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We calculate low moments of the leading-twist and nextetading twist nucleon distribution amplitudes on
the lattice using two flavors of clover fermions. The resatts presented in tHdS scheme at a scale iGeV
and can be immediately applied in phenomenological studiés find that the deviation of the leading-twist
nucleon distribution amplitude from its asymptotic formléss pronounced than sometimes claimed in the
literature.

Introduction. — Distribution amplitudesT, 2, 3, 4, 5, 6] approach{, 10]. They indicate that higher-twist distribution
describe the structure of hadrons in terms of valence quaramplitudes become important while higher Fock states do not
Fock states at small transverse separation and are reduiredplay a significant role. In any case, the distribution anopliés
the calculation of (semi)exclusive processes. A simple picare needed as input.
ture is obtained at very large values of the momentum transfe  Being typical nonperturbative quantities, distributiom-a
For example, the magnetic Sachs form factor of the nucleoglitudes are difficult to compute reliably in a model-indape
Gm(Q?) can then be expressed as a convolution of the hardent way. Determinations by QCD sum rules have been at-
scattering kernél(z;, y;, Q*) and the leading-twist quark dis- tempted, but suffer from considerable systematic unaertai

tribution amplitude in the nucleap(z;, @?) [3]: ties, especially for lower values 6}>. As advocated in the
) pioneering work [ 1], lattice QCD can provide valuable addi-
Gum(Q7) tional information.

s [t ! . 9 9 9 In this paper we present an improved and extended lattice
- fN/O [dw]/o [dy] " (vi, @) h(wi, yi, @) o2, @) analysis of the nucleon distribution amplitudes. We find tha
the asymmetry of the leading-twist amplitude is smallentha
where[dz] = dzdzadasd(l — Zle x;), and—Q? is the  in QCD sum rule calculations, in agreement with phenomeno-
squared momentum transfer in the hard scattering proceskgical estimates?, 13], which suggest a less asymmetric
However, in the kinematic regionGeV? < Q? < 10GeV?,  form.
which has attracted a lot of interest recently due to the JLAB General Framework. — In the case of the proton, the
data [/, 8] for Gs, the situation is more complicated. Here starting point is the matrix element of a trilocal quark eper
calculations are possible, e.g., within the light-cone sula  ator,
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(0] [exp <z’g /: AU(U)do'“> ua(zl)r {exp <z’g /: AV(T)dTV> “6(22)}17 0 (24) [p)e .

1 . .
=1/ {(p-7C)a(vsN)V(2i - p) + (0 ¥15C)ap Ny A(2i - p) + (i0,0D" C)ap (V5 N), T (2 - p)} + higher twist

where path ordering is implied for the exponentialg, c are In momentum space we have

the color indices)N the proton spinor angh) denotes a proton

state with momentum. We will consider this matrix element > . d(z; - p)

for space time separation of the quarks on the light cgne Viwi) = /V(Zi P) 111 exp (izi(zi - p)) o (2)
aiz (22 =0)andy", a; = 1. !

with V(z;) = V(z1,z2,23) and similarly for A(z;) and
T(x;). The distribution amplitude¥ (z;), A(z;) andT'(x;)
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describe the quark distribution inside the proton as flomsti B =529 B =5.40
of the longitudinal momentum fractions. The dependence fn - 103[GeV?2] || 2.984(60)(157)(65) | 3.144(61)(29)(54)
on the renormalization scale is suppressed for notatiomal s | —A1 - 103[GeV?]|]39.69(76)(259)(124) |38.72(70)(43)(106)
plicity. A2 - 103[GeV?] ||78.70(155)(562)(245) | 76.23(139)(84)(207)
We consider the moments of distribution amplitudes, which o0 0.3549(11)(61)(2) 0.3638(11)(68)(3)
are defined as 010 0.3100(10)(73)(1) 0.3023(10)(42)(5)
L @001 0.3351(9)(11)(2) 0.3339(9)(26)(2)
ylmn _ / dz] wzlwgnxg V(z1,20,23), 3) $t00 — 001 0.0199(23)(46)(4) 0.0300(23)(93)(1)
0 001 — 010 0.0251(16)(84)(3) 0.0313(17)(12)(7)
011
with analogous definitions for the other distribution ampli Z“’l g??gggg;g()g?) 8?32825225;3
tudes. L_Jsing t_aqsl][ and Q)_ one can relatg the moments of 5110 0:0953(21)(58)(31) 0.0937(16)(3)(38)
the Iez?dqu[;]t\mlst nLlcheon ?lstrlbunon amplitudes to rixaet- $200 0.1508(38)(213)(64) | 0.1629(28)(7)(68)
ements ot the local operators @020 0.1207(32)(43)(56) | 0.1289(27)(37)(51)
002 0.1385(36)(47)(64) | 0.1488(32)(77)(73)
W 7(0) = YPOTAD () (v1evm) () P10 — 0t 0.0075(33)(69)(44) | 0.0211(27)(78)(32)
i o N TA . , PO — 110 0.0172(29)(82)(57) | 0.0204(21)(134)(50)
= [ D™ ... DM u(0)]5(CY*)apli™ D ... DFu(0)]5 $200 — 4920 || 0.0335(43)(26)(78) | 0.0321(33)(69)(55)
X [i"D" ... D" 5d(0)]C € ¢20% — ¢9%° 0.0170(36)(8)(56) 0.0193(24)(32)(42)

