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hnique F�ed�erale de Lausanne,CH-1015 Lausanne, SwitzerlandWe perform a general algebrai
 analysis on the possibility of realising slow-roll in
a-tion in the moduli se
tor of string models. This problem turns out to be very 
loselyrelated to the 
hara
terisation of models admitting metastable va
ua with non-negative
osmologi
al 
onstant. In fa
t, we show that the 
ondition for the existen
e of viablein
ationary traje
tories is a deformation of the 
ondition for the existen
e of metastablede Sitter va
ua. This 
ondition depends on the ratio between the s
ale of in
ation andthe gravitino mass and be
omes stronger as this parameter grows. After performing ageneral study within arbitrary supergravity models, we analyse the impli
ations of ourresults in several examples. More 
on
retely, in the 
ase of heteroti
 and orientifold string
ompa
ti�
ations on a Calabi-Yau in the large volume limit we show that there may existfully viable models, allowing both for in
ation and stabilisation. Additionally, we showthat subleading 
orre
tions breaking the no-s
ale property shared by these models alwaysallow for slow-roll in
ation but with an in
ationary s
ale suppressed with respe
t to thegravitino s
ale. A s
ale of in
ation larger than the gravitino s
ale 
an also be a
hievedunder more restri
tive 
ir
umstan
es and only for 
ertain types of 
ompa
ti�
ations.
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1 Introdu
tionOur 
urrent understanding of the very early universe is 
onsistent with a period of dra-mati
 a

elerated expansion known as 
osmologi
al in
ation [1℄. The simplest and, sofar, most su

essful way of modelling this stage 
onsists in the `slow-roll' motion of asingle s
alar �eld {the in
aton{ behaving as a perfe
t 
uid with negative pressure drivingthe universe into a

elerated expansion [2, 3℄ (for a re
ent review, see [4℄). A 
ru
ialingredient in these types of models (generi
ally referred to as slow-roll in
ation) is the
atness of the s
alar �eld potential 
hara
terising the in
aton's dynami
s. On the onehand, this feature allows for in
ation to last long enough, so that the universe 
an be
ome
at, homogeneous and isotropi
 at 
osmologi
al s
ales [1, 2℄. On the other, it is requiredto obtain the 
orre
t predi
tion for the spe
trum of primordial density 
u
tuations [4, 5℄as observed in pre
ision measurements of the 
osmi
 mi
rowave ba
kground [6℄ and larges
ale stru
ture of the universe [7, 8℄.Despite of its simpli
ity, a 
ompletely satisfa
tory realisation of slow-roll in
ation insupergravity and string theory has remained elusive, the main reason for this being thediÆ
ulty of ensuring the 
atness of the in
aton potential [9℄. Up to date, the mostpopular strategy to a
hieve in
ation in string theory has 
onsisted in the sear
h of suitablein
ationary traje
tories within the vast lands
ape of string va
ua, by studying the 
lassof N = 1 supergravity models arising from string theory. The large amount of freedomavailable in string 
ompa
ti�
ations, su
h as that 
oming from 
uxes, torsion and/ornon-perturbative e�e
ts, suggests that there should be no obsta
les in obtaining a ri
hvariety of s
alar potentials, even possessing 
at dire
tions. However, in early attemptsto a
hieve in
ation, it was already understood that there are a
tually severe restri
tionstowards this possibility, parti
ularly for the identi�
ation of the in
aton within the modulise
tor [10, 11, 12℄. In pra
tise most of the su

essful s
enarios of string in
ation involve anadditional se
tor beyond the moduli like, for instan
e, the uplifting se
tor used in mostof the 
onstru
tions of de Sitter (dS) va
ua with �xed moduli. Examples of this typeare models of in
ation based on the KKLT s
enario [13℄ where the joint 
ontribution ofnon-perturbative e�e
ts and an expli
it supersymmetry breaking term indu
ed by anti-D3branes allows to have dS va
ua with a stable volume-modulus. Re
ently many interestingexamples of su
h models of modular in
ation have been proposed [14, 15, 16, 17, 18, 19,20, 21, 22, 23℄. Moreover, with the advent of new uplifting me
hanisms repla
ing theone o�ered by anti-D3 branes, new string-inspired realisations of in
ation with similar
hara
teristi
s have been 
onstru
ted [24, 25, 26℄. Also some progress has been madere
ently towards a more general understanding of the origin of the diÆ
ulties in realisingin
ation in the moduli se
tor of string 
ompa
ti�
ations [27, 28℄.1



