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Axion{Dilaton Cosmologyand Dark EnergyRiardo Catena and Jan M�ollerDeutshes Elektronen-Synhrotron DESY, Theory Group,Notkestrasse 85, D-22603 Hamburg, GermanyAbstratWe disuss a lass of at FRW osmologial models based on D=4 axion-dilatongravity universally oupled to osmologial bakground uids. In partiular, we in-vestigate the possibility of reurrent aeleration, whih was reently shown to begenerially realized in a wide lass of axion-dilaton models, but in absene of osmo-logial bakground uids. We observe that, one we impose the existene of radiation{ and matter { dominated earlier stages of osmi evolution, the axion-dilaton dynamisis altered signi�antly with respet to the ase of pure axion-dilaton gravity. Duringthe matter dominated epoh the salar �elds remain either frozen, due to the largeexpansion rate, or enter a osmologial saling regime. In both ases, osillations ofthe e�etive equation of state around the aeleration boundary value are impossible.Models whih enter an osillatory stage in the low redshift regime, on the other hand,are disfavored by observations. We also omment on the viability of the axion-dilatonsystem as a andidate for dynamial dark energy. In a ertain sublass of models,an intermediate saling regime is sueeded by eternal aeleration. We also brieydisuss the issue of dependene on initial onditions.
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1 IntrodutionAlthough no fundamental salar partiles have been disovered yet, many attempts toextend the Standard Model of partile physis naturally introdue new salar and/orpseudo{salar degrees of freedom, e.g. salar superpartners of Standard Model �eldsin a supersymmetri framework, moduli �elds related to geometri properties of om-pati�ed extra dimensions, et. Whereas on the one hand this leads to hallengingproblems [1℄, on the other hand these new �elds ould provide interesting andidatesof dynamial dark energy [2℄.Of partiular interest in osmology are low-energy e�etive theories where the gravi-tational setor inludes, apart from the metri tensor, salar (or pseudo-salar) degreesof freedom that ould provide a gravitational interpretation of early (inationary), orreent (quintessential), periods of aeleration.In the extensively studied ase of Salar{Tensor (ST) theories of gravity [3℄, theexistene of one or more salar partners of the graviton leads to modi�ations of theHubble expansion and of Newton's law [4, 5℄. While ultra-light salar �elds � are ingeneral potentially dangerous soures of new long range fores, interestingly enough,ST theories are proteted against any violation of the weak equivalene priniple by auniversal metri oupling between matter and the gravity setor [5℄. Beause of thisproperty, ST theories provide a natural framework to address the issue of dynamialdark energy [6℄. On the other hand, ination an also be suessfully ahieved in a STpiture [7℄.The ST senario an be generalized to inlude also pseudo-salar �elds. This is thease, for instane, of axion{dilaton (AD) gravity, whih an be viewed as a prototypeof theories where a \dilaton-like" salar and an \axion-like" pseudo-salar appear asspin zero partners of the graviton. Suh a piture naturally emerges from the Neveu-Shwarz bosoni setor of the low-energy string e�etive ation [8℄. Blak hole solutionsof this theory have been found in [9℄, while domain wall solutions were given in [10℄. Amore general lass of stationary supersymmetri solutions was disussed in [11℄. Cos-mologial impliations of suh a theory { up to �rst order in perturbation theory { wereinvestigated in [12℄, where for the �rst time the spetrum of osmologial perturbationswas omputed.It has been pointed out reently that AD gravity theories with an exponential dilatonpotential admit osmologial solutions whih give rise to the interesting phenomenonof reurrent aeleration [14℄. By a detailed phase-spae analysis of the AD dynamialsystem, the authors veri�ed the generi ourrene of reurrent aeleration in theregime of a spiral fous assoiated to a runaway behavior of both �elds. In this piture,the present aeleration does not appear as a peuliar stage of the osmi history, being�Exhibiting a mass of the order of the present value of the Hubble parameter1



