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DESY 08-038CERN-PH-TH/2008-066ZMP-HH/08-6de Sitter vaua in no-sale supergravitiesand Calabi-Yau string modelsLaura Covia;b, Marta Gomez-Reino, Christian Grossd,Jan Louisd;e, Gonzalo A. Palmaa, Claudio A. SruafaTheory Group, Deutshes Elektronen-Synhrotron DESY,D-22603 Hamburg, GermanybInstitute of Theoretial Physis, Warsaw University,ul. Hoza 69, 00-681 Warsaw, PolandTheory Division, Physis Department, CERN,CH-1211 Geneva 23, SwitzerlanddII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,D-22761 Hamburg, GermanyeZentrum f�ur Mathematishe Physik, Universit�at Hamburg,Bundesstrasse 55, D-20146 Hamburg, GermanyfInst. de Th. des Ph�en. Phys., Eole Polytehnique F�ed�erale de Lausanne,CH-1015 Lausanne, SwitzerlandWe perform a general analysis on the possibility of obtaining metastable vaua withspontaneously broken N = 1 supersymmetry and non-negative osmologial onstantin the moduli setor of string models. More spei�ally, we study the ondition underwhih the salar partners of the Goldstino are non-tahyoni, whih depends only on theK�ahler potential. This ondition is not only neessary but also suÆient, in the sensethat all of the other salar �elds an be given arbitrarily large positive square masses ifthe superpotential is suitably tuned. We onsider both heteroti and orientifold stringompati�ations in the large-volume limit and show that the no-sale property sharedby these models severely restrits the allowed values for the `sGoldstino' masses in thesuperpotential parameter spae. We �nd that a positive mass term may be ahieved onlyfor ertain types of ompati�ations and spei� Goldstino diretions. Additionally, weshow how subleading orretions to the K�ahler potential whih break the no-sale propertymay allow to lift these masses.
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1 IntrodutionIt is widely believed that the existene of four-dimensional de Sitter (dS) vaua in lowenergy ompati�ations of string theory entails the presene of extended energy soures,suh as D-branes, ontributing to the vauum energy density. This is motivated in partby the observation that smooth ompati�ations of 10-D and 11-D supergravities do notadmit solutions to Einstein's equations haraterised by both a positive osmologial on-stant and a stable ground state [1, 2, 3℄. It has beome lear, however, that this lass of no-go theorems an be irumvented by inluding loalised soures and/or taking into aounthigher order orretions in �0 or the string oupling gs in the low energy analysis. In ref. [4℄it was indeed shown that in type-IIB string theory ompati�ed on Calabi-Yau orientifoldswith D-branes wrapping around yles and nontrivial bakground uxes a potential isgenerated for many of the salar �elds (moduli) present in the four-dimensional N = 1supergravity. Inluding non-perturbative ontributions all moduli an be stabilised but,generially, in a supersymmetri ground state whih is either anti-de Sitter or Minkowski[5, 6, 7, 8, 9℄ whereas a positive osmologial onstant neessarily requires the breaking ofsupersymmetry. For the `uplifting' from a supersymmetri vauum to a dS vauum a va-riety of mehanisms has been proposed and studied. For example, in ref. [5℄ it was shownthat the joint ontribution of non-perturbative e�ets and an expliit supersymmetry-breaking term indued by anti-D3 branes an lead to a dS vauum with �ne-tuned os-mologial onstant and stable volume modulus. Alternatively, there have been attemptsto onstrut metastable vaua where supersymmetry is broken spontaneously either byD- or F -terms [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27℄.Interestingly, there are no known examples of metastable vaua with spontaneouslybroken supersymmetry produed only by the volume moduli {or K�ahler moduli{ in theabsene of �0 and worldsheet instanton orretions to the K�ahler potential. At �rst sightthis fat is a bit ounter-intuitive. The superpotentials available in ux ompati�ationsand/or ompati�ations on generalised geometries are suÆiently generi [28℄ that oneould expet no serious obstale towards this end. Nevertheless, it was shown in ref. [29℄that for N = 1 supergravities desribing string ompati�ations with a single volumemodulus T and a no-sale K�ahler potentialK = �3 log(T + �T ) ; (1.1)stationary points of a positive salar potential V generated only by F -terms are alwaysharaterised by the existene of at least one tahyoni diretion, independently of thesuperpotential W = W (T ). This result was made more preise in ref. [30℄ and extendedto more general situations, and in partiular to the lass of ompati�ations in whih the1



K�ahler geometry spanned by the moduli is fatorised into one or several sub-manifoldsof onstant urvature. More preisely, it was shown that also for the no-sale K�ahlerpotential K = �Xi ni log(T i + �T i); with Xi ni = 3; (1.2)stationary points of a positive salar potential V have at least one tahyoni diretionindependently of W . Moreover, this tahyoni diretion was shown to beome marginallyat only when the superpotential W is hosen in suh a way that V = 0. Similar resultswere derived in ref. [31℄ for oset manifolds arising in orbifold ompati�ations. Thisnew lass of no-go theorems {whih relies only on the properties of the K�ahler potential{raises the natural question about the role of the volume moduli in the onstrution ofmetastable vaua in more generi string ompati�ations where the K�ahler geometryspanned by the moduli beomes nontrivial.The purpose of this paper is twofold. First we re�ne the previous analysis of four-dimensional N = 1 supergravities given in refs. [30, 31, 32℄ by emphasising that theruial quantity to study in order to ahieve vauum metastability is the mass of thesalar superpartners of the Goldstino. We show that all of the other salar �elds anbe made arbitrarily massive by appropriately hoosing the superpotential. However, thisis not the ase for the two sGoldstinos sine in the limit of global supersymmetry theGoldstino is exatly massless and therefore the sGoldstinos an never get a mass fromthe superpotential. Instead their masses are generated by the supersymmetry breakingmehanism with their mass-di�erene being of the order of the supersymmetry breakingsale. As a onsequene their masses are not neessarily positive. It is preisely thisfat whih is at the heart of the problem of identifying loally stable dS vaua. Fromthis disussion it is also immediately lear that a positive sGoldstino mass is a neessaryondition for the metastability of any dS vaua and, furthermore, this ondition doesnot depend on the superpotential but only on the form of the K�ahler potential. Thisobservation onsiderably simpli�es the searh for a viable dS ground state.The seond aspet of this paper onerns an analytial study of spei� lasses of N = 1supergravities whih appear as the low energy limit of string ompati�ations. We showthat there exist entire lasses of ompati�ations whih do not admit any metastabledS vaua, irrespetively of the superpotential or the vauum expetation values that themoduli may aquire. For instane, we show that de Sitter vaua are exluded in the ase ofK3 �brations regardless of the number of moduli or their vauum expetation values. Onthe other hand, we also identify partiular lasses of ompati�ations in whih the ne-essary onditions are indeed ful�lled and thus viable dS vaua should exist. Let us stresshere that we do not minimise any expliit potential. Rather we study the ondition for2



the existene of dS vaua and show that irrespetively of the superpotential this onditionis not easily satis�ed. We think that this is the reason for the diÆulties enountered inonstruting expliit metastable de Sitter vaua in low energy ompati�ations of stringtheory.The organisation of this paper is as follows. In Setion 2, we start by reviewing theonditions under whih a generi supergravity model with hiral multiplets admits viablevaua with spontaneously broken supersymmetry and non-negative osmologial onstant.Then in Setion 3 we apply the resulting ondition to the lass of models where the K�ahlerpotential satis�es either the no-sale property or a more restritive homogeneity propertyrespeted by large-volume senarios of string theory. In Setions 4 and 5 we study thelarge-volume limit of heteroti and orientifold models respetively and derive in eah asethe form of the metastability ondition. There we also apply our general results to lassesof models where the metastability ondition an be studied analytially and show expliitlythat a positive square mass may be ahieved only for ertain types of ompati�ationsand partiular Goldstino diretions. We also study the e�et of (subleading) �0 orretionsto the K�ahler potential and show that they ontribute to the sGoldstino masses and anrender them positive even for those models where it is not possible at leading order.Finally, in Setion 6 we present our onlusions.2 Metastable vaua in supergravityIn this setion, we briey review and extend the strategy that was presented in refs. [30, 31, 32℄to study the stability of non-supersymmetri vaua in general supergravity models withN = 1 supersymmetry in four dimensions.1 We assume that vetor multiplets play anegligible role in the dynamis of supersymmetry breaking, and fous thus on theorieswith only hiral multiplets.Reall �rst that the most general two-derivative Lagrangian for a supergravity theorywith n hiral super�elds is entirely de�ned by a single arbitrary real funtion G dependingon the orresponding hiral super�elds �i and their onjugates ���{. Derivatives withrespet to �i and ���| are denoted by lower indies i and �|. Using Plank units whereMP = 1, the funtion G an be deomposed in terms of a real K�ahler potential K and aholomorphi superpotential W in the following way:G(�; ��) = K(�; ��) + logW (�) + log �W (��) : (2.1)1A similar strategy has also been used in ref. [33℄ to explore the statistis of supersymmetry breakingvaua in ertain lasses of string models. 3