As a matter of fa
t, the problem of �nding viable models of single �eld slow-roll in
ationturns out to be 
losely related to the problem of �nding metastable va
ua. A 
onsiderablestep forward in the last question has been the new understanding of the 
ir
umstan
esunder whi
h metastable Minkowski va
ua may exist in supergravity models. In ref. [29℄for instan
e, it was shown that positivity of the s
alar mass matrix along the dire
tionasso
iated to the s
alar partners of the would be Goldstino (sGoldstinos) implies a strongne
essary 
ondition on the K�ahler potential K independently of the superpotential W .This 
ondition was shown to have strong impli
ations when applied to the moduli se
torof the simplest string 
ompa
ti�
ations available (see also [30, 31, 32, 33, 34℄). Morere
ently, in ref. [35℄, a more 
omprehensive study of the requirements for the existen
eof dS va
ua in the moduli se
tor of Calabi-Yau string 
ompa
ti�
ations was 
arried out.From these studies it emerged again that the 
ru
ial quantity 
ontrolling metastability isthe value of the mass matrix along a spe
ial dire
tion de�ned by the Goldstino ve
tor,whi
h depends only on K. It was shown, in fa
t, that the value of the mass matrix alongany other dire
tion 
an be made arbitrarily large by appropriately 
hoosing W , and that,on
e a suitable 
hoi
e of K is adopted, it is always possible to 
onstru
t metastable deSitter va
ua as long as there is enough freedom to tune the superpotential of the model.The purpose of this work is to show that a similar analysis 
an be performed to de-termine if a supergravity model may possess 
at-enough dire
tions allowing for in
ation.We �nd that the resulting 
ondition is a generalisation of the 
onstraint granting the ex-isten
e of metastable dS va
ua, and that, as mu
h as for the realisation of these types ofva
ua, the main obstru
tion towards the realisation of in
ation 
omes from the 
hoi
e ofthe K�ahler potential K. There exists, nevertheless, a signi�
ant di�eren
e between thesetwo situations. At the point where the �nal stabilisation of the moduli o

urs, the valueof V is related to the 
osmologi
al 
onstant � by V = �, whi
h is tiny. In parti
ular,one 
ertainly has phenomenologi
ally V � m23=2M2Pl. During in
ation, on the other hand,the value of V is related to the Hubble 
onstant by H2 ' V=(3M2Pl), and the gravitinomass generi
ally di�ers from the one at the stabilised va
uum. We expe
t, however, theorder of magnitude of that mass to remain the same in most 
ases, unless some extratuning is enfor
ed in the model. We therefore 
onsider in the following a single s
alefor the gravitino mass, and su
h situation is surely realised for example in models wherein
ation is driven by the large F-term of a �eld whose 
ontribution to W is neverthelesssuppressed.In general, it is then desirable to have H � m3=2, sin
e the s
ale of in
ation shouldbe mu
h higher than the ele
troweak s
ale and parti
le phenomenology 
alls for m3=2
omparable to, or lower than, that s
ale. As already noti
ed in [35℄, the 
ondition fora
hieving a massless sGoldstino be
omes stronger as the ratio V=(m23=2M2Pl) in
reases.2



This means in parti
ular that, in generi
 supergravity models, the 
ondition for gettingslow roll in
ation is stronger than the 
ondition for realising moduli stabilisation. Thedi�eren
e between these two situations 
an be 
onveniently parametrised in terms of thefollowing quantity 
 = 13 Vm23=2M2Pl ' H2m23=2 : (1.1)Let us emphasise however that the results presented in this work are also valid for modelsin whi
h the gravitino mass 
hanges strongly between in
ation and the present va
uum. Insu
h 
ases, the parameter 
 has to be res
aled a

ordingly, and the 
omparison betweenthe values of 
 during and after in
ation is still a useful indi
ation of the diÆ
ulty inrealising the s
enarios.The outline of this paper is as follows. In Se
tion 2 we derive the 
ondition that a generi
supergravity theory must ful�l in order to allow for slow-roll in
ation. In Se
tion 3 weillustrate our results through some simple examples. In Se
tion 4 we apply it to the 
aseof heteroti
 and orientifold string 
ompa
ti�
ations on a Calabi-Yau in the large volumelimit, and see what kind of information 
an be extra
ted. In Se
tion 5 we study the e�e
tof subleading 
orre
tions to the K�ahler potential breaking the no-s
ale property sharedby the models presented in Se
tion 4 and its impli
ations on the in
ationary analysis.Finally in Se
tion 6 we present our 
on
lusions.2 Slow-roll in
ation in supergravityTo begin with, let us 
onsider a generi
 model involving several 
omplex neutral s
alar�elds �i, with a Lagrangian of the type (in Plan
k units MPl = 1):L = 12R � gi�| ��i� ���| � V (�i; ���{) : (2.1)The metri
 gi�| must be Hermitian and positive de�nite, but is otherwise arbitrary. Therealisation of a su

essful and viable stage of slow-roll in
ation in su
h a model requires theexisten
e of a region in �eld spa
e where the potential in the 
anoni
al basis is suÆ
iently
at. In the 
ase of a single real �eld, this 
orresponds to the requirement of having smallslow-roll parameters �, j�j � 1, where� = 12 �V 0V �2 ; � = V 00V ; (2.2)with 0 denoting derivatives with respe
t to the 
anoni
ally normalised �eld. These 
ondi-tions get modi�ed in the multi-�eld 
ase. At lowest order in the slow-roll approximation3



