alar �eld,the situation is expe
ted to be di�erent 
onsidering the extended algebra of �elds, namely the�elds de�ned by means of a regularization. It usually happens that the regularization breaks the
onformal 
ovarian
e, te
hni
ally speaking this is due to the unavoidable presen
e of a lengths
ale in the Hadamard parametrix used to regularize the �elds. It is then an unexpe
ted fa
t,that, in the four dimensional 
ase, despite the presen
e of this length s
ale and more generallydespite the presen
e of quantum anomalies, a proper but large subset of the algebra of lo
al�elds, 
ontains lo
ally 
onformally 
ovariant �elds. We shall show that the Wi
k powers (theWi
k monomial without derivatives) are 
ontained in this subset, provided a non trivial 
hoi
eof renormalization freedom is performed1. At this point it seems interesting to remark that therequirement of being 
onformally 
ovariant restri
ts the renormalization freedom usually presentin the 
onstru
tion of these �elds. This fa
t seems to be a pe
uliarity of the four dimensional
ase, it is in fa
t known that, for example, in the two dimensional 
ase, the Wi
k powers ('n)are not lo
ally 
onformally 
ovariant (they are not primary in the language of CFT [DMS97℄),we shall furthermore 
omment on this restri
tion in a subse
tion devoted to the analyses ofthe extension of this results to general dimensions. Another interesting di�eren
e that arisesin the 
ase under investigation is that the transformations rules enjoyed by the Wi
k powersare 
hara
terized by the presen
e of a weight. Furthermore, the sum of Wi
k monomials withdi�erent weight breaks the 
onformal 
ovarian
e.The analysis performed in this paper allows to geometri
ally relate a larger 
lass of spa
etimesthan in [BFV03℄, namely those that are lo
ally 
onne
ted by a 
onformal transformation. In thisway it is possible, for example, to transplant observables (and states) from the de Sitter spa
etimeto the Minkowksi one. This 
ould be useful in the study of 
on
epts like lo
al equilibrium states[BOR02℄ in the 
ase of 
onformally 
ovariant theories as well.The paper is organized as follows: at �rst we introdu
e the notion of lo
ally generally
onformal 
ovariant quantum �elds. The example of the massless 
onformally 
oupled s
alarKlein Gordon �eld is studied in the se
ond se
tion, we shall present the transformation rule of thefundamental solutions and of the Hadamard parametrix in parti
ular. The third se
tion 
ontainsthe analysis of the Wi
k powers in four dimensions and a subse
tion devoted to the dis
ussionof the di�eren
es between this 
ase and the 
ase of spa
etimes with general dimensions. Some1A detailed analysis of the renormalization freedom 
an be found in the work of Hollands and Wald [HW01,HW05℄. 2



�nal 
omments and some further non trivial examples of more 
ompli
ated �elds are given inthe fourth se
tion. The appendix 
ontains some te
hni
al 
omputation used in the derivation ofthe results.1.1. Categori
al formulation of lo
ally 
onformally 
ovariant �eld theory. We aregoing to enumerate the relevant 
ategories that will be used later for the formulation of a
onformal quantum �eld theory in terms of a fun
tor between 
ertain 
ategories. Before doingit, we introdu
e some small modi�
ations to the lo
ally 
ovariant pi
ture of quantum �eldtheory presented for the �rst time in [BFV03℄, in order to adapt the formalism to in
ludethe 
ase of 
onformal invariant theories. The key obervation is that 
onformal invariant �eldtheory should be invariant under a rea
her group of transformations, namely the lo
al 
onformaltransformations. It is interesting to noti
e that su
h transformations share a lot of ni
e propertieswith isometries, the 
ausal stru
ture is preserved by su
h transformations in parti
ular and thisfa
t will play a 
entral role later on. For a better formalization of these 
on
epts we would liketo introdu
e the notion of 
onformal embedding.De�nition 1.1. Consider two globally hyperboli
 spa
etime (M1;g1) and (M2;g2) then, amap  : M1 ! M2 is 
alled 
onformal embedding if it is a di�eomorphism between M1 and (M1) and the push forward  � a
ts on the metri
 g1 in the following way:  �g1 = 
�2 g2j (M1)where 
 is a stri
tly positive smooth fun
tion on  (M1), 
alled 
onformal fa
tor.In the following we shall 
onsider the 
ase of a 
onformal embedding  between two globallyhyperboli
 spa
etimes (M1;g1) and (M2;g2) that preserves orientation and time orientation andsu
h that the image ( (M1);g2j (M1)) is also an open globally hyperboli
 subset of (M2;g2).We would like to remark that, under the given hypotheses,  preserves the 
ausal stru
tures ofthe spa
etime2, mapping for example 
ausal 
urves to 
ausal 
urves and so on and so forth.At this point it seems important to stress a di�eren
e between the 
onformal embeddingsused in this paper and the 
onformal transformations that form the so 
alled 
onformal group.The main di�eren
e arises be
ause we are not simply 
onsidering 
oordinate transformations butgeneral mappings between di�erent spa
etimes. For example, in the four dimensional Minkowskispa
etime, the 
onformal transformations that 
an arise as 
oordinate transformations form a�nite-dimensional group SO(2; 4), while mu
h more freedom is allowed by 
onformal embeddings.The following a
tion of weighted 
onformal transformations on test fun
tions will play adistinguished role in the de�nition of the weight of the �eld.De�nition 1.2. Let  be a 
onformal embedding between (M1;g1) and (M2;g2) with 
onfor-mal fa
tor 
 then, the weighted a
tion on test fun
tions  (�)� is the map from C1(M1)to C1( (M1)) su
h that,  (�)� (f)(x) := 
�� (x)(f Æ  �1)(x):Where � 2 R is 
alled the weight of the map.The previously given de�nition deserves some 
omments regarding its domain of de�nitionand its inversion. While it is 
lear that  (�)� 
an also be thought as a
ting on 
ompa
tly supported2See the Appendix D of [Wa84℄ for more details 3



