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Abstra
tWe investigate 
orrelation fun
tions for maximally symmetri
 boundary 
ondi-tions in the WZNW model on GL(1j1). Spe
ial attention is payed to volume �llingbranes. Generalizing earlier ideas for the bulk se
tor, we set up a Ka
-Wakimoto-like formalism for the boundary model. This �rst order formalism is then used to
al
ulate bulk-boundary 2-point fun
tions and the boundary 3-point fun
tions ofthe model. The note ends with a few 
omments on 
orrelation fun
tions of atypi
al�elds, point-like branes and generalizations to other supergroups.
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tionSigma models on supergroups and their 
osets are an interesting subje
t of 
urrentresear
h. They o

ur in a number of very di�erent problems ranging from string theoryto disordered ele
tron systems. In addition to su
h 
on
rete appli
ations, 
onformal �eldtheories with target spa
e supersymmetry may also be studied for their stru
tural andmathemati
al properties. They provide examples of non-unitary models, many of whi
hhave vanishing or negative 
entral 
harge. Moreover, their 
orrelation fun
tions oftenpossess logarithmi
 singularities. As shown in [1℄, both properties are intimately relatedto features of the supergroup geometry. 1



The simplest non-trivial model to 
onsider is the WZNW model on the supergroupGL(1j1). Studies of this �eld theory go ba
k to the work of Rozanski and Saleur [2, 3℄.These early investigations of the GL(1j1) WZNW model stimulated mu
h further workon the emerging topi
 of logarithmi
 
onformal �eld theory (see e.g. [4, 5℄ for a review).A few years ba
k, the GL(1j1) WZNW model was revisited in [1℄ from a geometri
 ratherthan algebrai
 perspe
tive. Based on the harmoni
 analysis of the supergroup GL(1j1), aproposal was formulated for the exa
t spe
trum of the �eld theory. Furthermore, eÆ
ient
omputational tools were developed to 
al
ulate 
orrelation fun
tions of ta
hyon vertexoperators. Finally, the 
onsisten
y of the proposed spe
trum was demonstrated expli
itly.The work [1℄ was restri
ted to the GL(1j1) WZNW model on the sphere, i.e. neitherboundaries nor higher genus surfa
es were in
luded. Subsequent work [6℄ extended partof the bulk analysis to the boundary se
tor. In parti
ular, the geometri
 interpretation ofmaximally symmetri
 boundary 
onditions was unravelled. This led to several proposalsfor the spe
tra of boundary operators in the 
orresponding boundary 
onformal �eld the-ories. These were tested partially through the so-
alled modular bootstrap. Correlationfun
tions with non-trivial insertions of bulk and boundary operators were not 
omputedin [6℄. We are now aiming to 
lose this gap, at least for one type of boundary 
onditions.There are several motivations to determine boundary 
orrelation fun
tions in super-group WZNW models. To begin with, the 
onje
tured boundary spe
tra in [6℄ 
ontainedinformation that 
annot be probed through the modular bootstrap alone. In parti
ular,
ertain boundary 
orrelation fun
tions were predi
ted to 
ontain logarithmi
 singularities.Below we shall be able to verify su
h features of the boundary 
onformal �eld theory.Moreover, 2-dimensional boundary �eld theories are intimately related with quantizationtheory (see e.g. [7, 8, 9, 10℄ and referen
es therein). While the GL(1j1) WZNW modelitself is a bit too simple to a

ommodate for interesting supersymmetri
 extensions ofnon-
ommutative geometry, the methods we shall develop below possess generalizationsto 
ases with a 
urved bosoni
 base. The latter provide a mu
h ri
her geometri
 frame-work, with further links to representation theory of aÆne algebras and the quantizationof Lie superalgebras. Finally, let us also mention possible appli
ations to the study ofbranes and open strings in superspa
es, and in parti
ular to AdS ba
kgrounds.To be a bit more spe
i�
 about the results we are going to obtain, we re
all from [6℄that there are two di�erent families of maximally symmetri
 boundary 
onditions in theGL(1j1) WZNW model. Geometri
ally, the �rst set 
onsists of D-branes that are point-2



like lo
alized in the bosoni
 base. They extend into both fermioni
 dire
tions, unless theyare pla
ed along very spe
ial lines in the base manifold. The se
ond set of boundary
onditions 
ontains a single obje
t: a volume �lling brane that extends in all bosoni
 andfermioni
 dire
tions. We 
alled this brane twisted be
ause it is asso
iated with the onlynon-trivial gluing automorphism of the 
urrent algebra. In [6℄, some simple amplitudesfor the point-like D-branes have been 
omputed. On the other hand, the methods of [6℄were not suÆ
ient to obtain non-trivial amplitudes for the volume �lling brane.In this work we shall extend some of the te
hniques from [1℄ to 
ompute 
orrelationfun
tions of bulk and boundary operators for the volume �lling brane. The main resultsin
lude expli
it formulas (4.2,4.7,4.9) for the bulk-boundary 2-point fun
tion and (4.16-4.19) for the boundary 3-point fun
tions. The information they 
ontain is equivalentto the bulk-boundary and the boundary operator produ
t expansion, respe
tively. Ourresults provide a 
omplete solution of the boundary theory for the volume �lling brane.We shall also determine a non-trivial annulus amplitude.In order to obtain these results we set up a �rst order formalism for the volume �llingbrane. It is obtained by adding an appropriate square root of the bulk intera
tion termalong the boundary of the world-sheet. As in other theories 
ontaining fermions, takingthe square root for
es us to introdu
e an auxiliary fermion along the boundary. All thiswill be explained in great detail in se
tion 2. A perturbative expansion for 
orrelators ofthe boundary 
onformal �eld theory is set up in se
tion 3. It is employed in Se
tion 4 tosolve expli
itly the boundary GL(1j1) WZNW model with twisted boundary 
onditions.Se
tion 5 
ontains an alternative approa
h to 
omputing amplitudes that involve onlyspe
ial (atypi
al) �elds/states of the theory. It is used to prove that the GL(1j1) WZNW
ontains a spe
ial subse
tor whose 
orrelation fun
tions are independent of the level k.The se
ond approa
h is �nally employed to 
ompute a parti
ular annulus amplitude forthe volume �lling brane. The latter provides a ni
e test for the boundary state that wasproposed in [6℄. We 
on
lude with a list of open problems, mostly related to the point-likebranes for GL(1j1) and extensions to higher supergroups.2 Volume �lling brane: The 
lassi
al a
tionOur aim in this se
tion is to dis
uss the 
lassi
al des
ription of volume �lling branesin the GL(1j1) WZNW model. To begin with, we spell out the standard a
tion of the3



WZNW model with so-
alled twisted boundary 
onditions. Their geometri
 interpretationas volume �lling branes with a non-zero B-�eld is re
alled brie
y. In order to set up asu

essful 
omputation s
heme for the quantum theory later on, we shall need a di�erentformulation of the theory. As in the bulk theory, 
omputations of 
orrelations fun
tionsrequire a Ka
-Wakimoto like representation of the model [1℄. Finding su
h a �rst orderformalism for the boundary theory is not entirely straightforward. We shall see that itrequires introdu
ing an additional fermioni
 boundary �eld.2.1 The boundary WZNW modelFollowing our earlier work on WZNW models for type I supergroups, we parametrizethe supergroup GL(1j1) through a Gauss-like de
omposition of the formg = ei�� � eixE+iyN ei�+ +where E;N and  � denote bosoni
 and fermioni
 generators of gl(1j1), respe
tively. Inthe WZNW model, the two even 
oordinates x; y be
ome bosoni
 �elds X; Y and similarly,two fermioni
 �elds 
� 
ome with the odd 
oordinates ��. Let us now 
onsider a boundaryWZNW model with the a
tionSWZNW(X; Y; 
�) = � k4�i Z� d2z ��X ��Y + �Y ��X + 2eiY �
+ ��
�� ++ k8�i Z du eiY (
+ + 
�)�u(
+ + 
�) ; (2.1)where u parametrizes the boundary of the upper half plane. Variation of the a
tion leadsto the usual bulk equations of motion along with the following set of boundary 
onditions�vY = 0 ; 2�vX = eiY (
+ + 
�) �u(
+ + 
�) ;�2�v
� = 2i�u
� � (
� + 
+) �uY : (2.2)Here, we have used the derivatives �u = � + �� and �v = i(� � ��) along and perpendi
ularto the boundary. The equations (2.2) imply Neumann boundary 
onditions for all four�elds of our theory, i.e. we are dealing with a volume �lling brane. Sin
e the normalderivatives of the �elds X and 
� do not vanish, our brane 
omes equipped with a B-�eld.A more detailed dis
ussion of the brane's geometry 
an be found in our re
ent paper [6℄.4



