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AbstratWe prove that the igar onformal �eld theory is dual to the Sine-Liouville model,as onjetured originally by Fateev, Zamolodhikov and Zamolodhikov. Sine bothmodels possess the same hiral algebra, our task is to show that orrelations ofall tahyon vertex operators agree. We aomplish this goal through an o�-ritialversion of the geometri Langlands duality for sl(2). More expliitly, we ombinethe well-known self-duality of Liouville theory with an intriguing orrespondenebetween the igar and Liouville �eld theory. The latter is derived through a pathintegral treatment. After a very detailed disussion of genus zero amplitudes, weextend the duality to arbitrary losed surfaes.
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1 IntrodutionStrong-weak oupling dualities in 2-dimensional quantum theory possess a long history,with a remarkable range of appliations. In addition to providing indispensable tools foronrete alulations, they have also taught us important lessons about non-perturbativequantum �eld theory in general. Among these dualities, those relating di�erent targetspae geometries of sigma models have reeived speial attention, in partiular from stringtheorists. Many extensions of the famous R$ 1=R duality for a ompati�ed free bosoni�eld X � X + 2�R were found, see e.g. [1℄ for a review of developments in string theoryand further referenes to original researh papers. Mirror symmetry of Calabi-Yau om-pati�ations has allowed to sum up ontributions from world-sheet instantons, a taskthat would seem virtually impossible without duality symmetries.Non-perturbative ontributions to the �0 dependene of the world-sheet model arepotentially important whenever the target spae of the string beomes strongly urved,or, more generally, when some geometri length sale is of the order of the string lengthls � p�0. In reent years, a new lass of urved target spaes has ome into fous.Through the AdS/CFT orrespondene, strongly urved (asymptotially) Anti-de Sit-ter (AdS) bakgrounds are believed to enode interesting information about gauge �eldtheories. As simple examples show, the orresponding world-sheet theories reeive non-perturbative orretions. It would be of obvious interest to apture those through pertur-bative expansions in some dual �eld theory, whenever suh a dual exists.At the moment, very little is known about target spae dualities involving AdS ormore general holographi bakgrounds, with only one exeption. It is provided by the 2DEulidean blak hole, also known as the (semi-in�nite) igar. The igar onformal �eldtheory ontains two fundamental �elds, � and X, whih take their values in the real line� 2℄ � 1;1℄ and in the interval X 2 [0; 2�R℄, respetively. In these oordinates, thenon-trivial bakground metri ds2 and the dilaton � read [2, 3, 4℄ds2 = k e�2�1 + e�2� (d�2 + k�1dX2) ; e�2� = e�2�0 (1 + e�2�) : (1.1)The ompati�ation radius R of the �eld X is related to the parameter k in the metri byk = R2. Throughout this entire note we shall set �0 = 1. The igar geometry, along withits Lorentzian ounterpart and supersymmetri extensions, possesses many interestingappliations. For us, it serves as the simplest holographi bakground in whih dualityan be addressed (see e.g. [5℄ and referenes therein).2



Duality symmetries in quantum �eld theory should ome with a presription thatmaps �elds of one model onto those of its dual. Let us reall that the tahyon vertexoperators of the igar onformal �eld theory are assoiated with the asymptoti data ofwave funtions at � = �1,	ig; j(n;w)(z; �z) = e2b(j+1)� ei nRX+iRw eX where fX = fX(z; �z) = �i Z (z;�z) �dX (1.2)is dual to the �eld X = X(z; �z). It is de�ned through a line integral over the Hodgedual �dX of the di�erential dX. We have also introdued the parameter b = 1=pk � 2that will appear frequently throughout our entire presentation. The parametrization oftahyon vertex operators in terms of the omplex radial momentum j and the quantumnumbers n; w for the irle diretion follows the usual onventions.Aording to a famous FZZ-onjeture of V. Fateev, Al. Zamolodhikov and A.B.Zamolodhikov [6℄ (see also [5℄ for a review), a dual of the igar onformal �eld theoryis given by the so-alled Sine-Liouville model. This dual theory also involves two �elds� and X with values in � 2℄ �1;1[ and X 2 [0; 2�R℄, as before. The two oordinatesparametrize a ylinder with the trivial at metri and radius R = pk. The motion ofstrings towards � � 1 is ut o� by a tahyon potential of the formV (�;X) = 4�� e 1b� os(pk ~X) : (1.3)The operator V is marginal, provided the �eld � has bakground harge Q� = b, thesame as in the igar model above. Tahyon vertex operators in Sine-Liouville theory areagain parametrized by data in the asymptoti domain �! �1 where the interation isexponentially suppressed, i.e. they take the same form as for the igar	SL; j(n;w)(z; �z) = e2b(j+1)� ei nRX+iRw eX : (1.4)The FZZ onjeture laims that one may identify vertex operators in the igar bakgroundand Sine-Liouville theory,* NY�=1 	ig; j�(n� ;w�)(z� ; �z�) +ig(k) = N * NY�=1 	SL; j�(w� ;n�)(z� ; �z�) +SLR : (1.5)The normalization N depends on the parameter b, the winding number violation S =Pw�, and the number N of vertex operators. The oupling onstant � of Sine-Liouvilletheory relates to the parameter b. An expliit formula will be spelled out below.3



The FZZ-duality has several interesting features. To begin with, it is a strong-weakoupling duality. In fat, the igar onformal �eld theory is weakly oupled for large kor, equivalently, for small b. In this regime, the tahyon potential (1.3) inreases rapidlytowards larger values of �. Hene, the model beomes strongly oupled. Another pointworth stressing is that the FZZ-duality relates a sigma model to another 2-dimensional�eld theory with onstant metri and linear dilaton, but non-trivial tahyon potential.The latter is a �nite sum of exponentials. In this respet, the relation between the igarand Sine-Liouville theory is very di�erent from the geometri target spae dualities whihare produed e.g. by the Busher rules [7, 8℄. Some tests of the FZZ-duality on thesphere were performed in [9℄. A supersymmetri version was established in [10℄, but theirargument is passing through gauged linear sigma models and hene rather indiret. Ouraim here is to give a diret derivation of the equality (1.5), �rst for the sphere and thenon an arbitrary surfae.Our proof involves two key ingredients. As a starting point, we represent the igartheory as a oset onformal �eld theory, obtained by gauging a ertain U(1) symmetryin the H+3 WZNW model. The oset formulation then allows us to invoke an intriguingorrespondene between orrelation funtions in the H+3 WZNW model and Liouville �eldtheory [11, 12℄. Thereby, we shall be able to express orrelation funtions of the igaronformal �eld theory through speial orrelators in a produt of Liouville �eld theoryand a free boson. The additional bosoni �eld arises from the gauge �eld of the osetonstrution. It partiipates atively in the redution from the igar to Liouville �eldtheory. Up to this point, all steps are performed in the path integral formulation of theigar, following losely our reent work [12℄. Clearly, suh path integral manipulations arenot suÆient to transfer us from a weakly to a strongly oupled regime. This is where theseond entral ingredient omes in. Let us reall that Liouville �eld theory is self-dual,i.e. it looks exatly the same at weak and strong oupling. Having expressed orrelatorsof the igar through Liouville theory we an apitalize on the self-duality of the latterto desribe the igar in the strong oupling regime. The resulting formulation of theigar onformal �eld theory will not look like Sine-Liouville theory at �rst, but the twodesriptions shall turn out to be related through simple rotations and reetions in �eldspae. We shall desribe these expliitly in the last part of our derivation, following ideasfrom an unpublished note of V. Fateev [13℄.The plan of our work is as follows. In the next setion we shall review and extend4



our previous path integral derivation of the orrespondene between the H+3 WZNWmodel and Liouville �eld theory. The disussion will inorporate setors obtained bythe ation of spetral ow [14℄. Suh an extension was desribed by Ribault in [15℄ andit is ruial for us in order to treat winding number violating amplitudes of the igaronformal �eld theory. Our proof of eq. (1.5) is then presented in setion 3. The fourthsetion ontains a generalization of the FZZ-duality and its proof for higher genus surfaes.In the onlusions we �nally present a list of open problems and possible appliations.2 The H+3 -Liouville orrespondeneThe main purpose of this setion is to extend our path integral derivation of the orre-spondene between the H+3 WZNW model and Liouville �eld theory to setors obtainedthrough spetral ow [14℄. On the sphere, the orresponding relation between orrelationfuntions has been derived by algebrai means in [15℄. Generalizing the treatment of [12℄,we shall arrive at the same result. Our new derivation, however, has two advantages.First of all, it also applies to the ase of maximal winding number violation that ouldnot be treated previously [15℄. More importantly, our argument extends to surfaes ofhigher genus. Those will be dealt with in setion 4.In deduing the main formula (2.17) below, we shall sketh the key ideas explained in[12℄. As we are going through the individual steps, we shall present them in a somewhatdi�erent light, stressing the similarities with the standard derivation of T-duality. Ofourse, the orrespondene between the H+3 model and Liouville �eld theory is not aT-duality, as e.g. both theories possess di�erent entral harges. Nevertheless, throughthis orrespondene, Liouville theory manages to apture all information about tahyonorrelators in the H+3 model. At �rst sight, this might atually seem a bit surprising.While tahyon vertex operators in the WZNW model arry a 3-omponent target spaemomentum, tahyoni modes in Liouville �eld theory possess momentum in one diretiononly. The resolution of this apparent paradox is intriguing: Only the radial momentumof the WZNW model is mapped to a momentum in Liouville theory. The two remainingomponents of target spae momentum, on the other hand, beome parameters speifyingthe world-sheet insertion points for degenerate �elds in Liouville theory. Suh additionalinsertions are neessary preisely beause the models on both sides of the orrespondenehave di�erent target spae dimension (entral harge).5



