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hnique F�ed�erale de Lausanne,CH-1015 Lausanne, SwitzerlandWe perform a general analysis on the possibility of obtaining metastable va
ua withspontaneously broken N = 1 supersymmetry and non-negative 
osmologi
al 
onstantin the moduli se
tor of string models. More spe
i�
ally, we study the 
ondition underwhi
h the s
alar partners of the Goldstino are non-ta
hyoni
, whi
h depends only on theK�ahler potential. This 
ondition is not only ne
essary but also suÆ
ient, in the sensethat all of the other s
alar �elds 
an be given arbitrarily large positive square masses ifthe superpotential is suitably tuned. We 
onsider both heteroti
 and orientifold string
ompa
ti�
ations in the large-volume limit and show that the no-s
ale property sharedby these models severely restri
ts the allowed values for the `sGoldstino' masses in thesuperpotential parameter spa
e. We �nd that a positive mass term may be a
hieved onlyfor 
ertain types of 
ompa
ti�
ations and spe
i�
 Goldstino dire
tions. Additionally, weshow how subleading 
orre
tions to the K�ahler potential whi
h break the no-s
ale propertymay allow to lift these masses.
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1 Introdu
tionIt is widely believed that the existen
e of four-dimensional de Sitter (dS) va
ua in lowenergy 
ompa
ti�
ations of string theory entails the presen
e of extended energy sour
es,su
h as D-branes, 
ontributing to the va
uum energy density. This is motivated in partby the observation that smooth 
ompa
ti�
ations of 10-D and 11-D supergravities do notadmit solutions to Einstein's equations 
hara
terised by both a positive 
osmologi
al 
on-stant and a stable ground state [1, 2, 3℄. It has be
ome 
lear, however, that this 
lass of no-go theorems 
an be 
ir
umvented by in
luding lo
alised sour
es and/or taking into a

ounthigher order 
orre
tions in �0 or the string 
oupling gs in the low energy analysis. In ref. [4℄it was indeed shown that in type-IIB string theory 
ompa
ti�ed on Calabi-Yau orientifoldswith D-branes wrapping around 
y
les and nontrivial ba
kground 
uxes a potential isgenerated for many of the s
alar �elds (moduli) present in the four-dimensional N = 1supergravity. In
luding non-perturbative 
ontributions all moduli 
an be stabilised but,generi
ally, in a supersymmetri
 ground state whi
h is either anti-de Sitter or Minkowski[5, 6, 7, 8, 9℄ whereas a positive 
osmologi
al 
onstant ne
essarily requires the breaking ofsupersymmetry. For the `uplifting' from a supersymmetri
 va
uum to a dS va
uum a va-riety of me
hanisms has been proposed and studied. For example, in ref. [5℄ it was shownthat the joint 
ontribution of non-perturbative e�e
ts and an expli
it supersymmetry-breaking term indu
ed by anti-D3 branes 
an lead to a dS va
uum with �ne-tuned 
os-mologi
al 
onstant and stable volume modulus. Alternatively, there have been attemptsto 
onstru
t metastable va
ua where supersymmetry is broken spontaneously either byD- or F -terms [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27℄.Interestingly, there are no known examples of metastable va
ua with spontaneouslybroken supersymmetry produ
ed only by the volume moduli {or K�ahler moduli{ in theabsen
e of �0 and worldsheet instanton 
orre
tions to the K�ahler potential. At �rst sightthis fa
t is a bit 
ounter-intuitive. The superpotentials available in 
ux 
ompa
ti�
ationsand/or 
ompa
ti�
ations on generalised geometries are suÆ
iently generi
 [28℄ that one
ould expe
t no serious obsta
le towards this end. Nevertheless, it was shown in ref. [29℄that for N = 1 supergravities des
ribing string 
ompa
ti�
ations with a single volumemodulus T and a no-s
ale K�ahler potentialK = �3 log(T + �T ) ; (1.1)stationary points of a positive s
alar potential V generated only by F -terms are always
hara
terised by the existen
e of at least one ta
hyoni
 dire
tion, independently of thesuperpotential W = W (T ). This result was made more pre
ise in ref. [30℄ and extendedto more general situations, and in parti
ular to the 
lass of 
ompa
ti�
ations in whi
h the1



K�ahler geometry spanned by the moduli is fa
torised into one or several sub-manifoldsof 
onstant 
urvature. More pre
isely, it was shown that also for the no-s
ale K�ahlerpotential K = �Xi ni log(T i + �T i); with Xi ni = 3; (1.2)stationary points of a positive s
alar potential V have at least one ta
hyoni
 dire
tionindependently of W . Moreover, this ta
hyoni
 dire
tion was shown to be
ome marginally
at only when the superpotential W is 
hosen in su
h a way that V = 0. Similar resultswere derived in ref. [31℄ for 
oset manifolds arising in orbifold 
ompa
ti�
ations. Thisnew 
lass of no-go theorems {whi
h relies only on the properties of the K�ahler potential{raises the natural question about the role of the volume moduli in the 
onstru
tion ofmetastable va
ua in more generi
 string 
ompa
ti�
ations where the K�ahler geometryspanned by the moduli be
omes nontrivial.The purpose of this paper is twofold. First we re�ne the previous analysis of four-dimensional N = 1 supergravities given in refs. [30, 31, 32℄ by emphasising that the
ru
ial quantity to study in order to a
hieve va
uum metastability is the mass of thes
alar superpartners of the Goldstino. We show that all of the other s
alar �elds 
anbe made arbitrarily massive by appropriately 
hoosing the superpotential. However, thisis not the 
ase for the two sGoldstinos sin
e in the limit of global supersymmetry theGoldstino is exa
tly massless and therefore the sGoldstinos 
an never get a mass fromthe superpotential. Instead their masses are generated by the supersymmetry breakingme
hanism with their mass-di�eren
e being of the order of the supersymmetry breakings
ale. As a 
onsequen
e their masses are not ne
essarily positive. It is pre
isely thisfa
t whi
h is at the heart of the problem of identifying lo
ally stable dS va
ua. Fromthis dis
ussion it is also immediately 
lear that a positive sGoldstino mass is a ne
essary
ondition for the metastability of any dS va
ua and, furthermore, this 
ondition doesnot depend on the superpotential but only on the form of the K�ahler potential. Thisobservation 
onsiderably simpli�es the sear
h for a viable dS ground state.The se
ond aspe
t of this paper 
on
erns an analyti
al study of spe
i�
 
lasses of N = 1supergravities whi
h appear as the low energy limit of string 
ompa
ti�
ations. We showthat there exist entire 
lasses of 
ompa
ti�
ations whi
h do not admit any metastabledS va
ua, irrespe
tively of the superpotential or the va
uum expe
tation values that themoduli may a
quire. For instan
e, we show that de Sitter va
ua are ex
luded in the 
ase ofK3 �brations regardless of the number of moduli or their va
uum expe
tation values. Onthe other hand, we also identify parti
ular 
lasses of 
ompa
ti�
ations in whi
h the ne
-essary 
onditions are indeed ful�lled and thus viable dS va
ua should exist. Let us stresshere that we do not minimise any expli
it potential. Rather we study the 
ondition for2



the existen
e of dS va
ua and show that irrespe
tively of the superpotential this 
onditionis not easily satis�ed. We think that this is the reason for the diÆ
ulties en
ountered in
onstru
ting expli
it metastable de Sitter va
ua in low energy 
ompa
ti�
ations of stringtheory.The organisation of this paper is as follows. In Se
tion 2, we start by reviewing the
onditions under whi
h a generi
 supergravity model with 
hiral multiplets admits viableva
ua with spontaneously broken supersymmetry and non-negative 
osmologi
al 
onstant.Then in Se
tion 3 we apply the resulting 
ondition to the 
lass of models where the K�ahlerpotential satis�es either the no-s
ale property or a more restri
tive homogeneity propertyrespe
ted by large-volume s
enarios of string theory. In Se
tions 4 and 5 we study thelarge-volume limit of heteroti
 and orientifold models respe
tively and derive in ea
h 
asethe form of the metastability 
ondition. There we also apply our general results to 
lassesof models where the metastability 
ondition 
an be studied analyti
ally and show expli
itlythat a positive square mass may be a
hieved only for 
ertain types of 
ompa
ti�
ationsand parti
ular Goldstino dire
tions. We also study the e�e
t of (subleading) �0 
orre
tionsto the K�ahler potential and show that they 
ontribute to the sGoldstino masses and 
anrender them positive even for those models where it is not possible at leading order.Finally, in Se
tion 6 we present our 
on
lusions.2 Metastable va
ua in supergravityIn this se
tion, we brie
y review and extend the strategy that was presented in refs. [30, 31, 32℄to study the stability of non-supersymmetri
 va
ua in general supergravity models withN = 1 supersymmetry in four dimensions.1 We assume that ve
tor multiplets play anegligible role in the dynami
s of supersymmetry breaking, and fo
us thus on theorieswith only 
hiral multiplets.Re
all �rst that the most general two-derivative Lagrangian for a supergravity theorywith n 
hiral super�elds is entirely de�ned by a single arbitrary real fun
tion G dependingon the 
orresponding 
hiral super�elds �i and their 
onjugates ���{. Derivatives withrespe
t to �i and ���| are denoted by lower indi
es i and �|. Using Plan
k units whereMP = 1, the fun
tion G 
an be de
omposed in terms of a real K�ahler potential K and aholomorphi
 superpotential W in the following way:G(�; ��) = K(�; ��) + logW (�) + log �W (��) : (2.1)1A similar strategy has also been used in ref. [33℄ to explore the statisti
s of supersymmetry breakingva
ua in 
ertain 
lasses of string models. 3



