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DESY 08-059CERN-PH-TH/2008-107ZMP-HH/08-9Constraints on modular ination insupergravity and string theoryLaura Covia, Marta Gomez-Reinob, Christian Gross,Jan Louis;d, Gonzalo A. Palmaa, Claudio A. SruaeaTheory Group, Deutshes Elektronen-Synhrotron DESY,Notkestrasse 85, D-22603 Hamburg, GermanybTheory Division, Physis Department, CERN,CH-1211 Geneva 23, SwitzerlandII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, D-22761 Hamburg, GermanydZentrum f�ur Mathematishe Physik, Universit�at Hamburg,Bundesstrasse 55, D-20146 Hamburg, GermanyeInst. de Th. des Ph�en. Phys., Eole Polytehnique F�ed�erale de Lausanne,CH-1015 Lausanne, SwitzerlandWe perform a general algebrai analysis on the possibility of realising slow-roll ina-tion in the moduli setor of string models. This problem turns out to be very loselyrelated to the haraterisation of models admitting metastable vaua with non-negativeosmologial onstant. In fat, we show that the ondition for the existene of viableinationary trajetories is a deformation of the ondition for the existene of metastablede Sitter vaua. This ondition depends on the ratio between the sale of ination andthe gravitino mass and beomes stronger as this parameter grows. After performing ageneral study within arbitrary supergravity models, we analyse the impliations of ourresults in several examples. More onretely, in the ase of heteroti and orientifold stringompati�ations on a Calabi-Yau in the large volume limit we show that there may existfully viable models, allowing both for ination and stabilisation. Additionally, we showthat subleading orretions breaking the no-sale property shared by these models alwaysallow for slow-roll ination but with an inationary sale suppressed with respet to thegravitino sale. A sale of ination larger than the gravitino sale an also be ahievedunder more restritive irumstanes and only for ertain types of ompati�ations.
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1 IntrodutionOur urrent understanding of the very early universe is onsistent with a period of dra-mati aelerated expansion known as osmologial ination [1℄. The simplest and, sofar, most suessful way of modelling this stage onsists in the `slow-roll' motion of asingle salar �eld {the inaton{ behaving as a perfet uid with negative pressure drivingthe universe into aelerated expansion [2, 3℄ (for a reent review, see [4℄). A ruialingredient in these types of models (generially referred to as slow-roll ination) is theatness of the salar �eld potential haraterising the inaton's dynamis. On the onehand, this feature allows for ination to last long enough, so that the universe an beomeat, homogeneous and isotropi at osmologial sales [1, 2℄. On the other, it is requiredto obtain the orret predition for the spetrum of primordial density utuations [4, 5℄as observed in preision measurements of the osmi mirowave bakground [6℄ and largesale struture of the universe [7, 8℄.Despite of its simpliity, a ompletely satisfatory realisation of slow-roll ination insupergravity and string theory has remained elusive, the main reason for this being thediÆulty of ensuring the atness of the inaton potential [9℄. Up to date, the mostpopular strategy to ahieve ination in string theory has onsisted in the searh of suitableinationary trajetories within the vast landsape of string vaua, by studying the lassof N = 1 supergravity models arising from string theory. The large amount of freedomavailable in string ompati�ations, suh as that oming from uxes, torsion and/ornon-perturbative e�ets, suggests that there should be no obstales in obtaining a rihvariety of salar potentials, even possessing at diretions. However, in early attemptsto ahieve ination, it was already understood that there are atually severe restritionstowards this possibility, partiularly for the identi�ation of the inaton within the modulisetor [10, 11, 12℄. In pratise most of the suessful senarios of string ination involve anadditional setor beyond the moduli like, for instane, the uplifting setor used in mostof the onstrutions of de Sitter (dS) vaua with �xed moduli. Examples of this typeare models of ination based on the KKLT senario [13℄ where the joint ontribution ofnon-perturbative e�ets and an expliit supersymmetry breaking term indued by anti-D3branes allows to have dS vaua with a stable volume-modulus. Reently many interestingexamples of suh models of modular ination have been proposed [14, 15, 16, 17, 18, 19,20, 21, 22, 23℄. Moreover, with the advent of new uplifting mehanisms replaing theone o�ered by anti-D3 branes, new string-inspired realisations of ination with similarharateristis have been onstruted [24, 25, 26℄. Also some progress has been madereently towards a more general understanding of the origin of the diÆulties in realisingination in the moduli setor of string ompati�ations [27, 28℄.1