2.1 Correlators in the H+3 WZNW modelAs is any derivation of T-dualities (see, e.g. [7, 8℄), our �rst step is to present the H+3WZNW model in a �rst order formulation. To this end, we introdue two auxiliary �elds� and �� of weight h = 1. These supplement three �elds �;  and � of onformal weighth = 0 that ome with the target spae oordinates of the Eulidean AdS3. The ation ofthe model readsSWZNWk [�; ; �℄ = 12� Z d2w ������� � �� � ���� + Q�4 pgR�� b2� ��e2b�� : (2.1)In order for the interation term to be marginal, the �eld � must possess a bakgroundharge Q� = b = 1=pk � 2. The usual WZNW model on H+3 may be reovered from eq.(2.1) by integration over � and ��.Our task is to ompute orrelation funtions of tahyon vertex operators. There existseveral natural ways to parametrize the spae of tahyoni modes. The hoie we shalladopt is given by Vj(�jz) � j�j2j+2 e�(z)����(�z) e2b(j+1)�(z;�z) : (2.2)These vertex operators are labeled diretly by the three target spae momenta �; �� and j.Our partiular hoie of �-dependent prefator will turn out to be very onvenient lateron. The quantities we want to ompute are the orrelators* NY�=1 Vj�(��jz�) vS(�)+H = Z(S;�)D�DD� e�SWZNWk [�;;�℄ NY�=1Vj�(��jz�) eS�(�)=b : (2.3)Here, the supersript H reminds us to evaluate the orrelation funtion in the H+3 WZNWmodel. The operator vS(�) we inserted at z = � on the left hand side is obtained by atingwith S units of spetral ow on the identity �eld. We let the supersript S run throughpositive integers. The generalization to negative S is quite obvious but dealing with bothsigns at the same time would lutter our presentation below. The insertion of vS(�) hastwo e�ets on the right hand side of eq. (2.3). To begin with, it leads to an insertion ofthe vertex operator exp(S�=b). Moreover, vS(�) determines the integration domain forthe �elds � and �� in the path integral. To be more preise, the integration in eq. (2.3)is meant to extend over all �eld on�gurations suh that � and �� both possess a zero oforder S at z = �. In our analysis [12℄, we had set the parameter S to S = 0 and studied6



the usual path integral for vauum expetation values. With later appliations in mindwe now extend this treatment.Even though we may think of vS(�) as being de�ned through the path integral repre-sentation we outlined in the previous paragraph, it might be useful to pause for a momentand explain the preise relation to the ation of the spetral ow automorphism �S on theaÆne sl(2) urrent algebra. In the following disussion we shall set � = 0 and pass to anoperator formalism. Our freedom of hoosing S an then be understood as the insertionof a state jSi that is obtained from the vauum j0i through S units of spetral ow, i.e.* NY�=1 Vj�(��jz�) vS(0) +H = h0j NY�=1 Vj�(��jz�) jSi ;where jSi satis�es �S(Jan)jSi = 0 for n � 0 ; a = 3;� : (2.4)For the reader's onveniene we reall that the spetral ow automorphism �S of the sl(2)urrent algebra is de�ned by�S(J3n) = J3n � k2SÆn;0 ; �S(J�n ) = J�n�S : (2.5)We would like to rephrase the onditions (2.4) in terms of the �elds that appear in ouration. To this end, we spell out the usual free �eld realization of sl(2) urrents,J�(z) = �(z) ; J3(z) = : �(z)(z) : � b�1��(z) ; (2.6)J+(z) = : �(z)2(z) : � 2b�1(z)��(z) + k�(z) : (2.7)The onstrution of urrents through �;  and � implies that jSi = jSi(�;)
jSi� may beharaterized through�n�SjSi(�;) = 0 ; n+SjSi(�;) = 0 for n � 0 : (2.8)Furthermore, the state jSi� arries a non-vanishing harge with respet to the zero modeof the �eld �, i.e. jSi� = eSb �(0)j0i� : (2.9)By now we easily reognise the desription of vS(�) we gave above. In fat, the state jSireates a zero of order S in the �eld �(w) = P�nw�n�1 at w = 0. The e�et of jSi on7



the �eld � is aptured by the insertion of the vertex operator exp(S�=b). Obviously, theinsertion point of vS an be moved from w = 0 to any point on the sphere (or surfae). Theamplitudes (2.3) we onsidered here are (N + 1)-point funtions ontaining N unowedstates in addition to the state at z = �. The latter is obtained from the identity by Sunits of spetral ow as mentioned before. More general orrelators for whih the S unitsare distributed among all N + 1 �elds are rather easy to �nd, as disussed in [15℄. Therelation between the igar and Liouville �eld theory would be derived from its simplestform when all the spetral ow is assembled in one insertion point.2.2 The orrespondene with Liouville theorySine vertex operators do not depend on � and ��, these �elds an easily be integratedout. The resulting ation is that of the WZNW model for the usual oordinate �elds ; �and �. A \dual" desription of the WZNW model emerges when we integrate out  and� instead of � and ��. As in the ase of T-dualities, the integration over  and � givesonstraints on � and ��. Solutions to these onstraints are inserted bak into the ation.Thereby, we arrive at the dual formulation we are after. Let us now see how all this worksout for our H+3 WZNW model.As explained in muh detail in [12℄, integration over  and � gives the onstraints���(w) = 2� NX�=1��Æ2(w � z�) ; � ��( �w) = �2� NX�=1 ���Æ2(w � z�) : (2.10)If it were not for the insertion of vertex operators, these would simply require the one-di�erentials � and �� to be (anti-)holomorphi. The vertex operators at like soures andfore � and �� to possess �rst order poles with residues �� and ���� at the insertion points,respetively. On the omplex sphere, a meromorphi one-di�erential with these propertiesis uniquely determined to be of the form�(w) = NX�=1 ��w � z� ; (2.11)and similarly for ��. Due to the insertion of vS(�), � and �� possess a zero of order S atw = �. Therefore, the parameters �� must obey the following S + 1 equationsNX�=1 ��(� � z�)n = 0 for n = 0; 1; 2; : : : ; S : (2.12)8



The �rst equation with n = 0 ensures that �(w) has no pole at w =1. The uniqueness ofthe solution to eqs. (2.10) is a new feature of our analysis, distinguishing it from the aseof usual T-dualities. In the standard ases, solutions to the onstraints are parametrizedby a dual �eld. Thereby, �eld theories related by an ordinary T-duality possess the samenumber of �elds. Beause the solutions to our onstraint equations (2.10) are unique, theresulting \dual" of the H+3 WZNW model will have two �elds less than the theory westarted with.The next step is to insert the solutions to the onstraints bak into the ation. Thisleaves us with a theory of a single �eld � and a Liouville-like interation term. A seondglane at the resulting ation, however, reveals an unpleasant feature: In the plae ofLiouville's osmologial onstant we �nd a rather ompliated funtion j�(w)j2 dependingon the insertion points z� and momenta ��; ���. We an try to resolve this issue byabsorbing the unwanted funtion j�(w)j2 into a shift of the zero mode of �. Sine we aregoing to shift � by the logarithm of �(w) ��( �w), it is advantageous to bring �(w) into aprodut form �rst. Let us reall that for any one-di�erential, the number of poles exeedsthe number of zeroes by two. Hene, �(w) must have N � 2 zeroes. Sine we insertedthe operator vS(�), S of these zeroes must ome together at w = �. We will denotethe remaining N � 2 � S loations of zeroes on the sphere by w = yi.1 Furthermore,a di�erential is uniquely haraterized by the position of its zeroes and poles up to anoverall fator u. Consequently, we an rewrite �(w) in the form�(w) = u (w � �)S QN�2�Si=1 (w � yi)QN�=1(w � z�) =: uB(w) : (2.13)Thereby, we have now replaed the N parameters �� subjet to onstraints (2.12) throughN � 2� S oordinates yi and a global fator u. Now we are ready to introdue the newbosoni �eld ' through' := �+ 12b  S ln jw � �j2 + N�2�SXi=1 ln jw � yij2 � NX�=1 ln jw � z�j2 � ln ju�(w)j2! ; (2.14)where the term in brakets is ln juBj2. Here we have inluded a non-trivial Weyl fator�(z). With this fator, the world-sheet metri and its urvature are given as ds2 =j�(z)j2dzd�z andpgR = �4� �� ln j�j. Throughout most of the present note we set �(z) = 1.1In this way we have shown that the total spetral ow number must be less than N�2, i.e., S � N�2.The same onlusion was reahed from a group theoreti argument in appendix D of [16℄.9



But several details of the duality between the sigma model and Liouville theory requirea more areful treatment. This applies in partiular to the derivation of the shift in thebakground harge and to a proper regularization limw!z jw � zj2 = � ln j�(z)j2 of thedivergent expression limw!z jw � zj2, see [12℄ for details.Through our rede�nition (2.14) of the �eld � we remove the fators of � in the de�nition(2.2) of the vertex operators,j��j2(j�+1) e2b(j�+1)�(z� ) = e2b(j�+1)'(z�) (2.15)and thereby all expliit � dependene. It remains to rewrite the kineti term through thenew �eld '. Sine � ��� and � ��' di�er by a bunh of Æ-funtions whih are loalized at thepoints z� , yi and �, we obtain extra insertions of vertex operators exp(�1b') at the zeroesand poles of B. The vertex operators inserted at z� ombine with the original tahyonvertex operators while those at yi are new. Similarly, there is an extra insertion of theoperator exp(�S'=b) at the point w = �. It ombines with the vertex operatoreS�(�)=b = ju ~B(�)j�S=b2 eS'(�)=b ; ~B(�) � QN�2�Si=1 (� � yi)QN�=1(� � z�) (2.16)into some simple numerial fator ju ~B(�)j�S=b2. The latter is aneled by the numerial,�-dependent term in �� ��� so that the end results assume the form* NY�=1Vj�(��jz�)vS(�)+ = SYn=0 Æ2  NX�=1 ��(� � z�)n! j�N j2juj Sb2�2 * NY�=1V�� (z�)N�2�SYi=1 V� 12b (yi)+L
with �N = �N(u; yj; z�) = NY�<�(z��) 12b2 N�2�SYi<j (yij) 12b2 NY�=1 N�2�SYi=1 (z� � yi)� 12b2 : (2.17)Note that all dependene on the insertion point z = � has dropped from all terms butthose implementing the onstraints (2.12). The right hand side of eq. (2.17) is evaluated inthe Liouville theory. The vertex operators are V� = exp(2�') with �� = b(j� +1)+1=2b,and the number of degenerated �elds V�1=2b is given by N � 2� S.All the above an be generalized to world-surfaes of higher genus g � 1, as shown insetion 4, following our analysis in [12℄. The main point to note onerns the number ofadditional insertions: On a surfae of genus g a one-di�erential with N poles possessesN + 2g � 2 zeroes. One more, S of them should ome together at the point at whihwe insert the spetral ow of the identity �eld. The remaining N + 2g� 2� S zeros give10



rise to the insertion of degenerate �elds. With the generalization to higher genus surfaesbeing well under ontrol, the relation between the H+3 WZNW model and Liouville �eldtheory beomes a perturbative orrespondene that works order by order in the stringloop expansion.3 The Cigar{Sine-Liouville dualityWe are now ready to derive the duality between the igar onformal �eld theory andthe Sine-Liouville model. Our argument proeeds in several steps. First we use theorrespondene between the H+3 model and Liouville �eld theory to establish a similarorrespondene between the igar and a new model that involves a Liouville �eld ' alongwith a single free boson �. As before, the Liouville orrelation funtions ontain N�2�Sadditional degenerate �eld insertions. In this form, our orrespondene does not yetresemble the duality we were seeking for. To begin with, the Liouville �eld theory withinteration exp 2b' remains weakly oupled for small b, i.e. whenever the H+3 WZNWmodel is weakly oupled. Furthermore, the orrespondene relates orrelation funtionswith a di�erent number of �eld insertions. Finally, the bakground harges of the Liouville�eld ' and the boson � are found to di�er from those in the Sine-Liouville model. Weshall address eah of these three shortfalls in a separate subsetion.3.1 A orrespondene between the igar and Liouville theoryOur �rst aim is to determine orrelation funtions of tahyon vertex operators in theigar onformal �eld theory. As before, we parametrize the igar geometry through theradius R = pk of the irle at � = �1. The value of R determines the entral hargethrough ig = 2 k + 1k � 2 :Let us reall that the igar onformal �eld theory may be obtained from the H+3 WZNWmodel by a proess of gauging. Thereby, the igar model gets embedded into the ombi-nation of a H+3 WZNW model at level k and a free bosoni �eld theory,S[�; ; �;X; b; ℄ = SWZNWk [�; ; �℄ + 12� Z d2w �X ��X + 12� Z d2w(b��+�b��)along with (b; )-ghosts arising from the gauge �xing proedure (for more detail, seeappendix A). The �rst term represents the WZNW model, written one more in a �rst11