The quantities K and W are however de�ned only up to K�ahler transformations a
tingas K ! K + f + �f and W !We�f , where f is an arbitrary holomorphi
 fun
tion of thesuper�elds. The bosoni
 part of the a
tion takes the form:S = Z p�g h12R� gi�| ��i� ���| � V (�; ��)i : (2.2)The K�ahler metri
 gi�| = Ki�| = �i��|K is used to raise and lower indi
es, and de�nes aK�ahler geometry for the manifold spanned by the s
alar �elds. It is assumed to be positivede�nite, su
h that the s
alar's kineti
 energy is positive. The potential takes the followingsimple form: V = eG(GiGi � 3) : (2.3)The auxiliary �elds of the 
hiral multiplets are �xed by their equations of motion to beF i = m3=2Gi with a s
ale set by the gravitino mass m3=2 = eG=2. Whenever F i 6= 0 onthe va
uum, supersymmetry is spontaneously broken, and the dire
tion Gi in the spa
eof 
hiral fermions de�nes the Goldstino whi
h is absorbed by the gravitino in the pro
essof supersymmetry breaking.2.1 Condition for metastabilitySupersymmetry-breaking metastable va
ua with non-negative 
osmologi
al 
onstant areasso
iated to lo
al minima of the potential at whi
h F i 6= 0 and V � 0. These va
ua 
anbe 
lassi�ed by looking at stationary points with V 0 = 0, imposing that the value of thepotential should not be negative, V � 0, and �nally requiring that the Hessian matrixshould be positive de�nite: V 00 > 0.The derivatives of the potential (2.3) are most 
onveniently 
omputed by using the
ovariant derivative ri de�ned by the K�ahler metri
 gi�|, and the asso
iated Riemann 
ur-vature tensor Ri�|m�n. The �rst derivative is just Vi = riV , and the stationarity 
onditionsVi = 0 read eG �Gi +GkriGk�+GiV = 0 : (2.4)The se
ond derivatives of the potential 
an also be 
omputed by using 
ovariant deriva-tives, sin
e the extra 
onne
tion terms vanish by the stationarity 
onditions. There aretwo di�erent n-dimensional blo
ks, Vi�| = rir�|V and Vij = rirjV , and these are foundto be given by the following expressions:2Vi�| = eG �Gi�| +riGkr�|Gk �Ri�|m�nGmG�n�+ (Gi�| �GiG�|)V ; (2.5)Vij = eG �2riGj +GkrirjGk�+ (riGj �GiGj)V : (2.6)2Our 
onventions for the Riemann tensor are given by eq. (A.5) in the Appendix.4



The metastability 
ondition is then the requirement that the whole 2n-dimensional Hes-sian mass matrix M2 should be positive de�nite, whereM2 = �Vi�| VijV�{�| V�{j � : (2.7)It is 
lear that for a �xed K�ahler potential K, most of the eigenvalues of this massmatrix 
an be made positive and arbitrarily large by suitably tuning the superpotentialW . More pre
isely, the n � 1 
hiral multiplets that are orthogonal to the Goldstinomultiplet 
an a
quire a large overall supersymmetri
 mass 
ontribution from W , whi
h
an over
ome the mass splitting of order m3=2 indu
ed by supersymmetry breaking, andlead to positive square masses for the s
alar �eld 
omponents. The Goldstino multiplet,on the other hand, 
annot re
eive any supersymmetri
 mass 
ontribution from W , sin
ein the limit of rigid supersymmetry its fermioni
 
omponent must be massless. The masssplitting of order m3=2 indu
ed by supersymmetry breaking 
an then potentially make thesquare mass of the s
alar �eld 
omponent negative.From a more te
hni
al point of view, this 
on
lusion 
an be obtained by re
alling thatderivatives of G with mixed holomorphi
 and antiholomorphi
 indi
es depend only on K,while quantities like Gi, riGj and rirjGk depend also on W , and more pre
isely on(logW )i, (logW )ij and (logW )ijk. Keeping K �xed and tuning W , one 
an then vary inan arbitrary way these quantities. This allows to adjust �rst the quantities rirjGk toset the blo
k Vij to zero, and next the quantities riGj to make most of the eigenvaluesof Vi�| positive. On top of that, one still has the freedom of arbitrarily 
hoosing Gi. Theonly restri
tion in the se
ond step 
omes from the fa
t that the proje
tion of Vi�| alongthe Goldstino dire
tion Gi is a
tually �xed by the stationarity 
ondition (2.4), and 
antherefore not be adjusted. This means that the square masses of the two sGoldstinos
annot be arbitrarily shifted by adjusting W , and that their value 
ru
ially depends onK.In order to study metastability, it is thus suÆ
ient to study the proje
tion of thediagonal blo
k Vi�| of the mass matrix along the Goldstino dire
tion Gi. More pre
isely,we �nd it 
onvenient to res
ale this quantity by the overall mass s
ale m23=2 and 
onsiderthe following parameter: � = e�G Vi�|GiG�| : (2.8)Stri
tly speaking � is a linear 
ombination of eigenvalues of Vi�| with non-negative 
oeÆ-
ients in front of them. It therefore de�nes a natural mass s
ale ~m2 � eG�=GiGi whi
h
an be thought of as the mass obtained by proje
ting Vi�| along the Goldstino dire
tionGi. A

ordingly, we identify here ~m with the mass of the sGoldstinos.5



By using eqs. (2.4) and (2.5), one 
an 
ompute � more expli
itly. The result is foundto depend only on the parameters Gi = e�G=2F i de�ning the dire
tion of supersymmetrybreaking, 
ontra
ted with the metri
 and the Riemann tensor of the s
alar geometry:� = 2 gi�|GiG�| � Ri�|m�nGiG�|GmG�n : (2.9)For given K and arbitrary W , the quantities Gi 
an be varied but the metri
 and theRiemann tensor are �xed. One 
an then look for the preferred dire
tion that maximises�.3 If �max < 0, then one of the sGoldstinos is unavoidably ta
hyoni
, and the va
uumis unstable. If instead �max > 0, then the sGoldstinos 
an be kept non-ta
hyoni
 by
hoosing W su
h that the Goldstino dire
tion is 
lose enough to the preferred dire
tion,and more pre
isely inside a 
one for whi
h � 2 [0; �max℄. As already mentioned, the restof the s
alars 
an always be given a positive square mass by further tuning W . The
ru
ial 
ondition for metastability, whi
h 
onstrains both the K�ahler geometry and thesupersymmetry breaking dire
tion, is then [30℄� > 0 : (2.10)2.2 Analysis of the metastability 
onditionThe impli
ations of the metastability 
ondition � > 0 have been studied in refs. [30, 31℄for models with a �xed 
osmologi
al 
onstant. But one 
an a
tually perform a similarstudy without spe
ifying the value of the 
osmologi
al 
onstant and only requiring thatit is non-negative. It is 
lear from the form of eq. (2.9) that for suÆ
iently small valuesof the Gi, it would always be possible to �nd 
on�gurations su
h that � > 0, sin
e thequarti
 term be
omes subdominant and the quadrati
 term is positive. However, in thisregime the 
osmologi
al 
onstant would ne
essarily be negative. Whenever some of theGi are instead of order 1, as required to a
hieve a non-negative 
osmologi
al 
onstant,the quadrati
 and quarti
 terms 
ompete, and the existen
e of 
on�gurations with � > 0strongly depends on the form of the 
urvature tensor. To analyse the rather 
onstrainedproblem of �nding whether there exist va
ua with V � 0 and � > 0 it is 
onvenient torewrite � as the sum of two pie
es,� = �23e�GV (e�GV + 3) + �; (2.11)where � is de�ned to be� = h13 (gi�| gm�n + gi�n gm�|)� Ri�|m�niGiG�|GmG�n : (2.12)3See ref. [34℄ for an algebrai
 method for �nding the minima for a wide 
lass of superpotentials.6