In order to see that our boundary 
onditions preserve the full 
hiral symmetry, were
all that the holomorphi
 
urrents of the GL(1j1) WZNW model take the formJE = ik�Y ; JN = ik�X � k
��
+ eiY ;J� = �keiY �
+ ; J+ = k�
� + ik
��Y ;and similarly for the anti-holomorphi
 
urrents,�JE = �ik ��Y ; �JN = �ik ��X + k ��
� 
+ eiY ;�J+ = �keiY ��
� ; �J� = k ��
+ + ik
+ ��Y :If we plug the boundary 
onditions (2.2) into these expressions for 
hiral 
urrents, we ob-tain the gluing 
ondition JX(z) = 
 �JX(�z) for X = E;N;� and all along the boundary atz = �z. Here, the relevant gluing automorphism 
 is obtained by lifting the automorphism
(E) = �E; 
(N) = �N; 
( +) = � �; 
( �) =  + (2.3)from the �nite dimensional superalgebra gl(1j1) to the full aÆne symmetry. In [6℄ we 
alledthese gluing 
onditions twisted and showed that there is a unique brane 
orresponding tothis parti
ular 
hoi
e of 
.2.2 First order formulationComputations of bulk and boundary 
orrelators in the presen
e of twisted D-branesshall be performed in a �rst order formalism. In the bulk, it is well-known how this works[1℄. There, the bulk a
tion is built of a free �eld theory involving two additional fermioni
auxiliary �elds b� of weight �(b�) = 1 along with the original �elds X; Y and 
�,Sbulk0;
l [X; Y; 
�; b�℄ = � k4�i Z� d2z ��X ��Y + �Y ��X�� 12�i Z� d2z �b+�
+ + b� ��
�� : (2.4)We pla
ed a subs
ript `
l' on the a
tin to distinguish it from the a
tion we shall use inour path integral 
omputations later on. If the following bulk marginal intera
tion termis added to the free �eld theory,Sbulkint [X; Y; 
�; b�℄ = � 12k�i Z� d2z e�iY b�b+ (2.5)5



the equations of motion for b� read b� = k�
+ exp iY and b+ = �k ��
� exp iY so that were
over the bulk WZNW-model upon insertion into the �rst order a
tion. In extendingthis treatment to the boundary se
tor, we are tempted to add the \square root" of thebulk intera
tion as a boundary term. This is indeed what happens for the 
losely relatedAdS2 branes in AdS3 [11℄. Here, however, it 
annot possibly be the right answer, at leastnot without a proper notion of what we mean by taking the square root. In fa
t, the naivesquare root of b�b+ exp(�iY ) is something like b� exp(�iY=2), i.e. a fermioni
 operator.It makes no sense to add su
h an obje
t to the bulk theory. In order to take a bosoni
square root of the bulk intera
tion, we introdu
e a new fermioni
 boundary �eld C ofweight �(C) = 0 and add the following terms to the bulk theory,Sbdy0 [X; Y; 
�; b�; C℄ = 18�i Z du (kC�uC + 4(
+ + 
�)b+) (2.6)Sbdyint [X; Y; 
�; b�; C℄ = � 12�i Z du e�iY=2b+C : (2.7)The idea to involve an additional fermioni
 boundary �eld in the a
tion of supersymmetri
brane 
on�gurations is not new. It was initially proposed in [12℄ and has been put touse more re
ently [13, 14℄ in the 
ontext of matrix fa
torizations. Our boundary a
tionresembles the one Hosomi
hi employed to treat branes in N = 2 super Liouville theory[15℄. The full gl(1j1) boundary theory now takes the formS[X; Y; 
�; b�; C℄ = Sbulk0;
l + Sbdy0 + Sbulkint + Sbdyint = S0;
l + Sint (2.8)where S0;
l = � k4�i Z� d2z ��X ��Y + �Y ��X�� 12�i Z� d2z �
+�b+ + 
� ��b��+ 18�i Z du kC�uC ;Sint = � 12k�i Z� d2z e�iY b�b+ � 12�i Z du e�iY=2b+C : (2.9)
Here, we have performed a partial integration on the kineti
 term for the b
-system,thereby absorbing the 
ontribution b+(
�+ 
+) from the boundary a
tion. This is similarto the 
ase of AdS2 branes in AdS3 [11℄. In order to 
omplete the des
ription of the
lassi
al a
tion, we add the following Diri
hlet boundary 
ondition for the �elds b�,b+(z) + b�(�z) = 0 for z = �z : (2.10)6



If the a
tion is varied with this boundary 
ondition, we re
over the boundary equationsof motion (2.2). More pre
isely, we obtain four equations among boundary �elds. Two ofthese 
an be used to determine the boundary �elds C and b+ = �b� through X; Y and
�, C = eiY=2 (
+ + 
�) ; �2b� = k eiY=2�uC : (2.11)The four equations among boundary �elds along with the bulk equations motion for b�imply the eqs. (2.2). We leave the details of this simple 
omputation to the reader.We have now set up a �rst order formalism for the twisted brane on GL(1j1). Letus stress again that is was ne
essary to introdu
e an additional fermioni
 �eld C on theboundary of the world-sheet. Above we have motivated this new degree of freedom by ourdesire to take a bosoni
 square root of the bulk intera
tions. But there is another, moregeometri
, way to argue for the additional �eld C. We mentioned before that the �rstorder formalism for the GL(1j1) WZNW model is very similar to that for the Eu
lideanAdS3, only that the bosoni
 
oordinates 
; �
 of the latter are repla
ed by fermioni
 ones.The �rst order formalism for AdS2 branes in AdS3 was set up in [11℄ and it des
ribes abrane that is lo
alized along a 1-dimensional subspa
e of the 
�
 plane. Correspondingly,only a single 
 zero mode remains after imposing the boundary 
onditions. The brane onGL(1j1) we are attempting to des
ribe, however, is volume �lling and therefore it extendsin both fermioni
 dire
tions. Therefore, we need two independent fermioni
 zero modes.These are provided by the zero modes of the three �elds 
� and C. Note that these �eldsare related by equation (2.11).3 Volume �lling branes: The quantum theoryOur next step is to develop a 
omputational s
heme for 
orrelation fun
tions in theboundary WZNW model with twisted boundary 
onditions. We shall use the �rst orderformulation of se
tion 2.2 as our starting point and 
onsider the full WZNW model as adeformation of a free �eld theory involving the �elds X; Y; 
�; b� and the fermioni
 bound-ary �eld C. This free �eld theory will be des
ribed in more detail in the �rst subse
tion.The de�nition of vertex operators and their 
orrelation fun
tions in the WZNW model isthe subje
t of subse
tion 3.2.
7



3.1 The free theory and its 
orrelation fun
tionsOur strategy is to employ the �rst order formulation we set up in the previous se
tion.In order to do so, we have to add a few 
omments on the measures we are using in thepath integral treatment. To begin with, the supergroup invariant measure of the WZNWmodel is given by d�WZNW � DXDYD(eiY=2
�)D(eiY=2
+) : (3.1)This gets multiplied with Db+Db�DC when we pass to the �rst order formalism. But inthe following we would like to employ the standard free �eld measured�free � DXDYD
�D
+ :The two measures are related by a Ja
obian of the form (see e.g. [16℄ for similar 
ompu-tations) d�WZNW = �sdet(GabeiY �ae�iY �b)��1 d�free= e 18� R dudv pG(�Gab�a Y �bY+iRY )+ 18� R du ipGKY d�free: (3.2)Here, Gab is the metri
 on the world-sheet, R = �a�a logG and K = 12i�v logG are itsGaussian and geodesi
 
urvature, respe
tively. These two quantities feature in the Gauss-Bonnet theorem for surfa
es with boundary,14� Z� dudv pGR+ 14� Z du pGK = �(�) = 1 ; (3.3)where �(�) = 1 is the Euler 
hara
teristi
 of the dis
. We 
an now pass to the upper halfplane again where all 
urvature is 
on
entrated at in�nity. The e�e
t of the 
urvatureterms in the WZNW measure is to insert a ba
kground 
harge QY = �(�)=2 = 1=2 for the�eld Y at in�nity. In addition, the measure (3.2) also 
ontains a term that is quadrati
in Y . We simply add this to the free part of our a
tion, i.e. we de�neS0 = � 14�i Z� d2z �k �X ��Y + k �Y ��X � �Y ��Y �� 12�i Z� d2z �
+�b+ + 
� ��b��+ 18�i Z du kC�uC ; (3.4)Note, that the new term in the a
tions modi�es the formula for the 
urrent JN by addingan additional �Y and similarly for the anti-holomorphi
 partner.8



