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Axion{Dilaton Cosmologyand Dark EnergyRi

ardo Catena and Jan M�ollerDeuts
hes Elektronen-Syn
hrotron DESY, Theory Group,Notkestrasse 85, D-22603 Hamburg, GermanyAbstra
tWe dis
uss a 
lass of 
at FRW 
osmologi
al models based on D=4 axion-dilatongravity universally 
oupled to 
osmologi
al ba
kground 
uids. In parti
ular, we in-vestigate the possibility of re
urrent a

eleration, whi
h was re
ently shown to begeneri
ally realized in a wide 
lass of axion-dilaton models, but in absen
e of 
osmo-logi
al ba
kground 
uids. We observe that, on
e we impose the existen
e of radiation{ and matter { dominated earlier stages of 
osmi
 evolution, the axion-dilaton dynami
sis altered signi�
antly with respe
t to the 
ase of pure axion-dilaton gravity. Duringthe matter dominated epo
h the s
alar �elds remain either frozen, due to the largeexpansion rate, or enter a 
osmologi
al s
aling regime. In both 
ases, os
illations ofthe e�e
tive equation of state around the a

eleration boundary value are impossible.Models whi
h enter an os
illatory stage in the low redshift regime, on the other hand,are disfavored by observations. We also 
omment on the viability of the axion-dilatonsystem as a 
andidate for dynami
al dark energy. In a 
ertain sub
lass of models,an intermediate s
aling regime is su

eeded by eternal a

eleration. We also brie
ydis
uss the issue of dependen
e on initial 
onditions.

http://arxiv.org/abs/0709.1931v1


1 Introdu
tionAlthough no fundamental s
alar parti
les have been dis
overed yet, many attempts toextend the Standard Model of parti
le physi
s naturally introdu
e new s
alar and/orpseudo{s
alar degrees of freedom, e.g. s
alar superpartners of Standard Model �eldsin a supersymmetri
 framework, moduli �elds related to geometri
 properties of 
om-pa
ti�ed extra dimensions, et
. Whereas on the one hand this leads to 
hallengingproblems [1℄, on the other hand these new �elds 
ould provide interesting 
andidatesof dynami
al dark energy [2℄.Of parti
ular interest in 
osmology are low-energy e�e
tive theories where the gravi-tational se
tor in
ludes, apart from the metri
 tensor, s
alar (or pseudo-s
alar) degreesof freedom that 
ould provide a gravitational interpretation of early (in
ationary), orre
ent (quintessential), periods of a

eleration.In the extensively studied 
ase of S
alar{Tensor (ST) theories of gravity [3℄, theexisten
e of one or more s
alar partners of the graviton leads to modi�
ations of theHubble expansion and of Newton's law [4, 5℄. While ultra-light s
alar �elds � are ingeneral potentially dangerous sour
es of new long range for
es, interestingly enough,ST theories are prote
ted against any violation of the weak equivalen
e prin
iple by auniversal metri
 
oupling between matter and the gravity se
tor [5℄. Be
ause of thisproperty, ST theories provide a natural framework to address the issue of dynami
aldark energy [6℄. On the other hand, in
ation 
an also be su

essfully a
hieved in a STpi
ture [7℄.The ST s
enario 
an be generalized to in
lude also pseudo-s
alar �elds. This is the
ase, for instan
e, of axion{dilaton (AD) gravity, whi
h 
an be viewed as a prototypeof theories where a \dilaton-like" s
alar and an \axion-like" pseudo-s
alar appear asspin zero partners of the graviton. Su
h a pi
ture naturally emerges from the Neveu-S
hwarz bosoni
 se
tor of the low-energy string e�e
tive a
tion [8℄. Bla
k hole solutionsof this theory have been found in [9℄, while domain wall solutions were given in [10℄. Amore general 
lass of stationary supersymmetri
 solutions was dis
ussed in [11℄. Cos-mologi
al impli
ations of su
h a theory { up to �rst order in perturbation theory { wereinvestigated in [12℄, where for the �rst time the spe
trum of 
osmologi
al perturbationswas 
omputed.It has been pointed out re
ently that AD gravity theories with an exponential dilatonpotential admit 
osmologi
al solutions whi
h give rise to the interesting phenomenonof re
urrent a

eleration [14℄. By a detailed phase-spa
e analysis of the AD dynami
alsystem, the authors veri�ed the generi
 o

urren
e of re
urrent a

eleration in theregime of a spiral fo
us asso
iated to a runaway behavior of both �elds. In this pi
ture,the present a