As long as V > 0 the �rst term in eq. (2.11) is always negative and its pre
ise valuedepends only on the length of the ve
tor Gi whi
h determines the 
osmologi
al 
onstant.The se
ond term in eq. (2.11) has instead a sign that depends only on the orientation ofthe ve
tor Gi, and not on its length. Therefore, the possibility of �nding solutions to themetastability 
ondition � > 0 depends ex
lusively on the sign of �. Indeed, starting fromany Gi su
h that �(Gi) > 0, one 
an always tune the superpotential W to res
ale Gi bysome real fa
tor r to a
hieve V (rGi) = 0 and thus �(rGi) > 0, proving the existen
e ofMinkowski va
ua. Moreover, by slightly in
reasing r one 
an make V (rGi) > 0 and stillkeep �(rGi) > 0, a
hieving thereby de Sitter va
ua. For a �xed value of the gravitinomass s
ale m3=2 = eG=2 it is however 
lear that how big a 
osmologi
al 
onstant V 
anbe a
hieved while keeping � > 0 depends on the size of � for the referen
e situationwhere V (Gi) = 0. The same kind of reasoning tells us that if � < 0 for all the possibleorientations of Gi, then one 
an never a
hieve V � 0 and � > 0 simultaneously. We 
antherefore 
on
lude that the analysis of the sign of the fun
tion � for non-supersymmetri
va
ua with V � 0 is equivalent to the analysis of the sign of the fun
tion � withoutspe
ifying the value of the 
osmologi
al 
onstant. More pre
isely, the 
ondition for theexisten
e of viable va
ua is that � > 0 : (2.13)It is easy now to 
he
k a few well known results 
on
erning the existen
e of metastableva
ua. Consider for instan
e those models where the K�ahler potential is of the 
anoni
alform K = Pi j�ij2 for whi
h the K�ahler manifold has a vanishing Riemann tensor. Inthis 
ase one has � = 23(Gi �Gi)2 > 0 ; (2.14)and no obstru
tion is met towards the 
onstru
tion of metastable va
ua. Another simpleexample is provided by string 
ompa
ti�
ations des
ribed by a single volume modulus Tand a no-s
ale K�ahler potential of the form K = �3 log(T + �T ). In this 
ase, one �ndsthat � = 0 ; (2.15)independently of the value GT , and thus dS va
ua are ex
luded [29℄ (see also [35℄). Finally,models with separable K = �3 log(T + �T ) +Pi j�ij2 also grant the existen
e of de Sitterva
ua as long as Gi 6= 0. If W is separable as well, so that the 2 se
tors intera
t onlygravitationally, it is a
tually possible to uplift any would-be supersymmetri
 minimumin the T se
tor with a �i se
tor breaking spontaneously supersymmetry well below thePlan
k s
ale [30℄. See [36℄ for a generalization to a 
ertain 
lass of non-separable W , and[37, 38℄ for spe
i�
 examples. On the other hand, for similar models with non-separable7



K = �3 log(T + �T � 1=3Pi j�ij2), as those 
onsidered in ref. [39℄, the s
alar manifold ismaximally symmetri
 and one �nds again � = 0 [31℄. See ref. [27℄ for a re
ent generalstudy of this type of uplifting.Noti
e that � has the very useful property of being a homogeneous fun
tion of degree(2; 2) in the variables (Gi; G�|), meaning thatGi ���Gi = G�| ���G�| = 2� : (2.16)As a 
onsequen
e of this property, any stationary point of � as a fun
tion of Gi leads to� = 0. This implies in turn that, at any given point in the K�ahler manifold spanned bythe 
hiral �elds, the fun
tion � 
an have only one su
h stationary point, or a degeneratefamily of them, with � = 0. This is due to the fa
t that if the value of the fun
tion be
omesnon-zero when moving away from su
h a stationary point, then its �rst derivative is nolonger allowed to vanish again.Based on this property, it is possible to outline a general and systemati
 pro
edureto �nd out whether � > 0 
an be a
hieved in a parti
ular model by only requiring thatthe set of points G0i , at whi
h � be
omes stationary, is known. Indeed, it is suÆ
ientto study the 
onvexity of the fun
tion �(Gi) in the vi
inity of G0i by s
anning all theorientations of Gi away from G0i for whi
h � is allowed to grow. If �(G0i ) = 0 is a lo
alminimum then, by the method des
ribed before, any dire
tion Gi 6= G0i may be res
aledto render a metastable va
uum. If instead �(G0i ) = 0 turns out to be a maximum, thenone is for
ed to ex
lude the K�ahler potential K of the model as a possible 
andidate togenerate metastable va
ua. Finally, if �(G0i ) = 0 turns out to be a saddle point, thenonly a redu
ed subset of orientations Gi will qualify to render metastable va
ua. Weshould bear in mind, however, that the metri
 and the Riemann tensor appearing in thede�nition of � depend on the values of the s
alar �elds. Therefore, one should also s
anover the allowed values of �i.The pro
edure just des
ribed is very useful and in prin
iple simple to implement whenthe 
onvexity of the fun
tion � 
annot be determined analyti
ally. This is parti
ularly the
ase of the 
lass for models appearing in large volume 
ompa
ti�
ations of string theory.As we show in the next se
tion, the s
aling properties respe
ted by the type of K�ahlerpotentials appearing in su
h s
enarios imply two important properties of the fun
tion �:�rst, stationary points of � are of the form Gi / Ki, and se
ond, su
h points are eitherof the saddle-point type or maxima. One is then left with the task of determining, bystudying the vi
inity of Gi / Ki, whi
h one of these two situations is being dealt with.
8



3 Metastability in large-volume s
enariosWe now fo
us on some generi
 properties respe
ted by models emerging in large-volumes
enarios of string theory. More spe
i�
ally, we apply the analysis of the previous se
tionto the 
lass of models where the K�ahler potential satis�es either the no-s
ale property oran even more restri
tive s
aling property.3.1 No-s
ale modelsA 
ommon 
hara
teristi
 found in string 
ompa
ti�
ations is the no-s
ale property [40℄KiKi = 3 ; (3.1)whi
h holds for the K�ahler moduli parameterising the shape and size of the 
ompa
ti�edvolume in the large-volume limit. Similarly, it also holds for the 
omplex stru
ture moduliin the large-
omplex-stru
ture limit. We would then like to study the fun
tion � as de�nedin (2.12) for the parti
ularly relevant 
lass of supergravity models satisfying this no-s
aleproperty, in order to understand whether this restri
tion implies any useful information
on
erning metastability.The simplest examples of su
h no-s
ale models are 
ertain 
oset manifolds of the typeSU(p; q)=(U(1)�SU(p)�SU(q)) and SO(2; 2+p)=(SO(2)�SO(2+p)), with appropriate
onstant 
urvature, arising in orbifold string models. Due to the fa
t that they arehomogeneous and symmetri
, these parti
ular spa
es lead to a simple form of the Riemanntensor. The impli
ations of the stability 
ondition 
an then be worked out 
ompletely. Itwas in fa
t shown in [31℄ that in these models the maximal value of � is pre
isely zero, andthat this value is obtained for the parti
ular dire
tion Gi = Ki, or equivalent dire
tionsrelated to this by the isometries of the spa
e.In more 
ompli
ated situations where the 
urvature is not 
onstant, like in Calabi-Yaumodels with and without orientifolds, the Riemann tensor takes a more 
ompli
ated formand the study of the metastability 
ondition be
omes substantially more 
ompli
ated.However, sin
e the property (3.1) is valid at any point of the K�ahler manifold, it impliessome simple and nontrivial restri
tions on the Riemann tensor, and in parti
ular on its
ontra
tions with the spe
ial ve
tor Ki. For instan
e, taking one derivative of (3.1) one�nds Ki +KkriKk = 0; (3.2)whereas taking two derivatives one dedu
es the following relations:gi�| +riKkr�|Kk � Ri�|m�nKmK �n = 0 ; (3.3)9



2riKj +KkrirjKk = 0 : (3.4)Contra
ting the �rst of these relations withKiK�| and K�| respe
tively, one 
an then derivethe relations Ri�|m�nKiK�|KmK �n = 6 ; (3.5)Ri�|m�nK�|KmK �n = 2Ki : (3.6)These relations are useful to study the fun
tion � for this 
lass of models. In order todo so, it is natural to introdu
e the proje
tor onto the subspa
e orthogonal to Ki, sin
ewe know that at least in the parti
ular 
ase of 
onstant 
urvature manifolds this is thespe
ial dire
tion that maximises �. Thanks to the no-s
ale property, this proje
tor issimply P ji = Æji � 13KiKj : (3.7)We 
an then de
ompose the ve
tor Gi into two independent pie
es, one parallel to Ki andparameterised by a numeri
al 
oeÆ
ient �, and one orthogonal to Ki and parameterisedby a ve
tor Ni satisfying N iKi = 0: Gi = �Ki +Ni : (3.8)The quantities � and N i are given byNi = P ji Gj ; � = 13KiGi : (3.9)The fun
tion �, as de�ned in eq. (2.12), may then be expressed in terms of the independentquantities � and Ni in the following way:� = 4j�j2 (gi�| � Ri�|m�nKmK �n)N iN �| � ���2Ri�|m�nKiKmN �|N �n + 
:
��2 ���Rm�ni�|KmN �nN iN �| + 
:
�+h13 (gi�| gm�n + gi�ngm�|)� Rm�ni�|iN iN �|NmN �n : (3.10)Note that this result is at least quadrati
 in the variables N i. This implies that there isa degenerate family of stationary points for N i = 0 and arbitrary �, that is for Gi / Ki,with value � = 0. To say more about the 
onvexity of � at this set of points we still requiresome more information regarding 
ontra
tions between Ki and the Riemann tensor. Aswe will see in the following, this additional information 
an be obtained by imposing anextra 
ondition generi
ally respe
ted by large-volume string 
ompa
ti�
ations.10