likely a transient or even reurring phenomenon. In partiular, they onlude that thefuture evolution of the universe is by no means determined to be aelerating forever,in obvious ontrast to standard �CDM osmology.However, in order to relate these results to the observed aelerated expansion of theuniverse, it is ruial to take into aount the non-gravitational setor of the theory.While Sonner and Townsend [14℄ onsidered models omprising only the graviton, theaxion and the dilaton �elds, the purpose of the present paper is to investigate how theontribution of osmologial perfet uids { (dark) matter and radiation { modi�esthe evolution of the AD system. Avoiding any attempt of onstruting a fully realistimodel, we assume that the gravity setor �elds ouple in a universal metri way to thebakground uid. This hoie is inspired by the aforementioned ST theories.The main result of our analysis is that reurrent aeleration is no longer a generifeature of the (modi�ed) AD dynamial system, one we impose the pre-existene of aradiation (RDE) and a matter dominated (MDE) era and take into aount the �niteontribution of (dark) matter to the present energy density.Our paper is organized as follows. In setion 2 we present the osmologial evo-lution equations of AD gravity oupled to matter in a universal metri way. Due tothis oupling any matter �eld experienes gravitational interations through the samemetri ~g��, whih is onformally related to the Einstein frame metri by a dilaton-dependent funtion. As it will be made expliit in setion 2, the dilatoni part of theinteration is parametrized by a funtion Q. The simplest ase of minimal ouplingorresponds to Q = 0 and will be disussed separately in setions 3 and 4; the moregeneral ase of onstant Q > 0 is treated in setion 5. In setion 6, whih is devoted toour onlusions, we also briey omment on the viability of AD models as andidatesof dynamial dark energy. In the appendies we summarize some basi fats onerningdynamial systems terminology and give details of the alulations.
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2 Axion{dilaton osmologyThe lass of models we are interested in is desribed by the following ationS = SAD + Suid ; (1)where SAD = Z d4xp�g(12R� 12������� 12e�������� � e���)and Suid = Suid[A2(�)g�� ;	℄ :In Eq.(1) R is the Rii salar onstruted from the Einstein frame metri g��, A(�)is an arbitrary funtion of the dilaton �eld (to be spei�ed below) and ; as well as� > 0; are real onstant parameters. The bakground uid setor is desribed by theation Suid. Hereafter \bakground uid setor" refers to the setor of the theory thatinludes all the �elds 	 of the Standard Model (or of one of its possible extensions)whih we assume to be oupled to the gravitational setor (SAD) by means of the samemetri ~g�� = A2(�) g�� .Stritly speaking, by this hoie we neglet any non-universal ouplings of the ADsystem , in partiular interations with the �eld strength of some gauge �eld, i.e.� �F��F �� in the ase of the dilaton, and � � F�� ~F �� in the ase of the axion. Infat, suh ouplings are generially present in any theory whih ouples AD gravity toa matter and gauge setor (see for example [15, 16℄). However, a proper treatment ofthese interations and their onsequenes in a osmologial framework is beyond thesope of this paper. On the other hand, our analysis applies { more generally { to anyomplex salar �eld with modular invariant y kineti term.The introdution of an exponential potential for the dilaton expliitly breaks theSL(2;R) invariane of the usual AD gravity. Suh a potential with 2� =  emerges,for instane, from a trunation of the Freedman{Shwarz D = 4 supergravity theory[13℄ (see also setion 4:3 of [10℄ for an alternative motivation).In a at FRW Universe, ds2 = �dt2 + a2(t)d~x2 ; (2)the osmologial equations obtained from the ation (1) are
yInvariant under SL(2;R)�transformations � ! a�+b�+d with ad� b = 1 where � = 2� + ie� 2�.3



�� = �3H _� + �e��� � 12e�� _�2 +Q(�)�uid (1� 3wuid) ; (3)�� = �(3H �  _�) _� ; (4)_H = �12 h(1 + wuid)�uid + _�2 + e�� _�2i ; (5)H2 = 13 ��uid + 12( _�2 + e�� _�2) + e���� ; (6)where Q(�) is given by Q(�) � �d lnAd� : (7)The bakground uid energy density �uid obeys the ontinuity equation_�uid = h�3(1 + wuid)H � (1� 3wuid)Q(�) _�i �uid; (8)with equation of state parameter wuid 2 [0; 13 ℄; the limit values orresponding to purematter and pure radiation respetively.Introduing the following dynamial variables,x21 � _�26H2 ; x22 � e�� _�26H2 ; y2 � V (�)3H2 ; z2 � �rad3H2 ; (9)the system (3){(6) an be rewritten in autonomous form, straightforwardly generalizingthe set{up of [17℄,dx1dN = 32 x1(x21 + x22 � y2 + 13z2 � 1) +r32 ��x22 + �y2 +Q(1� x21 � x22 � y2 � z2)� ;(10)dx2dN = 32 x2(x21 + x22 � y2 + 13z2 � 1) +r32 x1x2; (11)dydN = 32 y (x21 + x22 � y2 + 13z2 + 1)�r32� x1y; (12)dzdN = 32 z (x21 + x22 � y2 + 13(z2 � 1)): (13)where N = ln a, and Q is assumed to be a positive real onstant, orresponding toA(�) � exp(�Q�).The given system of evolution equations de�nes a three-parameter family of dynam-ial models with four-dimensional ompat phase-spae,x21 + x22 + y2 + z2 � 1;4