TABLE I: Moments and asymmetries in théS scheme a2 GeV
i i A for ¢'m™ = (VImn — Almn 4 9T!"™) /3. The first error is statis-
I _ I 1
t_)y O™ (0)p) = —fnp” ;;nﬁNTV mnl_;r/:/f:lth similar rel_a- tical, the second (third) error represents the uncertainiy to the
tions [11] for the operatorsA?™™" and 77" corresponding  chiral extrapolation (renormalization). The systematioes should
to the momentst/™" andT"™", respectively. Here the multi- pe considered with due caution, see the text for their détetion.
indiceslmn denote the Lorentz structure connected with the
covariant derivatives on the r.h.s.
Due to the presence of twop-quarks in the proton and i.e., to the lowest moments. Thus the problem is simplified
isospin symmetry, the three different amplitudes can be exgreatly since the Lorentz decomposition of the relevant ma-
pressed in terms of the single amplitugler;) with the corre-  trix element involves only two additional constantsand,

sponding moments [14]. They describe the coupling to the proton of two indepen-
dent proton interpolating fields used in QCD sum rules. One
plmn — l(vzmn — Almn 4 opinm) (4) of the operators, -, was suggested iri f] and the otherM -,
3 ' in [16]:

The normalization constanfy is defined by the choice wbe [ aT o b .
#°° = 1. The moments of the combinatiop(z;) = £-(0)=e [“ 0y u (0)] x (v57%,d°(0))r,
V(x;) — A(x;), usually used in sum rule calculations, can _ abe [ aT ww, b C

easily be obtained ag!™” = 2¢'™" — ¢"™ . In the numer- M-(0) =€ [u (0)Co™u (0)] X (150 d%(0))-
ical calculation, however, we prefer the combinatigft™ as

the corresponding statistical errors are smaller by a faifto Their matrix elements are given by

about3. Note that momentum conservation implies (01£+(0)[p) = MmNy, )
g = gltHmn 4 glimtin y glmint) (5 (0lM7(0)|p) = Aamn Ny ®)
In particular we have Due to Fierz identities we have
8
1= 100 + 010 + 001 22 _+_>\ N=—0 abe aTCdb c , 9
P+ + ¢ © (20 + AN = (0l (u Cd*) ), (9)

— ¢200 +¢020 +¢002 +2(¢011 +¢101 +¢110)_
which vanishes in the nonrelativistic limit.

In the limit of Q2 — oo one getsy(z;) = 120z 2223 [4] and Computation. — The required matrix elements between
the moment®'™" are known exactlyy'?® = ¢ = ¢°°1 =  the vacuum and the proton state are extracted from two-point
1/3, 00 = @920 = ¢%02 = 1/7 and¢®!! = ¢'%! = ¢!19 = correlation functions with the investigated local operatat

2/21. Thus asymmetries of the tyge® — ¢°1° are important  the sink and a smeared interpolating operator for the praton
guantities at low energies as they describe the deviatam fr the source. In addition one needs the usual proton correlato
the asymptotic case. with both source and sink smeared. We have evaluated these
In the case of the next-to-leading twist distribution ampli two-point functions on gauge field configurations generated
tudes we restrict ourselves to operators without derieativ by the QCDSF/DIK collaborations with the standard Wilson



gauge action and two flavors of nonperturbatively improved *%° T T T T

Wilson fermions (clover fermions). The gauge couplingsiuse

aref = 5.29 and$ = 5.40 corresponding to lattice spacings

a ~ 0.075fm anda ~ 0.067fm via a Sommer parameter g3

of ro = 0.467fm [17, 18]. Our smallest pion masses are L

380 MeV (5 = 5.29) and420 MeV (8 = 5.40), while the 0.002|

spatial lattice size& are such that, L > 3.7. —_— L L
Due to the discretization of space-time, the mixing pattern .04} o R200 _ R020

of the operators on the lattice is more complicated thanén th

continuum. It is determined by the transformation behavior 9021

of the operators under the (spinorial) symmetry group of our B

hypercubic lattice. As operators belonging to inequiviien |

reducible representations cannot mix, we derive our opegat  —0.02 ‘ ‘ ‘ ‘ ‘

. . . . 0 0.3 0.6 0.9 1.2 1.5 1.8

from the irreducibly transforming multiplets of three-gkia m2 [GeV?]

operators constructed i ] in order to reduce the amount

of mixing to a minimum. These irreducible multiplets con- FIG. 1: Linear chiral extrapolation of bare lattice restitsfx /m3

stitute also the basis for the renormalization of our omesat  (upper panel) and the asymmetR?°° — R°?° (lower panel) with

which is performed nonperturbatively. To this end we carttra onew error band.

