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DESY 08-044Four point funtion of R-urrents in N = 4 SYMin the Regge limit at weak ouplingJ. Bartels,� A.-M. Mishler,y and M. SalvadorezI I. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyWe ompute, in N = 4 super Yang-Mills theory, the four point orrelation funtion of R-urrentsin the Regge limit in the leading logarithmi approximation at weak oupling. Suh a orrelator isthe losest analog to photon-photon sattering within QCD, and there is a well-de�ned proedureto perform the analogous omputation at strong oupling via the AdS/CFT orrespondene. Themain result of this paper is, on the gauge theory side, the proof of Regge fatorization and theexpliit omputation of the R-urrent impat fators.Keywords: SYM, Regge Limit I. INTRODUCTIONThere are many aspets of QCD that are still laking a satisfying understanding from �rst priniples. One is thebehavior in the Regge limit, where the theory is expeted to be better formulated in terms of new e�etive �elds, theReggeized partiles [1, 2℄. One of the entral building bloks of this Reggeon �eld theory is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron whih omes as a bound state of two Reggeized gluons with vauum quantum numbers [3℄.While the original alulations were done in the leading logarithmi approximation (LLA), the requirement of highpreision has led to the omputation of subleading orretions (NLO orretions) to the BFKL equation [4, 5℄, andthey have been found to be large. While, for �nite values of N further steps beyond NLO will extend beyond theladder struture and hene open the full omplexity of Reggeon �eld theory, there is evidene that the large-N limitsuppresses the transition from two to four Reggeized gluons and thus allows, also beyond the NLO orretions, tostay within the ladder approximation.Beside its phenomenologial relevane, high energy physis has been a proli� soure of theoretial ues. In the earlydays, the proposal by Veneziano [6℄ of rossing-symmetri, Regge behaved amplitude turned out to be a key point forthe beginning of the string theory era. Later on, in the early nineties, when studying unitarity orretions to the BFKLPomeron, Lipatov [7, 8℄ found the �rst ourrene of integrable strutures in four dimensional quantum �eld theories:In the large-N limit, the generalization of the BFKL evolution equation, the Bartels-Kwieinski-Praszalowiz (BKP)evolution equations [9℄ for the n gluon state, were found to be integrable.Reently, the onnetion between quantum �eld theory and string theory was revived by the advent of the AdS/CFTorrespondene [10℄. This onjetured onnetion between Yang-Mills theories (the maximally supersymmetri versionof QCD, N = 4 super Yang-Mills theory (SYM), at large N, being the most attrative example) and some stringtheory (type IIB on AdS5�S5 for the ase just mentioned) has motivated, among other diretions of interest, also theanalysis of the high energy limit in supersymmetri theories, in partiular the BFKL Pomeron [11℄ and the vauumsingularity [12℄.On the gauge theory side, the most reliable environment of investigating the Pomeron is provided by the satteringof eletromagneti urrents, e.g., the total ross setion of the sattering of two virtual photons [13, 14℄. In order to beable to de�ne orrelation funtions that are de�ned on both the gauge theory and the string theory side, it has beensuggested [15℄ to use, as a substitute of the eletromagneti urrent, the R-urrents belonging to the global SUR(4)of the N = 4 SYM theory. To be more preise, one piks a U(1) subgroup of the SUR(4) group. It therefore seemsnatural to investigate four point orrelators (and even n point orrelators with n > 4) of these R-urrent operators,representing orrelation funtions whih are well-de�ned both on the gauge theory and the string theory side. Whereastwo point and three point orrelators of the R-urrent operators have been studied before [16℄, an analysis of fourpoint orrelation funtions has not yet been performed.In this paper we address, within N = 4 SYM, the Regge limit of R-urrent operators, beginning with the gaugetheory side. In QCD it is well known that, in the high energy Regge limit, the four point amplitude of the eletro-�Eletroni address: bartels�mail.desy.deyEletroni address: anna-maria.mishler�desy.dezEletroni address: mihele.salvadore�gmail.om
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2magneti urrent fatorizes into impat fators of the (virtual) photon and the BFKL Green's funtion that desribesthe energy dependene. In this paper, as a start, we will verify that this expetation remains valid also for the super-symmetri extension, where salar �elds have to be inluded, and the fermions belong to the adjoint representation ofthe gauge group. Sine the R-urrents are non-Abelian, their assoiated Ward identities are more ompliated then inQED, and this auses some subtleties in the treatment of UV divergenies. We investigate the one-loop box diagramsand ompute, in the leading logarithmi representation, the impat fators of the R-urrent1. Sine, in the leadinglogarithmi approximation, the BFKL Green's funtion remains the same as in the nonsupersymmetri ase, we thus�nd the supersymmetri analog of the �� total ross setion disussed in QCD. In a forthoming paper we will turnto the dual analog on the string theory side where the graviton is expeted to play the dominant role.II. REVIEW OF PHOTON-PHOTON SCATTERING IN QCDThe most onvenient way of addressing Regge dynamis in QCD is the study of the elasti sattering of two highlyvirtual photons. The large virtuality of the external photons provides hard sales that allow us to use perturbationtheory. One fouses on the omputation of the leading order in the eletri harge �, at whih eah photon splits intoa quark-antiquark pair, but the order in the strong oupling onstant �s an be arbitrary high. The deay of thephoton is mediated by the eletromagneti urrent j� assoiated with the U(1) gauge symmetry of QED. Thereforethe omputation redues to evaluating the four point orrelation funtion of this urrent. In momentum spae itreads2 i(2�)4Æ(4)(pA + pB � pA0 � pB0)A(s; t)�A�B�A0�B0 =Z Yi d4xi e�ipA�xA�ipB �xB+ipA0 �xA0+ipB0 �xB0�hj�A(xA)j�B (xB)j�A0 (x0A)j�B0 (x0B)i ; (1)where A depends upon the external momenta only through the usual Mandelstam variables3 s = (pA + pB)2 > 0,t = q2 = (pA � p0A)2 ' �q2 < 0, and the virtualities of the urrent momenta Q2i = �p2i > 0. The Regge limit isde�ned as s >> jtj; Q2i : (2)We will perform the omputation using the Sudakov deomposition of momenta disussed in the appendix. It isonvenient to ompute the amplitude (1) in terms of its projetions onto the polarization vetors of the externalphotons. The reader is referred to the appendix A 1 for the expliit de�nition of the polarization vetors in the Reggelimit. One they are de�ned, we an use their ompleteness (A8) in order to deompose the orrelation funtion (1)as A(s; t)�A�B�A0�B0 =X�i ��A�A(pA)���B�B (pB)���A0�A0 (pA0)��B0�B0 (pB0)�h�A�B jAj�A0�B0i ; �i = L;� ; (3)where h�A�B jAj�A0�B0i are the projetions of A onto the appropriate polarization vetors. In the following we willoften suppress, for the sattering amplitude A on the LHS, the tensor indies.A. Ward identitiesLet us briey reapitulate the derivation of the Ward identities for the time-ordered produt of a onserved urrent,j� (satisfying ��j�(x) = 0), with some other operators Oi. Beause of the theta-funtions inserted by the time-1 In a reent paper [17℄ the impat fators of salar urrents have been omputed.2 Note that pA;B are taken to be inoming while p0A;B are outgoing.3 Bold symbols label 2-dimensional transverse vetors, k = (k1; k2).