In our path integral we now integrate with the free �eld theory measure d�free over all�elds subje
t to the boundary 
ondition b+ + b� = 0. Con�gurations for the other �eldsare not 
onstrained in the path integral. In the free quantum �eld theory, they satisfythe linear (\Neumann") boundary 
onditions�vY = 0 ; �vX = 0 ;�uC = 0 ; 
+ + 
� = 0 : (3.5)These equations are satis�ed in all 
orrelation fun
tions or, equivalently, as operatorequations on the state spa
e of the free �eld theory. Note that, a

ording to the lastequation, the zero modes of 
+ and 
� 
oin
ide in our free boundary theory. The ne
essaryse
ond fermioni
 zero mode is exa
tly what is provided by the �eld C.Arbitrary 
orrelation fun
tions in the free �eld theory 
an now easily be 
omputedwith the help of Wi
k's theorem. All we need to use is the following list of operatorprodu
t expansions X(z; �z)Y (z; �z) � 1k ln jz � wj2 + 1k ln jz � �wj2
�(z)b�(w) � 1w � z 
+(�z)b+( �w) � 1�w � �z
�(z)b+( �w) � 1z � �w 
+(�z)b�(w) � 1�z � wC(v)C(u) � 2�ik sign(v � u) : (3.6)
Let us remark that a non-vanishing 
orrelation fun
tion in the free �eld theory requiresthat the �elds 
 outnumber the insertions of b by one. Furthermore, C must be insertedan odd number of times. We also re
all that there is a non-vanishing ba
kground 
hargeQY = 1=2 for the �eld Y . On the disk, the 
orresponding U(1) 
harges of all ta
hyonvertex operators must add up to QY �(�) = 1=2 in order for the 
orrelator to be non-zero.These rules imply that the 1-point fun
tion of the bulk identity �eld vanishes. In orderto normalize the va
uum expe
tation value, we require thath (
�(z)� 
+(�z)) C(u) eieX(z;�z)+inY (z;�z) i0 = Æ(e)Æ(n� 1=2) : (3.7)Note that the produ
t of �elds in bra
kets is the simplest expression that meets all ourrequirements: The U(1)Y 
harge of the ta
hyon vertex operators is m = 1=2, we insertedone 
� and no �eld b� and multiplied with a single C in order to make the total insertionbosoni
 again. 9



3.2 Correlation fun
tions in boundary WZNW modelNow that we have learned how to perform 
omputations in the free �eld theory de-s
ribed by the a
tion (3.4), we would like to add our intera
tion termSint = � 12k�i Z� d2z e�iY b�b+ � 12�i Z du e�iY=2b+C : (3.8)The idea is to 
al
ulate 
orrelators of the full boundary WZNW model perturbatively, i.e.by expanding the exponential of the intera
tion in a power series. Even though there is apriori an in�nite number of terms to be 
onsidered, only �nitely many 
ontribute to ourperturbative expansion. This is very similar to what has been observed in the bulk model[1℄. Before we 
an spell out pre
ise formulas for the quantities we want to 
ompute, weneed to explain how to asso
iate free �eld theory vertex operators to the �elds of theintera
ting WZNW model. The latter are in one-to-one 
orresponden
e with fun
tionson the supergroup GL(1j1) and they may be 
hara
terized by their behavior with respe
tto global gl(1j1) transformations. We shall �rst re
all from [1℄ how this works for bulk�elds.Let us begin by 
olle
ting a few basi
 fa
ts about the spa
e of fun
tions on the su-pergroup GL(1j1) [1℄. As for any other group or supergroup,  L2 
arries two graded-
ommuting a
tions of the Lie superalgebra gl(1j1). These are generated by the followingright and left invariant ve
tor �eldsRE = i�x ; RN = i�y + ���� ; R+ = �e�iy�+ � i���x ; R� = ��� ;LE = �i�x ; LN = �i�y � �+�+ ; L� = e�iy�� � i�+�x ; L+ = �+ : (3.9)A typi
al irredu
ible multiplet for gl(1j1) is 2-dimensional. Hen
e, typi
al irredu
iblemultiplets of the 
ombined left and right a
tion are spanned by four fun
tions in thesupergroup. As in [1℄ we shall 
ombine these fun
tions into a 2� 2 matrix of the form'h�e;�n+1i = eiex+iny � 1 ���+ e�1e�iy + �+�� � (3.10)The rows span the typi
al irredu
ibles h�e;�n+ 1i of the right regular a
tion. Columnstransform in the representations he; ni of the left regular a
tion. Note that 'he;ni is onlywell de�ned for e 6= 0, i.e. in the typi
al se
tor of the minisuperspa
e theory.10



Following [1℄, the bulk vertex operators in the free �eld theory are modelled after thematri
es 'he;ni. More pre
isely, let us introdu
e typi
al bulk operators throughVh�e;�n+1i(z; �z) = eieX+inY � 1 
�
+ 
+
� � (3.11)Sin
e the weight of the fermioni
 �elds 
� vanishes, all four �elds in this matrix possessthe same 
onformal dimension,�(e;n) = e2k (2n� 1 + ek ) : (3.12)Note that one of the terms in the lower left 
orner of the minisuperspa
e matrix 'he;nihas no analogue on the vertex operator Vh�e;�n+1i. We 
onsider this term as `subleading'.It is re
onstru
ted when we build 
orrelation fun
tions of the intera
ting WZNW model(see [1℄ and [17℄ for more details).Let us now repeat the previous analysis for the boundary �elds. Sin
e our twistedbrane is volume �lling, the relevant spa
e of minisuperspa
e wave fun
tions is again thespa
e  L2 of all fun
tions on the supergroup GL(1j1). But this time, it 
omes equipped witha di�erent a
tion of the Lie superalgebra gl(1j1). In fa
t, minisuperspa
e wave fun
tionsas well as boundary vertex operators are now distinguished by their transformation undera single twisted adjoint a
tion ad
X = RX+L
X of GL(1j1) on  L2. Expli
itly, the generatorsof gl(1j1) transformations are given byad
E = 2i�x ; ad
N = 2i�y + �+�+ + ���� ;ad
� = �+ � �� ; ad
+ = �e�iy(�� + �+) + i(�+ � ��)�x : (3.13)Under the twisted adjoint a
tion of gl(1j1) on  L2, ea
h typi
al multiplet appears with two-fold multipli
ity [6℄. On
e more, we propose to assemble the 
orresponding four fun
tionsinto a 2� 2 matrix of the form h�2e;�2n+1i = eiex+iny � 1 �+ � ��� 2e�1e�iy=2 + (�+ � ��)� � (3.14)where we introdu
ed the shorthand � = eiy=2(��+�+). The reader is invited to 
he
k thatthe two rows of this matrix ea
h span the 2-dimensional typi
al irredu
ible h�2e;�2n+1iunder the twisted adjoint a
tion (3.13) of the superalgebra gl(1j1).Boundary vertex operators are modelled after the matri
es  h�2e;�2n+1i more or lessin the same way as in the 
ase of bulk �elds,Uh�2e;�2n+1i(u) = eieX+inY � 1 
+ � 
�C (
+ � 
�)C � : (3.15)11



Again, we dropped the y-dependent term in the lower right 
orner of the matrix (3.14).Eventually, we will see how this term is re
overed in boundary 
orrelation fun
tions.The main new aspe
t of the pres
ription (3.15), however, 
on
erns the appearan
e of thefermioni
 boundary �eld C that we inserted in pla
e of the fun
tion �. This substitutionis motivated by the 
lassi
al equation of motion (2.11).After this preparation we are able to spell out how 
orrelation fun
tions of bulk andboundary �elds 
an be 
omputed for the intera
ting WZNW model. More pre
isely, wede�ne,* mY�=1 �he� ;n�i(z�; �z�) m0Y�=1 	he�;n�i(u�)+ =1Xs=0 (�1)ss! * (Sint)s mY�=1Vhe� ;n�i(z�; �z�) m0Y�=1Uhe�;n�i(u�)+0 : (3.16)Here, Sint is the intera
tion (3.8) and all 
orrelation fun
tions on the right side are tobe 
omputed in the free �eld theory (3.4). The relevant vertex operators V and U wereintrodu
ed in equations (3.11) and (3.15) above. For later use we also note that bosoni

orrelators 
an be determined by means of the following standard formula,* mY�=1V(e� ;n�)(z� ; �z�) m0Y�=1V(e�;n�)(u�)+ = Æ(Pm�=1n� +Pm0�=1n� + 12)Æ(Pm�=1e� +Pm0�=1e�)� Y�>� jz� � z�j�2��� Y�>� jz� � �z�j�2���Y�;� jz� � u�j�4��� Y�>� ju� � u�j�4��� (3.17)where ��� = �n� e�k � n� e�k � e�e�k2and V(e� ;n�) = exp(ieX+inY ) are bosoni
 vertex operators. As in the bulk theory it is easyto see that the all expansions (3.16) trun
ate after a �nite number of terms. In fa
t, theinserted bulk and boundary vertex operators on the right hand side of eq. (3.16) 
ontainat most 2m+m0 fermioni
 �elds 
�. Sin
e ea
h intera
tion term from Sint 
ontributes atleast one insertion of b�, we 
on
lude that terms with s � 2m +m0 vanish.4 Solution of the boundary WZNW modelA boundary 
onformal �eld theory is uniquely 
hara
terized by the bulk-boundaryand the boundary operator produ
t expansions. We shall now employ the perturbative12