smooth fun
tion  (�)� : C10 (M1)! C10 (M2), that is not true anymore 
onsidering smooth fun
-tions, in fa
t  (M1) is in general a proper subset of M2 hen
e a smooth fun
tion f that is not
ompa
tly supported on M1 is not mapped to a smooth fun
tion in C1(M2). It is indeed im-possible to extend uniquely  (�)� (f) onM2 outside  (M1). Despite the presen
e of these domainproblems we would like to noti
e that  (�)� is invertible either on C10 ( (M1)) or on C1( (M1)).The parti
ular 
onformal embedding  : (M;g) ! (M;g0) su
h that every p 2 M is mappedto  (p) = p, is 
alled 
onformal transformation. Moreover, if the 
onformal fa
tor 
 of a
onformal transformation is a 
onstant then it is 
alled rigid 
onformal transformation orrigid dilation.We enumerate here the 
ategories used later on; these de�nitions are very similar to those givenin [BFV03℄. For this reason we shall stress, 
ase by 
ase, the di�eren
es we have to implementin order to en
ompass also the 
onformal transformations in the framework.CLo
: This is the 
ategory that en
ompasses all the geometri
 stru
tures of the theory. Theobje
t of CLo
 are all the four dimensional oriented and time oriented globally hyperboli
spa
etimes. While the morphisms are all the 
onformal embeddings  : (M1;g1) !(M2;g2) with the following additional properties, that are the same as previously given: (i)( (M1);g2j (M1)) is an open globally hyperboli
 subset of (M2;g2) and (ii) the morphismspreserve orientation and time orientation3. The 
omposition of morphisms is de�ned asthe 
omposition map of 
onformal embeddings in the usual way. The 
ategory CLo
 is anextension of the 
ategory Lo
 given in [BFV03℄, in the sense that in CLo
 there is a larger
lass of morphisms then in Lo
.Alg: There is no need to modify the 
ategory of Alg introdu
ed in [BFV℄. The obje
t ofAlg are all the C�-algebras built on a globally hyperboli
 spa
etime (M;g), possessingthe unit element, while their morphisms are the inje
tive ��homomorphisms that pre-serve the unit; on
e again the 
omposition des
ends from the usual 
omposition map of��homomorphism.TAlg: The de�nition of a TAlg follows easily the one of Alg; the di�eren
e is that the obje
t ofthis 
ategory are taken to be only ��algebras with unit, instead of C�-algebras. There isno modi�
ation between this and the previously given de�nitions.Test�: The obje
ts of this 
ategory are the sets of 
ompa
tly supported smooth fun
tions C10 (M)on the spa
etimes (M;g). The morphisms are the weighted transformation  (�)� :M !M 0with a �xed � and their a
tion is like the one presented in de�nition 1.2.It seems interesting to noti
e that the 
ategories Alg and TAlg are de�ned in the same way as on[BFV03, Br04℄, in a 
ertain sense the algebrai
 formulation of quantum �eld theory is already3The requirement of global hyperboli
ity for  (M1) is equivalent to the requirement of 
ausal 
onvexity of (M1) in M2. In other words every 
ausal 
urve with endpoints in  (M1) has to lie inside  (M1) too.4



suitable to des
ribe 
onformal transformations. Furthermore the s
aling transformations havealready been 
onsidered as geometri
 morphisms in the work [Br04℄.1.2. Quantum Conformal Field theory as a Fun
tor and Conformal �elds as Naturaltransformations. We are now in pla
e to de�ne the lo
ally 
ovariant 
onformal quantum�eld as a fun
tor between the two 
ategories CLo
 and Alg, su
h that the obje
ts of CLo
 aremapped to the obje
ts of Alg whereas the morphisms  of CLo
 are mapped into the morphisms� of Alg, in su
h a way that the following diagram 
ommutes(M;g)  ����! (M 0;g0)A??y ??yAA(M;g) � ����! A(M 0;g0)and the following 
omposition property holds:� Æ � 0 = � Æ 0 ; �IM = IA(M) :The same 
onstru
tion 
an be repeated substituting the 
ategory Alg with TAlg.Despite the meaningfulness of the previously given de�nition and the presen
e of examplesof the given framework, it is not at all 
lear if observables with a 
ertain physi
al meaning in aspa
etime are mapped to observables with the same meaning, on the other spa
etime. In generalthis is indeed not the 
ase and it is pre
isely be
ause of this problem that the ordinary �eldsneed to be introdu
ed in an alternative way. In the pi
ture we are going to introdu
e, they willassume the parti
ular meaning of natural transformations between 
ategories.To this end it is useful to 
onsider the set of weighted test fun
tions D� as a fun
tor betweenCLo
 and Test�. More pre
isely let's indi
ate by D�(M;g) the 
ategory whose elements are thesets of 
ompa
tly supported smooth fun
tions C10 (M), and the morphisms �� between thesesets are de�ned by means of the weighted a
tion on test fun
tions as de�ned in 1.2. ClearlyD 
an also be seen as a fun
tor between the 
ategory of CLo
 to Test. We are now ready tointrodu
e the notion of 
onformal quantum �eld as a natural transformation betweentwo fun
tors.De�nition 1.3. A �eld ��(M;g) of weight � is a linear transformation between the fun
torthat realizes the test fun
tions D4�� : (M;g) ! D4��(M;g) and the fun
tor that realizes thetopologi
al algebras A : (M;g)! A(M;g) su
h that the following diagram 
ommutesD4��(M;g) ��(M;g)����! A(M;g) (4��)� ??y ??y�� D4��(M 0;g0) ��(M0;g0)�����! A(M 0;g0)The pre
eding de�nition 
an be written more expli
itly by means of the following 
onformal
ovarian
e property: �� (��(M;g))(f) = ��(M 0;g0)( (4��)� (f)) ;5



where  (�)� (f) is de�ned as a weighted transformation as given in the de�nition 1.2. We 
all �the weight of the �eld ��.The di�eren
e between the weight in the test fun
tions and the weight in the �elds 
an beunderstood taking into a

ount the transformation rule enjoyed by the volume form. Under a
onformal embedding  : (M;g)! (M 0;g0),pg0( (x))
�4( (x)) =pg(x)where g0 stands for the determinant of the metri
 
omputed in a 
hart of M 0 
ontaining  (x)and g is for the determinant of  �g 
omputed in the same 
hart.As a 
onsequen
e of the given de�nitions, linear 
ombinations of �elds with di�erent weightsare not 
onformally 
ovariant �elds. Pre
isely at this point there is a great di�eren
e with whatwas addressed in [BFV03℄, where also the linear 
ombinations of �elds with di�erent \weights"were taken into a