3A(0)B = + + :FIG. 1: Lowest order diagramsordering operator T , there are terms proportional to delta-funtions of time di�erenes,��Tj�(x)O1(x1):::On(xn) =nXi=1 Æ(x0 � x0i )TO1(x1):::[j0(x);Oi(xi)℄:::On(xn) : (4)From the standard ommutation relation one sees that the equal-time ommutator of the zero-omponent of theurrent with an operator is proportional to the harge of the operator itself under the symmetry group,[j0(~x; t);O(~y; t)℄ = Æ(3)(~x� ~y)qOO(~x; t) : (5)Here qO is the harge of the operatorO in units of eletri harge e. Using (5) in (4) one obtains the expliit expressionof the ontat terms: ��Tj�(x)O1(x1):::On(xn) =nXi=1 Æ(4)(x � xi)qOiTO1(x1):::On(xn) : (6)One sees then that there are no ontat terms with neutral operators. In partiular, sine in an Abelian theory theurrent is neutral, there are no ontat terms in the T -produts of urrents,��Tj�(x)j�1 (x1):::j�n(xn) = 0 : (7)Going to momentum spae and taking the vauum expetation value one gets the well-known equationp�hj�(p)j�1(p1):::j�n(pn)i = 0 : (8)Going from (7) to (8) involves a subtlety. The integrations in the oordinates implied by Fourier transformation pikup ontributions from the regions where two or more urrents are at the same point. In some ases the produt ofurrents at the same point requires some are, salar QED is a simple example (Se.III C).B. Box diagramsThe lowest order diagrams4 in Fig. 1 ontributing to the orrelation funtion A are fermioni boxes (one-loop). Athigh energies, they behave as log2 s [18℄, and therefore give a ontribution to the total ross setion whih dereases as1=s. Radiative gluoni orretions to these fermion loop graphs will not modify the power of the energy dependenebut provide double logarithmi orretions. C. Two gluon exhangeAt the three-loop level a new lass of diagrams beomes available, in whih purely gluoni t-hannel states appear.As an example, two lowest order diagrams are shown in Fig. 2. At high energies the sum of all lowest order diagrams,4 We perform all omputations in the Feynman gauge.



4
FIG. 2: An example of three-loop diagrams orresponding to two gluon exhange.A, behaves as �2ss, and therefore provides a ontribution to the total ross setion whih (up to powers of ln s) isonstant in s. It is lear that at high energy, independently of how small �s is, these diagrams dominate with respetto the boxes and their radiative orretions. In the Regge limit the lowest order diagram, A(0), is purely imaginaryand takes the form A(0)(s; t) = (9)is Z d2k(2�)2k2(q � k)2�a1a2A (k; q � k)�a1a2B (k; q � k) :Here the so alled impat fators � (Fig. 3) represent the oupling of the virtual photons to the two t-hannel gluons.Their preise de�nition is ��A�A0aa0A (k;k0) = 1s2 ��A�A(pA)���A0�A0 (pA0) p2�p2�0� Z ds12� ImA�A�A0��0q!q (s1; t) (10)with a similar de�nition for �B . Here ImA�A�A0��0q!q (s1; t) is the imaginary part of the amplitude for the sattering ofthe virtual photon A with polarization �A and a gluon with momentum �k, Lorenz index �, and olor label a intothe photon A0 with polarization �A0 and a gluon with momentum k, Lorenz index �0, and olor label a0. s1 is thetotal energy squared of the photon-gluon system, and it is related to the Sudakov omponent � of k (whih in thisregime is the same as the one of k0) along the Sudakov vetor p2 by s1 = (pA � k)2 ' �Q2A � k2 � s� � �s�. Foreah t-hannel gluon, we have a fator 2p2�p1�=s, sine, in the Regge limit, only a spei� omponent of the gluonpolarization tensor ontributes to the leading power in s, namely,g�� = 2s�p2�p1� + p1�p2��+ g?�� ! 2sp2�p1� : (11)With these de�nitions the impat fators �A;B are independent of s. They depend, in the leading approximation weare interested in, only upon the virtuality and the polarizations of the photons, the gluon olors, and the transversemomenta. D. All-order summation in the leading logarithmi approximationGeneralizing, in the leading logarithmi approximation, the lowest order diagrams to higher orders in �s, the twogluon exhange is replaed by the BFKL [3℄ Green's funtion:A(s; t) = is �A 
G(s)
 �B ; (12)where we have introdued the symbol 
 to denote the transverse momentum onvolution of (9), inluding the trans-verse gluon propagators and the ontration of the olor indies. G(s) is the Green's funtion of the BFKL equation,aounting for the resummed LL orretions. The LLA sums the radiative orretions to A(0) in (9), and it is validin the region where �s � 1 and �s log s � 1. The BFKL Pomeron denotes the bound state formed by two interatingReggeized gluons with the quantum numbers of the vauum (for more details see, for example, [2, 19, 20℄ and refer-enes therein). In LLA, the BFKL Green's funtion ontains only gluoni ontributions; fermioni orretions appearonly in the next-to-leading orretion. As a onsequene of this, when turning to the supersymmetri extension ofQCD, the LLA of the BFKL Pomeron remains the same as in QCD. What needs to be studied is the role of the salardegrees of freedom in the box diagrams and in the impat fators. This will be done in the following setion.
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FIG. 3: The one-loop diagrams ontributing to the impat fator �.III. N = 4 SYM AND R-CURRENTSThe maximally supersymmetri non-Abelian gauge theory in four dimensions admits N = 4 supersymmetries.It ontains a vetor multiplet in the adjoint representation of the gauge group SU(N). The theory enjoys aSUR(4) global symmetry, alled R-symmetry, whih transforms the di�erent superharges. In terms of omponent�elds the theory has� 1 vetor �eld A�, salar of SUR(4);� 4 hiral spinors �I in the fundamental representation of SUR(4);� 6 real salars XM in the vetor representation of SUR(4).Capital indies transform under the R-symmetry group. In partiular, A;B;C; ::: = 1; :::; 15 are indies of theadjoint representation, I; J;K; ::: = 1; :::; 4 transform under the fundamental, and M;N; ::: = 1; :::; 6 under the vetorrepresentations of the R-symmetry. Small indies a; b; ; ::: = 1; :::; N2 � 1 are adjoint representation indies for thegauge group SU(N). Sine all the �elds live in the adjoint representation of SU(N), we an write � = �ab = �(t)ab,with (t)ab = �ifab with fab being the SU(N) struture onstants, [ta; tb℄ = ifabt. Our onvention for thenormalization of the generators ta is suh that tr(tatb) = Æab=2.The Lagrangian is [21℄ L = tr�� 12F��F�� +D�XMD�XM + 2i�I��D���I�2ig�I [�J ; XIJ ℄� 2ig��I [��J ; XIJ ℄+12g2[XM ; XN ℄[XM ; XN ℄�; (13)where XM and XIJ are related by the SU(4) �= SO(6) sigma symbols:XIJ = �12(�M )IJXM ; XIJ = 12(��1M )IJXM ; (14)with Tr(�M��1N ) = 4ÆMN , whih implies that XMXM = XIJXIJ . The ovariant derivative D� and the gauge �eldstrength tensor F�� are de�ned as usual by5D�� = ���� ig[A�;�℄ ; (15)F�� = ��A� � ��A� � ig[A�; A� ℄ : (16)5 With � we denote any �eld in the theory, X, or �.