As a matter of fat, the problem of �nding viable models of single �eld slow-roll inationturns out to be losely related to the problem of �nding metastable vaua. A onsiderablestep forward in the last question has been the new understanding of the irumstanesunder whih metastable Minkowski vaua may exist in supergravity models. In ref. [29℄for instane, it was shown that positivity of the salar mass matrix along the diretionassoiated to the salar partners of the would be Goldstino (sGoldstinos) implies a strongneessary ondition on the K�ahler potential K independently of the superpotential W .This ondition was shown to have strong impliations when applied to the moduli setorof the simplest string ompati�ations available (see also [30, 31, 32, 33, 34℄). Morereently, in ref. [35℄, a more omprehensive study of the requirements for the existeneof dS vaua in the moduli setor of Calabi-Yau string ompati�ations was arried out.From these studies it emerged again that the ruial quantity ontrolling metastability isthe value of the mass matrix along a speial diretion de�ned by the Goldstino vetor,whih depends only on K. It was shown, in fat, that the value of the mass matrix alongany other diretion an be made arbitrarily large by appropriately hoosing W , and that,one a suitable hoie of K is adopted, it is always possible to onstrut metastable deSitter vaua as long as there is enough freedom to tune the superpotential of the model.The purpose of this work is to show that a similar analysis an be performed to de-termine if a supergravity model may possess at-enough diretions allowing for ination.We �nd that the resulting ondition is a generalisation of the onstraint granting the ex-istene of metastable dS vaua, and that, as muh as for the realisation of these types ofvaua, the main obstrution towards the realisation of ination omes from the hoie ofthe K�ahler potential K. There exists, nevertheless, a signi�ant di�erene between thesetwo situations. At the point where the �nal stabilisation of the moduli ours, the valueof V is related to the osmologial onstant � by V = �, whih is tiny. In partiular,one ertainly has phenomenologially V � m23=2M2Pl. During ination, on the other hand,the value of V is related to the Hubble onstant by H2 ' V=(3M2Pl), and the gravitinomass generially di�ers from the one at the stabilised vauum. We expet, however, theorder of magnitude of that mass to remain the same in most ases, unless some extratuning is enfored in the model. We therefore onsider in the following a single salefor the gravitino mass, and suh situation is surely realised for example in models whereination is driven by the large F-term of a �eld whose ontribution to W is neverthelesssuppressed.In general, it is then desirable to have H � m3=2, sine the sale of ination shouldbe muh higher than the eletroweak sale and partile phenomenology alls for m3=2omparable to, or lower than, that sale. As already notied in [35℄, the ondition forahieving a massless sGoldstino beomes stronger as the ratio V=(m23=2M2Pl) inreases.2



This means in partiular that, in generi supergravity models, the ondition for gettingslow roll ination is stronger than the ondition for realising moduli stabilisation. Thedi�erene between these two situations an be onveniently parametrised in terms of thefollowing quantity  = 13 Vm23=2M2Pl ' H2m23=2 : (1.1)Let us emphasise however that the results presented in this work are also valid for modelsin whih the gravitino mass hanges strongly between ination and the present vauum. Insuh ases, the parameter  has to be resaled aordingly, and the omparison betweenthe values of  during and after ination is still a useful indiation of the diÆulty inrealising the senarios.The outline of this paper is as follows. In Setion 2 we derive the ondition that a generisupergravity theory must ful�l in order to allow for slow-roll ination. In Setion 3 weillustrate our results through some simple examples. In Setion 4 we apply it to the aseof heteroti and orientifold string ompati�ations on a Calabi-Yau in the large volumelimit, and see what kind of information an be extrated. In Setion 5 we study the e�etof subleading orretions to the K�ahler potential breaking the no-sale property sharedby the models presented in Setion 4 and its impliations on the inationary analysis.Finally in Setion 6 we present our onlusions.2 Slow-roll ination in supergravityTo begin with, let us onsider a generi model involving several omplex neutral salar�elds �i, with a Lagrangian of the type (in Plank units MPl = 1):L = 12R � gi�| ��i� ���| � V (�i; ���{) : (2.1)The metri gi�| must be Hermitian and positive de�nite, but is otherwise arbitrary. Therealisation of a suessful and viable stage of slow-roll ination in suh a model requires theexistene of a region in �eld spae where the potential in the anonial basis is suÆientlyat. In the ase of a single real �eld, this orresponds to the requirement of having smallslow-roll parameters �, j�j � 1, where� = 12 �V 0V �2 ; � = V 00V ; (2.2)with 0 denoting derivatives with respet to the anonially normalised �eld. These ondi-tions get modi�ed in the multi-�eld ase. At lowest order in the slow-roll approximation3



