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Abstra
tWe prove that the 
igar 
onformal �eld theory is dual to the Sine-Liouville model,as 
onje
tured originally by Fateev, Zamolod
hikov and Zamolod
hikov. Sin
e bothmodels possess the same 
hiral algebra, our task is to show that 
orrelations ofall ta
hyon vertex operators agree. We a

omplish this goal through an o�-
riti
alversion of the geometri
 Langlands duality for sl(2). More expli
itly, we 
ombinethe well-known self-duality of Liouville theory with an intriguing 
orresponden
ebetween the 
igar and Liouville �eld theory. The latter is derived through a pathintegral treatment. After a very detailed dis
ussion of genus zero amplitudes, weextend the duality to arbitrary 
losed surfa
es.
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1 Introdu
tionStrong-weak 
oupling dualities in 2-dimensional quantum theory possess a long history,with a remarkable range of appli
ations. In addition to providing indispensable tools for
on
rete 
al
ulations, they have also taught us important lessons about non-perturbativequantum �eld theory in general. Among these dualities, those relating di�erent targetspa
e geometries of sigma models have re
eived spe
ial attention, in parti
ular from stringtheorists. Many extensions of the famous R$ 1=R duality for a 
ompa
ti�ed free bosoni
�eld X � X + 2�R were found, see e.g. [1℄ for a review of developments in string theoryand further referen
es to original resear
h papers. Mirror symmetry of Calabi-Yau 
om-pa
ti�
ations has allowed to sum up 
ontributions from world-sheet instantons, a taskthat would seem virtually impossible without duality symmetries.Non-perturbative 
ontributions to the �0 dependen
e of the world-sheet model arepotentially important whenever the target spa
e of the string be
omes strongly 
urved,or, more generally, when some geometri
 length s
ale is of the order of the string lengthls � p�0. In re
ent years, a new 
lass of 
urved target spa
es has 
ome into fo
us.Through the AdS/CFT 
orresponden
e, strongly 
urved (asymptoti
ally) Anti-de Sit-ter (AdS) ba
kgrounds are believed to en
ode interesting information about gauge �eldtheories. As simple examples show, the 
orresponding world-sheet theories re
eive non-perturbative 
orre
tions. It would be of obvious interest to 
apture those through pertur-bative expansions in some dual �eld theory, whenever su
h a dual exists.At the moment, very little is known about target spa
e dualities involving AdS ormore general holographi
 ba
kgrounds, with only one ex
eption. It is provided by the 2DEu
lidean bla
k hole, also known as the (semi-in�nite) 
igar. The 
igar 
onformal �eldtheory 
ontains two fundamental �elds, � and X, whi
h take their values in the real line� 2℄ � 1;1℄ and in the interval X 2 [0; 2�R℄, respe
tively. In these 
oordinates, thenon-trivial ba
kground metri
 ds2 and the dilaton � read [2, 3, 4℄ds2 = k e�2�1 + e�2� (d�2 + k�1dX2) ; e�2� = e�2�0 (1 + e�2�) : (1.1)The 
ompa
ti�
ation radius R of the �eld X is related to the parameter k in the metri
 byk = R2. Throughout this entire note we shall set �0 = 1. The 
igar geometry, along withits Lorentzian 
ounterpart and supersymmetri
 extensions, possesses many interestingappli
ations. For us, it serves as the simplest holographi
 ba
kground in whi
h duality
an be addressed (see e.g. [5℄ and referen
es therein).2



Duality symmetries in quantum �eld theory should 
ome with a pres
ription thatmaps �elds of one model onto those of its dual. Let us re
all that the ta
hyon vertexoperators of the 
igar 
onformal �eld theory are asso
iated with the asymptoti
 data ofwave fun
tions at � = �1,	
ig; j(n;w)(z; �z) = e2b(j+1)� ei nRX+iRw eX where fX = fX(z; �z) = �i Z (z;�z) �dX (1.2)is dual to the �eld X = X(z; �z). It is de�ned through a line integral over the Hodgedual �dX of the di�erential dX. We have also introdu
ed the parameter b = 1=pk � 2that will appear frequently throughout our entire presentation. The parametrization ofta
hyon vertex operators in terms of the 
omplex radial momentum j and the quantumnumbers n; w for the 
ir
le dire
tion follows the usual 
onventions.A

ording to a famous FZZ-
onje
ture of V. Fateev, Al. Zamolod
hikov and A.B.Zamolod
hikov [6℄ (see also [5℄ for a review), a dual of the 
igar 
onformal �eld theoryis given by the so-
alled Sine-Liouville model. This dual theory also involves two �elds� and X with values in � 2℄ �1;1[ and X 2 [0; 2�R℄, as before. The two 
oordinatesparametrize a 
ylinder with the trivial 
at metri
 and radius R = pk. The motion ofstrings towards � � 1 is 
ut o� by a ta
hyon potential of the formV (�;X) = 4�� e 1b� 
os(pk ~X) : (1.3)The operator V is marginal, provided the �eld � has ba
kground 
harge Q� = b, thesame as in the 
igar model above. Ta
hyon vertex operators in Sine-Liouville theory areagain parametrized by data in the asymptoti
 domain �! �1 where the intera
tion isexponentially suppressed, i.e. they take the same form as for the 
igar	SL; j(n;w)(z; �z) = e2b(j+1)� ei nRX+iRw eX : (1.4)The FZZ 
onje
ture 
laims that one may identify vertex operators in the 
igar ba
kgroundand Sine-Liouville theory,* NY�=1 	
ig; j�(n� ;w�)(z� ; �z�) +
ig(k) = N * NY�=1 	SL; j�(w� ;n�)(z� ; �z�) +SLR : (1.5)The normalization N depends on the parameter b, the winding number violation S =Pw�, and the number N of vertex operators. The 
oupling 
onstant � of Sine-Liouvilletheory relates to the parameter b. An expli
it formula will be spelled out below.3



The FZZ-duality has several interesting features. To begin with, it is a strong-weak
oupling duality. In fa
t, the 
igar 
onformal �eld theory is weakly 
oupled for large kor, equivalently, for small b. In this regime, the ta
hyon potential (1.3) in
reases rapidlytowards larger values of �. Hen
e, the model be
omes strongly 
oupled. Another pointworth stressing is that the FZZ-duality relates a sigma model to another 2-dimensional�eld theory with 
onstant metri
 and linear dilaton, but non-trivial ta
hyon potential.The latter is a �nite sum of exponentials. In this respe
t, the relation between the 
igarand Sine-Liouville theory is very di�erent from the geometri
 target spa
e dualities whi
hare produ
ed e.g. by the Bus
her rules [7, 8℄. Some tests of the FZZ-duality on thesphere were performed in [9℄. A supersymmetri
 version was established in [10℄, but theirargument is passing through gauged linear sigma models and hen
e rather indire
t. Ouraim here is to give a dire
t derivation of the equality (1.5), �rst for the sphere and thenon an arbitrary surfa
e.Our proof involves two key ingredients. As a starting point, we represent the 
igartheory as a 
oset 
onformal �eld theory, obtained by gauging a 
ertain U(1) symmetryin the H+3 WZNW model. The 
oset formulation then allows us to invoke an intriguing
orresponden
e between 
orrelation fun
tions in the H+3 WZNW model and Liouville �eldtheory [11, 12℄. Thereby, we shall be able to express 
orrelation fun
tions of the 
igar
onformal �eld theory through spe
ial 
orrelators in a produ
t of Liouville �eld theoryand a free boson. The additional bosoni
 �eld arises from the gauge �eld of the 
oset
onstru
tion. It parti
ipates a
tively in the redu
tion from the 
igar to Liouville �eldtheory. Up to this point, all steps are performed in the path integral formulation of the
igar, following 
losely our re
ent work [12℄. Clearly, su
h path integral manipulations arenot suÆ
ient to transfer us from a weakly to a strongly 
oupled regime. This is where these
ond 
entral ingredient 
omes in. Let us re
all that Liouville �eld theory is self-dual,i.e. it looks exa
tly the same at weak and strong 
oupling. Having expressed 
orrelatorsof the 
igar through Liouville theory we 
an 
apitalize on the self-duality of the latterto des
ribe the 
igar in the strong 
oupling regime. The resulting formulation of the
igar 
onformal �eld theory will not look like Sine-Liouville theory at �rst, but the twodes
riptions shall turn out to be related through simple rotations and re
e
tions in �eldspa
e. We shall des
ribe these expli
itly in the last part of our derivation, following ideasfrom an unpublished note of V. Fateev [13℄.The plan of our work is as follows. In the next se
tion we shall review and extend4



our previous path integral derivation of the 
orresponden
e between the H+3 WZNWmodel and Liouville �eld theory. The dis
ussion will in
orporate se
tors obtained bythe a
tion of spe
tral 
ow [14℄. Su
h an extension was des
ribed by Ribault in [15℄ andit is 
ru
ial for us in order to treat winding number violating amplitudes of the 
igar
onformal �eld theory. Our proof of eq. (1.5) is then presented in se
tion 3. The fourthse
tion 
ontains a generalization of the FZZ-duality and its proof for higher genus surfa
es.In the 
on
lusions we �nally present a list of open problems and possible appli
ations.2 The H+3 -Liouville 
orresponden
eThe main purpose of this se
tion is to extend our path integral derivation of the 
orre-sponden
e between the H+3 WZNW model and Liouville �eld theory to se
tors obtainedthrough spe
tral 
ow [14℄. On the sphere, the 
orresponding relation between 
orrelationfun
tions has been derived by algebrai
 means in [15℄. Generalizing the treatment of [12℄,we shall arrive at the same result. Our new derivation, however, has two advantages.First of all, it also applies to the 
ase of maximal winding number violation that 
ouldnot be treated previously [15℄. More importantly, our argument extends to surfa
es ofhigher genus. Those will be dealt with in se
tion 4.In dedu
ing the main formula (2.17) below, we shall sket
h the key ideas explained in[12℄. As we are going through the individual steps, we shall present them in a somewhatdi�erent light, stressing the similarities with the standard derivation of T-duality. Of
ourse, the 
orresponden
e between the H+3 model and Liouville �eld theory is not aT-duality, as e.g. both theories possess di�erent 
entral 
harges. Nevertheless, throughthis 
orresponden
e, Liouville theory manages to 
apture all information about ta
hyon
orrelators in the H+3 model. At �rst sight, this might a
tually seem a bit surprising.While ta
hyon vertex operators in the WZNW model 
arry a 3-
omponent target spa
emomentum, ta
hyoni
 modes in Liouville �eld theory possess momentum in one dire
tiononly. The resolution of this apparent paradox is intriguing: Only the radial momentumof the WZNW model is mapped to a momentum in Liouville theory. The two remaining
omponents of target spa
e momentum, on the other hand, be
ome parameters spe
ifyingthe world-sheet insertion points for degenerate �elds in Liouville theory. Su
h additionalinsertions are ne
essary pre
isely be
ause the models on both sides of the 
orresponden
ehave di�erent target spa
e dimension (
entral 
harge).5



