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DESY 08-044Four point fun
tion of R-
urrents in N = 4 SYMin the Regge limit at weak 
ouplingJ. Bartels,� A.-M. Mis
hler,y and M. SalvadorezI I. Institut f�ur Theoretis
he Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyWe 
ompute, in N = 4 super Yang-Mills theory, the four point 
orrelation fun
tion of R-
urrentsin the Regge limit in the leading logarithmi
 approximation at weak 
oupling. Su
h a 
orrelator isthe 
losest analog to photon-photon s
attering within QCD, and there is a well-de�ned pro
edureto perform the analogous 
omputation at strong 
oupling via the AdS/CFT 
orresponden
e. Themain result of this paper is, on the gauge theory side, the proof of Regge fa
torization and theexpli
it 
omputation of the R-
urrent impa
t fa
tors.Keywords: SYM, Regge Limit I. INTRODUCTIONThere are many aspe
ts of QCD that are still la
king a satisfying understanding from �rst prin
iples. One is thebehavior in the Regge limit, where the theory is expe
ted to be better formulated in terms of new e�e
tive �elds, theReggeized parti
les [1, 2℄. One of the 
entral building blo
ks of this Reggeon �eld theory is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron whi
h 
omes as a bound state of two Reggeized gluons with va
uum quantum numbers [3℄.While the original 
al
ulations were done in the leading logarithmi
 approximation (LLA), the requirement of highpre
ision has led to the 
omputation of subleading 
orre
tions (NLO 
orre
tions) to the BFKL equation [4, 5℄, andthey have been found to be large. While, for �nite values of N
 further steps beyond NLO will extend beyond theladder stru
ture and hen
e open the full 
omplexity of Reggeon �eld theory, there is eviden
e that the large-N
 limitsuppresses the transition from two to four Reggeized gluons and thus allows, also beyond the NLO 
orre
tions, tostay within the ladder approximation.Beside its phenomenologi
al relevan
e, high energy physi
s has been a proli�
 sour
e of theoreti
al 
ues. In the earlydays, the proposal by Veneziano [6℄ of 
rossing-symmetri
, Regge behaved amplitude turned out to be a key point forthe beginning of the string theory era. Later on, in the early nineties, when studying unitarity 
orre
tions to the BFKLPomeron, Lipatov [7, 8℄ found the �rst o

urren
e of integrable stru
tures in four dimensional quantum �eld theories:In the large-N
 limit, the generalization of the BFKL evolution equation, the Bartels-Kwie
inski-Praszalowi
z (BKP)evolution equations [9℄ for the n gluon state, were found to be integrable.Re
ently, the 
onne
tion between quantum �eld theory and string theory was revived by the advent of the AdS/CFT
orresponden
e [10℄. This 
onje
tured 
onne
tion between Yang-Mills theories (the maximally supersymmetri
 versionof QCD, N = 4 super Yang-Mills theory (SYM), at large N
, being the most attra
tive example) and some stringtheory (type IIB on AdS5�S5 for the 
ase just mentioned) has motivated, among other dire
tions of interest, also theanalysis of the high energy limit in supersymmetri
 theories, in parti
ular the BFKL Pomeron [11℄ and the va
uumsingularity [12℄.On the gauge theory side, the most reliable environment of investigating the Pomeron is provided by the s
atteringof ele
tromagneti
 
urrents, e.g., the total 
ross se
tion of the s
attering of two virtual photons [13, 14℄. In order to beable to de�ne 
orrelation fun
tions that are de�ned on both the gauge theory and the string theory side, it has beensuggested [15℄ to use, as a substitute of the ele
tromagneti
 
urrent, the R-
urrents belonging to the global SUR(4)of the N = 4 SYM theory. To be more pre
ise, one pi
ks a U(1) subgroup of the SUR(4) group. It therefore seemsnatural to investigate four point 
orrelators (and even n point 
orrelators with n > 4) of these R-
urrent operators,representing 
orrelation fun
tions whi
h are well-de�ned both on the gauge theory and the string theory side. Whereastwo point and three point 
orrelators of the R-
urrent operators have been studied before [16℄, an analysis of fourpoint 
orrelation fun
tions has not yet been performed.In this paper we address, within N = 4 SYM, the Regge limit of R-
urrent operators, beginning with the gaugetheory side. In QCD it is well known that, in the high energy Regge limit, the four point amplitude of the ele
tro-�Ele
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urrent fa
torizes into impa
t fa
tors of the (virtual) photon and the BFKL Green's fun
tion that des
ribesthe energy dependen
e. In this paper, as a start, we will verify that this expe
tation remains valid also for the super-symmetri
 extension, where s
alar �elds have to be in
luded, and the fermions belong to the adjoint representation ofthe gauge group. Sin
e the R-
urrents are non-Abelian, their asso
iated Ward identities are more 
ompli
ated then inQED, and this 
auses some subtleties in the treatment of UV divergen
ies. We investigate the one-loop box diagramsand 
ompute, in the leading logarithmi
 representation, the impa
t fa
tors of the R-
urrent1. Sin
e, in the leadinglogarithmi
 approximation, the BFKL Green's fun
tion remains the same as in the nonsupersymmetri
 
ase, we thus�nd the supersymmetri
 analog of the 
�
� total 
ross se
tion dis
ussed in QCD. In a forth
oming paper we will turnto the dual analog on the string theory side where the graviton is expe
ted to play the dominant role.II. REVIEW OF PHOTON-PHOTON SCATTERING IN QCDThe most 
onvenient way of addressing Regge dynami
s in QCD is the study of the elasti
 s
attering of two highlyvirtual photons. The large virtuality of the external photons provides hard s
ales that allow us to use perturbationtheory. One fo
uses on the 
omputation of the leading order in the ele
tri
 
harge �, at whi
h ea
h photon splits intoa quark-antiquark pair, but the order in the strong 
oupling 
onstant �s 
an be arbitrary high. The de
ay of thephoton is mediated by the ele
tromagneti
 
