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DESY-08-060, IZTECH-P-08-03, CUMQ-HEP-149, HIP-2008-15/THSignals of Doubly-Charged Higgsinos at the CERN Large Hadron ColliderDurmu�s A. Demir1;2, Mariana Frank3, Katri Huitu4, Santosh Kumar Rai4, and Ismail Turan31Department of Physis, Izmir Institute of Tehnology, IZTECH, TR35430 Izmir, Turkey.2Deutshes Elektronen - Synhrotron, DESY, D-22603 Hamburg, Germany.3Department of Physis, Conordia University, 7141 Sherbrooke Street West, Montreal, Quebe, CANADA H4B 1R6. and4Department of Physis, University of Helsinki and Helsinki Institute of Physis,P.O. Box 64, FIN-00014 University of Helsinki, Finland.Several supersymmetri models with extended gauge strutures, motivated by either grand uni�-ation or by neutrino mass generation, predit light doubly-harged Higgsinos. In this work we studyprodutions and deays of doubly-harged Higgsinos present in left-right supersymmetri models,and show that they invariably lead to novel ollider signals not found in the minimal supersymmetrimodel (MSSM) or in any of its extensions motivated by the � problem or even in extra dimensionaltheories. We investigate their distintive signatures at the Large Hadron Collider (LHC) in bothpair{ and single{prodution modes, and show that they are powerful tools in determining the un-derlying model via the measurements at the LHC experiments.PACS numbers: 12.60.Jv, 12.60.FrI. INTRODUCTIONThe LHC, the highest energy ollider ever built startsoperating this year, and will provide a lean window into`new physis' at the TeV sale. The `new physis' senar-ios, designed to solve the gauge hierarhy problem, gener-ially bring about new partiles and interation shemes.Supersymmetri theories (SUSY), for instane, providean elegant solution to the gauge hierarhy problem bydoubling the partile spetrum of the standard model,and their gauge setor ould be minimal as in the MSSMor non-minimal as in models with extended gauge stru-tures. Experiments at the LHC will be probing these newpartiles as well as new interation laws among them.A general, although not universally present, feature ofSUSY, is that, if R-parity R = (�1)(3B+L+2S) (with B,L and S being baryon, lepton and spin quantum num-bers, respetively) is onserved, the absolute stabilityof the lightest supersymmetri partner (LSP) is guar-anteed. This state quali�es to be a viable andidate forold dark matter in the universe (see, for instane, [1℄and referenes therein). Supersymmetri models providea viable dark matter andidate in the lightest neutralfermion omposed of neutral gauginos and Higgsinos. Ingeneral, deays of all supersymmetri partners neessar-ily end with the LSP, and given its absolute stability,it leaves any partile detetor undeteted, and thus, ap-pears as a `momentum imbalane' or `missing energy' inollider proesses, inluding the ones at the LHC [2℄. Inthis sense, all sattering proesses involving the super-partners are inherently endowed with inomplete �nalstates.Though supersymmetry, as an organizing priniple, re-solves the gauge hierarhy problem, there is no uniquesupersymmetri �eld theory to model `new physis' atthe TeV sale. Indeed, MSSM, though it stands asthe minimal supersymmetri model diretly onstrutedfrom the SM spetrum, su�ers from the well-known �problem and laks a natural understanding of neutrino

masses in the absene of right-handed neutrinos (whihmust be either ultra-heavy to failitate see-saw meha-nism or must possess naturally suppressed Yukawa ou-plings to left-handed ones). These features generiallyrequire a non-trivial extension of the MSSM whih typ-ially involves additive, or embedding of, gauge stru-tures beyond that of the MSSM. Indeed, low-energymodels following from SUSY GUTs or strings [3℄ gener-ially predit either extension of the SM gauge groupby some extra gauge fators, suh as a number of ex-tra U(1) symmetries, or embedment of the SM gaugegroup into larger gauge groups. Conerning the lat-ter, one an