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1 IntrodutionExperiments at LEP, SLC and Tevatron have provided a large number of high-preisiondata, whih, being supplemented by detailed studies of higher-order orretions, allow toprobe the Standard Model at the loop level and subsequently to predit the mass of theHiggs boson. In this ontext, the leptoni e�etive weak-mixing angle, sin2 �lepte� , plays themost ruial role. It an be de�ned through the e�etive vetor and axial-vetor ouplings,glV and glA, of the Z boson to leptons (l) at the Z-boson pole,sin2 �lepte� = 14 �1 + Re glVglA� : (1)The e�etive weak-mixing angle an be related to the on-shell Weinberg angle, sin2 �w, assin2 �lepte� = sin2 �w �; (2)where sin2 �w = 1�M2W=M2Z and � = 1+��. At tree level, �� = 0 and sin2 �lepte� = sin2 �w.The form fator �� inorporates the higher-order loop orretions. Usually, the W -bosonmass, MW , is not treated as an input parameter but it is alulated from the Fermionstant, G�, whih is preisely known from the muon lifetime. The relation betweenMW and G� an be ast in the formM2W �1� M2WM2Z � = ��p2G� (1 + �r) ; (3)where the quantity �r [1℄ ontains all higher-order orretions. The presently most a-urate alulation of the W -boson mass inludes full two-loop and leading higher-orderorretions [2℄. On the other hand, the quantity � in Eq. (2) inorporates all orretionsto the form fators of the Zll vertex. Reently, the alulation of the two-loop eletroweakorretions has been ompleted [3{7℄. The unertainty on sin2 �lepte� due to unknown higherorders has been estimated to be 0.000047, whih is substantially smaller than the error ofthe urrent experimental value sin2 �lepte� = 0:23153� 0:00016 [8℄, but still larger than theexpeted preision, 1:3� 10�5, of a future high-luminosity linear ollider running at theZ-boson pole [9℄.The experimental value for sin2 �lepte� is determined from six asymmetry measurements,A0;lFB, Al(P� ), Al(SLD), A0;bFB, A0;FB, and QhadFB . Of those, the average leptoni and hadronimeasurements di�er by 3.2 standard deviations, whih is one of the largest disrepanieswithin the Standard Model. The main impat stems from two measurements, the left-right asymmetry with a polarised eletron beam at SLD, A0LR, and the forward-bakwardasymmetry for bottom quarks at LEP, A0;bFB. On the experimental side, the only possiblesoure of this disrepany are unertainties in external input parameters, in partiularparameters desribing the prodution and deay of heavy-avoured hadrons; see Setion5 of Ref. [8℄ for a disussion. However, the interpretation of the asymmetry measurementsin terms of sin2 �lepte� requires also some theoretial input. The leptoni asymmetries depend2



on lepton ouplings only and an be translated straightforwardly into the leptoni e�etiveweak-mixing angle, with small orretions due to s- and t-hannel photon exhange. Byontrast, the hadroni observables, A0;FB, A0;bFB and QhadFB , depend on the quark ouplings,gqV;A. These ouplings are assoiated with a avour-dependent hadroni e�etive weak-mixing angle, sin2 �qqe� ,sin2 �qqe� = 14jQqj �1 + Re gqVgqA� ; q = d; u; s; ; b: (4)The forward-bakward pole asymmetry of a quark q, A0;qFB, is related to the e�etiveouplings, gfV and gfA, and the e�etive weak-mixing angle, sin2 �qqe� , by1A0;qFB = 34AeAq; (5)with Af = 2gfV gfA(gfV )2 + (gfA)2 = 1� 4jQf j sin2 �ffe�1� 4jQf j sin2 �ffe� + 8Q2f sin4 �ffe� : (6)At tree level, sin2 �qqe� and sin2 �lepte� are idential, but the relations between these quantitiesreeive sizable radiative orretions that need to be inluded in the analysis. Note that,due to the small eletri harge of the bottom quark, Qb = �1=3, the parameter Ab islose to 1, and A0;bFB is only weakly sensitive to sin2 �bbe� . Therefore, it seems unlikely thatthe disrepany between A0LR and