3.2 Real homogeneous no-s
ale modelsA more restri
tive property 
hara
terising large-volume s
enarios is that their K�ahlerpotential depends only on the real part of the super�elds and exhibits therefore n in-dependent shift symmetries, under whi
h Æi�j = i�Æji with 
onstant �. This means inparti
ular that any distin
tion between holomorphi
 and antiholomorphi
 indi
es 
an bedropped. Furthermore, it turns out that there exists a 
oordinate frame where e�K is ahomogeneous fun
tion of degree 3 in the �elds �i + ��i. This implies that� (�i + ��i)Ki = 3 : (3.11)Taking a derivative, it then follows thatKi = �(�i + ��i) : (3.12)This equation guarantees, together with the previous one, that the no-s
ale propertyKiKi = 3 is satis�ed. But taking a derivative, it also implies that �iKj = �Æji , whi
hafter lowering the indi
es implies KijmKm = 2 gij : (3.13)Taking another derivative of this, one �nds alsoKijmnKm = 3Kijn : (3.14)From these two equations, it follows then thatRijmnKm = Kijn ; (3.15)RijmnKmKn = RimjnKmKn = 2 gij : (3.16)Finally, 
ontra
ting these equations with one and two more Kk's and using the no-s
ale
ondition, one also re
overs the same relations (3.5) and (3.6) holding for general no-s
alemodels.It is 
onvenient at this point to introdu
e a new notation to deal with 
omplex quantitiessu
h as Gi and G�{ in su
h a way that the bar does not appear on top of the indi
es.Compared to the usual notation, we introdu
e the following substitutions: Gi ! Gi,G�{ ! �Gi, Gi ! �Gi, G�{ ! Gi. Similarly, for the Ni's we use: Ni ! Ni, N�{ ! �Ni,N i ! �N i, N�{ ! N i.Using eqs. (3.5), (3.6), (3.15) and (3.16), and de
omposing as before Gi = �Ki + Niand �Gi = ��Ki + �N i, one �nds that the fun
tion � takes in this 
ase the following form:� = �2 �� �N i + ��N i� �� �Ni + ��Ni�� 2Kimn �� �N i + ��N i�Nm �Nn+h13 (gij gmn + gin gmj)�RijmniN i �N jNm �Nn : (3.17)11



This result shows that � has a lo
al maximum with value 0 at Ni = 0 at quadrati
 orderin the N i variables for orientations of Gi 
hara
terised by � �N i + ��N i 6= 0. Nevertheless,this does not imply that � is negative de�nite, be
ause when � �N i+ ��N i = 0 the potentialis 
at at the quadrati
 and 
ubi
 orders and its 
onvexity is determined by the quarti
terms in Ni. In order to gain further insight it is useful to 
omplete the squares in thevariable � �N i + ��N i and rewrite � in the form� = �2 sisi + ! ; (3.18)where si = � �N i + ��N i + 12P ijKjmnNm �Nn ; (3.19)! = h13(gij gmn + gin gmj)� Rijmn + 12KijkP klKlmniN i �N jNm �Nn : (3.20)Observe now that all the dependen
e on � is 
ontained in the semi-negative de�nite term�2sisi involving the norm of the ve
tor si. This fa
t allows us to eliminate one redundantdire
tion in the superpotential parameter spa
e spanned by the Gi's in the analysis of �.Indeed, observe that � 
an be maximised with respe
t to � when � is 
hosen in su
h away that siNi = 0. Sin
e our interest is to determine whether � > 0 
an be a
hieved,this 
ondition �xes � in terms of N i. It also redu
es the number of orientations of Githat need to be analysed in order to dedu
e the 
onvexity of � about the set of stationarypoints Gi / Ki. Noti
e additionally that in the parti
ular 
ase of two moduli i = 1; 2,the 
ondition siNi = 0 is equivalent to si = 0, as there is only one possible dire
tionperpendi
ular to Ki, implying that si and Ni are parallel to ea
h other.In the next two se
tions we study more 
on
retely the fun
tion � for the two relevant
ases of heteroti
 and orientifold 
ompa
ti�
ations of string theory.4 Heteroti
 
ompa
ti�
ations of string theoryIn this se
tion we 
onsider a 
lass of supergravity models whi
h arises in 
ompa
ti�
ationsof the heteroti
 string on Calabi-Yau threefolds.4 Let us �rst dis
uss some generi
 featuresof these 
ompa
ti�
ations and then 
ontinue with spe
i�
 examples.4.1 General dis
ussionThe moduli of heteroti
 Calabi-Yau 
ompa
ti�
ations in
lude the dilaton/axion and thedeformations of the Calabi-Yau metri
. The latter are divided into deformations of the4Alternatively they 
an also be viewed as the NS-se
tor of type II 
ompa
ti�
ations.12



K�ahler 
lass and deformations of the 
omplex stru
ture. Lo
ally, the moduli spa
e M isthe produ
t manifold M =Mks �M
s � SU(1; 1)U(1) ; (4.1)where Mks is the spa
e spanned by the K�ahler moduli, M
s is spanned by the 
omplexstru
ture moduli while the dilaton/axion are the 
oordinates of the last fa
tor. Mks andM
s are spe
ial K�ahler manifolds in that their K�ahler potential 
an be expressed in termsof a holomorphi
 prepotential f = f(�). One has [41, 42, 43℄K = � logY; with Y = �2(f + �f) + (fk + �f�k)(�k + ��k) ; (4.2)where in the large-volume limit Y 
s=ks are given byY 
s = i ZX 
 ^ �
 ; Y ks = V � 43 ZX J ^ J ^ J : (4.3)Here 
 and J are, respe
tively, the holomorphi
 (3; 0)-form and the K�ahler (1; 1)-form ofthe Calabi-Yau threefold. V is the 
lassi
al volume in that the equality Y ks = V only holdsin the large-volume limit, and it is modi�ed by �0 and worldsheet-instanton 
orre
tions.There exist various dynami
al e�e
ts, su
h as 
uxes or gaugino 
ondensates, whi
h
an indu
e a nontrivial superpotential W for the moduli [28℄. We do not systemati
allydis
uss here all the possible superpotentials but rather assume that most of the moduliare stabilised in a supersymmetri
 way at high energy s
ales. In addition we assume thatsupersymmetry is broken by F -terms of the remaining moduli multiplets.5 This latterse
tor is the one we want to study in the spirit of Se
tions 2 and 3. In other words, wewant to understand under what 
onditions the moduli se
tor 
an simultaneously breaksupersymmetry and generate a de Sitter va
uum.For 
on
reteness, let us fo
us on the K�ahler moduli se
tor in the large-volume limit andassume that it indu
es supersymmetry breaking. Of 
ourse we 
ould equivalently 
onsiderthe 
omplex stru
ture moduli in the large-
omplex-stru
ture limit whi
h {due to mirrorsymmetry{ would lead to an identi
al analysis.Sin
e J is harmoni
, it 
an be expanded in a h1;1-dimensional basis wi; i = 1; : : : ; h1;1of the 
ohomology group H1;1 via J = viwi. The NS two-form enjoys a similar expansionB2 = bi!i. The 
oeÆ
ients in these expansions vi and bi are s
alar �elds whi
h 
ombineinto the 
omplex 
oordinates T i = vi + ibi. Inserting this into (4.3), one obtainsK = � logV ; with V = 16 dijk (T i + �T i)(T j + �T j)(T k + �T k) ; (4.4)5We similarly assume that matter �elds are stabilised at supersymmetri
 points and that their va
uumexpe
tation values remain zero after supersymmetry is broken by the moduli.13



where dijk = RX wi ^ wj ^ wk are the Calabi-Yau interse
tion numbers.6Before we 
ontinue let us emphasise that su
h a K�ahler potential also appears as asubse
tor of other string 
ompa
ti�
ations, for example, in Calabi-Yau 
ompa
ti�
ationsof type IIB with O5=O9-orientifold planes [44℄. Therefore the following analysis is notonly valid for heteroti
 
ompa
ti�
ations but rather for any moduli-se
tor with a K�ahlerpotential of the form given in eq. (4.4).In order to 
ompute � let us �rst re
all a few further properties of K (for more detailson the following 
omputations we refer the reader to the appendix). Its �rst derivativereads Ki = �ViV ; Vi = 12 dijk(T j + �T j)(T k + �T k) : (4.5)The K�ahler metri
 is then given bygij = �VijV + ViVjV2 = eKdijkKk +KiKj ; (4.6)where the matrix Vij = dijk(T k + �T k) has a signature (1; h1;1 � 1) for all allowed valuesof T i + �T i, i.e. those values for whi
h V is positive and the K�ahler metri
 is positive-de�nite [43℄. The inverse metri
 is 
onveniently expressed in terms of the matrix V ij whi
his de�ned as the inverse of Vij, i.e. V ijVjk = Æik. Using 2V ijVj = T i + �T i = �Ki one hasgij = �VV ij + 12KiKj: (4.7)From (4.5) and (4.7) it follows that K obeys the the no-s
ale 
ondition (3.1) and also thehomogeneity property (3.11).Using (4.5){(4.7) one also easily 
omputes the third derivative of K and its Riemanntensor: Kijk = �eKdijk + gijKk + gikKj + gjkKi �KiKjKk ; (4.8)Rijmn = gijgmn + gingmj � e2Kdimpgpqdqjn : (4.9)Noti
e that the spe
i�
 form of the Riemann tensor holds for any spe
ial K�ahler manifoldwith dijk repla
ed by the third derivative fijk of the prepotential [45, 46℄. Inserting (4.9)into eq. (2.12) we �nally obtain� = �43(Gi �Gi)2 + e2KGiGjdijpgpqdqmn �Gm �Gn: (4.10)6This is indeed a spe
ial K�ahler geometry sin
e V 
an be derived from the holomorphi
 prepotentialf(T ) = 1=6 dijkT iT jT k. 14