onsider several strutures, for instane,the left-right symmetri SUSY (LRSUSY) gauge theorySU(3)C�SU(2)L�SU(2)R�U(1)B�L. In general, mod-els of `new physis' (in terms of their gauge and Higgssetors) are distinguished by ertain harateristi signa-tures in regard to their lepton and jet spetra of the �nalstate. In this work, we investigate signatures spei� toLRSUSY and ompare with those of the MSSM whereverappropriate. LRSUSY presents an attrative alterna-tive/generalization of the MSSM [4, 5℄. It an be viewedas an alternative to the MSSM by itself or as a over-ing struture of the MSSM following from SUSY GUTsor strings, suh as SO(10). LRSUSY models disallowexpliit R-parity breaking in the Lagrangian, thus pre-diting naturally a supersymmetri dark matter andi-date [1℄. They provide a solution to the strong and weakCP problems present in the MSSM [6℄. If one hoosesHiggs triplet �elds, with quantum numbers B�L = �2,to break the SU(2)R gauge group, the neutrino massesturn out to be indued by the see-sawmehanism [7℄. Thefermioni partners of the Higgs triplet bosons are spei�to the supersymmetri version, and some of them arrydouble harge and two units of L number, making themperfet testing/searhing grounds for exotis. It has beenshown that, if the sale for left-right symmetry breakingis hosen so that the light neutrinos have the experimen-tally expeted masses, these doubly-harged Higgsinos
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2an be light, with masses in the range of O(100) GeV[8, 9, 10℄. Suh partiles ould be produed in abun-dane at the LHC and thus give de�nite identi�able sig-natures of left-right symmetry. The doubly-harged Hig-gsinos have been studied in some detail in the referenes[11, 12, 13℄, where the prodution of Higgsinos at linearolliders was analyzed. The doubly-harged Higgsinosan also appear in the so-alled 3-3-1 models (modelsbased on the SU(3)�SU(3)L�U(1)N symmetry) [14℄.In this work, we study doubly-harged Higgsinos at theCERN Large Hadron Collider (LHC), produed singly orin pair, via various leptoni �nal states. We fous onthree benhmark points of the model and analyze theLHC signals resulting from the deays of the doubly-harged Higgsinos. In order to obtain de�nitive predi-tions for the signal, we perform the analysis in the ontextof the LRSUSY model, though we expet the results forthe 3-3-1 model to be similar. The paper is organizedas follows: In Se. II we present a brief introdutionto the model, for ompleteness and lari�ation of thenotation. In Se. III we fous on the details and hara-teristis of the prodution ross setions of the doubly{harged Higgsinos, and disuss their possible deay han-nels (either through two-body or three-body, dependingon the spetrum harateristis) proeeding with hargedstates. Herein we analyze single{ and pair{produtionmodes separately. Finally, in Se. IV we onlude anddisuss the signi�ane of the results in regard to mea-surements at the LHC.II. THE LEFT{RIGHT SUPERSYMMETRICMODELIn this setion, we review briey the relevant featuresof the model neessary for the analysis whih follows inthe later setions. For a more detailed information aboutthe model see, for instane, [4, 5℄. The hiral matter inLRSUSY onsist of three families of quark and leptonsuper�elds:Q = � ud � � �3; 2; 1; 13� ; Q=� du � � �3�; 1; 2;�13� ;L = � �e � � (1; 2; 1;�1) ; L = � e� � � (1; 1; 2; 1) ;where the numbers in the brakets denote the quantumnumbers under SU(3)C � SU(2)L � SU(2)R � U(1)B�Lgauge fators.The symmetry breaking is ahieved by a Higgs setoronsisting of bidoublet and triplet Higgs super�elds. Thehoie of the triplet Higgs �elds has the advantage thatit failitates the see{saw mehanism for neutrino masseswith renormalizable ouplings. Here are the deomposi-tions of the Higgs super�elds:�1 = � �011 �+11��12 �012 � � (1; 2; 2; 0) ;

