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tWe present the �rst 
al
ulation of the two-loop ele
troweak fermioni
 
orre
tionto the 
avour-dependent e�e
tive weak-mixing angle for bottom quarks, sin2 �bbe� .For the evaluation of the missing two-loop vertex diagrams, two methods are em-ployed, one based on a semi-numeri
al Bernstein-Tka
hov algorithm and the se
ondon asymptoti
 expansions in the large top-quark mass. A third method based ondispersion relations is used for 
he
king the basi
 loop integrals. We �nd that forsmall Higgs-boson mass values, MH / 100 GeV, the 
orre
tion is sizable, of orderO(10�4).Keywords: Ele
troweak radiative 
orre
tions, e�e
tive weak-mixing angle, Bernstein-Tka
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1 Introdu
tionExperiments at LEP, SLC and Tevatron have provided a large number of high-pre
isiondata, whi
h, being supplemented by detailed studies of higher-order 
orre
tions, allow toprobe the Standard Model at the loop level and subsequently to predi
t the mass of theHiggs boson. In this 
ontext, the leptoni
 e�e
tive weak-mixing angle, sin2 �lepte� , plays themost 
ru
ial role. It 
an be de�ned through the e�e
tive ve
tor and axial-ve
tor 
ouplings,glV and glA, of the Z boson to leptons (l) at the Z-boson pole,sin2 �lepte� = 14 �1 + Re glVglA� : (1)The e�e
tive weak-mixing angle 
an be related to the on-shell Weinberg angle, sin2 �w, assin2 �lepte� = sin2 �w �; (2)where sin2 �w = 1�M2W=M2Z and � = 1+��. At tree level, �� = 0 and sin2 �lepte� = sin2 �w.The form fa
tor �� in
orporates the higher-order loop 
orre
tions. Usually, the W -bosonmass, MW , is not treated as an input parameter but it is 
al
ulated from the Fermi
onstant, G�, whi
h is pre
isely known from the muon lifetime. The relation betweenMW and G� 
an be 
ast in the formM2W �1� M2WM2Z � = ��p2G� (1 + �r) ; (3)where the quantity �r [1℄ 
ontains all higher-order 
orre
tions. The presently most a
-
urate 
al
ulation of the W -boson mass in
ludes full two-loop and leading higher-order
orre
tions [2℄. On the other hand, the quantity � in Eq. (2) in
orporates all 
orre
tionsto the form fa
tors of the Zll vertex. Re
ently, the 
al
ulation of the two-loop ele
troweak
orre
tions has been 
ompleted [3{7℄. The un
ertainty on sin2 �lepte� due to unknown higherorders has been estimated to be 0.000047, whi
h is substantially smaller than the error ofthe 
urrent experimental value sin2 �lepte� = 0:23153� 0:00016 [8℄, but still larger than theexpe
ted pre
ision, 1:3� 10�5, of a future high-luminosity linear 
ollider running at theZ-boson pole [9℄.The experimental value for sin2 �lepte� is determined from six asymmetry measurements,A0;lFB, Al(P� ), Al(SLD), A0;bFB, A0;
FB, and QhadFB . Of those, the average leptoni
 and hadroni
measurements di�er by 3.2 standard deviations, whi
h is one of the largest dis
repan
ieswithin the Standard Model. The main impa
t stems from two measurements, the left-right asymmetry with a polarised ele
tron beam at SLD, A0LR, and the forward-ba
kwardasymmetry for bottom quarks at LEP, A0;bFB. On the experimental side, the only possiblesour
e of this dis
repan
y are un
ertainties in external input parameters, in parti
ularparameters des
ribing the produ
tion and de
ay of heavy-
avoured hadrons; see Se
tion5 of Ref. [8℄ for a dis
ussion. However, the interpretation of the asymmetry measurementsin terms of sin2 �lepte� requires also some theoreti
al input. The leptoni
 asymmetries depend2



on lepton 
ouplings only and 
an be translated straightforwardly into the leptoni
 e�e
tiveweak-mixing angle, with small 
orre
tions due to s- and t-
hannel photon ex
hange. By
ontrast, the hadroni
 observables, A0;
FB, A0;bFB and QhadFB , depend on the quark 
ouplings,gqV;A. These 
ouplings are asso
iated with a 
avour-dependent hadroni
 e�e
tive weak-mixing angle, sin2 �qqe� ,sin2 �qqe� = 14jQqj �1 + Re gqVgqA� ; q = d; u; s; 
; b: (4)The forward-ba
kward pole asymmetry of a quark q, A0;qFB, is related to the e�e
tive
ouplings, gfV and gfA, and the e�e
tive weak-mixing angle, sin2 �qqe� , by1A0;qFB = 34AeAq; (5)with Af = 2gfV gfA(gfV )2 + (gfA)2 = 1� 4jQf j sin2 �ffe�1� 4jQf j sin2 �ffe� + 8Q2f sin4 �ffe� : (6)At tree level, sin2 �qqe� and sin2 �lepte� are identi
al, but the relations between these quantitiesre
eive sizable radiative 
orre
tions that need to be in
luded in the analysis. Note that,due to the small ele
tri
 