ount.In two dimensional 
onformal �eld theory the �elds that posses this property are 
alledprimary �elds [DMS97℄. Hen
e there is a relation between the 
onformal 
ovarian
e studiedhere and the primarity addressed in ordinary CFT.2 The model: Free 
onformal invariant s
alar �eld.In this se
tion we present a model that shows the previously presented abstra
t stru
ture. Weshall 
onsider the massless 
onformally 
oupled s
alar �eld theory. Here and in the next se
tionswe shall 
onsider only the four dimensional 
ase, that's be
ause many of the presented resultshold only in that 
ase. Later on, we shall brie
y dis
uss the diÆ
ulties that arise in generalizingthe out
omes to other dimensions.Just to �x some notation let us remind that the 
lassi
al equation of motion of the 
onformalKlein Gordon s
alar �eld ' on a spa
etime (M;g) isPg = �2g + 16Rg; Pg' = 0; (1)where 2g is the d'Alembert opeartor 
onstru
ted out of the four dimensional metri
 g and Rgis the Ri

i s
alar of the metri
 g. We start our analysis with the study of the interplay between
onformal transformations, the fundamental solutions and the mi
rolo
al spe
tral 
ondition[Ra96, BFK96℄.2.1. Conformal transformation of the fundamental solutions. Let us start re
allingthe transformation law satis�ed by the operator Pg under 
onformal embeddings.Lemma 2.1. Let  be a 
onformal embedding of (M1;g1) into (M2;g2), 
onsider the 
or-responding weighted transformations  (3)� and  (1)� of test fun
tions thought as mappings fromC10 (M1)! C10 ( (M1)) � C10 (M2). The following equivalen
e holds for every f in C10 (M1):Pg2( (1)� (f)) =  (3)� (Pg1(f)): (2)6



Proof. Be
ause of the support properties of f we know that the supports of the followingsmooth fun
tions,  (1)� (f) and  (3)� Æ Pg1(f), are 
ontained in  (M1). Hen
e we 
an restri
t ourattention to the image of M1 under  , namely to the spa
etime ( (M1);g1). Furthermore the
onformal embedding  be
omes a standard 
onformal transformation if restri
ted to  (M1),and the proof of that proposition des
ends straightforwardly by means of a dire
t 
omputation(a detailed analysis is 
ontained in the appendix D of Wald's book [Wa84℄). 2We 
an relax the hypotheses written above and use as test fun
tions only the smooth fun
-tions. In this 
ase the equivalen
e (2) works if restri
ted to the image  (M1) � M2. Anotherimportant extent of the transformation law of the wave operator Pg we would like to stress isits interplay with weighted test fun
tions. A
tually, be
ause of the presen
e of the 
onformalfa
tor in the transformation law of the operator de�ning the equations of motion we have thatPg maps test fun
tions of weight 1 into test fun
tions of weight 3.In a globally hyperboli
 spa
etime (M;g), the advan
ed / retarded fundamental solutions�� of the partial di�erential equation Pg� = 0 are the unique maps from C10 (M) to C1(M)su
h that Pg��f = f and the domains of ��f are 
ontained in the 
ausal future / past of thesupport of f respe
tively supp ��(f) � J�(supp f). For the issues regarding the uniquenesssee [BGP07℄.Let us study the transformation law enjoyed by the fundamental solutions under 
onformalembeddings and hen
e by the 
ausal propagator.Lemma 2.2. Let  be a morphism in CLo
, hen
e  is a 
onformal embedding between : (M;g) ! (M 0;g0), let �� and �0� be the uniquely de�ned advan
ed/retarded fundamentalsolutions of Pg and Pg0 . Consider the following operators from C10 ( (M)) to C1( (M)):� � :=  (1)� Æ�� Æ  (3)� �1then � � are the uniquely de�ned advan
ed / retarded fundamental solutions of Pg0 in ( (M);g0).Furthermore � � = �( (M))�0�jC10 ( (M)), where �( (M)) is the 
hara
teristi
 fun
tion of (M).Proof. ( (M);g0) is a global hyperboli
 subspa
e of (M 0;g0), then, in order to show that� � are the advan
ed / retarded fundamental solutions of Pg0 in ( (M);g0), we have to 
he
ktwo properties, the �rst one is that Pg0� �f = f and the other one is that the support of� (f) � J�(supp f)j (M) for every f in C10 ( (M)). First of all, 
onsider the following 
hainof equalities valid in  (M) for every f 0 2 C10 ( (M)) and f =  (3)� �1(f 0):f 0 =  (3)� (f) =  (3)� Æ Pg(��f) = Pg0 Æ  (1)� (��f) = Pg0 �� � Æ  (3)� (f)� = Pg0 �� �(f 0)� :The se
ond step is to 
he
k that the domain property are preserved by  . Nonetheless theproperties of  assure the validity of the following 
hain of in
lusions,supp � �f 0 =  (supp ��f) �  (J�(supp f)) � J�( (supp f))7



in  (M). Furthermore,  maps 
ausal 
urves into 
ausal 
urves preserving the orientation andfrom this it des
ends the last in
lusion. 2The 
ausal propagator E is de�ned as the advan
ed minus retarded fundamental solutionE = �+ ���, it is a distribution on 
ompa
tly supported smooth fun
tions uniquely de�nedin a globally hyperboli
 spa
etime on
e Pg is given. It 
an be seen as map form C10 (M) toC1(M) namely the set of solutions of Pg� = 0.Knowing the interplay between advan
ed, retarded fundamental solutions and 
onformal em-beddings, we 
an derive straightforwardly the way in whi
h the 
ausal propagator E transformsunder 
onformal transformation, i.e.Lemma 2.3. Let  be a morphism in CLo
 between the two elements (M;g), (M 0;g0) ofCLo
, then �( (M))E0( (3)� (f)) =  (1)� (E(f)) for any f 2 C10 (M).The two point fun
tions of Hadamard type play a distinguished role in the formulation of aquantum �eld theory in 
urved spa
etime [KW91℄. From the work of Radzikowski [Ra96℄ andBrunetti, Fredenhagen and K�ohler [BFK96℄ we know that an Hadamard two-point fun
tion is
hara
terized by the mi
rolo
al spe
tral 
ondition. Hen
e we shall say that a two-point distri-bution !2 is of Hadamard type if its antisymmetri
 part 
orresponds to the 
ausal propagatorand if it satis�es the mi
rolo
al spe
tral 
ondition, whi
h means that the wave front set of !2has a 
ertain form:WF(!2) = f(x1; k1; x2; k2) 2 T �M n f0gj(x1; k1) � (x2; k2); k1 2 V+g ; (3)where (x1; k1) � (x2; k2) if it exists a null geodesi
s 
[0; a℄ ! M su
h that 
(0) = x1 and
(a) = x2 and k1 is the 
otangent, 
oparallel ve
tor to the geodesi
 at x1 while k2 is equal to theparallel transport along 
 of �k1 on x2. The next preliminary task we have to a