The quantities K and W are however de�ned only up to K�ahler transformations atingas K ! K + f + �f and W !We�f , where f is an arbitrary holomorphi funtion of thesuper�elds. The bosoni part of the ation takes the form:S = Z p�g h12R� gi�| ��i� ���| � V (�; ��)i : (2.2)The K�ahler metri gi�| = Ki�| = �i��|K is used to raise and lower indies, and de�nes aK�ahler geometry for the manifold spanned by the salar �elds. It is assumed to be positivede�nite, suh that the salar's kineti energy is positive. The potential takes the followingsimple form: V = eG(GiGi � 3) : (2.3)The auxiliary �elds of the hiral multiplets are �xed by their equations of motion to beF i = m3=2Gi with a sale set by the gravitino mass m3=2 = eG=2. Whenever F i 6= 0 onthe vauum, supersymmetry is spontaneously broken, and the diretion Gi in the spaeof hiral fermions de�nes the Goldstino whih is absorbed by the gravitino in the proessof supersymmetry breaking.2.1 Condition for metastabilitySupersymmetry-breaking metastable vaua with non-negative osmologial onstant areassoiated to loal minima of the potential at whih F i 6= 0 and V � 0. These vaua anbe lassi�ed by looking at stationary points with V 0 = 0, imposing that the value of thepotential should not be negative, V � 0, and �nally requiring that the Hessian matrixshould be positive de�nite: V 00 > 0.The derivatives of the potential (2.3) are most onveniently omputed by using theovariant derivative ri de�ned by the K�ahler metri gi�|, and the assoiated Riemann ur-vature tensor Ri�|m�n. The �rst derivative is just Vi = riV , and the stationarity onditionsVi = 0 read eG �Gi +GkriGk�+GiV = 0 : (2.4)The seond derivatives of the potential an also be omputed by using ovariant deriva-tives, sine the extra onnetion terms vanish by the stationarity onditions. There aretwo di�erent n-dimensional bloks, Vi�| = rir�|V and Vij = rirjV , and these are foundto be given by the following expressions:2Vi�| = eG �Gi�| +riGkr�|Gk �Ri�|m�nGmG�n�+ (Gi�| �GiG�|)V ; (2.5)Vij = eG �2riGj +GkrirjGk�+ (riGj �GiGj)V : (2.6)2Our onventions for the Riemann tensor are given by eq. (A.5) in the Appendix.4



The metastability ondition is then the requirement that the whole 2n-dimensional Hes-sian mass matrix M2 should be positive de�nite, whereM2 = �Vi�| VijV�{�| V�{j � : (2.7)It is lear that for a �xed K�ahler potential K, most of the eigenvalues of this massmatrix an be made positive and arbitrarily large by suitably tuning the superpotentialW . More preisely, the n � 1 hiral multiplets that are orthogonal to the Goldstinomultiplet an aquire a large overall supersymmetri mass ontribution from W , whihan overome the mass splitting of order m3=2 indued by supersymmetry breaking, andlead to positive square masses for the salar �eld omponents. The Goldstino multiplet,on the other hand, annot reeive any supersymmetri mass ontribution from W , sinein the limit of rigid supersymmetry its fermioni omponent must be massless. The masssplitting of order m3=2 indued by supersymmetry breaking an then potentially make thesquare mass of the salar �eld omponent negative.From a more tehnial point of view, this onlusion an be obtained by realling thatderivatives of G with mixed holomorphi and antiholomorphi indies depend only on K,while quantities like Gi, riGj and rirjGk depend also on W , and more preisely on(logW )i, (logW )ij and (logW )ijk. Keeping K �xed and tuning W , one an then vary inan arbitrary way these quantities. This allows to adjust �rst the quantities rirjGk toset the blok Vij to zero, and next the quantities riGj to make most of the eigenvaluesof Vi�| positive. On top of that, one still has the freedom of arbitrarily hoosing Gi. Theonly restrition in the seond step omes from the fat that the projetion of Vi�| alongthe Goldstino diretion Gi is atually �xed by the stationarity ondition (2.4), and antherefore not be adjusted. This means that the square masses of the two sGoldstinosannot be arbitrarily shifted by adjusting W , and that their value ruially depends onK.In order to study metastability, it is thus suÆient to study the projetion of thediagonal blok Vi�| of the mass matrix along the Goldstino diretion Gi. More preisely,we �nd it onvenient to resale this quantity by the overall mass sale m23=2 and onsiderthe following parameter: � = e�G Vi�|GiG�| : (2.8)Stritly speaking � is a linear ombination of eigenvalues of Vi�| with non-negative oeÆ-ients in front of them. It therefore de�nes a natural mass sale ~m2 � eG�=GiGi whihan be thought of as the mass obtained by projeting Vi�| along the Goldstino diretionGi. Aordingly, we identify here ~m with the mass of the sGoldstinos.5



By using eqs. (2.4) and (2.5), one an ompute � more expliitly. The result is foundto depend only on the parameters Gi = e�G=2F i de�ning the diretion of supersymmetrybreaking, ontrated with the metri and the Riemann tensor of the salar geometry:� = 2 gi�|GiG�| � Ri�|m�nGiG�|GmG�n : (2.9)For given K and arbitrary W , the quantities Gi an be varied but the metri and theRiemann tensor are �xed. One an then look for the preferred diretion that maximises�.3 If �max < 0, then one of the sGoldstinos is unavoidably tahyoni, and the vauumis unstable. If instead �max > 0, then the sGoldstinos an be kept non-tahyoni byhoosing W suh that the Goldstino diretion is lose enough to the preferred diretion,and more preisely inside a one for whih � 2 [0; �max℄. As already mentioned, the restof the salars an always be given a positive square mass by further tuning W . Theruial ondition for metastability, whih onstrains both the K�ahler geometry and thesupersymmetry breaking diretion, is then [30℄� > 0 : (2.10)2.2 Analysis of the metastability onditionThe impliations of the metastability ondition � > 0 have been studied in refs. [30, 31℄for models with a �xed osmologial onstant. But one an atually perform a similarstudy without speifying the value of the osmologial onstant and only requiring thatit is non-negative. It is lear from the form of eq. (2.9) that for suÆiently small valuesof the Gi, it would always be possible to �nd on�gurations suh that � > 0, sine thequarti term beomes subdominant and the quadrati term is positive. However, in thisregime the osmologial onstant would neessarily be negative. Whenever some of theGi are instead of order 1, as required to ahieve a non-negative osmologial onstant,the quadrati and quarti terms ompete, and the existene of on�gurations with � > 0strongly depends on the form of the urvature tensor. To analyse the rather onstrainedproblem of �nding whether there exist vaua with V � 0 and � > 0 it is onvenient torewrite � as the sum of two piees,� = �23e�GV (e�GV + 3) + �; (2.11)where � is de�ned to be� = h13 (gi�| gm�n + gi�n gm�|)� Ri�|m�niGiG�|GmG�n : (2.12)3See ref. [34℄ for an algebrai method for �nding the minima for a wide lass of superpotentials.6