A0;bFB ould be explained by radiative orretions. Nev-ertheless, the theoretial predition for sin2 �bbe� enters in the Standard-Model �ts throughseveral observables, so that a preise predition of this quantity is important for a robustanalysis.For all fermions exept bottom quarks, the known radiative orretions to sin2 �ffe� in-lude at least two-loop fermioni eletroweak ontributions and some leading higher-orderorretions; see Ref. [7℄ for details. However, for the Zbb vertex only one-loop orre-tions, leading two-loop orretions for large values of the top-quark mass of O(�2m4t ),and two- and three-loop QCD orretions have been alulated [10℄ and inluded in theZfitter program [11℄ (see also the new program Gfitter [12℄), whih is widely used forglobal Standard-Model �ts. The remaining two-loop eletroweak orretions beyond theO(�2m4t ) ontributions are still unknown, although they are expeted to be larger thanthe O(�2m4t ) term, based on experiene from sin2 �lepte� . As a result, the present treatmentof higher-order eletroweak orretions leads to inonsistenies, for example in A0;bFB, sinethe orretions to sin2 �lepte� and Ae inlude two-loop and leading three-loop orretionsthat are absent for sin2 �bbe� and Ab (see reent disussion in Ref. [13℄).In this paper, the part of the missing two-loop orretions to sin2 �bbe� with losedfermion loops is presented. We begin by explaining the tehniques employed for the1Owing to the non-zero bottom-quark mass, the Zbb vertex also has a salar part, besides the vetorand axial-vetor parts. We heked expliitly that the ontribution of this salar form fator to A0;bFB ismore than a fator 1000 smaller than the urrent experimental unertainty and thus truly negligible.3



alulation in the next setion. In Setion 3, numerial results for sin2 �bbe� are given beforethe summary in Setion 4.2 Outline of the alulation2.1 General approahWe work in the Standard Model and adopt the on-shell renormalisation sheme, whihrelates the renormalised masses and ouplings to physial observables. Details on therenormalisation sheme and expliit expressions for the relevant ounterterms an befound in Refs. [7, 14℄. For the loop integrations, we employ dimensional regularisation.The problem of 5 matries in two-loop vertex diagrams with fermion triangle sub-loops istreated in the same way as in Refs. [3,4,7℄, by evaluating the �nite non-antiommutativeontribution from 5 to the vertex diagrams in four dimensions. Most aspets onnetedwith the alulation of the e�etive weak-mixing angle for the Zb�b vertex are the same asfor the leptoni e�etive weak-mixing angle and are disussed in detail in Ref. [7℄.The ontributions for the two-loop renormalisation terms are idential to the ase ofsin2 �lepte� , with the exeption of the two-loop bottom-quark wave-funtion ounterterm,whih involves new self-energy diagrams with internal top-quark propagators; the �rstterms of this quantity are given in Ref. [15℄. For the two-loop Zbb vertex orretions, onthe other hand, a number of new three-point diagrams need to be omputed. In general,eletroweak two-loop orretions an be divided into two groups, whih are separately�nite and gauge invariant: fermioni orretions (with at least one losed fermion loop)and bosoni orretions (without any losed fermion loops). In this artile, we fous onthe fermioni diagrams as a �rst step.For the purpose of this alulation, all light-quark masses are negleted in the two-loop diagrams, inluding the bottom-quark mass. As a result, for many diagrams, knownresults from the sin2 �lepte� alulation an be used [3, 4, 7℄. The loop integrals for dia-grams with losed massless-fermion loops are given in analytial form, while large-massexpansions were employed for diagrams with top quarks in the loops.However, the two-loop orretions to sin2 �bbe� inlude a new group of integrals that werenot overed in previous alulations of sin2 �lepte� , stemming from diagrams with internalW -boson and top-quark propagators; see Fig. 1. The omputation of these diagrams willbe disussed in detail in the following subsetions. The two-loop diagrams are omputedwith several independent methods, so that ross heks an be performed. The �rstmethod, based on the observation that all new diagrams in Fig. 1 inlude internal top-quark propagators, uses asymptoti expansions for large top-quark mass. This methodwas already employed suessfully for the alulation of sin2 �lepte� [7℄. For referenes onthe subjet, we refer the reader to Ref. [16℄.Seondly, we develop a ode for the evaluation of Feynman diagrams with a semi-numerial method, based on the Bernstein-Tkahov (BT) method of Ref. [17℄. Thismethod had already been used previously for one-loop problems [18℄. In a reent series of4
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generially denotes all masses that are small ompared to mt, m < mt. In our ase,m = MW ;MZ . Then the four regions an be identi�ed as follows:1) k1 � mt and k2 � mt (expansions in small parameters: p and m)2) k1 � m and k2 � mt (expansions in small parameters: p, k1 and m)3) k1 � mt and k2 � m (expansions in small parameters: p, k2 and m)4) k1 � m and k2 � m (expansions in small parameters: p, k1, k2 and m)This method allows us to represent two-loop vertex diagrams by a sum of simpler in-tegrals, namely two-loop propagator and vauum integrals, plus one-loop integrals. How-ever, higher orders in the expansion lead to higher powers of propagator denominators inthese integrals. This is not a problem for one-loop or vauum integrals, as analyti rela-tions are well known; for relations and referenes, see, for example, Ref. [16℄. For two-looppropagator integrals, we employ the Laporta algorithm, as proposed in Ref. [22℄. Thisalgorithm allows us to automatially redue ompliated multi-loop integrals with non-trivial numerators to a smaller set of master integrals with unit numerators. In additionto the well-known integration by parts relations [23℄, Lorentz identities [24℄ an be usedfor faster performane. In our approah, the Laporta integral redution is aomplishedwith the help of the program IdSolver [4, 25℄.As already observed for the two-loop vertex diagrams in the leptoni ase [7℄, thisexpansion has a fast onvergene behaviour. After performing the expansion down to�fth order, O(x5), a preision of 10�5 in the �nal result for the two-loop part of sin2 �bbe�is obtained.2.3 Semi-numerial integration based on the BT algorithmAny Feynman diagram an be desribed by an integralZS dxQ(x)Yi V�ii (x); (8)where Q(x) and Vi(x) are polynomials of x, Q is the numerator of a Feynman integral,Vi is a denominator of the Feynman integral with the power �i, whih depends on ",x = (x1; :::; xn) represents the n-dimensional vetor spae of Feynman parameters, and Sis the integration region de�ned byZS dx = Z 10 dx1 Z 1�x10 dx2 : : :Z 1�Pn�1i=1 xi0 dxn: (9)Tkahov proved the existene of an algorithm [17℄, later alled BT algorithm, that antransform a Feynman integral of the type in Eq. (8) into a form with better arrangementof divergenes, whih is onsequently more suitable for numerial integration. However,until now, ompat-form solutions of this algorithm are only known at the one-loop order,whih will be desribed in the following.For one-loop ases, V(x) is a quadrati polynomial of x of the formV(x) = xTWx + 2RTx+ Z; (10)6