�2 = � �021 �+21��22 �022 � � (1; 2; 2; 0) ;�L =  1p2��L �0L���L � 1p2��L ! � (1; 3; 1;�2);ÆL =  1p2Æ+L Æ++LÆ0L � 1p2Æ+L ! � (1; 3; 1; 2);�R =  1p2��R �0R���R � 1p2��R ! � (1; 1; 3;�2);ÆR =  1p2Æ+R Æ++RÆ0R � 1p2Æ+R ! � (1; 1; 3; 2); (1)where numbers in the brakets again denote the quantumnumbers of �elds under SU(3)C � SU(2)L � SU(2)R �U(1)B�L.The superpotential of the model is given byW = Y(i)Q QT�ii�2Q +Y(i)L LT�ii�2L+i(hllLT �2ÆLL+ hllLT �2�RL)+�3Tr [�LÆL +�RÆR℄ + �ijTr �i�2�Ti i�2�j�+WNR; (2)whereWNR denotes (possible) non-renormalizable termsarising from integrating-out of the heavier �elds. The La-grangian of the model, as usual, onsists of the standardF -terms, D-terms as well as the soft SUSY{breakingterms. Considering the deay and prodution pro-esses under investigation, the relevant parts of the soft{breaking Lagrangian read as� Lsoft = (m2�)ij�yi�j + (m2L)ij~lyLi~lLj + (m2R)ij~lyRi~lRj+ hAiLY(i)L ~LT�ii�2 ~L+iALRhll �~LT �2ÆL ~L+ ~LT �2�R ~L�+ h::i� �M2LRTr [�RÆR +�LÆL℄� [B�ij�i�j + h::℄ (3)where the �rst line stands for mass-squared terms, theseond and third for trilinear ouplings (holomorphiallyorresponding to similar terms in (2)), and the last twofor bilinear ouplings.Combining (3) with F -term and D-term ontributions,minimization of the Higgs potential gives vauum expe-tation values (VEVs) for the neutral omponents of theHiggs �elds in (1), as disussed in detail in [1, 13℄.In the following, we give a detailed disussion of theharged and neutral fermions as well as sleptons in LR-SUSY in preparation for a thorough analysis of the pro-dutions and deays of the doubly-harged Higgsinos.A. CharginosAs follows from the deompositions of the Higgs �eldsin (1), the partile spetrum onsists of doubly-harged



3Higgsinos ~���L ; ~Æ++L ; ~���R and ~Æ++R . In the Lagrangianbasis they possess the bilinear termsL ~� = �M ~��� ~���L ~Æ++L �M ~���R ~���R ~Æ++R + h:: ; (4)where the Higgsino mass M ~��� � �3 in the notation of(2). In addition to these doubly-harged ones, the modelonsists also a total of six singly-harged Higgsinos andgauginos, orresponding to �L, �R, ~�u, ~�d, ~��L , ~Æ+L , ~Æ+Rand ~��R. The bilinears in these harged states ombineto giveLC = �12( +T ;  �T )� 0 XTX 0 ��  + � �+ h:: ; (5)where  +T = (�i�+L ;�i�+R; ~�+1d; ~�+1u; ~Æ+L ; ~Æ+R),  �T =(�i��L ;�i��R; ~��2d; ~��2u; ~��L ; ~��R), andX=0BBBBB� ML 0 0 gL�d p2gLvÆL 00 MR 0 gR�d 0 p2gRvÆRgL�u gR�u 0 ��1 0 00 0 ��1 0 0 0p2gLv�L 0 0 0 ��3 00 p2gRv�R 0 0 0 ��3
1CCCCCAin the mass mixing matrix. We have set, for simpliity,�ij � �1 for all (i 6= j). Here �u = h�011i, �d = h�022i,v�L;R = h�0L;Ri, vÆL;R = hÆ0L;Ri, and ML;R are theSU(2)L;R gaugino masses, respetively. The physialhargino states ~�i are obtained by~�+i = Vij +j ; ~��i = Uij �j (i; j = 1; : : : 6) ; (6)with V and U unitary matries satisfyingU�XV �1 =MD (7)

where MD is a 6� 6 diagonal matrix with non-negativeentries. The mixing matries U and V are obtained byomputing the eigensystem of XXy and XyX , respe-tively.While �u and �d are the VEVs responsible for giv-ing masses to quarks and leptons, the non-MSSM HiggsVEVs, vÆL and v�R are responsible for neutrino masses.v�L and vÆL enter in the formula for the mass of WL (orthe � parameter), while v�R ; vÆR enter in the formula forthe mass of WR. It is thus justi�ed to take v�L ; vÆL tobe negligibly small. For v�R there are two possibilities:either v�R is � 1013 GeV [8, 15℄, whih supports theseesaw mehanism, leptogenesis and provides masses forthe light neutrinos in agreement with experimental on-straints, but o�ers no hope to see right-handed partiles;or v�R is � 1 � 10 TeV, but one must introdue some-thing else (generally an intermediate sale, or an extrasymmetry) to make the neutrinos light [8, 9, 16℄.B. NeutralinosIn LRSUSY there are eleven neutral fermions, orre-sponding to �Z , �Z0 , �B�L, ~�01u, ~�02u, ~�01d, ~�02d, ~�0L, ~�0R,~Æ0L and ~Æ0R. Their bilinears give the ontribution to theLagrangian LN = �12 0TZ 0 + h:: ; (8)where  0 = (�i�0L;�i�0R;�i�B�L; ~�01u; ~�02d; ~�0L; ~Æ0L;~�0R; ~Æ0R; ~�01d; ~�02u)T , and the mass mixing matrix Z isgiven by
Z =