urrent j� asso
iated with the U(1) gauge symmetry of QED. Thereforethe 
omputation redu
es to evaluating the four point 
orrelation fun
tion of this 
urrent. In momentum spa
e itreads2 i(2�)4Æ(4)(pA + pB � pA0 � pB0)A(s; t)�A�B�A0�B0 =Z Yi d4xi e�ipA�xA�ipB �xB+ipA0 �xA0+ipB0 �xB0�hj�A(xA)j�B (xB)j�A0 (x0A)j�B0 (x0B)i ; (1)where A depends upon the external momenta only through the usual Mandelstam variables3 s = (pA + pB)2 > 0,t = q2 = (pA � p0A)2 ' �q2 < 0, and the virtualities of the 
urrent momenta Q2i = �p2i > 0. The Regge limit isde�ned as s >> jtj; Q2i : (2)We will perform the 
omputation using the Sudakov de
omposition of momenta dis
ussed in the appendix. It is
onvenient to 
ompute the amplitude (1) in terms of its proje
tions onto the polarization ve
tors of the externalphotons. The reader is referred to the appendix A 1 for the expli
it de�nition of the polarization ve
tors in the Reggelimit. On
e they are de�ned, we 
an use their 
ompleteness (A8) in order to de
ompose the 
orrelation fun
tion (1)as A(s; t)�A�B�A0�B0 =X�i ��A�A(pA)���B�B (pB)���A0�A0 (pA0)��B0�B0 (pB0)�h�A�B jAj�A0�B0i ; �i = L;� ; (3)where h�A�B jAj�A0�B0i are the proje
tions of A onto the appropriate polarization ve
tors. In the following we willoften suppress, for the s
attering amplitude A on the LHS, the tensor indi
es.A. Ward identitiesLet us brie
y re
apitulate the derivation of the Ward identities for the time-ordered produ
t of a 
onserved 
urrent,j� (satisfying ��j�(x) = 0), with some other operators Oi. Be
ause of the theta-fun
tions inserted by the time-1 In a re
ent paper [17℄ the impa
t fa
tors of s
alar 
urrents have been 
omputed.2 Note that pA;B are taken to be in
oming while p0A;B are outgoing.3 Bold symbols label 2-dimensional transverse ve
tors, k = (k1; k2).



3A(0)B = + + :FIG. 1: Lowest order diagramsordering operator T , there are terms proportional to delta-fun
tions of time di�eren
es,��Tj�(x)O1(x1):::On(xn) =nXi=1 Æ(x0 � x0i )TO1(x1):::[j0(x);Oi(xi)℄:::On(xn) : (4)From the standard 
ommutation relation one sees that the equal-time 
ommutator of the zero-
omponent of the
urrent with an operator is proportional to the 
harge of the operator itself under the symmetry group,[j0(~x; t);O(~y; t)℄ = Æ(3)(~x� ~y)qOO(~x; t) : (5)Here qO is the 
harge of the operatorO in units of ele
tri
 
harge e. Using (5) in (4) one obtains the expli
it expressionof the 
onta
t terms: ��Tj�(x)O1(x1):::On(xn) =nXi=1 Æ(4)(x � xi)qOiTO1(x1):::On(xn) : (6)One sees then that there are no 
onta
t terms with neutral operators. In parti
ular, sin
e in an Abelian theory the
urrent is neutral, there are no 
onta
t terms in the T -produ
ts of 
urrents,��Tj�(x)j�1 (x1):::j�n(xn) = 0 : (7)Going to momentum spa
e and taking the va
uum expe
tation value one gets the well-known equationp�hj�(p)j�1(p1):::j�n(pn)i = 0 : (8)Going from (7) to (8) involves a subtlety. The integrations in the 
oordinates implied by Fourier transformation pi
kup 
ontributions from the regions where two or more 
urrents are at the same point. In some 
ases the produ
t of
urrents at the same point requires some 
are, s
alar QED is a simple example (Se
.III C).B. Box diagramsThe lowest order diagrams4 in Fig. 1 
ontributing to the 
orrelation fun
tion A are fermioni
 boxes (one-loop). Athigh energies, they behave as log2 s [18℄, and therefore give a 
ontribution to the total 
ross se
tion whi
h de
reases as1=s. Radiative gluoni
 
orre
tions to these fermion loop graphs will not modify the power of the energy dependen
ebut provide double logarithmi
 
orre
tions. C. Two gluon ex
hangeAt the three-loop level a new 
lass of diagrams be
omes available, in whi
h purely gluoni
 t-
hannel states appear.As an example, two lowest order diagrams are shown in Fig. 2. At high energies the sum of all lowest order diagrams,4 We perform all 
omputations in the Feynman gauge.
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FIG. 2: An example of three-loop diagrams 
orresponding to two gluon ex
hange.A, behaves as �2ss, and therefore provides a 
ontribution to the total 
ross se
tion whi
h (up to powers of ln s) is
onstant in s. It is 
lear that at high energy, independently of how small �s is, these diagrams dominate with respe
tto the boxes and their radiative 
orre
tions. In the Regge limit the lowest order diagram, A(0), is purely imaginaryand takes the form A(0)(s; t) = (9)is Z d2k(2�)2k2(q � k)2�a1a2A (k; q � k)�a1a2B (k; q � k) :Here the so 
alled impa
t fa
tors � (Fig. 3) represent the 
oupling of the virtual photons to the two t-
hannel gluons.Their pre
ise de�nition is ��A�A0aa0A (k;k0) = 1s2 ��A�A(pA)���A0�A0 (pA0) p2�p2�0� Z ds12� ImA�A�A0��0
q!
q (s1; t) (10)with a similar de�nition for �B . Here ImA�A�A0��0
q!
q (s1; t) is the imaginary part of the amplitude for the s
attering ofthe virtual photon A with polarization �A and a gluon with momentum �k, Lorenz index �, and 
olor label a intothe photon A0 with polarization �A0 and a gluon with momentum k, Lorenz index �0, and 
olor label a0. s1 is thetotal energy squared of the photon-gluon system, and it is related to the Sudakov 
omponent � of k (whi
h in thisregime is the same as the one of k0) along the Sudakov ve
tor p2 by s1 = (pA � k)2 ' �Q2A � k2 � s� � �s�. Forea
h t-
hannel gluon, we have a fa
tor 2p2�p1�=s, sin
e, in the Regge limit, only a spe
i�
 
omponent of the gluonpolarization tensor 
ontributes to the leading power in s, namely,g�� = 2s�p2�p1� + p1�p2��+ g?�� ! 2sp2�p1� : (11)With these de�nitions the impa
t fa
tors �A;B are independent of s. They depend, in the leading approximation weare interested in, only upon the virtuality and the polarizations of the photons, the gluon 
olors, and the transversemomenta. D. All-order summation in the leading logarithmi
 approximationGeneralizing, in the leading logarithmi
 approximation, the lowest order diagrams to higher orders in �s, the twogluon ex
hange is repla
ed by the BFKL [3℄ Green's fun
tion:A(s; t) = is �A 
G(s)
 �B ; (12)where we have introdu
ed the symbol 
 to denote the transverse momentum 
onvolution of (9), in
luding the trans-verse gluon propagators and the 
ontra
tion of the 
olor indi
es. G(s) is the Green's fun
tion of the BFKL equation,a

ounting for the resummed LL 
orre
tions. The LLA sums the radiative 
orre
tions to A(0) in (9), and it is validin the region where �s � 1 and �s log s � 1. The BFKL Pomeron denotes the bound state formed by two intera
tingReggeized gluons with the quantum numbers of the va
uum (for more details see, for example, [2, 19, 20℄ and refer-en
es therein). In LLA, the BFKL Green's fun
tion 
ontains only gluoni
 