6A. R-symmetry urrents and the four point funtionThe Lagrangian (13) is invariant under the global transformation (R-symmetry)( Æ�a�I = i�A�a�J (TA)JI ;Æ��a _�I = �i�A(TA)IJ ��a _�J ;ÆXaM = i�A(TA)MNXaN ; (17)where �A are small parameters, and TA are the SUR(4) generators in the appropriate representation.The Noether urrent of the symmetry isJ�AR = i �L�(���)�A� = tr�� ���TA��� iXTAD�X� ; (18)where �A� is obtained from (17) with the de�nition Æ� = i�A�A� for an in�nitesimal R-transformation.We are interested in evaluating the momentum spae four point funtion de�ned in analogy to (1),i(2�)4Æ(pA + pB � pA0 � pB0)AR(s; t)�A�B�A0�B0 =Z Yi d4xi e�ipA�xA�ipB�xB+ipA0 �xA0+ipB0 �xB0�hJA�AR (xA)JB�BR (xB)JA0�A0R (x0A)JB0�B0R (x0B)i (19)at weak oupling in the Regge limit (2). B. Ward identitiesFrom (4) and (5) we an ompute expliitly the Ward identities satis�ed by (19). We only need to speialize (5) tothe ase of interest: [JA0R (~x; t); JB�R (~y; t)℄ = Æ(3)(~x � ~y)(TA)BCJC�R (~x; t) : (20)The nonvanishing of the ommutators (20), whih is due to the fat that onserved urrents of a non-Abelian symmetryare harged, implies immediately that also the ontat terms in the Ward identities do not vanish,��hJA�R (x)JA1�1R (x1):::JAn�nR (xn)i = nXi=1 Æ(4)(x� xi)�hJA1�1R (x1):::(TA)AiC JC�iR (x):::JAn�nR (xn)i : (21)Compared to the QCD ase, this introdues some additional ompliations. In partiular, the standard omputationaording to whih the four point funtion is �nite, despite n�aive power ounting whih suggests a logarithmidivergene, does not apply anymore. Expliit omputation shows that the UV poles still anel, but now as a resultof the interplay between the salar and fermioni setors (Se. III D). It is therefore a onsequene of supersymmetry.The hange of the Ward identities, at �rst sight, also a�ets our use of the polarization vetors. The simpli�ationswhih lead from (A12-A17) to (A18-A22) were only possible beause of the simple Ward identities (8), and the moreompliated identities (21) spoil this argument. If, however, instead of the full SUR(4) group we restrit ourselves toa U(1) subgroup of SUR(4), we reah a situation similar to the QCD ase. Restrition to the U(1)6 means that, onthe RHS of (21), all (TA)AiC = �ifAAiC vanish, and one reovers the same Ward identities without ontat terms asin QCD: ��hJ�R(x)J�1R (x1):::J�nR (xn)i = 0 : (22)We therefore an proeed as before and, via Eq. (3), onveniently ompute projetions of AR onto spei� polarizationvetors.6 Following [15℄ we hoose a partiular linear ombination of the three diagonal SUR(4) generators. In the following we will drop theSUR(4) label A in JR for the U(1) urrent.