As in the last se
tion we 
an rewrite � in terms of Ki and its orthogonal 
omplementNi as de�ned in eqs. (3.8) and (3.9). Inserting (4.8) and (4.9) into (3.19) and (3.20) wearrive at � = �2sisi + ! with si and ! given bysi = � �N i + ��N i � 12eKP ijdjmnNm �Nn ; (4.11)! = �� 43gij gmn+13gim gjn+12e2KdijpP pqdqmn+e2KdimpP pqdqjn�N i �N jNm �Nn : (4.12)Let us re
all here that with these expressions it is possible now to study the 
onvexity of� by s
anning N i and keeping � �xed in su
h a way that siNi = 0.4.2 Parti
ular 
lasses of modelsWe now dis
uss a few spe
i�
 
lasses of K�ahler moduli spa
es that 
an be handled an-alyti
ally. As we shall see, it is possible to obtain examples of models where � > 0 for
ertain dire
tions Gi o�ering the possibility of generating metastable va
ua. Neverthe-less, we shall also see that there are entire 
lasses of models for whi
h � is unavoidablynegative-de�nite, implying the existen
e of at least one ta
hyoni
 state in the spe
trumwhi
h renders the theory unstable independently of the form of the superpotential.4.2.1 Fa
torisable K�ahler manifoldsAs our �rst example we dis
uss Calabi-Yau threefolds whi
h are K3-�brations over aP1-base. In the limit of a large P1 the K�ahler potential simpli�es and reads [47, 48℄K = � log�12 d1ab(T 1 + �T 1)(T a + �T a)(T b + �T b) + : : :� ; (4.13)where T 1 parametrises the volume of the P1-base while the T a; a = 2; : : : ; h1;1 are moduliof the K3 �bre. The dots indi
ate further 
ubi
 terms whi
h, however, are independentof T 1 and therefore subleading in the large P1-limit. In that limit the K�ahler metri
 isblo
k diagonal (g1a = 0) and hen
e the moduli spa
e fa
torises into the spe
ial K�ahlerspa
e7 Mks = SU(1; 1)U(1) � SO(2; h1;1 � 1)SO(2)� SO(h1;1 � 1) : (4.14)The K�ahler potential also enjoys the propertiesK1K1 = 1 ; KaKa = 2 : (4.15)7This also uses the fa
t that the matrix d1ab has signature (1; h1;1 � 2).15



In order to 
ompute � we observe that (4.6) implies d1ab = e�KK1 (gab�KaKb) whi
h,together with (4.15), leads toe2K d1a
 d
1b = g11 gab ; e2Kdab1 d1
e = (gab �KaKb) (g
e �K
Ke) : (4.16)Inserting this into (4.10) we obtain� = �43(G1 �G1 +Ga �Ga)2 + jGaGa � (KaGa)2j2 + 4 (G1 �G1)(Ga �Ga) : (4.17)To �nd an upper bound for this fun
tion, we use the inequality jA �Bj2 � jAj2jBj2 forAa = (gab �KaKb)Gb and Ba = Ga. This together with (4.15) yieldsjGaGa � (KaGa)2j2 � (Ga �Ga)2 : (4.18)As a 
onsequen
e, the fun
tion � given in eq. (4.17) obeys� � �13 (2G1 �G1 �Ga �Ga)2 : (4.19)We see that � is always negative and vanishes along the 
at dire
tion where 2G1 �G1 =Ga �Ga. This means that the preferred supersymmetry breaking dire
tion is Gi / Ki asfor models with 
onstant 
urvature. We 
on
lude that in this 
lass of models one alwayshas a ta
hyoni
 sGoldstino, whi
h 
an at best be
ome massless for Minkowski va
ua andfor a spe
ial Goldstino dire
tion.Note that the s
alar manifold (4.14) asso
iated with these fa
torisable models is a
onstant 
urvature 
oset manifold. The impli
ations of the metastability 
ondition forthis type of models were also studied in ref. [31℄. It was in parti
ular shown that these
ond fa
tor in (4.14) behaves e�e
tively as two 
opies of the �rst fa
tor, independentlyof h1;1. This implies that the metastability 
ondition for K3 �brations is analogous tothat of models with 3 independent moduli, as in eq. (1.2) with ni = 1, providing analternative derivation of the fa
t that � is at best zero in these models.4.2.2 Two-�eld modelsAnother 
lass of models that 
an be studied analyti
ally are those with only 2 moduliT i = vi + ibi, with i = 1; 2. To perform this analysis we re
all that � may be written as� = �2sisi + ! with si and ! given by eqs. (4.11) and (4.12) respe
tively. In the 
ase of2 moduli it was shown in Se
tion 3.2 that it is always possible to 
hoose si = 0, therebymaximising �. We are thus left with the task of 
omputing the fun
tion ! and 
he
k if! > 0 is allowed. As 
an be read from (4.12), the fun
tion ! depends on the variables16



Ni. Sin
e these are orthogonal to Ki, they 
an be parameterised with a single 
omplexquantity C as (N1; N2) = (K2;�K1)C : (4.20)With this de�nition, one has N iNi = 3det g jCj2.One �rst 
ase that we 
an analyse is the 
ase of models with only diagonal interse
tionnumbers d111 and d222. In this example the K�ahler potential takes the formK = � log�16d111(T 1 + �T 1)3 + 16d222(T 2 + �T 2)3� : (4.21)Computing the metri
 and its inverse, and using eqs. (4.20) and (4.21) with (4.12), we�nd that ! = 818 e4K d2111d2222det g jCj4 : (4.22)This result is positive sin
e the metri
 has to be positive de�nite. This shows that � 
anbe made positive and that the stability 
ondition 
an be ful�lled for 
ertain parti
ulardire
tions of Gi. As shown for general large-volume s
enarios, we �nd that the pointN i = 0, where Gi / Ki, is indeed a stationary point with � = 0. Nevertheless, as 
anbe read o� from (4.22), in this 
ase this stationary point is a saddle point, and �(Gi) 
ana
tually be made positive along some dire
tions.By now we have shown that in the 
ase of fa
torisable K�ahler potentials we get ! = 0and in the 
ase of diagonal interse
tion numbers we get ! > 0. But one may wonderwhether in some 
ases one 
an have ! < 0. In order to answer this question, let us
onsider a model with the following K�ahler potential:K = � log�12 d122 (T 1 + �T 1)(T 2 + �T 2)2 + 16 d111(T 1 + �T 1)3� : (4.23)Note now that in the limit d111 ! 0 this K�ahler potential be
omes of the form (4.13)des
ribing fa
torisable models, for whi
h the maximal value of � is zero. One 
an thenstudy how this result is modi�ed in the 
ase where d111 � d122 by performing an expansionin the small parameter � = d111d122 : (4.24)Following now the same strategy as before it is straightforward to �nd that! = 812 � e4K d4122det g jCj4 : (4.25)This result 
an be either positive or negative depending on the sign of �. This impliesthat � 
an be positive or must be negative, depending on the sign of �.17