0BBBBBBBBBBBBBBBBBB�
ML 0 0 � gL�up2 gL�dp2 �2 12 gLv�L �2 12 gLvÆL 0 0 0 00 MR 0 gL�up2 gL�dp2 0 0 �2 12 gRv�R �2 12 gRvÆR 0 00 0 MB�L 0 0 2 32 gV v�L 2 32 gV vÆL 2 32 gV v�R 2 32 gV vÆR 0 0� gL�up2 gR�up2 0 0 �1 0 0 0 0 0 0gL�dp2 � gR�dp2 0 �1 0 0 0 0 0 0 0�2 12 gLv�L 0 2 32 gV v�L 0 0 0 ��3 0 0 0 0�2 12 gLvÆL 0 2 32 gV vÆL 0 0 ��3 0 0 0 0 00 �2 12 gRv�R 2 32 gV v�R 0 0 0 0 0 ��3 0 00 �2 12 gRvÆR 2 32 gV vÆR 0 0 0 0 ��3 0 0 00 0 0 0 0 0 0 0 0 0 �10 0 0 0 0 0 0 0 0 �1 0

1CCCCCCCCCCCCCCCCCCA (9)
withMB�L being the U(1)B�L gaugino mass. The phys-ial neutralinos are de�ned via~�0i = Nij 0j (i; j = 1; 2; : : : 11); (10) where N is the unitary matrix that diagonalizes ZN�ZNT = ZD; (11)



4with ZD being a 11 � 11 diagonal matrix with non-negative entries. The lightest of the eleven neutralinos,~�01, is a andidate for old dark matter in the universe[1℄. C. Salar leptonsCombining F -term, D{term and soft-breaking ontri-butions pertaining to sleptons, their mass-squared matrixis found to beM2L = 0� M2LL M2LRM2RL M2RR 1A (12)whereM2LL = M2L +m2̀ +m2Z(T3` + sin2 �W) os 2�;M2LR = M2 yRL = m`(A+ � tan�);M2RR = M2R +m2̀ �m2Z sin2 �W os 2� (13)as follows from (3) with ` = e; �; � . We neglet intergen-erational mixings, and intragenerational left-right mixingan be important only for ` = � avor.III. PRODUCTION AND DECAY OFDOUBLY-CHARGED HIGGSINOSHaving desribed neutralino, hargino and slepton se-tors in detail, we now analyze produtions and deays ofdoubly-harged Higgsinos. The relevant Feynman rulesare listed in the Appendix. The pair{prodution pro-esses at the LHC involve� p p �! e�++ e��� (illustrated in Fig. 1)whih proeeds with s-hannel  and ZL;R exhanges,and� p p �! e�+1 e��� (illustrated in Fig. 2)whih rests on s-hannelWL;R exhanges. Both proessesare generated by quark{anti-quark annihilation at theparton level. The s-hannel Higgs exhanges annot giveany signi�ant ontribution.These doubly{ and singly{harged fermions subse-quently deay via a hain of asades until the lightest

neutralino �01 is reahed. Given that harged leptons(` = e and ` = �, espeially) give rise to rather lean sig-nals at the ATLAS and CMS detetors, we lassify �nalstates aording to their lepton ontent in number, ele-tri harge and avor. In general, the two-body deaysof doubly-harged Higgsinos are given by� e��� �! è� `�,� e��� �! ��� e�0i ,� e��� �! e��i ��,� e��� �! e��i W�,whose deay produts further asade into lower-massdaughter partiles of whih leptons are of partiular in-terest. The prodution and deay proesses mentionedhere are illustrated in Fig. 1 and Fig. 2. Clearly, pair-produed doubly-harged Higgsinos lead to 4`+E=T �nalstates whereas single-produed doubly-harged Higgsinosgive rise to 3`+E=T signals.We assume that triplet Higgs bosons are heavier anddegenerate in mass, whih renders them kinematiallyinaessible for deay modes of the relatively lighterdoubly-harged Higgsinos. The possibility of light ob-servable doubly harged Higgs bosons has been exploredextensively in both phenomenologial analyzes [17℄ andexperimental investigations [18℄ and is beyond the sopeof this study. Therefore, we onentrate on the remainingaessible deay hannels. For the numerial estimateswe onsider three sample points in the LRSUSY parame-ter spae, as tabulated in Table I. A quik look at the re-sulting mass spetrum for the spartiles suggest that thehargino states are also heavier than or omparable to thedoubly-harged Higgsinos, and hene, the favorable de-ay hannel for e� is e��� �! è� `�, provided that m~l <Me��� . For relatively light Higgsinos, one an, in prini-ple, have m~l > Me��� in whih ase the only allowed de-ay mode for the doubly-harged Higgsinos would be the3-body deays, whih would proeed dominantly througho�-shell sleptons: e��� ! è?� `� ! `�`�e�01. We haveexpliitly heked that the 3-body deay of the doubly-harged Higgsinos through the heavy o�-shell harginosor W bosons is quite suppressed with respet to the twobody deay, and an be safely negleted.