harge of the bottom quark, Qb = �1=3, the parameter Ab is
lose to 1, and A0;bFB is only weakly sensitive to sin2 �bbe� . Therefore, it seems unlikely thatthe dis
repan
y between A0LR and A0;bFB 
ould be explained by radiative 
orre
tions. Nev-ertheless, the theoreti
al predi
tion for sin2 �bbe� enters in the Standard-Model �ts throughseveral observables, so that a pre
ise predi
tion of this quantity is important for a robustanalysis.For all fermions ex
ept bottom quarks, the known radiative 
orre
tions to sin2 �ffe� in-
lude at least two-loop fermioni
 ele
troweak 
ontributions and some leading higher-order
orre
tions; see Ref. [7℄ for details. However, for the Zbb vertex only one-loop 
orre
-tions, leading two-loop 
orre
tions for large values of the top-quark mass of O(�2m4t ),and two- and three-loop QCD 
orre
tions have been 
al
ulated [10℄ and in
luded in theZfitter program [11℄ (see also the new program Gfitter [12℄), whi
h is widely used forglobal Standard-Model �ts. The remaining two-loop ele
troweak 
orre
tions beyond theO(�2m4t ) 
ontributions are still unknown, although they are expe
ted to be larger thanthe O(�2m4t ) term, based on experien
e from sin2 �lepte� . As a result, the present treatmentof higher-order ele
troweak 
orre
tions leads to in
onsisten
ies, for example in A0;bFB, sin
ethe 
orre
tions to sin2 �lepte� and Ae in
lude two-loop and leading three-loop 
orre
tionsthat are absent for sin2 �bbe� and Ab (see re
ent dis
ussion in Ref. [13℄).In this paper, the part of the missing two-loop 
orre
tions to sin2 �bbe� with 
losedfermion loops is presented. We begin by explaining the te
hniques employed for the1Owing to the non-zero bottom-quark mass, the Zbb vertex also has a s
alar part, besides the ve
torand axial-ve
tor parts. We 
he
ked expli
itly that the 
ontribution of this s
alar form fa
tor to A0;bFB ismore than a fa
tor 1000 smaller than the 
urrent experimental un
ertainty and thus truly negligible.3




al
ulation in the next se
tion. In Se
tion 3, numeri
al results for sin2 �bbe� are given beforethe summary in Se
tion 4.2 Outline of the 
al
ulation2.1 General approa
hWe work in the Standard Model and adopt the on-shell renormalisation s
heme, whi
hrelates the renormalised masses and 
ouplings to physi
al observables. Details on therenormalisation s
heme and expli
it expressions for the relevant 
ounterterms 
an befound in Refs. [7, 14℄. For the loop integrations, we employ dimensional regularisation.The problem of 
5 matri
es in two-loop vertex diagrams with fermion triangle sub-loops istreated in the same way as in Refs. [3,4,7℄, by evaluating the �nite non-anti
ommutative
ontribution from 
5 to the vertex diagrams in four dimensions. Most aspe
ts 
onne
tedwith the 
al
ulation of the e�e
tive weak-mixing angle for the Zb�b vertex are the same asfor the leptoni
 e�e
tive weak-mixing angle and are dis
ussed in detail in Ref. [7℄.The 
ontributions for the two-loop renormalisation terms are identi
al to the 
ase ofsin2 �lepte� , with the ex
eption of the two-loop bottom-quark wave-fun
tion 
ounterterm,whi
h involves new self-energy diagrams with internal top-quark propagators; the �rstterms of this quantity are given in Ref. [15℄. For the two-loop Zbb vertex 
orre
tions, onthe other hand, a number of new three-point diagrams need to be 
omputed. In general,ele
troweak two-loop 
orre
tions 
an be divided into two groups, whi
h are separately�nite and gauge invariant: fermioni
 
orre
tions (with at least one 
losed fermion loop)and bosoni
 
orre
tions (without any 
losed fermion loops). In this arti
le, we fo
us onthe fermioni
 diagrams as a �rst step.For the purpose of this 
al
ulation, all light-quark masses are negle
ted in the two-loop diagrams, in
luding the bottom-quark mass. As a result, for many diagrams, knownresults from the sin2 �lepte� 
al
ulation 
an be used [3, 4, 7℄. The loop integrals for dia-grams with 
losed massless-fermion loops are given in analyti
al form, while large-massexpansions were employed for diagrams with top quarks in the loops.However, the two-loop 
orre
tions to sin2 �bbe� in
lude a new group of integrals that werenot 
overed in previous 
al
ulations of sin2 �lepte� , stemming from diagrams with internalW -boson and top-quark propagators; see Fig. 1. The 
omputation of these diagrams willbe dis
ussed in detail in the following subse
tions. The two-loop diagrams are 
omputedwith several independent methods, so that 
ross 
he
ks 
an be performed. The �rstmethod, based on the observation that all new diagrams in Fig. 1 in
lude internal top-quark propagators, uses asymptoti
 expansions for large top-quark mass. This methodwas already employed su

essfully for the 
al
ulation of sin2 �lepte� [7℄. For referen
es onthe subje
t, we refer the reader to Ref. [16℄.Se
ondly, we develop a 
ode for the evaluation of Feynman diagrams with a semi-numeri
al method, based on the Bernstein-Tka
hov (BT) method of Ref. [17℄. Thismethod had already been used previously for one-loop problems [18℄. In a re
ent series of4
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al
ulation of the fermioni
 two-loop
orre
tions to the Zbb vertex, but absent in the sin2 �lepte� 
ase. Thi
k solid lines denotetop-quark propagators, while thin lines represent light fermions.papers [19℄, it was extended to general two-loop verti
es, and some appli
ations to two-loop problems are already known: the leptoni
 e�e
tive weak-mixing angle was presentedin Ref. [5℄ and 
orre
tions to the H ! 