2.1 Correlators in the H+3 WZNW modelAs is any derivation of T-dualities (see, e.g. [7, 8℄), our �rst step is to present the H+3WZNW model in a �rst order formulation. To this end, we introdu
e two auxiliary �elds� and �� of weight h = 1. These supplement three �elds �; 
 and �
 of 
onformal weighth = 0 that 
ome with the target spa
e 
oordinates of the Eu
lidean AdS3. The a
tion ofthe model readsSWZNWk [�; 
; �℄ = 12� Z d2w ������� � ��
 � ����
 + Q�4 pgR�� b2� ��e2b�� : (2.1)In order for the intera
tion term to be marginal, the �eld � must possess a ba
kground
harge Q� = b = 1=pk � 2. The usual WZNW model on H+3 may be re
overed from eq.(2.1) by integration over � and ��.Our task is to 
ompute 
orrelation fun
tions of ta
hyon vertex operators. There existseveral natural ways to parametrize the spa
e of ta
hyoni
 modes. The 
hoi
e we shalladopt is given by Vj(�jz) � j�j2j+2 e�
(z)����
(�z) e2b(j+1)�(z;�z) : (2.2)These vertex operators are labeled dire
tly by the three target spa
e momenta �; �� and j.Our parti
ular 
hoi
e of �-dependent prefa
tor will turn out to be very 
onvenient lateron. The quantities we want to 
ompute are the 
orrelators* NY�=1 Vj�(��jz�) vS(�)+H = Z(S;�)D�D
D� e�SWZNWk [�;
;�℄ NY�=1Vj�(��jz�) eS�(�)=b : (2.3)Here, the supers
ript H reminds us to evaluate the 
orrelation fun
tion in the H+3 WZNWmodel. The operator vS(�) we inserted at z = � on the left hand side is obtained by a
tingwith S units of spe
tral 
ow on the identity �eld. We let the supers
ript S run throughpositive integers. The generalization to negative S is quite obvious but dealing with bothsigns at the same time would 
lutter our presentation below. The insertion of vS(�) hastwo e�e
ts on the right hand side of eq. (2.3). To begin with, it leads to an insertion ofthe vertex operator exp(S�=b). Moreover, vS(�) determines the integration domain forthe �elds � and �� in the path integral. To be more pre
ise, the integration in eq. (2.3)is meant to extend over all �eld 
on�gurations su
h that � and �� both possess a zero oforder S at z = �. In our analysis [12℄, we had set the parameter S to S = 0 and studied6



the usual path integral for va
uum expe
tation values. With later appli
ations in mindwe now extend this treatment.Even though we may think of vS(�) as being de�ned through the path integral repre-sentation we outlined in the previous paragraph, it might be useful to pause for a momentand explain the pre
ise relation to the a
tion of the spe
tral 
ow automorphism �S on theaÆne sl(2) 
urrent algebra. In the following dis
ussion we shall set � = 0 and pass to anoperator formalism. Our freedom of 
hoosing S 
an then be understood as the insertionof a state jSi that is obtained from the va
uum j0i through S units of spe
tral 
ow, i.e.* NY�=1 Vj�(��jz�) vS(0) +H = h0j NY�=1 Vj�(��jz�) jSi ;where jSi satis�es �S(Jan)jSi = 0 for n � 0 ; a = 3;� : (2.4)For the reader's 
onvenien
e we re
all that the spe
tral 
ow automorphism �S of the sl(2)
urrent algebra is de�ned by�S(J3n) = J3n � k2SÆn;0 ; �S(J�n ) = J�n�S : (2.5)We would like to rephrase the 
onditions (2.4) in terms of the �elds that appear in oura
tion. To this end, we spell out the usual free �eld realization of sl(2) 
urrents,J�(z) = �(z) ; J3(z) = : �(z)
(z) : � b�1��(z) ; (2.6)J+(z) = : �(z)
2(z) : � 2b�1
(z)��(z) + k�
(z) : (2.7)The 
onstru
tion of 
urrents through �; 
 and � implies that jSi = jSi(�;
)
jSi� may be
hara
terized through�n�SjSi(�;
) = 0 ; 
n+SjSi(�;
) = 0 for n � 0 : (2.8)Furthermore, the state jSi� 
arries a non-vanishing 
harge with respe
t to the zero modeof the �eld �, i.e. jSi� = eSb �(0)j0i� : (2.9)By now we easily re
ognise the des
ription of vS(�) we gave above. In fa
t, the state jSi
reates a zero of order S in the �eld �(w) = P�nw�n�1 at w = 0. The e�e
t of jSi on7



the �eld � is 
aptured by the insertion of the vertex operator exp(S�=b). Obviously, theinsertion point of vS 
an be moved from w = 0 to any point on the sphere (or surfa
e). Theamplitudes (2.3) we 
onsidered here are (N + 1)-point fun
tions 
ontaining N un
owedstates in addition to the state at z = �. The latter is obtained from the identity by Sunits of spe
tral 
ow as mentioned before. More general 
orrelators for whi
h the S unitsare distributed among all N + 1 �elds are rather easy to �nd, as dis
ussed in [15℄. Therelation between the 
igar and Liouville �eld theory would be derived from its simplestform when all the spe
tral 
ow is assembled in one insertion point.2.2 The 
orresponden
e with Liouville theorySin
e vertex operators do not depend on � and ��, these �elds 
an easily be integratedout. The resulting a
tion is that of the WZNW model for the usual 
oordinate �elds 
; �
and �. A \dual" des
ription of the WZNW model emerges when we integrate out 
 and�
 instead of � and ��. As in the 
ase of T-dualities, the integration over 
 and �
 gives
onstraints on � and ��. Solutions to these 
onstraints are inserted ba
k into the a
tion.Thereby, we arrive at the dual formulation we are after. Let us now see how all this worksout for our H+3 WZNW model.As explained in mu
h detail in [12℄, integration over 
 and �
 gives the 
onstraints���(w) = 2� NX�=1��Æ2(w � z�) ; � ��( �w) = �2� NX�=1 ���Æ2(w � z�) : (2.10)If it were not for the insertion of vertex operators, these would simply require the one-di�erentials � and �� to be (anti-)holomorphi
. The vertex operators a
t like sour
es andfor
e � and �� to possess �rst order poles with residues �� and ���� at the insertion points,respe
tively. On the 
omplex sphere, a meromorphi
 one-di�erential with these propertiesis uniquely determined to be of the form�(w) = NX�=1 ��w � z� ; (2.11)and similarly for ��. Due to the insertion of vS(�), � and �� possess a zero of order S atw = �. Therefore, the parameters �� must obey the following S + 1 equationsNX�=1 ��(� � z�)n = 0 for n = 0; 1; 2; : : : ; S : (2.12)8



The �rst equation with n = 0 ensures that �(w) has no pole at w =1. The uniqueness ofthe solution to eqs. (2.10) is a new feature of our analysis, distinguishing it from the 
aseof usual T-dualities. In the standard 
ases, solutions to the 
onstraints are parametrizedby a dual �eld. Thereby, �eld theories related by an ordinary T-duality possess the samenumber of �elds. Be
ause the solutions to our 
onstraint equations (2.10) are unique, theresulting \dual" of the H+3 WZNW model will have two �elds less than the theory westarted with.The next step is to insert the solutions to the 
onstraints ba
k into the a
tion. Thisleaves us with a theory of a single �eld � and a Liouville-like intera
tion term. A se
ondglan
e at the resulting a
tion, however, reveals an unpleasant feature: In the pla
e ofLiouville's 
osmologi
al 
onstant we �nd a rather 
ompli
ated fun
tion j�(w)j2 dependingon the insertion points z� and momenta ��; ���. We 
an try to resolve this issue byabsorbing the unwanted fun
tion j�(w)j2 into a shift of the zero mode of �. Sin
e we aregoing to shift � by the logarithm of �(w) ��( �w), it is advantageous to bring �(w) into aprodu
t form �rst. Let us re
all that for any one-di�erential, the number of poles ex
eedsthe number of zeroes by two. Hen
e, �(w) must have N � 2 zeroes. Sin
e we insertedthe operator vS(�), S of these zeroes must 
ome together at w = �. We will denotethe remaining N � 2 � S lo
ations of zeroes on the sphere by w = yi.1 Furthermore,a di�erential is uniquely 
hara
terized by the position of its zeroes and poles up to anoverall fa
tor u. Consequently, we 
an rewrite �(w) in the form�(w) = u (w � �)S QN�2�Si=1 (w � yi)QN�=1(w � z�) =: uB(w) : (2.13)Thereby, we have now repla
ed the N parameters �� subje
t to 
onstraints (2.12) throughN � 2� S 
oordinates yi and a global fa
tor u. Now we are ready to introdu
e the newbosoni
 �eld ' through' := �+ 12b  S ln jw � �j2 + N�2�SXi=1 ln jw � yij2 � NX�=1 ln jw � z�j2 � ln ju�(w)j2! ; (2.14)where the term in bra
kets is ln juBj2. Here we have in
luded a non-trivial Weyl fa
tor�(z). With this fa
tor, the world-sheet metri
 and its 
urvature are given as ds2 =j�(z)j2dzd�z andpgR = �4� �� ln j�j. Throughout most of the present note we set �(z) = 1.1In this way we have shown that the total spe
tral 
ow number must be less than N�2, i.e., S � N�2.The same 
on
lusion was rea
hed from a group theoreti
 argument in appendix D of [16℄.9



