
*0
80
5.
43
90
*

Revised Version  DESY-08-056
ar

X
iv

:0
80

5.
43

90
v3

  [
he

p-
ex

] 
 1

5 
Ju

l 2
00

8

DESY{08{05629 May 2008
Beauty photoprodution using deays intoeletrons at HERA
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AbstratPhotoprodution of beauty quarks in events with two jets and an eletron asso-iated with one of the jets has been studied with the ZEUS detetor at HERAusing an integrated luminosity of 120 pb�1. The frations of events ontaining bquarks, and also of events ontaining  quarks, were extrated from a likelihood�t using variables sensitive to eletron identi�ation as well as to semileptonideays. Total and di�erential ross setions for beauty and harm produtionwere measured and ompared with next-to-leading-order QCD alulations andMonte Carlo models.
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1 IntrodutionThe prodution of heavy quarks in ep ollisions at HERA is an important testing groundfor perturbative Quantum Chromodynamis (pQCD) sine the large b-quark and -quarkmasses provide a hard sale that allows perturbative alulations. When Q2, the negativesquared four-momentum exhanged at the eletron or positron1 vertex, is small, the re-ations ep ! e bbX and ep ! e X an be onsidered as a photoprodution proess inwhih a quasi-real photon, emitted by the inoming eletron interats with the proton.The orresponding leading-order (LO) QCD proesses are the diret-photon proess, inwhih the quasi-real photon enters diretly in the hard interation, and the resolved-photon proess, in whih the photon ats as a soure of partons whih take part in thehard interation. For heavy-quark transverse momenta omparable to the quark mass,next-to-leading-order (NLO) QCD alulations in whih the massive quark is generateddynamially [1, 2℄ are expeted to provide reliable preditions for the photoprodutionross setions.Beauty and harm quark prodution ross setions have been measured using severaldi�erent methods by both the ZEUS [3{18℄ and the H1 [19{30℄ ollaborations. Both thedeep inelasti sattering (DIS) and photoprodution measurements are reasonably welldesribed by NLO QCD preditions.Most of the previous measurements of b-quark prodution used muons to tag semileptonideays of the B hadrons. The identi�ation of eletrons lose to jets is more diÆultthan for muons, but the eletrons an be identi�ed down to lower momenta. A �rstmeasurement of b-quark photoprodution from semileptoni deays to eletrons (e�) waspresented in a previous publiation [6℄, whih used the e+p ollision data from the 1996{1997 running period orresponding to an integrated luminosity of 38 pb�1. This paperpresents an extension of this measurement exploiting semileptoni deays to eletrons aswell as to positrons for data taken with both e�p and e+p ollisions using three timesthe integrated luminosity. The prodution of eletrons from semileptoni deays (eSL),in events with at least two jets (jj) in photoprodution, ep ! e bbX ! e jj eSLX 0, wasmeasured in the kinemati range Q2 < 1 GeV2 and 140 GeV < Wp < 280 GeV, whereWp is the entre-of-mass energy of the p system. The likelihood method used to extratthe b-quark ross setions also allowed the orresponding -quark ross setions to beextrated. This paper provides a omplementary study to the measurements using muondeays.1 Hereafter unless expliitly stated both eletrons and positrons are referred to as eletrons.1