We present our results for the Higgsino pair produ-tion for the two sample points SPA and SPB desribedin Table I. Sine the ross setions for the single pro-dution modes are highly suppressed for SPA and SPB,



5SPA SPB SPCtan � = 5;MB�L = 25 GeV tan � = 5;MB�L = 100 GeV tan � = 5;MB�L = 0 GeVFields ML =MR = 250 GeV ML =MR = 500 GeV ML =MR = 500 GeVv�R = 3000 GeV; vÆR = 1000 GeV v�R = 2500 GeV; vÆR = 1500 GeV v�R = 2500 GeV; vÆR = 1500 GeV�1 = 1000 GeV; �3 = 300 GeV �1 = 500 GeV; �3 = 500 GeV �1 = 500 GeV; �3 = 300 GeVe�0i (i = 1; 3) 89:9; 180:6; 250:9 GeV 212:9; 441:2; 458:5 GeV 142:5; 265:6; 300:0 GeVe��i (i = 1; 3) 250:9; 300:0; 953:9 GeV 459:4; 500:0; 500:0 GeV 300:0; 459:3; 500:0 GeVMe� 300 GeV 500 GeV 300 GeVWR; ZR 2090:4; 3508:5 GeV 1927:2; 3234:8 GeV 1927:2; 3234:8 GeVS2 S3 S2 S3 S2 S3eeL;eeR (156:9; 155:6 GeV); (402; 402 GeV) (254:2; 253:4 GeV); (552; 552 GeV) (214:9; 214:0 GeV); (402:6; 402:2 GeV)e�L; e�R (156:9; 155:6 GeV); (402; 402 GeV) (254:2; 253:4 GeV); (552; 552 GeV) (214:9; 214:0 GeV); (402:6; 402:2 GeV)e�1;e�2 (155:4; 159:9 GeV); (401; 406 GeV) (252:5; 257:9 GeV); (550; 556 GeV) (212:8; 216:2 GeV); (401:5; 403:3 GeV)TABLE I: The numerial values assigned to the model parameters in de�ning the sample points SPA, SPB and SPC. Ineah ase, S2 and S3 designate parameter values whih allow for 2-body and 3-body deays of doubly-harged Higgsinos,respetively. The VEVs of the left-handed Higgs triplets are taken as v�L � vÆL ' 10�8 GeV. For the ouplings we usegL = gR = g and for hll = 0:1 [13℄.
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deay branhings:BR(e���L=R ! ~̀�iL=iR`�i ) ' 13 ; m~li < M ~���BR(~̀�iL=iR ! `�i e�01) = 1; (14)BR(e���L=R ! `�i `�i e�01) ' 13 ; m~li > M ~���where i = e; �; � . One notes that only 3-body deay han-nel is allowed when m~̀i > Me�. (We disuss the harginodeay later for the single prodution mode). To �x ournotations, we denote by S2 the signal orresponding tothe 2-body deay of e� and by S3 the signal orrespond-ing to the 3-body deay of e�. The two separate asesorrespond to two di�erent hoies of the slepton massesfor the same sample point. These features are shown inparentheses as olumns in Table I for SPA, SPB andSPC.In what follows we shall analyze single{ and pair{produtions of doubly-harged Higgsinos separately byusing Monte Carlos tehniques.A. Pair-prodution of doubly-harged HiggsinosThe pair{prodution of doubly{harged Higgsinos atthe LHC ours through the s-hannel exhanges of theneutral gauge bosons in the model, as depited in Fig. 1.The heavy Z boson (ZR) an enhane the produtionross setion through resonane e�et, if kinematiallyaessible at the LHC. In Fig. 3 we plot prodution rosssetions for e��� hiralities and exhanged gauge bosons.It is seen that ross setion is quite sizeable for suÆientlylight doubly{harged Higgsinos: it starts at � 104 fbat Me� ' 100 GeV and stays above � 10 fb even if
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10−1FIG. 3: The pair-prodution ross setions for doubly-hargedHiggsinos in LRSUSY at the LHC. The plots are performed byusing the parameter sets SPA/SPB exept that M ~��� � �3is allowed to vary from 100 GeV up to 1 TeV. See the textfor explanation of urves.Me� is strethed up to 1 TeV provided that ontribu-tions of all three neutral gauge bosons, , ZL and ZR,are inluded. The �gure also shows that ross setions,for both hirality, fall rapidly with inreasing Me� if ZRgauge boson is deoupled from the low-energy spetrum.The plots highlight the fat that the heavy ZR ontri-bution beomes more signi�ant for pair prodution ofheavier states, as seen in Fig. 3. Pair{prodution of heav-ier states requires a muh higher e�etive enter of massenergypŝ = px1x2s, where xi's are the momentum fra-tions arried by the partons at the hadron ollider. Thiswould yield a stronger s-hannel suppression of the SMontributions oming from the photon and Z exhangeand enhane the ontribution oming from the heavy ZRexhange.The doubly-harged Higgsinos deay aording toEq. 14 into two same-sign same-avor (SSSF) leptons andthe lightest neutralino e�01, the LSP. This deay patterngives rise to �nal states involving four isolated leptons ofthe form �`�i `�i � �`+j `+j � where `i and `j are not nees-sarily idential lepton avors. More preisely, �nal statesgenerated by the deays of doubly-harged Higgsino pairsgenerially ontain tetraleptons plus missing momentumarried away by the LSP:pp �! e�++ e��� �! �`+i `+i �+ �`�j `�j �+E=T ; (15)where `i; `j = e; �; � .The 4`+E=T signal reeives ontributions from the pair-prodution of both hiral states of the doubly-hargedHiggsino. Sine at the LHC it is diÆult to determinehiralities of partiles, it is neessary to add up their indi-vidual ontributions to obtain the total number of events.