order formulation (2.1). The free boson X is ompati�ed to a irle of radius R = pk,i.e. the ompati�ation radius of X is the same as for the igar at � = �1. It hasvanishing bakground harge QX = 0.Next we turn our attention to the vertex operators. Our onventions for vertex oper-ators of the WZNW model an be found in (2.2). In order to spell out the relation withvertex operators of the igar, we need to pass to the so-alled m-basis�jm; �m(z) = N jm; �m Z d2�j�j2 �m�� �m Vj(�jz) ; N jm; �m = �(�j �m)�(j + 1 + �m) : (3.1)We have to ombine these with vertex operators of the free boson X. For the latter weuse the following notation V Xm; �m(z; �z) = ei 2pk (mXL� �mXR) : (3.2)Here, we have also introdued the �elds XL = XL(z; �z) and XR = XR(z; �z) throughX = XL+XR and fX = XL�XR. Note that our sign onvention for �m deviates from thestandard one. Vertex operators for the igar are onstruted aording to the simple rule	jm; �m(z; �z) = V Xm; �m(z; �z) �jm; �m(z; �z) : (3.3)The two parameters m and �m denote the left and right U(1) harges. They are relatedto the asymptoti momentum and winding numbers n and w (see introdution) throughm = (kw + n)=2 and �m = (kw � n)=2.Combining the results of the previous paragraphs, we are led to the following basirepresentation of our orrelation funtions,* NY�=1	j�m� ; �m� (z�)+ig = NY�=1 "N j�m� ; �m� Z d2��j��j2�m�� �� �m�� #� (3.4)� * V X� kS2 ;� kS2 (�)vS(�) NY�=1 V Xm� ; �m� (z�) Vj�(��jz�) +H�F :The orrelator on the right hand side is to be evaluated in a produt of the H+3 WZNWmodel with a single free boson. The parameter S that determines the insertion at z = � isrelated to the integers m� and �m� through P� m� = P� �m� = kS2 . For the igar onformal�eld theory, the operator at z = � is just a representation of identity �eld. Hene, theright hand side of eq. (3.4) should not depend on the insertion point z = �, a property weshall on�rm expliitly below. 12



Our �rst step now is to insert the results from setion 2 for the orrelation funtions inthe H+3 WZNWmodel. Thereby, we bring in the orrelators of Liouville theory, multipliedby the rather ompliated prefator �N (see eq. (2.17)). But there remains some expliit�-dependene in the integrand along with the integration over ��. Aording to ourgeneral strategy, we would like to rewrite the expressions entirely in terms of the newvariables u and yi. This works out very niely if we rede�ne the bosoni �eld X in a waythat is reminisent of what we did in eq. (2.14) for the �eld �,�L := XL�ipk2  S ln(w � �) + N�2�SXi=1 ln(w � yi)� NX�=1 ln(w � z�)� lnu�(w)! : (3.5)The �eld �R is de�ned by trading XL for XR and taking the omplex onjugate of theseond term. In this way we ensure that the loal �eld �(z; �z) = �L + �R remains real.Let us also note that its dual �eld ~� = �L � �R aquires a non-zero bakground hargeQ~� = �ipk. Therefore, the free bosoni �eld � has entral harge � = 1� 6k. Using thesame reasoning as in [12℄ we obtain(��)m(���) �m V Xm; �m(z�) = V �m; �m(z�) : (3.6)Thereby, we now got rid of all the expliit �-dependene in the integrand. Our rede�nitionof the bosoni �eld also leads to additional insertions of bosoni vertex operators into theorrelation funtions, muh in the same way as for the �eld '.But there is one additional important onsequene of the shift (3.5). It also produesa numerial fator similar to �N , only with the exponent 1=b2 being replaed by �k.Remarkably, the produt of �N with this new fator ombines exatly into the Jaobianfor the transformation from �� to u; yi. The latter is omputed in Appendix C and itreadsNY�=1 d2��j��j2 SYn=0 Æ2  X� ��(� � z�)n! = QN�<� jz��j2QN�2�Si<j jyijj2QN�=1QN�2�Si=1 jz� � yij2 d2ujuj4+2S N�2�SYi=1 d2yi : (3.7)In applying this substitution rule, one has to be a bit areful. Note that the parameters ��are not e�eted if we permute the insertion points yi. This means that our transformationsmap the spae of �� to a (N�2�S)!-fold over of the yi oordinate hyper-plane. Putting
13



all this together we �nally obtain* NY�=1	j�m� ; �m�+ig = Z QN�2�Si=1 d2yi(N � 2� S)! NY�=1N j�m� ; �m��� * NY�=1V�� (z�)V �m�� k2 ; �m�� k2 (z�) N�2�SYi=1 V� 12b (yi)V �k2 ; k2 (yi)+ : (3.8)The orrelation funtion on the right hand side is evaluated in the theoryS('; �) = 12� Z d2w �'��'+ �����+ pg4 R(Q''+Q~� ~�) + b2e2b'! ; (3.9)with bakground harges Q' = b + 1=b and Q~� = �ipk. We have thereby ahieved our�rst goal, namely to express N -point orrelation funtions in the igar onformal �eldtheory through orrelators of 2N � 2� S �elds in a produt of the Liouville model witha single free bosoni �eld. This is as far as the H+3 -Liouville orrespondene an take us.3.2 Derivation of the duality with Sine-Liouville theoryThe orrespondene we derived in the previous subsetion falls short of being a trueduality for a number of reasons. To begin with, it relates orrelators in the weakly oupledigar onformal �eld theory to orrelation funtions in weakly oupled Liouville theory.Here is where the famous self-duality of Liouville theory omes to our resue. Throughthe orrespondene (3.8) it provides us with a non-perturbative ompletion of the igaronformal �eld theory, i.e. a well de�ned presription to alulate igar orrelators forsmall values of the level k (large b). The next unpleasant feature of our orrespondene isthat it relates orrelators with a di�erent number of vertex operators. Sine the entralharge of the theory (3.9) is the same as for the igar onformal �eld theory, one mayexpet to do better. Indeed, our orrespondene shall be rewritten as a duality betweenN -point orrelation funtions in the seond subsetion. At that point we ould havedeided to stop if we were not fully determined to reover Sine-Liouville theory. Weshall sueed in the last part of this subsetion through a rotation in �eld spae and anappropriate �eld identi�ation.3.2.1 A weak-strong oupling orrespondeneAs we have just stated, the orrespondene we obtained in the previous subsetion doesnot seem very useful yet: Both the igar and Liouville �eld theory get weakly oupled14



for small values of the parameter b (or k � 2). Put di�erently, the Liouville interationterm exp(2b') beomes large in the regime of small urvature radius pk that we werehoping to desribe. Our path integral manipulations ould not have given us anythingmore. They apture the perturbative aspets of the two models and hene relate theweakly oupled regimes of the H+3 (or the igar) and Liouville �eld theory. What makessuh a orrespondene so useful is the fat that quantum Liouville theory looks the sameat strong and weak oupling [17℄. There is no way to derive this self-duality of Liouville�eld theory within the path integral treatment. But sine the Liouville theory is solved(see e.g. [18℄ for a review and referenes), its self-duality under the reetion b ! b�1 isfully established [19, 20℄.If we are ready to aept this additional input from quantum Liouville theory, we annow ompute our orrelation funtions in the dual theoryS('; �) = 12� Z d2w �'��'+ ����� + pg4 R(Q''+Q~� ~�) + ~�e 2b'! : (3.10)The bakground harge Q' = b + 1=b of the Liouville �eld remains the same as before.However, the inversion of the parameter b should be aompanied by an appropriateadjustment of the bulk osmologial onstant. In our ase, the orret hoie is (see e.g.[17, 21℄) ~� = �1(b�2) �b2(b2)�b�2 ; (3.11)where (x) = �(x)=�(1 � x), as usual. Let us stress that orrelation funtions of theigar onformal �eld theory are still alulated through equation (3.8). There is no needto hange the parameters of vertex operators, in spite of the fat that they happen to befuntions of b. After the inversion of b, the interation term exp 2'=b beomes weaklyoupled when we enter the strong oupling regime of the igar onformal �eld theory.3.2.2 Removing degenerate �eld insertionsWhen we were disussing the orrespondene between the H+3 WZNW model andLiouville theory we argued that degenerate �eld insertions were required in order to enodeall information about the target spae momenta on H+3 . The situation has hanged now.By gauging one of the diretions of the H+3 model we desended to a 2-dimensional targetspae. An N -point funtion on the igar involves only 2N target spae momenta andhene the N � 2 insertion points in Liouville theory are ertainly more than is needed to15



simply store information on target spae momenta. Sine we kept the bosoni �eld X inour theory rather than integrating it out, it should even be possible to do without anyadditional �eld insertions.This is indeed the ase, due to the following observation [13, 22℄: The integratedinsertions at the points yi appear as if they had ome from expanding an additionalinteration term in the ation with the �eldV� 12b (y)V �k2 ; k2 (y) = e� 1b '(y;�y)+ipk ~�(y;�y) ; (3.12)where ~�(y; �y) = �L� �R as before. In fat, the total harge of exponentials of the �eld �in our orrelator is 1pk NX�=1m� �Npk2 + pk2 (N � 2� S) = �iQ� :Hene, if we expand the exponential of integrated vertex operators of the form (3.12), onlya single term ontributes, namely the one with N � 2 � S insertions of the interation.Here it is essential that � is a ompat free bosoni �eld. Thereby, we have shown thatorrelation funtions in the igar onformal �eld theory* NY�=1	j�m� ; �m�+ig = �N�2�S NY�=1N j�m� ; �m� * NY�=1V�� (z�)V �m�� k2 ; �m�� k2 (z�) + (3.13)may be omputed by evaluating the orrelator on the right hand side in the theoryS('; �) = Z d2w2�  �'��'+ �����+ pg4 R(Q''+Q~� ~�) + ~�e 2b' � 2e� 1b '+ipk ~�! : (3.14)In our derivation, the new ation S('; �) arises as a perturbation of Liouville theoryby the exponential interation term (3.12). For the exponentiation of our degenerate�eld insertions into a term of the ation it was ruial that we had replaed the Liouvilleinteration by its dual one in the previous step. In fat, only after the replaement b! b�1in Liouville �eld theory, the two interation terms of eq. (3.14) have a ommon regime inwhih they both beome small. A funtional S('; �) with the interation (3.12) and theoriginal Liouville exponential exp(2b') was onsidered in [23℄ as a possible dual of theigar onformal �eld theory. The twisted Sine-Liouville theory suh an S('; �) was meantto desribe, however, is not really well-de�ned. It ertainly does not provide a weaklyoupled dual for the strongly urved igar bakground.16