ontributions; fermioni
 
orre
tions appearonly in the next-to-leading 
orre
tion. As a 
onsequen
e of this, when turning to the supersymmetri
 extension ofQCD, the LLA of the BFKL Pomeron remains the same as in QCD. What needs to be studied is the role of the s
alardegrees of freedom in the box diagrams and in the impa
t fa
tors. This will be done in the following se
tion.
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FIG. 3: The one-loop diagrams 
ontributing to the impa
t fa
tor �.III. N = 4 SYM AND R-CURRENTSThe maximally supersymmetri
 non-Abelian gauge theory in four dimensions admits N = 4 supersymmetries.It 
ontains a ve
tor multiplet in the adjoint representation of the gauge group SU(N
). The theory enjoys aSUR(4) global symmetry, 
alled R-symmetry, whi
h transforms the di�erent super
harges. In terms of 
omponent�elds the theory has� 1 ve
tor �eld A�, s
alar of SUR(4);� 4 
hiral spinors �I in the fundamental representation of SUR(4);� 6 real s
alars XM in the ve
tor representation of SUR(4).Capital indi
es transform under the R-symmetry group. In parti
ular, A;B;C; ::: = 1; :::; 15 are indi
es of theadjoint representation, I; J;K; ::: = 1; :::; 4 transform under the fundamental, and M;N; ::: = 1; :::; 6 under the ve
torrepresentations of the R-symmetry. Small indi
es a; b; 
; ::: = 1; :::; N2
 � 1 are adjoint representation indi
es for thegauge group SU(N
). Sin
e all the �elds live in the adjoint representation of SU(N
), we 
an write � = �ab = �
(t
)ab,with (t
)ab = �ifa
b with fab
 being the SU(N
) stru
ture 
onstants, [ta; tb℄ = ifab
t
. Our 
onvention for thenormalization of the generators ta is su
h that tr(tatb) = Æab=2.The Lagrangian is [21℄ L = tr�� 12F��F�� +D�XMD�XM + 2i�I��D���I�2ig�I [�J ; XIJ ℄� 2ig��I [��J ; XIJ ℄+12g2[XM ; XN ℄[XM ; XN ℄�; (13)where XM and XIJ are related by the SU(4) �= SO(6) sigma symbols:XIJ = �12(�M )IJXM ; XIJ = 12(��1M )IJXM ; (14)with Tr(�M��1N ) = 4ÆMN , whi
h implies that XMXM = XIJXIJ . The 
ovariant derivative D� and the gauge �eldstrength tensor F�� are de�ned as usual by5D�� = ���� ig[A�;�℄ ; (15)F�� = ��A� � ��A� � ig[A�; A� ℄ : (16)5 With � we denote any �eld in the theory, X, or �.



6A. R-symmetry 
urrents and the four point fun
tionThe Lagrangian (13) is invariant under the global transformation (R-symmetry)( Æ�a�I = i�A�a�J (TA)JI ;Æ��a _�I = �i�A(TA)IJ ��a _�J ;ÆXaM = i�A(TA)MNXaN ; (17)where �A are small parameters, and TA are the SUR(4) generators in the appropriate representation.The Noether 
urrent of the symmetry isJ�AR = i �L�(���)�A� = tr�� ���TA��� iXTAD�X� ; (18)where �A� is obtained from (17) with the de�nition Æ� = i�A�A� for an in�nitesimal R-transformation.We are interested in evaluating the momentum spa
e four point fun
tion de�ned in analogy to (1),i(2�)4Æ(pA + pB � pA0 � pB0)AR(s; t)�A�B�A0�B0 =Z Yi d4xi e�ipA�xA�ipB�xB+ipA0 �xA0+ipB0 �xB0�hJA�AR (xA)JB�BR (xB)JA0�A0R (x0A)JB0�B0R (x0B)i (19)at weak 
oupling in the Regge limit (2). B. Ward identitiesFrom (4) and (5) we 
an 
ompute expli
itly the Ward identities satis�ed by (19). We only need to spe
ialize (5) tothe 
ase of interest: [JA0R (~x; t); JB�R (~y; t)℄ = Æ(3)(~x � ~y)(TA)BCJC�R (~x; t) : (20)The nonvanishing of the 
ommutators (20), whi
h is due to the fa
t that 
onserved 
urrents of a non-Abelian symmetryare 
harged, implies immediately that also the 
onta
t terms in the Ward identities do not vanish,��hJA�R (x)JA1�1R (x1):::JAn�nR (xn)i = nXi=1 Æ(4)(x� xi)�hJA1�1R (x1):::(TA)AiC JC�iR (x):::JAn�nR (xn)i : (21)Compared to the QCD 
ase, this introdu
es some additional 
ompli
ations. In parti
ular, the standard 
omputationa

ording to whi
h the four point fun
tion is �nite, despite n�aive power 
ounting whi
h suggests a logarithmi
divergen
e, does not apply anymore. Expli
it 
omputation shows that the UV poles still 
an
el, but now as a resultof the interplay between the s
alar and fermioni
 se
tors (Se
. III D). It is therefore a 
onsequen
e of supersymmetry.The 
hange of the Ward identities, at �rst sight, also a�e
ts our use of the polarization ve
tors. The simpli�
ationswhi
h lead from (A12-A17) to (A18-A22) were only possible be
ause of the simple Ward identities (8), and the more
ompli
ated identities (21) spoil this argument. If, however, instead of the full SUR(4) group we restri
t ourselves toa U(1) subgroup of SUR(4), we rea
h a situation similar to the QCD 
ase. Restri
tion to the U(1)6 means that, onthe RHS of (21), all (TA)AiC = �ifAAiC vanish, and one re
overs the same Ward identities without 
onta
t terms asin QCD: ��hJ�R(x)J�1R (x1):::J�nR (xn)i = 0 : (22)We therefore 
an pro
eed as before and, via Eq. (3), 
onveniently 
ompute proje
tions of AR onto spe
i�
 polarizationve
tors.6 Following [15℄ we 
hoose a parti
ular linear 
ombination of the three diagonal SUR(4) generators. In the following we will drop theSUR(4) label A in JR for the U(1) 
urrent.