But several details of the duality between the sigma model and Liouville theory requirea more 
areful treatment. This applies in parti
ular to the derivation of the shift in theba
kground 
harge and to a proper regularization limw!z jw � zj2 = � ln j�(z)j2 of thedivergent expression limw!z jw � zj2, see [12℄ for details.Through our rede�nition (2.14) of the �eld � we remove the fa
tors of � in the de�nition(2.2) of the vertex operators,j��j2(j�+1) e2b(j�+1)�(z� ) = e2b(j�+1)'(z�) (2.15)and thereby all expli
it � dependen
e. It remains to rewrite the kineti
 term through thenew �eld '. Sin
e � ��� and � ��' di�er by a bun
h of Æ-fun
tions whi
h are lo
alized at thepoints z� , yi and �, we obtain extra insertions of vertex operators exp(�1b') at the zeroesand poles of B. The vertex operators inserted at z� 
ombine with the original ta
hyonvertex operators while those at yi are new. Similarly, there is an extra insertion of theoperator exp(�S'=b) at the point w = �. It 
ombines with the vertex operatoreS�(�)=b = ju ~B(�)j�S=b2 eS'(�)=b ; ~B(�) � QN�2�Si=1 (� � yi)QN�=1(� � z�) (2.16)into some simple numeri
al fa
tor ju ~B(�)j�S=b2. The latter is 
an
eled by the numeri
al,�-dependent term in �� ��� so that the end results assume the form* NY�=1Vj�(��jz�)vS(�)+ = SYn=0 Æ2  NX�=1 ��(� � z�)n! j�N j2juj Sb2�2 * NY�=1V�� (z�)N�2�SYi=1 V� 12b (yi)+L
with �N = �N(u; yj; z�) = NY�<�(z��) 12b2 N�2�SYi<j (yij) 12b2 NY�=1 N�2�SYi=1 (z� � yi)� 12b2 : (2.17)Note that all dependen
e on the insertion point z = � has dropped from all terms butthose implementing the 
onstraints (2.12). The right hand side of eq. (2.17) is evaluated inthe Liouville theory. The vertex operators are V� = exp(2�') with �� = b(j� +1)+1=2b,and the number of degenerated �elds V�1=2b is given by N � 2� S.All the above 
an be generalized to world-surfa
es of higher genus g � 1, as shown inse
tion 4, following our analysis in [12℄. The main point to note 
on
erns the number ofadditional insertions: On a surfa
e of genus g a one-di�erential with N poles possessesN + 2g � 2 zeroes. On
e more, S of them should 
ome together at the point at whi
hwe insert the spe
tral 
ow of the identity �eld. The remaining N + 2g� 2� S zeros give10



rise to the insertion of degenerate �elds. With the generalization to higher genus surfa
esbeing well under 
ontrol, the relation between the H+3 WZNW model and Liouville �eldtheory be
omes a perturbative 
orresponden
e that works order by order in the stringloop expansion.3 The Cigar{Sine-Liouville dualityWe are now ready to derive the duality between the 
igar 
onformal �eld theory andthe Sine-Liouville model. Our argument pro
eeds in several steps. First we use the
orresponden
e between the H+3 model and Liouville �eld theory to establish a similar
orresponden
e between the 
igar and a new model that involves a Liouville �eld ' alongwith a single free boson �. As before, the Liouville 
orrelation fun
tions 
ontain N�2�Sadditional degenerate �eld insertions. In this form, our 
orresponden
e does not yetresemble the duality we were seeking for. To begin with, the Liouville �eld theory withintera
tion exp 2b' remains weakly 
oupled for small b, i.e. whenever the H+3 WZNWmodel is weakly 
oupled. Furthermore, the 
orresponden
e relates 
orrelation fun
tionswith a di�erent number of �eld insertions. Finally, the ba
kground 
harges of the Liouville�eld ' and the boson � are found to di�er from those in the Sine-Liouville model. Weshall address ea
h of these three shortfalls in a separate subse
tion.3.1 A 
orresponden
e between the 
igar and Liouville theoryOur �rst aim is to determine 
orrelation fun
tions of ta
hyon vertex operators in the
igar 
onformal �eld theory. As before, we parametrize the 
igar geometry through theradius R = pk of the 
ir
le at � = �1. The value of R determines the 
entral 
hargethrough 

ig = 2 k + 1k � 2 :Let us re
all that the 
igar 
onformal �eld theory may be obtained from the H+3 WZNWmodel by a pro
ess of gauging. Thereby, the 
igar model gets embedded into the 
ombi-nation of a H+3 WZNW model at level k and a free bosoni
 �eld theory,S[�; 
; �;X; b; 
℄ = SWZNWk [�; 
; �℄ + 12� Z d2w �X ��X + 12� Z d2w(b��
+�b��
)along with (b; 
)-ghosts arising from the gauge �xing pro
edure (for more detail, seeappendix A). The �rst term represents the WZNW model, written on
e more in a �rst11



order formulation (2.1). The free boson X is 
ompa
ti�ed to a 
ir
le of radius R = pk,i.e. the 
ompa
ti�
ation radius of X is the same as for the 
igar at � = �1. It hasvanishing ba
kground 
harge QX = 0.Next we turn our attention to the vertex operators. Our 
onventions for vertex oper-ators of the WZNW model 
an be found in (2.2). In order to spell out the relation withvertex operators of the 
igar, we need to pass to the so-
alled m-basis�jm; �m(z) = N jm; �m Z d2�j�j2 �m�� �m Vj(�jz) ; N jm; �m = �(�j �m)�(j + 1 + �m) : (3.1)We have to 
ombine these with vertex operators of the free boson X. For the latter weuse the following notation V Xm; �m(z; �z) = ei 2pk (mXL� �mXR) : (3.2)Here, we have also introdu
ed the �elds XL = XL(z; �z) and XR = XR(z; �z) throughX = XL+XR and fX = XL�XR. Note that our sign 
onvention for �m deviates from thestandard one. Vertex operators for the 
igar are 
onstru
ted a

ording to the simple rule	jm; �m(z; �z) = V Xm; �m(z; �z) �jm; �m(z; �z) : (3.3)The two parameters m and �m denote the left and right U(1) 
harges. They are relatedto the asymptoti
 momentum and winding numbers n and w (see introdu
tion) throughm = (kw + n)=2 and �m = (kw � n)=2.Combining the results of the previous paragraphs, we are led to the following basi
representation of our 
orrelation fun
tions,* NY�=1	j�m� ; �m� (z�)+
ig = NY�=1 "N j�m� ; �m� Z d2��j��j2�m�� �� �m�� #� (3.4)� * V X� kS2 ;� kS2 (�)vS(�) NY�=1 V Xm� ; �m� (z�) Vj�(��jz�) +H�F :The 
orrelator on the right hand side is to be evaluated in a produ
t of the H+3 WZNWmodel with a single free boson. The parameter S that determines the insertion at z = � isrelated to the integers m� and �m� through P� m� = P� �m� = kS2 . For the 
igar 
onformal�eld theory, the operator at z = � is just a representation of identity �eld. Hen
e, theright hand side of eq. (3.4) should not depend on the insertion point z = �, a property weshall 
on�rm expli
itly below. 12



Our �rst step now is to insert the results from se
tion 2 for the 
orrelation fun
tions inthe H+3 WZNWmodel. Thereby, we bring in the 
orrelators of Liouville theory, multipliedby the rather 
ompli
ated prefa
tor �N (see eq. (2.17)). But there remains some expli
it�-dependen
e in the integrand along with the integration over ��. A

ording to ourgeneral strategy, we would like to rewrite the expressions entirely in terms of the newvariables u and yi. This works out very ni
ely if we rede�ne the bosoni
 �eld X in a waythat is reminis
ent of what we did in eq. (2.14) for the �eld �,�L := XL�ipk2  S ln(w � �) + N�2�SXi=1 ln(w � yi)� NX�=1 ln(w � z�)� lnu�(w)! : (3.5)The �eld �R is de�ned by trading XL for XR and taking the 
omplex 
onjugate of these
ond term. In this way we ensure that the lo
al �eld �(z; �z) = �L + �R remains real.Let us also note that its dual �eld ~� = �L � �R a
quires a non-zero ba
kground 
hargeQ~� = �ipk. Therefore, the free bosoni
 �eld � has 
entral 
harge 
� = 1� 6k. Using thesame reasoning as in [12℄ we obtain(��)m(���) �m V Xm; �m(z�) = V �m; �m(z�) : (3.6)Thereby, we now got rid of all the expli
it �-dependen
e in the integrand. Our rede�nitionof the bosoni
 �eld also leads to additional insertions of bosoni
 vertex operators into the
orrelation fun
tions, mu
h in the same way as for the �eld '.But there is one additional important 
onsequen
e of the shift (3.5). It also produ
esa numeri
al fa
tor similar to �N , only with the exponent 1=b2 being repla
ed by �k.Remarkably, the produ
t of �N with this new fa
tor 
ombines exa
tly into the Ja
obianfor the transformation from �� to u; yi. The latter is 
omputed in Appendix C and itreadsNY�=1 d2��j��j2 SYn=0 Æ2  X� ��(� � z�)n! = QN�<� jz��j2QN�2�Si<j jyijj2QN�=1QN�2�Si=1 jz� � yij2 d2ujuj4+2S N�2�SYi=1 d2yi : (3.7)In applying this substitution rule, one has to be a bit 
areful. Note that the parameters ��are not e�e
ted if we permute the insertion points yi. This means that our transformationsmap the spa
e of �� to a (N�2�S)!-fold 
over of the yi 
oordinate hyper-plane. Putting
13



all this together we �nally obtain* NY�=1	j�m� ; �m�+
ig = Z QN�2�Si=1 d2yi(N � 2� S)! NY�=1N j�m� ; �m��� * NY�=1V�� (z�)V �m�� k2 ; �m�� k2 (z�) N�2�SYi=1 V� 12b (yi)V �k2 ; k2 (yi)+ : (3.8)The 
orrelation fun
tion on the right hand side is evaluated in the theoryS('; �) = 12� Z d2w �'��'+ �����+ pg4 R(Q''+Q~� ~�) + b2e2b'! ; (3.9)with ba
kground 
harges Q' = b + 1=b and Q~� = �ipk. We have thereby a
hieved our�rst goal, namely to express N -point 
orrelation fun
tions in the 
igar 
onformal �eldtheory through 
orrelators of 2N � 2� S �elds in a produ
t of the Liouville model witha single free bosoni
 �eld. This is as far as the H+3 -Liouville 
orresponden
e 
an take us.3.2 Derivation of the duality with Sine-Liouville theoryThe 
orresponden
e we derived in the previous subse
tion falls short of being a trueduality for a number of reasons. To begin with, it relates 
orrelators in the weakly 
oupled
igar 
onformal �eld theory to 
orrelation fun
tions in weakly 
oupled Liouville theory.Here is where the famous self-duality of Liouville theory 
omes to our res
ue. Throughthe 
orresponden
e (3.8) it provides us with a non-perturbative 
ompletion of the 
igar
onformal �eld theory, i.e. a well de�ned pres
ription to 
al
ulate 
igar 
orrelators forsmall values of the level k (large b). The next unpleasant feature of our 
orresponden
e isthat it relates 
orrelators with a di�erent number of vertex operators. Sin
e the 
entral
harge of the theory (3.9) is the same as for the 
igar 
onformal �eld theory, one mayexpe
t to do better. Indeed, our 
orresponden
e shall be rewritten as a duality betweenN -point 
orrelation fun
tions in the se
ond subse
tion. At that point we 
ould havede
ided to stop if we were not fully determined to re
over Sine-Liouville theory. Weshall su

eed in the last part of this subse
tion through a rotation in �eld spa
e and anappropriate �eld identi�
ation.3.2.1 A weak-strong 
oupling 
orresponden
eAs we have just stated, the 
orresponden
e we obtained in the previous subse
tion doesnot seem very useful yet: Both the 
igar and Liouville �eld theory get weakly 
oupled14



for small values of the parameter b (or k � 2). Put di�erently, the Liouville intera
tionterm exp(2b') be
omes large in the regime of small 
urvature radius pk that we werehoping to des
ribe. Our path integral manipulations 
ould not have given us anythingmore. They 
apture the perturbative aspe
ts of the two models and hen
e relate theweakly 
oupled regimes of the H+3 (or the 
igar) and Liouville �eld theory. What makessu
h a 
orresponden
e so useful is the fa
t that quantum Liouville theory looks the sameat strong and weak 
oupling [17℄. There is no way to derive this self-duality of Liouville�eld theory within the path integral treatment. But sin
e the Liouville theory is solved(see e.g. [18℄ for a review and referen
es), its self-duality under the re
e
tion b ! b�1 isfully established [19, 20℄.If we are ready to a