eleration does not appear as a pe
uliar stage of the 
osmi
 history, being�Exhibiting a mass of the order of the present value of the Hubble parameter1



likely a transient or even re
urring phenomenon. In parti
ular, they 
on
lude that thefuture evolution of the universe is by no means determined to be a

elerating forever,in obvious 
ontrast to standard �CDM 
osmology.However, in order to relate these results to the observed a

elerated expansion of theuniverse, it is 
ru
ial to take into a

ount the non-gravitational se
tor of the theory.While Sonner and Townsend [14℄ 
onsidered models 
omprising only the graviton, theaxion and the dilaton �elds, the purpose of the present paper is to investigate how the
ontribution of 
osmologi
al perfe
t 
uids { (dark) matter and radiation { modi�esthe evolution of the AD system. Avoiding any attempt of 
onstru
ting a fully realisti
model, we assume that the gravity se
tor �elds 
ouple in a universal metri
 way to theba
kground 
uid. This 
hoi
e is inspired by the aforementioned ST theories.The main result of our analysis is that re
urrent a

eleration is no longer a generi
feature of the (modi�ed) AD dynami
al system, on
e we impose the pre-existen
e of aradiation (RDE) and a matter dominated (MDE) era and take into a

ount the �nite
ontribution of (dark) matter to the present energy density.Our paper is organized as follows. In se
tion 2 we present the 
osmologi
al evo-lution equations of AD gravity 
oupled to matter in a universal metri
 way. Due tothis 
oupling any matter �eld experien
es gravitational intera
tions through the samemetri
 ~g��, whi
h is 
onformally related to the Einstein frame metri
 by a dilaton-dependent fun
tion. As it will be made expli
it in se
tion 2, the dilatoni
 part of theintera
tion is parametrized by a fun
tion Q. The simplest 
ase of minimal 
oupling
orresponds to Q = 0 and will be dis
ussed separately in se
tions 3 and 4; the moregeneral 
ase of 
onstant Q > 0 is treated in se
tion 5. In se
tion 6, whi
h is devoted toour 
on
lusions, we also brie
y 
omment on the viability of AD models as 
andidatesof dynami
al dark energy. In the appendi
es we summarize some basi
 fa
ts 
on
erningdynami
al systems terminology and give details of the 
al
ulations.

2



2 Axion{dilaton 
osmologyThe 
lass of models we are interested in is des
ribed by the following a
tionS = SAD + S
uid ; (1)where SAD = Z d4xp�g(12R� 12������� 12e�
������� � e���)and S
uid = S
uid[A2(�)g�� ;	℄ :In Eq.(1) R is the Ri

i s
alar 
onstru
ted from the Einstein frame metri
 g��, A(�)is an arbitrary fun
tion of the dilaton �eld (to be spe
i�ed below) and 
; as well as� > 0; are real 
onstant parameters. The ba
kground 
uid se
tor is des
ribed by thea
tion S
uid. Hereafter \ba
kground 
uid se
tor" refers to the se
tor of the theory thatin
ludes all the �elds 	 of the Standard Model (or of one of its possible extensions)whi
h we assume to be 
oupled to the gravitational se
tor (SAD) by means of the samemetri
 ~g�� = A2(�) g�� .Stri
tly speaking, by this 
hoi
e we negle
t any non-universal 
ouplings of the ADsystem , in parti
ular intera
tions with the �eld strength of some gauge �eld, i.e.� �F��F �� in the 
ase of the dilaton, and � � F�� ~F �� in the 
ase of the axion. Infa
t, su
h 
ouplings are generi
ally present in any theory whi
h 
ouples AD gravity toa matter and gauge se
tor (see for example [15, 16℄). However, a proper treatment ofthese intera
tions and their 
onsequen
es in a 
osmologi
al framework is beyond thes
ope of this paper. On the other hand, our analysis applies { more generally { to any
omplex s
alar �eld with modular invariant y kineti
 term.The introdu
tion of an exponential potential for the dilaton expli
itly breaks theSL(2;R) invarian
e of the usual AD gravity. Su
h a potential with 2� = 
 emerges,for instan
e, from a trun
ation of the Freedman{S
hwarz D = 4 supergravity theory[13℄ (see also se
tion 4:3 of [10℄ for an alternative motivation).In a 
at FRW Universe, ds2 = �dt2 + a2(t)d~x2 ; (2)the 
osmologi
al equations obtained from the a
tion (1) are
yInvariant under SL(2;R)�transformations � ! a�+b
�+d with ad� b
 = 1 where � = 
2� + ie� 
2�.3