3.2.3 Relation with Sine-Liouville theoryThere is not muh left to be done. In fat, in eqs. (3.13) and (3.14), we have derived aduality between the igar onformal �eld theory and some new 2-dimensional �eld theorythat involves two exponential interation terms. It relates N point funtions betweenthe two models and maps the strong oupling regime of one model to the weak ouplingregime of the other. The only remaining problem is that our bakground harges andinteration terms do not look at all like those of Sine-Liouville theory.Part of this issue an be repaired immediately. To do so, we observe that the squarelength Q2 = Q2' + Q2~� of our bakground harge is the same as for Sine-Liouville theory,i.e. Q2 = b2. Hene, it is possible to perform a rotation in �eld spae from the �elds ' and~� to some new �elds � and ~X with bakground harges Q� = b and Q ~X = 0, respetively,i.e. � = (k � 1)'� ipkb�1 ~� ; (3.15)~X = �ipkb�1 '� (k � 1)~� : (3.16)When expressed through our new �elds, the two exponential interation terms beomeVL = exp(2b�1') = exp(2b�1(k � 1)�� 2ipkb�2 ~X) ; (3.17)V� = exp(�b�1'+ ipk~�) = exp(b�1�� ipk ~X) : (3.18)Note that the exponential V� is one term of the tahyon potential (1.3) in Sine-Liouvilletheory. Only VL still looks very di�erent from the seond ontribution V+ to the tahyonpotential. But we shall see below that VL may be identi�ed with V+ through a reetionwith respet to the exponent of the interation term V�.Before we explain the identi�ation of VL and V+ we want to approah the issue ofreetions in a more general ontext. Suppose we are given some theory S with n bosoni�elds. We denote their bakground harges by ~Q = (Qi) where i = 1; : : : ; n. Let us alsoassume that the n �elds interat through p exponential terms. These involve a sets ofvetors ~�� = (�i�) with � running from � = 1 to � = p. As in our example (3.17), (3.18),we shall assume ~��( ~Q � ~��) = 1 so that all interation terms are marginal. With thesenotations introdued, our theory looks as follows,S = 12� Z d2w nXi=1 �Xi ��Xi + nXi=1 pg4 R( ~Q; ~X) + pX�=1 �� e2(~�� ; ~X)! : (3.19)17



Now we an pass to an equivalent theory by performing one of the following reetionsw� : ~�� �! ~�� + ~�� + (1� 2(~��; ~��)) ~��(~��; ~��) : (3.20)In other words, we an pik any pair of labels �; � 2 1; : : : ; p and then replae the vetors�� in our theory by ~� 0� = w�~�� ; ~� 0� = ~�� for � 6= � :The reetion of the vetor ~�� should be aompanied by an appropriate adjustment ofthe orresponding bulk oupling ��. We shall denote the orresponding oupling by �0�.All other bulk ouplings �0� = �� with � 6= � remain the same. For � = � the reetioninvariane of S follows from the self-duality of the Liouville �eld X� . When � 6= �, theequivalene of the orresponding models is a onsequene of a simple �eld identi�ation(see Appendix B for more details).Let us now apply these general remarks to the ase at hand. After the rotation (3.15),(3.16), our model is of the general form (3.19) with~�1 = ((k � 1)=b;�ipk=b2) ; ~�2 = (1=2b;�ipk=2)and ~Q = (b; 0). We laim that a single reetion of �1 with w2 is neessary in order toobtain the missing interation term of the Sine-Liouville model. Indeed,w2(~�1) = (1=2b; ipk=2) :Hene, after reetion, our interation term ~�VL takes the form~�VL = ~�e2 k�1b ��2ipkb2 ~X = �2�2�2 e 1b�+ipk ~X = �2�2�2V+ (3.21)where �2 = ~�2�2 1(2� k) : (3.22)Here we used the reetion properties of tahyon vertex operators in  = �2 Liouvilletheory (see Appendix B). The value  = �2, and the preise form of the new osmologialonstant, is determined by the bakground harge Q� = � ip2 of the �eld � ip2(b�1� �ipk ~X) in the exponent of V�.In order to make the oeÆients of V+ and V� in our �nal answer look more symmet-rially, we shift the zero mode of ~X suh that we end up withS(�;X) = 12� Z d2w �����+ �X ��X + pg4 RQ��+ 2��e 1b �+ipk ~X + 2��e 1b ��ipk ~X! :18



This is indeed the ation of the Sine-Liouville model. The parameter � is determinedthrough b by the two equations (3.22) and (3.11).It remains to address the preise form of the vertex operators that we should use whenalulating orrelation funtions for the igar through Sine-Liouville theory. In equation(3.13), these took the formN jm; �m V�(z)V �m� k2 ; �m� k2 (z) = �(�j �m)�(1 + j + �m)e2b(j+1+ 12b2 )'+i 2pk((m� k2 )�L�( �m� k2 )�R) : (3.23)Now we rewrite the exponents of these vertex operators in terms of the rotated �elds �L; �Rand XL; XR. The step requires to spit the equations (3.15), (3.16) into four equations forthe left and right omponents of the various �elds. The resulting exponents are ratherompliated,N jm; �m V�(z)V �m� k2 ; �m� k2 (z) = �(�j �m)�(1 + j + �m) e2�L��L+2�LXXL+2�R� �R+2�RXXR (3.24)where 0B� �L��LX 1CA = 0B� b(k � 1)(j + 1 + 12b2 ) + 1b (m� k2 )�ipk(j + 1 + 12b2 )� i 1pk(k � 1)(m� k2) 1CA :(3.25)The parameters �R� and �RX are given by similar formulas but with an opposite sign inthe expression for �RX and �m instead of m. Now we perform the reetion wL2 obtainedfrom �L2 = (1=2b;�ipk=2) on the vetor ~�L,wL2 (~�L) = ~�L + ~�L2 + (1� 2(~�L; ~�L2 )) ~�L2(~�L2 ; ~�L2 ) = �b(j + 1); im=pk � :The orresponding alulation for the right omponents di�ers only by some signs andresults in wR2 (~�R) = (b(j + 1);�i �m=pk). It is remarkable that the reetion w2 mapsthe ompliated expression (3.25) for the vetor ~� onto something so muh simpler. Inpartiular, the reetion removed the shifts j ! j+1=2b2 and m! m�k=2 that enteredour omputations long ago through the rede�nitions (2.14) and (3.5).The �eld identi�ation of vertex operators also involves an additional fator. Thisso-alled reetion amplitude is worked out in Appendix B. In our ase, it turns outto remove the numerial prefator in the vertex operator (3.24), up to an overall sign.Namely, we �nd N jm; �m V�(z)V �m� k2 ; �m� k2 (z) � � e2b(j+1)�+i 2pk (mXL� �mXR)= � e2b(j+1)�ei npkX+ipkw eX ;19



where m = (kw + n)=2 and �m = (kw � n)=2, as before. Hene, we reovered the onven-tional vertex operators of Sine-Liouville theory. Inserting our results into eq. (3.13), weobtain * NY�=1	j�m� ; �m�+ig = N * NY�=1 e2b(j�+1)�ei n�pkX+ipkw� eX+SL (3.26)with the overall fator N = (�1)N�S�N�2�2S��S depending on � and S. The righthand side of the above expression is to be evaluated in Sine-Liouville theory with radiusR = pk and a bulk osmologial onstant that is determined through b by the twoequations (3.22) and (3.11). Thereby, we have established the equality (1.5) of orrelatorsin the two models on the sphere.4 Generalization to surfaes of higher genusHaving suessfully ompleted our proof of the FZZ-duality we would now like toextend it to surfaes of genus g � 1. Most of our analysis in subsetion 3.2 arries overto general losed Riemann surfaes without any hanges. Our main task is to extendthe relation (3.8) between the igar and Liouville �eld theory. In order to do so, we willbriey review our previous study [12℄ ofH+3 orrelation funtions on higher genus surfaes.At the same time, we shall inlude spetral ow. As in the ase of the sphere, we thendesend to the igar and derive a relation with Liouville �eld theory. Some neessarybakground material on how to gauge the H+3 WZNW model on higher genus surfaes isolleted in Appendix A. The �nal step in the derivation of the orrespondene betweenthe igar and Liouville theory requires good ontrol of the Jaobian for the oordinatetransformation from momenta �� et. to insertion points yi. This Jaobian is disussedin the tehnial Appendix C.4.1 The H+3 - Liouville orrespondene - genus g � 1From now on let � be a generi Riemann surfae of genus g and with a �xed omplexstruture. On � there exist g holomorphi one-forms !l with l = 1; � � � ; g. As usual, wenormalize them suh that I�k !l = Ækl ; I�k !l = �kl ; (4.1)20



where the set of (�l; �l) is a anonial basis of homology yles. The omplex matrix � isthe period matrix of the surfae �.Let us turn attention to the �elds �; ; � of the WZNW model. Originally, these are(possibly multi-valued) funtions on the surfae �. But we shall onsider them as (quasi-)periodi funtions on the Jaobian by means of the Abel map (wk) = (R w !k) 2 C g . Theperiodiity onditions we impose look as follows�(wk + �klnl +mkj�) = e2�inl�l�(wkj�) ;(wk + �klnl +mkj�) = e�2�inl�l(wkj�) ; (4.2)�(wk + �klnl +mkj�) = �(wkj�) + 2�nlIm�lbfor nl; mk 2 Z. The omplex parameters �l; l = 1; : : : ; g; that determine the behavior of�;  and � under shifts along the �-yles are alled twists. Beause of these twists, does not possess a zero mode. On the other hand � still has g� 1 zero modes. These areproportional to �-twisted holomorphi di�erentials !�� [24, 12℄.As in the genus zero ase, we ompute (N + 1)-point funtion in the presene of aninsertion vS(�) of the spetrally owed identity �eld at z = �,* NY�=1 Vj�(��jz�) vS(�) +H(�;$;�) = Z D��D� ~D�� e�S[�;;�℄ NY�=1 Vj�(��jz�) eS�(�)=bon a Riemann surfae � of genus g. The subsript (�;$; �) indiates that we evaluatethe orrelator with �xed twists �k, �xed oeÆients $� of the � zero modes, and �xedomplex struture �kl on the Riemann surfae. The evaluation of physial orrelators inthe WZNW model requires setting �k = 0 and integrating over zero modes $�. But theonstrution of the orrelators in the gauged model (igar) and other appliations on theWZNW model require to keep the expliit dependene on both twists and zero modes(see below).The alulation leading from the H+3 WZNW model to Liouville �eld theory proeedsessentially as on the sphere before. It utilizes a number of rather basi funtions on theJaobian that we shall introdue while skething the main steps of the derivation. See[25, 26, 27℄ for some properties of funtions on a generi Riemann surfae. To begin with,we integrate out the �eld (w), just as in setion 2. Due to the presene of the various21