the traje
tory in �eld-spa
e along whi
h in
ation is realised is given by the dire
tionjrV j�1riV , where jrV j = prjVrjV , whereas deviations from this dire
tion are 
on-trolled by the tensor: N IJ = 1V �rirjV rir�|Vr�{rjV r�{r�|V � ; (2.3)where I = (i;�{) and J = (j; �|), and ri denotes a derivative whi
h is 
ovariant with respe
tto the metri
 gi�|. Then, the generalised version of the slow-roll parameters (2.2) 
an bede�ned in the following way [36℄:� = riVriVV 2 ; (2.4)� = min eigenvalue fNg : (2.5)Let us mention here that a stri
t 
hara
terisation of the slow-roll 
onditions would requireus to distinguish between dynami
al e�e
ts parallel and perpendi
ular to the in
aton'straje
tory [37℄. In parti
ular, � given in eq. (2.2) would have to be generalised in su
ha way that it 
oin
ides with the proje
tion �jj of N along the dire
tion jrV j�1riV .1Noti
e from the de�nition (2.5), however, that for any given unit ve
tor uI = (ui; u�{) thefollowing inequality is always satis�ed:� � uIN IJuJ : (2.6)Indeed, one 
an always de
ompose uI as uI = Pk 
(k)!I(k), where the !I(k)'s represent abasis of orthogonal and normalised eigenve
tors of N with eigenvalues �(k). Sin
e theuI's are unit ve
tors, the 
oeÆ
ients 
(k) satisfy Pk j
(k)j2 = 1 and so it immediatelyfollows that uIN IJuJ = Pk j
(k)j2�(k) � minf�(k)g = �. In parti
ular, one �nds that� � �jj. Nevertheless, in order to avoid signi�
ant levels of iso
urvature perturbations,a phenomenologi
ally su

essful model of in
ation requires the proje
tion of N alongdire
tions perpendi
ular to jrV j�1riV to be mu
h larger than �jj. This means that� ' �jj, as 
ontributions to � 
oming from proje
ting N along dire
tions perpendi
ular tojrV j�1riV have to be suppressed.Let us 
onsider now the situation in a generi
 supergravity theory involving only 
hiralmultiplets. Re
all that in supergravity the two-derivative Lagrangian 
an be written interms of the real fun
tion G = K + log jW j2 and its derivatives with respe
t to the 
hiralmultiplets �i (and their 
onjugates ���|) whi
h are denoted by lower indi
es i (and �|). The1Also a se
ond slow roll-parameter �?, depending on N , may be de�ned [37℄. Loosely speaking, �?depends only on those elements of N mixing the tangent ve
tor jrV j�1riV with the normal ve
torrelative to the in
aton traje
tory. 4



kineti
 term of the s
alar �elds involves the K�ahler metri
 gi�| = Gi�|, whi
h 
an be usedto raise and lower indi
es and depends only on K. The K�ahler metri
 is assumed to bepositive de�nite and de�nes a K�ahler geometry for the manifold spanned by the s
alar�elds. The s
alar potential for this kind of theories takes the following simple form:V = eG(GiGi � 3) : (2.7)The auxiliary �elds of the 
hiral multiplets are �xed by their equations of motion to beF i = m3=2Gi with a s
ale set by the gravitino mass m3=2 = eG=2. Whenever F i 6= 0 atthe va
uum supersymmetry is spontaneously broken, and the dire
tion Gi in the spa
e of
hiral fermions de�nes the Goldstino whi
h is absorbed by the gravitino in the pro
ess ofsupersymmetry breaking. The unit ve
tor de�ning this dire
tion is given by:fi = GipGjGj : (2.8)Note that su
h dire
tion 
an be di�erent during and after in
ation.In these theories a
hieving small values for � and � is not 
ompletely trivial. This isdue to the fa
t that the potential V is 
onstrained to be a spe
i�
 fun
tion of K and W ,and is therefore not entirely arbitrary. Nevertheless, if K is appropriately 
hosen, it isalways possible to make � and � arbitrarily small by tuning W . To see this, we must �rst
ompute the �rst and se
ond derivatives of V and express them in terms of the parametersof the theory. These are:riV = eG�Gi +GjriGj�+GiV ; (2.9)rir�|V = eG�gi�| +riGkr�|Gk�Ri�|p�qGpG�q�+Gir�|V +G�|riV +(gi�| �GiG�|)V ; (2.10)rirjV = eG�2riGj +GkrirjGk�+GirjV +GjriV +(riGj �GiGj)V : (2.11)Noti
e that Gi, riGj and rirjGk depend on the superpotential and more pre
isely on(logW )i, (logW )ij and (logW )ijk, whi
h are independent quantities. This means that Wmay be varied in an arbitrary way in order to adjust riV and N . It is 
lear then that,for a given K�ahler potential, it is always possible to make � arbitrarily small, simply bytuning GkriGk with respe
t to Gi in eq. (2.9). On the other hand, to a
hieve a smallj�j, we need to have suÆ
ient 
ontrol on the entries of the matrix N . Observe that bytuning rirjGk it is possible to set rirjV to any desired value, and the quantities riGjto make most of the eigenvalues of rir�|V large and positive. The only restri
tion 
omesfrom the fa
t that the proje
tion of rir�|V along the Goldstino dire
tion (2.8) is a
tually
onstrained by eq. (2.9) (whi
h has already been �xed to make � small) and therefore5




annot be adjusted so easily. Nevertheless, if the 
hoi
e of K allows for it, one 
an stillmake this last dire
tion 
at enough by tuning the remaining quantities Gi.From the previous dis
ussion it remains to be learned under whi
h 
ir
umstan
es agiven K is suitable to produ
e su
h a 
at dire
tion. To �nd this out, let us re
all thateq. (2.6) is valid for any unit ve
tor u. We 
an then derive an upper bound on � for theparti
ular 
hoi
e uI = (e�i�fi; ei�f�{)=p2, uJ = (ei�f j; e�i�f �|)=p2, whi
h is asso
iated tothe Goldstino dire
tion f i given in eq. (2.8):2� � rir�|VV f if �| +Re�e2i�rirjVV f if j� : (2.12)Averaging this over the two orthogonal 
hoi
es � = 0; �=2 one �nally dedu
es the followingsimple bound, depending only on the Hermitian blo
k of the Hessian matrix:� � rir�|VV f if �| : (2.13)Using now eq. (2.10) it is straightforward to �nd:rir�|VV f if �| = �23 + 4p3 1p1 + 
Re�riVV f i�+ 
1 + 
 riVriVV 2 + 1 + 