As long as V > 0 the �rst term in eq. (2.11) is always negative and its preise valuedepends only on the length of the vetor Gi whih determines the osmologial onstant.The seond term in eq. (2.11) has instead a sign that depends only on the orientation ofthe vetor Gi, and not on its length. Therefore, the possibility of �nding solutions to themetastability ondition � > 0 depends exlusively on the sign of �. Indeed, starting fromany Gi suh that �(Gi) > 0, one an always tune the superpotential W to resale Gi bysome real fator r to ahieve V (rGi) = 0 and thus �(rGi) > 0, proving the existene ofMinkowski vaua. Moreover, by slightly inreasing r one an make V (rGi) > 0 and stillkeep �(rGi) > 0, ahieving thereby de Sitter vaua. For a �xed value of the gravitinomass sale m3=2 = eG=2 it is however lear that how big a osmologial onstant V anbe ahieved while keeping � > 0 depends on the size of � for the referene situationwhere V (Gi) = 0. The same kind of reasoning tells us that if � < 0 for all the possibleorientations of Gi, then one an never ahieve V � 0 and � > 0 simultaneously. We antherefore onlude that the analysis of the sign of the funtion � for non-supersymmetrivaua with V � 0 is equivalent to the analysis of the sign of the funtion � withoutspeifying the value of the osmologial onstant. More preisely, the ondition for theexistene of viable vaua is that � > 0 : (2.13)It is easy now to hek a few well known results onerning the existene of metastablevaua. Consider for instane those models where the K�ahler potential is of the anonialform K = Pi j�ij2 for whih the K�ahler manifold has a vanishing Riemann tensor. Inthis ase one has � = 23(Gi �Gi)2 > 0 ; (2.14)and no obstrution is met towards the onstrution of metastable vaua. Another simpleexample is provided by string ompati�ations desribed by a single volume modulus Tand a no-sale K�ahler potential of the form K = �3 log(T + �T ). In this ase, one �ndsthat � = 0 ; (2.15)independently of the value GT , and thus dS vaua are exluded [29℄ (see also [35℄). Finally,models with separable K = �3 log(T + �T ) +Pi j�ij2 also grant the existene of de Sittervaua as long as Gi 6= 0. If W is separable as well, so that the 2 setors interat onlygravitationally, it is atually possible to uplift any would-be supersymmetri minimumin the T setor with a �i setor breaking spontaneously supersymmetry well below thePlank sale [30℄. See [36℄ for a generalization to a ertain lass of non-separable W , and[37, 38℄ for spei� examples. On the other hand, for similar models with non-separable7



K = �3 log(T + �T � 1=3Pi j�ij2), as those onsidered in ref. [39℄, the salar manifold ismaximally symmetri and one �nds again � = 0 [31℄. See ref. [27℄ for a reent generalstudy of this type of uplifting.Notie that � has the very useful property of being a homogeneous funtion of degree(2; 2) in the variables (Gi; G�|), meaning thatGi ���Gi = G�| ���G�| = 2� : (2.16)As a onsequene of this property, any stationary point of � as a funtion of Gi leads to� = 0. This implies in turn that, at any given point in the K�ahler manifold spanned bythe hiral �elds, the funtion � an have only one suh stationary point, or a degeneratefamily of them, with � = 0. This is due to the fat that if the value of the funtion beomesnon-zero when moving away from suh a stationary point, then its �rst derivative is nolonger allowed to vanish again.Based on this property, it is possible to outline a general and systemati proedureto �nd out whether � > 0 an be ahieved in a partiular model by only requiring thatthe set of points G0i , at whih � beomes stationary, is known. Indeed, it is suÆientto study the onvexity of the funtion �(Gi) in the viinity of G0i by sanning all theorientations of Gi away from G0i for whih � is allowed to grow. If �(G0i ) = 0 is a loalminimum then, by the method desribed before, any diretion Gi 6= G0i may be resaledto render a metastable vauum. If instead �(G0i ) = 0 turns out to be a maximum, thenone is fored to exlude the K�ahler potential K of the model as a possible andidate togenerate metastable vaua. Finally, if �(G0i ) = 0 turns out to be a saddle point, thenonly a redued subset of orientations Gi will qualify to render metastable vaua. Weshould bear in mind, however, that the metri and the Riemann tensor appearing in thede�nition of � depend on the values of the salar �elds. Therefore, one should also sanover the allowed values of �i.The proedure just desribed is very useful and in priniple simple to implement whenthe onvexity of the funtion � annot be determined analytially. This is partiularly thease of the lass for models appearing in large volume ompati�ations of string theory.As we show in the next setion, the saling properties respeted by the type of K�ahlerpotentials appearing in suh senarios imply two important properties of the funtion �:�rst, stationary points of � are of the form Gi / Ki, and seond, suh points are eitherof the saddle-point type or maxima. One is then left with the task of determining, bystudying the viinity of Gi / Ki, whih one of these two situations is being dealt with.
8



3 Metastability in large-volume senariosWe now fous on some generi properties respeted by models emerging in large-volumesenarios of string theory. More spei�ally, we apply the analysis of the previous setionto the lass of models where the K�ahler potential satis�es either the no-sale property oran even more restritive saling property.3.1 No-sale modelsA ommon harateristi found in string ompati�ations is the no-sale property [40℄KiKi = 3 ; (3.1)whih holds for the K�ahler moduli parameterising the shape and size of the ompati�edvolume in the large-volume limit. Similarly, it also holds for the omplex struture moduliin the large-omplex-struture limit. We would then like to study the funtion � as de�nedin (2.12) for the partiularly relevant lass of supergravity models satisfying this no-saleproperty, in order to understand whether this restrition implies any useful informationonerning metastability.The simplest examples of suh no-sale models are ertain oset manifolds of the typeSU(p; q)=(U(1)�SU(p)�SU(q)) and SO(2; 2+p)=(SO(2)�SO(2+p)), with appropriateonstant urvature, arising in orbifold string models. Due to the fat that they arehomogeneous and symmetri, these partiular spaes lead to a simple form of the Riemanntensor. The impliations of the stability ondition an then be worked out ompletely. Itwas in fat shown in [31℄ that in these models the maximal value of � is preisely zero, andthat this value is obtained for the partiular diretion Gi = Ki, or equivalent diretionsrelated to this by the isometries of the spae.In more ompliated situations where the urvature is not onstant, like in Calabi-Yaumodels with and without orientifolds, the Riemann tensor takes a more ompliated formand the study of the metastability ondition beomes substantially more ompliated.However, sine the property (3.1) is valid at any point of the K�ahler manifold, it impliessome simple and nontrivial restritions on the Riemann tensor, and in partiular on itsontrations with the speial vetor Ki. For instane, taking one derivative of (3.1) one�nds Ki +KkriKk = 0; (3.2)whereas taking two derivatives one dedues the following relations:gi�| +riKkr�|Kk � Ri�|m�nKmK �n = 0 ; (3.3)9



2riKj +KkrirjKk = 0 : (3.4)Contrating the �rst of these relations withKiK�| and K�| respetively, one an then derivethe relations Ri�|m�nKiK�|KmK �n = 6 ; (3.5)Ri�|m�nK�|KmK �n = 2Ki : (3.6)These relations are useful to study the funtion � for this lass of models. In order todo so, it is natural to introdue the projetor onto the subspae orthogonal to Ki, sinewe know that at least in the partiular ase of onstant urvature manifolds this is thespeial diretion that maximises �. Thanks to the no-sale property, this projetor issimply P ji = Æji � 13KiKj : (3.7)We an then deompose the vetor Gi into two independent piees, one parallel to Ki andparameterised by a numerial oeÆient �, and one orthogonal to Ki and parameterisedby a vetor Ni satisfying N iKi = 0: Gi = �Ki +Ni : (3.8)The quantities � and N i are given byNi = P ji Gj ; � = 13KiGi : (3.9)The funtion �, as de�ned in eq. (2.12), may then be expressed in terms of the independentquantities � and Ni in the following way:� = 4j�j2 (gi�| � Ri�|m�nKmK �n)N iN �| � ���2Ri�|m�nKiKmN �|N �n + :��2 ���Rm�ni�|KmN �nN iN �| + :�+h13 (gi�| gm�n + gi�ngm�|)� Rm�ni�|iN iN �|NmN �n : (3.10)Note that this result is at least quadrati in the variables N i. This implies that there isa degenerate family of stationary points for N i = 0 and arbitrary �, that is for Gi / Ki,with value � = 0. To say more about the onvexity of � at this set of points we still requiresome more information regarding ontrations between Ki and the Riemann tensor. Aswe will see in the following, this additional information an be obtained by imposing anextra ondition generially respeted by large-volume string ompati�ations.10