vertex operators Vj�(��jz�), the �eld �(w) takes the following form�(w) = NX�=1����(w; z�) + g�1X�=1$�!��(w) : (4.3)This expression for �(w) replaes our formula (2.11). It involves the objet ��(w; z�) witha single pole at w = z� . The latter may be onstruted expliitly in terms of the thetafuntion �Æ(zj�) = Xn2Zg exp i�[(n + Æ1)k�kl(n+ Æ1)l + 2(n+ Æ1)k(z + Æ2)k℄ : (4.4)Here, Æk = (Æ1k; Æ2k) with Æ1k; Æ2k = 0; 1=2 denotes the spin struture along the homologyyles �k and �k. With the theta funtion �Æ(zj�) we an build the following auxiliaryfuntion hÆ(z) through (hÆ(z))2 = Xk �k�Æ(0j�)!�k (z) : (4.5)In terms of these objets, the propagator ��(w; z) an be written as [12℄��(w; z) = (hÆ(w))2�Æ(R wz !) �Æ(�� R wz !)�Æ(�) (4.6)with an odd spin struture Æ. Thereby, we have fully explained the general form (4.3)of �(w). Next, let us see how to generalize the onstraints (2.12) from the sphere to anarbitrary surfae. Beause we inserted the operator vS(�) in our orrelator, the objet�(w) along with its �rst S � 1 derivatives has to vanish at w = �,fn;�(�;$; �) := NX�=1���(n�1)� (�; z�) + g�1X�=1$�!�(n�1)� (�) = 0 : (4.7)Here, the supersript (n � 1) stands for the (n � 1)th derivative and the integer n runsover n = 1; : : : ; S. In ontrast to the orresponding relations (2.12), there is no onstraintfor n = 0, at least as long as the twists are kept at generi values (see [12℄ for a moredetailed disussion).One more, we would like to bring the funtion (4.3) into a produt form similar toeq. (2.13). This may be ahieved using another basi fat about one-di�erentials on asurfae of genus g, namely that they possess 2(g� 1) more zeros than they possess poles.Consequently, we an rewrite �(w) as�(w) = uE(w; �)SQMi=1E(w; yi)�(w)2QN�=1E(w; z�) : (4.8)22



This expression enodes the M = N + 2g � 2 � S zeroes of order one at the pointsw = yi; i = 1; : : : ;M; and the zero of order S at w = �. It uses the well known primeform E(z; w) whih is de�ned throughE(z; w) = �Æ(R zw !j�)hÆ(z)hÆ(w) ; (4.9)where �Æ and hÆ are the same as in eqs. (4.4) and (4.5) above. By onstrution, the primefrom E(z; w) has a single zero at z = w. The other funtion �(w) that appears in theformula (4.8) is a g=2-di�erential with neither poles nor zeros. Its de�nition an be founde.g. in [12, 28℄.The rest of the alulation an be opied from our disussion in setion 2. As before,we rede�ne the �eld � through the following presription,'(w; �w) := �(w; �w) + 12b �S ln jE(w; �)j2+ (4.10)+ MXi=1 ln jE(w; yi)j2 � NX�=1 ln jE(w; z�)j2 + 2 ln j�(w)j2 � ln ju�(w)j2! :Then we evaluate the hange of the kineti term. The resulting formula for orrelationfuntions in the WZNW model involves Liouville orrelators with M = N + 2g � 2 � Sdegenerate �eld insertions. The preise expression is* NY�=1 Vj�(��jz�) vS(�) +H(�;$;�) = (4.11)= SYn=1 Æ2(fn;�(�;$; �))j�(�)j2Sj�gN j2 * NY�=1 V�� (z�) MYi=1 V� 12b (yi)+L� :Our notations for �elds in the Liouville orrelation funtion on the right hand side are thesame as in eq. (2.17) above. The onstraint funtions fn;� were introdued in eq. (4.7).In addition, the right hand side of eq. (4.11) involves a prefator �gN of the formj�gN j2 = e 34kUg j det 0r�j�2juj2�2g� Sb2 NY�=1 j�(z�)j�2� 2b2 MYi=1 j�(yi)j2+ 2b2 � (4.12)� NY�<� jE(z�; z�)j 1b2 MYi<j jE(yi; yj)j 1b2 NY�=1 MYk=1 jE(z�; yk)j� 1b2 :The prime in det 0r� indiates that we drop the ontribution from the zero mode. Thefuntion Ug, �nally, is de�ned byUg = 1192�2 Z d2wd2yqg(w)R(w)qg(y)R(y) ln jE(w; y)j2 : (4.13)23



Here, g(w) denotes the metri on the Riemann surfae and R is its urvature. Thisonludes our derivation of the H+3 -Liouville orrespondene for higher genus surfaes.The speial ase S = 0 was treated in more detail in [12℄.4.2 The igar-Liouville orrespondene - genus g � 1In this subsetion, we would like to relate orrelators of igar model to those of Liouville�eld theory with a free boson. Thereby, we shall extend eq. (3.8) to a general Riemannsurfae of genus g. Our starting point is the following presentation of the igar orrelationfuntions in terms of orrelators of the H+3 WZNW model and a free boson X,* NY�=1	j�m� ; �m� (z�)+ig = �FP(Â) Z DgDX gYl=1 d2�le�Sig[g;X℄� NY�=1	j�m� ; �m� (z�) : (4.14)The vertex operators are given in eq. (3.3), and formula (4.14) is derived in AppendixA. The right hand side is omputed in the produt of an H+3 WZNW model and a freebosoni �eld theory,* NY�=1	j�m� ; �m� (z�)+ig = j det 0�j2 Z g�1Y�=1 d2$� gYl=1 d2�l� (4.15)� " NY�=1 Z d2��j��j2�m�� �� �m�� #*V X� kS2 ;� kS2 (�) eS�(�)=b NY�=1V Xm� ; �m�(z�)Vj�(��jz�)+H�FS :Sine the vertex operator does not inlude (b; )-ghosts, the Faddeev-Popov determinantan be fatored out. Here we have hosen the measure for $� suh that the overall fatorbeomes simple.Utilizing the result (4.11) from the previous subsetion, we an express all H+3 orre-lators through orrelation funtions in the Liouville �eld theory. As in the ase g = 0, werede�ne the �eld X to remove the remaining expliit �-dependene,�L(w; �w) := XL(w; �w)� ipk2 (S lnE(w; �)+ (4.16)+ MXi=1 lnE(w; yi)� NX�=1 lnE(w; z�) + 2 ln�(w)� lnu�(w)! :A similar rede�nition is performed for �R. From the de�nition of X (see eq. (A.15) inAppendix A) we an see that XL and XR reeive shifts similar to the one for the �eld� when we go around a �-yle, see the third line of eq. (4.2). Through the rede�nition24



(4.16), the new �elds �L and �R beome periodi. The mehanism is the same as for theLiouville �eld '. We an now proeed as before and obtain* NY�=1	j�m� ; �m�(z�)+ig = Z QMj=1 d2yjM ! NY�=1N j�m� ; �m��� * NY�=1V��(z�)V �m�� k2 ; �m�� k2 (z�) MYj=1V� 12b (yj)V �k2 ; k2 (yj)+ : (4.17)The derivation of eq. (4.17) requires a generalization of the expression (3.7) for the Jao-bian to surfaes of genus g � 1,NY�=1 d2��j��j2 g�1Y�=1 d2$� gYl=1 d2�l SYn=1 Æ(fn;�(�;$; �)) j det 0�j2j det 0r�j2 = (4.18)= QN�<� jE(z�; z�)j2QMi<j jE(yi; yj)j2QMi=1 j�(yi)j2QN�=1QMi=1 jE(z�; yi)j2QN�=1 j�(z�)j2j�(�)j2S d2ujuj4�2g+2S MYi=1 d2yi :We prove this formula in Appendix C. One we have arrived at eq. (4.17), the stepswe performed in setion 3.2 go through without any hanges. In partiular, we anexponentiate the degenerate �eld insertions and then work our way through reetionsand rotations until we arrive at the relation (1.5) between orrelators on arbitrary surfaes.5 Conlusion and open problemsIn the previous three setions we have established omplete agreement between or-relation funtions of tahyon vertex operators on the igar and in Sine-Liouville theory.On the other hand, equivalene of the two models, i.e. the agreement of all orrelationfuntions, still needs to be addressed. The proof is only ompleted one we have shownthat both models possess the same hiral symmetry and that our tahyon vertex operatorsform the set of primary �elds with respet to this hiral algebra. Both statements are infat well established. Therefore, we shall only outline the main ingredients and provide afew referenes to the original literature.The hiral symmetry of the igar onformal �eld theory, often denoted by W1(k),was studied many years ago, right after the model had been �rst disussed. A veryonvining desription of W1(k) along with extensive referenes to earlier ontributionsan be found in [29℄. Given the basi �elds � and X of the igar onformal �eld theory25



one may onstrut the following parafermioni urrents	�(z) = i �b�1 ��� ipk �X� e�2i 1pk XR : (5.1)By the equation of motion, these �elds turn out to be hiral. Sine their onstrutioninvolves splitting the �eld X into its hiral omponents, however, parafermioni urrentsare not loal. On the other hand, 	�(z) may be used to generate an in�nite set Ws; s =2; 3; 4; : : : of loal hiral �elds with weight hs = s. Through repeated operator produtsone �rst �nds the usual stress energy tensor T = W2 and then a �eld W3 of the formW3(z) = 6k � 83 (�X)3 + 2b2 (��)2�X + 1b3 �2� �X � kb �� �2X + k6�3X : (5.2)One may show that all higher weight �elds Ws; s � 4, an be reovered from operatorproduts of T andW3 alone. We an therefore think of W1(k) either as the hiral algebraobtained from T and W3 or as the algebra of loal �elds with parafermioni onstituents.The algebra W1(k) suÆes to generate the entire state spae of the igar onformal �eldtheory out of the primaries jj;m; �mi = 	Jm; �m(0)j0i.Let us now swith to Sine-Liouville theory. We may employ either the expliit formula(5.1) for parafermions or the onstrution (5.2) of W3 to show that the hiral symmetryalgebra W1(k) is preserved by the interation terms in the Sine-Liouville model, i.e.Iz dwW3(w)V�(z; �z) = 0 = Iz dw	�(w)V�(z; �z) : (5.3)Here, � = � and V� are the two exponentials that appear in the interation terms ofthe Sine-Liouville model. Interested readers may �nd a more detailed disussion andreferenes to earlier works in [30℄. In onlusion, the igar and Sine-Liouville modelspossess the same hiral symmetries. Therefore, the main result of this note proves thatthey are equivalent.In the introdution we have presented the AdS/CFT orrespondene as our main mo-tivation for studying the strong-weak oupling duality of the non-ompat igar geometry.Obviously, the 2-dimensional igar is a rather simple toy model for realisti, higher di-mensional holographi bakgrounds, suh as AdS5 � S5. Still, it is intriguing to see howthe physis of a strongly urved holographi bakground an be mapped to a dual weaklyoupled world-sheet model. Let us stress that none of the steps in our analysis seem torely in an essential way on the partiular target spae dimension of the igar. On the other26



