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AbstratWe investigate orrelation funtions for maximally symmetri boundary ondi-tions in the WZNW model on GL(1j1). Speial attention is payed to volume �llingbranes. Generalizing earlier ideas for the bulk setor, we set up a Ka-Wakimoto-like formalism for the boundary model. This �rst order formalism is then used toalulate bulk-boundary 2-point funtions and the boundary 3-point funtions ofthe model. The note ends with a few omments on orrelation funtions of atypial�elds, point-like branes and generalizations to other supergroups.
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The simplest non-trivial model to onsider is the WZNW model on the supergroupGL(1j1). Studies of this �eld theory go bak to the work of Rozanski and Saleur [2, 3℄.These early investigations of the GL(1j1) WZNW model stimulated muh further workon the emerging topi of logarithmi onformal �eld theory (see e.g. [4, 5℄ for a review).A few years bak, the GL(1j1) WZNW model was revisited in [1℄ from a geometri ratherthan algebrai perspetive. Based on the harmoni analysis of the supergroup GL(1j1), aproposal was formulated for the exat spetrum of the �eld theory. Furthermore, eÆientomputational tools were developed to alulate orrelation funtions of tahyon vertexoperators. Finally, the onsisteny of the proposed spetrum was demonstrated expliitly.The work [1℄ was restrited to the GL(1j1) WZNW model on the sphere, i.e. neitherboundaries nor higher genus surfaes were inluded. Subsequent work [6℄ extended partof the bulk analysis to the boundary setor. In partiular, the geometri interpretation ofmaximally symmetri boundary onditions was unravelled. This led to several proposalsfor the spetra of boundary operators in the orresponding boundary onformal �eld the-ories. These were tested partially through the so-alled modular bootstrap. Correlationfuntions with non-trivial insertions of bulk and boundary operators were not omputedin [6℄. We are now aiming to lose this gap, at least for one type of boundary onditions.There are several motivations to determine boundary orrelation funtions in super-group WZNW models. To begin with, the onjetured boundary spetra in [6℄ ontainedinformation that annot be probed through the modular bootstrap alone. In partiular,ertain boundary orrelation funtions were predited to ontain logarithmi singularities.Below we shall be able to verify suh features of the boundary onformal �eld theory.Moreover, 2-dimensional boundary �eld theories are intimately related with quantizationtheory (see e.g. [7, 8, 9, 10℄ and referenes therein). While the GL(1j1) WZNW modelitself is a bit too simple to aommodate for interesting supersymmetri extensions ofnon-ommutative geometry, the methods we shall develop below possess generalizationsto ases with a urved bosoni base. The latter provide a muh riher geometri frame-work, with further links to representation theory of aÆne algebras and the quantizationof Lie superalgebras. Finally, let us also mention possible appliations to the study ofbranes and open strings in superspaes, and in partiular to AdS bakgrounds.To be a bit more spei� about the results we are going to obtain, we reall from [6℄that there are two di�erent families of maximally symmetri boundary onditions in theGL(1j1) WZNW model. Geometrially, the �rst set onsists of D-branes that are point-2



like loalized in the bosoni base. They extend into both fermioni diretions, unless theyare plaed along very speial lines in the base manifold. The seond set of boundaryonditions ontains a single objet: a volume �lling brane that extends in all bosoni andfermioni diretions. We alled this brane twisted beause it is assoiated with the onlynon-trivial gluing automorphism of the urrent algebra. In [6℄, some simple amplitudesfor the point-like D-branes have been omputed. On the other hand, the methods of [6℄were not suÆient to obtain non-trivial amplitudes for the volume �lling brane.In this work we shall extend some of the tehniques from [1℄ to ompute orrelationfuntions of bulk and boundary operators for the volume �lling brane. The main resultsinlude expliit formulas (4.2,4.7,4.9) for the bulk-boundary 2-point funtion and (4.16-4.19) for the boundary 3-point funtions. The information they ontain is equivalentto the bulk-boundary and the boundary operator produt expansion, respetively. Ourresults provide a omplete solution of the boundary theory for the volume �lling brane.We shall also determine a non-trivial annulus amplitude.In order to obtain these results we set up a �rst order formalism for the volume �llingbrane. It is obtained by adding an appropriate square root of the bulk interation termalong the boundary of the world-sheet. As in other theories ontaining fermions, takingthe square root fores us to introdue an auxiliary fermion along the boundary. All thiswill be explained in great detail in setion 2. A perturbative expansion for orrelators ofthe boundary onformal �eld theory is set up in setion 3. It is employed in Setion 4 tosolve expliitly the boundary GL(1j1) WZNW model with twisted boundary onditions.Setion 5 ontains an alternative approah to omputing amplitudes that involve onlyspeial (atypial) �elds/states of the theory. It is used to prove that the GL(1j1) WZNWontains a speial subsetor whose orrelation funtions are independent of the level k.The seond approah is �nally employed to ompute a partiular annulus amplitude forthe volume �lling brane. The latter provides a nie test for the boundary state that wasproposed in [6℄. We onlude with a list of open problems, mostly related to the point-likebranes for GL(1j1) and extensions to higher supergroups.2 Volume �lling brane: The lassial ationOur aim in this setion is to disuss the lassial desription of volume �lling branesin the GL(1j1) WZNW model. To begin with, we spell out the standard ation of the3



WZNW model with so-alled twisted boundary onditions. Their geometri interpretationas volume �lling branes with a non-zero B-�eld is realled briey. In order to set up asuessful omputation sheme for the quantum theory later on, we shall need a di�erentformulation of the theory. As in the bulk theory, omputations of orrelations funtionsrequire a Ka-Wakimoto like representation of the model [1℄. Finding suh a �rst orderformalism for the boundary theory is not entirely straightforward. We shall see that itrequires introduing an additional fermioni boundary �eld.2.1 The boundary WZNW modelFollowing our earlier work on WZNW models for type I supergroups, we parametrizethe supergroup GL(1j1) through a Gauss-like deomposition of the formg = ei�� � eixE+iyN ei�+ +where E;N and  � denote bosoni and fermioni generators of gl(1j1), respetively. Inthe WZNW model, the two even oordinates x; y beome bosoni �elds X; Y and similarly,two fermioni �elds � ome with the odd oordinates ��. Let us now onsider a boundaryWZNW model with the ationSWZNW(X; Y; �) = � k4�i Z� d2z ��X ��Y + �Y ��X + 2eiY �+ ���� ++ k8�i Z du eiY (+ + �)�u(+ + �) ; (2.1)where u parametrizes the boundary of the upper half plane. Variation of the ation leadsto the usual bulk equations of motion along with the following set of boundary onditions�vY = 0 ; 2�vX = eiY (+ + �) �u(+ + �) ;�2�v� = 2i�u� � (� + +) �uY : (2.2)Here, we have used the derivatives �u = � + �� and �v = i(� � ��) along and perpendiularto the boundary. The equations (2.2) imply Neumann boundary onditions for all four�elds of our theory, i.e. we are dealing with a volume �lling brane. Sine the normalderivatives of the �elds X and � do not vanish, our brane omes equipped with a B-�eld.A more detailed disussion of the brane's geometry an be found in our reent paper [6℄.4