3.2 Real homogeneous no-sale modelsA more restritive property haraterising large-volume senarios is that their K�ahlerpotential depends only on the real part of the super�elds and exhibits therefore n in-dependent shift symmetries, under whih Æi�j = i�Æji with onstant �. This means inpartiular that any distintion between holomorphi and antiholomorphi indies an bedropped. Furthermore, it turns out that there exists a oordinate frame where e�K is ahomogeneous funtion of degree 3 in the �elds �i + ��i. This implies that� (�i + ��i)Ki = 3 : (3.11)Taking a derivative, it then follows thatKi = �(�i + ��i) : (3.12)This equation guarantees, together with the previous one, that the no-sale propertyKiKi = 3 is satis�ed. But taking a derivative, it also implies that �iKj = �Æji , whihafter lowering the indies implies KijmKm = 2 gij : (3.13)Taking another derivative of this, one �nds alsoKijmnKm = 3Kijn : (3.14)From these two equations, it follows then thatRijmnKm = Kijn ; (3.15)RijmnKmKn = RimjnKmKn = 2 gij : (3.16)Finally, ontrating these equations with one and two more Kk's and using the no-saleondition, one also reovers the same relations (3.5) and (3.6) holding for general no-salemodels.It is onvenient at this point to introdue a new notation to deal with omplex quantitiessuh as Gi and G�{ in suh a way that the bar does not appear on top of the indies.Compared to the usual notation, we introdue the following substitutions: Gi ! Gi,G�{ ! �Gi, Gi ! �Gi, G�{ ! Gi. Similarly, for the Ni's we use: Ni ! Ni, N�{ ! �Ni,N i ! �N i, N�{ ! N i.Using eqs. (3.5), (3.6), (3.15) and (3.16), and deomposing as before Gi = �Ki + Niand �Gi = ��Ki + �N i, one �nds that the funtion � takes in this ase the following form:� = �2 �� �N i + ��N i� �� �Ni + ��Ni�� 2Kimn �� �N i + ��N i�Nm �Nn+h13 (gij gmn + gin gmj)�RijmniN i �N jNm �Nn : (3.17)11



This result shows that � has a loal maximum with value 0 at Ni = 0 at quadrati orderin the N i variables for orientations of Gi haraterised by � �N i + ��N i 6= 0. Nevertheless,this does not imply that � is negative de�nite, beause when � �N i+ ��N i = 0 the potentialis at at the quadrati and ubi orders and its onvexity is determined by the quartiterms in Ni. In order to gain further insight it is useful to omplete the squares in thevariable � �N i + ��N i and rewrite � in the form� = �2 sisi + ! ; (3.18)where si = � �N i + ��N i + 12P ijKjmnNm �Nn ; (3.19)! = h13(gij gmn + gin gmj)� Rijmn + 12KijkP klKlmniN i �N jNm �Nn : (3.20)Observe now that all the dependene on � is ontained in the semi-negative de�nite term�2sisi involving the norm of the vetor si. This fat allows us to eliminate one redundantdiretion in the superpotential parameter spae spanned by the Gi's in the analysis of �.Indeed, observe that � an be maximised with respet to � when � is hosen in suh away that siNi = 0. Sine our interest is to determine whether � > 0 an be ahieved,this ondition �xes � in terms of N i. It also redues the number of orientations of Githat need to be analysed in order to dedue the onvexity of � about the set of stationarypoints Gi / Ki. Notie additionally that in the partiular ase of two moduli i = 1; 2,the ondition siNi = 0 is equivalent to si = 0, as there is only one possible diretionperpendiular to Ki, implying that si and Ni are parallel to eah other.In the next two setions we study more onretely the funtion � for the two relevantases of heteroti and orientifold ompati�ations of string theory.4 Heteroti ompati�ations of string theoryIn this setion we onsider a lass of supergravity models whih arises in ompati�ationsof the heteroti string on Calabi-Yau threefolds.4 Let us �rst disuss some generi featuresof these ompati�ations and then ontinue with spei� examples.4.1 General disussionThe moduli of heteroti Calabi-Yau ompati�ations inlude the dilaton/axion and thedeformations of the Calabi-Yau metri. The latter are divided into deformations of the4Alternatively they an also be viewed as the NS-setor of type II ompati�ations.12



K�ahler lass and deformations of the omplex struture. Loally, the moduli spae M isthe produt manifold M =Mks �Ms � SU(1; 1)U(1) ; (4.1)where Mks is the spae spanned by the K�ahler moduli, Ms is spanned by the omplexstruture moduli while the dilaton/axion are the oordinates of the last fator. Mks andMs are speial K�ahler manifolds in that their K�ahler potential an be expressed in termsof a holomorphi prepotential f = f(�). One has [41, 42, 43℄K = � logY; with Y = �2(f + �f) + (fk + �f�k)(�k + ��k) ; (4.2)where in the large-volume limit Y s=ks are given byY s = i ZX 
 ^ �
 ; Y ks = V � 43 ZX J ^ J ^ J : (4.3)Here 
 and J are, respetively, the holomorphi (3; 0)-form and the K�ahler (1; 1)-form ofthe Calabi-Yau threefold. V is the lassial volume in that the equality Y ks = V only holdsin the large-volume limit, and it is modi�ed by �0 and worldsheet-instanton orretions.There exist various dynamial e�ets, suh as uxes or gaugino ondensates, whihan indue a nontrivial superpotential W for the moduli [28℄. We do not systematiallydisuss here all the possible superpotentials but rather assume that most of the moduliare stabilised in a supersymmetri way at high energy sales. In addition we assume thatsupersymmetry is broken by F -terms of the remaining moduli multiplets.5 This lattersetor is the one we want to study in the spirit of Setions 2 and 3. In other words, wewant to understand under what onditions the moduli setor an simultaneously breaksupersymmetry and generate a de Sitter vauum.For onreteness, let us fous on the K�ahler moduli setor in the large-volume limit andassume that it indues supersymmetry breaking. Of ourse we ould equivalently onsiderthe omplex struture moduli in the large-omplex-struture limit whih {due to mirrorsymmetry{ would lead to an idential analysis.Sine J is harmoni, it an be expanded in a h1;1-dimensional basis wi; i = 1; : : : ; h1;1of the ohomology group H1;1 via J = viwi. The NS two-form enjoys a similar expansionB2 = bi!i. The oeÆients in these expansions vi and bi are salar �elds whih ombineinto the omplex oordinates T i = vi + ibi. Inserting this into (4.3), one obtainsK = � logV ; with V = 16 dijk (T i + �T i)(T j + �T j)(T k + �T k) ; (4.4)5We similarly assume that matter �elds are stabilised at supersymmetri points and that their vauumexpetation values remain zero after supersymmetry is broken by the moduli.13



where dijk = RX wi ^ wj ^ wk are the Calabi-Yau intersetion numbers.6Before we ontinue let us emphasise that suh a K�ahler potential also appears as asubsetor of other string ompati�ations, for example, in Calabi-Yau ompati�ationsof type IIB with O5=O9-orientifold planes [44℄. Therefore the following analysis is notonly valid for heteroti ompati�ations but rather for any moduli-setor with a K�ahlerpotential of the form given in eq. (4.4).In order to ompute � let us �rst reall a few further properties of K (for more detailson the following omputations we refer the reader to the appendix). Its �rst derivativereads Ki = �ViV ; Vi = 12 dijk(T j + �T j)(T k + �T k) : (4.5)The K�ahler metri is then given bygij = �VijV + ViVjV2 = eKdijkKk +KiKj ; (4.6)where the matrix Vij = dijk(T k + �T k) has a signature (1; h1;1 � 1) for all allowed valuesof T i + �T i, i.e. those values for whih V is positive and the K�ahler metri is positive-de�nite [43℄. The inverse metri is onveniently expressed in terms of the matrix V ij whihis de�ned as the inverse of Vij, i.e. V ijVjk = Æik. Using 2V ijVj = T i + �T i = �Ki one hasgij = �VV ij + 12KiKj: (4.7)From (4.5) and (4.7) it follows that K obeys the the no-sale ondition (3.1) and also thehomogeneity property (3.11).Using (4.5){(4.7) one also easily omputes the third derivative of K and its Riemanntensor: Kijk = �eKdijk + gijKk + gikKj + gjkKi �KiKjKk ; (4.8)Rijmn = gijgmn + gingmj � e2Kdimpgpqdqjn : (4.9)Notie that the spei� form of the Riemann tensor holds for any speial K�ahler manifoldwith dijk replaed by the third derivative fijk of the prepotential [45, 46℄. Inserting (4.9)into eq. (2.12) we �nally obtain� = �43(Gi �Gi)2 + e2KGiGjdijpgpqdqmn �Gm �Gn: (4.10)6This is indeed a speial K�ahler geometry sine V an be derived from the holomorphi prepotentialf(T ) = 1=6 dijkT iT jT k. 14