7A(0)2��(x; y) = jµ(x) jν(y) :FIG. 4: Lowest order diagram 
ontributing to the two point fun
tion of the ele
tromagneti
 
urrent.C. An ex
ursion into s
alar QEDAs we mentioned already at the end of Se
. II A, working in Fourier spa
e requires some 
are with renormalization.The problem 
an be easily illustrated in the simple framework of s
alar QED. Let us 
onsider, as an example, thetwo point fun
tion A2 = hj�(x)j� (y)i of the ele
tromagneti
 
urrent j� = i('��'��'���')� 2eA�'�'. Again, U(1)gauge symmetry implies the Ward identity ��hj�(x)j�(y)i = 0. The 
omputation of the lowest order in perturbationtheory performed in the 
oordinate spa
e with x 6= y, would involve just one diagram, Fig. 4. Going to momentumspa
e, this diagram gives A(0)2��(p) = Z ddk(2�)d (2k � p)�(2k � p)�k2(k � p)2 : (23)One immediately sees that (23) does not satisfy the Ward identity,p�A(0)2��(p) = 2p� Z ddk(2�)d 1k2 : (24)The problem arises be
ause the produ
t of two 
urrents in A2 is not regular when x! y. As it is well known, su
h aprodu
t is de�ned by an operator produ
t expansion (OPE),j�(x)j�(y)�!x!yPiCi Oi(y)(x� y)�i ; (25)where Oi are operators with the same quantum numbers as j�j� . Equation (25) means that the produ
t of two
urrents at the same point mixes with the operators Oi. By dimensional analysis it is easy to spot the operator whi
h,in (25), gives the leading singularity:j�(x)j�(y) = C (g��'�')(y)(x� y)d +O�(x� y)�d+2� : (26)Note that su
h singular behavior is pre
isely on the boundary of 
onvergen
e of the Fourier integrals, and all the otherterms in the OPE 
ontain integrable singularities. It is therefore enough to regularize the divergen
e by removingthis leading term: j�(x)j�(y)! j�(x)j� (y)� C (g��'�')(y)(x� y)d : (27)In momentum spa
e the operator g��'�' leads, at the one-loop level, to an additional diagram..A(0)2�� [g��'�'℄(x; y) =
gµνφ

∗φ(p)= �Cg�� Z ddk(2�)d 1k2 : (28)Comparing (28) with (24) we 
an �x C = 2. With this we obtain, for A(0)2�� , the same result that one would getfrom 
omputing the one-loop 
orre
tion of the photon self energy hA�A�i in s
alar QED, whi
h indeed satis�es theWard identity p�A(0)2��(p) = 0.



8The same argument applies to the s
alar se
tor of the N = 4 theory. One has to add the appropriate regularizingdiagrams, whi
h ensure that the 
orrelation fun
tions are well de�ned and ful�ll the Ward identities in momentumspa
e.Before returning to the N = 4 theory, we observe that the QED 
omputation we just sket
hed would simplify
onsiderably if we were interested only in the imaginary part of A2. The term in (28) is real and does not 
ontribute,while the imaginary part of (23), whi
h is easily 
omputed by means of the 
utting rules, now ful�lls the Ward identity,thanks to the delta-fun
tions of the two on-shell s
alar propagators.D. One-loop diagramsAn important step in 
he
king the Regge fa
torization of the R-
urrent s
attering amplitude is to verify that thefermioni
 and s
alar one-loop diagrams are subleading at high energies. This task in
ludes the 
orre
t regularizationof ultraviolet divergen
ies. For 
orrelators of R-
urrents whi
h belong to a U(1) subgroup, we will show that this task
an be solved by applying the previous arguments. When 
onsidering a 
orrelation fun
tion with arbitrary SUR(4)labels the situation is not as simple as in QCD or s
alar QED. The usual argument for the absen
e of UV divergen
iesis based on the Ward identities (8) and does not work in the present 
ase. Nevertheless, by performing the expli
it
omputation, we 
an prove that the one-loop diagrams are UV �nite. It will be shown that, in this situation, itis supersymmetry that 
onstrains the UV divergen
e to be absent. More pre
isely, it is the interplay between thefermioni
 and s
alar se
tors whi
h leads to 
an
ellations.UV polesThe one-loop fermioni
 diagrams are the same boxes as in QCD, depi
ted in Fig. 5. In order to dis
uss their UV
A A

′

B B
′BF1

A A
′

B B
′BF2

A A
′

B B
′BF3FIG. 5: One-loop diagrams with fermionsbehavior, we regularize the IR region by giving the fermions a small mass m. The UV singularities of the diagramsBF1� 3 
an be easily 
omputed:BF1UV = 23 i�2��m�2�(2�)4 �(�) Tr�TATA0TB0TB� (29)��g�A�A0 g�B�B0 + g�A�Bg�A0�B0 � 2g�A�B0 g�A0�B� :The 
ontributions BF2UV and BF3UV 
an be obtained from (29) by permuting indi
es. It is immediately 
lear thattheir sum does not vanish unless we restri
t ourselves to the U(1) subgroup, and all the SUR(4) tra
es are the same.In this 
ase the 
an
ellation works pre
isely as in QCD.There are 12 one-loop s
alar diagrams (in
luding those whi
h are required for regularization), and they are alldepi
ted in Fig. 6. From the UV region of these diagrams one obtains
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′

BS6
A

′
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′
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′
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′
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′
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A
′
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′
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′

AB
′

BS12FIG. 6: One-loop diagrams with s
alarsBS1UV = 23 i�2��m�2�(2�)4 �(�) Tr�TATA0TB0TB� (30)��g�A�A0 g�B�B0 + g�A�Bg�A0�B0 + g�A�B0 g�A0�B� ;BS4UV = �2 i�2��m�2�(2�)4 �(�) (31)�Tr�TATA0 + TA0TA2 TB0TB�g�A�A0 g�B�B0 ;BS10UV = 2 i�2��m�2�(2�)4 �(�) (32)�Tr�TATA0 + TA0TA2 TBTB0 + TB0TB2 ��g�A�A0 g�B�B0 :All the other diagrams in Fig. 6 
an be obtained by permutations of the indi
es.When we restri
t ourselves to a U(1) subgroup of SUR(4) (whi
h also ensures (22) to hold) all the tra
es in (29-32)
oin
ide, and the UV poles in the s
alar se
tor 
an
el among themselves.In the 
ase of di�erent SUR(4) generators in (29)-(32) the 
an
ellation of the UV poles does not work for the s
alarand fermioni
 se
tors separately. But a straightforward 
omputation shows that the sum of the divergent pie
es of alls
alar diagrams, BS1� 12UV , is just the opposite of the sum of the fermioni
 divergen
ies, BF1� 3UV , and thereforethe full one-loop fun
tion is UV �nite. This 
an
ellation is a result of the supersymmetry.High energy behaviorLet us now turn to the 
al
ulation of the high energy behavior. From now on, we restri
t the R-
urrents to a U(1)subgroup. The 
omputation of the fermion boxes at high energy then is just the same as in QCD. We brie
y re
all theargument of [22℄ (see also [18℄), whi
h shows how a double log emerges. This will also help to prepare the subsequent
omputation of the s
alar diagrams.The double log arises be
ause, in the high energy limit, the fermion numerator produ
es a term proportional tosk2. More pre
isely, the region of integration where the double log arises is Q2i ; q2 � k2 � �s; �s and xi � �; � � 1,