where W is a n� n matrix, R is a n-dimensional vetor and Z is a salar number. Thenone an show that the following relation is ful�lled:V� = 1� �1� (x+A)�2(�+ 1) �V�+1; (11)where � = (Z�RTW�1R) andA = RTW�1. By appliation of this one-loop BT relation,supplemented by integration-by-parts identities, the power of the polynomial V(x) of theFeynman integral is raised. For example, for the one-loop three-point funtion in threedimensions, one �ndsZ 10 dx1 Z 1�x10 dx2 Z 1�x1�x20 dx3Q(x)V�(x)= Z 10 dx1 Z 1�x10 dx2 Z 1�x1�x20 dx3 1�V�+1(x)�(Q(x) + 12(�+ 1) 3Xk=1 ��xk [(xk + Ak)Q(x)℄)� Z 10 dx1 Z 1�x10 dx2 1� 12(�+ 1)  1 + 3Xk=1 Ak!Q(x)V�+1(x)jx3=1�x1�x2+ Z 10 dx1 Z 1�x10 dx2 1� 12(�+ 1)A3Q(x)V�+1(x)jx3=0+ Z 10 dx1 Z 1�x10 dx3 1� 12(�+ 1)A2Q(x)V�+1(x)jx2=0+ Z 10 dx2 Z 1�x20 dx3 1� 12(�+ 1)A1Q(x)V�+1(x)jx1=0: (12)This step an be applied iteratively until the power of V is as high as required, optimally� = �n+�! �, where n is a positive integer. In this way, the original integral is expressedin terms of a sum of di�erent integrals, whih possess better integration properties.Although no general and ompat-form solution of the BT algorithm is known forproblems beyond the one-loop ase, it is only natural to apply a one-loop BT relation to asub-loop of a two-loop integral. In this way, the integral an be made smooth with respetto the Feynman parameters onneted with the sub-loop to whih the BT proedure isapplied. Due to the size of the expressions and their divergeny struture, it is usuallybetter to apply this relation to the sub-loop with the highest number of internal lines.Finally, the � poles in eah omponent xi of the vetor x are extrated by the relationZ 10 dxi x�n+�i f(x)= Z 10 dxi x�n+�i  f(x)� n�1Xk=0 xki f (k)(0)k! !+ n�1Xk=0 f (k)(0)k!(k + 1� n + �) ; (13)where i = 1; : : : ; n. 7



2.4 Semi-numerial integration based on dispersion relationsThis method makes use of the fat that the one-loop self-energy an be written, with thehelp of a dispersion relation, as an integral over an expression that has the analytial formof a propagatorB0(p2; m21; m22) = Z 1(m1+m2)2 ds�B0(s;m21; m22)s� p2 ;�B0(s;m21; m22) = (4��2)4�D�(D=2� 1)�(D � 2) �(D�3)=2(s;m21; m22)sD=2�1 ; (14)where �(x; y; z) = x2+ y2+ z2� 2(xy+ yz+ zx). If this one-loop self-energy is a sub-loopof a two-loop integral, the dispersion relation e�etively redues this integral to a one-loopintegral with the additional integration over s, whih is performed numerially [21℄.Integrals with sub-loop triangles an be redued to integrals with sub-loop self-energiesby introduing Feynman parameters [26℄. The integration over the Feynman parametersis also performed numerially. More details an be found in Ref. [7℄. If the two-loopintegrals ontains ultraviolet, infrared or threshold divergenes, they need to be subtratedbefore the numerial integration an be arried out. For our purposes, this is ahieved bysubtrating a term from the integrand that an be integrated analytially.The redution of integrals with irreduible numerators to a small set of master inte-grals is aomplished by using integration-by-parts and Lorentz-invariane identities. Foromplex diagrams with triangle sub-loops, the number of required relations an beomevery large, whih is a limitation of this method. Therefore we do not use it to omputethe omplete result for the two-loop orretions to sin2 �bbe� , but only for ross heks ofindividual integrals and diagrams.2.5 Comparison of methodsIn this setion, we ompare our three methods, based on the top-quark mass expansionalgorithm, the BT method, and the dispersion relations, where appliable. For the om-parison, we use the following dimensionless input parameters: MZ = 1, MW = 80=91,mt = 180=91, and the sale for dimensional regularisation � = eE . The large-mass ex-pansion is performed down to O(m�12t ). The expressions are normalised as they enterin sin2 �bbe� , with the ommon prefator (�=4�)2 fatored out. For the omparison, weseleted the set of diagrams orresponding to Fig. 1, where only W -boson propagators inFeynman gauge, but not Goldstone-boson exhange has been inluded. For light-fermionloops, results are shown for leptons in the sub-loops, summed over the three lepton fami-lies, and for diagram (G) we hose the ll� sub-loop, also summed over generations. Ourresults are presented in Table 1.Where available, the results from the BT method and the method based on dispersionrelations agree to all digit shown in the table. As mentioned above, no omplete resultsfor diagrams (E){(G) ould be obtained with the dispersion relation method.8