As in the last setion we an rewrite � in terms of Ki and its orthogonal omplementNi as de�ned in eqs. (3.8) and (3.9). Inserting (4.8) and (4.9) into (3.19) and (3.20) wearrive at � = �2sisi + ! with si and ! given bysi = � �N i + ��N i � 12eKP ijdjmnNm �Nn ; (4.11)! = �� 43gij gmn+13gim gjn+12e2KdijpP pqdqmn+e2KdimpP pqdqjn�N i �N jNm �Nn : (4.12)Let us reall here that with these expressions it is possible now to study the onvexity of� by sanning N i and keeping � �xed in suh a way that siNi = 0.4.2 Partiular lasses of modelsWe now disuss a few spei� lasses of K�ahler moduli spaes that an be handled an-alytially. As we shall see, it is possible to obtain examples of models where � > 0 forertain diretions Gi o�ering the possibility of generating metastable vaua. Neverthe-less, we shall also see that there are entire lasses of models for whih � is unavoidablynegative-de�nite, implying the existene of at least one tahyoni state in the spetrumwhih renders the theory unstable independently of the form of the superpotential.4.2.1 Fatorisable K�ahler manifoldsAs our �rst example we disuss Calabi-Yau threefolds whih are K3-�brations over aP1-base. In the limit of a large P1 the K�ahler potential simpli�es and reads [47, 48℄K = � log�12 d1ab(T 1 + �T 1)(T a + �T a)(T b + �T b) + : : :� ; (4.13)where T 1 parametrises the volume of the P1-base while the T a; a = 2; : : : ; h1;1 are moduliof the K3 �bre. The dots indiate further ubi terms whih, however, are independentof T 1 and therefore subleading in the large P1-limit. In that limit the K�ahler metri isblok diagonal (g1a = 0) and hene the moduli spae fatorises into the speial K�ahlerspae7 Mks = SU(1; 1)U(1) � SO(2; h1;1 � 1)SO(2)� SO(h1;1 � 1) : (4.14)The K�ahler potential also enjoys the propertiesK1K1 = 1 ; KaKa = 2 : (4.15)7This also uses the fat that the matrix d1ab has signature (1; h1;1 � 2).15



In order to ompute � we observe that (4.6) implies d1ab = e�KK1 (gab�KaKb) whih,together with (4.15), leads toe2K d1a d1b = g11 gab ; e2Kdab1 d1e = (gab �KaKb) (ge �KKe) : (4.16)Inserting this into (4.10) we obtain� = �43(G1 �G1 +Ga �Ga)2 + jGaGa � (KaGa)2j2 + 4 (G1 �G1)(Ga �Ga) : (4.17)To �nd an upper bound for this funtion, we use the inequality jA �Bj2 � jAj2jBj2 forAa = (gab �KaKb)Gb and Ba = Ga. This together with (4.15) yieldsjGaGa � (KaGa)2j2 � (Ga �Ga)2 : (4.18)As a onsequene, the funtion � given in eq. (4.17) obeys� � �13 (2G1 �G1 �Ga �Ga)2 : (4.19)We see that � is always negative and vanishes along the at diretion where 2G1 �G1 =Ga �Ga. This means that the preferred supersymmetry breaking diretion is Gi / Ki asfor models with onstant urvature. We onlude that in this lass of models one alwayshas a tahyoni sGoldstino, whih an at best beome massless for Minkowski vaua andfor a speial Goldstino diretion.Note that the salar manifold (4.14) assoiated with these fatorisable models is aonstant urvature oset manifold. The impliations of the metastability ondition forthis type of models were also studied in ref. [31℄. It was in partiular shown that theseond fator in (4.14) behaves e�etively as two opies of the �rst fator, independentlyof h1;1. This implies that the metastability ondition for K3 �brations is analogous tothat of models with 3 independent moduli, as in eq. (1.2) with ni = 1, providing analternative derivation of the fat that � is at best zero in these models.4.2.2 Two-�eld modelsAnother lass of models that an be studied analytially are those with only 2 moduliT i = vi + ibi, with i = 1; 2. To perform this analysis we reall that � may be written as� = �2sisi + ! with si and ! given by eqs. (4.11) and (4.12) respetively. In the ase of2 moduli it was shown in Setion 3.2 that it is always possible to hoose si = 0, therebymaximising �. We are thus left with the task of omputing the funtion ! and hek if! > 0 is allowed. As an be read from (4.12), the funtion ! depends on the variables16



Ni. Sine these are orthogonal to Ki, they an be parameterised with a single omplexquantity C as (N1; N2) = (K2;�K1)C : (4.20)With this de�nition, one has N iNi = 3det g jCj2.One �rst ase that we an analyse is the ase of models with only diagonal intersetionnumbers d111 and d222. In this example the K�ahler potential takes the formK = � log�16d111(T 1 + �T 1)3 + 16d222(T 2 + �T 2)3� : (4.21)Computing the metri and its inverse, and using eqs. (4.20) and (4.21) with (4.12), we�nd that ! = 818 e4K d2111d2222det g jCj4 : (4.22)This result is positive sine the metri has to be positive de�nite. This shows that � anbe made positive and that the stability ondition an be ful�lled for ertain partiulardiretions of Gi. As shown for general large-volume senarios, we �nd that the pointN i = 0, where Gi / Ki, is indeed a stationary point with � = 0. Nevertheless, as anbe read o� from (4.22), in this ase this stationary point is a saddle point, and �(Gi) anatually be made positive along some diretions.By now we have shown that in the ase of fatorisable K�ahler potentials we get ! = 0and in the ase of diagonal intersetion numbers we get ! > 0. But one may wonderwhether in some ases one an have ! < 0. In order to answer this question, let usonsider a model with the following K�ahler potential:K = � log�12 d122 (T 1 + �T 1)(T 2 + �T 2)2 + 16 d111(T 1 + �T 1)3� : (4.23)Note now that in the limit d111 ! 0 this K�ahler potential beomes of the form (4.13)desribing fatorisable models, for whih the maximal value of � is zero. One an thenstudy how this result is modi�ed in the ase where d111 � d122 by performing an expansionin the small parameter � = d111d122 : (4.24)Following now the same strategy as before it is straightforward to �nd that! = 812 � e4K d4122det g jCj4 : (4.25)This result an be either positive or negative depending on the sign of �. This impliesthat � an be positive or must be negative, depending on the sign of �.17



Atually, for these two-�eld models it is possible to ompute the funtion ! for generivalues of all the independent intersetion numbers d111, d222, d122 and d112. Using thegeneral form for the K�ahler potential (4.4) and following the same steps as in the previousexamples one �nds, after some algebra, that the value of ! an be ast into the simpleform ! = �38 e4K �det g jCj4 ; (4.26)where the quantity � is the disriminant of the ubi polynomial de�ned by dijkvivjvkafter saling out one variable, and reads� = �27�d2111d2222 � 3 d2112d2122 + 4 d111d3122 + 4 d3112d222 � 6 d111d112d122d222� : (4.27)Sine we must require det g > 0, the sign of ! is �xed by the sign of �. Moreover,it beomes now lear that the two ategories of models with ! > 0 and ! < 0 are ofomparable size and that they merge in the very speial lass of models with fatorisableK�ahler geometries, for whih ! = 0.4.3 Inluding �0 orretionsSo far we have analysed models respeting the no-sale property KiKi = 3. This propertyis however violated when �0, worldsheet instanton or string loop orretions to the K�ahlerpotential are taken into aount, although they are suppressed in the large-volume andweak-oupling limit. It is therefore interesting to study how the bounds on the mass ofthe sGoldstinos are modi�ed by these e�ets, partiularly for those models in whih � � 0at leading order. For onreteness we here onsider only �0 orretions, but the e�et ofother orretions an be studied in a similar way.When �0 orretions are taken into aount, the K�ahler potential is K = � logYwhere [49℄ Y = V + 4� : (4.28)The quantity � = ��(3)�=2 is a real onstant determined by the Euler harateristi ofthe Calabi-Yau manifold, given by � = 2(h1;1� h2;1). The geometry is still of the speial-K�ahler type, with prepotential f(T ) = 1=6 dijkT iT jT k� �. However, as mentioned above,�0 orretions break the no-sale property (3.1), whih is seen from eqs. (A.2) and (A.3)of the appendix with n = 1 and � = (3=2)V=(V + 4�).The natural small dimensionless parameter ontrolling the e�et of �0 orretions rela-tive to the leading-order K�ahler potential is given byÆ = 4�V : (4.29)18