our three-quark operators with three quark sources, anguta

the external legs from the resulting four-point functiomsl a LAT QCDSR BLW BK
impose an REMOM-like renormalization condition. Finally 17001 0.304 0.248 0.303 0311
we use continuum perturbation theory and the renormaliza-|  4o10 0.091 0.303 0.116 0.064

tion group to convert the results to tN&S scheme at a scale of
2 GeV. We estimate the corresponding uncertainty by varyingrABLE II: Comparison of our results (LAT) to selected sumerué-
the scale at which our renormalization condition is imposedsults 0] (QCDSR) and the phenomenological estimafe$ (BLW)
betweenl0 GeV? and40 GeV?. In this procedure, the mixing and [L3] (BK) at the scale2 GeV.
with “total derivatives” is automatically taken into acadu

In the case of the moments considered in this work we can
avoid the particularly nasty mixing with lower-dimensiéna statistical errors in this approach are too large to allow an
operators completely. Note that the Operaw;fgnn Aplmn accurate determination of the (particularly interestiagym-
and 77'™m" with different multi-indicesplma but the same metries. We achieved smaller errors by calculating thesati
Imn are related to the same momeht&™™, Almn andT!mn,  R'™* = ¢imn [S; whereS; = ¢'%0 +¢%10 460" for [ 4+m+
and we make use of this fact not only in order to minimizen = 1, andSs = 2(¢°'! 4 ¢'" + ¢*1%) + 790 4 ¢920 4 $00°
the mixing problems but also in order to reduce the stagiktic for / +m +n = 2. These ratios can be extrapolated linearly
noise by considering suitable linear combinations. to the physical masses. An example is shown in Eiower

For the operators without derivatives, i.e., the matrix ele panel) for the case of the asymmefy™ — R°*°. Requiring
mentsA;, \» and fy, we have performed a joint fit of all that the constraintg) be satisfied for the renormalized values
contributing correlators to obtain the values at the sinegla We can finally extract the moments from the ratios.
quark masses. As these are larger than the physical masses discussion and Conclusions. —Since we only have re-
chiral extrapolation to the physical pointis requiredie émd. ~ sults at two different lattice spacings, we are unable toagxt
To the best of our knowledge there are no results from chiolate our results to the continuum limit. However, we find
ral perturbation theory to guide this extrapolation. There that the results obtained at= 5.29 and = 5.40 are com-
we have adopted a more phenomenological approach aimiratible within errors. Hence we take the data from our finer
at linear (inm?) fits to our data. It turns out that the ratios lattice (3 = 5.40) as our final numbers. The values fgm"
fn/m3% and);/my are particularly well suited for this pur- imply thatp!®® = 0.394, ¢°!° = 0.302 and "' = 0.304.
pose (see Figl (upper panel) for an example). Moreover, These moments can be interpreted as the fraction of momen-
fn/m?% is dimensionless and hence not affected by any untum carried by the corresponding quarks(]. Thus we find
certainty in the determination of the lattice spacing. Idesr that the largest fraction of the proton longitudinal monuemt
to estimate the systematic error due to our linear extrapolas carried by onaip-quark with spin aligned with the proton
tion, we also consider a chiral extrapolation includingrate spin. However, this asymmetry is not as strong as found in the
quadratic inn2 and take the difference as the systematic errorQCD sum rule calculation. Our results for the first moments
The results in th&IS scheme at a scale 8iGeV are givenin  are close to phenomenological estimates [.3], cf. Tablell.
Tablel. Note that2\; ~ —\,, a relation that is expected to On the other hand, our results fpf'!, ©'°" and ''° are
hold in the nonrelativistic limit (cf., eq9)). similar to the sum rule values, while the asymmetries in the

For the higher moments one can proceed in the same wayomentsy?*?, "2 andy?? are clearly smaller.
and the constraint6] is satisfied very well. However, the  Let us now expand the distribution amplitude in terms of
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FIG. 3: The model distribution amplitudg(z1, z2, z3) for x3 =
0.5 as a function ofr; with statistical errors.

FIG. 2: Barycentric contour plot of the leading-twist dilstition

amplitudep(z1, z2,z3) atp = po = 2 GeV as obtained from the  EPCC (Edinburgh) and KEK (by the Kanazawa group as part

moments presented_in TabIeThe_Iines of constant:, z> andzs of the DIK research program) as well as QCDOC (Regens-

are par_aIIeI to the sides of the triangle labelledddy x5 and x4, burg) using the Chroma software libraryd 24]. This work

respectively. was supported by DFG (Forschergruppe Gitter-Hadronen-
Ph&nomenologie), by EU I3HP (contract No. RII3-CT-2004-

polynomialsP, to orderN = 2 chosen such that the mixing 506078) and by BMBF.
matrix is diagonal}1, 27:

N w
T; = T1T2T c Ti as—('u) "
90( up’) 120 142 37;) n(,uo)Pn( Z) <Oés(:u0)> ‘
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