In order to see that our boundary onditions preserve the full hiral symmetry, wereall that the holomorphi urrents of the GL(1j1) WZNW model take the formJE = ik�Y ; JN = ik�X � k��+ eiY ;J� = �keiY �+ ; J+ = k�� + ik��Y ;and similarly for the anti-holomorphi urrents,�JE = �ik ��Y ; �JN = �ik ��X + k ��� + eiY ;�J+ = �keiY ��� ; �J� = k ��+ + ik+ ��Y :If we plug the boundary onditions (2.2) into these expressions for hiral urrents, we ob-tain the gluing ondition JX(z) = 
 �JX(�z) for X = E;N;� and all along the boundary atz = �z. Here, the relevant gluing automorphism 
 is obtained by lifting the automorphism
(E) = �E; 
(N) = �N; 
( +) = � �; 
( �) =  + (2.3)from the �nite dimensional superalgebra gl(1j1) to the full aÆne symmetry. In [6℄ we alledthese gluing onditions twisted and showed that there is a unique brane orresponding tothis partiular hoie of 
.2.2 First order formulationComputations of bulk and boundary orrelators in the presene of twisted D-branesshall be performed in a �rst order formalism. In the bulk, it is well-known how this works[1℄. There, the bulk ation is built of a free �eld theory involving two additional fermioniauxiliary �elds b� of weight �(b�) = 1 along with the original �elds X; Y and �,Sbulk0;l [X; Y; �; b�℄ = � k4�i Z� d2z ��X ��Y + �Y ��X�� 12�i Z� d2z �b+�+ + b� ���� : (2.4)We plaed a subsript `l' on the atin to distinguish it from the ation we shall use inour path integral omputations later on. If the following bulk marginal interation termis added to the free �eld theory,Sbulkint [X; Y; �; b�℄ = � 12k�i Z� d2z e�iY b�b+ (2.5)5



the equations of motion for b� read b� = k�+ exp iY and b+ = �k ��� exp iY so that wereover the bulk WZNW-model upon insertion into the �rst order ation. In extendingthis treatment to the boundary setor, we are tempted to add the \square root" of thebulk interation as a boundary term. This is indeed what happens for the losely relatedAdS2 branes in AdS3 [11℄. Here, however, it annot possibly be the right answer, at leastnot without a proper notion of what we mean by taking the square root. In fat, the naivesquare root of b�b+ exp(�iY ) is something like b� exp(�iY=2), i.e. a fermioni operator.It makes no sense to add suh an objet to the bulk theory. In order to take a bosonisquare root of the bulk interation, we introdue a new fermioni boundary �eld C ofweight �(C) = 0 and add the following terms to the bulk theory,Sbdy0 [X; Y; �; b�; C℄ = 18�i Z du (kC�uC + 4(+ + �)b+) (2.6)Sbdyint [X; Y; �; b�; C℄ = � 12�i Z du e�iY=2b+C : (2.7)The idea to involve an additional fermioni boundary �eld in the ation of supersymmetribrane on�gurations is not new. It was initially proposed in [12℄ and has been put touse more reently [13, 14℄ in the ontext of matrix fatorizations. Our boundary ationresembles the one Hosomihi employed to treat branes in N = 2 super Liouville theory[15℄. The full gl(1j1) boundary theory now takes the formS[X; Y; �; b�; C℄ = Sbulk0;l + Sbdy0 + Sbulkint + Sbdyint = S0;l + Sint (2.8)where S0;l = � k4�i Z� d2z ��X ��Y + �Y ��X�� 12�i Z� d2z �+�b+ + � ��b��+ 18�i Z du kC�uC ;Sint = � 12k�i Z� d2z e�iY b�b+ � 12�i Z du e�iY=2b+C : (2.9)
Here, we have performed a partial integration on the kineti term for the b-system,thereby absorbing the ontribution b+(�+ +) from the boundary ation. This is similarto the ase of AdS2 branes in AdS3 [11℄. In order to omplete the desription of thelassial ation, we add the following Dirihlet boundary ondition for the �elds b�,b+(z) + b�(�z) = 0 for z = �z : (2.10)6



If the ation is varied with this boundary ondition, we reover the boundary equationsof motion (2.2). More preisely, we obtain four equations among boundary �elds. Two ofthese an be used to determine the boundary �elds C and b+ = �b� through X; Y and�, C = eiY=2 (+ + �) ; �2b� = k eiY=2�uC : (2.11)The four equations among boundary �elds along with the bulk equations motion for b�imply the eqs. (2.2). We leave the details of this simple omputation to the reader.We have now set up a �rst order formalism for the twisted brane on GL(1j1). Letus stress again that is was neessary to introdue an additional fermioni �eld C on theboundary of the world-sheet. Above we have motivated this new degree of freedom by ourdesire to take a bosoni square root of the bulk interations. But there is another, moregeometri, way to argue for the additional �eld C. We mentioned before that the �rstorder formalism for the GL(1j1) WZNW model is very similar to that for the EulideanAdS3, only that the bosoni oordinates ; � of the latter are replaed by fermioni ones.The �rst order formalism for AdS2 branes in AdS3 was set up in [11℄ and it desribes abrane that is loalized along a 1-dimensional subspae of the � plane. Correspondingly,only a single  zero mode remains after imposing the boundary onditions. The brane onGL(1j1) we are attempting to desribe, however, is volume �lling and therefore it extendsin both fermioni diretions. Therefore, we need two independent fermioni zero modes.These are provided by the zero modes of the three �elds � and C. Note that these �eldsare related by equation (2.11).3 Volume �lling branes: The quantum theoryOur next step is to develop a omputational sheme for orrelation funtions in theboundary WZNW model with twisted boundary onditions. We shall use the �rst orderformulation of setion 2.2 as our starting point and onsider the full WZNW model as adeformation of a free �eld theory involving the �elds X; Y; �; b� and the fermioni bound-ary �eld C. This free �eld theory will be desribed in more detail in the �rst subsetion.The de�nition of vertex operators and their orrelation funtions in the WZNW model isthe subjet of subsetion 3.2.
7



3.1 The free theory and its orrelation funtionsOur strategy is to employ the �rst order formulation we set up in the previous setion.In order to do so, we have to add a few omments on the measures we are using in thepath integral treatment. To begin with, the supergroup invariant measure of the WZNWmodel is given by d�WZNW � DXDYD(eiY=2�)D(eiY=2+) : (3.1)This gets multiplied with Db+Db�DC when we pass to the �rst order formalism. But inthe following we would like to employ the standard free �eld measured�free � DXDYD�D+ :The two measures are related by a Jaobian of the form (see e.g. [16℄ for similar ompu-tations) d�WZNW = �sdet(GabeiY �ae�iY �b)��1 d�free= e 18� R dudv pG(�Gab�a Y �bY+iRY )+ 18� R du ipGKY d�free: (3.2)Here, Gab is the metri on the world-sheet, R = �a�a logG and K = 12i�v logG are itsGaussian and geodesi urvature, respetively. These two quantities feature in the Gauss-Bonnet theorem for surfaes with boundary,14� Z� dudv pGR+ 14� Z du pGK = �(�) = 1 ; (3.3)where �(�) = 1 is the Euler harateristi of the dis. We an now pass to the upper halfplane again where all urvature is onentrated at in�nity. The e�et of the urvatureterms in the WZNW measure is to insert a bakground harge QY = �(�)=2 = 1=2 for the�eld Y at in�nity. In addition, the measure (3.2) also ontains a term that is quadratiin Y . We simply add this to the free part of our ation, i.e. we de�neS0 = � 14�i Z� d2z �k �X ��Y + k �Y ��X � �Y ��Y �� 12�i Z� d2z �+�b+ + � ��b��+ 18�i Z du kC�uC ; (3.4)Note, that the new term in the ations modi�es the formula for the urrent JN by addingan additional �Y and similarly for the anti-holomorphi partner.8



In our path integral we now integrate with the free �eld theory measure d�free over all�elds subjet to the boundary ondition b+ + b� = 0. Con�gurations for the other �eldsare not onstrained in the path integral. In the free quantum �eld theory, they satisfythe linear (\Neumann") boundary onditions�vY = 0 ; �vX = 0 ;�uC = 0 ; + + � = 0 : (3.5)These equations are satis�ed in all orrelation funtions or, equivalently, as operatorequations on the state spae of the free �eld theory. Note that, aording to the lastequation, the zero modes of + and � oinide in our free boundary theory. The neessaryseond fermioni zero mode is exatly what is provided by the �eld C.Arbitrary orrelation funtions in the free �eld theory an now easily be omputedwith the help of Wik's theorem. All we need to use is the following list of operatorprodut expansions X(z; �z)Y (z; �z) � 1k ln jz � wj2 + 1k ln jz � �wj2�(z)b�(w) � 1w � z +(�z)b+( �w) � 1�w � �z�(z)b+( �w) � 1z � �w +(�z)b�(w) � 1�z � wC(v)C(u) � 2�ik sign(v � u) : (3.6)
Let us remark that a non-vanishing orrelation funtion in the free �eld theory requiresthat the �elds  outnumber the insertions of b by one. Furthermore, C must be insertedan odd number of times. We also reall that there is a non-vanishing bakground hargeQY = 1=2 for the �eld Y . On the disk, the orresponding U(1) harges of all tahyonvertex operators must add up to QY �(�) = 1=2 in order for the orrelator to be non-zero.These rules imply that the 1-point funtion of the bulk identity �eld vanishes. In orderto normalize the vauum expetation value, we require thath (�(z)� +(�z)) C(u) eieX(z;�z)+inY (z;�z) i0 = Æ(e)Æ(n� 1=2) : (3.7)Note that the produt of �elds in brakets is the simplest expression that meets all ourrequirements: The U(1)Y harge of the tahyon vertex operators is m = 1=2, we insertedone � and no �eld b� and multiplied with a single C in order to make the total insertionbosoni again. 9