 de
ay width in Ref. [20℄.Finally, we use another semi-numeri
al method based on dispersion relations [21℄,whi
h was also used previously for sin2 �lepte� [7℄. This method allows us to evaluate allself-energy diagrams, the vertex diagrams in Figs. 1(A){(D), as well as the s
alar integralswith the topology of Figs. 1(E){(G). However, due to problems with the 
omplex tensorstru
ture, the 
omplete diagrams in Figs. 1(E){(G) 
annot be 
he
ked with this te
hnique.In the next subse
tions, we explain the appli
ations of these methods for our purposesand present a 
omparison between them.2.2 Asymptoti
 expansionsWe perform an expansion in a parameter x, wherex = M2Zm2t � 14 : (7)For any two-loop problem, there are four regions to 
onsider. Let k1 and k2 representthe internal momenta in the loops and p stand for any external momentum, while m5



generi
ally denotes all masses that are small 
ompared to mt, m < mt. In our 
ase,m = MW ;MZ . Then the four regions 
an be identi�ed as follows:1) k1 � mt and k2 � mt (expansions in small parameters: p and m)2) k1 � m and k2 � mt (expansions in small parameters: p, k1 and m)3) k1 � mt and k2 � m (expansions in small parameters: p, k2 and m)4) k1 � m and k2 � m (expansions in small parameters: p, k1, k2 and m)This method allows us to represent two-loop vertex diagrams by a sum of simpler in-tegrals, namely two-loop propagator and va
uum integrals, plus one-loop integrals. How-ever, higher orders in the expansion lead to higher powers of propagator denominators inthese integrals. This is not a problem for one-loop or va
uum integrals, as analyti
 rela-tions are well known; for relations and referen
es, see, for example, Ref. [16℄. For two-looppropagator integrals, we employ the Laporta algorithm, as proposed in Ref. [22℄. Thisalgorithm allows us to automati
ally redu
e 
ompli
ated multi-loop integrals with non-trivial numerators to a smaller set of master integrals with unit numerators. In additionto the well-known integration by parts relations [23℄, Lorentz identities [24℄ 
an be usedfor faster performan
e. In our approa
h, the Laporta integral redu
tion is a

omplishedwith the help of the program IdSolver [4, 25℄.As already observed for the two-loop vertex diagrams in the leptoni
 
ase [7℄, thisexpansion has a fast 
onvergen
e behaviour. After performing the expansion down to�fth order, O(x5), a pre
ision of 10�5 in the �nal result for the two-loop part of sin2 �bbe�is obtained.2.3 Semi-numeri
al integration based on the BT algorithmAny Feynman diagram 
an be des
ribed by an integralZS dxQ(x)Yi V�ii (x); (8)where Q(x) and Vi(x) are polynomials of x, Q is the numerator of a Feynman integral,Vi is a denominator of the Feynman integral with the power �i, whi
h depends on ",x = (x1; :::; xn) represents the n-dimensional ve
tor spa
e of Feynman parameters, and Sis the integration region de�ned byZS dx = Z 10 dx1 Z 1�x10 dx2 : : :Z 1�Pn�1i=1 xi0 dxn: (9)Tka
hov proved the existen
e of an algorithm [17℄, later 
alled BT algorithm, that 
antransform a Feynman integral of the type in Eq. (8) into a form with better arrangementof divergen
es, whi
h is 
onsequently more suitable for numeri
al integration. However,until now, 
ompa
t-form solutions of this algorithm are only known at the one-loop order,whi
h will be des
ribed in the following.For one-loop 
ases, V(x) is a quadrati
 polynomial of x of the formV(x) = xTWx + 2RTx+ Z; (10)6



where W is a n� n matrix, R is a n-dimensional ve
tor and Z is a s
alar number. Thenone 
an show that the following relation is ful�lled:V� = 1� �1� (x+A)�2(�+ 1) �V�+1; (11)where � = (Z�RTW�1R) andA = RTW�1. By appli
ation of this one-loop BT relation,supplemented by integration-by-parts identities, the power of the polynomial V(x) of theFeynman integral is raised. For example, for the one-loop three-point fun
tion in threedimensions, one �ndsZ 10 dx1 Z 1�x10 dx2 Z 1�x1�x20 dx3Q(x)V�(x)= Z 10 dx1 Z 1�x10 dx2 Z 1�x1�x20 dx3 1�V�+1(x)�(Q(x) + 12(�+ 1) 3Xk=1 ��xk [(xk + Ak)Q(x)℄)� Z 10 dx1 Z 1�x10 dx2 1� 12(�+ 1)  1 + 3Xk=1 Ak!Q(x)V�+1(x)jx3=1�x1�x2+ Z 10 dx1 Z 1�x10 dx2 1� 12(�+ 1)A3Q(x)V�+1(x)jx3=0+ Z 10 dx1 Z 1�x10 dx3 1� 12(�+ 1)A2Q(x)V�+1(x)jx2=0+ Z 10 dx2 Z 1�x20 dx3 1� 12(�+ 1)A1Q(x)V�+1(x)jx1=0: (12)This step 
an be applied iteratively until the power of V is as high as required, optimally� = �n+�! �, where n is a positive integer. In this way, the original integral is expressedin terms of a sum of di�erent integrals, whi
h possess better integration properties.Although no general and 
ompa
t-form solution of the BT algorithm is known forproblems beyond the one-loop 
ase, it is only natural to apply a one-loop BT relation to asub-loop of a two-loop integral. In this way, the integral 
an be made smooth with respe
tto the Feynman parameters 
onne
ted with the sub-loop to whi
h the BT pro
edure isapplied. Due to the size of the expressions and their divergen
y stru
ture, it is usuallybetter to apply this relation to the sub-loop with the highest number of internal lines.Finally, the � poles in ea
h 
omponent xi of the ve
tor x are extra
ted by the relationZ 10 dxi x�n+�i f(x)= Z 10 dxi x�n+�i  f(x)� n�1Xk=0 xki f (k)(0)k! !+ n�1Xk=0 f (k)(0)k!(k + 1� n + �) ; (13)where i = 1; : : : ; n. 7



