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Abstract

We study the neutrino mass matrix derived from the seesaw mechanism in which
the neutrino Yukawa couplings and the heavy Majorana neutrino mass matrix are
controlled by the Froggatt-Nielsen mechanism. In order to obtain the large neutrino
mixings, two Froggatt-Nielsen fields are introduced with a complex vacuum expec-
tation values. As a by-product, CP violation is systematically induced even if the
order one couplings of FN fields are real. We show several predictions of this model,
such as 613, the Dirac CP phase, two Majorana CP phases, the effective mass of the
neutrinoless double beta decay and the leptogenesis. The prediction of the branching
ratio of p — ey is also given in SUSY model.

1 Introduction

The Froggatt-Nielsen (FN) mechanism[I] is one of the attractive mechanisms to explain
mass hierarchy of quarks and charged leptons. The idea is that the U(1) global symmetry
is taken as a flavor symmetry and the vacuum expectation value (VEV) of a flavor field
called FN field gives a proper structure of Yukawa couplings. For quarks and leptons,
this mechanism seems to work well by taking an appropriate charge assignment of fields.
However it is known that a mass hierarchy of neutrinos is milder than that of charged
leptons. In the normal hierarchy case, ma/ms ~ /Am?Z,/Am2,. ~ O()\) in contrast to
my/m; ~ O(\?). Here A ~ 0.2 is a size of the Cabbibo angle. Then it is a natural question
whether the FN mechanism can be applied to the mass hierarchy of neutrinos[2].

A promising approach to get small neutrino masses is the seesaw mechanism[3] where
the right-handed heavy Majorana neutrinos are introduced. The dimension five operators
are generated after these heavy neutrinos are integrated out. This model has several
interesting features. First of all, the light neutrinos are Majorana particles and we expect
the neutrinoless double beta decay which provides the information not only of light neutrino
mass scale, but also the Majorana nature of neutrinos such as Majorana CP phases[4].
Secondly, the scenario of the leptogenesis[5)] is automatically incorporated as a mechanism
to generate the baryon asymmetry of universe. In a supersymmetric version of the seesaw
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model, a significant contribution to lepton flavor violation such as ;1 — ey can be generated
through the running effect even if the soft scalar masses are taken as flavor universal at
the high energy scale[6]. The present bound on p — ey, Br(p — ey) < 1.2 x 107! [7] will
be improved by two order of magnitudes in MEG experiment[8] and gives the information
of neutrino mass matrices.

Applying the FN mechanism to the neutrino Dirac mass matrix and the heavy Majorana
neutrino mass matrix would be a natural extension of the model. Since charged leptons
and neutrinos are embedded into the same SU(2) doublet in left handed sector, a naive
expectation is that the mass hierarchy in the charged lepton mass matrix and the Dirac
neutrino mass matrix are similar to each other. In order to get the milder hierarchy for
neutrino masses, the hierarchy in the heavy neutrino mass matrix should compensate that
of the Dirac mass matrix.

In this paper, we examine how the milder hierarchy for neutrino masses is obtained
systematically in the FN scheme. We also discuss the problem which is pointed out by
Koide and Takasugi in the analysis of the 2-3 symmetric mass matrices for neutrinos and
charged leptons[9]. The 2-3 symmetry[10] is the invariance of the mass Lagrangian under
the exchange of ¢, and 3, where 1); is the i-th generation fermion of ¢y = ey, eg, vy, Vg.
The problem is as follows: Mass matrices for the neutrino and the charged lepton lead to
the maximal 2-3 mixing (7/4 degree mixing) for both cases, but these mixings cancel each
other when they are combined to obtain the neutrino mixing. That is, we obtain the zero
2-3 mixing. This is a serious problem for the 2-3 symmetry, though this is the powerful
ansatz to restrict the mass Lagrangian.