This yields a rather lean and robust 4l+ missing pT sig-nal at the LHC with highly suppressed SM bakground.In fat, one �nds that the SM bakground with tetralep-tons, where `i = e and `j = � in Eq. 15 with large miss-ing transverse energy (E=T � 50 GeV), is very suppressed(O � 10�3 fb) and an therefore be safely negleted om-pared to the signal generated by doubly-harged Higgsinopairs. This fat makes this hannel highly promising foran eÆient and lean disentanglement of LRSUSY ef-fets.For triggering and enhaning the 4` + E=T signal weimpose the following kinemati uts:� The harged leptons in the �nal state must respetthe rapidity ut j�`j < 2:5,� The harged leptons in the �nal state must have atransverse momentum pT > 25 GeV.� To ensure proper resolution between the �nal stateleptons we demand �R`` > 0:4 for eah pair ofleptons, where �R = p(��)2 + (��)2, � beingthe azimuthal angle.� The missing transverse energy must be E=T > 50GeV.� The pairs of oppositely-harged leptons of same a-vor have at least 10 GeV invariant mass.For numerial analysis, we have inluded the LRSUSYmodel into CalHEP 2.4.5 [19℄ and generated the event�les for the prodution and deays of the doubly-hargedHiggsinos using the CalHEP event generator. The event�les are then passed through the CalHEP+Pythia inter-fae where we inlude the e�ets of both initial and �nalstate radiations using Pythia swithes [20℄ to smear the �-nal states. We use the leading order CTEQ6L [21℄ partondistribution funtions (PDF) for the quarks in protons.Below we list prodution ross setions as well as totalevent ross setions ( after applying the kinemati utsmentioned above). For four-lepton plus missing energysignal we take spei�ally 2��+2e++E=T �nal state, and�nd the following results for SPA and SPB:� SPA: �(e���L e�++L ) = 117:9 fband �(e���R e�++R ) = 44:5 fb:After imposing the kinemati uts, the total rosssetion for the �nal state (summing over ontri-butions oming from doubly-harged Higgsinos ofeither hirality) turns out to be:{ S2 �(2��2e+ +E=T ) = 7:71 fb,{ S3 �(2��2e+ +E=T ) = 7:02 fb.