and an, furthermore, be restrited to (x2; y; z) � 0, sine the system is invariant underhange of sign in any of these variables.Using the new set of variables, the e�etive equation of state parameter an beonveniently expressed aswe� � pAD + puid�AD + �uid = x21 + x22 � y2 + 13z2 :The equation we�(x1; x2; y; z) = �1=3 de�nes the boundary of the domain of aeleratedexpansion in phase-spae.The purpose of the sueeding setion is to reprodue the �ndings of [14℄ within thehosen framework, orresponding to the theory of Eq.(1) trunated by Suid = 0.3 Axion-dilaton dynamis (Suid = 0)Provided a at FRW universe and absene of a osmologial perfet uid, the phase-spae of the AD system is two-dimensional. We hoose it to be spanned by fx1; x2g:The Friedmann onstraint equation now readsx21 + x22 + y2 = 1;and we an eliminate y from the system:dx1dN = 3 x1(x21 + x22 � 1) +r32[�x22 + �(1� x21 � x22)℄ ; (14)dx2dN = 3 x2(x21 + x22 � 1) +r32 x1x2 : (15)The equation of state is then given bywe� = wAD = 2(x21 + x22)� 1:Eah model is haraterized by a number of stationary solutions, or ritial points,of the orresponding autonomous system. (We refer to the appendix onerning abrief summary of relevant terminology.) We �nd the following set of stationary pointsXs = (x1;s; x2;s), given as funtions of the parameters:B1; B2 : (�1; 0);G : � �p6 ; 0� ;J :  p6 + �;s�( + �)� 6( + �)2 ! :5



�xed point existene stability wB1 8(; �) stable:  < 0 ^ � > p6 1B2 8(; �) saddle point:  > 0 1G � < p6 stable: �(�+ ) < 6 �1 + �23J  � 0 ^ �(�+ ) � 6 stable:  > 0 ^ �(�+ ) > 6 ���+Table 1: Properties of the �xed points of the redued dynamial system.Properties of the �xed points are displayed in table 1. The existene ondition anbe expressed as follows, x21 + x22 � 1;with x1; x2 real. The stability of a ritial point is determined by the eigenvalues ofthe Jaobi matrix M := ��Fi�xj�i;j � f1;2gof the vetor funtionF (x1; x2) = (3 x1(x21 + x22 � 1) +r32(�x22 + �(1� x21 � x22);3 x2(x21 + x22 � 1) +r32 x1x2); (16)evaluated atXs. (See the appendix for more details.) We �nd the following eigenvalues:B1 : r32; 6�p6�;B2 : �r32; 6 +p6�;G : 12(�2 � 6); 12(�(�+ )� 6);J : 32( + �)  � �r2 + 8( + �)� 43�( + �)2! :The �xed point J is a spiral fous if3 (9 + 8�)� 4 �( + �)2 < 0: (17)6



Figure 1: Model with parameters (�; ) = �85 ; 1�.Shaded (yellow) area orresponds toaelerated expansion. Trajetories are plotted in the plane (x1; x2).3.1 Reurrent aelerationWe now disuss under whih onditions reurrent periods of aeleration an be realizedwithin the family of dynamial models given by Eqs. (14) { (15).Let us �rst observe that, aording to table 1, aelerated expansion is possible atthe �xed point G { if � < p2 { or at the �xed point J { if  > 2�. Then, restritingourselves to the ase  > 0, we an distinguish three possibilities to realize a modelwhih generially allows for periods of aelerated expansion. We give examples ofphase portraits of the di�erent ases below.As we will see, in agreement with [14℄, reurrent periods of aeleration are eÆientlyprodued by models orresponding to a subset of parameter spae where the �xed pointJ is stable and a spiral fous (�gure 6).3.1.1 G stableIf � < p2; the attrator G is situated within the domain of aelerated expansion. Inthis ase, one aeleration has set in, it will last forever . If p2 < � < p6; it an bea transient phenomenon along a subset of trajetories (�gure 1).3.1.2 J stable, G saddle pointIf J is the attrator, the domain of aeleration in parameter spae is bounded by = 2�. The phase-portrait of the system depends ruially on the progress of the spe-ial trajetory onneting the saddle point G with the attrator. We will hereafter allit the onneting trajetory. If � < p2, both G and J are situated within the domainof aeleration in phase-spae, and hene the onneting trajetory is ompletely on-7



Figure 2: Model with parameters (�; ) = (p2; 4).

Figure 3: Model with parameters (�; ) = (2; 4).tained within this domain as well. Any trajetory approahing the onneting one willtherefore remain inside the aeleration domain one having entered it (see �gure 2).If, on the other hand, G is situated outside, reurrent aeleration an be generiallyrealized, if the spiral fous J is loated lose enough to the aeleration boundary, suhthat any trajetory approahing the attrator rosses the boundary repeatedly, as doesthe onneting trajetory (�gure 3).
8



Figure 4: Model with parameters (�; ) = (3; 4). Only two trajetories are shown.