We see the general feature of the neutrino mass matrix which arises from the seesaw
mechanism with the FN mechanism. We show that the milder hierarchy is naturally
obtained by a simple ansatz for a choice of the FN charge of neutrinos. We discuss a case
of real Yukawa coupling constants and a case of the mass matrices with the 2-3 symmetry
and shows that a cancellation occurs for the 2-3 mixing. This cancellation can be avoided
by considering an extended FN mechanism [I1], where two FN fields are introduced. Quark
mass matrices in this type of model has been discussed in Ref.[I1] and it is shown that a CP
phase and mixings in the Cabbibo-Kobayashi-Maskawa matrix[12] are obtained and they
reproduce the experimental data well. As a by-product, a CP violation is systematically
introduced by keeping the Yukawa coupling constants for the matter and FN fields real. We
construct a simple model and examine the light neutrino mass hierarchy, the CP phases,
and the mixings, which are controlled essentially by VEVs of two FN fields. We also show
several predictions of this model, 3, the Dirac CP phase, two Majorana CP phases, the
effective mass of the neutrinoless double beta decay and the leptogenesis. The prediction
of the branching ratio of ;1 — e~ is also given in SUSY model.



2 The neutrino mass matrix in the hierarchy scheme

We assume that the hierarchy of mass matrices arise from the Froggatt-Nielsen (FN) non-
renormalizable interaction as

(_,) fVRi+flj
Lrny = —Vri(Y)ijl; - Hy (K)
O\ f7ri Tl
—€ri(Ye)ijl; - Hy (K) ,
1 . ® f”Ri+f"Rj
— 5 VRimij (VRj) <K> : (1)

where H, 4 are Higgs doublets, L; is the left-handed lepton doublets, Er; and vg; are right-
handed charged leptons and right-handed neutrinos in the j-th generation, respectively. A
is a cut-off scale, Y, and Y, are coupling constants, and their U(1) charges are expressed
by f. By assigning the U(1) charge of © by fo = —1 and fg, = fg, = 0. The Lagrangian
is invariant under U(1) transformation.

When O takes a vacuum expectation value

(O) = AA | (2)

where A is a small quantity which is of order of Cabbibo angle, ~ 0.2. Then we obtain
effective Yukawa couplings matrices and the right-handed neutrino mass matrix as

(VM) = (V)iyAlrmitles,
(VMg = (Ve)yghomtetii,

(m*M); = kymg et (3)

Since the power of A provides the hierarchical structure of mass matrices, coupling con-
stants, (Y} );; are approximately equal each other. This is true for (Y;);; and m;;.

Let us consider neutrino mass matrices. For simplicity, we express FN charges for
left-handed lepton doublets and right-handed neutrinos as (f,, fr,, f1.) = (f1, f2, f3) and
(furts> Junes fors) = (91,92, 93). Then, the Dirac and Majorana neutrino mass matrices are
given by

all)\gl+fl a12)\gl+f2 alg)\gﬁrfg
mp = vyk, a21)\92+f1 a22)\gz+f2 a23)\gz+f3 (4)
a31)\93+f1 a32)\93+f2 a33)\93+f3

bu)\Zgl b12)\91+92 b13)\gl+g3
Mr=m b12)\92+91 522)\292 b23)\92+93 (5)
b13)\93+91 by \93+92 533)\293

where k,a;; = (Y);; and mb;; = my;, so that a;; and b;; are normalized to quantities of

order 1.
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Now, by the seesaw mechanism, the neutrino mass is given by

, D)\2(fi=f3)  pA\fitfa=2fs A \fi—fs
m, = mgMélmD — (Uuku) AN1t=2fs)  BA2f2—fs) O )\fo—f3 , (6)
m A’)\fl—fS C’)\f2—f3 B

where A, A', B, B', C and D are functions of a;; and B;; and do not contain A. From
Eq.(6), we observe an interesting features: (a) The hierarchical structure of neutrino mass
matrix depends only on the FN charge of the left-handed neutrinos, f; and independent on
those of the right-handed neutrinos, g; (b) If we take fo = f3 = f1 + 1 which is reasonable
in view of SU(5) GUT where the FN charges of dg; quarks are taken as (2,1,1) and vy,
and dg; form a same multiplet.

By taking fo = f3 = f; + 1, we obtain

DX2 AN A\
2\ 2f
m AN C B

Needless to say that parameters A, B, B’, C, D are expected to be quantities of order one.

This matrix leads an interesting neutrino mass patterns and mixings, the large 2-3
mixing, the reasonably large 1-2 mixing, and the mass squared ratio. In order to see the
neutrino mixings, we have to take into account the charged lepton mass matrix, because
the neutrino mixing matrix is obtained by multiplying the matrices which diagonalize the
charged lepton mass matrix and the neutrino mass matrix.