In the following, we work at leading order in this parameter, whih is small when thevolume is large. Using eqs. (A.1) and (A.3) with � ' 3=2(1� Æ), one then �nds thatKiKi ' 3 + 6 Æ : (4.30)The Riemann tensor is given by eq. (A.7). The quantities fijk are as before given bythe intersetion numbers, whereas the metri gij and its inverse gij are a�eted by theorretions and an be omputed from (A.1).In order to understand how the orretions modify the bounds on the sGoldstino masses,it is useful to ompute the funtion �(Gi) up to seond order in the N i's and at leadingorder in Æ. One �nds�(Gi) ' 120 Æ j�j4 � 4 (1� 2 Æ) j�j2gijN i �N j� 2 (1 + 9 Æ)��2gij �N i �N j + ::�+O(N3) : (4.31)Notie that � ontinues to be stationary at N i = 0, but its value at that point beomes�0 ' 120 Æ j�j4. If � < 0 (i.e. h2;1 > h1;1) then this is positive and the speial diretionGi / Ki always allows to ful�l the metastability ondition.Up to this point we have left � undetermined. We an however express j�j2 in termsof the vauum energy density V = eG(GiGi � 3) and gravitino mass sale m3=2 = eG=2 asj�j2 = 1 + V=(3m23=2) +O(Æ). Inserting this relation bak into eq. (4.31) and evaluatingat N i = 0 one obtains �0 ' 120 Æ�1 + V3m23=2�2 : (4.32)This relation an be used to ompute the mass sale ~m2 = eG�=GiGi, as introdued inSetion 2.1, at the ritial value Gi / Ki. This is partiularly important for modelswhere � � 0 at leading order, as it then provides a bound on the attainable values of thesGoldstino mass. By inserting eq. (4.32) into eq. (2.11), and speialising to the relevantregime V=m23=2 � 1, one obtains ~m2m23=2 ' 40 Æ � 23 Vm23=2 : (4.33)It immediately follows that if Æ & V=(60m23=2) then the metastability ondition is ful�lled.This gives a riterion on how large �0 orretions have to be for given gravitino saleand vauum energy density in order to admit viable vaua. Notie that under theseirumstanes the value of the sGoldstino mass is essentially the gravitino mass suppressedby �0 orretions. We should bear in mind, however, that other orretions to the K�ahlerpotential ould ompete against �0 orretions and modify this result.19



5 Orientifold ompati�ations of string theory5.1 General disussionIn ontrast to the heteroti string, type IIB Calabi-Yau ompati�ations give theorieswithN = 2 supersymmetry in 4 dimensions. The RR forms whih are present in 10-D typeII supergravities lead to additional massless 4-D �elds whih, together with the geometrimoduli, arrange into N = 2 supermultiplets. The salars in the vetor multiplets spanagain a speial K�ahler manifold MSK whereas the salars in the hypermultiplet span adual quaternioni manifoldMQ.One way to obtain a theory with N = 1 supersymmetry is to impose an orientifoldprojetion. In type IIA, this involves O6-planes while in type IIB one has O3=O7 orO5=O9-planes. The moduli spae in all of these three ases has the form [44, 50, 51℄~M = ~MSK � ~MQ ; (5.1)where ~MSK is a speial K�ahler submanifold of the \parent" N = 2 moduli spae MSKwhile ~MQ is a K�ahler submanifold of MQ. In the large-volume large-omplex-struturelimit, the ~MSK fator satis�es the no-sale property and the K�ahler potential does infat oinide with the K�ahler potential of eq. (4.4). Therefore the analysis of Setion 4holds unmodi�ed for the moduli of ~MSK. On the other hand the ~MQ setor, whihinludes the dilaton, satis�es KiKi = 4, and if the dilaton is �xed, the latter setor is alsono-sale [44℄. However, the K�ahler potential of ~MQ is di�erent for the three orientifoldompati�ations.For onreteness let us fous on type IIB with O3/O7 planes, where the K�ahler potentialin the large-volume limit reads [44℄KQ = �2 logV � log(S + �S) ; with V = 148 dijkvivjvk : (5.2)V is again the lassial volume of the Calabi-Yau orientifold, S is the dilaton/axion andthe vi; i = 1; : : : ; h1;1+ are the K�ahler moduli of the Calabi-Yau orientifold. However thevi do not appear as omponents of hiral multiplets in the low energy e�etive ation.Instead, they determine the real part of the K�ahler oordinates T i = �i + i� i via thequadrati relation8 �i = 116 dijkvjvk : (5.3)8Stritly speaking there an also be h1;1� moduli G with ouplings spei�ed in [44℄ whih however weneglet during the analysis of this paper. 20



Due to this relation the K�ahler potential of eq. (5.2) annot expliitly be expressed interms of the oordinates T i, but is only impliitly de�ned through eq. (5.3).9 As in theprevious setion we assume that the dilaton is �xed to a supersymmetri on�gurationand fous only on the K�ahler moduli.The metri an be onveniently expressed in terms ofdij � ��i�vj = 18 dijkvk ; dij � �vi��j : (5.4)Using (5.2) { (5.4), one omputesKi = � 12 eK=2vi ; dij = � 14 e�K=2dijkKk : (5.5)This in turn determines the K�ahler metri and its inverse to begij = 12 KiKj � 14 eK=2dij ; gij = 4 �i�j � 4 e�K=2dij : (5.6)One an now hek that K satis�es the no-sale property KiKi = 3 as well as the speialidentity Ki = �2�i, whih again results from the fat that e�K is a homogeneous funtionof degree 3 in �i. This an be used to slightly rewrite the inverse metri asgij = e�KdijkKk +KiKj : (5.7)Notie that this expression for the inverse metri is equal in form to the metri (4.6) ofthe heteroti ase. Similarly, the inverse metri of the heteroti ase is equal in form tothe metri (5.6) for the orientifold ase examined here. As was shown in ref. [52℄ thisproperty diretly follows from the fat that in the orientifold ase the K�ahler oordinatesT i feature the dual variables �i instead of vi as the real part.In order to determine � we need again the third derivatives of the K�ahler potential andthe Riemann tensor. For this it is onvenient to �rst ompute derivatives of gij. Usingthe above relations we �nd�gij�k = e�Kdijmgmk � (gij �KiKj)Kk � ÆikKj � ÆjkKi ;�gij�mn = �e�2Kdijpgpqdqrsgrmgsn + ÆimÆjn + ÆinÆjm : (5.8)Kijm and the Riemann tensor are expressed in terms of these derivatives asKijm = �gip[gpq℄jgqm ;Rijmn = �gipgqj[gpq℄mn + gir[grp℄mgpq[gqs℄ngsj : (5.9)9In order to omply with the standard notation whereby hiral oordinates arry upper indies, wehave slightly abused the notation by lowering the indies of v and raising them for the intersetionnumbers d. We have also resaled the intersetion numbers as dijk ! dijk=8. However we stress thatthey are exatly the same objets as in the heteroti ase.21