�� = �3H _� + �e��� � 12
e�
� _�2 +Q(�)�
uid (1� 3w
uid) ; (3)�� = �(3H � 
 _�) _� ; (4)_H = �12 h(1 + w
uid)�
uid + _�2 + e�
� _�2i ; (5)H2 = 13 ��
uid + 12( _�2 + e�
� _�2) + e���� ; (6)where Q(�) is given by Q(�) � �d lnAd� : (7)The ba
kground 
uid energy density �
uid obeys the 
ontinuity equation_�
uid = h�3(1 + w
uid)H � (1� 3w
uid)Q(�) _�i �
uid; (8)with equation of state parameter w
uid 2 [0; 13 ℄; the limit values 
orresponding to purematter and pure radiation respe
tively.Introdu
ing the following dynami
al variables,x21 � _�26H2 ; x22 � e�
� _�26H2 ; y2 � V (�)3H2 ; z2 � �rad3H2 ; (9)the system (3){(6) 
an be rewritten in autonomous form, straightforwardly generalizingthe set{up of [17℄,dx1dN = 32 x1(x21 + x22 � y2 + 13z2 � 1) +r32 ��
x22 + �y2 +Q(1� x21 � x22 � y2 � z2)� ;(10)dx2dN = 32 x2(x21 + x22 � y2 + 13z2 � 1) +r32
 x1x2; (11)dydN = 32 y (x21 + x22 � y2 + 13z2 + 1)�r32� x1y; (12)dzdN = 32 z (x21 + x22 � y2 + 13(z2 � 1)): (13)where N = ln a, and Q is assumed to be a positive real 
onstant, 
orresponding toA(�) � exp(�Q�).The given system of evolution equations de�nes a three-parameter family of dynam-i
al models with four-dimensional 
ompa
t phase-spa
e,x21 + x22 + y2 + z2 � 1;4



and 
an, furthermore, be restri
ted to (x2; y; z) � 0, sin
e the system is invariant under
hange of sign in any of these variables.Using the new set of variables, the e�e
tive equation of state parameter 
an be
onveniently expressed aswe� � pAD + p
uid�AD + �
uid = x21 + x22 � y2 + 13z2 :The equation we�(x1; x2; y; z) = �1=3 de�nes the boundary of the domain of a

eleratedexpansion in phase-spa
e.The purpose of the su

eeding se
tion is to reprodu
e the �ndings of [14℄ within the
hosen framework, 
orresponding to the theory of Eq.(1) trun
ated by S
uid = 0.3 Axion-dilaton dynami
s (S
uid = 0)Provided a 
at FRW universe and absen
e of a 
osmologi
al perfe
t 
uid, the phase-spa
e of the AD system is two-dimensional. We 
hoose it to be spanned by fx1; x2g:The Friedmann 
onstraint equation now readsx21 + x22 + y2 = 1;and we 
an eliminate y from the system:dx1dN = 3 x1(x21 + x22 � 1) +r32[�
x22 + �(1� x21 � x22)℄ ; (14)dx2dN = 3 x2(x21 + x22 � 1) +r32
 x1x2 : (15)The equation of state is then given bywe� = wAD = 2(x21 + x22)� 1:Ea
h model is 
hara
terized by a number of stationary solutions, or 
riti
al points,of the 
orresponding autonomous system. (We refer to the appendix 
on
erning abrief summary of relevant terminology.) We �nd the following set of stationary pointsXs = (x1;s; x2;s), given as fun
tions of the parameters:B1; B2 : (�1; 0);G : � �p6 ; 0� ;J :  p6
 + �;s�(
 + �)� 6(
 + �)2 ! :5