hand, we ertainly exploited the extended hiral symmetry of the model. It seems un-likely, however, that hiral symmetries are really all that ruial. In [31, 32℄, for example,Fateev desribed several dualities similar to the one between the igar and Sine-Liouvilletheory, but involving massive integrable models. In any ase, �nding expliit higher di-mensional examples of weakly oupled world-sheet models for strongly urved holographibakgrounds appears as an interesting diretion for further researh. Suh dual modelsould eventually mediate between strongly oupled string physis and a weakly oupledgauge theory on the boundary of AdS5.Even though the extension of our analysis to higher dimensional target spaes seemspossible in priniple, it ould be tehnially hallenging. The spae AdS5�S5, for example,arises as a base of the oset superspae SU(2,2j4)/(SO(4,1)�SO(5)). Sine (super-)groupsof higher rank are involved in this onstrution of an AdS5 bakground, the AdS/CFTorrespondene motivates an extension of the orrespondene between H+3 and Liouvilletheory to (super-)groups suh as SL(N) or PSL(NjN). WZNW models on SL(N), forexample, possess a well studied relation with Toda �eld theories through Hamiltonianredution. Enouraged by the suessful treatment of SL(2), one may hope to upgradeembeddings of Toda theory into WZNW models to a full orrespondene. At the ritiallevel k = N , suh a relation is understood as one of the rami�ations of Langlands duality.Interested readers may �nd a detailed explanation of the so-alled geometri Langlandsduality and its relation to onformal �eld theory, along with many further referenes e.g.in [33℄ (see also [11, 34℄ for the onnetion with the H+3 -Liouville orrespondene). Wehope to report on an o�-ritial version of the geometri Langlands duality for SL(N) andother (super-)groups of higher rank in the future.Aknowledgements: We would like to thank Patrik Dorey, Vladimir Fateev, AmitGiveon, Sylvain Ribault, Peter R�nne, Samson Shatashvilli and J�org Teshner for usefuldisussions, remarks and omments on the manusript. The work of YH is supported inpart by Researh Fellowships of the Japan Soiety for the Promotion of Siene for YoungSientists.
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A Cigar �eld theory as a gauged WZNW modelIn this appendix we disuss the onstrution of the igar onformal �eld theory as agauged WZNW model, see also, e.g, [35, 36, 37, 38℄. Our treatment is not restrited tothe ase of genus g = 0. To begin with, let us reall that the ation of the H+3 WZNWmodel takes the formSWZNW[g℄ = k2� Z d2w ������+ e�2� ����� : (A.1)Here and in the following we shall use the letter g as a shorthand for the �elds ; �and �. Upon introdution of the two auxiliary �elds �; �� we may reover the �rst orderation (2.1) we have used throughout the main text, exept for a di�erent normalizationof the �eld �.The ation of the oset theory is obtained through the usual presription. If wedeompose the U(1) valued gauge �eld A through A = Adw + �Ad �w, the ation of thegauged model beomesSig[g;A℄ = k2� Z d2w h(���+ �A)(�� + A) + e�2�(�� + �A)(� + A)�i : (A.2)Expetation values of any operator O, suh as a produt of tahyon vertex operators, forexample, are now omputed through the assoiated path integralhOiig = 1Vsym Z DgDA e�Sig[g;A℄ O ; (A.3)where Vsym is the volume of the gauge group. Path integrals of this form may be evaluatedwith the help of the Faddeev-Popov presription, by introduing an auxiliary system of(b; )-ghosts. To this end insert1 = �FP(A) Z [dxd� gYk=1 d2�k℄ Æ(A� Â�(x; �)) (A.4)into our path integral (A.3). Here, �FP(A) is the Faddeev-Popov determinant and thegauge �eld is parametrized asÂ�(x; �) = dx + �d�� �i��k(��12 )kl!l � �i�k(��12 )kl�!l ; (A.5)where k; l = 1; � � � ; g and (�2)kl = Im �kl. On a sphere we an always hoose A = �(x+ i�)and �A = ��(x� i�). This hoie is loally possible on a generi Riemann surfae of genus28



g, but globally we have to inlude zero modes. These zero modes orrespond to thepossibly non-vanishing holonomies along the various yles, and they are proportionalto holomorphi one-form !l with l = 1; � � �g on the Riemann surfae. As our notationsuggests, the parameter �k turns out to be the twist along non-ontratible yles. In[12℄, we �xed these twists to obtain the relation between orrelators of H+3 model andLiouville theory. In our present ontext, however, we have to integrate out �k as well.Insertion of the identity (A.4) leads tohOiig = 1Vgauge Z [dxd� gYk=1 d2�kdg℄ �FP (Â�) e�Sig[g;Â�℄ O (A.6)after the integration over A. Sine we an show that �FP(Â�) and Sig[g; Â�℄ are in-dependent of �, the integration over � only gives an overall fator Vsym, as long as theinserted vertex operators are independent of � as well.Our �rst aim is to evaluate the Faddeev-Popov measure. Sine the variation of gauge�eld is given by ÆÂ = dÆx + �dÆ�� �iÆ��k(��12 )kl!l � �iÆ�k(��12 )kl�!l ; (A.7)the inverse of the measure beomes��1FP(Â) = Z [dÆxdÆ� gYk=1 d2Æ�k℄Æ(ÆÂ) (A.8)= Z [d2� 0dÆxdÆ� gYk=1 d2Æ�k℄ exp �2�i Z d2w �� 0 ��(Æx+ iÆ�) + �� 0�(Æx � iÆ�)��� exp �2�i Z d2w �� ��0Æ��k(��12 )kl!l + ��0Æ�k(��12 )kl�!l�� :We invert this expression following the standard trik. Thereby, we an express theFaddeev-Popov measure through an path integral over fermioni ghost systems (b; ) and(�b; �) along with a Grassmann integral over 2g additional variables �k and ��k. The latterare assoiated with the variations Æ�k and Æ��k. Thus, the measure takes the form�FP(Â) = Z [d2bd2d2g�℄ e[� 12� R d2z(b��+�b��)+R (�b0 ��k(��12 )kl!l+b0�k(��12 )kl�!l)℄= Z [d2bd2℄e�Sgh[b;℄ gYk=1 ����Z �b0(��12 )kl!l����2 : (A.9)In passing to the seond line, we have performed the integration over �k and ��k. Correlationfuntions are now obtained from (A.6) by inserting the expression of Faddeev-Popov29



measure (A.9). In partiular, if the operator O does not involve any ghosts, we anexpliitly perform the integration over the (b; )-ghost system, whih leads toZ [d2bd2℄e�Sgh[b;℄ = jdet0�j2 det ��12 :One may think of the determinant j det0 �j2 as arising from the Jaobian jdA=dxd�j. Thefator det ��12 , on the other hand, is due to our normalization of parameter �k.It now remains to evaluate Sig[g; Â�=0(x; �)℄. Following [35℄, we may re-express thisation through a H+3 WZNW model and an additional free boson. Let us separate x asx = xL + xR with the ondition xL = (xR)�. Then the gauge �eld A an be written asA = �xL � �i�k(��12 )kl!l = (��exL)�1�(��exL) (A.10)with ��(w; �w) = e��i�k(��12 )kl(R w !l(z)�R �w �!l(�z)) : (A.11)If the arguments are translated along the various non-trivial yles of our surfae, thefator �� piks up the following phases��(wk + �klnl +mkj�) = e�2�inl�l��(wkj�) : (A.12)Even though the anti-holomorphi part of �� does not ontribute to the hiral gauge �eldA, it is required for �� to possess good shift properties. A similar representation an bewritten down for the omponent �A of the gauge �eld. With this in mind we now rede�neour �elds aording to�+ 12(xL + xR + ln j��j2) 7! � ; ���exR 7!  ; ��exL� 7! � : (A.13)In terms of the new �eld, the ation beomes a sum of two simple ontributions,Sig[g;A�=0(x; �)℄ = SWZNW[g℄� + 12� Z d2w ��X�X : (A.14)The index � on the WZNW ation indiates that the WZNW model is de�ned with thetwist as in (4.2). Furthermore, we de�ned the free boson X = XL +XR byXL := �pk2 i(xL + ln��) ; XR := pk2 i(xR + ln ���) : (A.15)The hiral omponents of X also satisfy non-trivial boundary onditions, due to the shiftwith ln��. In summary, we have shown that the ation for the igar model is given bysumming the ation of a �-twisted H+3 WZNW model, a free boson X, and a (b; )-system.In the main text, we only onsider situations in whih our insertion O does not involve�elds b and . Therefore, the (b; )-system deouples from the rest of the theory.30



B Reetion: Self-duality and �eld identi�ationThis appendix ollets a few fat about Liouville theory, its self-duality and ree-tion property. These are applied to multi-�eld models of the form (3.19) in the seondsubsetion.B.1 Field identi�ation in Liouville �eld theoryLet us �rst onsider a single Liouville �eld ! with bulk osmologial onstant � andbakground harge Q! = d+1=d. Our aim is to desribe the reetion oeÆient of �eldsin this theory, i.e. the funtion D(�L; �R) that features in the relationV�L;�R = D(�L; �R)VQ!��L;Q!��R (B.1)between vertex operators V�L;�R = exp(2�L!L + 2�R!R). Here, we shall allow for situ-ations in whih the exponent ontains ontributions from the dual Liouville �eld ~!, i.e.with �L 6= �R. The reetion oeÆient D is severely onstrained by the operator produtof generi vertex operators with degenerate ones asV� d2 ;� d2 (z)V�L;�R(0) (B.2)� zd�L �zd�R V�L� d2 ;�L� d2 (0) + C�(�L; �R) zd(Q!��L)�zd(Q!��R) V�L+ d2 ;�R+ d2 (0) + : : : :Combining this expansion with the reetion equation (B.1), we assign the following twoonditions C�(�L; �R)D(�L + d2 ; �R + d2) = D(�L; �R) ;D(�L; �R)D(Q! � �R; Q! � �L) = 1 : (B.3)The oeÆient C� may be determined through a free �eld omputation, as e.g. in [39℄,C�(�L; �R) = � �2� Z d2xhV�L;�R(0)V� d2 ;� d2 (1)e2d!(x)VQ!��L� d2 ;Q!��R� d2 (1)i= ��(1 + d2)�(�1 + 2d�L � d2)�(1� 2d�R)�(2� 2d�R + d2)�(2d�L) : (B.4)There is a unique analyti solution to the onstraints (B.3) that is onsistent with theduality symmetry under simultaneous exhange d$ 1=d and �L $ �R. It is given byD(�L; �R) = (�(d2))(Q!��L��R)=d �(2d�L � d2)�(�1 + 2�Rd � 1d2 )d2�(1� 2d�R + d2)�(2� 2�Ld + 1d2 ) : (B.5)31