How about the charged lepton mass matrix? Since ey; and v;; form a doublet of the
electroweak symmetry, the FN charges of e;; should be the same as those of v;;. By
assuming the FN charges of eg; as (ki, ko, k3) (k1 > ko > k3), we find

611)\k1+f+1 012)\k1+f 013)\k1+f

me :vdke 021)\k2+f+1 022)\k2+f 023)\k2+f . (8)
631)\k3+f+1 032)\k3+f 033)\k3+f

Then, we find

D2 AN AN
mime = (vgke)? 220 [ AN B, C, | . (9)
A\ C* B!

Similarly to the neutrino mass matrix case, the same hierarchy is obtained as the neutrino
mass matrix due to the fact that the FN charges for ey; are the same as those for vy;.
(a) The case of real coupling parameters

We consider the case where all coupling constants, Y;;, (Y2);; and m;; are real. As we
saw, both the neutrino mass matrix and the charged lepton mass matrix lead large 2-3
mixing. The large 2-3 mixing given by the neutrino tends to be cancelled by the large 2-3

mixing given by the charged lepton, so that the resultant atmospheric neutrino mixing,
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i.e., the mixing between v, and v, mixing is small. This may be a somewhat generic and
serious problem.
(b) The case of complex coupling parameters

If we consider complex coupling parameters, there appear too many free parameters
including phases, so that the model loses the predictive power. In order to decrease the
freedom and make the model predictive, the 2-3 symmetry[9, [10] is frequently used, where
the 2-3 symmetry requires the invariance under the exchange of the 2nd and the 3rd
generations. If we apply this symmetry for the neutrinos, by assuming g3 = g3 in addition
to fo = f3, we find A = A" and B = B’. Then,

L0 0\ /DX Ax AX\ /1 0 0 D)\ V24X 0
1 1 1 1
0721? AN B C Oﬁ_ﬁ:\/ﬁA)\B—FCO . (10)
0 -5 7 AN C B 0 5 5 0 0 B-C
If we take |B — C| > |B 4+ C| ~ A\, the mass spectrum is
ms = B-C s
2
~ B+C A2
mo + + B—|—C ;
2A?
~ - A2 11
m B+C b
and thus
my —mi _ (B+C)*+4A4%N (1)
mi (B—-C)?
which is a quantity of order A*> ~ 0.04 and close to Am?,;/Am2,,. ~ 0.03. If we take

(B+C') ~ A\, which is consistent with the assumed size for the mass squared ratio, then,
mass matrix for the 1st and 2nd columns becomes

~ A (\% ‘?) (13)

and lead to the solar mixing of tan® 6, ~ 1/2.

For the charged lepton mass matrix, we have two cases. One is the case where ky # ks.
Then, we only require the 2-3 symmetry for ey. In this case, we find the relations ¢;» = ¢;3,
which lead to A, = A., B, = B, = C. = C. Another one is to assume the 2-3 symmetry
for eg also by taking ko = k3. In this case, we find A, = A, B, = B!, and real C,. For
both cases, the matrix is block diagonalized by the rotation with the angle of /4 as in the
case of Eq.(10), which cancels the 7/4 mixing which came from the diagonalization of the
neutrino mass matrix. As a result, the atmospheric neutrino mixing vanishes.

As we saw, the FN type hierarchical model leads either the small atmospheric neutrino
mixing, or the loss of the predictive power. In the next section, we give a way to avoid this
problem in the two FN fields model, where the relative phase of their vacuum expectation
values works to lead the mismatch and also to introduce the CP violation, while coupling

parameters are taken to be real. -



3 The model of neutrino mixing in the extended
Froggatt-Nielsen mechanism

We consider a model which consists of two FN fields, ©;, ©, and assume that Y,, Y, and
m are real matrices. In this scheme the CP violation is originated solely from the relative
phase of vacuum expectation values of two FN fields. As it was shown in Ref. [T1], we have
to introduce Z, symmetry in order for this phase to work as the Dirac CP phase. We take
the FN charge and Z, parity for them as

(f@17f927P@17P@2):(_17_17+7_) ) (14)

where Pg, gives the Z, parity. For leptons, we take

(fllafbaflypllaplzaplg,) - (271717+7+J_)7
(feRlafeR27feR37PeRla-PeR27 61:{3) = (372707_'_7_'_7 _)7
(fl/RIJ fl/327 fl/R?n PIIR17 PI/R27 PIIR3) - (27 17 07 +7 +7 _) (15)

and for Higgs, we take (fgu, fra, Pru, Pra) = (0,0,+,+). This choice of the FN charges
are consistent to that of quarks in the SU(5) GUT scheme. The interaction Lagrangian is
given by,