ept this additional input from quantum Liouville theory, we 
annow 
ompute our 
orrelation fun
tions in the dual theoryS('; �) = 12� Z d2w �'��'+ ����� + pg4 R(Q''+Q~� ~�) + ~�e 2b'! : (3.10)The ba
kground 
harge Q' = b + 1=b of the Liouville �eld remains the same as before.However, the inversion of the parameter b should be a

ompanied by an appropriateadjustment of the bulk 
osmologi
al 
onstant. In our 
ase, the 
orre
t 
hoi
e is (see e.g.[17, 21℄) ~� = 
�1(b�2) �b2
(b2)�b�2 ; (3.11)where 
(x) = �(x)=�(1 � x), as usual. Let us stress that 
orrelation fun
tions of the
igar 
onformal �eld theory are still 
al
ulated through equation (3.8). There is no needto 
hange the parameters of vertex operators, in spite of the fa
t that they happen to befun
tions of b. After the inversion of b, the intera
tion term exp 2'=b be
omes weakly
oupled when we enter the strong 
oupling regime of the 
igar 
onformal �eld theory.3.2.2 Removing degenerate �eld insertionsWhen we were dis
ussing the 
orresponden
e between the H+3 WZNW model andLiouville theory we argued that degenerate �eld insertions were required in order to en
odeall information about the target spa
e momenta on H+3 . The situation has 
hanged now.By gauging one of the dire
tions of the H+3 model we des
ended to a 2-dimensional targetspa
e. An N -point fun
tion on the 
igar involves only 2N target spa
e momenta andhen
e the N � 2 insertion points in Liouville theory are 
ertainly more than is needed to15



simply store information on target spa
e momenta. Sin
e we kept the bosoni
 �eld X inour theory rather than integrating it out, it should even be possible to do without anyadditional �eld insertions.This is indeed the 
ase, due to the following observation [13, 22℄: The integratedinsertions at the points yi appear as if they had 
ome from expanding an additionalintera
tion term in the a
tion with the �eldV� 12b (y)V �k2 ; k2 (y) = e� 1b '(y;�y)+ipk ~�(y;�y) ; (3.12)where ~�(y; �y) = �L� �R as before. In fa
t, the total 
harge of exponentials of the �eld �in our 
orrelator is 1pk NX�=1m� �Npk2 + pk2 (N � 2� S) = �iQ� :Hen
e, if we expand the exponential of integrated vertex operators of the form (3.12), onlya single term 
ontributes, namely the one with N � 2 � S insertions of the intera
tion.Here it is essential that � is a 
ompa
t free bosoni
 �eld. Thereby, we have shown that
orrelation fun
tions in the 
igar 
onformal �eld theory* NY�=1	j�m� ; �m�+
ig = �N�2�S NY�=1N j�m� ; �m� * NY�=1V�� (z�)V �m�� k2 ; �m�� k2 (z�) + (3.13)may be 
omputed by evaluating the 
orrelator on the right hand side in the theoryS('; �) = Z d2w2�  �'��'+ �����+ pg4 R(Q''+Q~� ~�) + ~�e 2b' � 2e� 1b '+ipk ~�! : (3.14)In our derivation, the new a
tion S('; �) arises as a perturbation of Liouville theoryby the exponential intera
tion term (3.12). For the exponentiation of our degenerate�eld insertions into a term of the a
tion it was 
ru
ial that we had repla
ed the Liouvilleintera
tion by its dual one in the previous step. In fa
t, only after the repla
ement b! b�1in Liouville �eld theory, the two intera
tion terms of eq. (3.14) have a 
ommon regime inwhi
h they both be
ome small. A fun
tional S('; �) with the intera
tion (3.12) and theoriginal Liouville exponential exp(2b') was 
onsidered in [23℄ as a possible dual of the
igar 
onformal �eld theory. The twisted Sine-Liouville theory su
h an S('; �) was meantto des
ribe, however, is not really well-de�ned. It 
ertainly does not provide a weakly
oupled dual for the strongly 
urved 
igar ba
kground.16



3.2.3 Relation with Sine-Liouville theoryThere is not mu
h left to be done. In fa
t, in eqs. (3.13) and (3.14), we have derived aduality between the 
igar 
onformal �eld theory and some new 2-dimensional �eld theorythat involves two exponential intera
tion terms. It relates N point fun
tions betweenthe two models and maps the strong 
oupling regime of one model to the weak 
ouplingregime of the other. The only remaining problem is that our ba
kground 
harges andintera
tion terms do not look at all like those of Sine-Liouville theory.Part of this issue 
an be repaired immediately. To do so, we observe that the squarelength Q2 = Q2' + Q2~� of our ba
kground 
harge is the same as for Sine-Liouville theory,i.e. Q2 = b2. Hen
e, it is possible to perform a rotation in �eld spa
e from the �elds ' and~� to some new �elds � and ~X with ba
kground 
harges Q� = b and Q ~X = 0, respe
tively,i.e. � = (k � 1)'� ipkb�1 ~� ; (3.15)~X = �ipkb�1 '� (k � 1)~� : (3.16)When expressed through our new �elds, the two exponential intera
tion terms be
omeVL = exp(2b�1') = exp(2b�1(k � 1)�� 2ipkb�2 ~X) ; (3.17)V� = exp(�b�1'+ ipk~�) = exp(b�1�� ipk ~X) : (3.18)Note that the exponential V� is one term of the ta
hyon potential (1.3) in Sine-Liouvilletheory. Only VL still looks very di�erent from the se
ond 
ontribution V+ to the ta
hyonpotential. But we shall see below that VL may be identi�ed with V+ through a re
e
tionwith respe
t to the exponent of the intera
tion term V�.Before we explain the identi�
ation of VL and V+ we want to approa
h the issue ofre
e
tions in a more general 
ontext. Suppose we are given some theory S with n bosoni
�elds. We denote their ba
kground 
harges by ~Q = (Qi) where i = 1; : : : ; n. Let us alsoassume that the n �elds intera
t through p exponential terms. These involve a sets ofve
tors ~�� = (�i�) with � running from � = 1 to � = p. As in our example (3.17), (3.18),we shall assume ~��( ~Q � ~��) = 1 so that all intera
tion terms are marginal. With thesenotations introdu
ed, our theory looks as follows,S = 12� Z d2w nXi=1 �Xi ��Xi + nXi=1 pg4 R( ~Q; ~X) + pX�=1 �� e2(~�� ; ~X)! : (3.19)17



Now we 
an pass to an equivalent theory by performing one of the following re
e
tionsw� : ~�� �! ~�� + ~�� + (1� 2(~��; ~��)) ~��(~��; ~��) : (3.20)In other words, we 
an pi
k any pair of labels �; � 2 1; : : : ; p and then repla
e the ve
tors�� in our theory by ~� 0� = w�~�� ; ~� 0� = ~�� for � 6= � :The re
e
tion of the ve
tor ~�� should be a

ompanied by an appropriate adjustment ofthe 
orresponding bulk 
oupling ��. We shall denote the 
orresponding 
oupling by �0�.All other bulk 
ouplings �0� = �� with � 6= � remain the same. For � = � the re
e
tioninvarian
e of S follows from the self-duality of the Liouville �eld X� . When � 6= �, theequivalen
e of the 
orresponding models is a 
onsequen
e of a simple �eld identi�
ation(see Appendix B for more details).Let us now apply these general remarks to the 
ase at hand. After the rotation (3.15),(3.16), our model is of the general form (3.19) with~�1 = ((k � 1)=b;�ipk=b2) ; ~�2 = (1=2b;�ipk=2)and ~Q = (b; 0). We 
laim that a single re
e
tion of �1 with w2 is ne
essary in order toobtain the missing intera
tion term of the Sine-Liouville model. Indeed,w2(~�1) = (1=2b; ipk=2) :Hen
e, after re
e
tion, our intera
tion term ~�VL takes the form~�VL = ~�e2 k�1b ��2ipkb2 ~X = �2�2�2 e 1b�+ipk ~X = �2�2�2V+ (3.21)where �2 = ~�2�2 1
(2� k) : (3.22)Here we used the re
e
tion properties of ta
hyon vertex operators in 
 = �2 Liouvilletheory (see Appendix B). The value 
 = �2, and the pre
ise form of the new 
osmologi
al
onstant, is determined by the ba
kground 
harge Q� = � ip2 of the �eld � ip2(b�1� �ipk ~X) in the exponent of V�.In order to make the 
oeÆ
ients of V+ and V� in our �nal answer look more symmet-ri
ally, we shift the zero mode of ~X su
h that we end up withS(�;X) = 12� Z d2w �����+ �X ��X + pg4 RQ��+ 2��e 1b �+ipk ~X + 2��e 1b ��ipk ~X! :18



This is indeed the a
tion of the Sine-Liouville model. The parameter � is determinedthrough b by the two equations (3.22) and (3.11).It remains to address the pre
ise form of the vertex operators that we should use when
al
ulating 
orrelation fun
tions for the 
igar through Sine-Liouville theory. In equation(3.13), these took the formN jm; �m V�(z)V �m� k2 ; �m� k2 (z) = �(�j �m)�(1 + j + �m)e2b(j+1+ 12b2 )'+i 2pk((m� k2 )�L�( �m� k2 )�R) : (3.23)Now we rewrite the exponents of these vertex operators in terms of the rotated �elds �L; �Rand XL; XR. The step requires to spit the equations (3.15), (3.16) into four equations forthe left and right 
omponents of the various �elds. The resulting exponents are rather
ompli
ated,N jm; �m V�(z)V �m� k2 ; �m� k2 (z) = �(�j �m)�(1 + j + �m) e2�L��L+2�LXXL+2�R� �R+2�RXXR (3.24)where 0B� �L��LX 1CA = 0B� b(k � 1)(j + 1 + 12b2 ) + 1b (m� k2 )�ipk(j + 1 + 12b2 )� i 1pk(k � 1)(m� k2) 1CA :(3.25)The parameters �R� and �RX are given by similar formulas but with an opposite sign inthe expression for �RX and �m instead of m. Now we perform the re
e
tion wL2 obtainedfrom �L2 = (1=2b;�ipk=2) on the ve
tor ~�L,wL2 (~�L) = ~�L + ~�L2 + (1� 2(~�L; ~�L2 )) ~�L2(~�L2 ; ~�L2 ) = �b(j + 1); im=pk � :The 
orresponding 
al
ulation for the right 
omponents di�ers only by some signs andresults in wR2 (~�R) = (b(j + 1);�i �m=pk). It is remarkable that the re
e
tion w2 mapsthe 
ompli
ated expression (3.25) for the ve
tor ~� onto something so mu
h simpler. Inparti
ular, the re
e
tion removed the shifts j ! j+1=2b2 and m! m�k=2 that enteredour 
omputations long ago through the rede�nitions (2.14) and (3.5).The �eld identi�
ation of vertex operators also involves an additional fa
tor. Thisso-
alled re
e
tion amplitude is worked out in Appendix B. In our 
ase, it turns outto remove the numeri
al prefa
tor in the vertex operator (3.24), up to an overall sign.Namely, we �nd N jm; �m V�(z)V �m� k2 ; �m� k2 (z) � � e2b(j+1)�+i 2pk (mXL� �mXR)= � e2b(j+1)�ei npkX+ipkw eX ;19