7A(0)2��(x; y) = jµ(x) jν(y) :FIG. 4: Lowest order diagram ontributing to the two point funtion of the eletromagneti urrent.C. An exursion into salar QEDAs we mentioned already at the end of Se. II A, working in Fourier spae requires some are with renormalization.The problem an be easily illustrated in the simple framework of salar QED. Let us onsider, as an example, thetwo point funtion A2 = hj�(x)j� (y)i of the eletromagneti urrent j� = i('��'��'���')� 2eA�'�'. Again, U(1)gauge symmetry implies the Ward identity ��hj�(x)j�(y)i = 0. The omputation of the lowest order in perturbationtheory performed in the oordinate spae with x 6= y, would involve just one diagram, Fig. 4. Going to momentumspae, this diagram gives A(0)2��(p) = Z ddk(2�)d (2k � p)�(2k � p)�k2(k � p)2 : (23)One immediately sees that (23) does not satisfy the Ward identity,p�A(0)2��(p) = 2p� Z ddk(2�)d 1k2 : (24)The problem arises beause the produt of two urrents in A2 is not regular when x! y. As it is well known, suh aprodut is de�ned by an operator produt expansion (OPE),j�(x)j�(y)�!x!yPiCi Oi(y)(x� y)�i ; (25)where Oi are operators with the same quantum numbers as j�j� . Equation (25) means that the produt of twourrents at the same point mixes with the operators Oi. By dimensional analysis it is easy to spot the operator whih,in (25), gives the leading singularity:j�(x)j�(y) = C (g��'�')(y)(x� y)d +O�(x� y)�d+2� : (26)Note that suh singular behavior is preisely on the boundary of onvergene of the Fourier integrals, and all the otherterms in the OPE ontain integrable singularities. It is therefore enough to regularize the divergene by removingthis leading term: j�(x)j�(y)! j�(x)j� (y)� C (g��'�')(y)(x� y)d : (27)In momentum spae the operator g��'�' leads, at the one-loop level, to an additional diagram..A(0)2�� [g��'�'℄(x; y) =
gµνφ

∗φ(p)= �Cg�� Z ddk(2�)d 1k2 : (28)Comparing (28) with (24) we an �x C = 2. With this we obtain, for A(0)2�� , the same result that one would getfrom omputing the one-loop orretion of the photon self energy hA�A�i in salar QED, whih indeed satis�es theWard identity p�A(0)2��(p) = 0.



8The same argument applies to the salar setor of the N = 4 theory. One has to add the appropriate regularizingdiagrams, whih ensure that the orrelation funtions are well de�ned and ful�ll the Ward identities in momentumspae.Before returning to the N = 4 theory, we observe that the QED omputation we just skethed would simplifyonsiderably if we were interested only in the imaginary part of A2. The term in (28) is real and does not ontribute,while the imaginary part of (23), whih is easily omputed by means of the utting rules, now ful�lls the Ward identity,thanks to the delta-funtions of the two on-shell salar propagators.D. One-loop diagramsAn important step in heking the Regge fatorization of the R-urrent sattering amplitude is to verify that thefermioni and salar one-loop diagrams are subleading at high energies. This task inludes the orret regularizationof ultraviolet divergenies. For orrelators of R-urrents whih belong to a U(1) subgroup, we will show that this taskan be solved by applying the previous arguments. When onsidering a orrelation funtion with arbitrary SUR(4)labels the situation is not as simple as in QCD or salar QED. The usual argument for the absene of UV divergeniesis based on the Ward identities (8) and does not work in the present ase. Nevertheless, by performing the expliitomputation, we an prove that the one-loop diagrams are UV �nite. It will be shown that, in this situation, itis supersymmetry that onstrains the UV divergene to be absent. More preisely, it is the interplay between thefermioni and salar setors whih leads to anellations.UV polesThe one-loop fermioni diagrams are the same boxes as in QCD, depited in Fig. 5. In order to disuss their UV
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′

B B
′BF3FIG. 5: One-loop diagrams with fermionsbehavior, we regularize the IR region by giving the fermions a small mass m. The UV singularities of the diagramsBF1� 3 an be easily omputed:BF1UV = 23 i�2��m�2�(2�)4 �(�) Tr�TATA0TB0TB� (29)��g�A�A0 g�B�B0 + g�A�Bg�A0�B0 � 2g�A�B0 g�A0�B� :The ontributions BF2UV and BF3UV an be obtained from (29) by permuting indies. It is immediately lear thattheir sum does not vanish unless we restrit ourselves to the U(1) subgroup, and all the SUR(4) traes are the same.In this ase the anellation works preisely as in QCD.There are 12 one-loop salar diagrams (inluding those whih are required for regularization), and they are alldepited in Fig. 6. From the UV region of these diagrams one obtains



9
A A

′

B B
′BS1

A A
′

B B
′BS2

A A
′

B B
′BS3

AA
′

B
′

B BS4 B

A
′
B

′

A

BS5
A

BB
′

A
′

BS6
A

′

B
′

AB BS7 B

AB
′

A
′

BS8 A
′
B B

′

A

BS9
AA

′

BB
′BS10

A
′
B

′
AB BS11 BA

′

AB
′

BS12FIG. 6: One-loop diagrams with salarsBS1UV = 23 i�2��m�2�(2�)4 �(�) Tr�TATA0TB0TB� (30)��g�A�A0 g�B�B0 + g�A�Bg�A0�B0 + g�A�B0 g�A0�B� ;BS4UV = �2 i�2��m�2�(2�)4 �(�) (31)�Tr�TATA0 + TA0TA2 TB0TB�g�A�A0 g�B�B0 ;BS10UV = 2 i�2��m�2�(2�)4 �(�) (32)�Tr�TATA0 + TA0TA2 TBTB0 + TB0TB2 ��g�A�A0 g�B�B0 :All the other diagrams in Fig. 6 an be obtained by permutations of the indies.When we restrit ourselves to a U(1) subgroup of SUR(4) (whih also ensures (22) to hold) all the traes in (29-32)oinide, and the UV poles in the salar setor anel among themselves.In the ase of di�erent SUR(4) generators in (29)-(32) the anellation of the UV poles does not work for the salarand fermioni setors separately. But a straightforward omputation shows that the sum of the divergent piees of allsalar diagrams, BS1� 12UV , is just the opposite of the sum of the fermioni divergenies, BF1� 3UV , and thereforethe full one-loop funtion is UV �nite. This anellation is a result of the supersymmetry.High energy behaviorLet us now turn to the alulation of the high energy behavior. From now on, we restrit the R-urrents to a U(1)subgroup. The omputation of the fermion boxes at high energy then is just the same as in QCD. We briey reall theargument of [22℄ (see also [18℄), whih shows how a double log emerges. This will also help to prepare the subsequentomputation of the salar diagrams.The double log arises beause, in the high energy limit, the fermion numerator produes a term proportional tosk2. More preisely, the region of integration where the double log arises is Q2i ; q2 � k2 � �s; �s and xi � �; � � 1,