3.2 Correlation funtions in boundary WZNW modelNow that we have learned how to perform omputations in the free �eld theory de-sribed by the ation (3.4), we would like to add our interation termSint = � 12k�i Z� d2z e�iY b�b+ � 12�i Z du e�iY=2b+C : (3.8)The idea is to alulate orrelators of the full boundary WZNW model perturbatively, i.e.by expanding the exponential of the interation in a power series. Even though there is apriori an in�nite number of terms to be onsidered, only �nitely many ontribute to ourperturbative expansion. This is very similar to what has been observed in the bulk model[1℄. Before we an spell out preise formulas for the quantities we want to ompute, weneed to explain how to assoiate free �eld theory vertex operators to the �elds of theinterating WZNW model. The latter are in one-to-one orrespondene with funtionson the supergroup GL(1j1) and they may be haraterized by their behavior with respetto global gl(1j1) transformations. We shall �rst reall from [1℄ how this works for bulk�elds.Let us begin by olleting a few basi fats about the spae of funtions on the su-pergroup GL(1j1) [1℄. As for any other group or supergroup,  L2 arries two graded-ommuting ations of the Lie superalgebra gl(1j1). These are generated by the followingright and left invariant vetor �eldsRE = i�x ; RN = i�y + ���� ; R+ = �e�iy�+ � i���x ; R� = ��� ;LE = �i�x ; LN = �i�y � �+�+ ; L� = e�iy�� � i�+�x ; L+ = �+ : (3.9)A typial irreduible multiplet for gl(1j1) is 2-dimensional. Hene, typial irreduiblemultiplets of the ombined left and right ation are spanned by four funtions in thesupergroup. As in [1℄ we shall ombine these funtions into a 2� 2 matrix of the form'h�e;�n+1i = eiex+iny � 1 ���+ e�1e�iy + �+�� � (3.10)The rows span the typial irreduibles h�e;�n+ 1i of the right regular ation. Columnstransform in the representations he; ni of the left regular ation. Note that 'he;ni is onlywell de�ned for e 6= 0, i.e. in the typial setor of the minisuperspae theory.10



Following [1℄, the bulk vertex operators in the free �eld theory are modelled after thematries 'he;ni. More preisely, let us introdue typial bulk operators throughVh�e;�n+1i(z; �z) = eieX+inY � 1 �+ +� � (3.11)Sine the weight of the fermioni �elds � vanishes, all four �elds in this matrix possessthe same onformal dimension,�(e;n) = e2k (2n� 1 + ek ) : (3.12)Note that one of the terms in the lower left orner of the minisuperspae matrix 'he;nihas no analogue on the vertex operator Vh�e;�n+1i. We onsider this term as `subleading'.It is reonstruted when we build orrelation funtions of the interating WZNW model(see [1℄ and [17℄ for more details).Let us now repeat the previous analysis for the boundary �elds. Sine our twistedbrane is volume �lling, the relevant spae of minisuperspae wave funtions is again thespae  L2 of all funtions on the supergroup GL(1j1). But this time, it omes equipped witha di�erent ation of the Lie superalgebra gl(1j1). In fat, minisuperspae wave funtionsas well as boundary vertex operators are now distinguished by their transformation undera single twisted adjoint ation ad
X = RX+L
X of GL(1j1) on  L2. Expliitly, the generatorsof gl(1j1) transformations are given byad
E = 2i�x ; ad
N = 2i�y + �+�+ + ���� ;ad
� = �+ � �� ; ad
+ = �e�iy(�� + �+) + i(�+ � ��)�x : (3.13)Under the twisted adjoint ation of gl(1j1) on  L2, eah typial multiplet appears with two-fold multipliity [6℄. One more, we propose to assemble the orresponding four funtionsinto a 2� 2 matrix of the form h�2e;�2n+1i = eiex+iny � 1 �+ � ��� 2e�1e�iy=2 + (�+ � ��)� � (3.14)where we introdued the shorthand � = eiy=2(��+�+). The reader is invited to hek thatthe two rows of this matrix eah span the 2-dimensional typial irreduible h�2e;�2n+1iunder the twisted adjoint ation (3.13) of the superalgebra gl(1j1).Boundary vertex operators are modelled after the matries  h�2e;�2n+1i more or lessin the same way as in the ase of bulk �elds,Uh�2e;�2n+1i(u) = eieX+inY � 1 + � �C (+ � �)C � : (3.15)11



Again, we dropped the y-dependent term in the lower right orner of the matrix (3.14).Eventually, we will see how this term is reovered in boundary orrelation funtions.The main new aspet of the presription (3.15), however, onerns the appearane of thefermioni boundary �eld C that we inserted in plae of the funtion �. This substitutionis motivated by the lassial equation of motion (2.11).After this preparation we are able to spell out how orrelation funtions of bulk andboundary �elds an be omputed for the interating WZNW model. More preisely, wede�ne,* mY�=1 �he� ;n�i(z�; �z�) m0Y�=1 	he�;n�i(u�)+ =1Xs=0 (�1)ss! * (Sint)s mY�=1Vhe� ;n�i(z�; �z�) m0Y�=1Uhe�;n�i(u�)+0 : (3.16)Here, Sint is the interation (3.8) and all orrelation funtions on the right side are tobe omputed in the free �eld theory (3.4). The relevant vertex operators V and U wereintrodued in equations (3.11) and (3.15) above. For later use we also note that bosoniorrelators an be determined by means of the following standard formula,* mY�=1V(e� ;n�)(z� ; �z�) m0Y�=1V(e�;n�)(u�)+ = Æ(Pm�=1n� +Pm0�=1n� + 12)Æ(Pm�=1e� +Pm0�=1e�)� Y�>� jz� � z�j�2��� Y�>� jz� � �z�j�2���Y�;� jz� � u�j�4��� Y�>� ju� � u�j�4��� (3.17)where ��� = �n� e�k � n� e�k � e�e�k2and V(e� ;n�) = exp(ieX+inY ) are bosoni vertex operators. As in the bulk theory it is easyto see that the all expansions (3.16) trunate after a �nite number of terms. In fat, theinserted bulk and boundary vertex operators on the right hand side of eq. (3.16) ontainat most 2m+m0 fermioni �elds �. Sine eah interation term from Sint ontributes atleast one insertion of b�, we onlude that terms with s � 2m +m0 vanish.4 Solution of the boundary WZNW modelA boundary onformal �eld theory is uniquely haraterized by the bulk-boundaryand the boundary operator produt expansions. We shall now employ the perturbative12