al
ulational s
heme we developed in the previous se
tion in order to determine thesedata. After a short warm-up with the dis
ussion of bulk 1-point fun
tions, we determinethe bulk-boundary 2-point fun
tion in the se
ond subse
tion. The 3-point fun
tion ofboundary �elds is addressed in subse
tion 4.3.4.1 Bulk 1-point fun
tionThe bulk 1-point fun
tion is the simplest non-vanishing quantity in a boundary 
on-formal �eld theory. It 
ontains the same information as the boundary state. For volume�lling branes, the boundary state was determined in our previous work [6℄. Our �rst aimnow is to reprodu
e our old result through our new perturbative expansion.The 1-point fun
tion of a typi
al bulk �eld �he;ni is 
omputed by inserting a singlevertex operator (3.11) into the expansion (3.16). Sin
e bulk vertex operators 
ontainat most two �elds 
, the only non-zero terms 
an 
ome from s = 0; 1. The term withs = 0 
ontains no insertion of the intera
tion and it vanishes identi
ally. So, let us seewhat happens for s = 1. In this 
ase, only the insertion of the boundary intera
tion 
an
ontribute. The results ish�he;ni(z; �z)i = i2� Z du he�iY (u)=2b+(u)C(u)Vhe;ni(z; �z)i= E11Æ(e)Æ(n� 1) 14�i Z du � 1u� �z � 1u� z� = Z d� 'he;ni :Here, E11 is the elementary matrix whi
h has zeroes everywhere ex
ept in the lower right
orner. Note that the only �eld with non-vanishing 1-point fun
tion has 
onformal weight� = 0. Hen
e, there is no dependen
e on the insertion point (z; �z). In the last line wehave expressed the numeri
al result as an integral of the matrix valued fun
tion (3.10)over the supergroup GL(1j1). The integration is performed with the Haar measured� = 2�1e�iydxdyd�+d�� : (4.1)Sin
e the Haar measure is gl(1j1) invariant, the integral of 'he;ni is an intertwiner fromhe; ni 
 he; ni to the trivial representation. This proves that the expe
tation value we
omputed has the desired transformation behavior.
13



4.2 Bulk-boundary 2-point fun
tionNow we want to 
ompute the full bulk-boundary 2-point fun
tion. It is quite usefulto determine the general form of this 2-point fun
tion �rst before we enter the detailed
al
ulations. Let us suppose for a moment that our 
al
ulations were guaranteed to givea gl(1j1) 
ovariant answer. Then it is 
lear that the bulk-boundary 2-point fun
tion 
anbe written ash	h2e0;2n0i(0) �h�e;�n+1i(iy;�iy)i = X�=0;1C�(e)h h2e0;2n0i 'h�e;�n+1ii�jyj2�� (4.2)where �0 = 2ek �2n� 1 + ek� and �1 = 2ek �2n� 12 + ek� : (4.3)The stru
ture 
onstants C�(e) are not determined by the gl(1j1) symmetry. We will
al
ulate them perturbatively below (see eqs. (4.7) and (4.9) below). The expressions inthe numerator on the right hand side are 
ertain gl(1j1) intertwiners whi
h are de�ned byh h2e0;2n0i 'h�e;�n+1ii =Z d� h2e0;2n0i �h�e;�n+1i =: X�=0;1h h2e0;2n0i 'h�e;�n+1ii� (4.4)where h h2e0;2n0i 'h�e;�n+1ii� = Æ(e� e0)Æ(n� n0 � �=2) G� (4.5)is the part of the full integral that 
ontains the fa
tor Æ(n�n0� �=2). Understanding theprevious formulas requires some input from the representation theory of gl(1j1) (see e.g.[1℄ for all ne
essary details). Let us start with the matrix 'h�e;�n+1i. Under the twistedadjoint a
tion of gl(1j1) this multiplet transforms in the tensor produ
th�e;�n + 1i 
 h�e;�n + 1i = h�2e;�2n + 2i � h�2e;�2n + 1i :Hen
e, there exist only two matri
es  h2e0;2n0i for whi
h the integral (4.4) does not vanish.These are the matri
es  h2e;2ni and  h2e;2n�1i. The two non-vanishing terms are used tode�ne the the symbols (4.5). A similar analysis 
an now be repeated for the �elds in theWZNW model. We 
on
lude immediately, that the 2-point fun
tion 
an only have two
ontributions. By gl(1j1) symmetry, these must be proportional to the intertwiners (4.5).The gl(1j1) symmetry, however, does not �x an overall 
onstant C� that 
an dependon the parameters of the �elds. Finally, the exponents �� are simply determined bythe 
onformal dimensions of bulk and boundary �elds. Let us point out that the entiredis
ussion leading to the expression (4.2) is based on the global gl(1j1) symmetry. Sin
e14



we have not yet shown that our perturbative 
omputations respe
t the a
tion of gl(1j1)it will be important to verify that the form of the 2-point fun
tion 
omes out right.In our perturbative 
omputation, there are at most three �elds 
� inserted and hen
ewe only have to determine the expansion terms for s = 0; 1; 2. Contributions to the � = 0term in the 2-point fun
tion (4.2), i.e. to the 
orrelator with the boundary �eld 	h2e;2ni,
an only 
ome from s = 0. In fa
t, insertions of an intera
tion term - bulk or boundary- would violate the 
onservation of Y -
harge. Computation without any insertion of anintera
tion are easily performed, e.g.hU11h2e0;2n0i(0)V 00h�e;�n+1i(iy;�iy)i = �Æ(n� n0) Æ(e� e0)jyj�4e=k(2n�1=2+e=k) (4.6)Here, we have introdu
ed the notation U �0� and V �0� for matrix elements. The �eldU11h2e0;2n0i, for example, denotes the lower right 
orner et
. The 
omputation of the as-so
iated integral (4.5) with � = 0 is equally simple and allows us to read o� thatC0(e; n) = 1 : (4.7)Let us note that there are other 
ombinations of bulk and boundary �elds that 
an havea non-zero 2-point fun
tion without any insertion of intera
tions. In all those 
ases onemay repeat the above 
al
ulation to �nd the same 
oeÆ
ient C0 = 1, in agreement withgl(1j1) symmetry.Next we would like to address the 
oeÆ
ient C1 in the expression (4.2). Y -
harge
onservation implies that its only 
ontributions are asso
iated with a single insertion ofthe boundary intera
tion. This time, the 
omputations are slightly more involved. As anexample we treat the following 2-point fun
tionhU00h2e0;2n0i(0)V 11h�e;�n+1i(iy;�iy)Sbdyint i == �Æ(n� n0 � 12)Æ(e� e0)jyj4 ek (2n�1+ ek ) y2� Z du juj2�ju2 + y2j�+1= �Æ(n� n0 � 12)Æ(e� e0)jyj4 ek (2n�1+ ek ) 12� Z du j1 + u2j���1= �Æ(n� n0 � 12)Æ(e� e0)2jyj4 ek (2n�1+ ek ) 2�2��(2 ek + 1)�2( ek + 1)= �Æ(n� n0 � 12)Æ(e� e0)2jyj4 ek (2n�1+ ek ) �( ek + 12)p��( ek + 1)
(4.8)
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The se
ond step is the substitution u! y=u, then we 
an apply (A.8) whi
h is a spe
ial
ase of the integral formula in [11℄. The last step is the Euler doubling formula of theGamma fun
tion. Comparison with the asso
iated 
ontribution to the minisuperspa
eintegral (4.4) gives C1(e) = �(e=k + 1=2)p��(e=k + 1) : (4.9)On
e more, one 
an perform similar 
omputations with a single insertion of a boundaryintera
tion for other pairs of bulk and boundary �elds. All these 
al
ulations lead to thesame result for C1, as predi
ted by gl(1j1) 
ovarian
e.At this point, we have 
omputed all the data we were interested in. But there aremore 
ontributions to the perturbative expansion of the bulk-boundary 2-point fun
tion.As we stated above, non-vanishing 
ontributions arise from s = 0; s = 1 and s = 2. Wehave 
ompletely determined the s = 0 term. At s = 1, however, our attention so farwas restri
ted to the boundary intera
tion. The other term with a single bulk insertion
an also 
ontribute sin
e it 
ontains a produ
t of only two b�. Similarly, at s = 2, twoinsertions of the boundary intera
tion 
an lead to a non-vanishing result. Produ
ts ofbulk and boundary intera
tions or two bulk intera
tions, on the other hand, involve toomany �elds b� and vanish by simple zero mode 
ounting. Hen
e, we are left with two moreterms to 
al
ulate, those arising from a produ
t of two boundary intera
tions Sbdyint andfrom a single bulk intera
tion Sbulkint . Y -
harge 
onservation implies that the additionalterms involve a fa
tor Æ(n� n0 � 1). Su
h a term, if present, would be in
onsistent withthe global gl(1j1) symmetry. Our task therefore is to show that the sum of the twoaforementioned 
ontributions vanishes.Let us begin with the 
omputation of the term that arises from a single insertion ofthe bulk intera
tion,hU11h2e;2n�2i(0)V 11h�e;�n+1i(iy;�iy) Sbulkint i �� y�2 ek (4n�3+2 ek ) y3k� ZUHP d2z jz2 + y2j�2( ek+1)jz2j2 ek�1(z � �z)= � y�2 ek (4n�3+2 ek ) 1ep� �(2e=k + 1=2)�(2 ek + 1) (4.10)
We have been a bit sloppy here by setting the parameters the parameters 2e0 = 2e and2n0 � 2 to the values at whi
h the expe
tation value has a non-vanishing 
ontribution.Stri
tly speaking, this quantity is divergent, but the divergen
e is an overall (volume)16