omplish is togive the transformation rule for the Hadamard two-point fun
tion under 
onformal embeddings.While we have already seen that the 
ausal propagator satis�es an homogeneous transformationrule we would like to see what happens to the symmetri
 part of an !2 of Hadamard type.Lemma 2.4. Let  be a morphism in CLo
 from (M;g) to (M 0;g0) and !2 a distribution onC10 (M �M) that satisfy the mi
rolo
al spe
tral 
ondition then, 
onsider! 2 (f; g) := !2( (3)� �1f;  (3)� �1g):! 2 is a distribution on C10 ( (M)2) and it satisfy the mi
rolo
al spe
tral 
ondition on ( (M);g0).Proof. Sin
e  (3)� is a smooth invertible map from C10 (M) to C10 ( (M)), ! 2 is a distribution.Let us analyze its wave front set of ! 2 in ( (M);g0); the de�nition of wave front set does notdepend on the metri
 g0, we have simply to analyze the relation between M and  (M). Sin
ethe  (3)� is smooth and invertible, and sin
e  is a di�eomorphisms we 
an immediately 
on
ludethat (x1; k1; x2; k2) is an element of WF(! 2 ) if and only if ( �1(x1);  �1� (k1);  �1(x2);  �1� (k2)) 2(WF(!2)). Here  �1� : T (p) (M)� ! TpM� de�ned in the standard way. We have to show that8



(x1; k1) � (x2; k2) in ( (M);g0). To this end we are seeking for a future dire
ted null geodesi

0 in  (M) whose extreme points are x1 and x2 and whose 
otangent ve
tor in x1 is k1 and inx2 is �k2. Noti
e that, having ( �1(x1);  �1� (k1)) � ( �1(x2);  �1� (k2)) in (M;g), it exists afuture dire
ted null geodesi
 
 with su
h properties in (M;g). Be
ause of the properties of the
onformal embedding, k1 and k2 are also null ve
tors in ( (M);g0). Sin
e  is an orientationand time orientation preserving 
onformal embedding, 
0 =  (
) turns out to be also a futurenull geodesi
s in  (M), furthermore, let � and �0 be the aÆne parameters of 
 and of  (
),then d�0d� = 

2 where 
 is a 
onstant and 
 is the 
onformal fa
tor of  . Noti
e that if  �1� k1is a 
otangent ve
tor of 
 in  �1(x1), k1 has to be the 
otangent ve
tor of  (
) in x1, the samealso holds for �k2 in x2. Finally, sin
e the orientation is preserved by  , the thesis turns out tobe proved. 2The singular stru
ture of an Hadamard two point fun
tion, 
alled Hadamard parametrix, is�xed [KW91℄, to pro
eed with our analysis it will be useful to analyze it in more details. TheHadamard parametrix H has the following expansion in a small geodesi
ally 
onvex neighbor-hood 
ontaining the points x and y:H(x; y) = 18�2 � u(x; y)��(x; y) + v(x; y) log ��(x; y)�2 � (4)where u and v are 
ertain smooth fun
tions that depend only on the geometry of the spa
etime(M;g), on
e the equations of motion are 
hosen and �� = � + i(T (x) � T (y))� + �2=2, whereT is any time fun
tion [KW91℄ and � is half of the squared geodesi
al distan
e between x andy, taken with sign. We shall give further details on the lo
al 
onstru
tion of u and v in theappendix. The Hadamard parametrix depends on the dimensional parameter �, we shall �x thisparameter on
e and for every spa
etime in CLo
. Finally we would like to analyze the di�eren
eof the singular stru
tures in the sense of the following lemma.Lemma 2.5. Let  be a morphism in CLo
 between the two elements (M;g), (M 0;g0). LetH and H 0 be the Hadamard parametrix respe
tively on two geodesi
ally 
omplete neighborhoodO of M and O0 of  (M) su
h that O0 �  (O) thenH( (3)� �1f;  (3)� �1g)�H 0(f; g) = ZO0�O0 f(x)A(x; y)g(y) d�g0(x)d�g0(y)where A(x; y) is a smooth symmetri
 fun
tion on O0�O0 and f; g 2 C10 (O0�O0). Furthermore,in general it is non vanishing, and its 
oin
iding point limit isA(x; x) = 1(12�)2 �Rg( �1(x))� 
2 (x)Rg0(x)� ;where 
 is the 
onformal fa
tor asso
iated to  .Proof. The distribution H satisfy the mi
rolo
al spe
tral 
ondition and its antisymmetri
 part
orresponds to the 
ausal propagator hen
e, also be
ause of the pre
eding lemma,H (f; g) := H( (3)� �1f;  (3)� �1g)9