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FIG. 6: Binwise invariant mass distribution of lepton pairswith binsize of 20 GeV and integrated luminosity of R Ldt =30fb�1. The panel (a) represents the 2-body (S2) ase, andpanel (b) does the 3-body (S3) ase.ross setion for SPB (S3) as ompared to SPB (S2),beause more soft leptons would be expeted in the aseof 2-body deays. Thus, the pT ut on the harged lep-tons has a stronger e�et on the signal for SPB (S2). Aquik look at Fig. 5(a), where we plot the pT for S2 forboth sample points, and 5(b), whih shows the distribu-tion for S3, indiates that one �nds more events at largepT in Fig. 5(a) (2-body deay). This e�et is due to themuh harder leptons oming from the primary deay ofthe heavy e�.In Fig. 6(a) and 6(b) we plot the binwise distributionsof the invariant masses of the lepton pairs for S2 andS3, respetively. These plots manifestly show di�erenesbetween the SSSF and OSDF lepton pairs in regard totheir invariant mass distributions. Indeed, the SSSF lep-ton pairs exhibit a sharp kinemati edge in theirM`` dis-

tributions whereas the OSDF lepton pairs do not. Thereason, also mentioned when disussing Fig. 4 above, isthat SSSF lepton pairs originate from the asade deayof the same e�. Sine dilepton invariant mass does nothange under boosts, this edge an be well-approximatedfor both S2 and S3 by the formula (in the rest frame ofthe deaying partile)Mmax`�`� =qM2e� +M2e�01 � 2Me�Ee�01 ; (16)where Ee�01 is the energy of the LSP. This formula yieldsan edge in the invariant mass distribution of the SSSFlepton pairs at the bin around M`�`� = Me� �Me�01 forboth the SPA and SPB points in the ase of the 3-bodydeay of e� (S3), as an be seen in 6(b). This orrespondsto the situation when the LSP is produed at rest in theframe of e�. For the ase S2 the situation is di�erent,as the energy of the LSP also depends on the mass ofthe slepton when the e� deays via on-shell slepton (S2).In this ase the invariant mass distribution of the SSSFlepton pairs exhibits an edge at a di�erent bin omparedto S3, as shown in Fig. 6(a) and its loation is given bythe formulaMmax`�`� =Me�vuut1� m~̀Me�!2vuut1� Me�01m~̀ !2 (17)The edge in the SSSF dilepton invariant mass distribu-tion yields a lear hint of a �L = 2 interation anda doubly-harged �eld in the underlying model of `newphysis'. The distributions of the OSDF dileptons ex-hibit no suh edge at all sine in this ase the two lep-tons originate from the deays of the oppositely-harged,pair-produed e�s.In Fig. 7 we plot the binwise distribution of the missingtransverse energy for all the ases under onsideration.The heavier neutralinos in SPB yield more events atlarger missing transverse energy, as expeted.B. Assoiated produtions of doubly-hargedHiggsinos and CharginosIn this setion we study produtions and deays ofdoubly-harged Higgsinos in assoiation with the light-est hargino. The proess under onsideration, whoseFeynman diagram is depited in Fig. 2, has the formp p �! e��� e�+1 �! �`�i `�i �+ `+j +E=T ; (18)where `i is not neessarily idential to `j . As men-tioned above, this sattering proess proeeds with thes-hannel WL;R exhange, and yields invariably a trilep-ton signal, whih has long been onsidered as a signal ofSUSY, in general [22℄.The ross setion for singly-produed doubly-hargedHiggsino turns out to be small at the sample points
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than that of the left-hirality Higgsino. They both be-ome negligible around Me� = 300 GeV sine therein theomposition of the lightest hargino hanges abruptly.Consequently, in this setion we use the sample pointSPC and disuss the left-hirality doubly-harged Hig-gsino prodution in assoiation with the lightest hargino~�+1 .Fig. 8 shows that, for all SPC parameter spae withvarying �3, the left-hirality doubly-harged Higgsinoprodued in assoiation with the lightest hargino yieldsa large ross setion for small Higgsino masses, and re-mains appreiable for doubly-harged Higgsinos as heavyas Me� � 450 GeV. For the purpose of omparison, wealso inlude the ross setion for the right-hirality Hig-gsino, whih starts dominating the ross setion for theleft-hirality one as Me� beomes larger than 450 GeV.One notes here that, sine the hargino ouplings toe�L=R depend on the entries in the mixing matries ofharginos, the input parameters in Table I play a ruialrole in determining the prodution ross setion. Sinewe assume �3 = 300 GeV for SPC, the 3` + E=T signalomes from the deay of the left-hirality Higgsino, only.The ross setion for p p! e���L e�+1 is around 30� 40 fbfor SPC. Based on further analysis the single produtionross setion for SPC is