A
tually, for these two-�eld models it is possible to 
ompute the fun
tion ! for generi
values of all the independent interse
tion numbers d111, d222, d122 and d112. Using thegeneral form for the K�ahler potential (4.4) and following the same steps as in the previousexamples one �nds, after some algebra, that the value of ! 
an be 
ast into the simpleform ! = �38 e4K �det g jCj4 ; (4.26)where the quantity � is the dis
riminant of the 
ubi
 polynomial de�ned by dijkvivjvkafter s
aling out one variable, and reads� = �27�d2111d2222 � 3 d2112d2122 + 4 d111d3122 + 4 d3112d222 � 6 d111d112d122d222� : (4.27)Sin
e we must require det g > 0, the sign of ! is �xed by the sign of �. Moreover,it be
omes now 
lear that the two 
ategories of models with ! > 0 and ! < 0 are of
omparable size and that they merge in the very spe
ial 
lass of models with fa
torisableK�ahler geometries, for whi
h ! = 0.4.3 In
luding �0 
orre
tionsSo far we have analysed models respe
ting the no-s
ale property KiKi = 3. This propertyis however violated when �0, worldsheet instanton or string loop 
orre
tions to the K�ahlerpotential are taken into a

ount, although they are suppressed in the large-volume andweak-
oupling limit. It is therefore interesting to study how the bounds on the mass ofthe sGoldstinos are modi�ed by these e�e
ts, parti
ularly for those models in whi
h � � 0at leading order. For 
on
reteness we here 
onsider only �0 
orre
tions, but the e�e
t ofother 
orre
tions 
an be studied in a similar way.When �0 
orre
tions are taken into a

ount, the K�ahler potential is K = � logYwhere [49℄ Y = V + 4� : (4.28)The quantity � = ��(3)�=2 is a real 
onstant determined by the Euler 
hara
teristi
 ofthe Calabi-Yau manifold, given by � = 2(h1;1� h2;1). The geometry is still of the spe
ial-K�ahler type, with prepotential f(T ) = 1=6 dijkT iT jT k� �. However, as mentioned above,�0 
orre
tions break the no-s
ale property (3.1), whi
h is seen from eqs. (A.2) and (A.3)of the appendix with n = 1 and � = (3=2)V=(V + 4�).The natural small dimensionless parameter 
ontrolling the e�e
t of �0 
orre
tions rela-tive to the leading-order K�ahler potential is given byÆ = 4�V : (4.29)18



In the following, we work at leading order in this parameter, whi
h is small when thevolume is large. Using eqs. (A.1) and (A.3) with � ' 3=2(1� Æ), one then �nds thatKiKi ' 3 + 6 Æ : (4.30)The Riemann tensor is given by eq. (A.7). The quantities fijk are as before given bythe interse
tion numbers, whereas the metri
 gij and its inverse gij are a�e
ted by the
orre
tions and 
an be 
omputed from (A.1).In order to understand how the 
orre
tions modify the bounds on the sGoldstino masses,it is useful to 
ompute the fun
tion �(Gi) up to se
ond order in the N i's and at leadingorder in Æ. One �nds�(Gi) ' 120 Æ j�j4 � 4 (1� 2 Æ) j�j2gijN i �N j� 2 (1 + 9 Æ)��2gij �N i �N j + 
:
:�+O(N3) : (4.31)Noti
e that � 
ontinues to be stationary at N i = 0, but its value at that point be
omes�0 ' 120 Æ j�j4. If � < 0 (i.e. h2;1 > h1;1) then this is positive and the spe
ial dire
tionGi / Ki always allows to ful�l the metastability 
ondition.Up to this point we have left � undetermined. We 
an however express j�j2 in termsof the va
uum energy density V = eG(GiGi � 3) and gravitino mass s
ale m3=2 = eG=2 asj�j2 = 1 + V=(3m23=2) +O(Æ). Inserting this relation ba
k into eq. (4.31) and evaluatingat N i = 0 one obtains �0 ' 120 Æ�1 + V3m23=2�2 : (4.32)This relation 
an be used to 
ompute the mass s
ale ~m2 = eG�=GiGi, as introdu
ed inSe
tion 2.1, at the 
riti
al value Gi / Ki. This is parti
ularly important for modelswhere � � 0 at leading order, as it then provides a bound on the attainable values of thesGoldstino mass. By inserting eq. (4.32) into eq. (2.11), and spe
ialising to the relevantregime V=m23=2 � 1, one obtains ~m2m23=2 ' 40 Æ � 23 Vm23=2 : (4.33)It immediately follows that if Æ & V=(60m23=2) then the metastability 
ondition is ful�lled.This gives a 
riterion on how large �0 
orre
tions have to be for given gravitino s
aleand va
uum energy density in order to admit viable va
ua. Noti
e that under these
ir
umstan
es the value of the sGoldstino mass is essentially the gravitino mass suppressedby �0 
orre
tions. We should bear in mind, however, that other 
orre
tions to the K�ahlerpotential 
ould 
ompete against �0 
orre
tions and modify this result.19



5 Orientifold 
ompa
ti�
ations of string theory5.1 General dis
ussionIn 
ontrast to the heteroti
 string, type IIB Calabi-Yau 
ompa
ti�
ations give theorieswithN = 2 supersymmetry in 4 dimensions. The RR forms whi
h are present in 10-D typeII supergravities lead to additional massless 4-D �elds whi
h, together with the geometri
moduli, arrange into N = 2 supermultiplets. The s
alars in the ve
tor multiplets spanagain a spe
ial K�ahler manifold MSK whereas the s
alars in the hypermultiplet span adual quaternioni
 manifoldMQ.One way to obtain a theory with N = 1 supersymmetry is to impose an orientifoldproje
tion. In type IIA, this involves O6-planes while in type IIB one has O3=O7 orO5=O9-planes. The moduli spa
e in all of these three 
ases has the form [44, 50, 51℄~M = ~MSK � ~MQ ; (5.1)where ~MSK is a spe
ial K�ahler submanifold of the \parent" N = 2 moduli spa
e MSKwhile ~MQ is a K�ahler submanifold of MQ. In the large-volume large-
omplex-stru
turelimit, the ~MSK fa
tor satis�es the no-s
ale property and the K�ahler potential does infa
t 
oin
ide with the K�ahler potential of eq. (4.4). Therefore the analysis of Se
tion 4holds unmodi�ed for the moduli of ~MSK. On the other hand the ~MQ se
tor, whi
hin
ludes the dilaton, satis�es KiKi = 4, and if the dilaton is �xed, the latter se
tor is alsono-s
ale [44℄. However, the K�ahler potential of ~MQ is di�erent for the three orientifold
ompa
ti�
ations.For 
on
reteness let us fo
us on type IIB with O3/O7 planes, where the K�ahler potentialin the large-volume limit reads [44℄KQ = �2 logV � log(S + �S) ; with V = 148 dijkvivjvk : (5.2)V is again the 
lassi
al volume of the Calabi-Yau orientifold, S is the dilaton/axion andthe vi; i = 1; : : : ; h1;1+ are the K�ahler moduli of the Calabi-Yau orientifold. However thevi do not appear as 
omponents of 
hiral multiplets in the low energy e�e
tive a
tion.Instead, they determine the real part of the K�ahler 
oordinates T i = �i + i� i via thequadrati
 relation8 �i = 116 dijkvjvk : (5.3)8Stri
tly speaking there 
an also be h1;1� moduli G with 
ouplings spe
i�ed in [44℄ whi
h however wenegle
t during the analysis of this paper. 20



Due to this relation the K�ahler potential of eq. (5.2) 
annot expli
itly be expressed interms of the 
oordinates T i, but is only impli
itly de�ned through eq. (5.3).9 As in theprevious se
tion we assume that the dilaton is �xed to a supersymmetri
 
on�gurationand fo
us only on the K�ahler moduli.The metri
 
an be 
onveniently expressed in terms ofdij � ��i�vj = 18 dijkvk ; dij � �vi��j : (5.4)Using (5.2) { (5.4), one 
omputesKi = � 12 eK=2vi ; dij = � 14 e�K=2dijkKk : (5.5)This in turn determines the K�ahler metri
 and its inverse to begij = 12 KiKj � 14 eK=2dij ; gij = 4 �i�j � 4 e�K=2dij : (5.6)One 
an now 
he
k that K satis�es the no-s
ale property KiKi = 3 as well as the spe
ialidentity Ki = �2�i, whi
h again results from the fa
t that e�K is a homogeneous fun
tionof degree 3 in �i. This 
an be used to slightly rewrite the inverse metri
 asgij = e�KdijkKk +KiKj : (5.7)Noti
e that this expression for the inverse metri
 is equal in form to the metri
 (4.6) ofthe heteroti
 
ase. Similarly, the inverse metri
 of the heteroti
 
ase is equal in form tothe metri
 (5.6) for the orientifold 
ase examined here. As was shown in ref. [52℄ thisproperty dire
tly follows from the fa
t that in the orientifold 
ase the K�ahler 
oordinatesT i feature the dual variables �i instead of vi as the real part.In order to determine � we need again the third derivatives of the K�ahler potential andthe Riemann tensor. For this it is 
onvenient to �rst 
ompute derivatives of gij. Usingthe above relations we �nd�gij�k = e�Kdijmgmk � (gij �KiKj)Kk � ÆikKj � ÆjkKi ;�gij�mn = �e�2Kdijpgpqdqrsgrmgsn + ÆimÆjn + ÆinÆjm : (5.8)Kijm and the Riemann tensor are expressed in terms of these derivatives asKijm = �gip[gpq℄jgqm ;Rijmn = �gipgqj[gpq℄mn + gir[grp℄mgpq[gqs℄ngsj : (5.9)9In order to 
omply with the standard notation whereby 
hiral 
oordinates 
arry upper indi
es, wehave slightly abused the notation by lowering the indi
es of v and raising them for the interse
tionnumbers d. We have also res
aled the interse
tion numbers as dijk ! dijk=8. However we stress thatthey are exa
tly the same obje
ts as in the heteroti
 