10with xi = Q2i =s. In this region the integral is7BF1L = � s2(2�)4 Z d� Z d� Z d2k� s(s�� � (k � q)2 + i�)(�s� + i�)(s�+ i�) ; (33)where one of the propagators (k2) has been 
an
eled by the k2 in the numerator. Closing the ��
ontour below wepi
k up the pole in the �rst propagator, and after a shift in k we obtainBF1L = � i2(2�)3 Z 1x d�� Z 1x d�� Z d2k Æ(s�� � k2) ; (34)where x = Q2=s ' xi. Performing the angular integration and then the k2 integral via the delta-fun
tion we arrive atBF1L = � i4(2�)2 Z 1x d�� Z 1x=� d�� = � i8(2�)2 log2 sQ2 ; (35)whi
h 
on�rms our previous 
laim about the double log behavior of the fermion box.Now we fo
us on the s
alar diagram BS1,BS1 = Z d4k(2�)4 (2k � pA)�A(2k + pB)�Bk2(k � q)2� (2k � q � pA)�A0 (2k � q + pB)�B0(k � pA)2(k + pB)2 : (36)Proje
ting �rst onto longitudinal polarizations and keeping only the leading 
ontribution, we obtainBS1LLLLL = QAQA0QBQB0 Z d4k(2�)4� 1k2(k � q)2(k � pA)2(k + pB)2 ; (37)whi
h means that the longitudinal proje
tion redu
es simply to the standard s
alar integral we would en
ounter in amassless �3 theory. It behaves again as a double log, but now the additional logarithm arises in the infrared regionk ' 0 due to the vanishing mass of the �elds. Let us 
onsider indeed the region of integration xi � �; � � 1 (whi
hwe have already used in order to get to (37)) but k2 � Q2i ; q2. There (37) be
omesBS1LLLLL = sQAQA0QBQB02(2�)4 Z d� Z d� Z d2k� 1(s�� � k2 + i�)(�q2)(�s� + i�)(s�) : (38)Again we 
lose the ��
ontour below and pi
k up the pole from the �rst propagator, whi
h is now k2BS1LLLLL = � iQAQA0QBQB04(2�)2sq2� Z 1x d�� Z 1x d�� Zk2�Q2 dk2Æ(s�� � k2)= � iQAQA0QBQB04(2�)2sq2 Z 1x d�� Z x=�x d��' i8(2�)2 Q2s log2 sQ2 : (39)7 The subs
ript L means that we are keeping only the leading term in energy, and we drop the tra
e over the SUR(4) stru
ture 
onstant,e.g. Tr(TATATATA).



11Let us 
onsider now transverse polarization. Proje
ting (36) onto the transverse polarization (A20-A22) and keepingonly leading terms in the numerator, we obtainBS1TTTTL = 16 Z d4k k � �hAk � �hA0 k � �hBk � �hB0k2(k � q)2(k � pA)2(k + pB)2= �ÆhAhA0 ÆhBhB0 + ÆhAhBÆhA0hB0 + ÆhAhB0 ÆhA0hB�� s3(2�)4 Z d� Z d� Z d2k� s�� � k2(s�� � (k � q)2 + i�)(�s� + i�)(s�) : (40)As we did in (33) we 
lose the ��
ontour below and get the residue from the pole in the �rst propagator, whi
h, aftera shift in k, gives BS1TTTTL =�ÆhAhA0 ÆhBhB0 + ÆhAhBÆhA0hB0 + ÆhAhB0 ÆhA0hB�� i3(2�)3s Z d�� Z d�� Z d2k�(s�� � k2 � q2 � 2k � q)Æ(s�� � k2) : (41)The s
alar produ
t vanishes after angular integration, the 
ombination s���k2 is set to 0 through the delta-fun
tion,and the only term left gives BS1TTTTL '��ÆhAhA0 ÆhBhB0 + ÆhAhBÆhA0hB0 + ÆhAhB0 ÆhA0hB�� i6(2�)2 Q2s log2 sQ2 : (42)Similar 
omputations 
an be performed for all the other diagrams in Fig. 6, and the results are similar to the onejust outlined. This 
ompletes our derivation of the leading high energy behavior of all the one-loop diagrams of Fig.5 and 6.We would like to stress the importan
e of the region k2 � s: at �rst sight, the numerators in (33) and (39) seemto lead to an even stronger behavior than the one we have 
omputed. However, in the limit of large s, this region
oin
ides with the UV region whi
h has been dis
ussed at the beginning of this se
tion. These leading terms 
an
elwhen all the diagrams are summed over, in the same fashion as the 
an
ellation of the UV poles dis
ussed earlier.As we will see in the next se
tion, the high energy behavior is dominated by gluon ex
hange, and the fermion andthe s
alar box diagrams provide subleading 
orre
tions. This is to be expe
ted sin
e, on
e the UV �niteness of theone-loop diagrams has been veri�ed, we 
an apply the spin argument, a

ording to whi
h the ex
hange of two �eldquanta of spin s leads, in the s
attering amplitude, to the high energy behavior � s2s�1. This implies that also higherorder diagrams in whi
h the box diagrams in Fig. 5 are \dressed", for examples, by gluon rungs, will have the samepower behavior in s, modi�ed by powers of ln2 s (details 
an be found in [18℄). A similar 
onsideration applies todiagrams obtained by \dressing" the s
alar loops. For the leading high energy behavior we are thus left with gluonex
hanges: using the spin argument one expe
ts, for the s
attering amplitude, the high energy behavior� s.E. Two gluon ex
hangeAs it was the 
ase in QCD, gluon ex
hange starts at three loops. In Fig. 7 we depi
t one of the lowest orderdiagrams 
ontributing to the two gluon ex
hange, in order to set the notation for the momenta. Again, we 
onsiderthe imaginary part (or, equivalently, the dis
ontinuity in s). Then we have, in all diagrams, four delta-fun
tionsimposing the mass-shell 
ondition for the intermediate parti
les (either s
alars or fermions). Two delta-fun
tions areused to �x the integrations over the longitudinal 
omponents of k (the integral in the subenergy s1 in (10)), and theother two �x one of the two longitudinal integrations inside ea
h of the impa
t fa
tors. The LL 
ontribution arisesfrom the Regge kinemati
s, in whi
h � is negligible 
ompared to �1, and � is negligible 
ompared to �2. Thereforethe subdiagrams belonging to the upper impa
t fa
tor (s
alar loop in Fig. 7) are independent of �, and those of the
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J
BµB

R (pB)

J
AµA

R (pA)

J
B′µB′

R (pB′)