fa
tor Æ(0) whi
h we suppressed 
onsistently. In the �rst equality we simply insertedthe relevant free �eld 
orrelator. After the substitution z ! y=z, the integral over theinsertion point u of the boundary intera
tion 
an be evaluated using an integral formulafrom [11℄ (see also (A.7)). Finally, the answer is simpli�ed by means of Euler's doublingformula for Gamma fun
tions.Next we turn to the 
ontributions 
oming from two boundary intera
tions. Sin
ethe 
orresponding free �eld 
orrelator is slightly more involved in this 
ase, we state anexpression for the fermioni
 
ontribution before going into the a
tual 
omputation,hb+(u1)C(u1)b+(u2)C(u2)(
+ � 
�)(0)C(0)
+(�iy)
�(iy)iF == �4�y3(u2 � u1)u1u2(u21 + y2)(u22 + y2)hsign(u2 � u1)� sign(u2) + sign(u1)i : (4.11)This result is inserted to 
omputehU11h2e;2n�2i(0)V 11h�e;�n+1i(iy;�iy) �Sbdyint �2i �= y�2 ek (4n�3+2 ek ) y3�k Z du1du2 ju21 + y2j�e=k�1ju22 + y2j� ek�1ju21j ek�1ju22j ek�1(u2 � u1)hsign(u2 � u1)� sign(u2) + sign(u1)i= y�2 ek (4n�3+2 ek ) 1�k Z dx1dx2 jx21 + 1j� ek�1jx22 + 1j� ek�1jx1 � x2j= y�2 ek (4n�3+2 ek ) 2ep� �(2 ek + 12)�(2 ek + 1)
(4.12)

The integral in the fourth line is again evaluated with a spe
ial 
ase of the integral formulaof Fateev and Ribault (A.9). Putting the results of eqs. (4.10) and (4.12) together wearrive at hU11h2e0;2n0i(0)V 11h�e;�n+1i(iy;�iy)�Sbulkint + 12! �Sbdyint �2� i = 0 ; (4.13)in agreement with gl(1j1) 
ovarian
e of the 2-point fun
tion. Thereby, we have nowestablished the formula (4.2) through our perturbative 
omputations.Before we leave the subje
t of bulk boundary 2-point fun
tions, we would like to makea few 
omments on the 
ases when e=k is an integer multiple of 1=2. Consider insertinga bulk vertex operator with e momentum e = �mk � k=2� k" and sending " to zero. In17



the limit, the se
ond term of eq. (4.2) develops a logarithmi
 singularity,C1(�mk � k=2� k�)jyj��1 = (�1)mm!�(�m + 1=2)jyj2� (Z + ~� ln jyj+ o(�))where Z = 1� + 	(�m)�	(�m + 1=2) ;� = �(2m + 1)(2n�m� 1) : (4.14)
and ~� = 4n � 4m � 3. Here, 	 is the usual Di-gamma fun
tion. The form of our bulk-boundary 2-point fun
tion (4.14) resembles a similar expression in [18℄. A link betweenboundary 
orrelation fun
tions of symple
ti
 fermions and the 
orresponding 
orrelatorsin the GL(1j1) WZNW model may be established following ideas in [19℄.4.3 Boundary 3-point fun
tionsThe se
ond obje
t of interest for us is the boundary 3-point fun
tion. Before we getthere, we have to turn our attention to an important detail that we glossed over in theprevious subse
tion. We re
all that our 2� 2 matri
es 	he;ni; e 6= kZ; of boundary �elds
ontain two irredu
ible multiplets he; ni under the unbroken global gl(1j1) symmetry.These two multiplets have opposite fermion number, i.e. the state with lower eigenvalueof N is bosoni
 for one of them and fermioni
 for the other. In general, the two multipletsare allowed to have di�erent 
ouplings to the other �elds in the theory. When we studiedbulk-boundary 2-point fun
tion, only one of the two multiplets from ea
h of the 2 � 2matri
es 	h2e;2ni and 	h2e;2n�1i 
ould have a non-vanishing overlap with the bulk �eld�h�e;�n+1i, simply be
ause of fermion number 
onservation. Hen
e, the bulk-boundary 2-point fun
tions were parametrized by two non-vanishing stru
ture 
onstants C�(e) ratherthan four. For boundary 3-point fun
tions, however, the distin
tion be
omes important.Consequently, we introdu
e the symbolsU0h�2e;�2n+1i(u) = eieX+inY ( 1 ; 
+ � 
� )U1h�2e;�2n+1i(u) = eieX+inY (C; (
+ � 
�)C ) (4.15)for the �rst and se
ond row of the matrix (3.15). The same notation is used for the rowsof the matri
es  of fun
tions and 	 of boundary �elds.Let us now begin with the 3-point fun
tion of three �elds from the �rst multiplet 	0.These a
quire 
ontributions ex
lusively from a single insertion of the boundary intera
tion.18



A non-vanishing 
orrelator requires that the parameters ei of the three �elds sum up to~e = e1 + e2 + e3 = 0 and similarly that ~n = n1 + n2 + n3 = 1. Using the integral formulasfrom Appendix A, the 3-point fun
tion of �elds 	0 in the regime 0 < x < 1 is found to beh	0�1h�2e1;�2n1+1i(0)	0�2h�2e2;�2n2+1i(1)	0�2h�2e3;�2n3+1i(x)i = Æ(~e) Æ(~n� 1) Æ(~�� 2)�� x2�13(1� x)2�23 �i s(�1) + s(�2) + s(�3)s(�1)s(�2)s(�3)�(�1 + �1)�(�2 + �2)�(�3 + �3) (4.16)where we de�ned the parameters �i by �i = 2ei=k and introdu
ed the short-hands s(z)and ~� for s(z) = sin(�z) and ~� = P �i. The 
onformal weights are given by�ij = (ni � 1=2)�j + (nj � 1=2)�i + �i�j :In the limit k ! 1 the fun
tion s(�i) 
an be approximated by s(�) � 2�ei=k and theentire 3-point fun
tion is seen to vanish due to the 
onservation of e momentum. This is
onsistent with the minisuperspa
e theory. In fa
t, the 
orresponding integral of fun
tionson our brane is easily seen to vanish,h 0�1h�2e1;�2n1+1i 0�2h�2e2;�2n2+1i 0�2h�2e3 ;�2n3+1ii = 0 :This is so be
ause integration with the Haar measure needs a produ
t of two di�erentfermioni
 zero modes in order to give a non-zero result. Our fun
tions  0, however, only
ontain the zero mode �+ � ��.Let us now move on to dis
uss the 3-point in the 
ase where a single �eld fromthe se
ond multiplet 	1 is inserted. Contributions to su
h 
orrelators arise only fromthe leading term s = 0 of the perturbation series (see below). The result is thereforestraightforward to write downh	0�1h�2e1;�2n1+1i(0)	0�2h�2e2;�2n2+1i(1)	1�3h�2e3;�2n3+1i(x)i == Æ(~e) Æ(~n� 1=2) Æ(~�� 1) x2�13(1� x)2�23 : (4.17)This 
oupling in independent of the level k and it mat
hes the minisuperspa
e answerwhi
h is non-zero be
ause the multiplet  1 
ontains both fermioni
 zero modes.The most interesting 3-point 
oupling appears when we insert two �elds from these
ond multiplet 	1. On
e more, non-vanishing terms 
an only arise from the insertion ofa single boundary intera
tion. They 
an be worked out with the help of integral formulas19