2.4 Semi-numeri
al integration based on dispersion relationsThis method makes use of the fa
t that the one-loop self-energy 
an be written, with thehelp of a dispersion relation, as an integral over an expression that has the analyti
al formof a propagatorB0(p2; m21; m22) = Z 1(m1+m2)2 ds�B0(s;m21; m22)s� p2 ;�B0(s;m21; m22) = (4��2)4�D�(D=2� 1)�(D � 2) �(D�3)=2(s;m21; m22)sD=2�1 ; (14)where �(x; y; z) = x2+ y2+ z2� 2(xy+ yz+ zx). If this one-loop self-energy is a sub-loopof a two-loop integral, the dispersion relation e�e
tively redu
es this integral to a one-loopintegral with the additional integration over s, whi
h is performed numeri
ally [21℄.Integrals with sub-loop triangles 
an be redu
ed to integrals with sub-loop self-energiesby introdu
ing Feynman parameters [26℄. The integration over the Feynman parametersis also performed numeri
ally. More details 
an be found in Ref. [7℄. If the two-loopintegrals 
ontains ultraviolet, infrared or threshold divergen
es, they need to be subtra
tedbefore the numeri
al integration 
an be 
arried out. For our purposes, this is a
hieved bysubtra
ting a term from the integrand that 
an be integrated analyti
ally.The redu
tion of integrals with irredu
ible numerators to a small set of master inte-grals is a

omplished by using integration-by-parts and Lorentz-invarian
e identities. For
omplex diagrams with triangle sub-loops, the number of required relations 
an be
omevery large, whi
h is a limitation of this method. Therefore we do not use it to 
omputethe 
omplete result for the two-loop 
orre
tions to sin2 �bbe� , but only for 
ross 
he
ks ofindividual integrals and diagrams.2.5 Comparison of methodsIn this se
tion, we 
ompare our three methods, based on the top-quark mass expansionalgorithm, the BT method, and the dispersion relations, where appli
able. For the 
om-parison, we use the following dimensionless input parameters: MZ = 1, MW = 80=91,mt = 180=91, and the s
ale for dimensional regularisation � = e
E . The large-mass ex-pansion is performed down to O(m�12t ). The expressions are normalised as they enterin sin2 �bbe� , with the 
ommon prefa
tor (�=4�)2 fa
tored out. For the 
omparison, wesele
ted the set of diagrams 
orresponding to Fig. 1, where only W -boson propagators inFeynman gauge, but not Goldstone-boson ex
hange has been in
luded. For light-fermionloops, results are shown for leptons in the sub-loops, summed over the three lepton fami-lies, and for diagram (G) we 
hose the ll� sub-loop, also summed over generations. Ourresults are presented in Table 1.Where available, the results from the BT method and the method based on dispersionrelations agree to all digit shown in the table. As mentioned above, no 
omplete resultsfor diagrams (E){(G) 
ould be obtained with the dispersion relation method.8



Diagram Method Result [(�=4�)2℄(A) semi-numeri
al +3:82775120=�2 +3:88128795=� �19:1983330mt expansion +3:82775120=�2 +3:88=� �19:19(B) semi-numeri
al +3:82775120=�2 �8:67823832=� +25:4468576mt expansion +3:82775120=�2 �8:68=� +25:45(C) semi-numeri
al 0=�2 +0:90521614=� �0:60580110mt expansion 0=�2 +0:905=� �0:61(D) semi-numeri
al 0=�2 +1:55085212=� �4:50488822mt expansion 0=�2 +1:55=� �4:50(E) semi-numeri
al �2:30183413=�2 +5:07108758=� +8:32594367mt expansion �2:30183413=�2 +5:07=� +8:33(F) semi-numeri
al �2:80183413=�2 +6:17261951=� �14:028mt expansion �2:80183413=�2 +6:17=� �14:03(G) semi-numeri
al �1:80183413=�2 +3:9695556(5)=� �13:539mt expansion �1:80183413=�2 +3:97=� �13:54Table 1: Comparison of the top-quark mass expansion with semi-numeri
al integrationsfor sele
ted diagrams of Fig. 1. For diagrams (A){(D), the semi-numeri
al results for theBT and dispersion relation methods agree to all given digits, while for diagrams (E){(G)results are available only for the BT method.There are 
lear advantages to the use of large-mt asymptoti
 expansions. No spe
ialtreatment is required for the di�erent types of divergen
es. Ea
h large-mass pattern isasso
iated with one expansion s
heme, whi
h is not sensitive to threshold divergen
esprodu
ed by the presen
e of small masses. In e�e
t, the resulting programs are generaland 
on
ise. As 
an be seen from Table 1, the obvious drawba
k of this method is thelimited pre
ision of the �nal results. However, it was observed that, with reasonableinvestment of 
omputer time, the pre
ision 
an be pushed to as high as required by theproblem at hand.The semi-numeri
al programs usually produ
e results of better pre
ision. However,the iterative appli
ation of the BT relation should be kept at a minimum, as otherwise thepre
ision 
an a
tually be lost. At least in our realization, the semi-numeri
al programsbased on the BT and dispersion relation methods are not as general as the expansionte
hnique. Spe
ial 
are has to be taken to deal with threshold-divergent 
ases, and thesize of intermediate expressions 
an a
tually be mu
h larger than what is observed dur-ing the use of the large-mass expansion. In the end, the time required for the analyti
simpli�
ations of these semi-numeri
al programs 
an be as large as the time required forperforming a high-order large-mass expansion.It should also be kept in mind that the algorithms for asymptoti
 expansions 
an beeasily generalised to higher orders in perturbation theory, and were already applied forthree-loop problems; see, for example, Refs. [27, 28℄. The appli
ation of the BT method9