10with xi = Q2i =s. In this region the integral is7BF1L = � s2(2�)4 Z d� Z d� Z d2k� s(s�� � (k � q)2 + i�)(�s� + i�)(s�+ i�) ; (33)where one of the propagators (k2) has been aneled by the k2 in the numerator. Closing the ��ontour below wepik up the pole in the �rst propagator, and after a shift in k we obtainBF1L = � i2(2�)3 Z 1x d�� Z 1x d�� Z d2k Æ(s�� � k2) ; (34)where x = Q2=s ' xi. Performing the angular integration and then the k2 integral via the delta-funtion we arrive atBF1L = � i4(2�)2 Z 1x d�� Z 1x=� d�� = � i8(2�)2 log2 sQ2 ; (35)whih on�rms our previous laim about the double log behavior of the fermion box.Now we fous on the salar diagram BS1,BS1 = Z d4k(2�)4 (2k � pA)�A(2k + pB)�Bk2(k � q)2� (2k � q � pA)�A0 (2k � q + pB)�B0(k � pA)2(k + pB)2 : (36)Projeting �rst onto longitudinal polarizations and keeping only the leading ontribution, we obtainBS1LLLLL = QAQA0QBQB0 Z d4k(2�)4� 1k2(k � q)2(k � pA)2(k + pB)2 ; (37)whih means that the longitudinal projetion redues simply to the standard salar integral we would enounter in amassless �3 theory. It behaves again as a double log, but now the additional logarithm arises in the infrared regionk ' 0 due to the vanishing mass of the �elds. Let us onsider indeed the region of integration xi � �; � � 1 (whihwe have already used in order to get to (37)) but k2 � Q2i ; q2. There (37) beomesBS1LLLLL = sQAQA0QBQB02(2�)4 Z d� Z d� Z d2k� 1(s�� � k2 + i�)(�q2)(�s� + i�)(s�) : (38)Again we lose the ��ontour below and pik up the pole from the �rst propagator, whih is now k2BS1LLLLL = � iQAQA0QBQB04(2�)2sq2� Z 1x d�� Z 1x d�� Zk2�Q2 dk2Æ(s�� � k2)= � iQAQA0QBQB04(2�)2sq2 Z 1x d�� Z x=�x d��' i8(2�)2 Q2s log2 sQ2 : (39)7 The subsript L means that we are keeping only the leading term in energy, and we drop the trae over the SUR(4) struture onstant,e.g. Tr(TATATATA).



11Let us onsider now transverse polarization. Projeting (36) onto the transverse polarization (A20-A22) and keepingonly leading terms in the numerator, we obtainBS1TTTTL = 16 Z d4k k � �hAk � �hA0 k � �hBk � �hB0k2(k � q)2(k � pA)2(k + pB)2= �ÆhAhA0 ÆhBhB0 + ÆhAhBÆhA0hB0 + ÆhAhB0 ÆhA0hB�� s3(2�)4 Z d� Z d� Z d2k� s�� � k2(s�� � (k � q)2 + i�)(�s� + i�)(s�) : (40)As we did in (33) we lose the ��ontour below and get the residue from the pole in the �rst propagator, whih, aftera shift in k, gives BS1TTTTL =�ÆhAhA0 ÆhBhB0 + ÆhAhBÆhA0hB0 + ÆhAhB0 ÆhA0hB�� i3(2�)3s Z d�� Z d�� Z d2k�(s�� � k2 � q2 � 2k � q)Æ(s�� � k2) : (41)The salar produt vanishes after angular integration, the ombination s���k2 is set to 0 through the delta-funtion,and the only term left gives BS1TTTTL '��ÆhAhA0 ÆhBhB0 + ÆhAhBÆhA0hB0 + ÆhAhB0 ÆhA0hB�� i6(2�)2 Q2s log2 sQ2 : (42)Similar omputations an be performed for all the other diagrams in Fig. 6, and the results are similar to the onejust outlined. This ompletes our derivation of the leading high energy behavior of all the one-loop diagrams of Fig.5 and 6.We would like to stress the importane of the region k2 � s: at �rst sight, the numerators in (33) and (39) seemto lead to an even stronger behavior than the one we have omputed. However, in the limit of large s, this regionoinides with the UV region whih has been disussed at the beginning of this setion. These leading terms anelwhen all the diagrams are summed over, in the same fashion as the anellation of the UV poles disussed earlier.As we will see in the next setion, the high energy behavior is dominated by gluon exhange, and the fermion andthe salar box diagrams provide subleading orretions. This is to be expeted sine, one the UV �niteness of theone-loop diagrams has been veri�ed, we an apply the spin argument, aording to whih the exhange of two �eldquanta of spin s leads, in the sattering amplitude, to the high energy behavior � s2s�1. This implies that also higherorder diagrams in whih the box diagrams in Fig. 5 are \dressed", for examples, by gluon rungs, will have the samepower behavior in s, modi�ed by powers of ln2 s (details an be found in [18℄). A similar onsideration applies todiagrams obtained by \dressing" the salar loops. For the leading high energy behavior we are thus left with gluonexhanges: using the spin argument one expets, for the sattering amplitude, the high energy behavior� s.E. Two gluon exhangeAs it was the ase in QCD, gluon exhange starts at three loops. In Fig. 7 we depit one of the lowest orderdiagrams ontributing to the two gluon exhange, in order to set the notation for the momenta. Again, we onsiderthe imaginary part (or, equivalently, the disontinuity in s). Then we have, in all diagrams, four delta-funtionsimposing the mass-shell ondition for the intermediate partiles (either salars or fermions). Two delta-funtions areused to �x the integrations over the longitudinal omponents of k (the integral in the subenergy s1 in (10)), and theother two �x one of the two longitudinal integrations inside eah of the impat fators. The LL ontribution arisesfrom the Regge kinematis, in whih � is negligible ompared to �1, and � is negligible ompared to �2. Thereforethe subdiagrams belonging to the upper impat fator (salar loop in Fig. 7) are independent of �, and those of the
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J
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R (pB)
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R (pA)