where m = (kw + n)=2 and �m = (kw � n)=2, as before. Hen
e, we re
overed the 
onven-tional vertex operators of Sine-Liouville theory. Inserting our results into eq. (3.13), weobtain * NY�=1	j�m� ; �m�+
ig = N * NY�=1 e2b(j�+1)�ei n�pkX+ipkw� eX+SL (3.26)with the overall fa
tor N = (�1)N�S�N�2�2S��S depending on � and S. The righthand side of the above expression is to be evaluated in Sine-Liouville theory with radiusR = pk and a bulk 
osmologi
al 
onstant that is determined through b by the twoequations (3.22) and (3.11). Thereby, we have established the equality (1.5) of 
orrelatorsin the two models on the sphere.4 Generalization to surfa
es of higher genusHaving su

essfully 
ompleted our proof of the FZZ-duality we would now like toextend it to surfa
es of genus g � 1. Most of our analysis in subse
tion 3.2 
arries overto general 
losed Riemann surfa
es without any 
hanges. Our main task is to extendthe relation (3.8) between the 
igar and Liouville �eld theory. In order to do so, we willbrie
y review our previous study [12℄ ofH+3 
orrelation fun
tions on higher genus surfa
es.At the same time, we shall in
lude spe
tral 
ow. As in the 
ase of the sphere, we thendes
end to the 
igar and derive a relation with Liouville �eld theory. Some ne
essaryba
kground material on how to gauge the H+3 WZNW model on higher genus surfa
es is
olle
ted in Appendix A. The �nal step in the derivation of the 
orresponden
e betweenthe 
igar and Liouville theory requires good 
ontrol of the Ja
obian for the 
oordinatetransformation from momenta �� et
. to insertion points yi. This Ja
obian is dis
ussedin the te
hni
al Appendix C.4.1 The H+3 - Liouville 
orresponden
e - genus g � 1From now on let � be a generi
 Riemann surfa
e of genus g and with a �xed 
omplexstru
ture. On � there exist g holomorphi
 one-forms !l with l = 1; � � � ; g. As usual, wenormalize them su
h that I�k !l = Ækl ; I�k !l = �kl ; (4.1)20



where the set of (�l; �l) is a 
anoni
al basis of homology 
y
les. The 
omplex matrix � isthe period matrix of the surfa
e �.Let us turn attention to the �elds �; 
; � of the WZNW model. Originally, these are(possibly multi-valued) fun
tions on the surfa
e �. But we shall 
onsider them as (quasi-)periodi
 fun
tions on the Ja
obian by means of the Abel map (wk) = (R w !k) 2 C g . Theperiodi
ity 
onditions we impose look as follows�(wk + �klnl +mkj�) = e2�inl�l�(wkj�) ;
(wk + �klnl +mkj�) = e�2�inl�l
(wkj�) ; (4.2)�(wk + �klnl +mkj�) = �(wkj�) + 2�nlIm�lbfor nl; mk 2 Z. The 
omplex parameters �l; l = 1; : : : ; g; that determine the behavior of�; 
 and � under shifts along the �-
y
les are 
alled twists. Be
ause of these twists, 
does not possess a zero mode. On the other hand � still has g� 1 zero modes. These areproportional to �-twisted holomorphi
 di�erentials !�� [24, 12℄.As in the genus zero 
ase, we 
ompute (N + 1)-point fun
tion in the presen
e of aninsertion vS(�) of the spe
trally 
owed identity �eld at z = �,* NY�=1 Vj�(��jz�) vS(�) +H(�;$;�) = Z D��D�
 ~D�� e�S[�;
;�℄ NY�=1 Vj�(��jz�) eS�(�)=bon a Riemann surfa
e � of genus g. The subs
ript (�;$; �) indi
ates that we evaluatethe 
orrelator with �xed twists �k, �xed 
oeÆ
ients $� of the � zero modes, and �xed
omplex stru
ture �kl on the Riemann surfa
e. The evaluation of physi
al 
orrelators inthe WZNW model requires setting �k = 0 and integrating over zero modes $�. But the
onstru
tion of the 
orrelators in the gauged model (
igar) and other appli
ations on theWZNW model require to keep the expli
it dependen
e on both twists and zero modes(see below).The 
al
ulation leading from the H+3 WZNW model to Liouville �eld theory pro
eedsessentially as on the sphere before. It utilizes a number of rather basi
 fun
tions on theJa
obian that we shall introdu
e while sket
hing the main steps of the derivation. See[25, 26, 27℄ for some properties of fun
tions on a generi
 Riemann surfa
e. To begin with,we integrate out the �eld 
(w), just as in se
tion 2. Due to the presen
e of the various21



vertex operators Vj�(��jz�), the �eld �(w) takes the following form�(w) = NX�=1����(w; z�) + g�1X�=1$�!��(w) : (4.3)This expression for �(w) repla
es our formula (2.11). It involves the obje
t ��(w; z�) witha single pole at w = z� . The latter may be 
onstru
ted expli
itly in terms of the thetafun
tion �Æ(zj�) = Xn2Zg exp i�[(n + Æ1)k�kl(n+ Æ1)l + 2(n+ Æ1)k(z + Æ2)k℄ : (4.4)Here, Æk = (Æ1k; Æ2k) with Æ1k; Æ2k = 0; 1=2 denotes the spin stru
ture along the homology
y
les �k and �k. With the theta fun
tion �Æ(zj�) we 
an build the following auxiliaryfun
tion hÆ(z) through (hÆ(z))2 = Xk �k�Æ(0j�)!�k (z) : (4.5)In terms of these obje
ts, the propagator ��(w; z) 
an be written as [12℄��(w; z) = (hÆ(w))2�Æ(R wz !) �Æ(�� R wz !)�Æ(�) (4.6)with an odd spin stru
ture Æ. Thereby, we have fully explained the general form (4.3)of �(w). Next, let us see how to generalize the 
onstraints (2.12) from the sphere to anarbitrary surfa
e. Be
ause we inserted the operator vS(�) in our 
orrelator, the obje
t�(w) along with its �rst S � 1 derivatives has to vanish at w = �,fn;�(�;$; �) := NX�=1���(n�1)� (�; z�) + g�1X�=1$�!�(n�1)� (�) = 0 : (4.7)Here, the supers
ript (n � 1) stands for the (n � 1)th derivative and the integer n runsover n = 1; : : : ; S. In 
ontrast to the 
orresponding relations (2.12), there is no 
onstraintfor n = 0, at least as long as the twists are kept at generi
 values (see [12℄ for a moredetailed dis
ussion).On
e more, we would like to bring the fun
tion (4.3) into a produ
t form similar toeq. (2.13). This may be a
hieved using another basi
 fa
t about one-di�erentials on asurfa
e of genus g, namely that they possess 2(g� 1) more zeros than they possess poles.Consequently, we 
an rewrite �(w) as�(w) = uE(w; �)SQMi=1E(w; yi)�(w)2QN�=1E(w; z�) : (4.8)22



This expression en
odes the M = N + 2g � 2 � S zeroes of order one at the pointsw = yi; i = 1; : : : ;M; and the zero of order S at w = �. It uses the well known primeform E(z; w) whi
h is de�ned throughE(z; w) = �Æ(R zw !j�)hÆ(z)hÆ(w) ; (4.9)where �Æ and hÆ are the same as in eqs. (4.4) and (4.5) above. By 
onstru
tion, the primefrom E(z; w) has a single zero at z = w. The other fun
tion �(w) that appears in theformula (4.8) is a g=2-di�erential with neither poles nor zeros. Its de�nition 
an be founde.g. in [12, 28℄.The rest of the 
al
ulation 
an be 
opied from our dis
ussion in se
tion 2. As before,we rede�ne the �eld � through the following pres
ription,'(w; �w) := �(w; �w) + 12b �S ln jE(w; �)j2+ (4.10)+ MXi=1 ln jE(w; yi)j2 � NX�=1 ln jE(w; z�)j2 + 2 ln j�(w)j2 � ln ju�(w)j2! :Then we evaluate the 
hange of the kineti
 term. The resulting formula for 
orrelationfun
tions in the WZNW model involves Liouville 
orrelators with M = N + 2g � 2 � Sdegenerate �eld insertions. The pre
ise expression is* NY�=1 Vj�(��jz�) vS(�) +H(�;$;�) = (4.11)= SYn=1 Æ2(fn;�(�;$; �))j�(�)j2Sj�gN j2 * NY�=1 V�� (z�) MYi=1 V� 12b (yi)+L� :Our notations for �elds in the Liouville 
orrelation fun
tion on the right hand side are thesame as in eq. (2.17) above. The 
onstraint fun
tions fn;� were introdu
ed in eq. (4.7).In addition, the right hand side of eq. (4.11) involves a prefa
tor �gN of the formj�gN j2 = e 34kUg j det 0r�j�2juj2�2g� Sb2 NY�=1 j�(z�)j�2� 2b2 MYi=1 j�(yi)j2+ 2b2 � (4.12)� NY�<� jE(z�; z�)j 1b2 MYi<j jE(yi; yj)j 1b2 NY�=1 MYk=1 jE(z�; yk)j� 1b2 :The prime in det 0r� indi
ates that we drop the 
ontribution from the zero mode. Thefun
tion Ug, �nally, is de�ned byUg = 1192�2 Z d2wd2yqg(w)R(w)qg(y)R(y) ln jE(w; y)j2 : (4.13)23