L (_) Nyl @ ny2
Lrns = — Z Uri(Y)ijl; - Hy <T1> <T2>

(_) Nel (_) Ne2
- Y et () ()
L @ na1 (_) nar2

(17)

where (nyx1,nys) are taken so as to keep the invariance of the FN U(1) symmetry and Z
symmetry. Effective Yukawa couplings and the heavy neutrino masses are given by

Leg = Vi ()ijl; - Hu — €ri(Ye)ijlj - Ha — Vri(Mg)ij(ve;)© (18)
are given by taking

@2>
(©1)

=
I

= |Rle™, (19)

(a) A model of mass matrices
By taking (H,) = v, and (H,) = v4, mass matrices are obtained. As we stated before,

in the spirit of the FN hierarchy model, elements of Y are considered to be approximately
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equal each other, and for Y, and m, this should hold. In the following, we consider a simple
model where Y, Y, and m are proportional to the democratic matrix as

1 11 1 11 1 11
Y=k |1 1 1} Vizsk |1 1 1) m=my[1 11 (20)
1 11 1 11 1 11
Then, we find
BiAY B3 RBy)3
mp = vy = vk, | BoA By)?  R)\? ,
RX?  RA A
By\5 ByA* RBy\!
Me = 'Udke B4)\4 BQ)\3 RBQ)\S y
RX? R A
B\t By)\3 R)?
MR = My BQ)\3 Bg)\2 RA y (21)

RX?*  RA 1

where By, = 1+ R? 4+ --- + R?". We are interested in whether this simple model can
reproduce the observed data. Firstly, we derive the neutrino mass matrix for the left-
handed neutrinos,

By)?> By\ RB)
m, = mgM_lmD = vy, B2)\3 Bg R 5 (22)
RBAN R By

where vy, = (vyky)? A2 /may.

(b) Diagonalization
At first, we discuss the neutrino mass diagonalization. By the transformation of the
unitary matrix UM where

(1+R)* B;
Cor0 o 1 0 G
e O Tl I B A, (23)
4 1 + 2
O W Gt 01

m,, is block diagonalized in a good approximation as

14+R)B3)? 1—R)B:
(B4 _ ((2(32:_];)) ))\2 ( \/5) 2)\ 0

(UNTm, UMW = oy, %)\ B, — R 0 ; (24)
0 0 By + R

where we assumed that |By + R| > |By — R|. The matrix in Eq.(21) is diagonalized by the
matrix U®)

c  —se* 0
U® = [se ce? 0], (25)
0 0 1
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where ¢ = cosf and s = sinf, and

e (A RB
p - g BQ—R )

(1— R)Bs
tan 20 = 2|————| A 26
mao = V3| (26)
and neutrino masses are
my ~ —wvpls®— \/_sc|( 1) B, 211|1B; — Rle"™ = v, —— i |32 R|e™
B, — R 2 — ’
2
my ~ wplcd + \/§sc|( ) 211|B, — R|e™? = VL |BZ Rle™ |
ms ~ wp|By+ Rle" (27)
where cos 20 = ¢ — s? > 0 is taken and
a; = 2p+arg(Bs—R)+ 7,
ay = 4dp+arg(B; — R),
a3 = arg(By+ R) . (28)
Now, we define the phase matrix
P = diag(e’ia_;, e’iaTQ, e’i%&) , (29)

the matrix which diagonalizes the neutrino mass matrix is U, = UNU® P,

Next, we go to the diagonalization of the charged lepton mass matrix. By transforming
M, as VI M,U, by the unitary matrix, U, = VDV @) where

1 0 0 1 0 —2&_\
) 0 1 R* \/ 1+|R|?
V( ) — \/1+|R‘2 \/1+‘R|2 0 ]_ 0 9
___R 1 R
0 VI+RE2  \/1+R]? ‘/1+|R\2)\ 0 I
1 1+|R‘2R*4
V@ = | __isRrPR | H‘TW 0 (30)
(VIHRP)?/
0 0 1