2 Experimental set-upThis analysis was performed with data taken from 1996 to 2000, when HERA ollidedeletrons or positrons with energy Ee = 27:5 GeV with protons of energy Ep = 820 GeV(1996{1997) or 920 GeV(1998{2000). The orresponding integrated luminosities are 38:6�0:6 pb�1 at entre-of-mass energy ps = 300 GeV, and 81:6� 1:8 pb�1 at ps = 318 GeV.A detailed desription of the ZEUS detetor an be found elsewhere [31℄. A brief outlineof the omponents that are most relevant for this analysis is given below.Charged partiles were traked in the entral traking detetor (CTD) [32℄, whih operatedin a magneti �eld of 1:43 T provided by a thin superonduting oil. The CTD onsistedof 72 ylindrial drift hamber layers, organised in nine superlayers overing the polar-angle2 region 15Æ < � < 164Æ. The transverse-momentum resolution for full-length traksis �(pT )=pT = 0:0058pT � 0:0065 � 0:0014=pT , with pT in GeV. The pulse height of thesense wires was read out in order to estimate the ionisation energy loss per unit length,dE=dx (see Setion 3).The high-resolution uranium{sintillator alorimeter (CAL) [33℄ onsisted of three parts:the forward (FCAL), the barrel (BCAL) and the rear (RCAL) alorimeters. Eah partwas subdivided transversely into towers and longitudinally into one eletromagneti se-tion and either one (in RCAL) or two (in BCAL and FCAL) hadroni setions. Thesmallest subdivision of the alorimeter is alled a ell. The CAL energy resolutions,as measured under test-beam onditions, are �(E)=E = 0:18=pE for eletrons and�(E)=E = 0:35=pE for hadrons, with E in GeV.The luminosity was measured from the rate of the bremsstrahlung proess ep ! ep,where the photon was measured in a lead{sintillator alorimeter [34℄ plaed in the HERAtunnel at Z = �107 m.3 dE=dx MeasurementA entral tool for this analysis was the dE=dx measurement from the CTD. The pulseheight of the signals on the sense wires was used to measure the spei� ionisation. Thispulse height was orreted for a number of e�ets [35℄. Suh as a fator 1= sin � due to2 The ZEUS oordinate system is a right-handed Cartesian system, with the Z axis pointing in theproton beam diretion, referred to as the \forward diretion", and the X axis pointing left towardsthe entre of HERA. The oordinate origin is at the nominal interation point. The pseudorapidityis de�ned as � = � ln �tan �2�, where the polar angle, �, is measured with respet to the proton beamdiretion. The azimuthal angle, �, is measured with respet to the X axis.2



the projetion of the trak onto the diretion of the signal wire, the spae-harge e�etaused by the overlap of the ionisation louds in the avalanhe, and the dependene ofthe pulse shape on the trak topology. An additional orretion was needed for hits loseto the end-plates of the CTD. If a hit followed a previous one on the same wire within100 ns, its pulse ould be distorted: suh hits were rejeted. The event topology was usedto identify additional double hits that ould not be resolved; the dE=dx measurementwas orreted aordingly.The dE=dx value of a trak was alulated as the trunated mean value of the individualmeasurements, orreted as disussed above, after rejeting the lowest 10% and the highest30% of the measurements. Hits where the measured pulse height was in saturation werealways rejeted in forming the mean. Corretions were applied for the �nite numberof hits and whenever more than 30% of the hits were saturated. The orreted dE=dxmeasurement was normalised in units of mip (minimum ionising partiles) suh that theminimum of the dE=dx distribution was 1.0 mip. Eletrons are expeted to have a meanvalue of about 1.4 mip in the momentum range studied here.Di�erent samples of identi�ed partiles were used to alibrate and validate the dE=dxmeasurement. The samples used for alibration were:� e� from photon onversions, J= deays and DIS eletrons;� �� from K0 deays with 0:4 GeV < p < 1 GeV, where p is the measured trak momen-tum.The samples used for validation were:� �� from K0 outside the momentum range used for the alibration sample,as well as �� from �0, � and D� deays;� K� from �0 and D� deays;� p; p from � deays;� osmi ��.Typial sample purities were above 99% for the alibration samples and well above 95%for the validation samples [35℄.After all orretions, the measured dE=dx depended only on the ratio of the partile'smomentum to its mass, �. This is illustrated in Fig. 1. It shows the spei� energy lossas a funtion of �, for the di�erent samples of identi�ed partiles, e�; ��; ��; K�; p; p.All partile types are well desribed using a single physially motivated parametrisationof the mean energy loss as a funtion of � with �ve free parameters following Allisonand Cobb (AC) [36℄. 3