Diagram Method Result [(�=4�)2℄(A) semi-numerial +3:82775120=�2 +3:88128795=� �19:1983330mt expansion +3:82775120=�2 +3:88=� �19:19(B) semi-numerial +3:82775120=�2 �8:67823832=� +25:4468576mt expansion +3:82775120=�2 �8:68=� +25:45(C) semi-numerial 0=�2 +0:90521614=� �0:60580110mt expansion 0=�2 +0:905=� �0:61(D) semi-numerial 0=�2 +1:55085212=� �4:50488822mt expansion 0=�2 +1:55=� �4:50(E) semi-numerial �2:30183413=�2 +5:07108758=� +8:32594367mt expansion �2:30183413=�2 +5:07=� +8:33(F) semi-numerial �2:80183413=�2 +6:17261951=� �14:028mt expansion �2:80183413=�2 +6:17=� �14:03(G) semi-numerial �1:80183413=�2 +3:9695556(5)=� �13:539mt expansion �1:80183413=�2 +3:97=� �13:54Table 1: Comparison of the top-quark mass expansion with semi-numerial integrationsfor seleted diagrams of Fig. 1. For diagrams (A){(D), the semi-numerial results for theBT and dispersion relation methods agree to all given digits, while for diagrams (E){(G)results are available only for the BT method.There are lear advantages to the use of large-mt asymptoti expansions. No speialtreatment is required for the di�erent types of divergenes. Eah large-mass pattern isassoiated with one expansion sheme, whih is not sensitive to threshold divergenesprodued by the presene of small masses. In e�et, the resulting programs are generaland onise. As an be seen from Table 1, the obvious drawbak of this method is thelimited preision of the �nal results. However, it was observed that, with reasonableinvestment of omputer time, the preision an be pushed to as high as required by theproblem at hand.The semi-numerial programs usually produe results of better preision. However,the iterative appliation of the BT relation should be kept at a minimum, as otherwise thepreision an atually be lost. At least in our realization, the semi-numerial programsbased on the BT and dispersion relation methods are not as general as the expansiontehnique. Speial are has to be taken to deal with threshold-divergent ases, and thesize of intermediate expressions an atually be muh larger than what is observed dur-ing the use of the large-mass expansion. In the end, the time required for the analytisimpli�ations of these semi-numerial programs an be as large as the time required forperforming a high-order large-mass expansion.It should also be kept in mind that the algorithms for asymptoti expansions an beeasily generalised to higher orders in perturbation theory, and were already applied forthree-loop problems; see, for example, Refs. [27, 28℄. The appliation of the BT method9



Input parameter ValueMW (80:404� 0:0030) GeVMZ (91:1876� 0:0021) GeV�Z 2.4952 GeVmt (172:5� 2:3) GeVmb 4.85 GeV��(MZ) 0:05907� 0:00036�s(MZ) 0:119� 0:002G� 1:16637� 10�5 GeV�2Table 2: Experimental input parameters used in the numerial evaluation, from Refs. [31,32℄.in suh ases is more ompliated, and no physial results are known at this moment.3 ResultsThe omputational methods desribed in the previous setion were implemented in au-tomatised omputer odes, to be able to handle the large-size expressions at intermediatestages. The analyti algorithm for the BT redution was written in FORM [29℄ andMathematia. The ode for the large-top-quark-mass expansion was also implementedin FORM. When neessary, the redution of two-loop propagators with