 �̂(f i) ; (2.14)where the parameter 
 is given by eq. (1.1) and the fun
tion �̂(f i) is de�ned to be�̂(f i) = 23 � R(f i) ; (2.15)where R(f i) = Ri�|p�q f if �|f pf �q denotes the holomorphi
 se
tional 
urvature along the Gold-stino dire
tion f i. Note that the quantity �̂ is the normalised version of the homogeneousquantity � that was introdu
ed in ref. [35℄:3 �̂(f i) = �(Gi)=(GkGk)2.Sin
e f i is a unit ve
tor, it is 
lear that jf iriV=V j � p�. Using this inequality, thede�nition of �, and the result given in (2.14) we �nally obtain the following simple upperbound on �: � � �max � �23 + 4p3 1p1 + 
p�+ 
1 + 
 � + 1 + 

 �̂(f i) : (2.16)Noti
e now that �max should be either negative and very small or positive (�max >� 0) inorder for the bound (2.16) to be 
ompatible with the requirement of having a small j�j.More pre
isely, assuming �� 1, one needs:�̂(f i) >� 23 
1 + 
 : (2.17)2 Noti
e that if GkriGk / Gi then Vi / Gi and the in
aton and Goldstino dire
tions in �eld spa
eare aligned. Then the value of �jj is equal to the right hand side of (2.12) with � = 0.3 In the notation of ref. [35℄ the bound (2.13) takes the form � � eG�=(V GiGi), where � =�2=3 e�GV �e�GV + 3�+ � + 2e�G(GmVm +G�nV�n) + V nVn.6



This 
ondition 
an also be rewritten in the following alternative form, whi
h has the samestru
ture as the 
onditions derived in refs. [29, 32, 34℄:R(f i) <� 23 11 + 
 : (2.18)The 
ondition (2.17), or equivalently (2.18), represents our main result and implies astrong restri
tion on the K�ahler potential, generalising the one obtained in refs. [27, 28℄for single �elds models. If it is satis�ed, one still needs to further tune the superpotentialto adjust � to a suÆ
iently small value 
ompatible with 
urrent data.For 
 � 1, this 
ondition redu
es to �̂(f i) >� 0 (or R(f i) <� 2=3), whi
h 
oin
ides withthe 
ondition for the existen
e of metastable dS va
ua with small 
osmologi
al 
onstant.On the other hand, for 
 � 1, it tends to the more restri
tive 
ondition �̂(f i) >� 2=3 (orR(f i) <� 0). Sin
e 
 = (H=m3=2)2 parametrises the ratio between the Hubble s
ale Hand the gravitino s
ale m3=2, this means that in
ationary s
ales mu
h smaller than thegravitino s
ale are as diÆ
ult to realise as dS va
ua, whereas higher in
ationary s
alesare instead more diÆ
ult to realise.One 
an study the impli
ations of the 
ondition (2.18) exa
tly in the same way aswas done in refs. [29, 32, 34℄. In parti
ular, one 
an derive a 
onstraint involving onlythe K�ahler potential by minimising the se
tional 
urvature with respe
t to the variablesf i, taking into a

ount that these variables are normalised to one: f ifi = 1. This im-plies the 
ondition that the minimal value of the se
tional 
urvature Rmin should be lessthan 2=[3(1 + 
)℄. Moreover, if Rmin satis�es that bound, the dire
tion f i is then 
on-strained to lie within a 
one 
entred around the parti
ular dire
tion that minimises these
tional 
urvature. This pro
edure 
an be performed expli
itly for parti
ular 
lasses ofmodels, like for instan
e those for whi
h the s
alar manifold fa
torises into a produ
tof one-dimensional s
alar manifolds or also for 
oset s
alar manifolds. More pre
isely,for fa
torisable manifolds it is easy to show that the se
tional 
urvature satis�es a lowerbound in terms of the s
alar 
urvatures Ri of the one-dimensional submanifolds whi
his given by: R(f i) � (PiR�1i )�1. For 
oset manifolds, on the other hand, the Riemanntensor has a very spe
ial stru
ture. One 
an show that in those 
ases the se
tional 
ur-vature turns out to be 
onstant and to depend only on some overall 
urvature s
ale Rall,whi
h depends on the parti
ular 
oset manifold being 
onsidered: R(f i) = Rall (see [32℄for more details).It is worth pointing out that the presen
e of ve
tor multiplets gauging isometries of the
hiral multiplet geometry 
an quantitatively 
hange the right-hand side of the 
onstraint(2.18). This is mainly due to the fa
t that the D-term 
ontributions to the s
alar potentialare positive de�nite. More pre
isely, for a given value of the potential V , in
reasing the7