Given the quality of the desription of the mean dE=dx by the AC parametrisation,the measurements an be used to determine residuals on dE=dx. As an example, thedistribution of residuals for a sample of traks with the number of hits after trunation,ntrun, equal to 23 is shown in Fig. 2. The dE=dx resolution is typially 11% for traks thatpass at least �ve superlayers. It improves to about 9% for traks that pass all superlayers.4 Monte Carlo simulationTo evaluate the detetor aeptane and to provide the signal and bakground distri-butions, Monte Carlo samples of beauty, harm and light-avour events generated withPythia 6.2 [37℄ were used.The prodution of bb-pairs was simulated following the standard Pythia presriptionwith the following subproesses [38℄:� diret and resolved photoprodution with a leading-order massive matrix element;� b exitation in both the proton and the photon with a leading-order massless matrixelement.The CTEQ4L [39℄ parton distributions were used for the proton, while GRV-G LO [40℄ wasused for the photon. The b-quark mass parameter was set to 4:75 GeV. The prodution ofharm and light quarks was simulated for both diret and non-diret photoprodution withleading-order matrix elements in the massless sheme using the same parton distributionsas for the bb samples.The generated events were passed through a full simulation of the ZEUS detetor basedon Geant 3.13 [41℄. The ionisation loss in the CTD was treated separately using aparametrisation of the measured data distributions based on the alibration sample [38,42℄. The �nal Monte Carlo events had to ful�l the same trigger requirements and passthe same reonstrution programme as the data.5 Data seletionEvents were seleted online with a three-level trigger [31, 43℄ whih required two jetsreonstruted in the alorimeter.The hadroni system (inluding the deay eletron) was reonstruted from energy-owobjets (EFOs) [44℄ whih ombine the information from alorimetry and traking, or-reted for energy loss in inative material. Eah EFO was assigned a reonstruted four-momentum qi = (piX ; piY ; piZ; Ei), assuming the pion mass. Jets were reonstruted from4



EFOs using the kT algorithm [45℄ in the longitudinally invariant mode with the massivereombination sheme [46℄ in whih qjet = Pi qi and the sum runs over all EFOs. Thetransverse energy of the jet was de�ned as EjetT = Ejet � pjetT =pjet, where Ejet, pjet and pjetTare the energy, momentum and transverse momentum of the jet, respetively. The trans-verse energy, EjetT , is therefore always larger than the transverse momentum, pjetT , used ina previous publiation [5℄.Dijet events were seleted as follows:� at least two jets with EjetT > 7(6) GeV for the highest (seond highest) energeti jetand pseudorapidity of both jets j�jetj < 2:5;� the Z oordinate of the reonstruted primary vertex within jZVtxj < 50 m;� 0:2 < yJB < 0:8, where yJB = (E � PZ)=(2Ee) is the Jaquet-Blondel estimator [47℄for the inelastiity, y, and E � PZ =PiEi � piZ, where the sum runs over all EFOs;� no sattered-eletron andidate found in the alorimeter with energy E 0e > 5 GeV andye < 0:9, with ye = 1 � E0e2Ee (1� os �0e), where �0e is the polar angle of the outgoingeletron.These uts suppress bakground from high-Q2 events and from non-ep interations, andorrespond to an e�etive ut of Q2 < 1 GeV2.6 Identi�ation of eletrons from semileptoni deaysEletron andidates were seleted among the EFOs by requiring traks �tted to the pri-mary vertex and having a transverse momentum, peT , of at least 0:9 GeV in the pseu-dorapidity range j�ej < 1:5. Only the EFOs onsisting of a trak mathed to a singlealorimetri luster were used. To redue the hadroni bakground and improve theoverall desription, at least 90% of the EFO energy had to be deposited in the eletro-magneti part of the alorimeter. Eletron andidates were required to have a trak withntrun > 12 to ensure a reliable dE=dx measurement. An additional preseletion ut ofdE=dx > 1:1 mip was applied to redue the bakground. Candidates in the angular re-gion orresponding to the gaps between FCAL and BCAL as well as between RCAL andBCAL were removed using a ut on the EFO position [48℄.Eletrons from photon onversions were tagged and rejeted based on the distane oflosest approah of a pair of oppositely harged traks to eah other in the plane perpen-diular to the beam axis and on their invariant mass [6℄. Untagged onversion bakgroundand eletrons from Dalitz deays were estimated from Monte Carlo studies.The eletron andidate was required to be assoiated to a jet using the following proe-dure: 5