Figure 5: Model with parameters (�; ) = (4; 20). Only a single trajetory is shown.3.1.3 J spiral fous, G non-existingIn this ase, reurrent aeleration is most generially realized. At � = p6; the �xedpoint G merges with B1. The dynamial evolution of the system is now totally de-termined by the saddle points B1 and B2, situated at the phase-spae boundary, andthe spiral fous J . (The ondition (17) is trivially ful�lled in this part of parameterspae.) Eah trajetory winds around the attrator several times, undergoing sub-sequent stages of aelerated and deelerated expansion. As �gures 4 and 5 show,this feature is almost independent of the position of the attrator with respet to theaeleration boundary.
9



4 Axion-dilaton dynamis in presene ofosmologial uids: the ase Q=0We are now prepared to disuss stationary solutions of the full system (10){(13), butsetting Q = 0. We �nd the following set of ritial points Xs = (x1;s; x2;s; ys; zs):A : (0; 0; 0; 0);B1; B2 : (�1; 0; 0; 0);C : (0; 0; 0; 1);E :  2p2p3�; 0; 2p3�;r1� 4�2! ;F :  p3p2�; 0; p3p2�; 0! ;G :  �p6 ; 0;r1� �26 ; 0! ;J :  p6 + �;s�( + �)� 6( + �)2 ;r  + �; 0! :The density parameter of the AD system is given by
AD = x21 + x22 + y:Furthermore, we note that now, in the general ase,1
AD (x21 + x22 � y2) = wAD 6= we� = x21 + x22 � y2 + 13z2:The existene ondition reads x21 + x22 + y2 + z2 � 1;with x1; x2; y; z real. The eigenvalues of the Jaobi matrix determining stability of thedi�erent �xed points are given in the appendix. We display properties of the �xedpoints in table 2.We �nd a radiation dominated repeller C, a matter dominated saddle point A, andthree di�erent AD dominated regimes, B1;2; G; and J; already present in the reduedsystem (Suid = 0). In addition, there are two di�erent saling solutionsz:z See [18℄ for a de�nition. 10