ase.21



Inserting (5.8) into (5.9) and using (5.4){(5.6) we arrive at10Kijm = e�K d̂ijm � gijKm � gimKj � gjmKi +KiKjKk ;Rijmn = �gimgjn + e�2K(d̂ijkgkld̂lmn + d̂inkgkld̂ljm) + ginKjKm + gjmKiKn+ gimKjKn + gjnKiKm + gijKmKn + gmnKiKj � 3KiKjKmKn� e�K(d̂imjKn + d̂imnKj + d̂injKm + d̂nmjKi) ; (5.10)where we abbreviated d̂ijk � gipgjqgkldpql : (5.11)Inserting (5.10) into (2.12) we �nally arrive after some algebra at� = 23(Gi �Gi)2 + jGiGi � (KiGi)2j2 + 2jKiGij4 � 4jKiGij2Gj �Gj�2 e�2KGi �GjdijpgpqdmnqGm �Gn + 2 e�KdijkGi �Gj(GkKn �Gn + �GkKnGn) : (5.12)It is also possible to write � in terms of the de
omposition Gi = Ni + �Ki de�nedin (3.8). Doing so, one �nds the result (3.17) or (3.18), with the quantities gij, Kijkand Rijmn given by eq. (5.10). Again only the few terms transverse to Ki 
ontribute in
ontra
tions with N i. The quantities si and ! are obtained by inserting (5.10) into (3.19)and (3.20) and are given by! = �gimgjn � 32 e�2KdijpPpqdpmn�Ni �NjNm �Nn ; (5.13)si = �N�{ + ��Ni � 12e�KPijdjmnNmN�n : (5.14)It is interesting to 
ompare both of these quantities with their heteroti
 
ounterparts,given in eqs. (4.11) and (4.12). While si of eq. (4.11) is equal in form to the one givenhere, ! of eq. (4.12) has essentially the opposite sign to the one shown here, and involvesthe inverse metri
 instead of the metri
 and e�K instead of eK . As we shall see, this resultis parti
ularly relevant for models with two moduli, for whi
h � 
an be maximised bysetting si = 0 and thus the sign of � is determined by !.5.2 Parti
ular 
lasses of modelsAs for the heteroti
 
ase, we 
an only make further progress by 
omputing � for spe
i�

lasses of Calabi-Yau orientifolds. In the following we 
onsider the same examples as inSe
tion 4.2.10This Riemann tensor was also 
omputed in ref. [53℄.22



5.2.1 Fa
torisable K�ahler manifoldsWe again start with K3-�bred Calabi-Yau threefolds where the K�ahler potential takesthe form K = �2 log� 116 d1abv1vavb� : (5.15)For these interse
tion numbers (v1; va) 
an be expli
itly determined in terms of the (�1; �a)via (5.3). One �nds v1 = 2 (d�11ab�a�b=�1)1=2 and va = 4 d�11ab�b(�1=d�11
d�
�d)1=2. Insertinginto (5.15) and using �i = (T i + �T i)=2 yieldsK = � log h12 d�11ab(T 1 + �T 1)(T a + �T a)(T b + �T b)i : (5.16)This is exa
tly the sameK as in the heteroti
 
ase but with an inverse interse
tion matrix.In parti
ular, K obeys again K1K1 = 1 and KaKa = 2. It is nevertheless instru
tive tore
ompute the fun
tion � by using the formulae obtained for orientifold models. Fromeq. (5.7) we �rst infer d1ab = eKK1(gab �KaKb). This allows us to 
omputee�2KGi �Gjdijpdmnp Gm �Gn = (Ga �Ga � jKaGaj2)2 +GaGa(K1 �G1)2+ �Ga �Ga(K1G1)2 + 2GaGajK1G1j2 ; (5.17)e�KdijkGi �GjGkKn �Gn = 2 (K1 �G1 +KaG�a)K1G1(GbGb � jKbGbj2)+ (K1 �G1 +Ka �Ga)K1 �G1(GbGb � (KbGb)2) : (5.18)Inserting into (5.12) we arrive at� = �13(Ga �Ga + jK1G1j2)2 + jGaGa � (KaGa)2j2 � (Ga �Ga � jK1G1j2)2 : (5.19)Using the same inequality (4.18) as for heteroti
 models, and noti
ing also the simpli�
a-tion jK1G1j2 = G1 �G1, one �nally dedu
es the same upper bound as before:� � �13(2G1 �G1 �Ga �Ga)2 : (5.20)Therefore, we arrive at the same 
on
lusion as for heteroti
 models: in this 
lass offa
torisable models the stability bound is always at least marginally violated.5.2.2 Two-�eld modelsAs for heteroti
 models, another 
lass of models where the analysis simpli�es are thoseinvolving two �elds. In su
h a situation, there is again a single dire
tion N i orthogonalto Ki, whi
h 
an be parametrised as(N1; N2) = (K2;�K1)C : (5.21)23



With this de�nition, one has N iNi = 3= det g jCj2. As before using this parametrisationwe 
an 
ompute the value of the quantity ! de�ned by (5.13), whi
h provides an upperbound to �.As for the heteroti
 models we 
onsider �rst the simplest 
ase of models with onlydiagonal interse
tion numbers d111 and d222. The 
orresponding K�ahler potential is of theform11 K = �2 log� 148d111v31 + 148d222v32� : (5.22)Using (5.3) one determines v1 = 4 (�1=d111)1=2 and v1 = �4 (�2=d222)1=2 whi
h, wheninserted ba
k into (5.22), yieldsK = �2 log�p23 (d111)�1=2(T 1 + �T 1)3=2 � p23 (d222)�1=2(T 2 + �T 2)3=2� : (5.23)The fun
tion ! is now easily 
omputed and is found to be! = �818 e�4K (d111)2(d222)2 det g jCj4 : (5.24)This result is negative and shows that in this 
ase � � 0 for any 
hoi
e of Gi. It is thereforeimpossible to obtain stable de Sitter va
ua in this 
ase. Furthermore, this inequality issaturated only for Ni = 0, whi
h 
orresponds to the 
on�guration Gi / Ki. The resultpresented here should be 
ontrasted to the one presented in eq. (4.22).To understand whether this negative sign for ! persists or not in more general 2-�eldmodels, let us as before 
onsider a small deformation of a fa
torisable model. The simplestexample has non-zero d122 and d111, and a K�ahler potential given byK = �2 log� 116 d122v1v22 + 148 d111v31� : (5.25)In the limit d111 � d122, in whi
h the model is nearly fa
torisable, one 
an expand atleading order in the small parameter � = d111d122 : (5.26)One �nds v1 = 2 (d122�1)�1=2�2[1 + �=8(�2=�1)2℄ and v2 = 4 (d122=�1)�1=2[1� �=8(�2=�1)2℄.The K�ahler potential 
an then be rewritten asK = � log�12 1d122 (T 1 + �T 1)(T 2 + �T 2)2 � 124 d111(d122)2 (T 2 + �T 2)4T 1 + �T 1 � : (5.27)11In ref. [53℄ the same manifold was studied as an example where the Riemann tensor of the manifoldand its dual manifold do not 
oin
ide. 24



After a straightforward 
omputation, the fun
tion ! is found to be! = �812 � e�4K (d122)4 det g jCj4 : (5.28)As in the heteroti
 
ase we have again that this result 
an be either positive or negative,depending on the sign of �. This means that also in orientifold 
ompa
ti�
ations one 
anhave models with � > 0 and models with � < 0.Note that the results (5.24) and (5.28) take the same form as (4.22) and (4.25) forheteroti
 models but with the substitutions eK ! e�K, det g ! (det g)�1 and a 
ip inthe overall sign. This is due to the fa
t that in the 
ase of two-�eld models, where theparametrisations (4.20) and (5.21) 
an be used, the fun
tions (4.12) and (5.13) get indeedpre
isely mapped into ea
h other by these substitutions. This map 
an then be used toinfer that also for orientifold models the result for generi
 interse
tion numbers d111, d222,d122 and d112 should take a simple form, obtained by applying it to the heteroti
 result(4.26). This leads to the result ! = 38 e�4K � det g jCj4 ; (5.29)in terms of the dis
riminant� = �27�(d111)2(d222)2 � 3 (d112)2(d122)2 + 4 d111(d122)3+4 d222(d112)3 � 6 d111d112d122d222� : (5.30)It is not straightforward to verify this result expli
itly, be
ause performing the 
hange ofvariables (5.3) involves in this general 
ase �nding the roots of a quarti
 polynomial. Butwe were nevertheless able to verify it by brute for
e with 
omputer assistan
e. Sin
e wemust require det g > 0, the sign of ! is again determined by the sign of the quantity �,whi
h has exa
tly the same stru
ture as for heteroti
 models.It is important to note that the results found for heteroti
 and orientifold models implythat for any given string 
ompa
ti�
ation with non-zero �, one 
an have either viableheteroti
 models but no viable orientifold models (if � < 0), or vi
e-versa (if � > 0).5.3 In
luding �0 
orre
tionsWe now in
lude �0 
orre
tions in orientifold 
ompa
ti�
ations. When these 
orre
tionsare taken into a

ount, the K�ahler potential of eq. (5.2) is modi�ed to K = �2 logY �log(S + �S), where [54℄ Y = V + �2 �S + �S2 �3=2 : (5.31)25