Inserting (5.8) into (5.9) and using (5.4){(5.6) we arrive at10Kijm = e�K d̂ijm � gijKm � gimKj � gjmKi +KiKjKk ;Rijmn = �gimgjn + e�2K(d̂ijkgkld̂lmn + d̂inkgkld̂ljm) + ginKjKm + gjmKiKn+ gimKjKn + gjnKiKm + gijKmKn + gmnKiKj � 3KiKjKmKn� e�K(d̂imjKn + d̂imnKj + d̂injKm + d̂nmjKi) ; (5.10)where we abbreviated d̂ijk � gipgjqgkldpql : (5.11)Inserting (5.10) into (2.12) we �nally arrive after some algebra at� = 23(Gi �Gi)2 + jGiGi � (KiGi)2j2 + 2jKiGij4 � 4jKiGij2Gj �Gj�2 e�2KGi �GjdijpgpqdmnqGm �Gn + 2 e�KdijkGi �Gj(GkKn �Gn + �GkKnGn) : (5.12)It is also possible to write � in terms of the deomposition Gi = Ni + �Ki de�nedin (3.8). Doing so, one �nds the result (3.17) or (3.18), with the quantities gij, Kijkand Rijmn given by eq. (5.10). Again only the few terms transverse to Ki ontribute inontrations with N i. The quantities si and ! are obtained by inserting (5.10) into (3.19)and (3.20) and are given by! = �gimgjn � 32 e�2KdijpPpqdpmn�Ni �NjNm �Nn ; (5.13)si = �N�{ + ��Ni � 12e�KPijdjmnNmN�n : (5.14)It is interesting to ompare both of these quantities with their heteroti ounterparts,given in eqs. (4.11) and (4.12). While si of eq. (4.11) is equal in form to the one givenhere, ! of eq. (4.12) has essentially the opposite sign to the one shown here, and involvesthe inverse metri instead of the metri and e�K instead of eK . As we shall see, this resultis partiularly relevant for models with two moduli, for whih � an be maximised bysetting si = 0 and thus the sign of � is determined by !.5.2 Partiular lasses of modelsAs for the heteroti ase, we an only make further progress by omputing � for spei�lasses of Calabi-Yau orientifolds. In the following we onsider the same examples as inSetion 4.2.10This Riemann tensor was also omputed in ref. [53℄.22



5.2.1 Fatorisable K�ahler manifoldsWe again start with K3-�bred Calabi-Yau threefolds where the K�ahler potential takesthe form K = �2 log� 116 d1abv1vavb� : (5.15)For these intersetion numbers (v1; va) an be expliitly determined in terms of the (�1; �a)via (5.3). One �nds v1 = 2 (d�11ab�a�b=�1)1=2 and va = 4 d�11ab�b(�1=d�11d��d)1=2. Insertinginto (5.15) and using �i = (T i + �T i)=2 yieldsK = � log h12 d�11ab(T 1 + �T 1)(T a + �T a)(T b + �T b)i : (5.16)This is exatly the sameK as in the heteroti ase but with an inverse intersetion matrix.In partiular, K obeys again K1K1 = 1 and KaKa = 2. It is nevertheless instrutive toreompute the funtion � by using the formulae obtained for orientifold models. Fromeq. (5.7) we �rst infer d1ab = eKK1(gab �KaKb). This allows us to omputee�2KGi �Gjdijpdmnp Gm �Gn = (Ga �Ga � jKaGaj2)2 +GaGa(K1 �G1)2+ �Ga �Ga(K1G1)2 + 2GaGajK1G1j2 ; (5.17)e�KdijkGi �GjGkKn �Gn = 2 (K1 �G1 +KaG�a)K1G1(GbGb � jKbGbj2)+ (K1 �G1 +Ka �Ga)K1 �G1(GbGb � (KbGb)2) : (5.18)Inserting into (5.12) we arrive at� = �13(Ga �Ga + jK1G1j2)2 + jGaGa � (KaGa)2j2 � (Ga �Ga � jK1G1j2)2 : (5.19)Using the same inequality (4.18) as for heteroti models, and notiing also the simpli�a-tion jK1G1j2 = G1 �G1, one �nally dedues the same upper bound as before:� � �13(2G1 �G1 �Ga �Ga)2 : (5.20)Therefore, we arrive at the same onlusion as for heteroti models: in this lass offatorisable models the stability bound is always at least marginally violated.5.2.2 Two-�eld modelsAs for heteroti models, another lass of models where the analysis simpli�es are thoseinvolving two �elds. In suh a situation, there is again a single diretion N i orthogonalto Ki, whih an be parametrised as(N1; N2) = (K2;�K1)C : (5.21)23



With this de�nition, one has N iNi = 3= det g jCj2. As before using this parametrisationwe an ompute the value of the quantity ! de�ned by (5.13), whih provides an upperbound to �.As for the heteroti models we onsider �rst the simplest ase of models with onlydiagonal intersetion numbers d111 and d222. The orresponding K�ahler potential is of theform11 K = �2 log� 148d111v31 + 148d222v32� : (5.22)Using (5.3) one determines v1 = 4 (�1=d111)1=2 and v1 = �4 (�2=d222)1=2 whih, wheninserted bak into (5.22), yieldsK = �2 log�p23 (d111)�1=2(T 1 + �T 1)3=2 � p23 (d222)�1=2(T 2 + �T 2)3=2� : (5.23)The funtion ! is now easily omputed and is found to be! = �818 e�4K (d111)2(d222)2 det g jCj4 : (5.24)This result is negative and shows that in this ase � � 0 for any hoie of Gi. It is thereforeimpossible to obtain stable de Sitter vaua in this ase. Furthermore, this inequality issaturated only for Ni = 0, whih orresponds to the on�guration Gi / Ki. The resultpresented here should be ontrasted to the one presented in eq. (4.22).To understand whether this negative sign for ! persists or not in more general 2-�eldmodels, let us as before onsider a small deformation of a fatorisable model. The simplestexample has non-zero d122 and d111, and a K�ahler potential given byK = �2 log� 116 d122v1v22 + 148 d111v31� : (5.25)In the limit d111 � d122, in whih the model is nearly fatorisable, one an expand atleading order in the small parameter � = d111d122 : (5.26)One �nds v1 = 2 (d122�1)�1=2�2[1 + �=8(�2=�1)2℄ and v2 = 4 (d122=�1)�1=2[1� �=8(�2=�1)2℄.The K�ahler potential an then be rewritten asK = � log�12 1d122 (T 1 + �T 1)(T 2 + �T 2)2 � 124 d111(d122)2 (T 2 + �T 2)4T 1 + �T 1 � : (5.27)11In ref. [53℄ the same manifold was studied as an example where the Riemann tensor of the manifoldand its dual manifold do not oinide. 24



After a straightforward omputation, the funtion ! is found to be! = �812 � e�4K (d122)4 det g jCj4 : (5.28)As in the heteroti ase we have again that this result an be either positive or negative,depending on the sign of �. This means that also in orientifold ompati�ations one anhave models with � > 0 and models with � < 0.Note that the results (5.24) and (5.28) take the same form as (4.22) and (4.25) forheteroti models but with the substitutions eK ! e�K, det g ! (det g)�1 and a ip inthe overall sign. This is due to the fat that in the ase of two-�eld models, where theparametrisations (4.20) and (5.21) an be used, the funtions (4.12) and (5.13) get indeedpreisely mapped into eah other by these substitutions. This map an then be used toinfer that also for orientifold models the result for generi intersetion numbers d111, d222,d122 and d112 should take a simple form, obtained by applying it to the heteroti result(4.26). This leads to the result ! = 38 e�4K � det g jCj4 ; (5.29)in terms of the disriminant� = �27�(d111)2(d222)2 � 3 (d112)2(d122)2 + 4 d111(d122)3+4 d222(d112)3 � 6 d111d112d122d222� : (5.30)It is not straightforward to verify this result expliitly, beause performing the hange ofvariables (5.3) involves in this general ase �nding the roots of a quarti polynomial. Butwe were nevertheless able to verify it by brute fore with omputer assistane. Sine wemust require det g > 0, the sign of ! is again determined by the sign of the quantity �,whih has exatly the same struture as for heteroti models.It is important to note that the results found for heteroti and orientifold models implythat for any given string ompati�ation with non-zero �, one an have either viableheteroti models but no viable orientifold models (if � < 0), or vie-versa (if � > 0).5.3 Inluding �0 orretionsWe now inlude �0 orretions in orientifold ompati�ations. When these orretionsare taken into aount, the K�ahler potential of eq. (5.2) is modi�ed to K = �2 logY �log(S + �S), where [54℄ Y = V + �2 �S + �S2 �3=2 : (5.31)25