alulational sheme we developed in the previous setion in order to determine thesedata. After a short warm-up with the disussion of bulk 1-point funtions, we determinethe bulk-boundary 2-point funtion in the seond subsetion. The 3-point funtion ofboundary �elds is addressed in subsetion 4.3.4.1 Bulk 1-point funtionThe bulk 1-point funtion is the simplest non-vanishing quantity in a boundary on-formal �eld theory. It ontains the same information as the boundary state. For volume�lling branes, the boundary state was determined in our previous work [6℄. Our �rst aimnow is to reprodue our old result through our new perturbative expansion.The 1-point funtion of a typial bulk �eld �he;ni is omputed by inserting a singlevertex operator (3.11) into the expansion (3.16). Sine bulk vertex operators ontainat most two �elds , the only non-zero terms an ome from s = 0; 1. The term withs = 0 ontains no insertion of the interation and it vanishes identially. So, let us seewhat happens for s = 1. In this ase, only the insertion of the boundary interation anontribute. The results ish�he;ni(z; �z)i = i2� Z du he�iY (u)=2b+(u)C(u)Vhe;ni(z; �z)i= E11Æ(e)Æ(n� 1) 14�i Z du � 1u� �z � 1u� z� = Z d� 'he;ni :Here, E11 is the elementary matrix whih has zeroes everywhere exept in the lower rightorner. Note that the only �eld with non-vanishing 1-point funtion has onformal weight� = 0. Hene, there is no dependene on the insertion point (z; �z). In the last line wehave expressed the numerial result as an integral of the matrix valued funtion (3.10)over the supergroup GL(1j1). The integration is performed with the Haar measured� = 2�1e�iydxdyd�+d�� : (4.1)Sine the Haar measure is gl(1j1) invariant, the integral of 'he;ni is an intertwiner fromhe; ni 
 he; ni to the trivial representation. This proves that the expetation value weomputed has the desired transformation behavior.
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4.2 Bulk-boundary 2-point funtionNow we want to ompute the full bulk-boundary 2-point funtion. It is quite usefulto determine the general form of this 2-point funtion �rst before we enter the detailedalulations. Let us suppose for a moment that our alulations were guaranteed to givea gl(1j1) ovariant answer. Then it is lear that the bulk-boundary 2-point funtion anbe written ash	h2e0;2n0i(0) �h�e;�n+1i(iy;�iy)i = X�=0;1C�(e)h h2e0;2n0i 'h�e;�n+1ii�jyj2�� (4.2)where �0 = 2ek �2n� 1 + ek� and �1 = 2ek �2n� 12 + ek� : (4.3)The struture onstants C�(e) are not determined by the gl(1j1) symmetry. We willalulate them perturbatively below (see eqs. (4.7) and (4.9) below). The expressions inthe numerator on the right hand side are ertain gl(1j1) intertwiners whih are de�ned byh h2e0;2n0i 'h�e;�n+1ii =Z d� h2e0;2n0i �h�e;�n+1i =: X�=0;1h h2e0;2n0i 'h�e;�n+1ii� (4.4)where h h2e0;2n0i 'h�e;�n+1ii� = Æ(e� e0)Æ(n� n0 � �=2) G� (4.5)is the part of the full integral that ontains the fator Æ(n�n0� �=2). Understanding theprevious formulas requires some input from the representation theory of gl(1j1) (see e.g.[1℄ for all neessary details). Let us start with the matrix 'h�e;�n+1i. Under the twistedadjoint ation of gl(1j1) this multiplet transforms in the tensor produth�e;�n + 1i 
 h�e;�n + 1i = h�2e;�2n + 2i � h�2e;�2n + 1i :Hene, there exist only two matries  h2e0;2n0i for whih the integral (4.4) does not vanish.These are the matries  h2e;2ni and  h2e;2n�1i. The two non-vanishing terms are used tode�ne the the symbols (4.5). A similar analysis an now be repeated for the �elds in theWZNW model. We onlude immediately, that the 2-point funtion an only have twoontributions. By gl(1j1) symmetry, these must be proportional to the intertwiners (4.5).The gl(1j1) symmetry, however, does not �x an overall onstant C� that an dependon the parameters of the �elds. Finally, the exponents �� are simply determined bythe onformal dimensions of bulk and boundary �elds. Let us point out that the entiredisussion leading to the expression (4.2) is based on the global gl(1j1) symmetry. Sine14



we have not yet shown that our perturbative omputations respet the ation of gl(1j1)it will be important to verify that the form of the 2-point funtion omes out right.In our perturbative omputation, there are at most three �elds � inserted and henewe only have to determine the expansion terms for s = 0; 1; 2. Contributions to the � = 0term in the 2-point funtion (4.2), i.e. to the orrelator with the boundary �eld 	h2e;2ni,an only ome from s = 0. In fat, insertions of an interation term - bulk or boundary- would violate the onservation of Y -harge. Computation without any insertion of aninteration are easily performed, e.g.hU11h2e0;2n0i(0)V 00h�e;�n+1i(iy;�iy)i = �Æ(n� n0) Æ(e� e0)jyj�4e=k(2n�1=2+e=k) (4.6)Here, we have introdued the notation U �0� and V �0� for matrix elements. The �eldU11h2e0;2n0i, for example, denotes the lower right orner et. The omputation of the as-soiated integral (4.5) with � = 0 is equally simple and allows us to read o� thatC0(e; n) = 1 : (4.7)Let us note that there are other ombinations of bulk and boundary �elds that an havea non-zero 2-point funtion without any insertion of interations. In all those ases onemay repeat the above alulation to �nd the same oeÆient C0 = 1, in agreement withgl(1j1) symmetry.Next we would like to address the oeÆient C1 in the expression (4.2). Y -hargeonservation implies that its only ontributions are assoiated with a single insertion ofthe boundary interation. This time, the omputations are slightly more involved. As anexample we treat the following 2-point funtionhU00h2e0;2n0i(0)V 11h�e;�n+1i(iy;�iy)Sbdyint i == �Æ(n� n0 � 12)Æ(e� e0)jyj4 ek (2n�1+ ek ) y2� Z du juj2�ju2 + y2j�+1= �Æ(n� n0 � 12)Æ(e� e0)jyj4 ek (2n�1+ ek ) 12� Z du j1 + u2j���1= �Æ(n� n0 � 12)Æ(e� e0)2jyj4 ek (2n�1+ ek ) 2�2��(2 ek + 1)�2( ek + 1)= �Æ(n� n0 � 12)Æ(e� e0)2jyj4 ek (2n�1+ ek ) �( ek + 12)p��( ek + 1)
(4.8)
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The seond step is the substitution u! y=u, then we an apply (A.8) whih is a speialase of the integral formula in [11℄. The last step is the Euler doubling formula of theGamma funtion. Comparison with the assoiated ontribution to the minisuperspaeintegral (4.4) gives C1(e) = �(e=k + 1=2)p��(e=k + 1) : (4.9)One more, one an perform similar omputations with a single insertion of a boundaryinteration for other pairs of bulk and boundary �elds. All these alulations lead to thesame result for C1, as predited by gl(1j1) ovariane.At this point, we have omputed all the data we were interested in. But there aremore ontributions to the perturbative expansion of the bulk-boundary 2-point funtion.As we stated above, non-vanishing ontributions arise from s = 0; s = 1 and s = 2. Wehave ompletely determined the s = 0 term. At s = 1, however, our attention so farwas restrited to the boundary interation. The other term with a single bulk insertionan also ontribute sine it ontains a produt of only two b�. Similarly, at s = 2, twoinsertions of the boundary interation an lead to a non-vanishing result. Produts ofbulk and boundary interations or two bulk interations, on the other hand, involve toomany �elds b� and vanish by simple zero mode ounting. Hene, we are left with two moreterms to alulate, those arising from a produt of two boundary interations Sbdyint andfrom a single bulk interation Sbulkint . Y -harge onservation implies that the additionalterms involve a fator Æ(n� n0 � 1). Suh a term, if present, would be inonsistent withthe global gl(1j1) symmetry. Our task therefore is to show that the sum of the twoaforementioned ontributions vanishes.Let us begin with the omputation of the term that arises from a single insertion ofthe bulk interation,hU11h2e;2n�2i(0)V 11h�e;�n+1i(iy;�iy) Sbulkint i �� y�2 ek (4n�3+2 ek ) y3k� ZUHP d2z jz2 + y2j�2( ek+1)jz2j2 ek�1(z � �z)= � y�2 ek (4n�3+2 ek ) 1ep� �(2e=k + 1=2)�(2 ek + 1) (4.10)
We have been a bit sloppy here by setting the parameters the parameters 2e0 = 2e and2n0 � 2 to the values at whih the expetation value has a non-vanishing ontribution.Stritly speaking, this quantity is divergent, but the divergene is an overall (volume)16