J
A′µA′

R (pA′)

l1 − pA l1 − k − pA + q

l1 l1 − k

k q − k

l2 l2 + k

l2 − pB l2 + k − q − pBFIG. 7: One of the diagrams 
ontributing to the two gluon ex
hange in N = 4.lower impa
t fa
tor (the fermion loop) are independent of �. This is the me
hanism behind the fa
torization of (9).In the Regge kinemati
s also the longitudinal 
omponents of the transverse momentum q are small, �q ; �q � 1=s, anddropping them in
uen
es only terms suppressed by powers of s.It is 
onvenient to introdu
e the notation���0aa0 = N
�sÆaa0 Z 10 d�l Z d2l(2�)2Pi���0i (�l; l; q) ; (43)where �l is the longitudinal 
omponent of the (s
alar or fermion) loop integral along the in
oming momentum pA.The term ���0i has to be 
omputed from the diagram i in Figs. 8 and 9. The fa
tor N
 is present be
ause both s
alarsand fermions belong to the adjoint representation of the gauge group, so they all givefa
1
2f b
2
1 = �N
Æab : (44)An overall fa
tor 1=2 arises from the 
utting rules, 2i Im(A) = � =A.The 
omputation of the fermioni
 
omponent (see Fig. 8) is very similar to the QCD 
ase. The �rst di�eren
e is
F1 F2 F3 F4FIG. 8: The fermion diagrams for the impa
t fa
tors.due to the fa
t that in N = 4 there are 4 Weyl fermions instead of nf Dira
 ones. The 
ounting of the number of�elds weighted by the right R-
harge is performed by the tra
e over the two generators of the SUR(4) group,Tr4 �TATA� = 12 ; (45)(there is no sum over A here), taken in the appropriate representation (fundamental for the fermions and ve
torrepresentation for the s
alars).The 
hiral nature of the �elds introdu
es additional terms due to a Levi-Civita tensor arising from spinor tra
es
ontaining a 
hiral proje
tor. All these terms 
an
el in the sum of the four diagrams F1� 4. The 
omplete list of the�i is given in the appendix A 2.The diagrams needed for the 
omputation of the s
alar 
omponent of the impa
t fa
tor are depi
ted in Fig. 9.The tra
e over the SUR(4) indi
es now gives Tr6 �TATA� = 1 : (46)
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S1 S2 S3 S4
S5 S6 S7 S8

S9FIG. 9: The s
alar diagrams for the impa
t fa
tors.Sin
e the s
alars 
rossing the 
ut are identi
al parti
les there is a symmetry fa
tor 1=2.At �nite energies, all the diagrams S1�9 in Fig. 9 are needed in order to satisfy the Ward identities. At high energies,however, it turns out that the diagrams S5� 9 are suppressed8. As an example, let us 
onsider the diagram S5. Thegluon polarization tensor is 
ontra
ted with the polarization ve
tor of the in
oming 
urrent, whi
h is proportional top2. Then, out of the three parts of the gluon polarization tensor (
f. 11: the index � belongs to the upper end of thegluon, � to the lower end): 2p2�p1�s + 2p1�p2�s + g?�� ; (47)only the se
ond term survives be
ause p22 = p�2g?�� = 0. Note that in the 'normal' fermioni
 
ase it is the �rst termthat gives the leading behavior in the Regge asymptoti
. One sees indeed that the 
ontra
tion of the loop integralnumerator with p1 provides one power of s less than the leading terms of diagrams S1� 4. An analogous dis
ussionapplies to the 
ontra
tion of p2 with the loop below, and again there is a suppression of a power of s. Eventually onesees that a diagram involving S5 is 1=s2 suppressed with respe
t to the leading term. The same argument applies tothe other diagrams S6 � 8, while for S9 the suppression is even stronger, 1=s4, be
ause the same e�e
t takes pla
efor both gluons. We are thus left with the diagrams S1� 4, whi
h, at high energies, give the full s
alar 
omponent ofthe impa
t fa
tor. The 
omputation mimi
s 
losely the fermioni
 one, and details 
an be found in appendix A 2.8 For simpli
ity, we dis
uss only the 
ase of longitudinal polarization.



14F. The full impa
t fa
torsColle
ting together all the terms one obtains the full impa
t fa
tors,�LL0aa0A = Æaa0N
�s2 QAQA0Z 10 d�Z d2l(2�)2�(1� �)�� 1D1 � 1D2�� 1D01 � 1D02�; (48a)�Lh0aa0A = 0 ; (48b)�hh0aa0A = Æaa0Æhh0N
�s2 Z 10 d�Z d2l(2�)2��N 1D1 � N 2D2 � � �N 01D01 � N 02D02 � ; (48
)with Di and N i de�ned byN1 = l ;N 01 = l� (1� �)q ;D1 = N21 + �(1� �)Q2A ;D01 = N 021 + �(1� �)Q2A0 ;N2 = l� k ;N 02 = l� k + �q ;D2 = N22 + �(1� �)Q2A ;D02 = N 022 + �(1� �)Q2A0 :Comparing (48a-
) with the QCD result of [23℄ one observes a striking di�eren
e: in 
ontrast to the QCD resultswhere heli
ity 
onservation holds only in the forward dire
tion, at t = 0, now for arbitrary t = �q2 all the o�-diagonal terms in the polarization indi
es vanish, as the result of 
an
ellations between the s
alar and fermion loops,���0 / Æ��0 . This is a 
onsequen
e of supersymmetry.Higher order diagrams with gluon ex
hange, in the LL approximation, lead to the QCD BFKL Pomeron des
ribedin Se
. II D. This 
oin
iden
e, at high energies, of nonsupersymmetri
 Yang-Mills theory and the supersymmetri
extension is an artifa
t of the leading logarithmi
 approximation, whi
h only depends upon the spin-1 gauge bosons,and not on s
alars or fermions. The only pla
e where, in LL, these superpartners appear are the impa
t fa
torsgiven now by (48a-
). We have therefore 
ompleted our leading logarithmi
 analysis by proving that the 
orrelationfun
tion (19) satis�es Regge fa
torization, and we have 
omputed those buildings blo
ks whi
h are sensitive to thesupersymmetri
 extension of QCD. IV. OUTLOOKThe AdS/CFT 
orresponden
e [10℄ 
onje
tures that N = 4 SYM theory is equivalent to Type IIB superstringtheory on AdS5�S5. The 
onne
tion between these apparently di�erent theories is a weak-strong duality: it 
onne
tsthe weak 
oupling limit of one side with the strong 
oupling limit on the other side. This opens up the possibilityto study aspe
ts of the gauge theory at strong 
oupling, where traditional tools are unappli
able. In parti
ular, we
an address the 
omputation of the R-
urrents 
orrelation fun
tion (19) in the large N
 and large 't Hooft 
oupling� = g2YMN
 limit. In this limit the relevant string theory is des
ribed by the S5 
ompa
ti�
ation of type IIBsupergravity in ten dimensions. This redu
tion gives rise to N = 8, D = 5 supergravity, with SO(6) Yang-Mills gaugegroup [24, 25, 26, 27, 28℄.The 
omplete detailed redu
tion is a problem of great 
omplexity. Fortunately, there exist 
onsistent trun
ations ofthe full theory whi
h are mu
h simpler than the full theory. In [29℄ it was shown that there is a very simple trun
ation