�xed point existen
e stability wB1 8(
; �) stable: 
 < 0 ^ � > p6 1B2 8(
; �) saddle point: 
 > 0 1G � < p6 stable: �(�+ 
) < 6 �1 + �23J 
 � 0 ^ �(�+ 
) � 6 stable: 
 > 0 ^ �(�+ 
) > 6 ��
�+
Table 1: Properties of the �xed points of the redu
ed dynami
al system.Properties of the �xed points are displayed in table 1. The existen
e 
ondition 
anbe expressed as follows, x21 + x22 � 1;with x1; x2 real. The stability of a 
riti
al point is determined by the eigenvalues ofthe Ja
obi matrix M := ��Fi�xj�i;j � f1;2gof the ve
tor fun
tionF (x1; x2) = (3 x1(x21 + x22 � 1) +r32(�
x22 + �(1� x21 � x22);3 x2(x21 + x22 � 1) +r32
 x1x2); (16)evaluated atXs. (See the appendix for more details.) We �nd the following eigenvalues:B1 : r32
; 6�p6�;B2 : �r32
; 6 +p6�;G : 12(�2 � 6); 12(�(�+ 
)� 6);J : 32(
 + �)  �
 �r
2 + 8
(
 + �)� 43
�(
 + �)2! :The �xed point J is a spiral fo
us if3
 (9
 + 8�)� 4 
�(
 + �)2 < 0: (17)6



Figure 1: Model with parameters (�; 
) = �85 ; 1�.Shaded (yellow) area 
orresponds toa

elerated expansion. Traje
tories are plotted in the plane (x1; x2).3.1 Re
urrent a

elerationWe now dis
uss under whi
h 
onditions re
urrent periods of a

eleration 
an be realizedwithin the family of dynami
al models given by Eqs. (14) { (15).Let us �rst observe that, a

ording to table 1, a

elerated expansion is possible atthe �xed point G { if � < p2 { or at the �xed point J { if 
 > 2�. Then, restri
tingourselves to the 
ase 
 > 0, we 
an distinguish three possibilities to realize a modelwhi
h generi
ally allows for periods of a

elerated expansion. We give examples ofphase portraits of the di�erent 
ases below.As we will see, in agreement with [14℄, re
urrent periods of a

eleration are eÆ
ientlyprodu
ed by models 
orresponding to a subset of parameter spa
e where the �xed pointJ is stable and a spiral fo
us (�gure 6).3.1.1 G stableIf � < p2; the attra
tor G is situated within the domain of a

elerated expansion. Inthis 
ase, on
e a

eleration has set in, it will last forever . If p2 < � < p6; it 
an bea transient phenomenon along a subset of traje
tories (�gure 1).3.1.2 J stable, G saddle pointIf J is the attra
tor, the domain of a

eleration in parameter spa
e is bounded by
 = 2�. The phase-portrait of the system depends 
ru
ially on the progress of the spe-
ial traje
tory 
onne
ting the saddle point G with the attra
tor. We will hereafter 
allit the 
onne
ting traje
tory. If � < p2, both G and J are situated within the domainof a

eleration in phase-spa
e, and hen
e the 
onne
ting traje
tory is 
ompletely 
on-7



Figure 2: Model with parameters (�; 
) = (p2; 4).

Figure 3: Model with parameters (�; 
) = (2; 4).tained within this domain as well. Any traje
tory approa
hing the 
onne
ting one willtherefore remain inside the a

eleration domain on
e having entered it (see �gure 2).If, on the other hand, G is situated outside, re
urrent a

eleration 
an be generi
allyrealized, if the spiral fo
us J is lo
ated 
lose enough to the a

eleration boundary, su
hthat any traje
tory approa
hing the attra
tor 
rosses the boundary repeatedly, as doesthe 
onne
ting traje
tory (�gure 3).
8



Figure 4: Model with parameters (�; 
) = (3; 4). Only two traje
tories are shown.

Figure 5: Model with parameters (�; 
) = (4; 20). Only a single traje
tory is shown.3.1.3 J spiral fo
us, G non-existingIn this 
ase, re
urrent a

eleration is most generi
ally realized. At � = p6; the �xedpoint G merges with B1. The dynami
al evolution of the system is now totally de-termined by the saddle points B1 and B2, situated at the phase-spa
e boundary, andthe spiral fo
us J . (The 
ondition (17) is trivially ful�lled in this part of parameterspa
e.) Ea
h traje
tory winds around the attra
tor several times, undergoing sub-sequent stages of a

elerated and de
elerated expansion. As �gures 4 and 5 show,this feature is almost independent of the position of the attra
tor with respe
t to thea

eleration boundary.
9



4 Axion-dilaton dynami
s in presen
e of
osmologi
al 
uids: the 
ase Q=0We are now prepared to dis
uss stationary solutions of the full system (10){(13), butsetting Q = 0. We �nd the following set of 
riti
al points Xs = (x1;s; x2;s; ys; zs):A : (0; 0; 0; 0);B1; B2 : (�1; 0; 0; 0);C : (0; 0; 0; 1);E :  2p2p3�; 0; 2p3�;r1� 4�2! ;F :  p3p2�; 0; p3p2�; 0! ;G :  �p6 ; 0;r1� �26 ; 0! ;J :  p6
 + �;s�(
 + �)� 6(
 + �)2 ;r 