fator Æ(0) whih we suppressed onsistently. In the �rst equality we simply insertedthe relevant free �eld orrelator. After the substitution z ! y=z, the integral over theinsertion point u of the boundary interation an be evaluated using an integral formulafrom [11℄ (see also (A.7)). Finally, the answer is simpli�ed by means of Euler's doublingformula for Gamma funtions.Next we turn to the ontributions oming from two boundary interations. Sinethe orresponding free �eld orrelator is slightly more involved in this ase, we state anexpression for the fermioni ontribution before going into the atual omputation,hb+(u1)C(u1)b+(u2)C(u2)(+ � �)(0)C(0)+(�iy)�(iy)iF == �4�y3(u2 � u1)u1u2(u21 + y2)(u22 + y2)hsign(u2 � u1)� sign(u2) + sign(u1)i : (4.11)This result is inserted to omputehU11h2e;2n�2i(0)V 11h�e;�n+1i(iy;�iy) �Sbdyint �2i �= y�2 ek (4n�3+2 ek ) y3�k Z du1du2 ju21 + y2j�e=k�1ju22 + y2j� ek�1ju21j ek�1ju22j ek�1(u2 � u1)hsign(u2 � u1)� sign(u2) + sign(u1)i= y�2 ek (4n�3+2 ek ) 1�k Z dx1dx2 jx21 + 1j� ek�1jx22 + 1j� ek�1jx1 � x2j= y�2 ek (4n�3+2 ek ) 2ep� �(2 ek + 12)�(2 ek + 1)
(4.12)

The integral in the fourth line is again evaluated with a speial ase of the integral formulaof Fateev and Ribault (A.9). Putting the results of eqs. (4.10) and (4.12) together wearrive at hU11h2e0;2n0i(0)V 11h�e;�n+1i(iy;�iy)�Sbulkint + 12! �Sbdyint �2� i = 0 ; (4.13)in agreement with gl(1j1) ovariane of the 2-point funtion. Thereby, we have nowestablished the formula (4.2) through our perturbative omputations.Before we leave the subjet of bulk boundary 2-point funtions, we would like to makea few omments on the ases when e=k is an integer multiple of 1=2. Consider insertinga bulk vertex operator with e momentum e = �mk � k=2� k" and sending " to zero. In17



the limit, the seond term of eq. (4.2) develops a logarithmi singularity,C1(�mk � k=2� k�)jyj��1 = (�1)mm!�(�m + 1=2)jyj2� (Z + ~� ln jyj+ o(�))where Z = 1� + 	(�m)�	(�m + 1=2) ;� = �(2m + 1)(2n�m� 1) : (4.14)
and ~� = 4n � 4m � 3. Here, 	 is the usual Di-gamma funtion. The form of our bulk-boundary 2-point funtion (4.14) resembles a similar expression in [18℄. A link betweenboundary orrelation funtions of sympleti fermions and the orresponding orrelatorsin the GL(1j1) WZNW model may be established following ideas in [19℄.4.3 Boundary 3-point funtionsThe seond objet of interest for us is the boundary 3-point funtion. Before we getthere, we have to turn our attention to an important detail that we glossed over in theprevious subsetion. We reall that our 2� 2 matries 	he;ni; e 6= kZ; of boundary �eldsontain two irreduible multiplets he; ni under the unbroken global gl(1j1) symmetry.These two multiplets have opposite fermion number, i.e. the state with lower eigenvalueof N is bosoni for one of them and fermioni for the other. In general, the two multipletsare allowed to have di�erent ouplings to the other �elds in the theory. When we studiedbulk-boundary 2-point funtion, only one of the two multiplets from eah of the 2 � 2matries 	h2e;2ni and 	h2e;2n�1i ould have a non-vanishing overlap with the bulk �eld�h�e;�n+1i, simply beause of fermion number onservation. Hene, the bulk-boundary 2-point funtions were parametrized by two non-vanishing struture onstants C�(e) ratherthan four. For boundary 3-point funtions, however, the distintion beomes important.Consequently, we introdue the symbolsU0h�2e;�2n+1i(u) = eieX+inY ( 1 ; + � � )U1h�2e;�2n+1i(u) = eieX+inY (C; (+ � �)C ) (4.15)for the �rst and seond row of the matrix (3.15). The same notation is used for the rowsof the matries  of funtions and 	 of boundary �elds.Let us now begin with the 3-point funtion of three �elds from the �rst multiplet 	0.These aquire ontributions exlusively from a single insertion of the boundary interation.18



A non-vanishing orrelator requires that the parameters ei of the three �elds sum up to~e = e1 + e2 + e3 = 0 and similarly that ~n = n1 + n2 + n3 = 1. Using the integral formulasfrom Appendix A, the 3-point funtion of �elds 	0 in the regime 0 < x < 1 is found to beh	0�1h�2e1;�2n1+1i(0)	0�2h�2e2;�2n2+1i(1)	0�2h�2e3;�2n3+1i(x)i = Æ(~e) Æ(~n� 1) Æ(~�� 2)�� x2�13(1� x)2�23 �i s(�1) + s(�2) + s(�3)s(�1)s(�2)s(�3)�(�1 + �1)�(�2 + �2)�(�3 + �3) (4.16)where we de�ned the parameters �i by �i = 2ei=k and introdued the short-hands s(z)and ~� for s(z) = sin(�z) and ~� = P �i. The onformal weights are given by�ij = (ni � 1=2)�j + (nj � 1=2)�i + �i�j :In the limit k ! 1 the funtion s(�i) an be approximated by s(�) � 2�ei=k and theentire 3-point funtion is seen to vanish due to the onservation of e momentum. This isonsistent with the minisuperspae theory. In fat, the orresponding integral of funtionson our brane is easily seen to vanish,h 0�1h�2e1;�2n1+1i 0�2h�2e2;�2n2+1i 0�2h�2e3 ;�2n3+1ii = 0 :This is so beause integration with the Haar measure needs a produt of two di�erentfermioni zero modes in order to give a non-zero result. Our funtions  0, however, onlyontain the zero mode �+ � ��.Let us now move on to disuss the 3-point in the ase where a single �eld fromthe seond multiplet 	1 is inserted. Contributions to suh orrelators arise only fromthe leading term s = 0 of the perturbation series (see below). The result is thereforestraightforward to write downh	0�1h�2e1;�2n1+1i(0)	0�2h�2e2;�2n2+1i(1)	1�3h�2e3;�2n3+1i(x)i == Æ(~e) Æ(~n� 1=2) Æ(~�� 1) x2�13(1� x)2�23 : (4.17)This oupling in independent of the level k and it mathes the minisuperspae answerwhih is non-zero beause the multiplet  1 ontains both fermioni zero modes.The most interesting 3-point oupling appears when we insert two �elds from theseond multiplet 	1. One more, non-vanishing terms an only arise from the insertion ofa single boundary interation. They an be worked out with the help of integral formulas19