J
B′µB′

R (pB′)

J
A′µA′

R (pA′)

l1 − pA l1 − k − pA + q

l1 l1 − k

k q − k

l2 l2 + k

l2 − pB l2 + k − q − pBFIG. 7: One of the diagrams ontributing to the two gluon exhange in N = 4.lower impat fator (the fermion loop) are independent of �. This is the mehanism behind the fatorization of (9).In the Regge kinematis also the longitudinal omponents of the transverse momentum q are small, �q ; �q � 1=s, anddropping them inuenes only terms suppressed by powers of s.It is onvenient to introdue the notation���0aa0 = N�sÆaa0 Z 10 d�l Z d2l(2�)2Pi���0i (�l; l; q) ; (43)where �l is the longitudinal omponent of the (salar or fermion) loop integral along the inoming momentum pA.The term ���0i has to be omputed from the diagram i in Figs. 8 and 9. The fator N is present beause both salarsand fermions belong to the adjoint representation of the gauge group, so they all givefa12f b21 = �NÆab : (44)An overall fator 1=2 arises from the utting rules, 2i Im(A) = � =A.The omputation of the fermioni omponent (see Fig. 8) is very similar to the QCD ase. The �rst di�erene is
F1 F2 F3 F4FIG. 8: The fermion diagrams for the impat fators.due to the fat that in N = 4 there are 4 Weyl fermions instead of nf Dira ones. The ounting of the number of�elds weighted by the right R-harge is performed by the trae over the two generators of the SUR(4) group,Tr4 �TATA� = 12 ; (45)(there is no sum over A here), taken in the appropriate representation (fundamental for the fermions and vetorrepresentation for the salars).The hiral nature of the �elds introdues additional terms due to a Levi-Civita tensor arising from spinor traesontaining a hiral projetor. All these terms anel in the sum of the four diagrams F1� 4. The omplete list of the�i is given in the appendix A 2.The diagrams needed for the omputation of the salar omponent of the impat fator are depited in Fig. 9.The trae over the SUR(4) indies now gives Tr6 �TATA� = 1 : (46)
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S1 S2 S3 S4
S5 S6 S7 S8

S9FIG. 9: The salar diagrams for the impat fators.Sine the salars rossing the ut are idential partiles there is a symmetry fator 1=2.At �nite energies, all the diagrams S1�9 in Fig. 9 are needed in order to satisfy the Ward identities. At high energies,however, it turns out that the diagrams S5� 9 are suppressed8. As an example, let us onsider the diagram S5. Thegluon polarization tensor is ontrated with the polarization vetor of the inoming urrent, whih is proportional top2. Then, out of the three parts of the gluon polarization tensor (f. 11: the index � belongs to the upper end of thegluon, � to the lower end): 2p2�p1�s + 2p1�p2�s + g?�� ; (47)only the seond term survives beause p22 = p�2g?�� = 0. Note that in the 'normal' fermioni ase it is the �rst termthat gives the leading behavior in the Regge asymptoti. One sees indeed that the ontration of the loop integralnumerator with p1 provides one power of s less than the leading terms of diagrams S1� 4. An analogous disussionapplies to the ontration of p2 with the loop below, and again there is a suppression of a power of s. Eventually onesees that a diagram involving S5 is 1=s2 suppressed with respet to the leading term. The same argument applies tothe other diagrams S6 � 8, while for S9 the suppression is even stronger, 1=s4, beause the same e�et takes plaefor both gluons. We are thus left with the diagrams S1� 4, whih, at high energies, give the full salar omponent ofthe impat fator. The omputation mimis losely the fermioni one, and details an be found in appendix A 2.8 For simpliity, we disuss only the ase of longitudinal polarization.



14F. The full impat fatorsColleting together all the terms one obtains the full impat fators,�LL0aa0A = Æaa0N�s2 QAQA0Z 10 d�Z d2l(2�)2�(1� �)�� 1D1 � 1D2�� 1D01 � 1D02�; (48a)�Lh0aa0A = 0 ; (48b)�hh0aa0A = Æaa0Æhh0N�s2 Z 10 d�Z d2l(2�)2��N 1D1 � N 2D2 � � �N 01D01 � N 02D02 � ; (48)with Di and N i de�ned byN1 = l ;N 01 = l� (1� �)q ;D1 = N21 + �(1� �)Q2A ;D01 = N 021 + �(1� �)Q2A0 ;N2 = l� k ;N 02 = l� k + �q ;D2 = N22 + �(1� �)Q2A ;D02 = N 022 + �(1� �)Q2A0 :Comparing (48a-) with the QCD result of [23℄ one observes a striking di�erene: in ontrast to the QCD resultswhere heliity onservation holds only in the forward diretion, at t = 0, now for arbitrary t = �q2 all the o�-diagonal terms in the polarization indies vanish, as the result of anellations between the salar and fermion loops,���0 / Æ��0 . This is a onsequene of supersymmetry.Higher order diagrams with gluon exhange, in the LL approximation, lead to the QCD BFKL Pomeron desribedin Se. II D. This oinidene, at high energies, of nonsupersymmetri Yang-Mills theory and the supersymmetriextension is an artifat of the leading logarithmi approximation, whih only depends upon the spin-1 gauge bosons,and not on salars or fermions. The only plae where, in LL, these superpartners appear are the impat fatorsgiven now by (48a-). We have therefore ompleted our leading logarithmi analysis by proving that the orrelationfuntion (19) satis�es Regge fatorization, and we have omputed those buildings bloks whih are sensitive to thesupersymmetri extension of QCD. IV. OUTLOOKThe AdS/CFT orrespondene [10℄ onjetures that N = 4 SYM theory is equivalent to Type IIB superstringtheory on AdS5�S5. The onnetion between these apparently di�erent theories is a weak-strong duality: it onnetsthe weak oupling limit of one side with the strong oupling limit on the other side. This opens up the possibilityto study aspets of the gauge theory at strong oupling, where traditional tools are unappliable. In partiular, wean address the omputation of the R-urrents orrelation funtion (19) in the large N and large 't Hooft oupling� = g2YMN limit. In this limit the relevant string theory is desribed by the S5 ompati�ation of type IIBsupergravity in ten dimensions. This redution gives rise to N = 8, D = 5 supergravity, with SO(6) Yang-Mills gaugegroup [24, 25, 26, 27, 28℄.The omplete detailed redution is a problem of great omplexity. Fortunately, there exist onsistent trunations ofthe full theory whih are muh simpler than the full theory. In [29℄ it was shown that there is a very simple trunation