in Appendix A,h	0�1h�2e1;�2n1+1i(0)	1�2h�2e2;�2n2+1i(1)	1�3h�2e3;�2n3+1i(x)i = Æ(~e) Æ(~n� 1) Æ(~�� 2) �� 2�2ik x2�13(1� x)2�23 s(�1)� s(�2)� s(�3)s(�1)s(�2)s(�3)�(�1 + �1)�(�2 + �2)�(�3 + �3) : (4.18)Note that the fa
tor � 1=k in the �rst term of the se
ond row is ne
essary in order for thewhole expression to s
ale to a �nite value as we send the level k to in�nity. The expressionthat arises in this limit 
an be 
he
ked easily in the minisuperspa
e theory.There remains one more 
ase to 
onsider, namely the 3-point fun
tion for three �eldsfrom the se
ond multiplet 	1. It is given byh	1�1h�2e1;�2n1+1i(0)	1�2h�2e2;�2n2+1i(1)	1�3h�2e3;�2n3+1i(x)i == Æ(~e) Æ(~n� 1=2) Æ(~�� 1)2�k x2�13(1� x)2�23 : (4.19)As in the previous formula (4.18), the result 
ontains a fa
tor 1=k. Consequently, the3-point 
oupling on the right hand side of eq. (4.19) vanishes at k � 1, in agreementwith the asso
iated minisuperspa
e 
omputation.The last result (4.19) was obtained without any insertion of bulk or boundary in-tera
tions, though naively one might expe
t to see 
ontributions from one bulk or twoboundary insertions. A similar 
omment applies to the se
ond 
ase (4.17) above. It isindeed true that the insertion of Sbulkint or (Sbdyint )2 both lead to non-vanishing expressions.But, as in the 
ase of the bulk boundary 2-point fun
tions, their sum vanishes, i.e.hU �01�1he1;n1i(0)U �02�2he2;n2i(1)U �03�03he3;n3i(u) �Sbulkint + 12! �Sbdyint �2�i = 0 :The result is trivially ful�lled for ~�0 = 0; 2. It requires rather elaborate 
omputationswhen ~�0 = 1; 3. These 
an be performed with the help of the integral formulas (A.3-A.5)we list in Appendix A.Before 
losing this se
tion we would like to add two more 
omments. The �rst one
on
erns the logarithmi
 singularities that appear in the 3-point fun
tions whenever oneof the parameters 2ei is an integer multiple of k. If we 
onsider joining two open stringswith e momentum e1 = e � "=2 and e2 = �e � "=2, for example, and send " to zero, we
20



obtainh	00h�2e+";�2n1+1i(0)	11h2e+";�2n2+1i(1)	11h�2";�2n3+1i(u)i �� u2�(1� u)�2� Æ(~n� 1) �Z +R(�) + A23 ln j1� uj+ A13 ln juj+ o(")�where Z = 1" + 4"
k ; R(�) = �2�1 + 
(�)ks(�)A13 = 1k (2n1 � n3 � 1=2 + 2�) ; A23 = 1k (2n2 � n3 � 1=2� 2�) (4.20)
and � = �(n3 � 1=2). The fun
tion 
(�) stands for 
(�) = 
os(��) and 
 is the Euler-Mas
heroni 
onstant. In the limit "! 0, the 
onstant Z diverges. This divergen
y 
an beregularized by adding to 	11 an appropriate �eld from the so
le of the involved atypi
almultiplet. In the following, we shall assume that Z has been set to zero.Our �nal 
omment deals with an interesting quantum symmetry of the boundary 3-point fun
tions. As in the bulk se
tor [1℄, the boundary 3-point fun
tion is periodi
 undershifts of the e-momentum, in the following sense,h	�1�01h�2e1;�2n1+1i(0)	�2�02h�2e2;�2n2+1i(1)	�3�03h�2e3;�2n3+1i(x)i =(1� u)2n3�1u1�2n3h	�2�02h�2e1+k;�2n1i(1)	�1�01h�2e2�k;�2n2+2i(0)	�3�03h�2e3;�2n3+1i(x)i :Further shifts by multiples of �k 
an also be 
onsidered, but ne
essarily involve insertingdes
endants of the ta
hyon vertex operators. Our observation proves that the boundaryGL(1j1) model for volume �lling branes possesses spe
tral 
ow symmetry. Shifts byinteger multiples of the level k are a symmetry of the aÆne representation theory. Inprin
iple, this symmetry 
ould be broken by the boundary stru
ture 
onstants. Theprevious formula asserts that, like in the bulk se
tor, the boundary operator produ
texpansions preserve the spe
tral 
ow symmetry. The same is true for the bulk-boundaryoperator produ
t expansions.5 Correlation fun
tions involving atypi
al �eldsThroughout the last few se
tions we have learned how to 
ompute 
orrelation fun
tionsof bulk and boundary ta
hyon vertex operators for a volume �lling brane in the GL(1j1)WZNW model. We now want to add a few 
omments on a parti
ular set of 
orrelationfun
tions that are essentially not e�e
ted by the intera
tion and hen
e 
an be derived21



without 
umbersome 
al
ulations. These will in
lude a non-vanishing annulus amplitude.We shall use the latter to perform a highly non-trivial test on the proposed boundarystate of volume �lling branes [6℄.5.1 Correlators for spe
ial atypi
al �eldsIn the previous se
tions we developed a �rst order formalism for 
omputations of
orrelation fun
tions in the GL(1j1) WZNW model. Very spe
ial 
orrelators, however,
an also be 
omputed in the original formulation. To begin with, let us explain the mainidea at the example of bulk 
orrelators. We re
all that the bulk a
tion of the GL(1j1)model is given bySbulk = � k4�i Z� d2z ��X ��Y + �Y ��X + 2eiY �
+ ��
�� (5.1)The path integral is evaluated with the gl(1j1) invariant measure (3.1) on the spa
e of�elds. A glan
e at the intera
tion term of the WZNW model and the measure suggeststo introdu
e the new 
oordinates �� = eiY=2
�. After this substitution, the path integralmeasure is the 
anoni
al one,d�WZW � DXDYD��D�+ : (5.2)Our bulk a
tion Sbulk = S0 +Q, on the other hand, splits naturally into a free �eld theoryS0 and an intera
tion term Q whereS0 = � k4�i Z� d2z ��X ��Y + �Y ��X + 2��+ �����Q = k4�i Z� d2z �i�+ �����Y + i��+�� ��Y + �+���Y ��Y � : (5.3)Due to the 
ompli
ated form of Q, treating the WZNW model as a perturbation bythe intera
tion terms in Q is not too useful for most pra
ti
al 
omputations. Undervery spe
ial 
ir
umstan
es, however, the split into S0 and Q allows for a very interesting
on
lusion. Observe that ea
h term in the intera
tion Q 
ontains at least one derivative�Y or ��Y . In our free �eld theory S0, the only non-vanishing 
ontra
tions involvingderivatives of Y are those with the �eld X. Hen
e, we 
an simply ignore the presen
eof Q for all 
orrelation fun
tions of ta
hyon vertex operators that do not involve X. Inother words, 
orrelation fun
tions of �elds without any X-dependen
e are given by their22



free �eld theory expressions! This had already been observed in the results of [1℄. Oursplit of the a
tion in S0 and Q provides a rather simple and general explanation. Let usstress again that this split is not helpful for any other 
omputation involving more generi
typi
al �elds.It is 
lear that all this is not restri
ted to the bulk theory. In fa
t, we 
an use thesame substitution for the boundary terms of the a
tion (2.1),S�0 = k8�i Z� du (�+ + ��)�u(�+ + ��) : (5.4)Sin
e S�0 is quadrati
 in the �elds ��, it gets added to the free bulk a
tion S0, i.e. we nowwork with a free �eld theory on the upper half plane whose a
tion is given by S0 + S�0.There is no additional boundary 
ontribution to the bulk intera
tion Q. In the free theory,the �elds �� satisfy Neumann gluing 
onditions of the following simple form,���(z; �z) = �����(z; �z) for z = �z : (5.5)The gluing 
ondition implies that fermions of the free boundary theory are 
ontra
ted asfollows, ��(z; �z)�+(w; �w) � 1k ln jz � wj2 ;��(z; �z)��(w; �w) � 1k ln(�z � w)� 1k ln( �w � z) : (5.6)The bosoni
 �elds X; Y also obey simple Neumann boundary 
onditions so that theevaluation of 
orrelators in the free �eld theory S0 + S�0 is straightforward. Taking theintera
tion Q into a

ount is a diÆ
ult task unless none of the vertex operators in the
orrelation fun
tion 
ontain the �eld X. If all �eld are X independent, then the 
orrelatoris simply given by the free �eld theory formula, just as in the bulk theory above.One may apply the observation in the previous paragraph to the evaluation of bound-ary 3-point fun
tions of three atypi
al �elds for the volume �lling brane. Note that wedid not spell out a formula for this parti
ular 
orrelator before. In prin
iple, it 
an be
omputed in the �rst order formalism, but the 
orresponding 
al
ulation requires some
are. Our new approa
h allows to write down the result right away. We shall dis
ussanother interesting appli
ation of our new approa
h to atypi
al 
orrelation fun
tions inthe next subse
tion. Let us mention in passing that we expe
t similar results to hold forthe 
ompletely atypi
al se
tors in all GL(N jN) and PSL(N jN) WZNW models. Thiswill be dis
ussed in more detail elsewhere. 23