Applying the reetion to the Liouville �eld itself, i.e. to the ase with �L = �R = d, weinfer that the bulk osmologial onstant ~� of the dual Liouville �eld theory must takethe form ~� = �1(1=d2)(�(d2))1=d2 : (B.6)In the main text, the reetion of vertex operators is performed in a Liouville �eld theorywith parameter d = i=p2 and with bulk osmologial onstant � = �2. If we insert thesevalues into our general formula for the reetion amplitude, we obtainD(�L; �R) = ��(1� ip2�R)�(ip2�L) : (B.7)Formulas (B.5) and (B.6) ontain all the information that is needed to perform reetionsof the type (3.20) we onsidered in setion 3.2.B.2 Reetion in theories with several bosoni �eldsOur notations and onventions in this subsetion are the same as in subsetion 3.2.3of the main text. Let us suppose that ~� is one of the vetors satisfying (~�; ~Q � ~�) = 1.We want to analyze the �eld identi�ation for a vertex operator V~� that is indued by theLiouville interation exp 2(~�; ~X). Here ~� an be any vetor. It is onvenient to rede�neX~� = (d�1~� ~�; ~X) ; d~� = q(~�; ~�) : (B.8)The bakground harge for this bosoni �eld X~� is q~� = d~�+d�1~� and the interation termis now exp 2d~�X~�.To begin with, let us isolate from the vetor ~� its omponent along ~�,~� = �~�(d�1~� ~�) + 0�~�� (~�; ~�)(~�; ~�) ~�1A ; �~� := d�1~� (~�; ~�) : (B.9)The reetion along ~� is ontrolled by the value of the bakground harge q~� along ~�.Hene, upon reetion, the vetor ~� gets replaed byw~�(~�) = (q~� � �~�)(d�1~� ~�) + 0�~�� (~�; ~�)(~�; ~�) ~�1A = ~� + ~� + (1� 2(~�; ~�)) ~�(~�; ~�) : (B.10)Formula (B.10) is used twie in the main text, namely in eq. (3.20) and after eq. (3.25).32



The results of the previous subsetion may also be used to determine the reetionamplitude that is needed to relate V~� with its reetion Vw(~�). We then �ndD(~�L; ~�R) = (�~�(d2~�))(q~���L~���R~� )=d~� �(2d~��L~� � d2~�) �(�1 + 2�R~�d~� � 1d2~� )d2~� �(1� 2d~��R~� + d2~�) �(2� 2�L~�d~� + 1d2~� ) : (B.11)Here, �~� is the bulk osmologial onstant in front of the interation term exp 2(~�; ~X).In passing from an interation term exp 2(~�; ~X) to the dual one, we must replae~� �! ~�(~�; ~�) and �~� �! ~�~� = ~�1(1=d2~�) (�~�(d2~�))1=d2~� : (B.12)The expression for the dual osmologial onstant was obtained from eq. (B.6) by insertingthe value d~� de�ned in eq. (B.8).C On the JaobianThe aim of this appendix is to ompute the Jaobian (4.18) that arises when we hangevariables from the momenta �� to insertion points yi. We will �rst explain the main ideasin the ase of the sphere. Thereby, we rederive eq. (3.7) that was already established in[11, 15℄. Our derivation generalizes more or less diretly to surfaes of higher genus g � 1,and these will be treated in the seond subsetion.C.1 The Jaobian on the sphereFor the sphere with genus g = 0, the separation of variables (2.13) may be written interms of the individual momenta �� by omparing residues,�� = u(z� � �)S QN�2�Si=1 (z� � yi)QN�6=�=1(z� � z�) : (C.1)Thereby, we obtain the following relation between di�erentialsd���� = duu � N�2�SXi=1 dyi(z� � yi) : (C.2)Before we ontinue, let us set S = 0. We shall treat the more general ase with S 6= 0 abit later. The measure in momentum spae may readNY�=1 d2��j��j2 Æ2(X� ��) = N�1Y�=1 �����duu � N�2Xi=1 dyi(z� � yi) �����2 " QN�1�=1 jzN � z�j2juj2QN�2i=1 jzN � yij2# : (C.3)33



We would like to rewrite the �rst fator on the right hand side. In order to do so, weobserve that it may be expressed through the orrelation funtion of an auxiliary (b; )-system. If we adjust the entral harge suh that the b and  possess onformal weighthb = 1 and h = 0 and furthermore normalize the �elds aording to (z)b(y) � 1=(z�y),we �nd N�1Y�=1  duu � N�2Xi=1 dyi(z� � yi)! = *N�1Y�=1 (z�) N�2Yi=1 b(yi)+ duu MYi=1(�dyi) : (C.4)Notie that one of the insertions (z�) is replaed by the zero mode, i.e., a onstant mode.Utilizing the usual bosonization formulas for (b; )-systems we obtain�����*N�1Y�=1 (z�) N�2Yi=1 b(yi)+�����2 = QN�1�<�=1 jz� � z� j2QN�2i<j=1 jyi � yjj2QN�1�=1 QN�2i=1 jz� � yij2 : (C.5)When this result is inserted bak into eq. (C.3), we reover a speial ase of the Jaobian(3.7) with S = 0,NY�=1 d2��j��j2 Æ2(X� ��) = QN�<�=1 jz� � z� j2QN�2i<j=1 jyi � yjj2QN�=1QN�2i=1 jz� � yij2 d2ujuj4 N�2Yi=1 d2yi : (C.6)In order to treat the remaining ases with S 6= 0, we perform an indution in S. So,let us assume that the relation (3.7) holds for S = s. If S is inreased to S = s + 1, theleft hand side of eq. (3.7) readslhs(3.7) = NY�=1 d2��j��j2 Æ2 (��s�1(��)) sYn=0 Æ2  X� ��(� � z�)n! ; (C.7)where ��s�1 = P� ��(�� z�)�s�1 ontains the ontributions of the N soure terms to themode ��s�1 of �. The right hand side of eq. (3.7) an be obtained from the ase S = sby hoosing one of the insertion points and moving it to the position �. Without loss ofgenerality, we shall take x := yN�2�s ! �. This giveslimx!�(rhs(3.7)S=s) = d2ujuj4+2s N�3�sYi=1 d2yid2x Æ2 (��s�1(yi; x))�� QN�<� jz� � z� j2QN�3�si<j jyi � yjj2QN�3�si=1 jyi � xj2QN�=1QN�3�si=1 jz� � yij2QN�=1 jz� � xj2 :Thereby, we have redued our problem to showing thatÆ2 (��s�1(yj; x)) = 1juj2 QN�=1 jz� � �j2QN�3�si=1 jyi � �j2 Æ2(x� �) : (C.8)34



For S = s, the funtion �(w) is known to take the form�(w) = u(w � �)s(w � x)QN�3�si=1 (w � yi)QN�=1(w � z�) : (C.9)We an take this expression and expand around x � � to obtain the following expressionfor the mode ��s�1 ��s�1 = uQN�3�si=1 (� � yi)QN�=1(� � z�) (� � x) (C.10)in terms of yi. This equation leads to eq. (C.8), and thereby establishes that the formulaeq. (3.7) for the Jaobian is valid for all 0 � S � N � 2.C.2 The Jaobian for genus g � 1We now repeat the steps of the previous subsetion in the ase of generi genus g � 1.In this ase, the separation of variables takes the formNX�=1����(w; z�) + g�1X�=1$�!��(w) = uE(w; �)SQMi=1E(w; yi)�(w)2QN�=1E(w; z�) : (C.11)Here we have denoted M = N � 2g� 2�S, as before. From this equation we an deduethe formula for the momenta �� as�� = uE(z�; �)SQMi=1E(z� ; yi)�(z�)2QN�6=� E(z� ; z�) ; d���� = duu + MXi=1 �yi lnE(z� ; yi)dyi :This expression strongly indiates that the Jaobian ould be derived with the use of(b; )-ghost system sine the propagator of a (b; )-system on a surfae of genus g an beexpressed through the prime form as h(z)b(y)i = �y lnE(z; y).In the ase of genus zero only the integral over the momenta �� appears in the lefthand side of (3.7), but in the ase of generi genus the integrals over the twists �l andover the zero modes $� are involved in (4.18) as well. For the twists �l we utilize therelations to yi as �l = S Z �w !l + MXi=1 Z yiw !l � NX�=1 Z z�w !l � 2 Z �(g�1)w !l ; (C.12)where � denotes the Riemann onstant. By ating with the di�erential d on these equa-tions, we obtain the following simple relations asd�l = MXi=1 !l(yi)dyi : (C.13)35



For the zero modes $� we use the general expression asNX�=1 d����(��; z�) + g�1X�=1 d$�!��(��) (C.14)= uE(��; �)SQMi=1E(��; yi)�(��)2QN�=1E(��; z�) "duu +Xi �yiE(��; yi)dyi# ;whih is dedued from eq. (C.11). Here we set w = �� as an arbitrary point on theRiemann surfae �.As in the previous subsetion we start from S = 0 ase and then generalize to S 6= 0ase by making use of the indution proedure. One may worry about the measure ofzero modes as the expression in the left hand side of (C.14) involves d�� in addition tod$�. This problem an be resolved by the following simple observation,NY�=1 d���� g�1Y�=1 24 NX�=1 d����(��; z�) + g�1X�=1 d$�!��(��)35 gYl=1 d�l = (C.15)= NY�=1 d���� g�1Y�=1 d$� gYl=1 d�l det�;� !��(��) :Combining everything obtained above, the left hand side of (4.18) an be rewritten asNY�=1 d���� g�1Y�=1 d$� gYl=1 d�l = 1det�;� !��(��) NY�=1 "duu + MXi=1 �yi lnE(z� ; yi)dyi# (C.16)� g�1Y�=1(uQMi=1E(��; yi)�(��)2QN�=1E(��; z�) "duu + MXi=1 �yi lnE(��; yi)dyi#) gYl=1 " MXi=1 !l(yi)dyi# :One again it is advantageous to express the right hand side of the previous equalitythrough orrelators in an auxiliary (b; )-system. Notie that b(y) has g zero modes !l(y)for genus g. Moreover, there is a single onstant mode for (w) (see, e.g., [28℄). Withthese fats and the propagator of (b; )-system, we an express the measure asNY�=1 d2��j��j2 g�1Y�=1 d2$� gYl=1 d2�l = 1j det�;� !��(��)j2 1j det0 �j2� (C.17)� g�1Y�=1(QMi=1 jE(��; yi)j2j�(��)j4QN�=1 jE(��; z�)j2 ) ������*g�1Y�=1 (��) NY�=1 (z�) MYk=1 b(yk)+������2 d2ujuj4�2g MYi=1 d2yi :The fator 1=j det0 �j2 is inluded to divide the ontribution from the partition funtion.36