15whi
h 
ontains only a U(1) gauge �eld and the graviton. Its a
tion readse�1L5 = (50)� 12�25�R+ 12g2 � 14F 2 + 112p3������F��F��A�� :A

ording to the AdS/CFT di
tionary, ea
h gauge invariant operator in the gauge theory 
orresponds to some bulk�eld in the supergravity theory. The generating fun
tional for the 
onne
ted 
orrelation fun
tions W [�℄ of the gaugetheory, � being the sour
e for some operator O, is identi�ed with the on-shell a
tion Son-shell of the gravity theory,with the boundary 
onditions '(0) for the bulk �eld ' dual to O playing the role of its sour
e �:W ['(0)℄ = �Son-shell['(0)℄ : (51)The �elds dual to the R-
urrents of N = 4 SYM are the gauge �elds of the supergravity theory. The trun
ation(50) 
ontains only one of the 15 gauge �elds of the full theory, in the same way as our 
omputation in this paper
on
erns only one R-
urrent of the U(1) subgroup out of the 15 asso
iated with the SUR(4) group. The a
tion (50)is therefore suÆ
ient for the purpose of 
omputing the strong 
oupling version of our result (48a-
).The supergravity 
omputation requires the evaluation of the Witten diagrams 
orresponding to some sour
es forthe gauge �eld A� on the boundary of AdS5. Diagrams inferred from the a
tion (50) are depi
ted in Fig. 10. Su
h
FIG. 10: Witten diagrams for the 
omputation of the R-
urrent four point fun
tion at strong 
oupling in the trun
ated theory.The double wavy line in the third graph represents the graviton ex
hange.
omputation involves the boundary-to-bulk gauge boson propagator and the bulk-to-bulk propagators for both thegauge �eld and the graviton. They are well known in the 
oordinate spa
e [30℄, and have been extensively used in thepast, in order to 
ompute various 
orrelation fun
tions (see for example [31℄ and referen
es therein). Nevertheless the
omputation of a four point 
orrelation fun
tion of R-
urrents is still missing in the literature. We intend to addressthis 
omputation in the future, not in its full generality but in the Regge limit, where we expe
t some simpli�
ationsto take pla
e.Returning to the gauge theory side, our analysis of the supersymmetri
 R-
urrent impa
t fa
tors lays the groundfor addressing another aspe
t of the duality 
onje
ture. Several years ago it has been shown that the BKP evolutionequations of t-
hannel states 
onsisting of n Reggeized gluons, in the limit of large N
, are integrable [7, 8℄. Onthe gauge theory side, the four gluon state appears in the high energy limit of the six point 
orrelation fun
tion ofR-
urrents (in QCD, the analogous pro
ess would be the s
attering of a virtual photon on two heavy onium states).A study of this 
orrelation fun
tion, both on the weak 
oupling and on the strong 
oupling side, therefore will allowus to tra
e the role of this remarkable feature of the Regge limit.A
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16APPENDIX A1. Sudakov de
omposition and polarization ve
torsWe will work in the frame where pA and p0A (pB and p0B) have a big + (�) 
omponent, with p� = p0 � p3. In thisbasis the nonvanishing metri
 
oeÆ
ients are g+� = g�+ = 2 and g11 = g22 = 1, while the Levi-Civita tensor is fullyantisymmetri
 with �+�12 = �1=2. In the 
.m. we have9pA = �ps;�Q2Aps ; 0� ; pB = �� Q2Bps ;ps; 0� : (A1)We use the Sudakov representation for momenta. Let us de�ne the two lightlike (up to O(1=s) terms) ve
torsp1 = pA + xApB , p2 = pB + xBpA where xA;B = Q2A;B=2pA � pB . Then an arbitrary four-momentum k will bede
omposed into its proje
tions along p1;2 and a transverse 
omponent:k = �kp1 + �kp2 + k?; n �k = 2p2 � k=s�k = 2p1 � k=s: (A2)The Ja
obian is d4k = s=2d�kd�kd2k : (A3)The mass-shell 
onditions for the outgoing momenta �x the longitudinal 
omponents of the momentum transferred qto �q = �Q2B0 �Q2B + q2?s ; �q = Q2A0 �Q2A + q2?s ; (A4)and the external momenta expressed in Sudakov representation arepA = p1 � Q2As p2 ; p0A = p1 � Q2A0+q2?s p2 � q? ;pB = �Q2Bs p1 + p2 ; p0B = �Q2B0+q2?s p1 + p2 + q? : (A5)We now 
ompute the polarization ve
tors of the external photons. Virtual photons have 3 degrees of freedom, onelongitudinal (L) and two transverse (�) polarizations. The absen
e of a se
ond longitudinal polarization translatesfor the amplitude (1) into the 
onstraint (8) provided by gauge invarian
e. Be
ause of this 
onstraint, the threepolarization ve
tors �L;�� (p) represent, for an arbitrary 
hoi
e of the momentum p, a 
omplete basis of the spa
ewhere the 
urrent j�(p) belongs to j�(p) 2 Span��(L;�)� (p)	 ; (A6)They 
an be 
hosen to be orthonormal, �(i)� (p)�(j)�(p)� = �Æij ; (A7)and to satisfy the 
ompleteness relation g�� � p�p�p2 = Xi=L;� �(i)�(p)�(i)�(p)� : (A8)We 
hoose �L� (p) su
h that its three-dimensional part is proportional to the three-momentum ~p (longitudinal polar-ization). The two other ve
tors (heli
ity �) are 
hosen to be transverse. In the Sudakov representation (keeping onlythe leading term in s for ea
h 
omponent) we get�(L)(p) =iQh��+ 2Q2s(�+ �)2 ��p1 + �� + 2Q2s(�+ �)2��p2+�1� 2Q2s(�+ �)2 �p?i ; (A9)�(h)(p) = �(h)? + 2�(h)? � ps(�� �)�p1 � p2 + p?�� �� ; (A10)9 Only the leading term in s is kept for ea
h 
omponent.