in Appendix A,h	0�1h�2e1;�2n1+1i(0)	1�2h�2e2;�2n2+1i(1)	1�3h�2e3;�2n3+1i(x)i = Æ(~e) Æ(~n� 1) Æ(~�� 2) �� 2�2ik x2�13(1� x)2�23 s(�1)� s(�2)� s(�3)s(�1)s(�2)s(�3)�(�1 + �1)�(�2 + �2)�(�3 + �3) : (4.18)Note that the fator � 1=k in the �rst term of the seond row is neessary in order for thewhole expression to sale to a �nite value as we send the level k to in�nity. The expressionthat arises in this limit an be heked easily in the minisuperspae theory.There remains one more ase to onsider, namely the 3-point funtion for three �eldsfrom the seond multiplet 	1. It is given byh	1�1h�2e1;�2n1+1i(0)	1�2h�2e2;�2n2+1i(1)	1�3h�2e3;�2n3+1i(x)i == Æ(~e) Æ(~n� 1=2) Æ(~�� 1)2�k x2�13(1� x)2�23 : (4.19)As in the previous formula (4.18), the result ontains a fator 1=k. Consequently, the3-point oupling on the right hand side of eq. (4.19) vanishes at k � 1, in agreementwith the assoiated minisuperspae omputation.The last result (4.19) was obtained without any insertion of bulk or boundary in-terations, though naively one might expet to see ontributions from one bulk or twoboundary insertions. A similar omment applies to the seond ase (4.17) above. It isindeed true that the insertion of Sbulkint or (Sbdyint )2 both lead to non-vanishing expressions.But, as in the ase of the bulk boundary 2-point funtions, their sum vanishes, i.e.hU �01�1he1;n1i(0)U �02�2he2;n2i(1)U �03�03he3;n3i(u) �Sbulkint + 12! �Sbdyint �2�i = 0 :The result is trivially ful�lled for ~�0 = 0; 2. It requires rather elaborate omputationswhen ~�0 = 1; 3. These an be performed with the help of the integral formulas (A.3-A.5)we list in Appendix A.Before losing this setion we would like to add two more omments. The �rst oneonerns the logarithmi singularities that appear in the 3-point funtions whenever oneof the parameters 2ei is an integer multiple of k. If we onsider joining two open stringswith e momentum e1 = e � "=2 and e2 = �e � "=2, for example, and send " to zero, we
20



obtainh	00h�2e+";�2n1+1i(0)	11h2e+";�2n2+1i(1)	11h�2";�2n3+1i(u)i �� u2�(1� u)�2� Æ(~n� 1) �Z +R(�) + A23 ln j1� uj+ A13 ln juj+ o(")�where Z = 1" + 4"k ; R(�) = �2�1 + (�)ks(�)A13 = 1k (2n1 � n3 � 1=2 + 2�) ; A23 = 1k (2n2 � n3 � 1=2� 2�) (4.20)
and � = �(n3 � 1=2). The funtion (�) stands for (�) = os(��) and  is the Euler-Masheroni onstant. In the limit "! 0, the onstant Z diverges. This divergeny an beregularized by adding to 	11 an appropriate �eld from the sole of the involved atypialmultiplet. In the following, we shall assume that Z has been set to zero.Our �nal omment deals with an interesting quantum symmetry of the boundary 3-point funtions. As in the bulk setor [1℄, the boundary 3-point funtion is periodi undershifts of the e-momentum, in the following sense,h	�1�01h�2e1;�2n1+1i(0)	�2�02h�2e2;�2n2+1i(1)	�3�03h�2e3;�2n3+1i(x)i =(1� u)2n3�1u1�2n3h	�2�02h�2e1+k;�2n1i(1)	�1�01h�2e2�k;�2n2+2i(0)	�3�03h�2e3;�2n3+1i(x)i :Further shifts by multiples of �k an also be onsidered, but neessarily involve insertingdesendants of the tahyon vertex operators. Our observation proves that the boundaryGL(1j1) model for volume �lling branes possesses spetral ow symmetry. Shifts byinteger multiples of the level k are a symmetry of the aÆne representation theory. Inpriniple, this symmetry ould be broken by the boundary struture onstants. Theprevious formula asserts that, like in the bulk setor, the boundary operator produtexpansions preserve the spetral ow symmetry. The same is true for the bulk-boundaryoperator produt expansions.5 Correlation funtions involving atypial �eldsThroughout the last few setions we have learned how to ompute orrelation funtionsof bulk and boundary tahyon vertex operators for a volume �lling brane in the GL(1j1)WZNW model. We now want to add a few omments on a partiular set of orrelationfuntions that are essentially not e�eted by the interation and hene an be derived21



without umbersome alulations. These will inlude a non-vanishing annulus amplitude.We shall use the latter to perform a highly non-trivial test on the proposed boundarystate of volume �lling branes [6℄.5.1 Correlators for speial atypial �eldsIn the previous setions we developed a �rst order formalism for omputations oforrelation funtions in the GL(1j1) WZNW model. Very speial orrelators, however,an also be omputed in the original formulation. To begin with, let us explain the mainidea at the example of bulk orrelators. We reall that the bulk ation of the GL(1j1)model is given bySbulk = � k4�i Z� d2z ��X ��Y + �Y ��X + 2eiY �+ ���� (5.1)The path integral is evaluated with the gl(1j1) invariant measure (3.1) on the spae of�elds. A glane at the interation term of the WZNW model and the measure suggeststo introdue the new oordinates �� = eiY=2�. After this substitution, the path integralmeasure is the anonial one,d�WZW � DXDYD��D�+ : (5.2)Our bulk ation Sbulk = S0 +Q, on the other hand, splits naturally into a free �eld theoryS0 and an interation term Q whereS0 = � k4�i Z� d2z ��X ��Y + �Y ��X + 2��+ �����Q = k4�i Z� d2z �i�+ �����Y + i��+�� ��Y + �+���Y ��Y � : (5.3)Due to the ompliated form of Q, treating the WZNW model as a perturbation bythe interation terms in Q is not too useful for most pratial omputations. Undervery speial irumstanes, however, the split into S0 and Q allows for a very interestingonlusion. Observe that eah term in the interation Q ontains at least one derivative�Y or ��Y . In our free �eld theory S0, the only non-vanishing ontrations involvingderivatives of Y are those with the �eld X. Hene, we an simply ignore the preseneof Q for all orrelation funtions of tahyon vertex operators that do not involve X. Inother words, orrelation funtions of �elds without any X-dependene are given by their22



free �eld theory expressions! This had already been observed in the results of [1℄. Oursplit of the ation in S0 and Q provides a rather simple and general explanation. Let usstress again that this split is not helpful for any other omputation involving more generitypial �elds.It is lear that all this is not restrited to the bulk theory. In fat, we an use thesame substitution for the boundary terms of the ation (2.1),S�0 = k8�i Z� du (�+ + ��)�u(�+ + ��) : (5.4)Sine S�0 is quadrati in the �elds ��, it gets added to the free bulk ation S0, i.e. we nowwork with a free �eld theory on the upper half plane whose ation is given by S0 + S�0.There is no additional boundary ontribution to the bulk interation Q. In the free theory,the �elds �� satisfy Neumann gluing onditions of the following simple form,���(z; �z) = �����(z; �z) for z = �z : (5.5)The gluing ondition implies that fermions of the free boundary theory are ontrated asfollows, ��(z; �z)�+(w; �w) � 1k ln jz � wj2 ;��(z; �z)��(w; �w) � 1k ln(�z � w)� 1k ln( �w � z) : (5.6)The bosoni �elds X; Y also obey simple Neumann boundary onditions so that theevaluation of orrelators in the free �eld theory S0 + S�0 is straightforward. Taking theinteration Q into aount is a diÆult task unless none of the vertex operators in theorrelation funtion ontain the �eld X. If all �eld are X independent, then the orrelatoris simply given by the free �eld theory formula, just as in the bulk theory above.One may apply the observation in the previous paragraph to the evaluation of bound-ary 3-point funtions of three atypial �elds for the volume �lling brane. Note that wedid not spell out a formula for this partiular orrelator before. In priniple, it an beomputed in the �rst order formalism, but the orresponding alulation requires someare. Our new approah allows to write down the result right away. We shall disussanother interesting appliation of our new approah to atypial orrelation funtions inthe next subsetion. Let us mention in passing that we expet similar results to hold forthe ompletely atypial setors in all GL(N jN) and PSL(N jN) WZNW models. Thiswill be disussed in more detail elsewhere. 23