higher powers ofnumerators and denominators, whih inevitably appear for higher orders of the asymp-toti expansion, was performed with the program IdSolver [4, 25℄. For the problem athand, it had to reate and solve a set of several thousands of equations, whih it anahieve with very little omputing time. For the numerial integrations, we developed afast ode written in C with the help of the Cuba library [30℄.The results presented here were tested at di�erent levels. We heked the �nitenessand gauge invariane of the two-loop ontributions to sin2 �bbe� analytially. The numerialresults for the new diagrams were tested with two di�erent methods, as presented in theprevious setion. In addition, full evaluation was performed independently by two groupswithin our ollaboration.In the following, we show our numerial results for the input parameters listed inTable 2. For the sake of easy omparison, we use the same parameters as in previouspubliations on sin2 �lepte� [7℄, whih is justi�ed by the fat that the hanges of measuredvalues are insigni�ant for this presentation. It is important to note that the experimentalvalues for theW - and Z-boson masses orrespond to a Breit-Wigner parametrisation witha running width and have to be translated to the pole-mass sheme used in the loopalulations [14℄. In e�et, this translation results in a downward shift [33℄ of MZ andMW by about 34 and 28 MeV, respetively. The non-zero mass of the bottom quarkwas retained in the O(�) ontribution, but negleted in the two-loop part. The ompletefermioni two-loop ontribution to sin2 �bbe� is shown in Fig. 2, for various levels of the10
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Figure 2: Two-loop fermioni ontribution to sin2 �bbe� , with the W -boson mass evaluatedfrom the Standard Model and the other input parameters taken from Table 2.MH O(�) O(�2)ferm[GeV℄ [10�4℄ [10�4℄100 104.77 1.00200 100.15 0.71400 94.397 0.32600 90.666 0.191000 85.748 0.26
MH O(�) O(�2)ferm[GeV℄ [10�4℄ [10�4℄100 105.03 0.98200 100.74 0.67400 95.354 0.24600 91.847 0.101000 87.196 0.16Table 3: Contributions to sin2 �bbe� , with the W -boson mass evaluated from the StandardModel (left) or �xed (right).large-top-quark-mass expansion. For the plot, G� is used as an input parameter, andMW is alulated from it aording to Eq. (3). As an be seen from the �gure, theasymptoti expansion is onverging robustly over the entire range of relevant Higgs-bosonmass values. The relative error estimated for the expansion up to O(m�10t ) is 10�5 andthus more than suÆient for our purposes. The numerial values for seleted values of theHiggs-boson mass are shown in Table 3. The left table uses G� as an input via Eq. (3),while a �xed mass MW = 80:404 GeV is used for the right table. For small Higgs-bosonmass, the new orretion is relatively large, about 10�4. For larger values of MH , it anbe up to one order of magnitude smaller, about 10�5. Following earlier publiations ontwo-loop eletroweak orretions, we express our results in terms of �tting formulas. Theform fator ��(�2 ;ferm)bb , whih ontains the fermioni two-loop eletroweak orretions to11



sin2 �bbe� aording to Eq. (2), an be approximated as��(�2;ferm)bb =����(�)bb +��(�2;ferm)bb;rem ;��(�2;ferm)bb;rem = k0 + k1LH + k2L2H + k3L4H + k4(�2H � 1) + k5�t+ k6�2t + k7�tLH + k8�W + k9�W�t + k10�Z ; (15)where ��(�)bb is the one-loop result, andLH = ln MH100 GeV ; �H = MH100 GeV ; �t = � mt178 GeV�2 � 1;�Z = MZ91:1876 GeV � 1; �W = MW80:404 GeV � 1: (16)Fitting this formula to the exat result, we obtaink0 = �2:666� 10�3; k1 = �5:92� 10�5; k2 = �3:29� 10�6;k3 = 3:49� 10�6; k4 = 2:83� 10�6; k5 = �5:34� 10�3;k6 = �2:10� 10�3; k7 = �2:19� 10�4; k8 = �6:31� 10�2;k9 = �1:26� 10�1; k10 = 6:47� 10�2: (17)This parametrisation reprodues the exat alulation with