M, is diagonalized in a good approximation and the eigenvalues are

%_ |1_R4|)\ me |R| V1+|R|2)\2 (31)

m, 1+|R2" "m,  |1— R:>2




4 The neutrino mixing matrix and mass spectrum of
leptons
At first, we notice that the neutrino mixing which is given by
V=UlU,= vy WOigOy@ p (32)

and consider how the cancellation of the 2-3 mixing is avoided. The 2-3 mixing is essentially
given in the following part

1 0 0 1 0o 0 1 0 0

1 _ R’ 1 1 0 LtR* 1-R*
VIR LR 0 o= VRLHERR) V20 RP) | (33)

VIHIRZ  \/1+|R 0 VZ V2 0 _\/2(1+\R|2) \/2 1+\p.,|
Now, the atmospheric mixing is
2
. |1 — R?J? 2 cos a

Sin? 2y ~ ——— =1 [ =—— | | 34
= E R R+ o o

If there is no phase in R, i.e., & = 0, then the 2-3 mixings for the charged lepton and the
neutrino cancel each other and leads to the small mixing because we consider |R| ~ 1.
Even in the existence of the phase «, it is hard to achieve sin?#,,, = 1. Here, we relax
this condition and want to reproduce sin? @, > 0.9, then we find

Rl +
210
Since we expect |R| ~ 1, | cos a| must be around 1/+/10.
Next, we impose the condition which assures the computation given above. The con-

dition is |By + R| > |Bs — R| which is needed to get the hierarchy of neutrino mass
|ms| > |ma|. This requires that

|cosa| < (35)

((|R] + |—}1ﬂ) cosa — 1)2 + (|R| — %) sin? oy
((|R] + ) cos @ + 1) + (| R| — )2 sin” @

<1. (36)

To fulfill this condition with cosa = 1/4/10, we need (|R| + ‘R|) cosa ~ 1, so that |R| ~
1/|R| is required There is another reason. Let us see the 11 element of the neutrino mixing
by neglecting O()\?) term,
: 1 1+ |R]°’R*
¢ — seit <+||*—a—mm>ﬂew. (37)
V2(1+|R]?) \ (1 — R*)B;

Here, we observe that the 2nd term in the parenthesis becomes real in the limit of |R| =1
and works to cancel the first term ¢ when cosa = ﬁ. This means that we obtain smaller

Vi =

|V11] element, which in turn leads to a largergsolar mixing angle.



Before going into the detailed analysis, we comment about the number of parameters.
There are three parameters, A\, |R| and « aside from the overall normalization of mp, Mg
and my. Therefore, if we fix the above three parameters, three neutrino mixings, one Dirac
CP phase, two Majorana CP phases, the ratios of masses of the left-handed neutrinos and
the right-handed neutrinos, and those of charged leptons. If we go to the leptogenesis and
the LFV, we need to fix the overall factors, which we see later.

In the following analysis, we take the values of three parameters as

3

1 1
A=—-, cosa=— ,sina=——=, |R|=1, 38
1 0 75 | (38)

as we explained before. Then, we find

0.863 0.585 (—0.012 4+ 01934) 1 0 0
V =P | (-0.531 —0.054i) (0.678 4+ 0.069) 0.585 0 e 0-50m 0
(0.259 + 0.026i)  (—0.528 — 0.0541) 0.811 0 0 e0-53mi
where P’ is a physically meaningless diagonal phase matrix. We see the Dirac phase
d = —0.527 in the standard phase convention[I3] and two Majorana phases as f = —0.507
and v = 0.53.
We obtain the ratios of masses as
027, 2 _po7
ms ms
M, M,y
— = 0.0035 — =0.060
M;y ’ M;y
Me —0.00062, % =0.037. (40)
m, m,

The absolute values of elements of the mixing matrix are

0.863 0.585 0.194
0.533 0.681 0.585 (41)
0.260 0.531 0.811

which gives
tan® Oy = 0.455 , sin® 20p, = 0.9 , (42)

which are in a good agreement with the data, and

2 2
™ _63x1072, (43)

which are in a reasonable agreement with the experimental data, in view of this simple
model.

By taking m, = 1.75GeV and m,,, = m,3 ~ \/Am2,, ~ 0.05¢V, we find m, = 1.1MeV
and m, = 64MeV, and m,, = m,; = (9(1(1)63)eV and m,, = m,, = 0.012eV. In order



to obtain m,, = 0.05eV, v, = 3.0 x 107''GeV is required. Though the predicted masses
in our very simple model don’t have excellent agreements with the experimental data, i.e.
the predicted value of m, is about twice of the experimental value and that of m,, is about
half, we may say that our model is still successful. Such a discrepancy can be improved by
relaxing our assumption that Y, Y, and m are proportional to the democratic matrix.