15whih ontains only a U(1) gauge �eld and the graviton. Its ation readse�1L5 = (50)� 12�25�R+ 12g2 � 14F 2 + 112p3������F��F��A�� :Aording to the AdS/CFT ditionary, eah gauge invariant operator in the gauge theory orresponds to some bulk�eld in the supergravity theory. The generating funtional for the onneted orrelation funtions W [�℄ of the gaugetheory, � being the soure for some operator O, is identi�ed with the on-shell ation Son-shell of the gravity theory,with the boundary onditions '(0) for the bulk �eld ' dual to O playing the role of its soure �:W ['(0)℄ = �Son-shell['(0)℄ : (51)The �elds dual to the R-urrents of N = 4 SYM are the gauge �elds of the supergravity theory. The trunation(50) ontains only one of the 15 gauge �elds of the full theory, in the same way as our omputation in this paperonerns only one R-urrent of the U(1) subgroup out of the 15 assoiated with the SUR(4) group. The ation (50)is therefore suÆient for the purpose of omputing the strong oupling version of our result (48a-).The supergravity omputation requires the evaluation of the Witten diagrams orresponding to some soures forthe gauge �eld A� on the boundary of AdS5. Diagrams inferred from the ation (50) are depited in Fig. 10. Suh
FIG. 10: Witten diagrams for the omputation of the R-urrent four point funtion at strong oupling in the trunated theory.The double wavy line in the third graph represents the graviton exhange.omputation involves the boundary-to-bulk gauge boson propagator and the bulk-to-bulk propagators for both thegauge �eld and the graviton. They are well known in the oordinate spae [30℄, and have been extensively used in thepast, in order to ompute various orrelation funtions (see for example [31℄ and referenes therein). Nevertheless theomputation of a four point orrelation funtion of R-urrents is still missing in the literature. We intend to addressthis omputation in the future, not in its full generality but in the Regge limit, where we expet some simpli�ationsto take plae.Returning to the gauge theory side, our analysis of the supersymmetri R-urrent impat fators lays the groundfor addressing another aspet of the duality onjeture. Several years ago it has been shown that the BKP evolutionequations of t-hannel states onsisting of n Reggeized gluons, in the limit of large N, are integrable [7, 8℄. Onthe gauge theory side, the four gluon state appears in the high energy limit of the six point orrelation funtion ofR-urrents (in QCD, the analogous proess would be the sattering of a virtual photon on two heavy onium states).A study of this orrelation funtion, both on the weak oupling and on the strong oupling side, therefore will allowus to trae the role of this remarkable feature of the Regge limit.AknowledgmentsWe thank L. N. Lipatov for very helpful disussions. A.-M. M. is supported by the Graduiertenkolleg \Zuk�unftigeEntwiklungen in der Teilhenphysik". M. S. has been supported by the Sonderforshungsbereih \Teilhen, Stringsund Fr�uhes Universum".



16APPENDIX A1. Sudakov deomposition and polarization vetorsWe will work in the frame where pA and p0A (pB and p0B) have a big + (�) omponent, with p� = p0 � p3. In thisbasis the nonvanishing metri oeÆients are g+� = g�+ = 2 and g11 = g22 = 1, while the Levi-Civita tensor is fullyantisymmetri with �+�12 = �1=2. In the .m. we have9pA = �ps;�Q2Aps ; 0� ; pB = �� Q2Bps ;ps; 0� : (A1)We use the Sudakov representation for momenta. Let us de�ne the two lightlike (up to O(1=s) terms) vetorsp1 = pA + xApB , p2 = pB + xBpA where xA;B = Q2A;B=2pA � pB . Then an arbitrary four-momentum k will bedeomposed into its projetions along p1;2 and a transverse omponent:k = �kp1 + �kp2 + k?; n �k = 2p2 � k=s�k = 2p1 � k=s: (A2)The Jaobian is d4k = s=2d�kd�kd2k : (A3)The mass-shell onditions for the outgoing momenta �x the longitudinal omponents of the momentum transferred qto �q = �Q2B0 �Q2B + q2?s ; �q = Q2A0 �Q2A + q2?s ; (A4)and the external momenta expressed in Sudakov representation arepA = p1 � Q2As p2 ; p0A = p1 � Q2A0+q2?s p2 � q? ;pB = �Q2Bs p1 + p2 ; p0B = �Q2B0+q2?s p1 + p2 + q? : (A5)We now ompute the polarization vetors of the external photons. Virtual photons have 3 degrees of freedom, onelongitudinal (L) and two transverse (�) polarizations. The absene of a seond longitudinal polarization translatesfor the amplitude (1) into the onstraint (8) provided by gauge invariane. Beause of this onstraint, the threepolarization vetors �L;�� (p) represent, for an arbitrary hoie of the momentum p, a omplete basis of the spaewhere the urrent j�(p) belongs to j�(p) 2 Span��(L;�)� (p)	 ; (A6)They an be hosen to be orthonormal, �(i)� (p)�(j)�(p)� = �Æij ; (A7)and to satisfy the ompleteness relation g�� � p�p�p2 = Xi=L;� �(i)�(p)�(i)�(p)� : (A8)We hoose �L� (p) suh that its three-dimensional part is proportional to the three-momentum ~p (longitudinal polar-ization). The two other vetors (heliity �) are hosen to be transverse. In the Sudakov representation (keeping onlythe leading term in s for eah omponent) we get�(L)(p) =iQh��+ 2Q2s(�+ �)2 ��p1 + �� + 2Q2s(�+ �)2��p2+�1� 2Q2s(�+ �)2 �p?i ; (A9)�(h)(p) = �(h)? + 2�(h)? � ps(�� �)�p1 � p2 + p?�� �� ; (A10)9 Only the leading term in s is kept for eah omponent.