�xed point existene stability 
AD we�A 8(; �) saddle point 0 0B1; B2 8(; �) unstable 1 1C 8(; �) unstable 0 13E � � 2 saddle point:� > maxf2; 2g 4�2 13F � � p3 stable:� > maxfp3; g 3�2 0G � � p6 stable: � < p3^ �(�+ ) < 6 1 �1 + �23J �(�+ ) > 6 stable:^  � 0  > � 1 ���+Table 2: Properties of the �xed points of system (10){(13), with Q = 0.E, where the energy density of the AD system sales like radiation, and F; where itbehaves like matter. These two �xed points are haraterized by 
AD < 1.The subset of �xed points exhibiting x2 = 0 is idential to the set of �xed pointsharaterizing single-�eld models with exponential potential (see [2℄, and referenestherein). These �xed points orrespond to trivial solutions of the axion equation ofmotion (4) and our analysis shows that suh on�gurations are indeed stable in a widerange of parameter spae.The existene of stationary solutions with x2 6= 0 is related to the sign of the fri-tion term in the axion equation of motion, i.e. the quantity 3H �  _�. As long as3H �  _� > 0; the axion evolves toward a on�guration where _� = 0 and there-fore x2 = 0. On the other hand, stability of the �xed point J with x2 6= 0 impliesx1jJ > �1p3=2, whih is equivalent to 3H �  _� < 0.In �gures 6 and 7 we show the di�erent domains of stability in parameter spae ofboth theories, with and without a osmologial uid bakground. Most relevant is theappearane of the new �xed point F , whih is either a stable fous or a saddle pointin a signi�ant range of parameter spae.4.1 Reurrent aeleration in presene of bakground uids?In this subsetion we investigate to whih extent a perfet uid bakground a�ets thepossibility of reurrent aeleration.Following our disussion presented in setion 3, we assume J to be a spiral fous,loated lose enough to the aeleration boundary in phase-spae. In other words, we11
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Figure 6: Parameter spae of the Sonner-Townsend family of models. Horizontal axis:�, vertial axis: . In the gray region the �xed point G is stable. The dashed line isthe existene boundary of G. In the shaded region aeleration is impossible at theattrator.
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Figure 7: As above, now the general ase. The existene of the new �xed point F isindiated for � � p3; in the dark gray region F is the attrator.
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restrit ourselves to a sublass of models, orresponding to the neighborhood of theline  = 2� in parameter spae. We have to disuss three di�erent ases in turn.� � < p2: G saddle point, aelerated expansion at G;� p2 < � � p3: G saddle point, deeleration at G;� � > p3: F saddle point.We will fous on the behavior of the trajetory onneting the saddle point (F or G)with the attrator J . Generalizing our previous de�nition, hereafter we will refer tosuh a trajetory as onneting trajetory.Starting with the �rst ase, we note that we�(G) > we�(J). This follows from theexistene ondition of J , whih an be rewritten as �2=3 > 2�(�+)�1: The onnetingtrajetory is entirely ontained not only within the domain of aelerated expansion,but also in the setion of the phase spae boundary de�ned by 
AD = 1: Therefore, inthis ase we �nd no qualitative di�erene with respet to setion 3. (See �gure 2 foromparison.)In the seond ase, the limiting trajetory itself rosses the aeleration boundarywhile spiraling onto the attrator. (See �gure 3 for omparison.) In partiular, anytrajetory whih enters the aeleration domain before approahing the saddle pointG will experiene at least two distint stages of aelerated expansion. The �rst stageorresponds to the well-known freezing regime [2℄ of single-�eld models of dark energy:the dilaton �eld veloity remains lose to zero due to the Hubble frition term dominat-ing the equation of motion. The seond stage is reahed, when the trajetory re-entersthe domain of aeleration in approahing the onneting trajetory and the regime ofthe late time attrator. If J is loated inside the domain, aelerated expansion willontinue forever.In the third ase the saddle point F is dynamially relevant. Moreover, at Fwe� = wAD = 0 and the expansion is either dominated by matter or by the AD sys-tem saling like matter, with 
AD < 1: Due to the �nite ontribution of matter to thetotal energy density of the universe, we have now { in ontrast to the previous ases {we� > wAD along the onneting trajetory. Thus, even if the onneting trajetoryosillates around wAD(J) � �1=3 before reahing the spiral fous, reurrent aelera-tion is not implied. In partiular, in any model with we�(J) � �1=3 it will never enterthe domain of aeleration at all. However, we annot exlude the possibility of we�rossing the aeleration boundary more than one, if at the attrator we�(J) < �1=3.
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4.2 Numerial examplesThe onlusions we drew in the previous subsetion an be irumvented by resortingto a very speial hoie of initial onditions. For instane, the senario of [14℄ an bereovered by setting zin = 0; (x21 + x22 + y2)in = 1:However, sine we are ultimately interested in models whih are able to reproduequalitatively the standard evolution of the universe, as it an be reonstruted fromosmologial observations [2℄, we will hereafter only onsider trajetories whih are (atleast marginally) onsistent with the onordane �CDM osmology. Furthermore, wewill heneforth identify 
AD with 
DE and wAD with wDE, where the subsript DErefers to dark energy.It is a well-known, serious problem of dynamial dark energy models that their latetime evolution typially still depends on initial onditions: In single-�eld models, forinstane, the energy sale of the potential, i.e. in our notation yin, has to be �ne tunedto satisfy 
DE,today � 0:75: In the present ase one has to deal with an additionalsensitivity on x2;in, whih will be explained below.We will disuss these issues on the basis of two numerial examples, whih are bothharaterized by an attrator solution given by �xed point J; preeded by a saddlepoint, whih is G in the �rst ase, and in the seond one F . We have spei�ed therespetive trajetory by imposing initial onditions for the AD system at a temper-ature of O(1) MeV when (
rad=
mat)in � 106, thereby ensuring the validity of ourlassial desription. We assume the salar �elds to have already reahed the freezingregime, relying on the fat that salar �eld kineti energy sales as a�6. This leaves thepossibility of a stage of kination [16℄ during a preeding epoh of higher temperature.As it an be seen in �gures 8 and 9, we �nd, in both ases, three suessive evolu-tionary stages of the AD system: The �rst one, the freezing regime, is assoiated withthe radiation dominated epoh (RDE) if F is the saddle point, or ontinues during thematter dominated epoh (MDE), if G is the saddle point. Thereafter the system entersthe regime of the saddle point, whih in both ases lasts for a signi�ant number ofe-foldings of expansion. Finally, there is the late time attrator regime. Remarkably,our present situation orresponds to the transition between stage one and two in onease (saddle point G), and two and three in the other (saddle point F ). This is re-lated to the signi�ant disrepany in yin in our two examples (see the �gure aptions).Changes in yin a�et in partiular the termination of the freezing regime, while thehoie of x2;in determines the duration of the saddle point regime.The value of x2 dereases monotonially along a given trajetory as long as x1 <p3=2 �1 and turns to inrease when x1 > p3=2 �1 (whih is already true at thesaddle point F ). The saddle point regime eases, one x2 has inreased suÆiently to14