is of Hadamard type in ( (M);g) too. From this property it is 
lear that H �H 0 must be asmooth fun
tion. In the equation (11) of the appendix we have shows that A(x; x), has pre
iselythe given form, hen
e, sin
e A(x; y) is a smooth fun
tion it 
annot vanish in general. Finally,be
ause of the lemma 2.3, the 
ausal propagator in (M;g) is mapped to the 
ausal propagator in( (M);g). Sin
e the antisymmetri
 part of H 
orrespond s to the 
ausal propagator, it des
endsthat the antisymmetri
 part of A must vanish. 2We would like to remark that A(x; x) does not depend upon the dimensional parameter �present in the short distan
e expansion of the Hadamard parametrix (4). Moreover, a 
hangeof the length s
ale �, does not a�e
t the 
oin
iding point limit of the v 
oeÆ
ient.Proposition 2.1. Consider a normal neighborhood O and two four dimensional Hadamardparametrix H and H 0 de�ned on O, that di�ers by the length s
ale � and �0 thenlimx!yH(x; y)�H 0(x; y) = 0:Proof. The di�eren
e H(x; y)�H 0(x; y) is a smooth fun
tion and it is proportional to (log ��log �0) v(x; y), hen
e the proposition des
ends from the analysis of the 
oin
iding point limit ofthe v 
oeÆ
ient performed in the appendix, where it is shown that v(x; x) vanishes. 2This result does not hold in general 
onsidering the 
oin
iding point limit of the derivativesof �elds or in dimensions di�erent then four as we shall brie
y dis
uss later. We would like tostress that this is an important issue for having 
onformally 
ovariant Wi
k powers.2.2. Quantization as a fun
tor. In [BFV03℄ it was shown that the quantization in termsof C� algebras A(M;g) generated by the Weyl operators of the Klein Gordon �eld 
orrespondto a fun
tor A from the 
ategory of isometri
ally related manifolds Lo
 to the 
ategory Alg. Wewould like to brie
y show that in the 
ase of massless 
onformally 
oupled Klein Gordon �eldsthe fun
tor A 
an be extended as a fun
tor between CLo
 and Alg as des
ribed in the se
tion 1.2.The di�eren
e between what we are 
onsidering here and the previously given pi
ture [BFV03℄is that in the de�nition of CLo
, we have admitted 
onformal embeddings as morphisms betweenthe elements of Lo
 too. Hen
e we have simply to 
he
k the 
ovarian
e of A with respe
t to thelarger group of morphisms of CLo
. In the sense of the dis
ussion presented in se
tion 1.2 wehave to show that, being  : (M;g) ! (M 0;g0) a 
onformal embedding in CLo
, there exists a
orresponding morphism � : A(M;g)! A(M 0;g0) su
h that A( (M;g)) = � (A(M;g)).We shall skip many details that 
an be easily re
onstru
ted knowing the results of [Di80,BFV03℄. For our purpose it will be suÆ
ient to know that the morphism � 
an be straight-forwardly 
onstru
ted on
e a symple
ti
 map between the two symple
ti
 spa
es (S(M;g); �)and (S(M 0;g0); �0) is given. To be more pre
ise let us analyze the 
onstru
tion of (S(M;g); �).Using the 
ausal propagator and the di�erential operator de�ned above we 
an 
onstru
t theset of wave fun
tions S as follows: S(M;g) := E(C10 (M)):10



S(M;g) 
an be equipped with a symple
ti
 form de�ned in the following way. Let 'f = Efthen, sin
e the spa
etime (M;g) is globally hyperboli
, 
onsider the following non degeneratesymple
ti
 form �('f ; 'g) = Z� ('f�a'g � 'g�a'f )nad�� = Z f(Eg)d�gwhere � is a Cau
hy surfa
e, moreover � is independent on the parti
ularly 
hosen Cau
hysurfa
e �. Furthermore n is the unit ve
tor normal to �, �g is the volume element indu
ed bythe metri
 g, and �� is the volume element restri
ted to the hypersurfa
e �.We already know that for every isometri
 embedding  0 : (M;g) ! (M 0;g0) it exists asymple
ti
 map from (S(M;g); �) to (S(M 0;g0); �0). A similar symple
ti
 map exists also for a
onformal embedding  : (M;g) ! (M 0;g0). In fa
t, from the transformation properties of the
ausal propagator seen in the lemma 2.3, we have that for every '1 and '2 in S(M;g)�0( (1)� ('1);  (1)� ('2)) = �('1; '2):It is now a simple task to 
onstru
t the automorphism � from A(M;g) to A(M 0;g0) in thesame way as in [BFV03℄. Hen
e A 
an be promoted as 
onformally 
ovariant fun
tor.3 Fields as natural transformationsIn order to build more interesting examples it is important to have an algebra of lo
al observablesthat en
ompasses more 
ompli
ated obje
ts as the powers of �elds and the 
omponent of thestress tensor. Here we shall remind the 
onstru
tion of the �elds algebra as presented in the book[Wa94℄ and then we would like to show that that s
alar �eld is really a natural transformationbetween two fun
tors.3.1. The CCR algebra. We would like to follow the algebrai
 approa
h so the starting pointis the abstra
t ��algebra A(M;g) generated by the identity I and the smeared quantum �elds'(f), where f is a test fun
tion (a smooth 
ompa
tly supported fun
tion 
ontained in the setdenoted by D(M)). Furthermore the abstra
t �elds '(f) must satisfy the following furtherrequirements(i) '(�1f1 + �2f2) = �1'(f1) + �2'(f2); where �1; �2 2 C ;(ii) '(f)� = '(f );(iii) '(Pgf) = 0;(iv) '(f1)'(f2)� '(f2)'(f1) = iE(f1; f2)I,where, E is the 
ausal propagator of the massless 
onformally 
oupled Klein Gordon �eld,whose equation of motion is given by the operator Pg given in (1). The sets of A(M;g) with11



the algebrai
 morphisms form a 
ategory TAlg. We would like to show that the abstra
t �eld '
an be interpreted as a natural transformation between that 
ategory and Test3.Proposition 3.1. A is a fun
tor between the two 
ategories Test3 and TAlg, in fa
t: to every(M;g) it is possible to asso
iate A(M;g) and be  a 
onformal embedding between (M;g) and(M 0;g0) A( ) is de�ned as the morphism that a
ts on the �elds in the following way� ('(f1) : : : '(fn)) := '0( (3)� (f1) : : :  (3)� (fn)) ; (5)where ', '0 are the �elds that generate A(M;g) and A(M 0;g0) respe
tively.The proof of the present proposition des
ends form the de�nitions given above, from thetransformation rules of the 
ausal propagator and from the 
omposition rules of the morphismsbetween two algebras. Moreover, exploiting the de�nition of A and D and using (5) for onesingle �eld, we also have the following propositionProposition 3.2. The s
alar �eld ' is a natural transformation between the 
ategory Test3and TAlg and hen
e it is a lo
ally 
ovariant 
onformal �eld of weight 1.The di�eren
e in the weights between the �eld and the test fun
tions 
an be understoodexploiting the present heuristi
 representation of the �eld'(f) := ZM '(x)f(x)d�g;and 
onsidering the transformation rule enjoyed by the measure �g under 
onformal transfor-mations.3.2. Extension to the lo
al algebra of �elds and Wi
k monomials. As shown in[DF01, HW01℄, in order to study the Wi
k monomials we have to extend the algebra A(M;g)to a bigger one, that we shall indi
ate as W(M;g). In this respe
t we follow the notation and
onstru
tion introdu
ed in [HW01℄ referring to that paper for te
hni
al details. Essentially thenormal ordered �elds, when evaluated on states satisfying the mi
rolo
al spe
tral 
ondition, turnout to be distributions with 
ertain wavefront sets. We 
an then smear them with more singularobje
ts, namely the 
ompa
tly supported distributions 
hara
terized by a parti
ular wave frontset. The normal ordering pres
ription plays a distinguished role in this 
onstru
tion, we wouldlike to remind its de�nition. The normal ordering with respe
t to the Hadamard singularity H(where a unit of measure � is 
hosen) is de�ned as follows: 'n(x1) : : : '(xn) :H := ÆninÆf(x1) : : : Æf(xn) exp�12H(f 
 f) + i'(f)�����f=0 : (6)The algebra A(M;g) 
an now be enlarged allowing the smearing by more singular obje
t thensmooth fun
tions in C10 (Mn). In parti
ular, let us 
onsider the following setTn(M) := �t 2 D0(M); t symm. ; supp(t) is 
ompa
t ;WF(t) \ V+ [ V� = ;	 ;12