In the following we will show that eq. (C.17) is indeed equal to eq. (4.18) by utilizingthe bosonization formulas of (b; )-systems. First, we rewrite the orrelation funtion of(b; )-ghosts in (C.17) as [28℄������*g�1Y�=1 (��) NY�=1 (z�) MYk=1 b(yk)+������2 = 1j det 0�j j�(X� �� +X� z� �Xi yi +�)j2� (C.18)� Qg�1�<� jE(��; ��)j2Qg�1�=1QN�=1 jE(��; z�)j2QN�<� jE(z�; z�)j2QMi<j jE(yi; yj)j2QMi=1 j�(yi)j2Qg�1�=1QMi=1 jE(��; yi)j2QN�=1QMi=1 jE(z�; yi)j2Qg�1�=1 j�(��)j2QN�=1 j�(z�)j2 :The fator (det 0� ��)�1=2 is the partition funtion of a omplex boson. The theta funtion,whih may be written as j�(P� ������)j by means of eq. (C.12), arises from summingover the solitoni modes. Notie that the fators involving E(��; z�) and E(��; yi) areaneled if we insert the above expression (C.18) into eq. (C.17). In this way, the entiredependene on �� resides in a single fator that is independent on any of the variables.Sine the ��-dependene is expeted to drop out in the end, the anellation of termsinvolving both yi; z� and �� is an important intermediate step.In order to inorporate the last fator on the left hand side of our formula (4.18),we need to analyze the partition funtion with twists �k. Up to now we worked witha (b; )-ghost system without twists, but this does not yield any partition funtion with�-dependene. Therefore, we shall now deal with (b; )-ghosts with twists �k, where theghosts satisfy the same twisted boundary onditions as the (�; )-system. Consequently,the b-ghost has g� 1 zero modes whih are proportional to the g� 1 twisted holomorphione-di�erentials !��(w). The simplest non-zero orrelator in the twisted (b; )-system is*g�1Y�=1 b(��)+� = det 0r� det�;� !��(��) : (C.19)We show now that this funtion is useful to remove the ��-dependene in eq. (C.17).Again appliation of the usual bosonization formulas leads to������*g�1Y�=1 b(��)+������2 = 1j det 0�j j�(X� �� ��� �)j2 g�1Y�<�=1 jE(��; ��)j2 g�1Y�=1 j�(��)j2 : (C.20)Then the ombination with eq. (C.19) gives the equalityj det 0r�j2 = 1j det�;� !��(��)j2 1j det 0�j j�(X� �� ��� �)j2 g�1Y�<�=1 jE(��; ��)j2 g�1Y�=1 j�(��)j2 :37



This equality removes the all ��-dependent terms and at the same time leads to eq. (4.18)for S = 0.The ases with S 6= 0 are treated as in the previous subsetion, i.e. by indution in S.Therefore, we assume that the Jaobian is of the antiipated form when S = s and try toestablish the same for S = s+ 1. The �rst few steps are performed in preisely the sameway as on the sphere. They lead to the following requirementÆ2(��s�1(yi; x)) = 1juj2 QN�=1 jE(�; z�)j2QN�2g�3�si=1 jE(�; yi; )j2j�(�)j4 Æ2(x� �) (C.21)that replaes our formula (C.8) from the previous subsetion. We may prove this equationby realling that the prime form behaves as E(�; x) � � � x for � � x. Therefore, themode expansion of �(w) around w � � gives��s�1 = uQN�2g�2�si=1 E(�; yi)�(�)2QN�=1E(�; z�) (� � x) : (C.22)With this result we an easily dedue �rst eq. (C.21) and then the antiipated expression(4.18) for the Jaobian with S = s + 1 from the ase S = s. Thereby, we onlude ourderivation of the Jaobian (4.18).Referenes[1℄ A. Giveon, M. Porrati and E. Rabinovii, \Target spae duality in string theory,"Phys. Rept. 244, 77 (1994) [arXiv:hep-th/9401139℄.[2℄ S. Elitzur, A. Forge and E. Rabinovii, \Some global aspets of string ompati�a-tions," Nul. Phys. B 359, 581 (1991).[3℄ G. Mandal, A. M. Sengupta and S. R. Wadia, \Classial solutions of two-dimensionalstring theory," Mod. Phys. Lett. A 6, 1685 (1991).[4℄ E. Witten, \On string theory and blak holes," Phys. Rev. D 44, 314 (1991).[5℄ V. Kazakov, I. K. Kostov and D. Kutasov, \A matrix model for the two-dimensionalblak hole," Nul. Phys. B 622, 141 (2002) [arXiv:hep-th/0101011℄.[6℄ V.A. Fateev, A.B. Zamolodhikov and Al.B. Zamolodhikov, unpublished.38



[7℄ T. H. Busher, \A symmetry of the string bakground �eld equations," Phys. Lett.B 194, 59 (1987).[8℄ T. H. Busher, \Path integral derivation of quantum duality in nonlinear sigmamodels," Phys. Lett. B 201, 466 (1988).[9℄ T. Fukuda and K. Hosomihi, \Three-point funtions in Sine-Liouville theory," JHEP0109, 003 (2001) [arXiv:hep-th/0105217℄.[10℄ K. Hori and A. Kapustin, \Duality of the fermioni 2d blak hole and N = 2 Liouvilletheory as mirror symmetry," JHEP 0108, 045 (2001) [arXiv:hep-th/0104202℄.[11℄ S. Ribault and J. Teshner, \H+3 WZNW orrelators from Liouville theory," JHEP0506, 014 (2005) [arXiv:hep-th/0502048℄.[12℄ Y. Hikida and V. Shomerus, \H+3 WZNW model from Liouville �eld theory," JHEP0710, 064 (2007) [arXiv:0706.1030 [hep-th℄℄.[13℄ V. Fateev, unpublished.[14℄ J. M. Maldaena and H. Ooguri, \Strings in AdS3 and SL(2,R) WZW model. I: Thespetrum," J. Math. Phys. 42, 2929 (2001) [arXiv:hep-th/0001053℄.[15℄ S. Ribault, \Knizhnik{Zamolodhikov equations and spetral ow in AdS3 stringtheory," JHEP 0509, 045 (2005) [arXiv:hep-th/0507114℄.[16℄ J. M. Maldaena and H. Ooguri, \Strings in AdS3 and the SL(2,R) WZW model.III: Correlation funtions," Phys. Rev. D 65, 106006 (2002) [arXiv:hep-th/0111180℄.[17℄ A. B. Zamolodhikov and A. B. Zamolodhikov, \Struture onstants and onfor-mal bootstrap in Liouville �eld theory," Nul. Phys. B 477, 577 (1996) [arXiv:hep-th/9506136℄.[18℄ V. Shomerus, \Non-ompat string bakgrounds and non-rational CFT," Phys.Rept. 431, 39 (2006) [arXiv:hep-th/0509155℄.[19℄ B. Ponsot and J. Teshner, \Liouville bootstrap via harmoni analysis on a nonom-pat quantum group," arXiv:hep-th/9911110.39



[20℄ J. Teshner, \A leture on the Liouville vertex operators," Int. J. Mod. Phys. A19S2, 436 (2004) [arXiv:hep-th/0303150℄.[21℄ J. Teshner, \Liouville theory revisited," Class. Quant. Grav. 18, R153 (2001)[arXiv:hep-th/0104158℄.[22℄ G. Giribet, \The string theory on AdS3 as a marginal deformation of a linear dilatonbakground," Nul. Phys. B 737, 209 (2006) [arXiv:hep-th/0511252℄.[23℄ G. Giribet and M. Leoni, \A twisted FZZ-like dual for the 2D blak hole,"arXiv:0706.0036 [hep-th℄.[24℄ D. Bernard, \On the Wess-Zumino-Witten models on Riemann surfaes," Nul. Phys.B 309, 145 (1988).[25℄ J. Fay, \Theta funtions on Riemann surfaes," Leture Notes in Mathematis 352,Springer-Verlag (1973).[26℄ D. Mumford, \Tata letures on theta, Vols. I, II," Progress in Mathematis 43,Birkh�auser (1984)[27℄ L. Alvarez-Gaume, G. W. Moore and C. Vafa, \Theta funtions, modular invariane,and strings," Commun. Math. Phys. 106, 1 (1986).[28℄ E. P. Verlinde and H. L. Verlinde, \Chiral bosonization, determinants and the stringpartition funtion," Nul. Phys. B 288, 357 (1987).[29℄ I. Bakas and E. Kiritsis, \Beyond the large N limit: Non-linear W1 as symmetry ofthe SL(2,R)/U(1) oset model," Int. J. Mod. Phys. A 7S1A, 55 (1992) [Int. J. Mod.Phys. A 7, 55 (1992)℄ [arXiv:hep-th/9109029℄.[30℄ V. A. Fateev and S. L. Lukyanov, \Boundary RG ow assoiated with the AKNSsoliton hierarhy," J. Phys. A 39, 12889 (2006) [arXiv:hep-th/0510271℄.[31℄ V. A. Fateev, \The duality between two-dimensional integrable �eld theories andsigma models," Phys. Lett. B 357, 395 (1995).[32℄ V. A. Fateev, \The sigma model (dual) representation for a two-parameter family ofintegrable quantum �eld theories," Nul. Phys. B 473, 509 (1996).40



[33℄ E. Frenkel, \Letures on the Langlands program and onformal �eld theory,"arXiv:hep-th/0512172.[34℄ G. Giribet, Y. Nakayama and L. Niolas, \Langlands duality in Liouville-H+3 WZNWorrespondene," arXiv:0805.1254 [hep-th℄.[35℄ K. Gawedzki and A. Kupiainen, \Coset onstrution from funtional integrals," Nul.Phys. B 320, 625 (1989).[36℄ K. Gawedzki, \Non-ompat WZW onformal �eld theories," arXiv:hep-th/9110076.[37℄ E. J. Martine and S. L. Shatashvili, \Blak hole physis and Liouville theory," Nul.Phys. B 368 (1992) 338.[38℄ R. Dijkgraaf, H. L. Verlinde and E. P. Verlinde, \String propagation in a blak holegeometry," Nul. Phys. B 371, 269 (1992).[39℄ V. S. Dotsenko, \Letures on onformal �eld theory," Advaned Studies in PureMathematis 16, 123 (1988).

41