Input parameter ValueMW (80:404� 0:0030) GeVMZ (91:1876� 0:0021) GeV�Z 2.4952 GeVmt (172:5� 2:3) GeVmb 4.85 GeV��(MZ) 0:05907� 0:00036�s(MZ) 0:119� 0:002G� 1:16637� 10�5 GeV�2Table 2: Experimental input parameters used in the numeri
al evaluation, from Refs. [31,32℄.in su
h 
ases is more 
ompli
ated, and no physi
al results are known at this moment.3 ResultsThe 
omputational methods des
ribed in the previous se
tion were implemented in au-tomatised 
omputer 
odes, to be able to handle the large-size expressions at intermediatestages. The analyti
 algorithm for the BT redu
tion was written in FORM [29℄ andMathemati
a. The 
ode for the large-top-quark-mass expansion was also implementedin FORM. When ne
essary, the redu
tion of two-loop propagators with higher powers ofnumerators and denominators, whi
h inevitably appear for higher orders of the asymp-toti
 expansion, was performed with the program IdSolver [4, 25℄. For the problem athand, it had to 
reate and solve a set of several thousands of equations, whi
h it 
ana
hieve with very little 
omputing time. For the numeri
al integrations, we developed afast 
ode written in C with the help of the Cuba library [30℄.The results presented here were tested at di�erent levels. We 
he
ked the �nitenessand gauge invarian
e of the two-loop 
ontributions to sin2 �bbe� analyti
ally. The numeri
alresults for the new diagrams were tested with two di�erent methods, as presented in theprevious se
tion. In addition, full evaluation was performed independently by two groupswithin our 
ollaboration.In the following, we show our numeri
al results for the input parameters listed inTable 2. For the sake of easy 
omparison, we use the same parameters as in previouspubli
ations on sin2 �lepte� [7℄, whi
h is justi�ed by the fa
t that the 
hanges of measuredvalues are insigni�
ant for this presentation. It is important to note that the experimentalvalues for theW - and Z-boson masses 
orrespond to a Breit-Wigner parametrisation witha running width and have to be translated to the pole-mass s
heme used in the loop
al
ulations [14℄. In e�e
t, this translation results in a downward shift [33℄ of MZ andMW by about 34 and 28 MeV, respe
tively. The non-zero mass of the bottom quarkwas retained in the O(�) 
ontribution, but negle
ted in the two-loop part. The 
ompletefermioni
 two-loop 
ontribution to sin2 �bbe� is shown in Fig. 2, for various levels of the10
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Figure 2: Two-loop fermioni
 
ontribution to sin2 �bbe� , with the W -boson mass evaluatedfrom the Standard Model and the other input parameters taken from Table 2.MH O(�) O(�2)ferm[GeV℄ [10�4℄ [10�4℄100 104.77 1.00200 100.15 0.71400 94.397 0.32600 90.666 0.191000 85.748 0.26
MH O(�) O(�2)ferm[GeV℄ [10�4℄ [10�4℄100 105.03 0.98200 100.74 0.67400 95.354 0.24600 91.847 0.101000 87.196 0.16Table 3: Contributions to sin2 �bbe� , with the W -boson mass evaluated from the StandardModel (left) or �xed (right).large-top-quark-mass expansion. For the plot, G� is used as an input parameter, andMW is 
al
ulated from it a

ording to Eq. (3). As 
an be seen from the �gure, theasymptoti
 expansion is 
onverging robustly over the entire range of relevant Higgs-bosonmass values. The relative error estimated for the expansion up to O(m�10t ) is 10�5 andthus more than suÆ
ient for our purposes. The numeri
al values for sele
ted values of theHiggs-boson mass are shown in Table 3. The left table uses G� as an input via Eq. (3),while a �xed mass MW = 80:404 GeV is used for the right table. For small Higgs-bosonmass, the new 
orre
tion is relatively large, about 10�4. For larger values of MH , it 
anbe up to one order of magnitude smaller, about 10�5. Following earlier publi
ations ontwo-loop ele
troweak 
orre
tions, we express our results in terms of �tting formulas. Theform fa
tor ��(�2 ;ferm)bb , whi
h 
ontains the fermioni
 two-loop ele
troweak 
orre
tions to11



sin2 �bbe� a

ording to Eq. (2), 
an be approximated as��(�2;ferm)bb =����(�)bb +��(�2;ferm)bb;rem ;��(�2;ferm)bb;rem = k0 + k1LH + k2L2H + k3L4H + k4(�2H � 1) + k5�t+ k6�2t + k7�tLH + k8�W + k9�W�t + k10�Z ; (15)where ��(�)bb is the one-loop result, andLH = ln MH100 GeV ; �H = MH100 GeV ; �t = � mt178 GeV�2 � 1;�Z = MZ91:1876 GeV � 1; �W = MW80:404 GeV � 1: (16)Fitting this formula to the exa
t result, we obtaink0 = �2:666� 10�3; k1 = �5:92� 10�5; k2 = �3:29� 10�6;k3 = 3:49� 10�6; k4 = 2:83� 10�6; k5 = �5:34� 10�3;k6 = �2:10� 10�3; k7 = �2:19� 10�4; k8 = �6:31� 10�2;k9 = �1:26� 10�1; k10 = 6:47� 10�2: (17)This parametrisation reprodu
es the exa
t 
al
ulation with maximal and average devia-tions of 1:4� 10�5 and 5� 10�6, respe
tively, as long as the input parameters stay withintheir 2� ranges of the experimental errors quoted in Table 2 and the Higgs-boson mass isin the range 10 GeV � MH � 1 TeV. If the top-quark mass and the W -boson mass varywithin 4� ranges, the formula is still a

urate to 2:1� 10�5.We also present a simple parametrisation for the 
urrently best predi
tion for sin2 �bbe� ,in
luding all known 
orre
tions to ��bb and �r (for the 
al
ulation of MW from G� seeRefs. [2, 34℄). For ��bb, in addition to the one-loop and fermioni
 two-loop ele
troweak
orre
tions, we in
lude QCD 
orre
tions of O(��s) [35℄ and O(��2s) [27, 36℄ to the one-loop 
ontribution, as well as universal 
orre
tions for large top-quark mass, of O(�2�sm4t )and O(�3m6t ) [28℄. Moreover, leading four-loop QCD 
orre
tion to the � parameter,whi
h arise from top- and bottom-quark loops, are taken into a