perturb x1 away from its �xed point value: A non-zero axion kineti term ontributesto the e�etive potential in the dilaton equation of motion, Eq. (3).On the ontrary, the initial ondition x1;in inuenes just the early stage of thedynamial evolution: A set of trajetories di�ering only in x1;in �rst onverge towardthe saddle point before they start to approah the attrator, thereby washing out anydependene of the late time evolution on x1;in. The orresponding evolutionary path inphase-spae is therefore ompletely determined by the onneting trajetory, providedwe an safely assume x2;in to be suÆiently small.To demonstrate the impat of a osmologial bakground uid on the AD dynamis,in partiular onerning the phenomenon of reurrent aeleration present in the aseSuid = 0; we have also plotted { for omparison { the evolution of the system'sequation of state in absene of the uid bakground (observe the green lines in the�gures). The admixture of a perfet uid omponent to the initial omposition hastwo e�ets on the evolution of the salar �elds: First, the redution of 
DE;in by a hugefator O(10�10) allows for the existene of a freezing regime during RDE and/or MDE.Seondly (see �gure 9), due to the existene of the saling saddle point F , the �rst few,large amplitude osillations of the equation of state are suppressed and partly replaedby osillations around the saddle point value, leaving only rapid, small amplitudeosillations around the attrator value. Needless to say, this kind of osillations inthe DE and e�etive equation of state are { at low redshift { already disfavored byobservational data [2, 19℄.We have to onlude that the harateristi feature of reurrent aeleration, as illus-trated in �gure 5, disappears if we allow for a perfet uid ontribution dominating theearlier stages of evolution. In partiular, the existene of a saling solution preedingthe spiral fous regime redues number, amplitude and period of possible osillationsin we� rossing the aeleration boundary.
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Figure 8: Model with parameters (�; ) = (85 ; 4). Evolution of wDE (blue, dark urve),weff (yellow, light urve), with N := � ln(1 + z); N = 0 referring to the present. Thetrajetory is spei�ed by initial onditions (x1; x2; y)in = (10�18; 10�18; 10�17). For om-parison, the green urve shows the evolution along a trajetory with 
mat = 
rad = 0,as in the Sonner Townsend ase, but the same ratio between initial kineti and potentialenergy of the salar �elds.
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Figure 9: Model with parameters (�; ) = (4; 20). Evolution of wDE (blue, dark urve),we� (yellow, light urve), with N := � ln(1 + z); N = 0 referring to the present. Thetrajetory is spei�ed by initial onditions (x1; x2; y)in = (5�10�28; 5�10�28; 5�10�10).For omparison, the green urve shows the evolution along a trajetory with 
mat =
rad = 0, as in the Sonner Townsend ase, but the same ratio between initial kinetiand potential energy in the salar �eld setor.
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5 Axion-dilaton dynamis in presene ofosmologial uids: the ase Q > 0The set of equations (10){(13), withQ allowed to be non-zero, de�nes a three-parameterfamily of models, eah haraterized by a set of �xed points in a four-dimensionalompat phase-spae. These �xed points are:A :  r23Q; 0; 0; 0! ;B1; B2 : (�1; 0; 0; 0);C : (0; 0; 0; 1);D : � 1p6Q; 0; 0;r1� 12Q2� ;E :  2p2p3�; 0; 2p3�;r1� 4�2! ;F : 0� q32��Q; 0;s2Q(Q� �) + 32(��Q)2 ; 01A ;G :  �p6 ; 0;r1� �26 ; 0! ;H : 0� q32 +Q;s2Q( +Q)� 32( +Q)2 ; 0; 01A ;J :  p6 + �;s�( + �)� 6( + �)2 ;r  + �; 0! :With respet to the ase Q = 0, we �nd two additional stationary points, namelyD and H. The �xed point D is assoiated to RDE. Properties of the �xed points aredisplayed in table 3.In �gures 10 and 11 we show two setions of parameter spae, with Q = 1=2 andQ = 1 respetively, to over the di�erent possibilities of stable �xed points. Due tothe positivity of Q, the AD energy density gets enhaned at expense of the mattersetor. If Q is suÆiently large, not a single �xed point remains with we� equal or atleast lose to zero, indiating suppression of MDE. However, we have to note that suhlarge values of Q are unphysial beause of the existing bounds on a universal metrioupling between matter and gravity [5, 20℄.Moreover, let us emphasize that inreasing Q does not re-establish reurrent aeler-18