the trajetory in �eld-spae along whih ination is realised is given by the diretionjrV j�1riV , where jrV j = prjVrjV , whereas deviations from this diretion are on-trolled by the tensor: N IJ = 1V �rirjV rir�|Vr�{rjV r�{r�|V � ; (2.3)where I = (i;�{) and J = (j; �|), and ri denotes a derivative whih is ovariant with respetto the metri gi�|. Then, the generalised version of the slow-roll parameters (2.2) an bede�ned in the following way [36℄:� = riVriVV 2 ; (2.4)� = min eigenvalue fNg : (2.5)Let us mention here that a strit haraterisation of the slow-roll onditions would requireus to distinguish between dynamial e�ets parallel and perpendiular to the inaton'strajetory [37℄. In partiular, � given in eq. (2.2) would have to be generalised in suha way that it oinides with the projetion �jj of N along the diretion jrV j�1riV .1Notie from the de�nition (2.5), however, that for any given unit vetor uI = (ui; u�{) thefollowing inequality is always satis�ed:� � uIN IJuJ : (2.6)Indeed, one an always deompose uI as uI = Pk (k)!I(k), where the !I(k)'s represent abasis of orthogonal and normalised eigenvetors of N with eigenvalues �(k). Sine theuI's are unit vetors, the oeÆients (k) satisfy Pk j(k)j2 = 1 and so it immediatelyfollows that uIN IJuJ = Pk j(k)j2�(k) � minf�(k)g = �. In partiular, one �nds that� � �jj. Nevertheless, in order to avoid signi�ant levels of isourvature perturbations,a phenomenologially suessful model of ination requires the projetion of N alongdiretions perpendiular to jrV j�1riV to be muh larger than �jj. This means that� ' �jj, as ontributions to � oming from projeting N along diretions perpendiular tojrV j�1riV have to be suppressed.Let us onsider now the situation in a generi supergravity theory involving only hiralmultiplets. Reall that in supergravity the two-derivative Lagrangian an be written interms of the real funtion G = K + log jW j2 and its derivatives with respet to the hiralmultiplets �i (and their onjugates ���|) whih are denoted by lower indies i (and �|). The1Also a seond slow roll-parameter �?, depending on N , may be de�ned [37℄. Loosely speaking, �?depends only on those elements of N mixing the tangent vetor jrV j�1riV with the normal vetorrelative to the inaton trajetory. 4



kineti term of the salar �elds involves the K�ahler metri gi�| = Gi�|, whih an be usedto raise and lower indies and depends only on K. The K�ahler metri is assumed to bepositive de�nite and de�nes a K�ahler geometry for the manifold spanned by the salar�elds. The salar potential for this kind of theories takes the following simple form:V = eG(GiGi � 3) : (2.7)The auxiliary �elds of the hiral multiplets are �xed by their equations of motion to beF i = m3=2Gi with a sale set by the gravitino mass m3=2 = eG=2. Whenever F i 6= 0 atthe vauum supersymmetry is spontaneously broken, and the diretion Gi in the spae ofhiral fermions de�nes the Goldstino whih is absorbed by the gravitino in the proess ofsupersymmetry breaking. The unit vetor de�ning this diretion is given by:fi = GipGjGj : (2.8)Note that suh diretion an be di�erent during and after ination.In these theories ahieving small values for � and � is not ompletely trivial. This isdue to the fat that the potential V is onstrained to be a spei� funtion of K and W ,and is therefore not entirely arbitrary. Nevertheless, if K is appropriately hosen, it isalways possible to make � and � arbitrarily small by tuning W . To see this, we must �rstompute the �rst and seond derivatives of V and express them in terms of the parametersof the theory. These are:riV = eG�Gi +GjriGj�+GiV ; (2.9)rir�|V = eG�gi�| +riGkr�|Gk�Ri�|p�qGpG�q�+Gir�|V +G�|riV +(gi�| �GiG�|)V ; (2.10)rirjV = eG�2riGj +GkrirjGk�+GirjV +GjriV +(riGj �GiGj)V : (2.11)Notie that Gi, riGj and rirjGk depend on the superpotential and more preisely on(logW )i, (logW )ij and (logW )ijk, whih are independent quantities. This means that Wmay be varied in an arbitrary way in order to adjust riV and N . It is lear then that,for a given K�ahler potential, it is always possible to make � arbitrarily small, simply bytuning GkriGk with respet to Gi in eq. (2.9). On the other hand, to ahieve a smallj�j, we need to have suÆient ontrol on the entries of the matrix N . Observe that bytuning rirjGk it is possible to set rirjV to any desired value, and the quantities riGjto make most of the eigenvalues of rir�|V large and positive. The only restrition omesfrom the fat that the projetion of rir�|V along the Goldstino diretion (2.8) is atuallyonstrained by eq. (2.9) (whih has already been �xed to make � small) and therefore5