We comment that if sina = \/317) is taken, then the mixing matrix V' changes to V* in

comparison with the case of sina = —\/%.

5 Predictions

Since we fixed all parameters except for mj,, which determines the absolute magnitude of
the right-handed neutrino masses, we can compute predictions for various observables.

(a) The neutrinoless double beta decay

As a feasible experiment which has a potential to give an information of Majorana CP
violation phases at low energy scale, we consider the neutrinoless double beta decay [4],
(A, Z) — (A, Z + 2) + e~ + e . If the neutrinoless double beta decay is observed, the
measurement, of the neutrinoless double beta decay half-life combined with information
on the absolute values of neutrino masses might give a constraint on the neutrino mass
parameters or determine them. Predictions on the neutrino less double beta decay can be
controlled by a effective mass, (m,) = |3 V2m,|[4]. In our model, the effective mass is
predicted as

) .03 (44)

ms3

Therefore, with ms = /Am2,,, ~ 0.05eV, we find that the effective mass is as small as
0.0015eV, so that it seems hard to be observed.

(b) Baryon number asymmetry

We consider the thermal leptogenesis scenario[5] in which the baryon number asym-
metry of the universe is generated by the conversion of the Lepton number asymmetry
produced by CP violating decay of heavy right-handed neutrinos. Recently the effect of
flavors is studied [14] [15], and this effect is shown to be significant in several cases, e.g.,
a case that primordial B — L asymmetries are considered[16] or one that total CP asym-
metry parameter is strongly suppressed by the cancellation between the flavor dependent
CP asymmetries as € + €] + €] ~ 0[I7]. However, in most cases, the contribution from
flavor effect is within 10%[15]. Here we consider the zero primordial asymmetry case and
the total CP asymmetry parameter is not small. Then one flavor approximation can be
used.

Since the right-handed neutrino mass eigenvalues are hierarchical, the CP asymmetry
parameter and washout mass parameter in our model with A = 1/4, |R| = 1 and cosa =
1/4/10, sina = —3/4/10 for the standard model (SM) case and minimal supersymmetric

11



standard model (MSSM) case are

T'(vg — lH,) —T(vg — I°H})

“ TT(vm — (H,) + D(vg — I°H)
My ~ — m
~ {_167r(Y3YT)11 Zj?fl Elm ((YYT)?I) ~ —-1.3x10 ‘ (1013AG/[eV) ) SM case ’ (45)
M — m
_STF(YIYJF)II 2#1 V;Im ((YYT)?I) ~ —8.3 x 1077 (1013](\}/[e\/') ,  MSSM case,
and
yYt
Ty = (Tl)”vg ~ 0.032eV . (46)
Using the approximate efficiency function[3]
8.25 x 10%V m -
= 4
n(m) ( m + (2 X 10—4e\/>> ’ (47)
the predicted BAU in thermal leptogenesis scenario is given as
ng 10 . 1.0 x 107" (55s) , SM case,
- = _31 6177(7nl) = —12 (loy;iAG/[ V) (48)
S g« 3.2 x10 (71013%\,) ,  MSSM case ,

with g, = 108.5 in SM case and ¢, = 232.5 in MSSM case. Note that mj; is the only
one parameter which are left free in our simplest model. In order to reproduce ng/s =
8.7 x 107!, we should set my; = 8.4 x 102GeV for SM case and my; = 2.7 x 1014GeV for
MSSM case which give (M, My, M3) = (3.1 x 10'%,5.3 x 102,8.9 x 10*3)GeV in SM case
and (M, My, M3) = (4.6 x 10'1,7.9 x 10'%,1.3 x 10"*)GeV in MSSM case.

(c) The lepton flavor violation processes

It is interesting to consider p — ey in the MSSM case. Even if the flavor universal
boundary condition is taken at high energy scale such as GUT scale where all the sfermion
mass matrices are proportional to m21 with 1 being unit matrix and all the trilinear
coupling matrix is proportional to the Yukawa coupling matrix with a dimensionfull pro-
portionality coefficient Ag, the off-diagonal elements of neutrino Yukawa coupling matrix
induce the flavor mixings in slepton sector and this affects the prediction on lepton flavor
violating processes, such as y — ev.