5.2 Twisted boundary state and modular bootstrapIn our previous paper [6℄, we proposed a formula for a boundary state of volume �llingbrane on GL(1j1). The usual annulus amplitude for this boundary state was trivially zero,in agreement with the observation that open string states are perfe
tly paired. In fa
t,as we have mentioned at various pla
es throughout this note, for ea
h multiplet he; ni ofboundary �elds there exists one with opposite parity. Contributions of su
h pairs to theboundary partition fun
tion 
an
el ea
h other, leading to a vanishing boundary partitionfun
tion.In order to 
onstru
t a non-trivial quantity on the annulus, we need to insert somefermioni
 zero modes, see e.g. [20℄ for similar tests in the simpler b
 ghost system. Previ-ously, we have not been able to 
ompute su
h quantities in the GL(1j1) WZNW model.We 
an now �ll this gap! Let us anti
ipate that only atypi
al bulk �elds 
ouple to thevolume �lling brane. Hen
e, if we insert fermioni
 zero modes through some atypi
al bulk�eld, the entire amplitude is built from atypi
al terms and should be 
omputable througha simple free �eld formalism, as explained in the previous subse
tion. Let us see now howthe details of this 
al
ulation work out.To begin with, let us review the 
onstru
tion of the boundary state j
i for the volume�lling brane. With the help of our free �eld realization, the formula be
omes quite expli
it.We shall start from the boundary state j
i0 of the free theory. This state 
learly fa
torizesinto a produ
t of a bosoni
 j
; Bi0 and a fermioni
 j
; F i0 
ontribution. The latter twoobey the following gluing 
onditions(Xn + �X�n) j
; Bi0 = (Yn + �Y�n) j
; Bi0 = 0 (5.7)and (��n � ����n) j
; F i0 = 0 : (5.8)Here, Xn and �Xn are the modes of the 
urrents ipk�X and ipk ��X et
. Up to normal-ization, there exists a unique solution for these linear 
onstraints. For the bosoni
 andthe fermioni
 se
tor, they are given by the following 
oherent states,j
; Bi0 = exp � 1Xn=1 1n(Y�n �X�n +X�n �Y�n! j0; 0iB (5.9)j
; F i0 = exp � 1Xn=1 1n(�+�n ��+�n � ���n ����n! j0; 0iF : (5.10)24



Here, j0; 0i denote the va
ua in the bosoni
 and the fermioni
 theory. The produ
t of thetwo 
omponents is the boundary state of the free �eld theory, before the intera
tion istaken into a

ount. We now in
lude the e�e
ts of the intera
tion by multiplying the freeboundary state with the exponential of the intera
tion Q,j
i = N eQ j
i0 = N  1Xn=0 Qnn! ! j
; Bi0 � j
; F i0 ; (5.11)where N = p�=2i is a normalization 
onstant. The operator Q is de�ned as in eq. (5.3),but with the integration restri
ted to the interior of the unit dis
. It is possible to 
he
kthat expQ rotates the gluing 
onditions from the free �eld theory relations (5.7) and(5.8) to their intera
ting 
ounterparts (see (2.2)). The dual boundary state is 
onstru
tedanalogously.Our main aim now is to 
ompute some non-vanishing overlap of the twisted boundarystate j
i. This requires the insertion of the invariant bulk �eld �11h0;0i = ���+, i.e. we aregoing to study Z
(q; z) := h
 j ~qL
0(�1)F 
 ~zN
0 �11h0;0i j
i ; (5.12)where L
0 = (L0 + �L0)=2 and N 
0 = (N0 � �N0)=2 are obtained from the zero modes of theVirasoro �eld and the 
urrent N . The 
orresponding expressions are standard, see e.g.[1℄. Our parameters ~q and ~z are de�ned in terms of �; � through ~q = exp(�2�i=�) and~z = exp(2�i�=�). We are now going to argue that the 
omputation of Z
 
an be redu
edto a simple 
al
ulation in free �eld theory, i.e.h
 j ~qL
0(�1)F 
 ~zN
0 �11h0;0i j
i = N 2 0h
 j ~qL
0(�1)F 
 ~zN
0 �11h0;0i j
i0 : (5.13)The reasoning goes as follows. In a �rst step we write the intera
ting boundary state as aprodu
t of the intera
tion term expQ and the free boundary state j
i0. Next we observethat all bosoni
 operators in between the two boundary states involve derivatives su
h as�X et
. Hen
e, we 
an use the gluing 
onditions (5.7) to express all these terms throughYn and Xn. The modes �Yn and �Xn of the anti-holomorphi
 derivatives only appear inthe 
onstru
tion (5.9) of the free bosoni
 boundary state j
; Bi0. A non-vanishing termrequires that the number of �Xn equals the number of �Y�n. But sin
e the �X�n and �Y�n
ome paired with their holomorphi
 partners Y�n and X�n in the boundary state, theoperator in between 0h
j and j
i0 must have equal numbers for Xn and Yn modes in25



order for the 
orresponding term not to vanish. In Q, all terms have an ex
ess of Ymodes. Sin
e no term in L
0 or N 
0 
an 
ompensate this through an ex
ess of X-modes,we 
an safely repla
e expQ by its zeroth order term, i.e. expQ � 1.The 
omputation of the overlap (5.13) in free �eld theory is straightforward. In a �rststep, the amplitude is split into a produ
t of bosoni
 and fermioni
 terms. The bosoni

ontribution is the same as for extended branes in 
at 2-dimensional spa
e. The fermioni
fa
tor involves an insertion. Its evaluation is reminis
ent of a similar 
al
ulation in [20℄.We 
an express the result through a single 
hara
ter of the aÆne gl(1j1) algebra,Z
(q; z) = N 2 �̂P0(�1=�; �=�) = �k Z dedn �̂he;ni(�; �)sin(�e=k) : (5.14)The aÆne 
hara
ters �̂ along with their behavior under modular transformations 
an befound in the Appendix A of [6℄. In order to a
hieve proper normalization (see below)we have set N 2 = �=2i. Sin
e the spe
trum of boundary operators on the volume �llingbrane is 
ontinuous, the result involves some open string spe
tral density fun
tion. Fromthe result, this is read o� as�(e; n) = �(e) = �k sin(�e=k) : (5.15)We would expe
t � to be en
oded in the boundary 3-point fun
tion of 	he;ni, 	h�e;�niwith the spe
ial boundary �eld 	11h0;0i. One possible 3-point fun
tion that 
ontains therequired information is a parti
ular 
ase of our more general formula (4.20), i.e.h	00he;ni(0)	11h�e;�ni(1)	11h0;0ii �� u2�(1� u)�2��Z +R(��e=k) + A23 ln j1� uj+ A13 ln juj� : (5.16)All quantities that appear on the right hand side were introdu
ed in equation (4.20). Theadditive 
onstant Z is not universal. It is naively in�nite, but 
an be made �nite by aproper regularization pres
ription. We use the universal term R to determine the spe
traldensity dde lnR(��e=k) = �k dd� ln 1 + 
(�)s(��) = �k sin(�e=k) = �(e) : (5.17)Here, we have used that � = e=k, as before. The result agrees with the expression (5.15)that was obtained through modular transformation of the overlap (5.13). Thereby, wehave now been able to subje
t our formula (5.11) for the boundary state of the volume�lling brane to a strong 
onsisten
y 
he
k. 26