� the jet had to have EjetT > 6 GeV and j�jetj < 2:5;� the distane �R =p(�jet � �e)2 + (�jet � �e)2 < 1:5;� in ase of more than one andidate jet, the jet losest in �R was hosen.For the identi�ation of eletrons from semileptoni heavy-quark deays, variables forpartile identi�ation were ombined with event-based information harateristi of heavy-quark prodution. For a given hypothesis of partile, i, and soure j, the likelihood, Lij,is given by Lij =Yl Pij(dl) ;where Pij(dl) is the probability to observe partile i from soure j with value dl of adisriminant variable. The partile hypotheses i 2 fe; �; �;K; pg and soures, j, foreletrons from semileptoni beauty, harm deays and bakground, j 2 fb; ;Bkgg, wereonsidered. For the likelihood ratio test, the test funtion, Tij was de�ned asTij = �i�0jLijPm;n�m�0nLmn :The �i, �0j denote the prior probabilities taken from Monte Carlo. In the sum, m;n runover all partile types and soures de�ned above. In the following, T is always takento be the likelihood ratio for an eletron originating from a semileptoni b-quark deay:T � Te;b, unless otherwise stated. The following �ve disriminant variables were ombinedin the likelihood test:� dE=dx, the average energy loss per unit length of the trak in the CTD;� EEMC=ECAL, the fration of the EFO energy taken from the alorimeter information,ECAL, whih is deposited in the eletromagneti part, EEMC;� ECAL=ptrak: the EFO energy divided by the trak momentum.In order to distinguish between eletrons from semileptoni b-quark and -quark deaysand other eletron andidates, the following additional observables were used:� prel? , the transverse-momentum omponent of the eletron andidate relative to thediretion of the assoiated jet de�ned asprel? = j~pjet � ~pejj~pjetj ;where ~pe is the momentum of the eletron andidate. The variable prel? an be usedto disriminate between eletrons from semileptoni b-quark deays and from othersoures, beause its distribution depends on the mass of the deaying partile. It isnot possible to distinguish harm from light-avour deays with this variable;6



� ��, the di�erene of azimuthal angles of the eletron andidate and the missing trans-verse momentum vetor de�ned as�� = j�(~pe) � �(~6pT )j ;where ~6pT is the negative vetor sum of the EFO momentum transverse to the beamaxis, ~6pT = ��Pi pix;Pi piy�;and the sum runs over all EFOs. The vetor ~6pT is used as an estimator of the di-retion of the neutrino from the semileptoni deay. The variable �� an be used todisriminate semileptoni deays of b quarks and  quarks from other soures.The shapes of the harm- and light-quark prel? distributions in the Monte Carlo wereorreted [5℄ using a dediated bakground sample in the data. The value of the orretioninreased with prel? and was 15% at prel? = 1:5 GeV, where the purity of the b ontributionis highest. For the �� distribution a orretion was determined in a similar way, but inthis ase the maximal orretion was only of the order of 5%.In Fig. 3 the distributions of the �ve input variables used in the likelihood are shown foreletrons from b-quark and -quark deays and for eletron andidates from other soures.A lear di�erene in shape between signal and bakground an be seen.7 Signal extrationThe eletron andidates in the Monte Carlo samples were lassi�ed as originating frombeauty, harm or bakground. The beauty sample also ontains the asade deays b ! ! e, but not b ! � ! e and b ! J= ! e+e� that have been inluded in thebakground sample. Test funtions (see Setion 6) were alulated separately for thethree samples. The frations of the three samples in the data, fDATAe;b , fDATAe; , fDATABkg , wereobtained from a three-omponent maximum-likelihood �t [49℄ to the T distributions. Theonstraint fDATAe;b + fDATAe; + fDATABkg = 1 was imposed in the �t. The �t range of the testfuntion was restrited to �2 lnT < 10 to remove the region dominated by bakgroundand where the test funtion falls rapidly. The �2 for the �t is �2=ndf = 13=12 and theb-quark and -quark measurements have a orrelation oeÆient of �0:6. The result ofthe �t is shown in Fig. 4 and orresponds to a saling of the ross setion predited bythe beauty Monte Carlo by a fator of 1:75� 0:16 and the harm Monte Carlo by a fatorof 1:28�0:13. These fators are applied to Figs. 5{8 and denoted as \PYTHIA (saled)".A �t over the whole T range gave onsistent ross setions and was used as a ross-hek.The distributions of the �ve variables that entered the likelihood are shown in Fig. 5.The desription of all variables is reasonable. These distributions are dominated by the7