where V� are the forwards or ba
kwards light 
ones in T �M whose tip x is inM . The requirementon the wave front set of the elements of Tn(M) is introdu
ed in su
h a way that �elds smearedby the distribution t 2 Tn(M) 
an be unambiguously tested on states satisfying the mi
rolo
alspe
tral 
ondition. For a more 
omplete analysis on the subje
t we refer to the papers [BF00,HW01℄. The algebra W(M;g) 
an now by de�ned as the �-algebra generated by the elementsde�ned as in (6) smeared by t 2 Tn(M).Remark: It 
an be shown 
ombining the results in [BF00, HW01℄ that the algebra 
onstru
tedin that way is independent on the 
hoi
e of the Hadamard two point fun
tion H. In other words,substituting H in the de�nition of the normal ordering with another two point distribution withthe same singular stru
ture, gives a set of generators of an isomorphi
 algebra. Part of thisfreedom is en
oded in the 
hoi
e of the unit length �. It is in any 
ase possible to add a smoothsymmetri
 fun
tion to H without really 
hanging the �-algebra W(M;g).We are now ready to study the Wi
k monomials that are de�ned as the normal orderedprodu
ts of �elds smeared by some spe
ial test distributions. More pre
isely, suppose to have asmooth fun
tion with 
ompa
t support C10 (M) then a Wi
k monomial 'n(f) of order n 
an bede�ned as follows:: 'n :H (f) := Z : '(x1) : : : '(xn) :H tf (x1; : : : ; xn) d�g(x1) : : : d�g(xn) (7)where tf (x1; : : : ; xn) is f(x1)�(x1; : : : ; xn) and � is the diagonal distribution �(x1; : : : ; xn)=Æ(x1; x2): : : Æ(xn�1; xn).The Wi
k powers de�ned in that way satisfy 
ertain interesting properties, in parti
ularthey turn out to be lo
ally 
ovariant �eld in the sense of [BFV03℄. Another important extentshowed by : 'k :H is the almost homogeneous s
aling under rigid dilations, where the nonhomogenous term is logarithmi
 in the s
aling parameter. Hollands and Wald have used anaxiomati
 approa
h, i.e., they have promoted these and other physi
ally motivated propertiesto a set of axioms that every reasonable de�nition of Wi
k powers should satisfy. In [HW01℄,they have furthermore shown that, the previously given de�nition for 'k is the unique one thatsatis�es the axioms up to the following renormalization freedom~'k(x) = 'k(x) + k�2Xi=1 Ci(x)'i(x) (8)where Ci(x) are 
lassi
al �elds depending on the parameter of the Lagrangian, and on the metri
tensor, furthermore it is required that Ci s
ale homogeneously under rigid dilation while the total�eld 'k s
ales almost homogeneously, where the non homogeneous term must be of logarithmi
type in the s
aling parameter. Hen
e, it is not possible to get rid of this non homogeneouslogarithmi
 s
aling behavior by a suitable 
hoi
e of the renormalization 
onstants Ci(x).3.3. Wi
k monomials and 
onformal 
ovarian
e. It is known that the Wi
k monomialspreviously de�ned are lo
ally 
ovariant quantum �elds in the sense of the analysis performed in[BFV03℄. Here we would like to see that these �elds are also lo
ally 
onformal 
ovariant. Let's13



start our dis
ussion analyzing the simplest 
ase of '2(x). Here the freedom (8) 
onsists of thefollowing rede�nition '2�(x) =: '2 :H (x) + �R(x) (9)where R is the s
alar 
urvature and � is a 
onstant.We would like to stress that this freedom is not in
luded in the 
hoi
e of a parti
ular lengths
ale � in the Hadamard parametrix, in fa
t, as dis
ussed in proposition 2.1, the 
hange of thelength s
ale � does not a�e
t the expe
tation value of : '2 :H , while 
hanging the parameter �in (9) modi�es its expe
tation value.An interesting observation is the fa
t that both : '2 :H (x) and '2�(x) s
ale homogeneouslyunder rigid dilations, as 
an be seen from the transformation rules of the s
alar 
urvature andthe Hadamard singularity. Let Hg be the Hadamard singularity in the spa
etime (M;g), usuallyunder rigid s
aling � it should transform in the following way��2H��2g(x; y) = Hg(x; y) + vg(x; y) log �2;noti
e that in the 
ase under 
onsideration vg(x; x) = 0, as 
an be seen form the appendix.Furthermore, Rg transforms homogeneously under rigid re-s
aling too��2R��2g = Rg;hen
e the Wi
k monomial (9) transforms homogeneously under rigid dilation.The se
ond step in the analysis 
onsists of testing '2� under lo
al transformation. Let  be a
onformal transformation from (M;g) to (M;g0), then, taking into a

ount the transformationrule of the Hadamard singularity H as given in the appendix, we have'02�( (2)� (f)) = '2�(f)�� 1(12�)2 + ��ZM (Rg � (
 Æ  )2R g)fd�g;where '2� is the �eld on (M;g) while '02� is the one on (M;g0) The parti
ular 
hoi
e � =�1=(12�)2 makes the �eld 
onformally 
ovariant. We would like to see if this is the 
ase also formore involved �elds. Namely we shall look for a parti
ular rede�nition of the Wi
k monomials, bya suitable 
hoi
e of the renormalization 
onstants Ci(x) in (8), to get rid of the non homogeneousbehavior whi
h is in general present in su
h 
ases. We are going to show that this is the 
aseby the following Theorem.Theorem 3.1. Let 'k be a Wi
k power as given in (7), there is a non trivial 
hoi
e of therenormalization 
onstants Ci in (8) that makes 'k a 
onformal lo
ally 
ovariant �eld with weightk in the sense of the De�nition 1.3.Proof. The proof is 
onstru
tive: let us 
onsider the following smooth fun
tion B(x; y) =12(12�)2 (Rg(x) +Rg(y)), then rede�ne the Wi
k monomials in the following way,'k := : 'k :H+B14