Here, g(w) denotes the metri
 on the Riemann surfa
e and R is its 
urvature. This
on
ludes our derivation of the H+3 -Liouville 
orresponden
e for higher genus surfa
es.The spe
ial 
ase S = 0 was treated in more detail in [12℄.4.2 The 
igar-Liouville 
orresponden
e - genus g � 1In this subse
tion, we would like to relate 
orrelators of 
igar model to those of Liouville�eld theory with a free boson. Thereby, we shall extend eq. (3.8) to a general Riemannsurfa
e of genus g. Our starting point is the following presentation of the 
igar 
orrelationfun
tions in terms of 
orrelators of the H+3 WZNW model and a free boson X,* NY�=1	j�m� ; �m� (z�)+
ig = �FP(Â) Z DgDX gYl=1 d2�le�S
ig[g;X℄� NY�=1	j�m� ; �m� (z�) : (4.14)The vertex operators are given in eq. (3.3), and formula (4.14) is derived in AppendixA. The right hand side is 
omputed in the produ
t of an H+3 WZNW model and a freebosoni
 �eld theory,* NY�=1	j�m� ; �m� (z�)+
ig = j det 0�j2 Z g�1Y�=1 d2$� gYl=1 d2�l� (4.15)� " NY�=1 Z d2��j��j2�m�� �� �m�� #*V X� kS2 ;� kS2 (�) eS�(�)=b NY�=1V Xm� ; �m�(z�)Vj�(��jz�)+H�FS :Sin
e the vertex operator does not in
lude (b; 
)-ghosts, the Faddeev-Popov determinant
an be fa
tored out. Here we have 
hosen the measure for $� su
h that the overall fa
torbe
omes simple.Utilizing the result (4.11) from the previous subse
tion, we 
an express all H+3 
orre-lators through 
orrelation fun
tions in the Liouville �eld theory. As in the 
ase g = 0, werede�ne the �eld X to remove the remaining expli
it �-dependen
e,�L(w; �w) := XL(w; �w)� ipk2 (S lnE(w; �)+ (4.16)+ MXi=1 lnE(w; yi)� NX�=1 lnE(w; z�) + 2 ln�(w)� lnu�(w)! :A similar rede�nition is performed for �R. From the de�nition of X (see eq. (A.15) inAppendix A) we 
an see that XL and XR re
eive shifts similar to the one for the �eld� when we go around a �-
y
le, see the third line of eq. (4.2). Through the rede�nition24



(4.16), the new �elds �L and �R be
ome periodi
. The me
hanism is the same as for theLiouville �eld '. We 
an now pro
eed as before and obtain* NY�=1	j�m� ; �m�(z�)+
ig = Z QMj=1 d2yjM ! NY�=1N j�m� ; �m��� * NY�=1V��(z�)V �m�� k2 ; �m�� k2 (z�) MYj=1V� 12b (yj)V �k2 ; k2 (yj)+ : (4.17)The derivation of eq. (4.17) requires a generalization of the expression (3.7) for the Ja
o-bian to surfa
es of genus g � 1,NY�=1 d2��j��j2 g�1Y�=1 d2$� gYl=1 d2�l SYn=1 Æ(fn;�(�;$; �)) j det 0�j2j det 0r�j2 = (4.18)= QN�<� jE(z�; z�)j2QMi<j jE(yi; yj)j2QMi=1 j�(yi)j2QN�=1QMi=1 jE(z�; yi)j2QN�=1 j�(z�)j2j�(�)j2S d2ujuj4�2g+2S MYi=1 d2yi :We prove this formula in Appendix C. On
e we have arrived at eq. (4.17), the stepswe performed in se
tion 3.2 go through without any 
hanges. In parti
ular, we 
anexponentiate the degenerate �eld insertions and then work our way through re
e
tionsand rotations until we arrive at the relation (1.5) between 
orrelators on arbitrary surfa
es.5 Con
lusion and open problemsIn the previous three se
tions we have established 
omplete agreement between 
or-relation fun
tions of ta
hyon vertex operators on the 
igar and in Sine-Liouville theory.On the other hand, equivalen
e of the two models, i.e. the agreement of all 
orrelationfun
tions, still needs to be addressed. The proof is only 
ompleted on
e we have shownthat both models possess the same 
hiral symmetry and that our ta
hyon vertex operatorsform the set of primary �elds with respe
t to this 
hiral algebra. Both statements are infa
t well established. Therefore, we shall only outline the main ingredients and provide afew referen
es to the original literature.The 
hiral symmetry of the 
igar 
onformal �eld theory, often denoted by 
W1(k),was studied many years ago, right after the model had been �rst dis
ussed. A very
onvin
ing des
ription of 
W1(k) along with extensive referen
es to earlier 
ontributions
an be found in [29℄. Given the basi
 �elds � and X of the 
igar 
onformal �eld theory25



one may 
onstru
t the following parafermioni
 
urrents	�(z) = i �b�1 ��� ipk �X� e�2i 1pk XR : (5.1)By the equation of motion, these �elds turn out to be 
hiral. Sin
e their 
onstru
tioninvolves splitting the �eld X into its 
hiral 
omponents, however, parafermioni
 
urrentsare not lo
al. On the other hand, 	�(z) may be used to generate an in�nite set Ws; s =2; 3; 4; : : : of lo
al 
hiral �elds with weight hs = s. Through repeated operator produ
tsone �rst �nds the usual stress energy tensor T = W2 and then a �eld W3 of the formW3(z) = 6k � 83 (�X)3 + 2b2 (��)2�X + 1b3 �2� �X � kb �� �2X + k6�3X : (5.2)One may show that all higher weight �elds Ws; s � 4, 
an be re
overed from operatorprodu
ts of T andW3 alone. We 
an therefore think of 
W1(k) either as the 
hiral algebraobtained from T and W3 or as the algebra of lo
al �elds with parafermioni
 
onstituents.The algebra 
W1(k) suÆ
es to generate the entire state spa
e of the 
igar 
onformal �eldtheory out of the primaries jj;m; �mi = 	Jm; �m(0)j0i.Let us now swit
h to Sine-Liouville theory. We may employ either the expli
it formula(5.1) for parafermions or the 
onstru
tion (5.2) of W3 to show that the 
hiral symmetryalgebra 
W1(k) is preserved by the intera
tion terms in the Sine-Liouville model, i.e.Iz dwW3(w)V�(z; �z) = 0 = Iz dw	�(w)V�(z; �z) : (5.3)Here, � = � and V� are the two exponentials that appear in the intera
tion terms ofthe Sine-Liouville model. Interested readers may �nd a more detailed dis
ussion andreferen
es to earlier works in [30℄. In 
on
lusion, the 
igar and Sine-Liouville modelspossess the same 
hiral symmetries. Therefore, the main result of this note proves thatthey are equivalent.In the introdu
tion we have presented the AdS/CFT 
orresponden
e as our main mo-tivation for studying the strong-weak 
oupling duality of the non-
ompa
t 
igar geometry.Obviously, the 2-dimensional 
igar is a rather simple toy model for realisti
, higher di-mensional holographi
 ba
kgrounds, su
h as AdS5 � S5. Still, it is intriguing to see howthe physi
s of a strongly 
urved holographi
 ba
kground 
an be mapped to a dual weakly
oupled world-sheet model. Let us stress that none of the steps in our analysis seem torely in an essential way on the parti
ular target spa
e dimension of the 
igar. On the other26



hand, we 
ertainly exploited the extended 
hiral symmetry of the model. It seems un-likely, however, that 
hiral symmetries are really all that 
ru
ial. In [31, 32℄, for example,Fateev des
ribed several dualities similar to the one between the 
igar and Sine-Liouvilletheory, but involving massive integrable models. In any 
ase, �nding expli
it higher di-mensional examples of weakly 
oupled world-sheet models for strongly 
urved holographi
ba
kgrounds appears as an interesting dire
tion for further resear
h. Su
h dual models
ould eventually mediate between strongly 
oupled string physi
s and a weakly 
oupledgauge theory on the boundary of AdS5.Even though the extension of our analysis to higher dimensional target spa
es seemspossible in prin
iple, it 
ould be te
hni
ally 
hallenging. The spa
e AdS5�S5, for example,arises as a base of the 
oset superspa
e SU(2,2j4)/(SO(4,1)�SO(5)). Sin
e (super-)groupsof higher rank are involved in this 
onstru
tion of an AdS5 ba
kground, the AdS/CFT
orresponden
e motivates an extension of the 
orresponden
e between H+3 and Liouvilletheory to (super-)groups su
h as SL(N) or PSL(NjN). WZNW models on SL(N), forexample, possess a well studied relation with Toda �eld theories through Hamiltonianredu
tion. En
ouraged by the su

essful treatment of SL(2), one may hope to upgradeembeddings of Toda theory into WZNW models to a full 
orresponden
e. At the 
riti
allevel k = N , su
h a relation is understood as one of the rami�
ations of Langlands duality.Interested readers may �nd a detailed explanation of the so-
alled geometri
 Langlandsduality and its relation to 
onformal �eld theory, along with many further referen
es e.g.in [33℄ (see also [11, 34℄ for the 
onne
tion with the H+3 -Liouville 
orresponden
e). Wehope to report on an o�-
riti
al version of the geometri
 Langlands duality for SL(N) andother (super-)groups of higher rank in the future.A
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A Cigar �eld theory as a gauged WZNW modelIn this appendix we dis
uss the 
onstru
tion of the 
igar 
onformal �eld theory as agauged WZNW model, see also, e.g, [35, 36, 37, 38℄. Our treatment is not restri
ted tothe 
ase of genus g = 0. To begin with, let us re
all that the a
tion of the H+3 WZNWmodel takes the formSWZNW[g℄ = k2� Z d2w ������+ e�2� ��
��
� : (A.1)Here and in the following we shall use the letter g as a shorthand for the �elds 
; �
and �. Upon introdu
tion of the two auxiliary �elds �; �� we may re
over the �rst ordera
tion (2.1) we have used throughout the main text, ex
ept for a di�erent normalizationof the �eld �.The a
tion of the 
oset theory is obtained through the usual pres
ription. If wede
ompose the U(1) valued gauge �eld A through A = Adw + �Ad �w, the a
tion of thegauged model be
omesS
ig[g;A℄ = k2� Z d2w h(���+ �A)(�� + A) + e�2�(�� + �A)
(� + A)�
i : (A.2)Expe
tation values of any operator O, su
h as a produ
t of ta
hyon vertex operators, forexample, are now 
omputed through the asso
iated path integralhOi
ig = 1Vsym Z DgDA e�S
ig[g;A℄ O ; (A.3)where Vsym is the volume of the gauge group. Path integrals of this form may be evaluatedwith the help of the Faddeev-Popov pres
ription, by introdu
ing an auxiliary system of(b; 
)-ghosts. To this end insert1 = �FP(A) Z [dxd� gYk=1 d2�k℄ Æ(A� Â�(x; �)) (A.4)into our path integral (A.3). Here, �FP(A) is the Faddeev-Popov determinant and thegauge �eld is parametrized asÂ�(x; �) = dx + �d�� �i��k(��12 )kl!l � �i�k(��12 )kl�!l ; (A.5)where k; l = 1; � � � ; g and (�2)kl = Im �kl. On a sphere we 
an always 
hoose A = �(x+ i�)and �A = ��(x� i�). This 
hoi
e is lo
ally possible on a generi
 Riemann surfa
e of genus28