bakground ontribution. In order to selet a beauty-enrihed sample, a ut of �2 lnT < 1was applied. The resulting distributions are shown in Fig. 6. A likelihood for semileptoniharm an also be onstruted, Te;. The distributions of the likelihood for a samplesatisfying �2 lnTe; < 1:5 are shown in Fig. 7. Good agreement is observed in both ases.To demonstrate the quality of the data desription by the Monte Carlo, the distributions ofEjetT and �jet of the jet assoiated with the eletron and of the peT of the eletron andidatesare ompared in Fig. 8a){). In Fig. 8d){i) the same distributions are ompared for thebeauty- and harm enrihed-samples. Some di�erenes are observed in the jet variables,mainly in the region dominated by bakground. The agreement signi�antly improves forsamples enrihed in beauty and harm signal.8 Cross setion determinationThe ross setions have been measured in the kinemati range Q2 < 1 GeV2, 0:2 < y < 0:8,with at least two jets with EjetT > 7(6) GeV, j�jetj < 2:5 and an eletron from a semileptonideay with peT > 0:9 GeV in the range j�ej < 1:5.The di�erential beauty ross setion for a variable, v, was determined separately for eahbin, k, from the relative frations in the data obtained from the �t and the aeptaneorretion, Abvk , alulated using the Monte Carlo,d�bdvk = NDATA � fDATAe;b (vk)Abvk � L ��vk ;where NDATA is the number of eletron andidates found in the data, L is the integratedluminosity and �vk is the bin width.In order to determine the aeptane, the jet-�nding algorithm was applied to the MCevents after the detetor simulation and at hadron level. The aeptane is de�ned asA = NobseNhade ;where Nobse is the number of eletrons from semileptoni deays reonstruted in theMonte Carlo satisfying the seletion riteria detailed in Setions 5 and 6, and Nhade is thenumber of eletrons from semileptoni deays produed in the signal proess that satisfythe kinemati requirements using the Monte Carlo information at the generator level.At hadron level, the kT algorithm was applied to all �nal-state partiles with a lifetimeof � > 0:01 ns and the eletron was assoiated to its parent jet using the generatorinformation. 8



All ross setions were measured separately for the two entre-of-mass energies ps = 300and 318 GeV. Additionally, the ross setions were alulated with the whole data set andwere orreted to ps = 318 GeV. The orretion fator of � 2% was determined with LOas well as NLO alulations.The harm ross setions were measured using the same proedure.9 Systemati unertaintiesThe systemati unertainties were alulated by varying the analysis proedure and thenredoing the �t to the likelihood distributions. The following soures were the main on-tributors to the systemati unertainty (the �rst value in parentheses is the unertaintyfor beauty, while the seond is that for harm):� the systemati unertainty on the desription of the dE=dx information was estimatedby looking at the di�erenes between the various alibration and validation samples.Variations in the mean, width and shape of the distributions were evaluated and usedas a measure of the unertainty [35℄. The resulting unertainty was found to be (+1�5%/ +10�3 %);� the hanges in the orretion to the prel? distribution in various kinemati ranges weretaken as a measure of its unertainty. For prel? = 1:5 GeV the variation was 20% of theorretion. The hanges led to a systemati unertainty of (+3�6% / +10�5 %).In addition, the orretion to the harm distribution was varied from zero to that ofthe bakground sample. This led to an unertainty of (+6�4% / +7�1%);� a shift of the CAL energy sale in the Monte Carlo simulation by �3% (�2% / �5%);� reweighting of the diret and non-diret ontributions in the Monte Carlo to providea better desription of the data (+1% / +3%);� the estimated residual number of eletrons left in the sample from photon onversionsas well as from Dalitz deays were varied by 25% and 20% respetively [50℄. This ledto systemati unertainties of (�1% / �4%) due to photon onversions and (�1% /�1%) due to Dalitz deays.These systemati unertainties were added in quadrature separately for the negative andthe positive variations to determine the overall systemati unertainty of +8�9% for thebeauty and +17�9 % for the harm ross setions. Sine no signi�ant dependene of thesystemati unertainties on the kinemati variables was observed, the same unertaintywas applied to eah data point. A 2% overall normalisation unertainty assoiated withthe luminosity measurement was inluded. 9