One diÆ
ulty arises from the fa
t that these 
orre
tions depend on the dilaton whi
h,stri
tly speaking, now should be 
onsidered as a dynami
al quantity (this is due to the fa
tthat in the presen
e of �0 
orre
tions the K�ahler potential is not fa
torisable). To simplifythe presentation of this se
tion we nevertheless assume that the dilaton 
an be �xed to a
onstant value in eq. (5.31), and de�ne the new 
onstant ~� = (�=2)[(S + �S)=2℄3=2.12 Asbefore, �0 
orre
tions break the no-s
ale property (3.1), whi
h 
an be seen from eqs. (A.2)and (A.3) of the appendix with n = 2 and � = 3V=(V + ~�).The small dimensionless parameter 
ontrolling the relative e�e
t of the �0 
orre
tionsis in this 
ase given by ~Æ = ~�8V : (5.32)We will work at leading order in this parameter. Using the results of the appendix with� ' 3(1� 8~Æ), one �nds then that KiKi ' 3 + 12 ~Æ : (5.33)The Riemann tensor, given by eq. (A.5), 
an be evaluated by using Yij = 1=8 dij, Yijm =�1=128 dirdjsdmtdrst and Yijmn = 24YijsdsrYrmn.As worked out in Se
tion 4.3 for the 
ase of heteroti
 
ompa
ti�
ations, one may 
om-pute � up to se
ond order in N i and at �rst order in ~Æ:13�(Gi) ' 105 ~Æ j�j4 � 4 (1 + 14 ~Æ) j�j2gijN i �N j� 2 (1 + 27 ~Æ)��2gij �N i �N j + 
:
:� +O(N3) : (5.34)Again, � is stationary at N i = 0 with a value � ' 105 ~Æ j�j4. Observe that the onlydi�eren
e with respe
t to the result found for heteroti
 models, shown in eq. (4.31), isthe numeri
al fa
tor in front of ~Æ. We 
an now 
al
ulate the mass s
ale ~m2 = eG�=GiGiasso
iated to the sGoldstino. By repeating the steps of Se
tion 4.3 and assuming thatV=m23=2 � 1 one arrives at ~m2m23=2 ' 35 ~Æ � 23 Vm23=2 : (5.35)Similarly to the 
ase of heteroti
 
ompa
ti�
ations, if ~Æ & 2V=(105m23=2) then the metasta-bility 
ondition is ful�lled and the sGoldstino mass be
omes of the order of the gravitinomass suppressed by �0 
orre
tions. This is for instan
e the 
ase in the models of ref. [7, 17℄.12Similar 
on
lusions are obtained in the full 
omputation with a dynami
al dilaton by assuming thatS is �xed to a supersymmetri
 
on�guration GS = 0.13For this 
omputation, the following 
ontra
tions are needed: YijKiKj = 3 (� � 1)�2V , YijmKiKj =Y=2 (� � 1)�2Km, YijmnKiKjKmKn = 9 (� � 1)�4V .26



6 Con
lusionsIn this paper we have analysed the role that neutral 
hiral multiplets have in the 
on-stru
tion of 4-D metastable va
ua, paying spe
ial attention to the generi
 
lass of mod-els obtained in large-volume 
ompa
ti�
ations of string theory. In general, metastableva
ua with spontaneously broken supersymmetry are only granted in models where anon-vanishing F -term F i = m3=2Gi exists su
h that �(Gi) > 0, as de�ned in eq. (2.12).This ne
essary 
ondition was shown to be equivalent to the requirement of having a pos-itive square mass for the sGoldstinos when the va
uum energy density V is non-negative.Interestingly, this 
ondition was also shown to be suÆ
ient, with the understanding thatall of the other s
alar �elds 
an be given arbitrarily large positive square masses if thesuperpotential of the theory is suitably tuned.In the parti
ular 
ase of large-volume string 
ompa
ti�
ations the fun
tion � respe
tssome severe restri
tions. For instan
e, from the general analysis made in Se
tion 3, wehave learned that the set of values Gi / Ki 
orresponds to a family of stationary pointsof � with � = 0. Moreover, they are either saddle points or maxima, depending onthe interse
tion numbers of the parti
ular model. Despite of the diÆ
ulties posed by a
omplete analyti
al study of the fun
tion � we were still able to outline a general pro
edureto determine whether a parti
ular 
ompa
ti�
ation admits dS va
ua. This pro
edure wasintrodu
ed �rst for generi
 supergravity models in Se
tion 2.2 and then re�ned in Se
tion3.2 for the parti
ular 
ase of string 
ompa
ti�
ations. We believe that su
h a pro
edure
an be implemented numeri
ally and should be of 
onsiderable help in any 
omputer s
anof string ground states. We also saw, however, that there are interesting and nontrivialexamples of 
ompa
ti�
ations whi
h 
an be handled analyti
ally. For K3 �brations, forinstan
e, we showed that � 
an be at best zero. For 2-�eld models, on the other hand, themaximal value of � 
an be non-vanishing, and its sign is 
ontrolled by the dis
riminant� of the 
ubi
 polynomial de�ned by the interse
tion numbers. Moreover, for � < 0 one
an �nd viable heteroti
 models but no viable orientifold model, and vi
e-versa for � > 0.The results of this paper are useful for determining whi
h type of 
on�gurations withina given model should help in the 
onstru
tion of va
ua. We have seen for example thatexploring 
on�gurations in the superpotential parameter spa
e 
lose to the 
riti
al pointGi / Ki give a vanishing value for � and that �0 
orre
tions 
an help in obtaining apositive {although suppressed{ square mass for the sGoldstinos, independently of whether� > 0 is admitted or not at leading order. In fa
t, one 
ould expe
t this to be a generi
feature of any additional se
tor whi
h breaks the no-s
ale property KiKi = 3 respe
tedby the K�ahler moduli se
tor.Finally, let us mention here that a strategy similar to the one used in this paper 
ould27



be used also to study the possibility of 
onstru
ting su

essful models of slow-roll in
ationwithin a string-theoreti
al s
enario. This requires �nding some dire
tion in �eld spa
ewith small �rst and se
ond derivatives of the potential. The �rst 
ondition 
orrespondsapproximately to stationarity, whereas the se
ond one requires a small negative mass.The algebrai
 problem de�ned by these two 
onditions is then very similar to the onefa
ed in this paper [55℄.A
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olle
t some useful formulae 
on
erning the geometry of K�ahler andspe
ial-K�ahler manifolds, whi
h are needed in some derivations in the main text.A.1 Logarithmi
 K�ahler potentialsLet us 
onsider a K�ahler potential of the form K = �n logY , where Y is some realfun
tion of the s
alar �elds �i and n is a real number. Denoting by Y i�| the inverse of Yi�|,one easily �ndsKi = �nYiY ;gi�| = �nYi�|Y + nYiY�|Y 2 = �nYi�|Y + 1nKiK�| ;gi�| = �Y Y i�|n + 1n 1� � 1Y i�rY�rY �|sYs = �Y Y i�|n + � � 1n KiK�| ;Ki = � 1� � 1Y i�rY�r : (A.1)28



The quantity � is de�ned as � � YiY i�|Y�|Y ; (A.2)and 
ontrols the value of the 
ontra
tion de�ning the no-s
ale property:KiKi = n �� � 1 : (A.3)The third derivatives of K areKi�|m = � nY Yi�|m + nY 2 (YiY�|m+ YmY�|i + Y�|Yim)� 2nY 3YiY�|Ym ;Ki�|�n = � nY Yi�|�n + nY 2 (Y�|Yi�n+ Y�nYi�| + YiY�|�n)� 2nY 3YiY�|Y�n : (A.4)Finally, the Riemann tensor for the K�ahler manifold isRi�|m�n = Ki�|m�n �Kim�rg�rsKs�|�n= 1n(gi�| gm�n + gi�n gm�|)� nY Yi�|m�n � nY 2 (nYim�sg�srYr�|�n + 1� � 1YimY�|�n)+ n2Y 3 (YimY�|�nrgr�sY�s + Y�|�nYim�sg�srYr): (A.5)A.2 Spe
ial K�ahler manifoldsWe now 
onsider the 
ase of spe
ial K�ahler geometries, for whi
h the K�ahler potentialK = � logY itself admits a holomorphi
 prepotential f , in terms of whi
hY = �2(f + �f) + (fk + �f�k)(�k + ��k): (A.6)The Riemann tensor simpli�es substantially in this 
ase. Indeed, one easily 
omputesYi + Y�{ = Nij(�j + ���|) and Yi�| = Nij, where Nij = fij + �f�{�|. Combining these twoexpressions, one gets then Y i�|(Yj + Y�|) = (�i + ���{). Finally, 
ombining this result withYij = fijk(�k + ���k) and Yij�k = fijk, one obtains the relation Yij�sY �sr(Yr + Y�r) = Yip. Usingthese relations, one �nally �nds [46℄Ri�|m�n = gi�| gm�n + gi�n gm�| � 1Y 2fimrgr�s �f�s�|�n: (A.7)Referen
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