ratio between the D-term and the F -term 
ontributions to the potential has the net e�e
tof redu
ing the left-hand side of (2.18) and therefore making the 
onstraint milder [34℄.This 
ould be used to partly 
ompensate the strengthening of the 
ondition indu
ed byin
reasing 
. A more radi
al improvement of the situation 
an be obtained by relyingon genuine 
onstant Fayet-Iliopoulos terms [38℄. However, this possibility is severely
onstrained within supergravity, and implies a rather pe
uliar gauging of the R-symmetry,whi
h does not seem to emerge in any kind of string 
onstru
tion [39℄.3 Simple examplesThe simplest example one 
an study is the 
ase of supergravity models involving a single
hiral super�eld with a 
anoni
al K�ahler potential:K = �XX : (3.1)For this s
alar manifold the Riemann tensor vanishes. From (2.15) we get then that �̂ =2=3, and the 
ondition (2.17), or equivalently (2.18), 
an always be satis�ed independentlyof the value of 
. This implies in parti
ular that there is no obstru
tion in this 
ase tobuild a model with any s
ale of in
ation. In models with several �elds of this type, that is,with K =Pi �X iX i, the 
omponents of the Riemann tensor will also vanish and thereforethe situation is exa
tly the same.Another simple 
ase that 
an be studied is the 
ase of a �eld with a logarithmi
 K�ahlerpotential, for whi
h a no-go theorem is dis
ussed in [27, 28℄:K = �n log (T + �T ) ; (3.2)whi
h governs the dynami
s of moduli �elds arising in simple examples of string 
om-pa
ti�
ations. The one-dimensional s
alar manifold has in this 
ase a 
onstant se
tional
urvature whi
h is simply given by R = 2=n. From here we get that �̂ = 2=3(1 � 3=n).This means that the 
ondition (2.17), or (2.18), 
an be satis�ed only ifn >� 3(1 + 
) :It is then 
lear that a model with 
 � 1 
annot be built within this setup, as n istypi
ally a number of order 1. For instan
e the overall K�ahler modulus in string modelshas n = 3 and thus, even in
luding subleading 
orre
tions to the K�ahler potential, one
an at best a
hieve a small 
 of the order of the subleading 
orre
tions.4 In models with4In ref. [27℄ a model of this kind is proposed where a sizable 
 is a
hieved by going to a regime where8



several su
h �elds, that is, with logarithmi
 potentials with 
oeÆ
ients ni, one �nds thatthe se
tional 
urvature depends on the orientation of the Goldstino dire
tion f i. Howeverone 
an pro
eed exa
tly as in [29℄ and minimise the se
tional 
urvature with respe
t to thevariables f i, taking into a

ount the 
onstraint f ifi = 1. By doing so it is easy to �nd thatR(f i) � 2=(Pi ni). The 
ondition (2.18) implies therefore that Pi ni >� 3(1 + 
). As inthe one �eld 
ase we 
on
lude then that one 
annot get an in
ationary s
ale mu
h biggerthan the gravitino mass in any model with a small number of moduli with 
oeÆ
ients niof order 1.Given the above two substantially di�erent situations, one 
ould then 
onsider a model
ombining a �eld with a logarithmi
 K�ahler potential and a �eld with a 
anoni
al K�ahlerpotential (whi
h would a
t as an uplifting se
tor):K = �n log (T + �T ) + �XX : (3.3)In su
h a 
ase, the s
alar manifold spanned by the �elds X and T fa
torises into twoone-dimensional manifolds. As before we �nd that the 
urvature in the one-dimensionalmanifold spanned by X vanishes whereas the 
urvature in the one-dimensional manifoldspanned by T is given by 2=n. This means that the minimal value that the se
tional
urvature is allowed to take is zero, sin
e the Goldstino dire
tion 
an be aligned along thedire
tion of zero 
urvature: R(f i) � 0. It is then always possible to satisfy the 
ondition(2.18), independently of the value of n. However, it is 
lear that in order to a
hieve a large
, that is, a s
ale of in
ation bigger than the gravitino s
ale, the in
ationary dynami
smust be strongly a�e
ted by the uplifting se
tor. The situation remains qualitatively thesame by adding several su
h building blo
ks.Another 
ase that 
an be easily analysed is that of models with the following K�ahlerpotential: K = �n log (T + �T � �XX) : (3.4)In this 
ase the s
alar geometry is a maximally symmetri
 
oset spa
e with 
onstant
urvature, and one �nds R(f i) = 2=n. The situation is then identi
al to the one obtainedwith only one �eld T with a logarithmi
 K�ahler potential and the addition of the X �elddoes not help in satisfying the 
ondition. In parti
ular, it is impossible to realise slow-rollin
ation if n = 3, unless extra ingredients are added.5 Again, adding more �elds of thisthe subleading 
orre
tion a
tually indu
es a signi�
ant 
hange in the K�ahler 
urvature. This is a
hievedthanks to a large numeri
al 
oeÆ
ient that 
ompensates its parametri
al suppression. We believe howeverthat in su
h a situation there is limited 
ontrol on the e�e
t of the 
orre
tions at higher orders of thelow-energy expansion.5For example the model 
onsidered in ref. [40℄ involves an additional uplifting se
tor. In that 
ase,besides the �elds T and X des
ribing the volume and the brane position, one would also have to takeinto a