A series of further heks were made. The ut on the transverse momentum of theeletron andidate was varied by �3%, whih is the momentum unertainty for a trakwith pT = 0:9 GeV. The �� orretion was varied within its unertainty. The ut on�R to assoiate the deay eletron with a jet was varied between 1.5 and 1.0. Thee�et of the gaps between FCAL and BCAL as well as between RCAL and BCAL wasinvestigated by varying the ut on the EFO position. Various tests of the signal-extrationmethod were made: e.g. using the likelihood without the EEMC=ECAL or ECAL=ptrakvariables; applying the �t on a signal-enrihed sample by making tighter uts on the inputvariables and varying the �t range. The prior probabilities were realulated after the�t and used as the input for a seond �t iteration. Separate �ts were made for eletronand positron andidates for eah of the lepton beam partiles (e� and e+) separatelyas well as for the ombined sample. All variations were found to be onsistent withthe expeted utuations due to statistis; therefore they have not been added to thesystemati unertainty.10 Theoretial preditions and unertaintiesQCD preditions at NLO, based on the FMNR programme [51℄, are ompared to thedata. The programme separately generates proesses ontaining point-like and hadron-like photon ontributions, whih have to be ombined to obtain the total ross setion.The bb and the  prodution ross setions were alulated separately. The partondistribution funtions were taken from CTEQ5M [52℄ for the proton and GRV-G HO[40℄ for the photon. The heavy-quark masses (pole masses) were set to mb = 4:75 GeVand m = 1:6 GeV. The strong oupling onstant, �(5)QCD, was set to 0.226 GeV. Therenormalisation, �R, and fatorisation, �F , sales were hosen to be equal and set to�R = �F = qp̂2T +m2b(), where p̂T is the average transverse momentum of the heavyquarks.The Peterson fragmentation funtion [53℄, with �b = 0:0035 and � = 0:035 [54℄, was usedto produe beauty and harm hadrons from the heavy quarks. For the bb and  rosssetions, the deays into eletrons were simulated using deay spetra from Pythia.For beauty, both the ontributions from prompt and from asade deays, exludingb ! � ! e and b ! J= ! e+e�, are taken into aount in the e�etive branhingfration. The values were set to 0.221 for the bb and to 0.096 for the  ross setions [55℄.For the systemati unertainty on the theoretial predition, the masses and sales werevaried simultaneously to maximise the hange in the ross setion using the values:mb = 4:5; 5:0 GeV, m = 1:35; 1:85 GeV and �R = �F = 12qp̂2T +m2b(); 2qp̂2T +m2b().10



The e�ets of di�erent parton density funtions as well as variations of �b within the un-ertainty of 0:0015 had a small e�et on the ross-setion preditions and were negleted.The parameter � was varied between 0:02 and 0:07 and the ontribution was added inquadrature to the systemati unertainty. The unertainty on the eletron deay spetra,evaluated from omparisons to experimental measurements [56, 57℄ and to a simple free-quark deay model, was found to be small ompared to the total theoretial unertaintyand was negleted.The unertainty on the NLO QCD preditions for the total ross setion are +25% and�15% for beauty and +45% and �28% for harm.The NLO QCD preditions for parton-level jets, reonstruted by applying the kT al-gorithm to the outgoing partons, were orreted for hadronisation e�ets. A bin-by-binproedure was used aording to d� = d�NLO � Chad, where d�NLO is the ross setion forpartons in the �nal state of the NLO alulation. The hadronisation orretion fator,Chad, was de�ned as the ratio of the dijet ross setions, extrated from the PythiaMonte Carlo, after and before the hadronisation proess, Chad = d�HadronsMC =d�PartonsMC . Thehadroni orretions were generally small and are given in Tables 1{5. No unertaintywas assigned to the orretion.11 ResultsThe visible ep ross setions (quoted at hadron level) for b-quark and -quark produtionand the subsequent semileptoni deay to an eletron with peT > 0:9 GeV in the rangej�ej < 1:5 in photoprodution events with Q2 < 1 GeV2 and 0:2 < y < 0:8 and at leasttwo jets with ET > 7(6) GeV, j�j < 2:5 were determined separately for ps = 300 GeVand ps = 318 GeV. The measurements are given in Table 1 and are shown in Fig. 9. Theross setions at the two di�erent entre-of-mass energies are onsistent with eah other;ombining the results leads to a redued statistial unertainty. For the omplete dataset (96 { 00) the ross setions evaluated at ps = 318 GeV are�visb = �125� 11(stat.)+10�11(syst.)� pb;�vis = �278� 33(stat.)+48�24(syst.)� pb:The visible b-quark ross setion was also determined in the kinemati region of a previousZEUS analysis using muons [5℄ and is in good agreement.The NLO QCD preditions of FMNR (see Table 1) are ompared to the data in Fig. 9.Good agreement is observed. Also shown in Fig. 9 are expetations of the Pythia MonteCarlo. The ombined b(b) ross setion is a fator 1.75 higher while the () ross setion11