where : '(x1) : : : '(xk) :H+B= ÆkikÆf(x1) : : : Æf(xk) exp�12(H +B)(f 
 f) + i'(f)�����f=0 :The algebra generated using this new normal ordering is isomorphi
 to W(M;g), the proofis similar to the one of the independen
e of the state given in [HW01℄; furthermore, it 
anbe shown that : ' :H+B is related to : ' :H by a 
hoi
e of the renormalization 
onstants asin (8). The diÆ
ult part is to show that the Wi
k monomials de�ned with respe
t to thenew normal ordering, satisfy the 
ovarian
e 
ondition with respe
t to the 
onformal embedding : (M;g)! (M 0;g0) in CLo
 and its 
orresponding algebrai
 morphism � de�ned as in (5)� (: 'k :H+B (f))� : '0k :H0+B0 ( (4�k)� (f)) = 0:To this end, 
onsider a general element W of the Wi
k expansion of : 'k :H+B (f)W (x1; : : : ; xk) := Z '(x1) : : : '(xn)(H +B)(xn+1; xn+2) : : : (H +B)(xk�1; xk)tf (x1; : : : ; xk)d�1g : : : d�kg (10)where tf (x1; : : : ; xk) = f(x1)�(x1; : : : ; xk). We would like to show that on  (M)kS(f 0) := � (W (tf ))�W 0(t0f 0) = 0whereW is as in (10) andW 0(x1; : : : ; xk) is the 
orresponding term of the expansion of : '0k :H0+B0(f 0)on ( (M);g) with f 0 :=  (4�k)� (f). First of all noti
e that � has no a
tion on (H +B) while� ('(x)) = 
�1( (x))'0( (x)) :Hen
e S(f 0) := Z '0(x1) : : : '0(xn)�
�1(xn+1) : : :
�1(xk)(H +B)(xn+1; xn+2) : : : (H +B)(xk�1; xk)�(H 0 +B0)(xn+1; xn+2) : : : (H 0 +B0)(xk�1; xk)�f 0�0(x1; : : : ; xk)d�1g0 : : : d�kg0where we have used the fa
t that f(x1)�(x1; x2) = f(x2)�(x1; x2). The proof 
an be 
on-
luded using the analysis presented in the appendix (11), hen
e for y in a geodesi
ally 
onvexneighborhood O of the point x in  (M), we have thatlimy!x 1
(x)(H +B)( �1(x);  �1(y)) 1
(y) � (H 0 +B0)(x; y) = 0 :With this observation, the proof 
an be 
on
luded. 215



The fun
tion B does not depend on the length s
ale � present in the Hadamard parametrix.Hen
e even if the regularization pro
edure depends on that length s
ale, it does not appearexpli
itly in the Wi
k powers. On
e again, this is an unexpe
ted result that permits the 
on-stru
tion of an in�nite series of 
onformally 
ovariant �elds in the four dimensional 
ase. Onthe other hand, 
onsidering a general Wi
k monomial that 
ontains also derivatives the lengths
ale � be
omes important, in the sense that it a�e
ts the expe
tation value of su
h monomial.3.4. Extension of the results on di�erent dimensions. In this subse
tion we wouldlike to emphasize the diÆ
ulties that appear in a possible generalization of the found resultsto spa
etimes with general dimension d di�erent than four. We shall dis
uss some aspe
ts ofthe two dimensional 
ase and we shall stress the di�eren
es with the four dimensional 
ase inparti
ular. We start re
alling that, in analogy with (1), in a d dimensional spa
etime (Md;gd)the 
onformal invariant fundamental s
alar �eld ' has to satisfy the following equation�2'd + d� 24(d� 1)R 'd = 0where 2 is the d'Alembert operator and R the s
alar 
urvature of (Md;gd).Following the dis
ussion presented above for the four dimensional 
ase and the propositions3.1 and 3.2 in parti
ular, it is a straightforward task to 
onstru
t the CCR algebra of this�eld and to interpret it as a fun
tor. Similarly, the 
onformal 
ovarian
e of the mi
rolo
alspe
tral 
ondition on d dimensions 
an be shown to hold along the guidelines given in Lemma2.4. The diÆ
ulties arise in 
onsidering the extended algebra of �elds Wd as done in fourdimensions in the subse
tion 3.2. This be
ome manifest in the analysis of the transformationrules enjoyed by the Wi
k powers 'kd under 
onformal embeddings. In order to tou
h this fa
tand to enlighten the di�eren
e it is helpful to 
onsider on
e again the parti
ular �eld '2d, andthe Hadamard parametrix Hd(x; y) in parti
ular. In the even d dimensional 
ase, similarly to(4), the Hadamard parametrix takes the formHd(x; y) = Cd ud(x; y)�d=2�1� + vd(x; y) log ���2! ;where ud and vd are again smooth fun
tions and �� is half of the squared geodesi
 distan
e takenwith sign regularized as in (4), Cd is a dimensional dependent 
onstant. For a detailed analysisof the Hadamard parametrix we refer to the paper [Mo03℄ and to the referen
es therein.Noti
e that in the even dimensional 
ase the Hadamard parametrix 
ontains a length s
alein the logarithmi
 part, and this length s
ale breaks the 
onformal 
ovarian
e already at thelevel of '2. To see this extent expli
itly 
onsider two Hadamard di�erent parametrix Hd andH 0d 
onstru
ted respe
tively with � and �0, the di�eren
e between the two is simply the smoothfun
tion 2Cd vd(x; y) log ��0 ;and the 
hange in the expe
tation value of : '2d :Hd is 2Cd vd(x; x) log ��0 :16