17where we have de�ned �(�)? = 1p2(0; 1;�i; 0) : (A11)The expliit expressions for the ase p = pA; pA0 ; pB ; pB0 an be easily worked out from (A5):�(L)(pA) = iQA�p1 + Q2As p2� ; (A12)�(L)(pB) = iQB �Q2Bs p1 + p2� ; (A13)�(L)(pA0) = iQA0 �p1 + Q2A0 � q2?s p2 � q?�; (A14)�(L)(pB0) = iQB0 �Q2B0 � q2?s p1 + p2 + q?�; (A15)�(h)(pA;B) = �(h)? ; (A16)�(h)(pA0;B0) = �(h)? � 2�(h)? � qs (p1 � p2 � q?) : (A17)Beause of the Ward identities (8) and (22) one is allowed to shift the polarization vetors �(i)� (p) by a four vetorproportional to p itself. It is onvenient to simplify the polarization vetors as follows:�(L)(pA;A0) = 2QA;A0s p2 ; (A18)�(L)(pB;B0) = 2QB;B0s p1 ; (A19)�(h)(pA;B) = �(h)? ; (A20)�(h)(pA0) = �(h)? + 2�(h)? � qs p2 ; (A21)�(h)(pB0) = �(h)? � 2�(h)? � qs p1 : (A22)2. Complete list of the �ii0S;FlIn this appendix we give, for all possible polarizations �; �0 = L;�, the full list of the funtions ���0i for the eightdiagrams of Figs. 8 (i = F1� 4) and 9 (i = S1� 4). We will make use of the de�nitions for Di and Ni, given after(48). Longitudinal-Longitudinal:�LL0F1 = 2QAQA0 �2(1� �)2D1D01 ;�LL0F2 = �2QAQA0 �2(1� �)2D1D02 ;�LL0F3 = �2QAQA0 �2(1� �)2D2D01 ;�LL0F4 = 2QAQA0 �2(1� �)2D2D02 ; (A23)



18�LL0S1 = 2QAQA0 �(1� �)(1=2� �)2D1D01 ;�LL0S2 = �2QAQA0 �(1� �)(1=2� �)2D1D02 ;�LL0S3 = �2QAQA0 �(1� �)(1=2� �)2D2D01 ;�LL0S4 = 2QAQA0 �(1� �)(1=2� �)2D2D02 : (A24)Longitudinal-Transverse:�Lh0F1 = QA�(1� �)(1� 2�� h0i)D1D01 N 01 � �(h0)� ;�Lh0F2 = �QA�(1� �)(1� 2�� h0i)D1D02 N 02 � �(h0)� ;�Lh0F3 = �QA�(1� �)(1� 2�� h0i)D2D01 N 01 � �(h0)� ;�Lh0F4 = QA�(1� �)(1� 2�� h0i)D2D02 N 01 � �(h0)� ; (A25)�Lh0S1 = �QA�(1� �)(1� 2�)D1D01 N 01 � �(h0)� ;�Lh0S2 = QA�(1� �)(1� 2�)D1D02 N 02 � �(h0)� ;�Lh0S3 = QA�(1� �)(1� 2�)D2D01 N 01 � �(h0)� ;�Lh0S4 = �QA�(1� �)(1� 2�)D2D02 N 02 � �(h0)� : (A26)Sine under the transformations l! �l+k and �! 1��, N2 ! �N1 and N 02 ! �N 01 in the integrand in (43), theterms proportional to the heliity h0 in the fermioni parts anel between �Lh0F1 ; �Lh0F4 and �Lh0F2 ; �Lh0F3 . The remainingfermioni piees anel ompletely against the orresponding salar terms.Transverse-Longitudinal:�hLF1 = QA0 �(1� �)(1� 2�� hi)D1D01 �(h) �N1 ;�hLF2 = �QA0 �(1� �)(1� 2�� hi)D1D02 �(h) �N 1 ;�hLF3 = �QA0 �(1� �)(1� 2�� hi)D2D01 �(h) �N 2 ;�hLF4 = QA0 �(1� �)(1� 2�� hi)D2D02 �(h) �N2 ; (A27)



19�hLS1 = �QA0 �(1� �)(1� 2�)D1D01 �(h) �N 1 ;�hLS2 = QA0 �(1� �)(1� 2�)D1D02 �(h) �N1 ;�hLS3 = QA0 �(1� �)(1� 2�)D2D01 �(h) �N2 ;�hLS4 = �QA0 �(1� �)(1� 2�)D2D02 �(h) �N 2 : (A28)Here we have the same anellations as in the longitudinal-transverse ase.Transverse-Transverse:�hh0F1 = 12D1D01 h(1� hi�) �(h) � �(h0)� N 1 �N 01+�� 4�(1� �) + i(h� h0)(1� �)���(h) �N 1 N 01 � �(h0)��(1� hi�)��(h) � l (1� �)q � �(h0)���(h) � (1� �)q l � �(h0)��i ;�hh0F2 = � 12D1D02 h�(h) � �(h0)� N1 �N 02+�� 4�(1� �) + i(h� h0)(1� 2�)���(h) �N 1 N 02 � �(h0)���(h) � l (k � �q) � �(h0)�+�(h) � (k � �q) l � �(h0)�i ;�hh0F3 = � 12D2D01 h�(h) � �(h0)� N2 �N 01+�� 4�(1� �) + i(h� h0)(1� 2�)���(h) �N 2 N 01 � �(h0)�+�(h) � (l� k) (k � (1� �)q) � �(h0)���(h) � (k � (1� �)q) (l� k) � �(h0)�i ;�hh0F4 = 12D2D02 h(1 + hi(1� �)) �(h) � �(h0)� N2 �N 02+�� 4�(1� �)� i(h� h0)(1� �)���(h) �N 2 N 02 � �(h0)�+(1 + hi(1� �))��(h) � (l� k) �q � �(h0)���(h) � �q (l � k) � �(h0)��i ; (A29)
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