ount [37℄. We use theparametrisationsin2 �bbe� = s0 + d1LH + d2L2H + d3L4H + d4(�2H � 1) + d5��+ d6�t + d7�2t + d8�t(�H � 1) + d9��s + d10�Z ; (18)with �� = ��(MZ)0:05907 � 1; ��s = �s(MZ)0:117 � 1: (19)The best-�t numeri
al values for the 
oeÆ
ients ares0 = 2:327580� 10�1; d1 = 4:749� 10�4; d2 = 2:03� 10�5;d3 = 3:94� 10�6; d4 = �1:84� 10�6; d5 = 2:08�10�2;d6 = �9:93� 10�4; d7 = 7:08� 10�5; d8 = �7:61� 10�6;d9 = 4:03� 10�4; d10 = 6:61� 10�1: (20)12



This parametrisation approximates the full result with maximal and average deviationsof 4:3� 10�6 and 1:3� 10�6, respe
tively, for 10 GeV �MH � 1 TeV and the other inputparameters in their 2� ranges.4 Con
lusionsIn this paper, the 
al
ulation of the two-loop ele
troweak fermioni
 
orre
tions to thee�e
tive weak-mixing angle for the Zb�b vertex, sin2 �bbe� , was presented. Su
h an a

uratetheoreti
al predi
tion for sin2 �bbe� is ne
essary for the interpretation of the bottom-quarkasymmetry measurements at the Z-boson pole. Compared to the previously known 
or-re
tions to sin2 �bbe� , the new ele
troweak two-loop result turns out to be sizable, of orderO(10�4) for a Higgs-boson mass near 100 GeV.The 
al
ulation was performed by using methods that had been used earlier for the
omputation of the leptoni
 e�e
tive weak-mixing angle, as well as a newly developed 
odebased on the BT algorithm. The results of the di�erent methods were 
he
ked againstea
h other.Although we did not perform a detailed analysis of the error from unknown high-order
orre
tions, in parti
ular the missing bosoni
 two-loop 
orre
tions and terms of orderO(�2�s), we expe
t those to be of similar order as for the leptoni
 e�e
tive weak-mixingangle. The main di�eren
e between the leptoni
 and bottom-quark e�e
tive weak-mixingangles are the vertex diagrams with internal W -boson and top-quark propagators. Whileleading to numeri
al di�eren
es between sin2 �lepte� and sin2 �bbe� , these diagrams do notintrodu
e spe
ial enhan
ement or suppression fa
tors. Therefore, we expe
t the theoreti
alun
ertainty to our result for sin2 �bbe� to be about 5� 10�5, similar to Ref. [7℄.A
knowledgementsThe work of M.A. and B.A.K. was supported in part by the German Resear
h Foundation(DFG) through Grant No. KN 365/3-1 and through the Collaborative Resear
h CentreNo. 676 Parti
les, Strings and the Early Universe | the stru
ture of Matter and Spa
eTime. The work of M.C. was supported in part by the Sofja Kovalevskaja Award of theAlexander von Humboldt Foundation and by the ToK Program ALGOTOOLS (MTKD-CD-2004-014319). A.F. is grateful for warm hospitality at Argonne National Laboratoryand the Enri
o Fermi Institute of the University of Chi
ago, where part of his work onthis proje
t was performed.Referen
es[1℄ A. Sirlin, Phys. Rev. D 22 (1980) 971.[2℄ M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. D 69 (2004) 053006,arXiv:hep-ph/0311148. 13

http://arXiv.org/abs/hep-ph/0311148


[3℄ M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93 (2004) 201805,arXiv:hep-ph/0407317;M. Awramik, M. Czakon, A. Freitas, G. Weiglein, in: Pro
eedings of the Interna-tional Conferen
e on Linear Colliders (LCWS 04), Paris, Fran
e, 19{24 April 2004,arXiv:hep-ph/0409142;A. Freitas, M. Awramik, M. Czakon, in: Pro
eedings of the 2005 International Lin-ear Collider Workshop (LCWS 05), Stanford, California, 18{22 Mar
h 2005, p. 0610,arXiv:hep-ph/0507159.[4℄ M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Nu
l. Phys. B (Pro
. Suppl.) 135(2004) 119, arXiv:hep-ph/0408207.[5℄ W. Hollik, U. Meier, S. U

irati, Nu
l. Phys. B 731 (2005) 213,arXiv:hep-ph/0507158;W. Hollik, U. Meier, S. U

irati, Phys. Lett. B 632 (2006) 680, arXiv:hep-ph/0509302;W. Hollik, U. Meier, S. U

irati, Nu
l. Phys. B 765 (2007) 154,arXiv:hep-ph/0610312.[6℄ M. Awramik, M. Czakon, A. Freitas, Phys. Lett. B 642 (2006) 563,arXiv:hep-ph/0605339;M. Czakon, M. Awramik, A. Freitas, Nu
l. Phys. B (Pro
. Suppl.) 157 (2006) 58,arXiv:hep-ph/0602029.[7℄ M. Awramik, M. Czakon, A. Freitas, JHEP 0611 (2006) 048, arXiv:hep-ph/0608099.[8℄ ALEPH, DELPHI, L3 and OPAL Collaborations, S. S
hael, et al., Phys. Rept. 427(2006) 257, arXiv:hep-ex/0509008.[9℄ R. Hawkings, K. M�onig, Eur. Phys. J. dire
t C 1 (1999) 8, arXiv:hep-ex/9910022.[10℄ R. Barbieri, M. Be

aria, P. Ciafaloni, G. Cur
i, A. Vi
ere, Phys. Lett. B 288 (1992)95, arXiv:hep-ph/9205238;R. Barbieri, M. Be