As already dis
ussed above, in four dimensions, it happens that v4(x; x) = 0 and hen
e a
hange of � has no e�e
t on : '24 :Hd . Unfortunately this is not a general fa
t, and usuallyvd(x; x) 6= 0. This 
omputation is parti
ularly easy in two and six dimensions. Being vd(x; x) 6=0, it happens that the �eld '2d transforms non-homogeneously under rigid dilations where inthe non-homogenous part a logarithmi
 term in the s
aling parameter � appears. Following thedis
ussion of Hollands and Wald, it is then not possible to 
an
el this logarithmi
 term by ajudi
ious 
hoi
e of other renormalization 
onstants. The same extent is shown by the othersWi
k powers 'kd.On the other hand, in two dimensional 
onformal �eld theories , it is known that the �elds'k are only quasi-primary but not primary, and hen
e they 
annot be thought as natural trans-formations in the sense dis
ussed in the present paper. As a �nal 
omment we would like tostress that the study of 
onformal 
ovarian
e in general dimensions requires a detailed 
ase by
ase analysis of the Hadamard 
oeÆ
ient vd that is out of the s
ope of the present paper.4 Final 
ommentsWe have generalized the notion of generally 
ovariant �elds to en
ompass the 
onformally 
o-variant transformations. This was done exploiting the theory of 
ategory in a similar way asin [BFV03℄. We have furthermore analyzed the 
ase of the 
onformally 
oupled massless KleinGordon �eld, studying its Wi
k powers. Parti
ularly we have shown that, using in a suitableway the renormalization freedom, it is possible to get rid of the non homogeneous part 
arriedby the 
onformal transformation of those �elds. In a 
ertain sense the larger group of 
ovarian
eredu
es the renormalization freedom. The situation presented here is di�erent than the one givenin [BFV03℄, due to the presen
e of the weights in front of the �elds. It is indeed not possible tolinearly 
ombine �elds with di�erent weights without breaking the 
onformal 
ovarian
e, unlessposition dependent 
oupling 
onstants are taken into a

ount.Before 
on
luding the dis
ussion we would like to give some simple examples of other type of�elds that �t into the presented framework. As an example of 
onformally 
ovariant �eld withnon 
onstant 
ouplings 
onsider�1 : '4 :H+B +(W 2)1=2�2 : '2 :H+B +W 2 �3where �1; �2; �3 are 
onstants and W 2 is the square of the Weyl tensor Wab
d , namely W 2 =Wab
dW ab
d. Su
h a �eld is a 
onformally 
ovariant �eld in the sense of de�nition 1.3 and itsweight is 4.Other interesting 
ases arise taking into a

ount �elds 
ontaining 
ovariant derivatives. Usu-ally that kind of �elds are more 
ompli
ated and it is diÆ
ult to draw some general 
on
lusionsbe
ause of the presen
e of quantum anomalies, but also be
ause of the non homogeneous trans-formation rule enjoyed by the 
ovariant derivatives. Nevertheless, also in that 
ase it is possibleto 
onstru
t �elds that are 
onformally 
ovariant, provided a renormalization 
onstant is 
hosen.As an example of these �elds 
onsider� : ra'2' :H +Rg12 ra : '2 :H ;17



noti
e that their 
lassi
al 
ounterparts are quite trivial sin
e they vanish. On the other hand, alsoin that 
ase there is a renormalization freedom of the form (8); we 
an add to it an homogeneouss
aling 
onstant C. If C is 
hosen as C(x) = �2rav1(x; x) 4 that �eld turns out to vanish alsoquantum me
hani
ally and, even if it is a trivial �eld, it 
an be interpreted as a 
onformally
ovariant �eld in the sense of de�nition 1.3.A
knowledgements.I would like to thank Romeo Brunetti, Claudio Dappiaggi, Klaus Fredenhagen, Valter Morettiand Karl-Henning Rehren for useful dis
ussions, suggestions and 
omments on the topi
. Thiswork has been supported by the German DFG Resear
h Program SFB 676.A Some te
hni
al 
omputationsA.1. Transport equations. The 
oeÆ
ients u and v given in the Hadamard parametrix (4)are symmetri
 smooth fun
tions [Mo00℄ that satisfy the following relations:2r�(x; y)ru(x; y) + (2x� � 4)u(x; y) = 0; �Pxv = 0:Moreover the 
oeÆ
ient u is twi
e the square root of the van Vle
k Morette determinant u =2�1=2, for de�nition and details see [DB60, Fr75, Fu89, Ta89℄. Furthermore, on a geodesi
ally
omplete neighborhood, the fun
tion v 
an be expanded as followsv = pXn=0 vn�n +O(�n):We have trun
ated the series at some order p be
ause, in general, the whole series does not
onverge, unless the 
oeÆ
ients of the metri
 are analyti
 fun
tions. Furthermore, the 
oeÆ
ientsvn 
an be found, using the following two re
ursive relations valid for n > 02g(x)rx�rxv0 + (2x�(x; y)� 2)v0 = P (x)g u(x; y) ;2n g(x)rx�rxvn + n (2x�(x; y) + 2n� 2)vn = P (x)g vn�1(x; y) :A.2. Transformation laws for the Hadamard 
oeÆ
ients. Consider a 
onformal trans-formation  : (M;g) ! (M;g0) with 
onformal fa
tor 
. Let H and H 0 be the Hadamardsingularities, as given in (4), on a (M;g) and (M;g0) respe
tively. For y in a geodesi
ally 
om-plete neighborhood of the point x, we would like to 
ompute the 
oin
iding point limit of thesubtra
tion 1
(x)H(x; y) 1
(y) �H 0(x; y):4For te
hni
al details we refer to [Mo03, HW05℄ 18



Be
ause of the Lemma 2.4 we know that the subtra
tion is a smooth fun
tion, hen
e we 
an
ompute the following limit dire
tlylimy!x u(x; y)
(x)�(x; y)
(y) + v(x; y)
(x)
(y) log � � u0�0 � v0 log �0 = Rg(x)18
2(x) � Rg0(x)18 ; (11)where we have used the following expansions around x. Let �� = r�x�, and L� := r� log 
 thenwe 
an write the Taylor expansion
(y) = 
(x)�1� L��� + 12 (L�� + L�L�) �����+O(�3=2):Furthermore using the notation of the book of Fulling [Fu89℄�0(x; y) = 
2(x)�(x; y)�1� L��� � 112 (�2�L�L� + (8L�L� + 4L��)����)�+O(�5=2)and the short distan
e analysis of van Vle
k Morette determinant [DB60℄ gives�1=2 = 1� 112R������ +O(�2): (12)Noti
e that, in the 
ase under investigation, be
ause of the expansion (12), and the re
ursiverelations given before, v0(x; x) = v(x; x) = 0. Plugging the expansions written above into theprevious subtra
tion and knowing that v(x; x) = 0, (11) holds.Referen
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