g, but globally we have to in
lude zero modes. These zero modes 
orrespond to thepossibly non-vanishing holonomies along the various 
y
les, and they are proportionalto holomorphi
 one-form !l with l = 1; � � �g on the Riemann surfa
e. As our notationsuggests, the parameter �k turns out to be the twist along non-
ontra
tible 
y
les. In[12℄, we �xed these twists to obtain the relation between 
orrelators of H+3 model andLiouville theory. In our present 
ontext, however, we have to integrate out �k as well.Insertion of the identity (A.4) leads tohOi
ig = 1Vgauge Z [dxd� gYk=1 d2�kdg℄ �FP (Â�) e�S
ig[g;Â�℄ O (A.6)after the integration over A. Sin
e we 
an show that �FP(Â�) and S
ig[g; Â�℄ are in-dependent of �, the integration over � only gives an overall fa
tor Vsym, as long as theinserted vertex operators are independent of � as well.Our �rst aim is to evaluate the Faddeev-Popov measure. Sin
e the variation of gauge�eld is given by ÆÂ = dÆx + �dÆ�� �iÆ��k(��12 )kl!l � �iÆ�k(��12 )kl�!l ; (A.7)the inverse of the measure be
omes��1FP(Â) = Z [dÆxdÆ� gYk=1 d2Æ�k℄Æ(ÆÂ) (A.8)= Z [d2� 0dÆxdÆ� gYk=1 d2Æ�k℄ exp �2�i Z d2w �� 0 ��(Æx+ iÆ�) + �� 0�(Æx � iÆ�)��� exp �2�i Z d2w �� ��0Æ��k(��12 )kl!l + ��0Æ�k(��12 )kl�!l�� :We invert this expression following the standard tri
k. Thereby, we 
an express theFaddeev-Popov measure through an path integral over fermioni
 ghost systems (b; 
) and(�b; �
) along with a Grassmann integral over 2g additional variables �k and ��k. The latterare asso
iated with the variations Æ�k and Æ��k. Thus, the measure takes the form�FP(Â) = Z [d2bd2
d2g�℄ e[� 12� R d2z(b��
+�b��
)+R (�b0 ��k(��12 )kl!l+b0�k(��12 )kl�!l)℄= Z [d2bd2
℄e�Sgh[b;
℄ gYk=1 ����Z �b0(��12 )kl!l����2 : (A.9)In passing to the se
ond line, we have performed the integration over �k and ��k. Correlationfun
tions are now obtained from (A.6) by inserting the expression of Faddeev-Popov29



measure (A.9). In parti
ular, if the operator O does not involve any ghosts, we 
anexpli
itly perform the integration over the (b; 
)-ghost system, whi
h leads toZ [d2bd2
℄e�Sgh[b;
℄ = jdet0�j2 det ��12 :One may think of the determinant j det0 �j2 as arising from the Ja
obian jdA=dxd�j. Thefa
tor det ��12 , on the other hand, is due to our normalization of parameter �k.It now remains to evaluate S
ig[g; Â�=0(x; �)℄. Following [35℄, we may re-express thisa
tion through a H+3 WZNW model and an additional free boson. Let us separate x asx = xL + xR with the 
ondition xL = (xR)�. Then the gauge �eld A 
an be written asA = �xL � �i�k(��12 )kl!l = (��exL)�1�(��exL) (A.10)with ��(w; �w) = e��i�k(��12 )kl(R w !l(z)�R �w �!l(�z)) : (A.11)If the arguments are translated along the various non-trivial 
y
les of our surfa
e, thefa
tor �� pi
ks up the following phases��(wk + �klnl +mkj�) = e�2�inl�l��(wkj�) : (A.12)Even though the anti-holomorphi
 part of �� does not 
ontribute to the 
hiral gauge �eldA, it is required for �� to possess good shift properties. A similar representation 
an bewritten down for the 
omponent �A of the gauge �eld. With this in mind we now rede�neour �elds a

ording to�+ 12(xL + xR + ln j��j2) 7! � ; ���exR
 7! 
 ; ��exL�
 7! �
 : (A.13)In terms of the new �eld, the a
tion be
omes a sum of two simple 
ontributions,S
ig[g;A�=0(x; �)℄ = SWZNW[g℄� + 12� Z d2w ��X�X : (A.14)The index � on the WZNW a
tion indi
ates that the WZNW model is de�ned with thetwist as in (4.2). Furthermore, we de�ned the free boson X = XL +XR byXL := �pk2 i(xL + ln��) ; XR := pk2 i(xR + ln ���) : (A.15)The 
hiral 
omponents of X also satisfy non-trivial boundary 
onditions, due to the shiftwith ln��. In summary, we have shown that the a
tion for the 
igar model is given bysumming the a
tion of a �-twisted H+3 WZNW model, a free boson X, and a (b; 
)-system.In the main text, we only 
onsider situations in whi
h our insertion O does not involve�elds b and 
. Therefore, the (b; 
)-system de
ouples from the rest of the theory.30



B Re
e
tion: Self-duality and �eld identi�
ationThis appendix 
olle
ts a few fa
t about Liouville theory, its self-duality and re
e
-tion property. These are applied to multi-�eld models of the form (3.19) in the se
ondsubse
tion.B.1 Field identi�
ation in Liouville �eld theoryLet us �rst 
onsider a single Liouville �eld ! with bulk 
osmologi
al 
onstant � andba
kground 
harge Q! = d+1=d. Our aim is to des
ribe the re
e
tion 
oeÆ
ient of �eldsin this theory, i.e. the fun
tion D(�L; �R) that features in the relationV�L;�R = D(�L; �R)VQ!��L;Q!��R (B.1)between vertex operators V�L;�R = exp(2�L!L + 2�R!R). Here, we shall allow for situ-ations in whi
h the exponent 
ontains 
ontributions from the dual Liouville �eld ~!, i.e.with �L 6= �R. The re
e
tion 
oeÆ
ient D is severely 
onstrained by the operator produ
tof generi
 vertex operators with degenerate ones asV� d2 ;� d2 (z)V�L;�R(0) (B.2)� zd�L �zd�R V�L� d2 ;�L� d2 (0) + C�(�L; �R) zd(Q!��L)�zd(Q!��R) V�L+ d2 ;�R+ d2 (0) + : : : :Combining this expansion with the re
e
tion equation (B.1), we assign the following two
onditions C�(�L; �R)D(�L + d2 ; �R + d2) = D(�L; �R) ;D(�L; �R)D(Q! � �R; Q! � �L) = 1 : (B.3)The 
oeÆ
ient C� may be determined through a free �eld 
omputation, as e.g. in [39℄,C�(�L; �R) = � �2� Z d2xhV�L;�R(0)V� d2 ;� d2 (1)e2d!(x)VQ!��L� d2 ;Q!��R� d2 (1)i= ��
(1 + d2)�(�1 + 2d�L � d2)�(1� 2d�R)�(2� 2d�R + d2)�(2d�L) : (B.4)There is a unique analyti
 solution to the 
onstraints (B.3) that is 
onsistent with theduality symmetry under simultaneous ex
hange d$ 1=d and �L $ �R. It is given byD(�L; �R) = (�
(d2))(Q!��L��R)=d �(2d�L � d2)�(�1 + 2�Rd � 1d2 )d2�(1� 2d�R + d2)�(2� 2�Ld + 1d2 ) : (B.5)31



Applying the re
e
tion to the Liouville �eld itself, i.e. to the 
ase with �L = �R = d, weinfer that the bulk 
osmologi
al 
onstant ~� of the dual Liouville �eld theory must takethe form ~� = 
�1(1=d2)(�
(d2))1=d2 : (B.6)In the main text, the re
e
tion of vertex operators is performed in a Liouville �eld theorywith parameter d = i=p2 and with bulk 
osmologi
al 
onstant � = �2. If we insert thesevalues into our general formula for the re
e
tion amplitude, we obtainD(�L; �R) = ��(1� ip2�R)�(ip2�L) : (B.7)Formulas (B.5) and (B.6) 
ontain all the information that is needed to perform re
e
tionsof the type (3.20) we 
onsidered in se
tion 3.2.B.2 Re
e
tion in theories with several bosoni
 �eldsOur notations and 
onventions in this subse
tion are the same as in subse
tion 3.2.3of the main text. Let us suppose that ~� is one of the ve
tors satisfying (~�; ~Q � ~�) = 1.We want to analyze the �eld identi�
ation for a vertex operator V~� that is indu
ed by theLiouville intera
tion exp 2(~�; ~X). Here ~� 
an be any ve
tor. It is 
onvenient to rede�neX~� = (d�1~� ~�; ~X) ; d~� = q(~�; ~�) : (B.8)The ba
kground 
harge for this bosoni
 �eld X~� is q~� = d~�+d�1~� and the intera
tion termis now exp 2d~�X~�.To begin with, let us isolate from the ve
tor ~� its 
omponent along ~�,~� = �~�(d�1~� ~�) + 0�~�� (~�; ~�)(~�; ~�) ~�1A ; �~� := d�1~� (~�; ~�) : (B.9)The re
e
tion along ~� is 
ontrolled by the value of the ba
kground 
harge q~� along ~�.Hen
e, upon re
e
tion, the ve
tor ~� gets repla
ed byw~�(~�) = (q~� � �~�)(d�1~� ~�) + 0�~�� (~�; ~�)(~�; ~�) ~�1A = ~� + ~� + (1� 2(~�; ~�)) ~�(~�; ~�) : (B.10)Formula (B.10) is used twi
e in the main text, namely in eq. (3.20) and after eq. (3.25).32



The results of the previous subse
tion may also be used to determine the re
e
tionamplitude that is needed to relate V~� with its re
e
tion Vw(~�). We then �ndD(~�L; ~�R) = (�~�
(d2~�))(q~���L~���R~� )=d~� �(2d~��L~� � d2~�) �(�1 + 2�R~�d~� � 1d2~� )d2~� �(1� 2d~��R~� + d2~�) �(2� 2�L~�d~� + 1d2~� ) : (B.11)Here, �~� is the bulk 
osmologi
al 
onstant in front of the intera
tion term exp 2(~�; ~X).In passing from an intera
tion term exp 2(~�; ~X) to the dual one, we must repla
e~� �! ~�(~�; ~�) and �~� �! ~�~� = ~
�1(1=d2~�) (�~�
(d2~�))1=d2~� : (B.12)The expression for the dual 
osmologi
al 
onstant was obtained from eq. (B.6) by insertingthe value d~� de�ned in eq. (B.8).C On the Ja
obianThe aim of this appendix is to 
ompute the Ja
obian (4.18) that arises when we 
hangevariables from the momenta �� to insertion points yi. We will �rst explain the main ideasin the 
ase of the sphere. Thereby, we rederive eq. (3.7) that was already established in[11, 15℄. Our derivation generalizes more or less dire
tly to surfa
es of higher genus g � 1,and these will be treated in the se
ond subse
tion.C.1 The Ja
obian on the sphereFor the sphere with genus g = 0, the separation of variables (2.13) may be written interms of the individual momenta �� by 
omparing residues,�� = u(z� � �)S QN�2�Si=1 (z� � yi)QN�6=�=1(z� � z�) : (C.1)Thereby, we obtain the following relation between di�erentialsd���� = duu � N�2�SXi=1 dyi(z� � yi) : (C.2)Before we 
ontinue, let us set S = 0. We shall treat the more general 
ase with S 6= 0 abit later. The measure in momentum spa
e may readNY�=1 d2��j��j2 Æ2(X� ��) = N�1Y�=1 �����duu � N�2Xi=1 dyi(z� � yi) �����2 " QN�1�=1 jzN � z�j2juj2QN�2i=1 jzN � yij2# : (C.3)33