annot be adjusted so easily. Nevertheless, if the hoie of K allows for it, one an stillmake this last diretion at enough by tuning the remaining quantities Gi.From the previous disussion it remains to be learned under whih irumstanes agiven K is suitable to produe suh a at diretion. To �nd this out, let us reall thateq. (2.6) is valid for any unit vetor u. We an then derive an upper bound on � for thepartiular hoie uI = (e�i�fi; ei�f�{)=p2, uJ = (ei�f j; e�i�f �|)=p2, whih is assoiated tothe Goldstino diretion f i given in eq. (2.8):2� � rir�|VV f if �| +Re�e2i�rirjVV f if j� : (2.12)Averaging this over the two orthogonal hoies � = 0; �=2 one �nally dedues the followingsimple bound, depending only on the Hermitian blok of the Hessian matrix:� � rir�|VV f if �| : (2.13)Using now eq. (2.10) it is straightforward to �nd:rir�|VV f if �| = �23 + 4p3 1p1 + Re�riVV f i�+ 1 +  riVriVV 2 + 1 +  �̂(f i) ; (2.14)where the parameter  is given by eq. (1.1) and the funtion �̂(f i) is de�ned to be�̂(f i) = 23 � R(f i) ; (2.15)where R(f i) = Ri�|p�q f if �|f pf �q denotes the holomorphi setional urvature along the Gold-stino diretion f i. Note that the quantity �̂ is the normalised version of the homogeneousquantity � that was introdued in ref. [35℄:3 �̂(f i) = �(Gi)=(GkGk)2.Sine f i is a unit vetor, it is lear that jf iriV=V j � p�. Using this inequality, thede�nition of �, and the result given in (2.14) we �nally obtain the following simple upperbound on �: � � �max � �23 + 4p3 1p1 + p�+ 1 +  � + 1 +  �̂(f i) : (2.16)Notie now that �max should be either negative and very small or positive (�max >� 0) inorder for the bound (2.16) to be ompatible with the requirement of having a small j�j.More preisely, assuming �� 1, one needs:�̂(f i) >� 23 1 +  : (2.17)2 Notie that if GkriGk / Gi then Vi / Gi and the inaton and Goldstino diretions in �eld spaeare aligned. Then the value of �jj is equal to the right hand side of (2.12) with � = 0.3 In the notation of ref. [35℄ the bound (2.13) takes the form � � eG�=(V GiGi), where � =�2=3 e�GV �e�GV + 3�+ � + 2e�G(GmVm +G�nV�n) + V nVn.6



This ondition an also be rewritten in the following alternative form, whih has the samestruture as the onditions derived in refs. [29, 32, 34℄:R(f i) <� 23 11 +  : (2.18)The ondition (2.17), or equivalently (2.18), represents our main result and implies astrong restrition on the K�ahler potential, generalising the one obtained in refs. [27, 28℄for single �elds models. If it is satis�ed, one still needs to further tune the superpotentialto adjust � to a suÆiently small value ompatible with urrent data.For  � 1, this ondition redues to �̂(f i) >� 0 (or R(f i) <� 2=3), whih oinides withthe ondition for the existene of metastable dS vaua with small osmologial onstant.On the other hand, for  � 1, it tends to the more restritive ondition �̂(f i) >� 2=3 (orR(f i) <� 0). Sine  = (H=m3=2)2 parametrises the ratio between the Hubble sale Hand the gravitino sale m3=2, this means that inationary sales muh smaller than thegravitino sale are as diÆult to realise as dS vaua, whereas higher inationary salesare instead more diÆult to realise.One an study the impliations of the ondition (2.18) exatly in the same way aswas done in refs. [29, 32, 34℄. In partiular, one an derive a onstraint involving onlythe K�ahler potential by minimising the setional urvature with respet to the variablesf i, taking into aount that these variables are normalised to one: f ifi = 1. This im-plies the ondition that the minimal value of the setional urvature Rmin should be lessthan 2=[3(1 + )℄. Moreover, if Rmin satis�es that bound, the diretion f i is then on-strained to lie within a one entred around the partiular diretion that minimises thesetional urvature. This proedure an be performed expliitly for partiular lasses ofmodels, like for instane those for whih the salar manifold fatorises into a produtof one-dimensional salar manifolds or also for oset salar manifolds. More preisely,for fatorisable manifolds it is easy to show that the setional urvature satis�es a lowerbound in terms of the salar urvatures Ri of the one-dimensional submanifolds whihis given by: R(f i) � (PiR�1i )�1. For oset manifolds, on the other hand, the Riemanntensor has a very speial struture. One an show that in those ases the setional ur-vature turns out to be onstant and to depend only on some overall urvature sale Rall,whih depends on the partiular oset manifold being onsidered: R(f i) = Rall (see [32℄for more details).It is worth pointing out that the presene of vetor multiplets gauging isometries of thehiral multiplet geometry an quantitatively hange the right-hand side of the onstraint(2.18). This is mainly due to the fat that the D-term ontributions to the salar potentialare positive de�nite. More preisely, for a given value of the potential V , inreasing the7