is a fator of 1.28 higher than the Pythia predition (see Setion 7). These fators areused to sale the Pythia preditions in the following �gures.Di�erential ross setions as a funtion of peT and �e, xobs , Ejet 1T and �jet 1 are shown inFigs. 10, 11 and 12, respetively. The variable xobs is de�ned asxobs = Pi=1;2(Ejet i � pjet iZ )E � pZ ;where the sum is over the two highest-energy jets, and orresponds at leading order to thefration of the exhanged-photon momentum in the hard sattering proess. The �guresalso show the NLO QCD and the saled Pythia preditions. The ross-setion valuesare given in Tables 2{4. Both the preditions from the NLO QCD alulations as well asthe saled Pythia ross setions desribe the data well.The di�erential ross setions as a funtion of the transverse energy of the jet assoiatedwith the eletron from the semileptoni deay, Ee jetT , were also determined. These rosssetions are shown in Fig. 13 and given in Table 5. The good agreement with the NLOQCD predition allows the ross setion as a funtion of pbT to be extrated [6℄. Theresulting ross setion is shown in Fig. 14 and is also ompared with previous ZEUSmeasurements [3, 5, 6℄. The results presented here overlap in pbT with these previousmeasurements and have omparable or smaller unertainties, giving a onsistent pitureof b-quark prodution in ep ollisions in the photoprodution regime.12 ConlusionsBeauty and harm prodution have been measured in dijet photoprodution using semilep-toni deays into eletrons. The results were obtained by simultaneously extrating theb- and -quark ross setions using a likelihood ratio optimised for b-quark prodution.One of the most important variables in the likelihood was the dE=dx measurement in theentral traking detetor.The results were ompared to both NLO QCD alulations as well as preditions fromMonte Carlo models. The NLO QCD preditions are onsistent with the data. The MonteCarlo models desribe well the shape of the di�erential distributions in the data. Theresults on b-quark prodution are also in agreement with a previous less preise ZEUSmeasurement using semileptoni deays into eletrons. Within the momentum rangeovered by previous ZEUS measurements using deays into muons, good agreement isfound.The ross setion as a funtion of the transverse momentum of the b quarks has beenmeasured over a wide range. The measurements agree well with the previous values,12



giving a onsistent piture of b-quark prodution in ep ollisions in the photoprodutionregime, and are well reprodued by the NLO QCD alulations.AknowledgementsWe thank the DESY Diretorate for their strong support and enouragement. The re-markable ahievements of the HERA mahine group were essential for the suessfulompletion of this work. The design, onstrution and installation of the ZEUS detetorhave been made possible by the e�ort of many people who are not listed as authors.
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�visb �NLOb Chadb �vis �NLO Chad(pb) (pb) (pb) (pb)96|97 101�18+8�9 81+�2012 0.81 253�58+44�22 360+�160100 1.0098|00 139�16+11�12 88+�2213 0.81 260�40+45�23 380+�170110 1.0196|00 125�11+10�11 88+�2213 0.81 278�33+48�24 380+�170110 1.01Table 1: Total ross setions for eletrons from b or  quarks in photoprodutionevents, Q2 < 1GeV 2 and 0:2 < y < 0:8, with at least two jets with EjetT > 7(6)GeV ,j�jetj < 2:5 and the subsequent semileptoni deay to an eletron with peT > 0:9GeVand j�ej < 1:5. The values are given separately for ps = 300GeV (96|97) andps = 318GeV (98|00) as well as for the omplete data set (96|00) extrapolatedto ps = 318GeV . The �rst error is statistial and the seond is systemati. Inaddition, the NLO QCD predition and its unertainty is given, after applying theappropriate hadronisation orretion (Chadb , Chad ).peT d�b=dpeT d�NLOb =dpeT Chadb d�=dpeT d�NLO =dpeT Chad( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)0.9 : 2.1 56.3�9:6+4:3�5:0 34+�117 0.78 117�26+20�10 177+�7138 1.022.1 : 3.3 24.0�3:7+1:8�2:1 16.8+�5:93:5 0.79 54.4�9:0+9:5�4:8 80+�4223 0.983.3 : 4.5 11.9�2:6+0:9�1:1 9.9+�3:62:3 0.84 26.0�5:8+4:5�2:3 36+�2714 0.994.5 : 8.0 4.7�1:9+0:4�0:4 3.3+�1:40:9 0.94 1.5�2:7+0:3�0:1 7.5+�9:54:0 0.99�e d�b=d�e d�NLOb =d�e Chadb d�=d�e d�NLO =d�e Chad(pb) (pb) (pb) (pb)-1.5 : -0.5 26.4�4:6+2:0�2:4 16.7+�6:63:6 0.75 51�12+9�4 111+�6633 0.98-0.5 : 0.0 53.4�9:1+4:1�4:8 39.5+�13:88:3 0.81 152�25+26�13 192+�10053 1.010.0 : 0.5 57.7�11:6+4:4�5:1 41.9+�13:99:0 0.82 187�36+33�16 165+�8243 1.020.5 : 1.5 42.4�8:7+3:2�3:8 28.1+�10:16:3 0.84 36�24+6�3 90+�5126 1.02Table 2: Di�erential eletron ross setions as a funtion of peT and �e for theomplete data set. For further details see the aption of Table 1.xobs d�b=dxobs d�NLOb =dxobs Chadb d�=dxobs d�NLO =dxobs Chad(pb) (pb) (pb) (pb)0.00 : 0.45 51�17+4�5 28+�1810 1.07 70�35+12�6 122+�10856 1.160.45 : 0.75 166�25+13�15 81+�5028 2.27 227�49+40�20 216+�17885 1.320.75 : 1.00 216�31+17�19 166+�4730 0.55 715�79+124�63 920+�370190 0.90Table 3: Di�erential ross setions as a funtion of xobs for the omplete dataset. For further details see the aption of Table 1.17