maximal and average devia-tions of 1:4� 10�5 and 5� 10�6, respetively, as long as the input parameters stay withintheir 2� ranges of the experimental errors quoted in Table 2 and the Higgs-boson mass isin the range 10 GeV � MH � 1 TeV. If the top-quark mass and the W -boson mass varywithin 4� ranges, the formula is still aurate to 2:1� 10�5.We also present a simple parametrisation for the urrently best predition for sin2 �bbe� ,inluding all known orretions to ��bb and �r (for the alulation of MW from G� seeRefs. [2, 34℄). For ��bb, in addition to the one-loop and fermioni two-loop eletroweakorretions, we inlude QCD orretions of O(��s) [35℄ and O(��2s) [27, 36℄ to the one-loop ontribution, as well as universal orretions for large top-quark mass, of O(�2�sm4t )and O(�3m6t ) [28℄. Moreover, leading four-loop QCD orretion to the � parameter,whih arise from top- and bottom-quark loops, are taken into aount [37℄. We use theparametrisationsin2 �bbe� = s0 + d1LH + d2L2H + d3L4H + d4(�2H � 1) + d5��+ d6�t + d7�2t + d8�t(�H � 1) + d9��s + d10�Z ; (18)with �� = ��(MZ)0:05907 � 1; ��s = �s(MZ)0:117 � 1: (19)The best-�t numerial values for the oeÆients ares0 = 2:327580� 10�1; d1 = 4:749� 10�4; d2 = 2:03� 10�5;d3 = 3:94� 10�6; d4 = �1:84� 10�6; d5 = 2:08�10�2;d6 = �9:93� 10�4; d7 = 7:08� 10�5; d8 = �7:61� 10�6;d9 = 4:03� 10�4; d10 = 6:61� 10�1: (20)12



This parametrisation approximates the full result with maximal and average deviationsof 4:3� 10�6 and 1:3� 10�6, respetively, for 10 GeV �MH � 1 TeV and the other inputparameters in their 2� ranges.4 ConlusionsIn this paper, the alulation of the two-loop eletroweak fermioni orretions to thee�etive weak-mixing angle for the Zb�b vertex, sin2 �bbe� , was presented. Suh an auratetheoretial predition for sin2 �bbe� is neessary for the interpretation of the bottom-quarkasymmetry measurements at the Z-boson pole. Compared to the previously known or-retions to sin2 �bbe� , the new eletroweak two-loop result turns out to be sizable, of orderO(10�4) for a Higgs-boson mass near 100 GeV.The alulation was performed by using methods that had been used earlier for theomputation of the leptoni e�etive weak-mixing angle, as well as a newly developed odebased on the BT algorithm. The results of the di�erent methods were heked againsteah other.Although we did not perform a detailed analysis of the error from unknown high-orderorretions, in partiular the missing bosoni two-loop orretions and terms of orderO(�2�s), we expet those to be of similar order as for the leptoni e�etive weak-mixingangle. The main di�erene between the leptoni and bottom-quark e�etive weak-mixingangles are the vertex diagrams with internal W -boson and top-quark propagators. Whileleading to numerial di�erenes between sin2 �lepte� and sin2 �bbe� , these diagrams do notintrodue speial enhanement or suppression fators. Therefore, we expet the theoretialunertainty to our result for sin2 �bbe� to be about 5� 10�5, similar to Ref. [7℄.AknowledgementsThe work of M.A. and B.A.K. was supported in part by the German Researh Foundation(DFG) through Grant No. KN 365/3-1 and through the Collaborative Researh CentreNo. 676 Partiles, Strings and the Early Universe | the struture of Matter and SpaeTime. The work of M.C. was supported in part by the Sofja Kovalevskaja Award of theAlexander von Humboldt Foundation and by the ToK Program ALGOTOOLS (MTKD-CD-2004-014319). A.F. is grateful for warm hospitality at Argonne National Laboratoryand the Enrio Fermi Institute of the University of Chiago, where part of his work onthis projet was performed.Referenes[1℄ A. Sirlin, Phys. Rev. D 22 (1980) 971.[2℄ M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69 (2004) 053006,arXiv:hep-ph/0311148. 13
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