ratio between the D-term and the F -term ontributions to the potential has the net e�etof reduing the left-hand side of (2.18) and therefore making the onstraint milder [34℄.This ould be used to partly ompensate the strengthening of the ondition indued byinreasing . A more radial improvement of the situation an be obtained by relyingon genuine onstant Fayet-Iliopoulos terms [38℄. However, this possibility is severelyonstrained within supergravity, and implies a rather peuliar gauging of the R-symmetry,whih does not seem to emerge in any kind of string onstrution [39℄.3 Simple examplesThe simplest example one an study is the ase of supergravity models involving a singlehiral super�eld with a anonial K�ahler potential:K = �XX : (3.1)For this salar manifold the Riemann tensor vanishes. From (2.15) we get then that �̂ =2=3, and the ondition (2.17), or equivalently (2.18), an always be satis�ed independentlyof the value of . This implies in partiular that there is no obstrution in this ase tobuild a model with any sale of ination. In models with several �elds of this type, that is,with K =Pi �X iX i, the omponents of the Riemann tensor will also vanish and thereforethe situation is exatly the same.Another simple ase that an be studied is the ase of a �eld with a logarithmi K�ahlerpotential, for whih a no-go theorem is disussed in [27, 28℄:K = �n log (T + �T ) ; (3.2)whih governs the dynamis of moduli �elds arising in simple examples of string om-pati�ations. The one-dimensional salar manifold has in this ase a onstant setionalurvature whih is simply given by R = 2=n. From here we get that �̂ = 2=3(1 � 3=n).This means that the ondition (2.17), or (2.18), an be satis�ed only ifn >� 3(1 + ) :It is then lear that a model with  � 1 annot be built within this setup, as n istypially a number of order 1. For instane the overall K�ahler modulus in string modelshas n = 3 and thus, even inluding subleading orretions to the K�ahler potential, onean at best ahieve a small  of the order of the subleading orretions.4 In models with4In ref. [27℄ a model of this kind is proposed where a sizable  is ahieved by going to a regime where8



several suh �elds, that is, with logarithmi potentials with oeÆients ni, one �nds thatthe setional urvature depends on the orientation of the Goldstino diretion f i. Howeverone an proeed exatly as in [29℄ and minimise the setional urvature with respet to thevariables f i, taking into aount the onstraint f ifi = 1. By doing so it is easy to �nd thatR(f i) � 2=(Pi ni). The ondition (2.18) implies therefore that Pi ni >� 3(1 + ). As inthe one �eld ase we onlude then that one annot get an inationary sale muh biggerthan the gravitino mass in any model with a small number of moduli with oeÆients niof order 1.Given the above two substantially di�erent situations, one ould then onsider a modelombining a �eld with a logarithmi K�ahler potential and a �eld with a anonial K�ahlerpotential (whih would at as an uplifting setor):K = �n log (T + �T ) + �XX : (3.3)In suh a ase, the salar manifold spanned by the �elds X and T fatorises into twoone-dimensional manifolds. As before we �nd that the urvature in the one-dimensionalmanifold spanned by X vanishes whereas the urvature in the one-dimensional manifoldspanned by T is given by 2=n. This means that the minimal value that the setionalurvature is allowed to take is zero, sine the Goldstino diretion an be aligned along thediretion of zero urvature: R(f i) � 0. It is then always possible to satisfy the ondition(2.18), independently of the value of n. However, it is lear that in order to ahieve a large, that is, a sale of ination bigger than the gravitino sale, the inationary dynamismust be strongly a�eted by the uplifting setor. The situation remains qualitatively thesame by adding several suh building bloks.Another ase that an be easily analysed is that of models with the following K�ahlerpotential: K = �n log (T + �T � �XX) : (3.4)In this ase the salar geometry is a maximally symmetri oset spae with onstanturvature, and one �nds R(f i) = 2=n. The situation is then idential to the one obtainedwith only one �eld T with a logarithmi K�ahler potential and the addition of the X �elddoes not help in satisfying the ondition. In partiular, it is impossible to realise slow-rollination if n = 3, unless extra ingredients are added.5 Again, adding more �elds of thisthe subleading orretion atually indues a signi�ant hange in the K�ahler urvature. This is ahievedthanks to a large numerial oeÆient that ompensates its parametrial suppression. We believe howeverthat in suh a situation there is limited ontrol on the e�et of the orretions at higher orders of thelow-energy expansion.5For example the model onsidered in ref. [40℄ involves an additional uplifting setor. In that ase,besides the �elds T and X desribing the volume and the brane position, one would also have to takeinto aount some extra �eld Y desribing the anti-brane position.9