ount some extra �eld Y des
ribing the anti-brane position.9



kind in a similar way does not 
hange qualitatively the situation. More involved 
osetmanifolds 
an be studied as in ref. [32℄.4 No-s
ale modelsA general feature of models emerging from string 
ompa
ti�
ations on a Calabi-Yau isthat their moduli se
tor exhibits, in the large volume limit, the no-s
ale property:KiKi = 3 : (4.1)As shown in [35℄, this property 
onstrains the K�ahler geometry and, as a 
onsequen
e ofthis, the Riemann tensor satis�es 
ertain properties when proje
ted along the parti
ulardire
tion ki = Ki=p3. In parti
ular, one �nds that along su
h a dire
tion the se
tional
urvature takes pre
isely the 
riti
al value:R(ki) = 23 : (4.2)This means that it is always possible to obtain �̂ = 0 by 
hoosing the Goldstino dire
tionf i to be aligned along this spe
ial dire
tion ki. The question is then whether it is possibleor not, by departing from the 
on�guration f i = ki, to get a lower value of the se
tional
urvature, or equivalently, a larger value of �̂(f i).In orbifold models, as well as in smooth 
ompa
ti�
ations on Calabi-Yau manifoldswhi
h are a
tually K3 �brations with a large P1 base, the moduli spa
e is a 
oset manifoldof the type G=H. These spa
es are symmetri
 and the form of the Riemann tensor isfurther 
onstrained by the presen
e of isometries. Moreover, they are also homogeneouswith a 
ovariantly 
onstant 
urvature. In these models, the quantity �̂ 
an be easilystudied as a fun
tion of the dire
tion f i, and it is possible to prove that the value �̂ = 0along the dire
tion ki 
orresponds to an absolute maximum [35℄. The situation is thenidenti
al to that of a single modulus with a logarithmi
 potential of the form (3.2) with
oeÆ
ient n = 3: In
ation 
an be realised with the help of subleading 
orre
tions to theK�ahler potential, but only with a very low s
ale relative to the gravitino mass (
 � 1).We will 
ome ba
k to this issue in the next se
tion.In general Calabi-Yau models, the situation is more interesting. Indeed, in those 
asesthe s
alar manifold is in general neither symmetri
 nor homogeneous. The fun
tion �̂ 
anthen have either a maximum or a saddle point at the spe
ial dire
tion ki, and the spa
eof possible models subdivides into two 
lasses: Models for whi
h it is possible to �nd apositive value of �̂ in a dire
tion di�erent than ki and models for whi
h it is impossibleto get su
h a positive value. 10



To illustrate the situation arising in more general Calabi-Yau models, let us 
onsiderthe K�ahler moduli se
tor of heteroti
 
ompa
ti�
ations. The K�ahler potential is heredetermined by the interse
tion numbers dijk of the Calabi-Yau manifold and has thefollowing form K = � logV ; V = 16dijk(T i + �T�{)(T j + �T �|)(T k + �T �k); (4.3)where V is the 
lassi
al volume of the Calabi-Yau. This de�nes a spe
ial K�ahler geometry,and the Riemann tensor has the spe
ial stru
ture Ri�|p�q = gi�|gp�q + gi�qgp�| � e2Kdiprgr�sd�s�|�q.The se
tional 
urvature along the Goldstino dire
tion is then given by:R(f i) = 2� e2Kdiprgr�sd�s�|�q f if �|f pf �q : (4.4)This yields: �̂(f i) = �43 + e2Kdiprgr�sd�s�|�q f if �|f pf �q : (4.5)From the expli
it form of the K�ahler metri
 derived from (4.3) it follows that diprkikp =2kr=p3. One 
an then easily verify that along the spe
ial dire
tion ki one indeed hasR(ki) = 2=3 and �̂(ki) = 0. It was however shown in ref. [35℄ that �̂ 
an be madepositive or negative along other dire
tions, depending on the interse
tion numbers dijk.For instan
e, in models with only two moduli, the situation simpli�es due to the fa
t thatthere is only one dire
tion orthogonal to the dire
tion given by ki. This dire
tion is givenby the unit ve
tor ni de�ned as:(n1; n2) = (k2;�k1)pdet g ; ni ki = 0 : (4.6)One 
an show [35℄ that the 
onvexity of the fun
tion �̂(f i) at f i = ki is determined by thesign of the dis
riminant of the 
ubi
 polynomial V de�ning the volume of the Calabi-Yau,given by:� = �27�d2111d2222 � 3 d2112d2122 + 4 d111d3122 + 4 d3112d222 � 6 d111d112d122d222� : (4.7)If � > 0, then �̂(ki) = 0 
orresponds to the absolute maximum, and it is not possibleto meet the 
ondition for slow-roll in
ation. If, on the 
ontrary, � < 0, the point �̂ = 0
orresponds to a saddle point and therefore there is a region in the parameter spa
espanned by the f i's for whi
h �̂(f i) 
an be made positive. Moreover, the value of �̂ forV > 0 is extremised to a non-vanishing value along some parti
ular dire
tion f i in betweenki and ni. Unfortunately, this value is diÆ
ult to determine in general, essentially be
ause�̂ is de�ned in terms of the normalised unit ve
tor f i. Nevertheless, we 
an still verify11