We would like to rewrite the �rst fa
tor on the right hand side. In order to do so, weobserve that it may be expressed through the 
orrelation fun
tion of an auxiliary (b; 
)-system. If we adjust the 
entral 
harge su
h that the b and 
 possess 
onformal weighthb = 1 and h
 = 0 and furthermore normalize the �elds a

ording to 
(z)b(y) � 1=(z�y),we �nd N�1Y�=1  duu � N�2Xi=1 dyi(z� � yi)! = *N�1Y�=1 
(z�) N�2Yi=1 b(yi)+ duu MYi=1(�dyi) : (C.4)Noti
e that one of the insertions 
(z�) is repla
ed by the zero mode, i.e., a 
onstant mode.Utilizing the usual bosonization formulas for (b; 
)-systems we obtain�����*N�1Y�=1 
(z�) N�2Yi=1 b(yi)+�����2 = QN�1�<�=1 jz� � z� j2QN�2i<j=1 jyi � yjj2QN�1�=1 QN�2i=1 jz� � yij2 : (C.5)When this result is inserted ba
k into eq. (C.3), we re
over a spe
ial 
ase of the Ja
obian(3.7) with S = 0,NY�=1 d2��j��j2 Æ2(X� ��) = QN�<�=1 jz� � z� j2QN�2i<j=1 jyi � yjj2QN�=1QN�2i=1 jz� � yij2 d2ujuj4 N�2Yi=1 d2yi : (C.6)In order to treat the remaining 
ases with S 6= 0, we perform an indu
tion in S. So,let us assume that the relation (3.7) holds for S = s. If S is in
reased to S = s + 1, theleft hand side of eq. (3.7) readslhs(3.7) = NY�=1 d2��j��j2 Æ2 (��s�1(��)) sYn=0 Æ2  X� ��(� � z�)n! ; (C.7)where ��s�1 = P� ��(�� z�)�s�1 
ontains the 
ontributions of the N sour
e terms to themode ��s�1 of �. The right hand side of eq. (3.7) 
an be obtained from the 
ase S = sby 
hoosing one of the insertion points and moving it to the position �. Without loss ofgenerality, we shall take x := yN�2�s ! �. This giveslimx!�(rhs(3.7)S=s) = d2ujuj4+2s N�3�sYi=1 d2yid2x Æ2 (��s�1(yi; x))�� QN�<� jz� � z� j2QN�3�si<j jyi � yjj2QN�3�si=1 jyi � xj2QN�=1QN�3�si=1 jz� � yij2QN�=1 jz� � xj2 :Thereby, we have redu
ed our problem to showing thatÆ2 (��s�1(yj; x)) = 1juj2 QN�=1 jz� � �j2QN�3�si=1 jyi � �j2 Æ2(x� �) : (C.8)34



For S = s, the fun
tion �(w) is known to take the form�(w) = u(w � �)s(w � x)QN�3�si=1 (w � yi)QN�=1(w � z�) : (C.9)We 
an take this expression and expand around x � � to obtain the following expressionfor the mode ��s�1 ��s�1 = uQN�3�si=1 (� � yi)QN�=1(� � z�) (� � x) (C.10)in terms of yi. This equation leads to eq. (C.8), and thereby establishes that the formulaeq. (3.7) for the Ja
obian is valid for all 0 � S � N � 2.C.2 The Ja
obian for genus g � 1We now repeat the steps of the previous subse
tion in the 
ase of generi
 genus g � 1.In this 
ase, the separation of variables takes the formNX�=1����(w; z�) + g�1X�=1$�!��(w) = uE(w; �)SQMi=1E(w; yi)�(w)2QN�=1E(w; z�) : (C.11)Here we have denoted M = N � 2g� 2�S, as before. From this equation we 
an dedu
ethe formula for the momenta �� as�� = uE(z�; �)SQMi=1E(z� ; yi)�(z�)2QN�6=� E(z� ; z�) ; d���� = duu + MXi=1 �yi lnE(z� ; yi)dyi :This expression strongly indi
ates that the Ja
obian 
ould be derived with the use of(b; 
)-ghost system sin
e the propagator of a (b; 
)-system on a surfa
e of genus g 
an beexpressed through the prime form as h
(z)b(y)i = �y lnE(z; y).In the 
ase of genus zero only the integral over the momenta �� appears in the lefthand side of (3.7), but in the 
ase of generi
 genus the integrals over the twists �l andover the zero modes $� are involved in (4.18) as well. For the twists �l we utilize therelations to yi as �l = S Z �w !l + MXi=1 Z yiw !l � NX�=1 Z z�w !l � 2 Z �(g�1)w !l ; (C.12)where � denotes the Riemann 
onstant. By a
ting with the di�erential d on these equa-tions, we obtain the following simple relations asd�l = MXi=1 !l(yi)dyi : (C.13)35



For the zero modes $� we use the general expression asNX�=1 d����(��; z�) + g�1X�=1 d$�!��(��) (C.14)= uE(��; �)SQMi=1E(��; yi)�(��)2QN�=1E(��; z�) "duu +Xi �yiE(��; yi)dyi# ;whi
h is dedu
ed from eq. (C.11). Here we set w = �� as an arbitrary point on theRiemann surfa
e �.As in the previous subse
tion we start from S = 0 
ase and then generalize to S 6= 0
ase by making use of the indu
tion pro
edure. One may worry about the measure ofzero modes as the expression in the left hand side of (C.14) involves d�� in addition tod$�. This problem 
an be resolved by the following simple observation,NY�=1 d���� g�1Y�=1 24 NX�=1 d����(��; z�) + g�1X�=1 d$�!��(��)35 gYl=1 d�l = (C.15)= NY�=1 d���� g�1Y�=1 d$� gYl=1 d�l det�;� !��(��) :Combining everything obtained above, the left hand side of (4.18) 
an be rewritten asNY�=1 d���� g�1Y�=1 d$� gYl=1 d�l = 1det�;� !��(��) NY�=1 "duu + MXi=1 �yi lnE(z� ; yi)dyi# (C.16)� g�1Y�=1(uQMi=1E(��; yi)�(��)2QN�=1E(��; z�) "duu + MXi=1 �yi lnE(��; yi)dyi#) gYl=1 " MXi=1 !l(yi)dyi# :On
e again it is advantageous to express the right hand side of the previous equalitythrough 
orrelators in an auxiliary (b; 
)-system. Noti
e that b(y) has g zero modes !l(y)for genus g. Moreover, there is a single 
onstant mode for 
(w) (see, e.g., [28℄). Withthese fa
ts and the propagator of (b; 
)-system, we 
an express the measure asNY�=1 d2��j��j2 g�1Y�=1 d2$� gYl=1 d2�l = 1j det�;� !��(��)j2 1j det0 �j2� (C.17)� g�1Y�=1(QMi=1 jE(��; yi)j2j�(��)j4QN�=1 jE(��; z�)j2 ) ������*g�1Y�=1 
(��) NY�=1 
(z�) MYk=1 b(yk)+������2 d2ujuj4�2g MYi=1 d2yi :The fa
tor 1=j det0 �j2 is in
luded to divide the 
ontribution from the partition fun
tion.36



In the following we will show that eq. (C.17) is indeed equal to eq. (4.18) by utilizingthe bosonization formulas of (b; 
)-systems. First, we rewrite the 
orrelation fun
tion of(b; 
)-ghosts in (C.17) as [28℄������*g�1Y�=1 
(��) NY�=1 
(z�) MYk=1 b(yk)+������2 = 1j det 0�j j�(X� �� +X� z� �Xi yi +�)j2� (C.18)� Qg�1�<� jE(��; ��)j2Qg�1�=1QN�=1 jE(��; z�)j2QN�<� jE(z�; z�)j2QMi<j jE(yi; yj)j2QMi=1 j�(yi)j2Qg�1�=1QMi=1 jE(��; yi)j2QN�=1QMi=1 jE(z�; yi)j2Qg�1�=1 j�(��)j2QN�=1 j�(z�)j2 :The fa
tor (det 0� ��)�1=2 is the partition fun
tion of a 
omplex boson. The theta fun
tion,whi
h may be written as j�(P� ������)j by means of eq. (C.12), arises from summingover the solitoni
 modes. Noti
e that the fa
tors involving E(��; z�) and E(��; yi) are
an
eled if we insert the above expression (C.18) into eq. (C.17). In this way, the entiredependen
e on �� resides in a single fa
tor that is independent on any of the variables.Sin
e the ��-dependen
e is expe
ted to drop out in the end, the 
an
ellation of termsinvolving both yi; z� and �� is an important intermediate step.In order to in
orporate the last fa
tor on the left hand side of our formula (4.18),we need to analyze the partition fun
tion with twists �k. Up to now we worked witha (b; 
)-ghost system without twists, but this does not yield any partition fun
tion with�-dependen
e. Therefore, we shall now deal with (b; 
)-ghosts with twists �k, where theghosts satisfy the same twisted boundary 
onditions as the (�; 
)-system. Consequently,the b-ghost has g� 1 zero modes whi
h are proportional to the g� 1 twisted holomorphi
one-di�erentials !��(w). The simplest non-zero 
orrelator in the twisted (b; 
)-system is*g�1Y�=1 b(��)+� = det 0r� det�;� !��(��) : (C.19)We show now that this fun
tion is useful to remove the ��-dependen
e in eq. (C.17).Again appli
ation of the usual bosonization formulas leads to������*g�1Y�=1 b(��)+������2 = 1j det 0�j j�(X� �� ��� �)j2 g�1Y�<�=1 jE(��; ��)j2 g�1Y�=1 j�(��)j2 : (C.20)Then the 
ombination with eq. (C.19) gives the equalityj det 0r�j2 = 1j det�;� !��(��)j2 1j det 0�j j�(X� �� ��� �)j2 g�1Y�<�=1 jE(��; ��)j2 g�1Y�=1 j�(��)j2 :37



This equality removes the all ��-dependent terms and at the same time leads to eq. (4.18)for S = 0.The 
ases with S 6= 0 are treated as in the previous subse
tion, i.e. by indu
tion in S.Therefore, we assume that the Ja
obian is of the anti
ipated form when S = s and try toestablish the same for S = s+ 1. The �rst few steps are performed in pre
isely the sameway as on the sphere. They lead to the following requirementÆ2(��s�1(yi; x)) = 1juj2 QN�=1 jE(�; z�)j2QN�2g�3�si=1 jE(�; yi; )j2j�(�)j4 Æ2(x� �) (C.21)that repla
es our formula (C.8) from the previous subse
tion. We may prove this equationby re
alling that the prime form behaves as E(�; x) � � � x for � � x. Therefore, themode expansion of �(w) around w � � gives��s�1 = uQN�2g�2�si=1 E(�; yi)�(�)2QN�=1E(�; z�) (� � x) : (C.22)With this result we 
an easily dedu
e �rst eq. (C.21) and then the anti
ipated expression(4.18) for the Ja
obian with S = s + 1 from the 
ase S = s. Thereby, we 
on
lude ourderivation of the Ja
obian (4.18).Referen
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