kind in a similar way does not hange qualitatively the situation. More involved osetmanifolds an be studied as in ref. [32℄.4 No-sale modelsA general feature of models emerging from string ompati�ations on a Calabi-Yau isthat their moduli setor exhibits, in the large volume limit, the no-sale property:KiKi = 3 : (4.1)As shown in [35℄, this property onstrains the K�ahler geometry and, as a onsequene ofthis, the Riemann tensor satis�es ertain properties when projeted along the partiulardiretion ki = Ki=p3. In partiular, one �nds that along suh a diretion the setionalurvature takes preisely the ritial value:R(ki) = 23 : (4.2)This means that it is always possible to obtain �̂ = 0 by hoosing the Goldstino diretionf i to be aligned along this speial diretion ki. The question is then whether it is possibleor not, by departing from the on�guration f i = ki, to get a lower value of the setionalurvature, or equivalently, a larger value of �̂(f i).In orbifold models, as well as in smooth ompati�ations on Calabi-Yau manifoldswhih are atually K3 �brations with a large P1 base, the moduli spae is a oset manifoldof the type G=H. These spaes are symmetri and the form of the Riemann tensor isfurther onstrained by the presene of isometries. Moreover, they are also homogeneouswith a ovariantly onstant urvature. In these models, the quantity �̂ an be easilystudied as a funtion of the diretion f i, and it is possible to prove that the value �̂ = 0along the diretion ki orresponds to an absolute maximum [35℄. The situation is thenidential to that of a single modulus with a logarithmi potential of the form (3.2) withoeÆient n = 3: Ination an be realised with the help of subleading orretions to theK�ahler potential, but only with a very low sale relative to the gravitino mass ( � 1).We will ome bak to this issue in the next setion.In general Calabi-Yau models, the situation is more interesting. Indeed, in those asesthe salar manifold is in general neither symmetri nor homogeneous. The funtion �̂ anthen have either a maximum or a saddle point at the speial diretion ki, and the spaeof possible models subdivides into two lasses: Models for whih it is possible to �nd apositive value of �̂ in a diretion di�erent than ki and models for whih it is impossibleto get suh a positive value. 10



To illustrate the situation arising in more general Calabi-Yau models, let us onsiderthe K�ahler moduli setor of heteroti ompati�ations. The K�ahler potential is heredetermined by the intersetion numbers dijk of the Calabi-Yau manifold and has thefollowing form K = � logV ; V = 16dijk(T i + �T�{)(T j + �T �|)(T k + �T �k); (4.3)where V is the lassial volume of the Calabi-Yau. This de�nes a speial K�ahler geometry,and the Riemann tensor has the speial struture Ri�|p�q = gi�|gp�q + gi�qgp�| � e2Kdiprgr�sd�s�|�q.The setional urvature along the Goldstino diretion is then given by:R(f i) = 2� e2Kdiprgr�sd�s�|�q f if �|f pf �q : (4.4)This yields: �̂(f i) = �43 + e2Kdiprgr�sd�s�|�q f if �|f pf �q : (4.5)From the expliit form of the K�ahler metri derived from (4.3) it follows that diprkikp =2kr=p3. One an then easily verify that along the speial diretion ki one indeed hasR(ki) = 2=3 and �̂(ki) = 0. It was however shown in ref. [35℄ that �̂ an be madepositive or negative along other diretions, depending on the intersetion numbers dijk.For instane, in models with only two moduli, the situation simpli�es due to the fat thatthere is only one diretion orthogonal to the diretion given by ki. This diretion is givenby the unit vetor ni de�ned as:(n1; n2) = (k2;�k1)pdet g ; ni ki = 0 : (4.6)One an show [35℄ that the onvexity of the funtion �̂(f i) at f i = ki is determined by thesign of the disriminant of the ubi polynomial V de�ning the volume of the Calabi-Yau,given by:� = �27�d2111d2222 � 3 d2112d2122 + 4 d111d3122 + 4 d3112d222 � 6 d111d112d122d222� : (4.7)If � > 0, then �̂(ki) = 0 orresponds to the absolute maximum, and it is not possibleto meet the ondition for slow-roll ination. If, on the ontrary, � < 0, the point �̂ = 0orresponds to a saddle point and therefore there is a region in the parameter spaespanned by the f i's for whih �̂(f i) an be made positive. Moreover, the value of �̂ forV > 0 is extremised to a non-vanishing value along some partiular diretion f i in betweenki and ni. Unfortunately, this value is diÆult to determine in general, essentially beause�̂ is de�ned in terms of the normalised unit vetor f i. Nevertheless, we an still verify11