In general, the SUSY contribution to u — ey strongly depends on the right-handed neu-
trino mass scale in addition to the SUSY parameters. The lower bound on the right-handed
neutrino mass scale from successful leptogenesisﬂ has an implication for the prediction of
lepton flavor violation processes[I8]. In our simplest model, all the parameters are fixed.
Especially the successful leptogenesis gives mj; ~ 2.7 x 10GeV.

*We don’t consider the gravitino problem though it is very serious problem[19] in supersymmetric
models. This topic is outside the scope of present work.
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The normalization factor for the right-handed neutrino mass matrix my, = 2.7 X
10MGeV with vy, = 3.0 x 107''GeV determines the normalization of neutrino Yukawa

matrix as k, = \/vrmar/(v,A)? ~ 2.1. With these normalization factors, one get
—0.0045 —0.0095 — 0.0122 —0.012 + 0.0040z
YILY = [ —0.0095 + 0.012: —0.063 —0.013 + 0.038: (49)
—0.012 — 0.00402 —0.013 — 0.0382 —2.5

where L = diag(ln Jf‘/[/[—;(,ln Aﬂf—;,ln ]\]‘f—;) with Mx = 2.0 x 10'%GeV and we take the base
where Mg and M, are diagonalized. As easily seen from form of mass matrices, mp, Mg,
and M., large mixing angles in the neutrino sector come from seesaw enhancement[20],
i.e. the off-diagonal elements of mp are not large even in the basis where M, and My
are diagonalized. Therefore the off-diagonal elements of YTLY is suppressed to be much
smaller than one.

The branching ratio of ;. — ey within mass insertion approximation is calculated as

36 2 2A22

~ G )it (YTLY )15 tan® 5 . (50)
F S

If we take the grand unified gaugino mass, m;/, at My, m& is approximately m$ =
0.5mg(mg + 0.6m7,)*[21]. The p — ey constraint on our model is displayed in Fig. [l
As shown in the figure, MEG experiment which is expected to reach Br(y — ey) < 107'3
can test very wide region of SUSY parameter space in our model. A 3.40 deviation from the
SM was reported in muon g —2[22]. If this discrepancy comes from the SUSY contribution,
rather light SUSY spectrum, i.e. mq, m/, < 500GeV, is favored, so that our simple model
promises a measurable size of Br(u — ev) in the light of g — 2.

6 Summary and Discussions

We examined whether neutrino mass matrix derived from the seesaw mechanism is compat-
ible with the hierarchical mass matrices based on the Froggatt-Nielsen (FN) mechanism.
We showed the followings:

1. The milder hierarchy of neutrino masses is obtained for the FN charge of the left-
handed lepton doublet ¢;; taken as f; = fo +1 = f3 + 1. Since the FN charges for
dg; are taken as (2,1,1), this charge assignment of ¢;; is compatible with SU(5) GUT
models with f; = 2.

2. We showed the problem which arises from the 2-3 symmetry is evaded by introducing
two FN fields with opposite Z, parity. The relative phase of vacuum expectation
values of two FN fields acts an important role for this.

3. We constructed a model where coupling constants are real. In this framework, the
relative phase becomes the sole origin of complex phases in mass matrices. In par-
ticular, we examined a simple case Whle?fe coupling matrices are proportional to the
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Figure 1: The contour of predicted value of Br(u — ey) = 1.0 x 1073 is shown on the
my /2 and mg plane. The shaded region is already excluded, i.e. Br(y — ey) > 1.2 x 1071
For the other SUSY parameters, Ay = 0 and tan 5 = 10 are taken.
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democratic matrix and obtained various predictions. The model predicts the normal
hierarchy case and reproduces neutrino mixings, the ratio of neutrino squared masses
well. The 6,3, the Dirac CP phase and the two Majorana CP phases are predicted.
The predicted effective mass of the double beta decay is small and the successful
leptogenesis scenario is obtained. Also, the 4 — e + 7 is discussed in the SUSY
model.

The intention of this paper is to show that the matching between the FN mechanism
and the neutrino mass matrix derived from the seesaw mechanism is good, although the
neutrino mass matrix must be quite different from that for the charged lepton mass matrix.
Another interest is that this kind of model gives a possibility of the common origin of the
CP violation for the quark system and the neutrino system, when we consider these mass
matrices simultaneously.
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