Ejet 1T d�b=Ejet 1T d�NLOb =Ejet 1T Chadb d�=Ejet 1T d�NLO =Ejet 1T Chad( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)7 : 10 16.8�2:5+1:3�1:5 10.1+�3:21:9 0.59 45.9�7:3+8:0�4:0 72+�4319 0.9910 : 13 12.0�1:9+0:9�1:1 9.4+�3:72:3 0.97 28.0�4:7+4:9�2:4 35+�1412 1.0713 : 16 8.3�1:6+0:6�0:7 5.1+�2:01:1 1.18 5.9�3:4+1:0�0:5 11.7+�7:02:9 1.0316 : 30 1.00�0:38+0:08�0:09 1.00+�0:390:08 1.22 1.5�1:1+0:3�0:1 1.8+�1:20:5 0.89�jet 1 d�b=d�jet 1 d�NLOb =d�jet 1 Chadb d�=d�jet 1 d�NLO =d�jet 1 Chad(pb) (pb) (pb) (pb)-1.0 : -0.25 24.9�5:2+1:9�2:2 17.5+�6:12:7 0.82 73�14+13�6 99+�6426 0.95-0.25 : 0.5 47.6�8:2+3:7�4:2 42.6+�12:77:7 1.01 177�24+31�15 164+�7535 1.050.5 : 1.5 49.3�7:8+3:8�4:4 30.4+�7:96:1 0.91 71�17+12�6 106+�4132 1.041.5 : 2.5 23.7�5:5+1:8�2:1 9.2+�3:62:4 0.76 8�15+1�1 35+�2312 1.01Table 4: Di�erential ross setions for the most energeti jet as a funtion of EjetTand �jet for the omplete data set. For further details see the aption of Table 1.
Ee jetT d�b=Ee jetT d�NLOb =Ee jetT Chadb d�=Ee jetT d�NLO =Ee jetT Chad( GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV) (pb/ GeV)6 : 10 16.1�1:8+1:2�1:4 12.3+�5:13:0 0.67 42.2�5:2+7:3�3:7 64+�3818 1.0010 : 15 6.6�1:3+0:5�0:6 5.4+�1:81:1 1.00 22.3�4:2+3:9�2:0 19.6+�7:55:5 1.0615 : 30 2.1�0:6+0:2�0:2 1.08+�0:400:26 1.21 0.3�1:9+0:1�0:1 1.7+�1:20:5 0.87Table 5: Di�erential ross setions of Ee jetT for the jet assoiated to the eletronfrom beauty or harm deays for the omplete data set. For further details see theaption of Table 1.
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Figure 12: Di�erential ross setions as a funtion of a), ) the transverseenergy and b), d) the pseudorapidity of the highest-energy jet. Plots a) & b) showthe distributions for eletrons from b-quark prodution while plots ) & d) showthose for -quark prodution. Other details as in the aption of Fig. 10.
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Figure 13: Di�erential ross setions for a) b-quark and b) -quark produtionas a funtion of the transverse energy of the jet assoiated to the eletron. Otherdetails as in the aption of Fig. 10.
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