whether it is possible or not to obtain �̂(f i) larger than the ritial value 2=3 required tobe able to realise ination with an arbitrary high sale. A simple way to verify that thisis indeed the ase is by looking at the partiular diretion f i = zi given by 6:zi =r1 + a9 + aki +r 89 + ani ; a = ��24 e4K(det g)3 : (4.8)Notie that a > 0 as the fator e4K=(det g)3 is always positive. Along this partiulardiretion one then obtains7: �̂(zi) = 64 a(a + 9)2 ; (4.9)whih is positive. Then, assuming that a an be varied over the whole range [0;+1) byvarying the values of the �elds while keeping eK, det g and tr g all positive, the largestpossible value for �̂ is obtained for a = 9 and is given by �̂max = 16=9. Sine this is largerthan 2=3, one should then be able to ahieve any arbitrarily large value of .Another interesting situation based on Calabi-Yaumanifolds arises in Type II orientifoldompati�ations. In that ase, the salar geometry that one obtains for a given Calabi-Yau manifold is dual to the one arising for the heteroti model based on the same manifold[41, 42℄, and one �nds opposite signs for the extremal value of �̂. In the speial aseinvolving only two �elds, one an in fat prove that for orientifolds this extremal value isgiven by �̂ = 64 a=(a � 9)2, where a is de�ned as before but with � ! ��, eK ! e�Kand det g ! (det g)�1, namely a = (�=24) e�4K (det g)3. In this ase, a viable situationwith a positive �̂ an therefore be realised only for those Calabi-Yau manifolds for whih� > 0. One an atually show that in this ase a 2 [0; 1℄, and the largest possible valuefor �̂ is obtained for a = 1 and is given by �̂max = 1, whih is still larger than 2=3.5 E�et of subleading orretionsWe would like now to disuss the role of subleading orretions in the boundary aseswhen the leading order of the K�ahler potential just ful�lls the equality in eq. (2.17). As6This diretion was found in [35℄ in the analysis of string ompati�ations with two moduli. There,it was shown that zi maximises the quantity � = (GkGk)2�̂(f i). One should keep in mind however thatin general the funtion �̂(f i) is maximised in a diretion f i 6= zi.7This expression an be derived as follows from the results of setion 4 of ref. [35℄. One starts fromthe deomposition � = ! � 2sisi, with ! = a (3 det g jCj2)2 and si = 0, taking a general Goldstinodiretion Gi = Ni + �Ki, where Ni is orthogonal to Ki. From the de�nition of C one easily �nds that3 det g jCj2 = N iNi. Moreover, the equation si = 0 �xes � in terms of N i and the arbitrary phase of C.One �nds in partiular that j�j2 � [(1 + a)=24℄N iNi, the preise value depending on the phase of C. Itthen follows that GiGi � [(a + 9)=8℄N iNi. Finally, one omputes �̂ = !=(GiGi)2, with GiGi taken toassume its minimal value. 12



we already mentioned in the last setion, for no-sale models, the setional urvaturealong the diretion ki is R(ki) = 2=3, and therefore �̂ = 0 along that diretion. Thismeans in partiular that a general possibility to realise ination whih an arise in allCalabi-Yau string models is to onsider subleading orretions to the K�ahler potentialthat break the no-sale property. However this possibility obviously restrits the sale ofination to be small (ompared to the gravitino sale), as the hange in �̂ is of the orderof the subleading orretion.The subleading orretions to the K�ahler potential an be of various types, e.g. loop,�0 or world-sheet instanton orretions. As a result of these orretions, the no-saleproperty will be deformed by some small quantity Æ, whih is parametrially of order�K=K: KiKi ' 3 +O(Æ) : (5.1)In this situation, the extremum of the funtion �̂ along the diretion ki gets in generalslightly shifted, and the new value at this extremum beomes of order�̂(ki) ' O(Æ) : (5.2)Comparing this result with the ondition (2.17), we see that in this ase it would indeedbe possible to realise ination along the diretion f i ' ki, provided one an get the rightsign for the subleading orretion Æ. However the parameter  whih sets the sale ofination is bounded by the parameter jÆj ontrolling the relative e�et of the subleadingorretions in the K�ahler potential:  <� O(jÆj) ; (5.3)and therefore one has neessarily H < m3=2.One an onsider for instane the e�et of �0-orretions to the large volume limit ofCalabi-Yau ompati�ations of the heteroti string [43℄ and of type IIB orientifolds [44℄.These orretions have the e�et of shifting the argument of the logarithm in the K�ahlerpotential by some onstant parameter � 8:K = �n log(V + �) ;where n = 1; 2 for heteroti and orientifold models respetively. One an then parametrisethe relative e�et of these orretions with Æ � �=V, where V is the volume of the Calabi-Yau manifold (resp. orientifold). It is easy to hek that �̂ still has an extremum alongthe diretion ki, but its value at that point beomes now �̂ � Æ � �=V. As a result, themaximal sale of ination that an be realised within this setup orresponds to  � �=V,that is H2 � m23=2�=V. This is for example the ase in the model of ref. [16℄.8Stritly speaking, in the ase of IIB orientifolds the orretion is dilaton-dependent. This does notqualitatively modify the e�et however. 13