5.2 Twisted boundary state and modular bootstrapIn our previous paper [6℄, we proposed a formula for a boundary state of volume �llingbrane on GL(1j1). The usual annulus amplitude for this boundary state was trivially zero,in agreement with the observation that open string states are perfetly paired. In fat,as we have mentioned at various plaes throughout this note, for eah multiplet he; ni ofboundary �elds there exists one with opposite parity. Contributions of suh pairs to theboundary partition funtion anel eah other, leading to a vanishing boundary partitionfuntion.In order to onstrut a non-trivial quantity on the annulus, we need to insert somefermioni zero modes, see e.g. [20℄ for similar tests in the simpler b ghost system. Previ-ously, we have not been able to ompute suh quantities in the GL(1j1) WZNW model.We an now �ll this gap! Let us antiipate that only atypial bulk �elds ouple to thevolume �lling brane. Hene, if we insert fermioni zero modes through some atypial bulk�eld, the entire amplitude is built from atypial terms and should be omputable througha simple free �eld formalism, as explained in the previous subsetion. Let us see now howthe details of this alulation work out.To begin with, let us review the onstrution of the boundary state j
i for the volume�lling brane. With the help of our free �eld realization, the formula beomes quite expliit.We shall start from the boundary state j
i0 of the free theory. This state learly fatorizesinto a produt of a bosoni j
; Bi0 and a fermioni j
; F i0 ontribution. The latter twoobey the following gluing onditions(Xn + �X�n) j
; Bi0 = (Yn + �Y�n) j
; Bi0 = 0 (5.7)and (��n � ����n) j
; F i0 = 0 : (5.8)Here, Xn and �Xn are the modes of the urrents ipk�X and ipk ��X et. Up to normal-ization, there exists a unique solution for these linear onstraints. For the bosoni andthe fermioni setor, they are given by the following oherent states,j
; Bi0 = exp � 1Xn=1 1n(Y�n �X�n +X�n �Y�n! j0; 0iB (5.9)j
; F i0 = exp � 1Xn=1 1n(�+�n ��+�n � ���n ����n! j0; 0iF : (5.10)24



Here, j0; 0i denote the vaua in the bosoni and the fermioni theory. The produt of thetwo omponents is the boundary state of the free �eld theory, before the interation istaken into aount. We now inlude the e�ets of the interation by multiplying the freeboundary state with the exponential of the interation Q,j
i = N eQ j
i0 = N  1Xn=0 Qnn! ! j
; Bi0 � j
; F i0 ; (5.11)where N = p�=2i is a normalization onstant. The operator Q is de�ned as in eq. (5.3),but with the integration restrited to the interior of the unit dis. It is possible to hekthat expQ rotates the gluing onditions from the free �eld theory relations (5.7) and(5.8) to their interating ounterparts (see (2.2)). The dual boundary state is onstrutedanalogously.Our main aim now is to ompute some non-vanishing overlap of the twisted boundarystate j
i. This requires the insertion of the invariant bulk �eld �11h0;0i = ���+, i.e. we aregoing to study Z
(q; z) := h
 j ~qL0(�1)F  ~zN0 �11h0;0i j
i ; (5.12)where L0 = (L0 + �L0)=2 and N 0 = (N0 � �N0)=2 are obtained from the zero modes of theVirasoro �eld and the urrent N . The orresponding expressions are standard, see e.g.[1℄. Our parameters ~q and ~z are de�ned in terms of �; � through ~q = exp(�2�i=�) and~z = exp(2�i�=�). We are now going to argue that the omputation of Z
 an be reduedto a simple alulation in free �eld theory, i.e.h
 j ~qL0(�1)F  ~zN0 �11h0;0i j
i = N 2 0h
 j ~qL0(�1)F  ~zN0 �11h0;0i j
i0 : (5.13)The reasoning goes as follows. In a �rst step we write the interating boundary state as aprodut of the interation term expQ and the free boundary state j
i0. Next we observethat all bosoni operators in between the two boundary states involve derivatives suh as�X et. Hene, we an use the gluing onditions (5.7) to express all these terms throughYn and Xn. The modes �Yn and �Xn of the anti-holomorphi derivatives only appear inthe onstrution (5.9) of the free bosoni boundary state j
; Bi0. A non-vanishing termrequires that the number of �Xn equals the number of �Y�n. But sine the �X�n and �Y�nome paired with their holomorphi partners Y�n and X�n in the boundary state, theoperator in between 0h
j and j
i0 must have equal numbers for Xn and Yn modes in25



order for the orresponding term not to vanish. In Q, all terms have an exess of Ymodes. Sine no term in L0 or N 0 an ompensate this through an exess of X-modes,we an safely replae expQ by its zeroth order term, i.e. expQ � 1.The omputation of the overlap (5.13) in free �eld theory is straightforward. In a �rststep, the amplitude is split into a produt of bosoni and fermioni terms. The bosoniontribution is the same as for extended branes in at 2-dimensional spae. The fermionifator involves an insertion. Its evaluation is reminisent of a similar alulation in [20℄.We an express the result through a single harater of the aÆne gl(1j1) algebra,Z
(q; z) = N 2 �̂P0(�1=�; �=�) = �k Z dedn �̂he;ni(�; �)sin(�e=k) : (5.14)The aÆne haraters �̂ along with their behavior under modular transformations an befound in the Appendix A of [6℄. In order to ahieve proper normalization (see below)we have set N 2 = �=2i. Sine the spetrum of boundary operators on the volume �llingbrane is ontinuous, the result involves some open string spetral density funtion. Fromthe result, this is read o� as�(e; n) = �(e) = �k sin(�e=k) : (5.15)We would expet � to be enoded in the boundary 3-point funtion of 	he;ni, 	h�e;�niwith the speial boundary �eld 	11h0;0i. One possible 3-point funtion that ontains therequired information is a partiular ase of our more general formula (4.20), i.e.h	00he;ni(0)	11h�e;�ni(1)	11h0;0ii �� u2�(1� u)�2��Z +R(��e=k) + A23 ln j1� uj+ A13 ln juj� : (5.16)All quantities that appear on the right hand side were introdued in equation (4.20). Theadditive onstant Z is not universal. It is naively in�nite, but an be made �nite by aproper regularization presription. We use the universal term R to determine the spetraldensity dde lnR(��e=k) = �k dd� ln 1 + (�)s(��) = �k sin(�e=k) = �(e) : (5.17)Here, we have used that � = e=k, as before. The result agrees with the expression (5.15)that was obtained through modular transformation of the overlap (5.13). Thereby, wehave now been able to subjet our formula (5.11) for the boundary state of the volume�lling brane to a strong onsisteny hek. 26



There is another somewhat weaker but still non-trivial test for the boundary statethat arises from the minisuperspae limit of the boundary WZNW model. In fat, in thepartile limit we �nd thattr(zad
N (�1)F 11h0;0i) = Z dedn �he;ni(z)e = limk!1Z
(q; z) : (5.18)In the �rst step we simply evaluated the trae diretly in the minisuperspae theory. Wethen observed in the seond equality that the result oinides with the modular transformof the overlap (5.13) in the appropriate limit k !1.6 Conlusions and open problemsIn this note we have solved the boundary theory for the volume �lling brane onGL(1j1). We ahieved this with the help of a Ka-Wakimoto-like representation of theboundary theory. The �rst order formalism we developed in setion 2 is similar to theone used in [11℄ for AdS2 branes in the Eulidean AdS3. The main di�erene is that wewere fored to introdue an additional fermion on the boundary. Suh auxiliary boundaryfermions are quite ommon in fermioni theories (see e.g. [12, 15℄ and referenes therein).With the help of our �rst order formalism we were then able to set up a perturbative al-ulational sheme for orrelation funtions of bulk and boundary �elds. The main featuresof this sheme are similar to the pure bulk ase [1℄. In partiular, for any given orrelator,only a �nite number of terms from the expansion an ontribute. We omputed the exatbulk-boundary 2-point funtions and the boundary 3-point funtions, thereby solving theboundary onformal �eld theory of volume �lling branes on GL(1j1) expliitly. Finally,we proposed a seond approah to orrelation funtions of atypial �elds. It singles outa partiular subsetor of the bulk and boundary GL(1j1) WZNW model that is not af-feted at all by the interation. Hene, within this subsetor, all quantities agree withtheir free �eld theory ounterparts. The insight was then put to use for a alulation ofa partiular non-vanishing annulus amplitude in setion 5.2. Together with our previousresults on boundary 3-point funtions, we obtained a strong test for the boundary stateof the volume �lling brane in the GL(1j1) WZNW model.There are several obvious extensions that should be worked out. To begin with, itwould be interesting to set up an equally eÆient framework to alulate orrelationfuntions for the boundary theories of point-like loalized branes. Unfortunately, we have27