f.p. existene stability 
DE weffA Q �q32 stable:Q2 < minf12 ; 32 � Q; �Q� 32g 23Q2 23Q2B1 saddle point:8(; �;Q) � > p6 ^ Q >q32 ^  < 0 1 1B2 unstableC 8(; �;Q) unstable 0 13D Q � 1p2 stable: � > 4Q > 2 16Q2 13E � � 2 stable: 2 < � < 4Q 4�2 13F 32Q +Q � � � Q+pQ2+122 stable: Q < 1p2^Q �q32 ^ � > maxf4Q; 2Q + g 3+Q2�Q�(Q��)2 Q��QG � � p6 stable:�2 < minf4; 3 +Q�; 6� �g 1 �1 + �23H  � maxf0; 32Q �Qg stable: � >  + 2Q^  > 2Q Q+Q Q+QJ �(�+ ) > 6 stable:^  � 0 � < minf2;  + 2Qg 1 ���+Table 3: Properties of the �xed points in the ase Q > 0:ation. As in the ase Q = 0, generi trajetories whih onverge toward the spiral fousJ approahing the onneting trajetory, always spend a ertain number of e-foldingslose to a saddle point, where either radiation or matter dominate. Depending on theparameter values, the relevant saddle point is either F , A, H, D or E.
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Figure 10: Parameter-spae in the ase Q = 12 . Horizontal axis: �, vertial axis:. Regions of stability of the various �xed points are indiated. The full line is thestability boundary of J . F an only be stable if 2 < � < 7=2: For � > 7=2 we �nd newattrators A (if  < 5=2) and H. In the shaded region aeleration is impossible at theattrator.
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Figure 11: As above, now the ase Q = 1: Attrators F and A are replaed by E (if2 < � < 4) and D, both orresponding to radiation era.
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6 Disussion and onlusionsWe have investigated a family of at FRW osmologial models in D = 4, fousing onthe dynamis of a salar (dilaton) and a pseudo-salar (axion) partner of the metri �eldin presene of osmologial bakground uids. Negleting any spei� interation termof the axion and the dilaton, whih are present in partile physis or string motivatedmodels, we have onsidered the { simpli�ed { senario of universal metri oupling.Motivated by reent results of [14℄, where reurrent aeleration was veri�ed in a largelass of AD models in absene of matter or radiation, we have analyzed the possibilityto ombine the phenomenon of reurrent aeleration with a osmologial bakgroundevolution in onordane with �CDM osmology. In partiular, we have onsideredthe viability of the AD system as a andidate of dynamial dark energy.Using a di�erent hoie of dynamial variables, well-suited to the more general asewith bakground uids, we were able to reprodue the �ndings of [14℄ (orrespondingto Suid = 0) . The new feature of models with Suid 6= 0 is the existene of a stationaryosmologial saling solution within a wide range of parameter spae. As long as Q is(lose to) zero, the relevant �xed point is F , orresponding to matter dominane. Inpartiular, if being a saddle point, F inuenes the evolution along generi trajetoriesin suh a way that the phenomenon of reurrent aeleration, as observed in [14℄, isredued to small amplitude osillations of the equation of state at low redshift.We an ertainly realize a model (by speifying parameters), whih is able to re-produe the present stage of osmi evolution as being a transient phenomenon. Thisis already possible in the single-�eld ase, orresponding to the onstant axion se-nario within our dynamial system: The dilaton remains frozen, due to Hubble fritiondominane, right up to the present, and later-on evolves toward an attrator solutionexhibiting we� > �1=3: On the other hand, if the axion dynamis is non-trivial, itis also possible to get a seond aelerating stage in the future, whih will then beever-lasting.Though we have to onlude that reurrent aeleration as desribed in [14℄ is notrelevant to dark energy model building, we have disovered a di�erent, interestingpossibility instead, whih we may all the F ! J senario. Does it provide a viablemodel of dynamial dark energy?The o-existene of a matter-dominated saling solution and a dark energy domi-nated aelerating solution is generally onsidered to be a very attrative feature ofdynamial DE models [2, 18℄. In the single-�eld ase [17℄, the existene of F is exludedby the stability ondition of the �xed point G, whih is the only available andidateto ahieve late time aeleration. However, in presene of an axion �eld, the salingregime of F an be sueeded by a stage of aelerated expansion, represented by the�xed point J . During radiation and matter dominated epohs, the evolution of the21