whether it is possible or not to obtain �̂(f i) larger than the 
riti
al value 2=3 required tobe able to realise in
ation with an arbitrary high s
ale. A simple way to verify that thisis indeed the 
ase is by looking at the parti
ular dire
tion f i = zi given by 6:zi =r1 + a9 + aki +r 89 + ani ; a = ��24 e4K(det g)3 : (4.8)Noti
e that a > 0 as the fa
tor e4K=(det g)3 is always positive. Along this parti
ulardire
tion one then obtains7: �̂(zi) = 64 a(a + 9)2 ; (4.9)whi
h is positive. Then, assuming that a 
an be varied over the whole range [0;+1) byvarying the values of the �elds while keeping eK, det g and tr g all positive, the largestpossible value for �̂ is obtained for a = 9 and is given by �̂max = 16=9. Sin
e this is largerthan 2=3, one should then be able to a
hieve any arbitrarily large value of 
.Another interesting situation based on Calabi-Yaumanifolds arises in Type II orientifold
ompa
ti�
ations. In that 
ase, the s
alar geometry that one obtains for a given Calabi-Yau manifold is dual to the one arising for the heteroti
 model based on the same manifold[41, 42℄, and one �nds opposite signs for the extremal value of �̂. In the spe
ial 
aseinvolving only two �elds, one 
an in fa
t prove that for orientifolds this extremal value isgiven by �̂ = 64 a=(a � 9)2, where a is de�ned as before but with � ! ��, eK ! e�Kand det g ! (det g)�1, namely a = (�=24) e�4K (det g)3. In this 
ase, a viable situationwith a positive �̂ 
an therefore be realised only for those Calabi-Yau manifolds for whi
h� > 0. One 
an a
tually show that in this 
ase a 2 [0; 1℄, and the largest possible valuefor �̂ is obtained for a = 1 and is given by �̂max = 1, whi
h is still larger than 2=3.5 E�e
t of subleading 
orre
tionsWe would like now to dis
uss the role of subleading 
orre
tions in the boundary 
aseswhen the leading order of the K�ahler potential just ful�lls the equality in eq. (2.17). As6This dire
tion was found in [35℄ in the analysis of string 
ompa
ti�
ations with two moduli. There,it was shown that zi maximises the quantity � = (GkGk)2�̂(f i). One should keep in mind however thatin general the fun
tion �̂(f i) is maximised in a dire
tion f i 6= zi.7This expression 
an be derived as follows from the results of se
tion 4 of ref. [35℄. One starts fromthe de
omposition � = ! � 2sisi, with ! = a (3 det g jCj2)2 and si = 0, taking a general Goldstinodire
tion Gi = Ni + �Ki, where Ni is orthogonal to Ki. From the de�nition of C one easily �nds that3 det g jCj2 = N iNi. Moreover, the equation si = 0 �xes � in terms of N i and the arbitrary phase of C.One �nds in parti
ular that j�j2 � [(1 + a)=24℄N iNi, the pre
ise value depending on the phase of C. Itthen follows that GiGi � [(a + 9)=8℄N iNi. Finally, one 
omputes �̂ = !=(GiGi)2, with GiGi taken toassume its minimal value. 12



we already mentioned in the last se
tion, for no-s
ale models, the se
tional 
urvaturealong the dire
tion ki is R(ki) = 2=3, and therefore �̂ = 0 along that dire
tion. Thismeans in parti
ular that a general possibility to realise in
ation whi
h 
an arise in allCalabi-Yau string models is to 
onsider subleading 
orre
tions to the K�ahler potentialthat break the no-s
ale property. However this possibility obviously restri
ts the s
ale ofin
ation to be small (
ompared to the gravitino s
ale), as the 
hange in �̂ is of the orderof the subleading 
orre
tion.The subleading 
orre
tions to the K�ahler potential 
an be of various types, e.g. loop,�0 or world-sheet instanton 
orre
tions. As a result of these 
orre
tions, the no-s
aleproperty will be deformed by some small quantity Æ, whi
h is parametri
ally of order�K=K: KiKi ' 3 +O(Æ) : (5.1)In this situation, the extremum of the fun
tion �̂ along the dire
tion ki gets in generalslightly shifted, and the new value at this extremum be
omes of order�̂(ki) ' O(Æ) : (5.2)Comparing this result with the 
ondition (2.17), we see that in this 
ase it would indeedbe possible to realise in
ation along the dire
tion f i ' ki, provided one 
an get the rightsign for the subleading 
orre
tion Æ. However the parameter 
 whi
h sets the s
ale ofin
ation is bounded by the parameter jÆj 
ontrolling the relative e�e
t of the subleading
orre
tions in the K�ahler potential: 
 <� O(jÆj) ; (5.3)and therefore one has ne
essarily H < m3=2.One 
an 
onsider for instan
e the e�e
t of �0-
orre
tions to the large volume limit ofCalabi-Yau 
ompa
ti�
ations of the heteroti
 string [43℄ and of type IIB orientifolds [44℄.These 
orre
tions have the e�e
t of shifting the argument of the logarithm in the K�ahlerpotential by some 
onstant parameter � 8:K = �n log(V + �) ;where n = 1; 2 for heteroti
 and orientifold models respe
tively. One 
an then parametrisethe relative e�e
t of these 
orre
tions with Æ � �=V, where V is the volume of the Calabi-Yau manifold (resp. orientifold). It is easy to 
he
k that �̂ still has an extremum alongthe dire
tion ki, but its value at that point be
omes now �̂ � Æ � �=V. As a result, themaximal s
ale of in
ation that 
an be realised within this setup 
orresponds to 
 � �=V,that is H2 � m23=2�=V. This is for example the 
ase in the model of ref. [16℄.8Stri
tly speaking, in the 
ase of IIB orientifolds the 
orre
tion is dilaton-dependent. This does notqualitatively modify the e�e
t however. 13