17where we have de�ned �(�)? = 1p2(0; 1;�i; 0) : (A11)The expli
it expressions for the 
ase p = pA; pA0 ; pB ; pB0 
an be easily worked out from (A5):�(L)(pA) = iQA�p1 + Q2As p2� ; (A12)�(L)(pB) = iQB �Q2Bs p1 + p2� ; (A13)�(L)(pA0) = iQA0 �p1 + Q2A0 � q2?s p2 � q?�; (A14)�(L)(pB0) = iQB0 �Q2B0 � q2?s p1 + p2 + q?�; (A15)�(h)(pA;B) = �(h)? ; (A16)�(h)(pA0;B0) = �(h)? � 2�(h)? � qs (p1 � p2 � q?) : (A17)Be
ause of the Ward identities (8) and (22) one is allowed to shift the polarization ve
tors �(i)� (p) by a four ve
torproportional to p itself. It is 
onvenient to simplify the polarization ve
tors as follows:�(L)(pA;A0) = 2QA;A0s p2 ; (A18)�(L)(pB;B0) = 2QB;B0s p1 ; (A19)�(h)(pA;B) = �(h)? ; (A20)�(h)(pA0) = �(h)? + 2�(h)? � qs p2 ; (A21)�(h)(pB0) = �(h)? � 2�(h)? � qs p1 : (A22)2. Complete list of the �ii0S;FlIn this appendix we give, for all possible polarizations �; �0 = L;�, the full list of the fun
tions ���0i for the eightdiagrams of Figs. 8 (i = F1� 4) and 9 (i = S1� 4). We will make use of the de�nitions for Di and Ni, given after(48). Longitudinal-Longitudinal:�LL0F1 = 2QAQA0 �2(1� �)2D1D01 ;�LL0F2 = �2QAQA0 �2(1� �)2D1D02 ;�LL0F3 = �2QAQA0 �2(1� �)2D2D01 ;�LL0F4 = 2QAQA0 �2(1� �)2D2D02 ; (A23)



18�LL0S1 = 2QAQA0 �(1� �)(1=2� �)2D1D01 ;�LL0S2 = �2QAQA0 �(1� �)(1=2� �)2D1D02 ;�LL0S3 = �2QAQA0 �(1� �)(1=2� �)2D2D01 ;�LL0S4 = 2QAQA0 �(1� �)(1=2� �)2D2D02 : (A24)Longitudinal-Transverse:�Lh0F1 = QA�(1� �)(1� 2�� h0i)D1D01 N 01 � �(h0)� ;�Lh0F2 = �QA�(1� �)(1� 2�� h0i)D1D02 N 02 � �(h0)� ;�Lh0F3 = �QA�(1� �)(1� 2�� h0i)D2D01 N 01 � �(h0)� ;�Lh0F4 = QA�(1� �)(1� 2�� h0i)D2D02 N 01 � �(h0)� ; (A25)�Lh0S1 = �QA�(1� �)(1� 2�)D1D01 N 01 � �(h0)� ;�Lh0S2 = QA�(1� �)(1� 2�)D1D02 N 02 � �(h0)� ;�Lh0S3 = QA�(1� �)(1� 2�)D2D01 N 01 � �(h0)� ;�Lh0S4 = �QA�(1� �)(1� 2�)D2D02 N 02 � �(h0)� : (A26)Sin
e under the transformations l! �l+k and �! 1��, N2 ! �N1 and N 02 ! �N 01 in the integrand in (43), theterms proportional to the heli
ity h0 in the fermioni
 parts 
an
el between �Lh0F1 ; �Lh0F4 and �Lh0F2 ; �Lh0F3 . The remainingfermioni
 pie
es 
an
el 
ompletely against the 
orresponding s
alar terms.Transverse-Longitudinal:�hLF1 = QA0 �(1� �)(1� 2�� hi)D1D01 �(h) �N1 ;�hLF2 = �QA0 �(1� �)(1� 2�� hi)D1D02 �(h) �N 1 ;�hLF3 = �QA0 �(1� �)(1� 2�� hi)D2D01 �(h) �N 2 ;�hLF4 = QA0 �(1� �)(1� 2�� hi)D2D02 �(h) �N2 ; (A27)



19�hLS1 = �QA0 �(1� �)(1� 2�)D1D01 �(h) �N 1 ;�hLS2 = QA0 �(1� �)(1� 2�)D1D02 �(h) �N1 ;�hLS3 = QA0 �(1� �)(1� 2�)D2D01 �(h) �N2 ;�hLS4 = �QA0 �(1� �)(1� 2�)D2D02 �(h) �N 2 : (A28)Here we have the same 
an
ellations as in the longitudinal-transverse 
ase.Transverse-Transverse:�hh0F1 = 12D1D01 h(1� hi�) �(h) � �(h0)� N 1 �N 01+�� 4�(1� �) + i(h� h0)(1� �)���(h) �N 1 N 01 � �(h0)��(1� hi�)��(h) � l (1� �)q � �(h0)���(h) � (1� �)q l � �(h0)��i ;�hh0F2 = � 12D1D02 h�(h) � �(h0)� N1 �N 02+�� 4�(1� �) + i(h� h0)(1� 2�)���(h) �N 1 N 02 � �(h0)���(h) � l (k � �q) � �(h0)�+�(h) � (k � �q) l � �(h0)�i ;�hh0F3 = � 12D2D01 h�(h) � �(h0)� N2 �N 01+�� 4�(1� �) + i(h� h0)(1� 2�)���(h) �N 2 N 01 � �(h0)�+�(h) � (l� k) (k � (1� �)q) � �(h0)���(h) � (k � (1� �)q) (l� k) � �(h0)�i ;�hh0F4 = 12D2D02 h(1 + hi(1� �)) �(h) � �(h0)� N2 �N 02+�� 4�(1� �)� i(h� h0)(1� �)���(h) �N 2 N 02 � �(h0)�+(1 + hi(1� �))��(h) � (l� k) �q � �(h0)���(h) � �q (l � k) � �(h0)��i ; (A29)



20�hh0S1 = 2�(1� �)D1D01 �(h) �N1 N 01 � �(h0)� ;�hh0S2 = �2�(1� �)D1D02 �(h) �N 1 N 02 � �(h0)� ;�hh0S3 = �2�(1� �)D2D01 �(h) �N 2 N 01 � �(h0)� ;�hh0S4 = 2�(1� �)D2D02 �(h) �N2 N 02 � �(h0)� : (A30)Here the 
an
ellations are a bit more involved. In the fermioni
 se
tor of ea
h �, the two terms in the last line
an
el ea
h other due to the angular integration in the transverse momenta l. In order to see this one 
ombinesthe two denominators introdu
ing a Feynman parameter and then performs a shift in the l integration. The shiftin the numerator 
an
els between the two terms, and what is left depends upon the angle in the transverse planeonly through the 
os(�) in the s
alar produ
t with the polarization ve
tors in the numerator; therefore the � integralvanishes.From what is left, all the terms proportional to the heli
ities h; h0 
an
el in the same way as they did in the previous
ase: between �hh0F1 ; �hh0F4 and �hh0F2 ; �hh0F3 after the 
hange of variable l! �l+ k and �! 1� �. Moreover, the termsfrom the s
alar se
tor 
an
el exa
tly with the 
orresponding terms in the fermioni
 se
tor. Eventually only a singleterm proportional to �(h) � �(h0)� is left for ea
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