AD setor is determined by the saddle point, while our present situation orrespondsto the transition toward the late time attrator solution. Unfortunately, the onset ofthis transition is subjet to a ertain �ne tuning of initial onditions.One single �ne tuning of the salar potential energy sale is always mandatory indynamial models of DE, sine it orresponds to setting the osmi lok. The re-quirement of naturalness [21℄ strongly disfavors models whih need a �ne tuning ofthe same order as in the osmologial onstant ase. In this respet, two-�eld modelsinorporating the F ! J senario are ertainly promising: In our numerial example,the potential sale is initially set to O(1015)�
�j1MeV. Even larger values are possible,but have to be ompensated by reduing x2;in; in order to keep the osmi lok tuned.We need to emphasize, however, that extremely small values of the axion �eld veloityare by no means unphysial. In fat, the most natural solution is a onstant axion, aslong as the Hubble rate is large enough to keep the frition term positive.To onlude, let us stress an intriguing feature of the lass of models under onsid-eration. Single-�eld potentials are typially required to be extremely at in order tosatisfy observational onstraints. However, in the F ! J senario this is not true:there is no upper bound on the parameter � determining the potential slope. Thisaspet opens up new possibilities for dark energy model building whih we believe tobe promising enough to motivate further investigation.AknowledgmentsWe would like to thank Wilfried Buhm�uller for enlightening omments and suggestionsduring the development of this work. R. Catena aknowledges a Researh Grant fundedby the VIPAC Institute.
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A Dynamial systems terminologyWe onsider a system of n �rst order ordinary di�erential equations (ODE),_xi = fi(x1; :::; xn); (18)whih is alled autonomous if none of the n funtions fi expliitly depends on time. Asolution of the system is given in terms of a trajetory in phase spae,t 7�! X(t) := (x1(t); :::; xn(t));determined by hoie of initial onditions X(tinit).A point Xs := (x1;s; :::; xn;s) is said to be a ritial, stationary or �xed point iffi(Xs) = 0 8 i � n;and an attrator if there exists a neighborhood of the �xed point suh that everytrajetory entering this neighborhood satis�es the following ondition:limt!1X(t) = Xs:Now onsider small perturbations around the ritial point,xi = xi;s + Æxi:Linearizing the evolution equations we obtain a system of �rst order ODE linear in theperturbations, ddtÆxi =Xj MijÆxj; (19)where Mij := �fi(X)�xj ����X=Xs :The general solution of this system is given byÆxi = nXk=1 Cike�kt;where Cik are integration onstants and �k the eigenvalues of the Jaobi or stabilitymatrix M , whih we have assumed to be distint for simpliity. Obviously the pertur-bation will deay if eah �k has negative real part.The ritial points of a dynamial system an be lassi�ed in terms of the eigenvaluesof the orresponding stability matrix. An attrator is haraterized by the requirementRe[�k℄ < 0 8 k � n;and alled spiral fous if at least one pair of eigenvalues is omplex and stable node else.Furthermore we will use the terminus saddle point if and only if M has one eigenvaluewith positive real part. In any other ase we all the �xed point unstable.23



B Jaobi matrix eigenvaluesIn the following we list the Jaobi matrix eigenvalues at the di�erent �xed points ofthe models with bakground uids.B.1 Case Q = 0 A : �32 ; �32 ; 32 ; �12 ;B1 : 3; 1; r32; 3�r32�;B2 : 3; 1; �r32; 3 +r32�;C : 2; �1; �1; 1;E : 1; �1 + 2� ; 12 ��1� p64�2 � 15�4�2 � ;F : �12 ; 3( � �)2� ; 34 ��1� p24�2 � 7�4�2 � ;G : 12(�2 � 6); 12(�(�+ )� 6); �2 � 3; 12(�2 � 4);J : 3�1� 2 + �� ; 1� 3 + �;32( + �)  � �r2 + 8( + �)� 43�( + �)2! :
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B.2 Case Q 6= 0A : �12 +Q2; �32 +Q2; �32 +Q(Q + ); 32 +Q(Q� �);B1 : 1; 3�p6Q; r32; 3�r32�;B2 : 1; 3 +p6Q; �r32; 3 +r32�;C : 2; �1; �1; 1;D : �1 + 2Q; 2� �2Q; 12  �1� p2Q2 � 3Q4Q2 ! ;E : 1� 4Q� ; �1 + 2� ; 12 ��1� p64�2 � 15�4�2 � ;F : � �� 4Q2(��Q) ; 32 ��1 +  +Q��Q� ;34(��Q)2  �(�� 2Q)(��Q)�r(��Q)2[24� 7�2 � 12�Q+ 20Q2 + 163 �Q(��Q)2℄! ;G : 12(�2 � 6); 12(�(�+ )� 6); � 3 + �(��Q); 12(�2 � 4);H : 1� 32( +Q) ; 32(1� ��Q +Q );14( +Q) ��3 �p812 � 24Q[2( +Q)2 � 3℄� ;J : 3�1� 2( +Q) + � � ; 1� 3 + �:32( + �)  � �r2 + 8( + �)� 43�( + �)2!
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