6 Con
lusionsIn this paper we have studied the possibility of realising su

essful slow-roll in
ationarys
enarios in a general low-energy e�e
tive supergravity theory involving only 
hiral mul-tiplets. We have shown that the 
ondition imposed on the theory for having slow-rollin
ation is very similar to the one ne
essary for obtaining a metastable de Sitter va
uum.In parti
ular, the requirement is that the se
tional 
urvature R(f i) along the Goldstinodire
tion f i should be smaller than the 
riti
al value 2=[3(1 + 
)℄, where the parameter
 = V=(3m23=2) depends on the size of the potential relative to the gravitino mass s
ale. Aswas shown in [35℄, the presen
e of dS va
ua with small 
osmologi
al 
onstant �� m23=2,that is, with 
 � 1, implies that the se
tional 
urvature is bounded, i.e. R(f i) <� 2=3.For in
ation, on the other hand, this 
ondition 
hanges depending on the Hubble s
ale.In models with H � m3=2, i.e. 
 � 1, su
h 
onstraint be
omes R(f i) <� 0. For modelswith H � m3=2 one has instead 
 � 1 and the 
ondition takes the form R(f i) <� 2=3 andis therefore similar to the one relevant for metastable dS va
ua. This means in parti
ularthat models with a s
ale of in
ation higher than the gravitino mass are more diÆ
ult torealise than models with a s
ale of in
ation smaller than (or 
omparable to) the gravitinomass.More 
on
retely, we have shown that the 
ondition for su

essful in
ation 
an be gener-i
ally satis�ed in any no-s
ale model by taking into a

ount the e�e
t of subleading 
or-re
tions, although in those 
ases the s
ale of in
ation has to be suppressed with respe
tto m3=2. On the other hand, models with a s
ale of in
ation that is 
omparable or evenlarger than the gravitino mass 
an instead be realised only in 
ertain Calabi-Yau 
ompa
t-i�
ations, those ones allowing for a value of �̂ � 2=3. We have also shown through somesimple examples that the 
onditions ne
essary for slow-roll in
ation 
an also be a
hievedby adding to the moduli se
tor of the theory an uplifting se
tor. In those 
ases the sizeof the parameter 
, whi
h gives the ratio between the s
ale of in
ation and the gravitinomass during in
ation, depends on the in
uen
e that the uplifting se
tor has on the in-
ationary dynami
s. For example in models with a K�ahler potential of the type (3.2)with n = 3 it is 
lear that in order to have 
 � 1 the uplifting se
tor should dominatethe in
ationary dynami
s. If this is not the 
ase, the uplifting se
tor only mildly 
hangesthe 
ondition (2.17) and one has a model with H <� m3=2. This is a
tually the typi
alsituation in in
ationary s
enarios based on the KKLT setup, as was pointed out in [45℄.Re
all however that the gravitino mass during in
ation is not ne
essarily the same asthe gravitino mass at the va
uum. In order to 
onstru
t models with H � m3=2, onepossibility is then to perform an additional tuning to make the gravitino mass duringin
ation mu
h bigger than the gravitino mass at the va
uum [45, 46℄. We have shown in14



this paper that another possibility to realise H � m3=2 without performing an additionaltuning is to 
onsider Calabi-Yau 
ompa
ti�
ations allowing for a sizable value of �̂, orequivalently, for a small value of the se
tional 
urvature.It is interesting to note that from (2.18), and by taking into a

ount the de�nition of
 in (1.1), one 
an 
ompute the following bound on the value of the in
ationary Hubbleparameter: H2 <� R�1min�23 � Rmin�m23=2 ; (6.1)where Rmin denotes the minimal value that the se
tional 
urvature of the moduli spa
e isallowed to take. In the va
uum of the theory the same kind of bound 
an be 
omputedfor the mass m of the lightest s
alar. A
tually following the same reasoning as the oneused to derive (2.13) and imposing that at the va
uum V = riV = 0, one easily dedu
esthat: m2 <� f if �|rir�|V = 3�23 � Rmin�m23=2 : (6.2)As we already mentioned, the two gravitino s
ales in (6.1) and (6.2) may di�er, but inthe absen
e of additional tuning of the parameters in the theory, both s
ales are naturallyexpe
ted to be of the same order of magnitude.One 
an 
ompute now the ratio of the bounds (6.1) and (6.2). This yields the followingsimple relation: Hmaxmmax � R�1=2min : (6.3)This is perhaps the most obje
tive measure of the tension against making the s
ale ofin
ation mu
h larger than the s
ale of supersymmetry breaking, and shows that the onlyway to relax su
h tension in a robust way (that is, without extra �ne-tuning) is to 
hoosefor in
ation a dire
tion in �eld spa
e where the K�ahler 
urvature is very small.A
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