One diÆulty arises from the fat that these orretions depend on the dilaton whih,stritly speaking, now should be onsidered as a dynamial quantity (this is due to the fatthat in the presene of �0 orretions the K�ahler potential is not fatorisable). To simplifythe presentation of this setion we nevertheless assume that the dilaton an be �xed to aonstant value in eq. (5.31), and de�ne the new onstant ~� = (�=2)[(S + �S)=2℄3=2.12 Asbefore, �0 orretions break the no-sale property (3.1), whih an be seen from eqs. (A.2)and (A.3) of the appendix with n = 2 and � = 3V=(V + ~�).The small dimensionless parameter ontrolling the relative e�et of the �0 orretionsis in this ase given by ~Æ = ~�8V : (5.32)We will work at leading order in this parameter. Using the results of the appendix with� ' 3(1� 8~Æ), one �nds then that KiKi ' 3 + 12 ~Æ : (5.33)The Riemann tensor, given by eq. (A.5), an be evaluated by using Yij = 1=8 dij, Yijm =�1=128 dirdjsdmtdrst and Yijmn = 24YijsdsrYrmn.As worked out in Setion 4.3 for the ase of heteroti ompati�ations, one may om-pute � up to seond order in N i and at �rst order in ~Æ:13�(Gi) ' 105 ~Æ j�j4 � 4 (1 + 14 ~Æ) j�j2gijN i �N j� 2 (1 + 27 ~Æ)��2gij �N i �N j + ::� +O(N3) : (5.34)Again, � is stationary at N i = 0 with a value � ' 105 ~Æ j�j4. Observe that the onlydi�erene with respet to the result found for heteroti models, shown in eq. (4.31), isthe numerial fator in front of ~Æ. We an now alulate the mass sale ~m2 = eG�=GiGiassoiated to the sGoldstino. By repeating the steps of Setion 4.3 and assuming thatV=m23=2 � 1 one arrives at ~m2m23=2 ' 35 ~Æ � 23 Vm23=2 : (5.35)Similarly to the ase of heteroti ompati�ations, if ~Æ & 2V=(105m23=2) then the metasta-bility ondition is ful�lled and the sGoldstino mass beomes of the order of the gravitinomass suppressed by �0 orretions. This is for instane the ase in the models of ref. [7, 17℄.12Similar onlusions are obtained in the full omputation with a dynamial dilaton by assuming thatS is �xed to a supersymmetri on�guration GS = 0.13For this omputation, the following ontrations are needed: YijKiKj = 3 (� � 1)�2V , YijmKiKj =Y=2 (� � 1)�2Km, YijmnKiKjKmKn = 9 (� � 1)�4V .26



6 ConlusionsIn this paper we have analysed the role that neutral hiral multiplets have in the on-strution of 4-D metastable vaua, paying speial attention to the generi lass of mod-els obtained in large-volume ompati�ations of string theory. In general, metastablevaua with spontaneously broken supersymmetry are only granted in models where anon-vanishing F -term F i = m3=2Gi exists suh that �(Gi) > 0, as de�ned in eq. (2.12).This neessary ondition was shown to be equivalent to the requirement of having a pos-itive square mass for the sGoldstinos when the vauum energy density V is non-negative.Interestingly, this ondition was also shown to be suÆient, with the understanding thatall of the other salar �elds an be given arbitrarily large positive square masses if thesuperpotential of the theory is suitably tuned.In the partiular ase of large-volume string ompati�ations the funtion � respetssome severe restritions. For instane, from the general analysis made in Setion 3, wehave learned that the set of values Gi / Ki orresponds to a family of stationary pointsof � with � = 0. Moreover, they are either saddle points or maxima, depending onthe intersetion numbers of the partiular model. Despite of the diÆulties posed by aomplete analytial study of the funtion � we were still able to outline a general proedureto determine whether a partiular ompati�ation admits dS vaua. This proedure wasintrodued �rst for generi supergravity models in Setion 2.2 and then re�ned in Setion3.2 for the partiular ase of string ompati�ations. We believe that suh a proedurean be implemented numerially and should be of onsiderable help in any omputer sanof string ground states. We also saw, however, that there are interesting and nontrivialexamples of ompati�ations whih an be handled analytially. For K3 �brations, forinstane, we showed that � an be at best zero. For 2-�eld models, on the other hand, themaximal value of � an be non-vanishing, and its sign is ontrolled by the disriminant� of the ubi polynomial de�ned by the intersetion numbers. Moreover, for � < 0 onean �nd viable heteroti models but no viable orientifold model, and vie-versa for � > 0.The results of this paper are useful for determining whih type of on�gurations withina given model should help in the onstrution of vaua. We have seen for example thatexploring on�gurations in the superpotential parameter spae lose to the ritial pointGi / Ki give a vanishing value for � and that �0 orretions an help in obtaining apositive {although suppressed{ square mass for the sGoldstinos, independently of whether� > 0 is admitted or not at leading order. In fat, one ould expet this to be a generifeature of any additional setor whih breaks the no-sale property KiKi = 3 respetedby the K�ahler moduli setor.Finally, let us mention here that a strategy similar to the one used in this paper ould27



be used also to study the possibility of onstruting suessful models of slow-roll inationwithin a string-theoretial senario. This requires �nding some diretion in �eld spaewith small �rst and seond derivatives of the potential. The �rst ondition orrespondsapproximately to stationarity, whereas the seond one requires a small negative mass.The algebrai problem de�ned by these two onditions is then very similar to the onefaed in this paper [55℄.AknowledgementsThis work was partly supported by the German Siene Foundation (DFG) under the Col-laborative Researh Center (SFB) 676, by the European Union 6th Framework ProgramMRTN-CT-503369 \Quest for uni�ation" and by the Swiss National Siene Foundation.LC would like to thank the Institute of Theoretial Physis of the Warsaw University fortheir hospitality during the �nal stages of this work. LC is supported by a Maria CurieTransfer of Knowledge Fellowship of the European Community's Sixth Framework Pro-gramme under ontrat number MTKD-CT-2005-029466 (2006-2010). CS thanks theUniversity of Hamburg and DESY for their hospitality during the beginning of this work.A Details of K�ahler geometriesIn this appendix, we ollet some useful formulae onerning the geometry of K�ahler andspeial-K�ahler manifolds, whih are needed in some derivations in the main text.A.1 Logarithmi K�ahler potentialsLet us onsider a K�ahler potential of the form K = �n logY , where Y is some realfuntion of the salar �elds �i and n is a real number. Denoting by Y i�| the inverse of Yi�|,one easily �ndsKi = �nYiY ;gi�| = �nYi�|Y + nYiY�|Y 2 = �nYi�|Y + 1nKiK�| ;gi�| = �Y Y i�|n + 1n 1� � 1Y i�rY�rY �|sYs = �Y Y i�|n + � � 1n KiK�| ;Ki = � 1� � 1Y i�rY�r : (A.1)28



The quantity � is de�ned as � � YiY i�|Y�|Y ; (A.2)and ontrols the value of the ontration de�ning the no-sale property:KiKi = n �� � 1 : (A.3)The third derivatives of K areKi�|m = � nY Yi�|m + nY 2 (YiY�|m+ YmY�|i + Y�|Yim)� 2nY 3YiY�|Ym ;Ki�|�n = � nY Yi�|�n + nY 2 (Y�|Yi�n+ Y�nYi�| + YiY�|�n)� 2nY 3YiY�|Y�n : (A.4)Finally, the Riemann tensor for the K�ahler manifold isRi�|m�n = Ki�|m�n �Kim�rg�rsKs�|�n= 1n(gi�| gm�n + gi�n gm�|)� nY Yi�|m�n � nY 2 (nYim�sg�srYr�|�n + 1� � 1YimY�|�n)+ n2Y 3 (YimY�|�nrgr�sY�s + Y�|�nYim�sg�srYr): (A.5)A.2 Speial K�ahler manifoldsWe now onsider the ase of speial K�ahler geometries, for whih the K�ahler potentialK = � logY itself admits a holomorphi prepotential f , in terms of whihY = �2(f + �f) + (fk + �f�k)(�k + ��k): (A.6)The Riemann tensor simpli�es substantially in this ase. Indeed, one easily omputesYi + Y�{ = Nij(�j + ���|) and Yi�| = Nij, where Nij = fij + �f�{�|. Combining these twoexpressions, one gets then Y i�|(Yj + Y�|) = (�i + ���{). Finally, ombining this result withYij = fijk(�k + ���k) and Yij�k = fijk, one obtains the relation Yij�sY �sr(Yr + Y�r) = Yip. Usingthese relations, one �nally �nds [46℄Ri�|m�n = gi�| gm�n + gi�n gm�| � 1Y 2fimrgr�s �f�s�|�n: (A.7)Referenes[1℄ G.W. Gibbons, "Aspets of Supergravity Theories", in Supersymmetry, Supergravityand Related Topis, eds. F. del Aguila, J.A. de Azarraga and L.E. Ibanez (WorldSienti� 1985) pp. 346-35. 29
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