quite stable against large vari-ations in the other parameters of the model. Of ourse,this does not mean that the same holds for the signalross setion. For example, even though the tan� depen-dene of prodution ross setion is very weak (as longas it does not signi�antly hange the e��L omposition ofe�+1 ), there is a stronger dependene in the deay modes,as an be seen from the ouplings listed in Appendix.As in pair-prodution, the e��� deays again into apair of SSSF leptons and an LSP following Eq. 14, eitherthrough the 2-body deay mode (S2) or the 3-body deaymode (S3). The three possible hargino deay modes aredepited in Fig. 2. We �nd that the hargino has almost100% branhing ratio to a neutrino and slepton for SPC.Then sleptons deay as in Eq. 14. This gives a 3` + E=T�nal state where the missing transverse energy is due toan undeteted LSP and the neutrino. For the benhmarkpoint SPC the signal gets all the ontribution from theleft-hirality state.The single e��� prodution gives rise to a trilepton sig-nal at the LHC experiments. In the numerial analysis,following the same notation and same kinemati uts asin the previous subsetion, we illustrate the ase where`i = � and `j = e. Thus, we know that the e+ alwaysomes from the hargino while the same-sign muons orig-inate from the doubly-harged Higgsino.The prodution ross setion for the sample point SPCis � SPC: �(e���L e�+1 ) = 36:57 fb;and, after imposing the kinemati uts, the totalsignal ross setion beomes
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12bosons,W�1 Z1, and their subsequent deays into leptonsand LKP. In terms of the event topologies, trilepton andtetralepton signals of UED are similar to those of theMSSM, and thus, distinguishing UED from LRSUSY isaomplished with the same strategy used for the MSSM.Also interesting are models with low-sale U(1)B�L in-variane, whih aommodate a light right-handed Ma-jorana neutrino N [25℄. The pair-produed right-handedneutrinos an give rise to tetralepton signal via N !`+i W� ! `+i `�j ��j deay. The trilepton signal an omefrom assoiated `iN prodution and is strongly sup-pressed. The LHC signatures of this model are similar tothose of the MSSM and UED, and SSSF lepton distribu-tions enable one to distinguish it from LRSUSY [26℄.These ase studies an be extended to a multitude of`new physis' models at both qualitative and quantitativelevel. In eah ase, LRSUSY, whose spetrum onsists ofdoubly-harged Higgsinos, is found to di�er from the restby having SSSF proximate dileptons at the �nal state.Our results show onviningly lear that doubly-hargedHiggsinos give rise to rather speial leptoni events atthe LHC, making them �rmly distinguishable from otherSUSY partiles and also from partiles in several othermodels of physis at the TeV sale.AknowledgmentsThe work of M.F. and I.T. is supported inpart by NSERC of Canada under the Grant No.SAP01105354. The work of D.D. was supported byAlexander von Humboldt-Stiftung Friedrih WilhelmBessel-Forshungspreise and by the Turkish Aademyof Sienes via GEBIP grant. K.H. and S.K.R. grate-fully aknowledge the support from the Aademy of Fin-land (Projet No. 115032). We would like to thankM. T. Ataol and P. M. K. Ravuri for useful tehnialdisussions about CalHEP pakage, A. Belyaev for dis-ussions on CalHEP-Pythia interfae, R. Kinnunen andS. Rayhaudhuri for disussions, and Goran Senjanovi�for enlightening e-mail exhange.APPENDIXIn this Appendix we list down all the Feynman rules ne-essary for analyzing produtions and deays of doubly-harged Higgsinos in the LRSUSY model.Salar-Salar-Z Boson, :�A� ~q ~q? : � ieQq(pq + pq�)��Z�L ~q ~q? : � i gLos �W (TL3q �Qf sin2 �W )(pq + pq�)��Z�R ~q ~q? : � i gRpos 2�Wos �W (TR3q � 16 sin2 �Wos 2�W )(pq + pq�)�Salar-Salar-W bosons:�W�L ~lL ~�L : � i gLp2(pl + p�)��W�R ~lR ~�R : � i gRp2(pl + pv)�

Fermion-Fermion-W bosons:�W�L l �� : � i gLp2�PL�W�R l �� : � i gRp2�PR�W�L q �q0 : � i gLp2�PL�W�R q �q0 : � i gRp2�PR�W�L ~�+k ~���L : igL�(V ?k5PL + Uk5PR)�W�R ~�+k ~���R : igR�(V ?k6PL + Uk6PR)�W�L ~�+k ~�0j : � igL�(LLjkPL + LRjkPR)�W�R ~�+k ~�0j : � igR�(RLjkPL + RRjkPR)with the matrix elements given in terms of hargino andneutralino mixing matries asLLjk = �N?k1Vj1 + 1p2N?k5Vj4 ++N?k6Vj5 + 1p2N?k11Vj3LRjk = �U?j1Nk1 � 1p2U?j4Nk4 +N?k7Vj5 � 1p2U?j4Nk10RLjk = �N?k2Vj2 + 1p2N?k5Vj4 +N?k8Vj6 + 1p2N?k11Vj3RRjk = �U?j2Nk2 � 1p2U?j3Nk4 + U?j6Nk9 � 1p2U?j4Nk10Fermion-Fermion-Z Boson, :�� ~���L;R �~���L;R : 2ie��Z�L ~���L �~���L : igL os 2�Wos �W ��Z�L ~���R �~���R : � i2gL sin2 �Wos �W ��Z�R ~���L �~���L : igLpos 2�Wos �W ��Z�R ~���R �~���R : � igL(1� 3 sin2 �W )os �Wpos 2�W �
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