not sueeded to alulate orrelators from a �nite number of ontributions, as in the aseof the volume �lling brane. It is possible to develop a Ka-Wakimoto-like presentation forpoint-like branes using the boundary onditions of [20℄ for the b system. But sine thegluing onditions of [20℄ identify derivatives of  with �b et., zero mode ounting does notfurnish simple vanishing results. Therefore, an in�nite number of terms an ontributeto any given orrelation funtion. On the other hand, the seond approah of setion 5does generalize to point-like branes. Sine the boundary spetrum on a single point-likebrane is purely atypial, some interesting quantities an be omputed. This applies inpartiular to the boundary 3-point funtions on a single point-like brane. Correlationfuntions involving boundary ondition hanging �elds or typial bulk �elds, however, arenot aessible along these lines.It is ertainly interesting to investigate how muh of our program extends to highersupergroups. Enouraged by the reent developments on the bulk setor [21℄, it seemslikely that most of our onstrutions may be generalized, at least to supergroups of typeI. This inludes the superonformal algebras psl(NjN) and many other interesting Liesuperalgebras (see e.g. [22℄ for a omplete list). We believe that in all these ases thereexists one lass of branes whih an be solved through some appropriate square root ofthe bulk formalism. Taking the proper square root will ertainly involve a larger numberof fermioni boundary �elds. Our seond approah to atypial orrelation funtions mayalso be extended to higher supergroups and it provides interesting insights on the atypialsubsetor of the WZNW models. We plan to return to these issues in a forthomingpubliation.Aknowledgements: We wish to thank Yasuaki Hikida, Vladimir Mitev, David Ridout,Peter R�nne and in partiular Thomas Quella and Sylvain Ribault for interesting dis-ussions and omments on issues related to this work and on the manusript. This workwas supported in part by the EU Researh Training Network ForesUniverse, MRTN-CT-2004-005104.
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A Some integral formulasIn this setion, we provide a omplete list of integral formulas needed for the ompu-tation of the orrelation funtions. As referene we use [23℄.We start with the formulas needed in the omputation of boundary three-point fun-tions. First reall the integral representations of the hypergeometri funtion F (�; �; jx)Z 11 du juj��ju� 1j��ju� xj� =�(� + � +  � 1)�(1� �)�(� + ) F (; �+ � +  � 1;�+  j x)Z x0 du juj��ju� 1j��ju� xj� =x1��� �(1� �)�(1� )�(2� �� ) F (�; 1� �; 2� ��  j x)Z 0�1 du juj��ju� 1j��ju� xj� =�(� + � +  � 1)�(1� �)�(� + ) F (; �+ � +  � 1; � +  j 1� x)Z 1x du juj��ju� 1j��ju� xj� =(1� x)1��� �(1� �)�(1� )�(2� � � ) F (�; 1� �; 2� � �  j 1� x)
(A.1)

these integrals onverge for jxj < 1.If only the �rst order boundary interation ontributes, we need the speial ase � +� +  = 2 of the above integrals whih an be expressed asZ[�1;0℄ [ [1;1℄ du juj��ju� 1j��ju� xj� = (1� x)��1x��1�(1� �)�(1� �)�()Z[0;x℄ du juj��ju� 1j��ju� xj� = (1� x)��1x��1�(1� �)�(1� )�(�)Z[x;1℄ du juj��ju� 1j��ju� xj� = (1� x)��1x��1�(1� �)�(1� )�(�) : (A.2)
If the bulk interation term ontributes, we have to evaluate the following integral for29



� + � +  = 0Z d2z (z � �z)jzj2�+2jz � 1j2�+2jz � xj2+2 == 1x + � Z d2z �� � �z(�z � 1)(�z � x)jzj2�+2jz � 1j2�+2jz � xj2+2� +� 1x + � Z d2z � � z(z � 1)(z � x)jzj2�+2jz � 1j2�+2jz � xj2+2�= � 2x + � Z du u(u� 1)(u� x)juj2�+2ju� 1j2�+2ju� xj2+2= � 1(x + �) ddx � Z[�1;0℄ [ [1;1℄ du 1juj2�+1ju� 1j2�+1ju� xj2 +� Z 10 du 1juj2�+1ju� 1j2�+1ju� xj2 �= �4(1� x)2��1x2��1��(�2�)�(�2�)�(2 + 1) + �(�2�)�(�2)�(2� + 1) + �(�2�)�(�2)�(2� + 1) �
(A.3)

and if two boundary interations ontribute, we need (again �+ � +  = 0)Z b1a1 du1 Z b2a2 du2 ju1 � u2jju1u2j�+1j(u1 � 1)(u2 � 1)j�+1j(u1 � x)(u2 � x)j+1 == x2��1(1� x)2��1 Z d11 du1 Z d22 du2 ju1 � u2jj(u1 � 1)(u2 � 1)j�+1ju1u2j+1 ; (A.4)
where i = b�1i �x�11�x�1 and di = a�1i �x�11�x�1 . For these integrals one has to evaluateZ 11 du1 Z u11 du2 (u1 � u2)j(u1 � 1)(u2 � 1)j�+1ju1u2j+1 = 4�(�2�)�(�2�)�(2 + 1)Z 10 du1 Z u10 du2 (u1 � u2)j(u1 � 1)(u2 � 1)j�+1ju1u2j+1 = 4�(�2)�(�2�)�(2�+ 1)Z 0�1 du1 Z u1�1 du2 (u1 � u2)j(u1 � 1)(u2 � 1)j�+1ju1u2j+1 = 4�(�2)�(�2�)�(2� + 1) (A.5)
where we used the following speial form of the Gamma doubling formula�(1=2� �)�(��)�(1=2� �)�(��)�(1=2)�( + 1=2)�( + 1) = 4�(�2�)�(�2�)�(2 + 1) : (A.6)30



For the omputation of bulk-boundary 2-point funtions we use some speial ases ofan integral formula that an be found in the reent work of Fateev and Ribault [11℄. Inase of a single insertion of the bulk interation we needZ d2z jz � �zjj1 + z2j2(�+1) = � 2i�3=22�4� �(2� + 1=2)�(2�)�2(�+ 1)�2(� + 1=2) : (A.7)To treat the insertion of one boundary interation we employZ du j1 + u2j�(�+1) = �2�2��(2� + 1)�2(� + 1) : (A.8)The insertion of boundary interations may be evaluated by means of the following formulaZ du1du2 ju1 � u2jj1 + u21j1+�j1 + u22j1+� = 4�3=22�4� �(2� + 1=2)�(2�)�2(�+ 1)�2(� + 1=2) : (A.9)Referenes[1℄ V. Shomerus and H. Saleur The GL(1j1) WZW model: From supergeometry to log-arithmi CFT, Nul. Phys. B734 (2006) 221 [arXiv:hep-th/0510032℄.[2℄ L. Rozansky and H. Saleur, S And T Matries For The Super U(1j1) WZW Model:Appliation To Surgery And Three Manifolds Invariants Based On The Alexander-Conway Polynomial, Nul. Phys. B 389 (1993) 365 [arXiv:hep-th/9203069℄.[3℄ L. Rozansky and H. Saleur, Reidemeister torsion, the Alexander polynomial andU(1j1) Chern-Simons Theory, J. Geom. Phys. 13 (1994) 105 [arXiv:hep-th/9209073℄.[4℄ M. Flohr, Bits and piees in logarithmi onformal �eld theory, Int. J. Mod. Phys. A18 (2003) 4497 [arXiv:hep-th/0111228℄.[5℄ M. R. Gaberdiel, An algebrai approah to logarithmi onformal �eld theory, Int. J.Mod. Phys. A 18 (2003) 4593 [arXiv:hep-th/0111260℄.[6℄ T. Creutzig, T. Quella, and V. Shomerus, Branes in the GL(1j1) WZNW-Model,Nul. Phys. B792 (2008) 257 [arXiv:hep-th/0708.0583℄.[7℄ V. Shomerus, D-branes and deformation quantization, JHEP 9906, 030 (1999)[arXiv:hep-th/9903205℄. 31
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