aria, P. Ciafaloni, G. Cur
i, A. Vi
ere, Phys. Lett. B 312 (1993)511, Erratum;R. Barbieri, M. Be

aria, P. Ciafaloni, G. Cur
i, A. Vi
ere, Nu
l. Phys. B 409 (1993)105;J. Fleis
her, O.V. Tarasov, F. Jegerlehner, Phys. Lett. B 319 (1993) 249;J. Fleis
her, O.V. Tarasov, F. Jegerlehner, Phys. Rev. D 51 (1995) 3820;A. Denner, W. Hollik, B. Lampe, Z. Phys. C 60 (1993) 193, arXiv:hep-ph/9305273;J. Fleis
her, F. Jegerlehner, M. Tentyukov, O.L. Veretin, Phys. Lett. B 459 (1999)625, arXiv:hep-ph/9904256.[11℄ D. Bardin, et al., Report No. CERN{TH.6443/92, arXiv:hep-ph/9412201;D. Bardin, M. Bilenky, P. Christova, M. Ja
k, L. Kalinovskaya, A. Ol
hevski, S. Rie-mann, T. Riemann, Comput. Phys. Commun. 133 (2001) 229, arXiv:hep-ph/9908433;A.B. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M.W. Gr�unewald, K.14

http://arXiv.org/abs/hep-ph/0407317
http://arXiv.org/abs/hep-ph/0409142
http://arXiv.org/abs/hep-ph/0507159
http://arXiv.org/abs/hep-ph/0408207
http://arXiv.org/abs/hep-ph/0507158
http://arXiv.org/abs/hep-ph/0509302
http://arXiv.org/abs/hep-ph/0610312
http://arXiv.org/abs/hep-ph/0605339
http://arXiv.org/abs/hep-ph/0602029
http://arXiv.org/abs/hep-ph/0608099
http://arXiv.org/abs/hep-ex/0509008
http://arXiv.org/abs/hep-ex/9910022
http://arXiv.org/abs/hep-ph/9205238
http://arXiv.org/abs/hep-ph/9305273
http://arXiv.org/abs/hep-ph/9904256
http://arXiv.org/abs/hep-ph/9412201
http://arXiv.org/abs/hep-ph/9908433


M�onig, S. Riemann, T. Riemann, Comput. Phys. Commun. 174 (2006) 728,arXiv:hep-ph/0507146.[12℄ H. Fl�a
her, M. Goebel, J. Haller, A. H�o
ker, K. M�onig and J. Stelzer, arXiv:0811.0009[hep-ph℄.[13℄ A. Freitas, K. M�onig, Eur. Phys. J. C 40 (2005) 493, arXiv:hep-ph/0411304.[14℄ A. Freitas, W. Hollik, W. Walter, G. Weiglein, Nu
l. Phys. B 632 (2002) 189,arXiv:hep-ph/0202131;A. Freitas, W. Hollik, W. Walter, G. Weiglein, Nu
l. Phys. B 666 (2003) 305, Erra-tum.[15℄ M. Butens
h�on, F. Fugel, B.A. Kniehl, Phys. Rev. Lett. 98 (2007) 071602,arXiv:hep-ph/0612184;M. Butens
h�on, F. Fugel, B.A. Kniehl, Nu
l. Phys. B 772 (2007) 25,arXiv:hep-ph/0702215.[16℄ V.A. Smirnov, Evaluating Feynman Integrals, Springer Tra
ts Mod. Phys. 211 (2004)1;V.A. Smirnov, Applied asymptoti
 expansions in momenta and masses, Springer,Berlin, Germany, 2002.[17℄ F.V. Tka
hov, Nu
l. Instrum. Meth. A 389 (1997) 309, arXiv:hep-ph/9609429.[18℄ D.Yu. Bardin, L.V. Kalinovskaya, F.V. Tka
hov, in: Pro
eedings of the 15th Inter-national Workshop on High-Energy Physi
s and Quantum Field Theory (QFTHEP2000), Tver, Russia, 14{20 September 2000, arXiv:hep-ph/0012209;G. Passarino, Nu
l. Phys. B 619 (2001) 257, arXiv:hep-ph/0108252;A. Ferroglia, M. Passera, G. Passarino, S. U

irati, Nu
l. Phys. B 650 (2003) 162,arXiv:hep-ph/0209219.[19℄ A. Ferroglia, M. Passera, G. Passarino, S. U

irati, Nu
l. Phys. B 680 (2004) 199,arXiv:hep-ph/0311186;S. A
tis, A. Ferroglia, G. Passarino, M. Passera, S. U

irati, Nu
l. Phys. B 703 (2004)3, arXiv:hep-ph/0402132;G. Passarino, S. U

irati, Nu
l. Phys. B 747 (2006) 113, arXiv:hep-ph/0603121.[20℄ G. Passarino, C. Sturm, S. U

irati, Phys. Lett. B 655 (2007) 298, arXiv:0707.1401[hep-ph℄.[21℄ S. Bauberger, F.A. Berends, M. B�ohm, M. Buza, Nu
l. Phys. B 434 (1995) 383,arXiv:hep-ph/9409388;B.A. Kniehl, A
ta Phys. Polon. B 27 (1996) 3631, arXiv:hep-ph/9607255.[22℄ S. Laporta, Int. J. Mod. Phys. A 15 (2000) 5087, arXiv:hep-ph/0102033.15

http://arXiv.org/abs/hep-ph/0507146
http://arXiv.org/abs/0811.0009
http://arXiv.org/abs/hep-ph/0411304
http://arXiv.org/abs/hep-ph/0202131
http://arXiv.org/abs/hep-ph/0612184
http://arXiv.org/abs/hep-ph/0702215
http://arXiv.org/abs/hep-ph/9609429
http://arXiv.org/abs/hep-ph/0012209
http://arXiv.org/abs/hep-ph/0108252
http://arXiv.org/abs/hep-ph/0209219
http://arXiv.org/abs/hep-ph/0311186
http://arXiv.org/abs/hep-ph/0402132
http://arXiv.org/abs/hep-ph/0603121
http://arXiv.org/abs/0707.1401
http://arXiv.org/abs/hep-ph/9409388
http://arXiv.org/abs/hep-ph/9607255
http://arXiv.org/abs/hep-ph/0102033