There is another somewhat weaker but still non-trivial test for the boundary statethat arises from the minisuperspa
e limit of the boundary WZNW model. In fa
t, in theparti
le limit we �nd thattr(zad
N (�1)F 11h0;0i) = Z dedn �he;ni(z)e = limk!1Z
(q; z) : (5.18)In the �rst step we simply evaluated the tra
e dire
tly in the minisuperspa
e theory. Wethen observed in the se
ond equality that the result 
oin
ides with the modular transformof the overlap (5.13) in the appropriate limit k !1.6 Con
lusions and open problemsIn this note we have solved the boundary theory for the volume �lling brane onGL(1j1). We a
hieved this with the help of a Ka
-Wakimoto-like representation of theboundary theory. The �rst order formalism we developed in se
tion 2 is similar to theone used in [11℄ for AdS2 branes in the Eu
lidean AdS3. The main di�eren
e is that wewere for
ed to introdu
e an additional fermion on the boundary. Su
h auxiliary boundaryfermions are quite 
ommon in fermioni
 theories (see e.g. [12, 15℄ and referen
es therein).With the help of our �rst order formalism we were then able to set up a perturbative 
al-
ulational s
heme for 
orrelation fun
tions of bulk and boundary �elds. The main featuresof this s
heme are similar to the pure bulk 
ase [1℄. In parti
ular, for any given 
orrelator,only a �nite number of terms from the expansion 
an 
ontribute. We 
omputed the exa
tbulk-boundary 2-point fun
tions and the boundary 3-point fun
tions, thereby solving theboundary 
onformal �eld theory of volume �lling branes on GL(1j1) expli
itly. Finally,we proposed a se
ond approa
h to 
orrelation fun
tions of atypi
al �elds. It singles outa parti
ular subse
tor of the bulk and boundary GL(1j1) WZNW model that is not af-fe
ted at all by the intera
tion. Hen
e, within this subse
tor, all quantities agree withtheir free �eld theory 
ounterparts. The insight was then put to use for a 
al
ulation ofa parti
ular non-vanishing annulus amplitude in se
tion 5.2. Together with our previousresults on boundary 3-point fun
tions, we obtained a strong test for the boundary stateof the volume �lling brane in the GL(1j1) WZNW model.There are several obvious extensions that should be worked out. To begin with, itwould be interesting to set up an equally eÆ
ient framework to 
al
ulate 
orrelationfun
tions for the boundary theories of point-like lo
alized branes. Unfortunately, we have27



not su

eeded to 
al
ulate 
orrelators from a �nite number of 
ontributions, as in the 
aseof the volume �lling brane. It is possible to develop a Ka
-Wakimoto-like presentation forpoint-like branes using the boundary 
onditions of [20℄ for the b
 system. But sin
e thegluing 
onditions of [20℄ identify derivatives of 
 with �b et
., zero mode 
ounting does notfurnish simple vanishing results. Therefore, an in�nite number of terms 
an 
ontributeto any given 
orrelation fun
tion. On the other hand, the se
ond approa
h of se
tion 5does generalize to point-like branes. Sin
e the boundary spe
trum on a single point-likebrane is purely atypi
al, some interesting quantities 
an be 
omputed. This applies inparti
ular to the boundary 3-point fun
tions on a single point-like brane. Correlationfun
tions involving boundary 
ondition 
hanging �elds or typi
al bulk �elds, however, arenot a

essible along these lines.It is 
ertainly interesting to investigate how mu
h of our program extends to highersupergroups. En
ouraged by the re
ent developments on the bulk se
tor [21℄, it seemslikely that most of our 
onstru
tions may be generalized, at least to supergroups of typeI. This in
ludes the super
onformal algebras psl(NjN) and many other interesting Liesuperalgebras (see e.g. [22℄ for a 
omplete list). We believe that in all these 
ases thereexists one 
lass of branes whi
h 
an be solved through some appropriate square root ofthe bulk formalism. Taking the proper square root will 
ertainly involve a larger numberof fermioni
 boundary �elds. Our se
ond approa
h to atypi
al 
orrelation fun
tions mayalso be extended to higher supergroups and it provides interesting insights on the atypi
alsubse
tor of the WZNW models. We plan to return to these issues in a forth
omingpubli
ation.A
knowledgements: We wish to thank Yasuaki Hikida, Vladimir Mitev, David Ridout,Peter R�nne and in parti
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A Some integral formulasIn this se
tion, we provide a 
omplete list of integral formulas needed for the 
ompu-tation of the 
orrelation fun
tions. As referen
e we use [23℄.We start with the formulas needed in the 
omputation of boundary three-point fun
-tions. First re
all the integral representations of the hypergeometri
 fun
tion F (�; �; 
jx)Z 11 du juj��ju� 1j��ju� xj�
 =�(� + � + 
 � 1)�(1� �)�(� + 
) F (
; �+ � + 
 � 1;�+ 
 j x)Z x0 du juj��ju� 1j��ju� xj�
 =x1���
 �(1� �)�(1� 
)�(2� �� 
) F (�; 1� �; 2� �� 
 j x)Z 0�1 du juj��ju� 1j��ju� xj�
 =�(� + � + 
 � 1)�(1� �)�(� + 
) F (
; �+ � + 
 � 1; � + 
 j 1� x)Z 1x du juj��ju� 1j��ju� xj�
 =(1� x)1���
 �(1� �)�(1� 
)�(2� � � 
) F (�; 1� �; 2� � � 
 j 1� x)
(A.1)

these integrals 
onverge for jxj < 1.If only the �rst order boundary intera
tion 
ontributes, we need the spe
ial 
ase � +� + 
 = 2 of the above integrals whi
h 
an be expressed asZ[�1;0℄ [ [1;1℄ du juj��ju� 1j��ju� xj�
 = (1� x)��1x��1�(1� �)�(1� �)�(
)Z[0;x℄ du juj��ju� 1j��ju� xj�
 = (1� x)��1x��1�(1� �)�(1� 
)�(�)Z[x;1℄ du juj��ju� 1j��ju� xj�
 = (1� x)��1x��1�(1� �)�(1� 
)�(�) : (A.2)
If the bulk intera
tion term 
ontributes, we have to evaluate the following integral for29



� + � + 
 = 0Z d2z (z � �z)jzj2�+2jz � 1j2�+2jz � xj2
+2 == 1
x + � Z d2z �� � �z(�z � 1)(�z � x)jzj2�+2jz � 1j2�+2jz � xj2
+2� +� 1
x + � Z d2z � � z(z � 1)(z � x)jzj2�+2jz � 1j2�+2jz � xj2
+2�= � 2
x + � Z du u(u� 1)(u� x)juj2�+2ju� 1j2�+2ju� xj2
+2= � 1
(
x + �) ddx � Z[�1;0℄ [ [1;1℄ du 1juj2�+1ju� 1j2�+1ju� xj2
 +� Z 10 du 1juj2�+1ju� 1j2�+1ju� xj2
 �= �4(1� x)2��1x2��1��(�2�)�(�2�)�(2
 + 1) + �(�2�)�(�2
)�(2� + 1) + �(�2�)�(�2
)�(2� + 1) �
(A.3)

and if two boundary intera
tions 
ontribute, we need (again �+ � + 
 = 0)Z b1a1 du1 Z b2a2 du2 ju1 � u2jju1u2j�+1j(u1 � 1)(u2 � 1)j�+1j(u1 � x)(u2 � x)j
+1 == x2��1(1� x)2��1 Z d1
1 du1 Z d2
2 du2 ju1 � u2jj(u1 � 1)(u2 � 1)j�+1ju1u2j
+1 ; (A.4)
where 
i = b�1i �x�11�x�1 and di = a�1i �x�11�x�1 . For these integrals one has to evaluateZ 11 du1 Z u11 du2 (u1 � u2)j(u1 � 1)(u2 � 1)j�+1ju1u2j
+1 = 4�(�2�)�(�2�)�(2
 + 1)Z 10 du1 Z u10 du2 (u1 � u2)j(u1 � 1)(u2 � 1)j�+1ju1u2j
+1 = 4�(�2
)�(�2�)�(2�+ 1)Z 0�1 du1 Z u1�1 du2 (u1 � u2)j(u1 � 1)(u2 � 1)j�+1ju1u2j
+1 = 4�(�2
)�(�2�)�(2� + 1) (A.5)
where we used the following spe
ial form of the Gamma doubling formula�(1=2� �)�(��)�(1=2� �)�(��)�(1=2)�(
 + 1=2)�(
 + 1) = 4�(�2�)�(�2�)�(2
 + 1) : (A.6)30



For the 
omputation of bulk-boundary 2-point fun
tions we use some spe
ial 
ases ofan integral formula that 
an be found in the re
ent work of Fateev and Ribault [11℄. In
ase of a single insertion of the bulk intera
tion we needZ d2z jz � �zjj1 + z2j2(�+1) = � 2i�3=22�4� �(2� + 1=2)�(2�)�2(�+ 1)�2(� + 1=2) : (A.7)To treat the insertion of one boundary intera
tion we employZ du j1 + u2j�(�+1) = �2�2��(2� + 1)�2(� + 1) : (A.8)The insertion of boundary intera
tions may be evaluated by means of the following formulaZ du1du2 ju1 � u2jj1 + u21j1+�j1 + u22j1+� = 4�3=22�4� �(2� + 1=2)�(2�)�2(�+ 1)�2(� + 1=2) : (A.9)Referen
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