6 ConlusionsIn this paper we have studied the possibility of realising suessful slow-roll inationarysenarios in a general low-energy e�etive supergravity theory involving only hiral mul-tiplets. We have shown that the ondition imposed on the theory for having slow-rollination is very similar to the one neessary for obtaining a metastable de Sitter vauum.In partiular, the requirement is that the setional urvature R(f i) along the Goldstinodiretion f i should be smaller than the ritial value 2=[3(1 + )℄, where the parameter = V=(3m23=2) depends on the size of the potential relative to the gravitino mass sale. Aswas shown in [35℄, the presene of dS vaua with small osmologial onstant �� m23=2,that is, with  � 1, implies that the setional urvature is bounded, i.e. R(f i) <� 2=3.For ination, on the other hand, this ondition hanges depending on the Hubble sale.In models with H � m3=2, i.e.  � 1, suh onstraint beomes R(f i) <� 0. For modelswith H � m3=2 one has instead  � 1 and the ondition takes the form R(f i) <� 2=3 andis therefore similar to the one relevant for metastable dS vaua. This means in partiularthat models with a sale of ination higher than the gravitino mass are more diÆult torealise than models with a sale of ination smaller than (or omparable to) the gravitinomass.More onretely, we have shown that the ondition for suessful ination an be gener-ially satis�ed in any no-sale model by taking into aount the e�et of subleading or-retions, although in those ases the sale of ination has to be suppressed with respetto m3=2. On the other hand, models with a sale of ination that is omparable or evenlarger than the gravitino mass an instead be realised only in ertain Calabi-Yau ompat-i�ations, those ones allowing for a value of �̂ � 2=3. We have also shown through somesimple examples that the onditions neessary for slow-roll ination an also be ahievedby adding to the moduli setor of the theory an uplifting setor. In those ases the sizeof the parameter , whih gives the ratio between the sale of ination and the gravitinomass during ination, depends on the inuene that the uplifting setor has on the in-ationary dynamis. For example in models with a K�ahler potential of the type (3.2)with n = 3 it is lear that in order to have  � 1 the uplifting setor should dominatethe inationary dynamis. If this is not the ase, the uplifting setor only mildly hangesthe ondition (2.17) and one has a model with H <� m3=2. This is atually the typialsituation in inationary senarios based on the KKLT setup, as was pointed out in [45℄.Reall however that the gravitino mass during ination is not neessarily the same asthe gravitino mass at the vauum. In order to onstrut models with H � m3=2, onepossibility is then to perform an additional tuning to make the gravitino mass duringination muh bigger than the gravitino mass at the vauum [45, 46℄. We have shown in14



this paper that another possibility to realise H � m3=2 without performing an additionaltuning is to onsider Calabi-Yau ompati�ations allowing for a sizable value of �̂, orequivalently, for a small value of the setional urvature.It is interesting to note that from (2.18), and by taking into aount the de�nition of in (1.1), one an ompute the following bound on the value of the inationary Hubbleparameter: H2 <� R�1min�23 � Rmin�m23=2 ; (6.1)where Rmin denotes the minimal value that the setional urvature of the moduli spae isallowed to take. In the vauum of the theory the same kind of bound an be omputedfor the mass m of the lightest salar. Atually following the same reasoning as the oneused to derive (2.13) and imposing that at the vauum V = riV = 0, one easily deduesthat: m2 <� f if �|rir�|V = 3�23 � Rmin�m23=2 : (6.2)As we already mentioned, the two gravitino sales in (6.1) and (6.2) may di�er, but inthe absene of additional tuning of the parameters in the theory, both sales are naturallyexpeted to be of the same order of magnitude.One an ompute now the ratio of the bounds (6.1) and (6.2). This yields the followingsimple relation: Hmaxmmax � R�1=2min : (6.3)This is perhaps the most objetive measure of the tension against making the sale ofination muh larger than the sale of supersymmetry breaking, and shows that the onlyway to relax suh tension in a robust way (that is, without extra �ne-tuning) is to hoosefor ination a diretion in �eld spae where the K�ahler urvature is very small.AknowledgementsThis work was partly supported by the German Siene Foundation (DFG) under the Col-laborative Researh Centre (SFB) 676, by the European Union 6th Framework ProgramMRTN-CT-503369 \Quest for uni�ation" and by the Swiss National Siene Foundation.LC would like to thank M. Badziak and M. Olehowski for interesting disussions and theInstitute of Theoretial Physis of the Warsaw University for their hospitality during partof this work; the visit was made possible thanks to a Maria Curie Transfer of KnowledgeFellowship of the European Community's Sixth Framework Programme under ontratnumber MTKD-CT-2005-029466 (2006-2010). JL would like to thank Daniel Waldram foruseful disussions and Chris Hull and the Institute for Mathematial Sienes, Imperial15
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