[23℄ K.G. Chetyrkin, F.V. Tka
hov, Nu
l. Phys. B 192 (1981) 159.[24℄ T. Gehrmann, E. Remiddi, Nu
l. Phys. B 580 (2000) 485, arXiv:hep-ph/9912329.[25℄ M. Czakon, DiaGen/IdSolver (unpublished).[26℄ A. Ghin
ulov, J.J. van der Bij, Nu
l. Phys. B 436 (1995) 30, arXiv:hep-ph/9405418.[27℄ K.G. Chetyrkin, J.H. K�uhn, M. Steinhauser, Phys. Rev. Lett. 75 (1995) 3394,arXiv:hep-ph/9504413.[28℄ M. Faisst, J.H. K�uhn, T. Seidensti
ker, O. Veretin, Nu
l. Phys. B 665 (2003) 649,arXiv:hep-ph/0302275.[29℄ J.A.M. Vermaseren, Report No. NIKHEF-00-032, arXiv:math-ph/0010025.[30℄ T. Hahn, Comput. Phys. Commun. 168 (2005) 78, arXiv:hep-ph/0404043.[31℄ LEP Ele
troweak Working Group, D. Abbaneo, et al.,http://lepewwg.web.
ern.
h/LEPEWWG/.[32℄ Parti
le Data Group, S. Eidelman, et al., Phys. Lett. B 592 (2004) 1; also 2005 partialupdate for edition 2006, available on http://pdg.lbl.gov.[33℄ D.Yu. Bardin, A. Leike, T. Riemann, M. Sa
hwitz, Phys. Lett. B 206 (1988) 546.[34℄ A. Freitas, W. Hollik, W. Walter, G. Weiglein, Phys. Lett. B 495 (2000) 338,arXiv:hep-ph/0007091;A. Freitas, W. Hollik, W. Walter, G. Weiglein, Phys. Lett. B 570 (2003) 260, Erra-tum;M. Awramik, M. Czakon, Phys. Rev. Lett. 89 (2002) 241801, arXiv:hep-ph/0208113;M. Awramik, M. Czakon, A. Onish
henko, O. Veretin, Phys. Rev. D 68 (2003)053004, arXiv:hep-ph/0209084;A. Onish
henko, O. Veretin, Phys. Lett. B 551 (2003) 111, arXiv:hep-ph/0209010;M. Awramik, M. Czakon, Phys. Lett. B 568 (2003) 48, arXiv:hep-ph/0305248.[35℄ A. Djouadi, C. Verzegnassi, Phys. Lett. B 195 (1987) 265;A. Djouadi, Nuovo Cim. A 100 (1988) 357;B.A. Kniehl, Nu
l. Phys. B 347 (1990) 86;F. Halzen, B.A. Kniehl, Nu
l. Phys. B 353 (1991) 567;B.A. Kniehl, A. Sirlin, Nu
l. Phys. B 371 (1992) 141;B.A. Kniehl, A. Sirlin, Phys. Rev. D 47 (1993) 883;A. Djouadi, P. Gambino, Phys. Rev. D 49 (1994) 3499, arXiv:hep-ph/9309298;A. Djouadi, P. Gambino, Phys. Rev. D 53 (1996) 4111, Erratum.
16

http://arXiv.org/abs/hep-ph/9912329
http://arXiv.org/abs/hep-ph/9405418
http://arXiv.org/abs/hep-ph/9504413
http://arXiv.org/abs/hep-ph/0302275
http://arXiv.org/abs/math-ph/0010025
http://arXiv.org/abs/hep-ph/0404043
http://arXiv.org/abs/hep-ph/0007091
http://arXiv.org/abs/hep-ph/0208113
http://arXiv.org/abs/hep-ph/0209084
http://arXiv.org/abs/hep-ph/0209010
http://arXiv.org/abs/hep-ph/0305248
http://arXiv.org/abs/hep-ph/9309298


[36℄ L. Avdeev, J. Fleis
her, S. Mikhailov, O. Tarasov, Phys. Lett. B 336 (1994) 560,arXiv:hep-ph/9406363;L. Avdeev, J. Fleis
her, S. Mikhailov, O. Tarasov, Phys. Lett. B 349 (1994) 597,Erratum;K.G. Chetyrkin, J.H. K�uhn, M. Steinhauser, Phys. Lett. B 351 (1995) 331,arXiv:hep-ph/9502291;Y. S
hr�oder, M. Steinhauser, Phys. Lett. B 622 (2005) 124, arXiv:hep-ph/0504055.[37℄ K.G. Chetyrkin, M. Faisst, J.H. K�uhn, P. Maierhofer, C. Sturm, Phys. Rev. Lett. 97(2006) 102003, arXiv:hep-ph/0605201;R. Boughezal, M. Czakon, Nu
l. Phys. B 755 (2006) 221, arXiv:hep-ph/0606232.

17

http://arXiv.org/abs/hep-ph/9406363
http://arXiv.org/abs/hep-ph/9502291
http://arXiv.org/abs/hep-ph/0504055
http://arXiv.org/abs/hep-ph/0605201
http://arXiv.org/abs/hep-ph/0606232

	Introduction
	Outline of the calculation
	General approach
	Asymptotic expansions
	Semi-numerical integration based on the BT algorithm
	Semi-numerical integration based on dispersion relations
	Comparison of methods

	Results
	Conclusions