 + �; 0! :The density parameter of the AD system is given by
AD = x21 + x22 + y:Furthermore, we note that now, in the general 
ase,1
AD (x21 + x22 � y2) = wAD 6= we� = x21 + x22 � y2 + 13z2:The existen
e 
ondition reads x21 + x22 + y2 + z2 � 1;with x1; x2; y; z real. The eigenvalues of the Ja
obi matrix determining stability of thedi�erent �xed points are given in the appendix. We display properties of the �xedpoints in table 2.We �nd a radiation dominated repeller C, a matter dominated saddle point A, andthree di�erent AD dominated regimes, B1;2; G; and J; already present in the redu
edsystem (S
uid = 0). In addition, there are two di�erent s
aling solutionsz:z See [18℄ for a de�nition. 10



�xed point existen
e stability 
AD we�A 8(
; �) saddle point 0 0B1; B2 8(
; �) unstable 1 1C 8(
; �) unstable 0 13E � � 2 saddle point:� > maxf2; 2
g 4�2 13F � � p3 stable:� > maxfp3; 
g 3�2 0G � � p6 stable: � < p3^ �(�+ 
) < 6 1 �1 + �23J �(�+ 
) > 6 stable:^ 
 � 0 
 > � 1 ��
�+
Table 2: Properties of the �xed points of system (10){(13), with Q = 0.E, where the energy density of the AD system s
ales like radiation, and F; where itbehaves like matter. These two �xed points are 
hara
terized by 
AD < 1.The subset of �xed points exhibiting x2 = 0 is identi
al to the set of �xed points
hara
terizing single-�eld models with exponential potential (see [2℄, and referen
estherein). These �xed points 
orrespond to trivial solutions of the axion equation ofmotion (4) and our analysis shows that su
h 
on�gurations are indeed stable in a widerange of parameter spa
e.The existen
e of stationary solutions with x2 6= 0 is related to the sign of the fri
-tion term in the axion equation of motion, i.e. the quantity 3H � 
 _�. As long as3H � 
 _� > 0; the axion evolves toward a 
on�guration where _� = 0 and there-fore x2 = 0. On the other hand, stability of the �xed point J with x2 6= 0 impliesx1jJ > 
�1p3=2, whi
h is equivalent to 3H � 
 _� < 0.In �gures 6 and 7 we show the di�erent domains of stability in parameter spa
e ofboth theories, with and without a 
osmologi
al 
uid ba
kground. Most relevant is theappearan
e of the new �xed point F , whi
h is either a stable fo
us or a saddle pointin a signi�
ant range of parameter spa
e.4.1 Re
urrent a

eleration in presen
e of ba
kground 
uids?In this subse
tion we investigate to whi
h extent a perfe
t 
uid ba
kground a�e
ts thepossibility of re
urrent a

eleration.Following our dis
ussion presented in se
tion 3, we assume J to be a spiral fo
us,lo
ated 
lose enough to the a

eleration boundary in phase-spa
e. In other words, we11
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Figure 6: Parameter spa
e of the Sonner-Townsend family of models. Horizontal axis:�, verti
al axis: 
. In the gray region the �xed point G is stable. The dashed line isthe existen
e boundary of G. In the shaded region a

eleration is impossible at theattra
tor.
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Figure 7: As above, now the general 
ase. The existen
e of the new �xed point F isindi
ated for � � p3; in the dark gray region F is the attra
tor.
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restri
t ourselves to a sub
lass of models, 
orresponding to the neighborhood of theline 
 = 2� in parameter spa
e. We have to dis
uss three di�erent 
ases in turn.� � < p2: G saddle point, a

elerated expansion at G;� p2 < � � p3: G saddle point, de
eleration at G;� � > p3: F saddle point.We will fo
us on the behavior of the traje
tory 
onne
ting the saddle point (F or G)with the attra
tor J . Generalizing our previous de�nition, hereafter we will refer tosu
h a traje
tory as 
onne
ting traje
tory.Starting with the �rst 
ase, we note that we�(G) > we�(J). This follows from theexisten
e 
ondition of J , whi
h 
an be rewritten as �2=3 > 2�(�+
)�1: The 
onne
tingtraje
tory is entirely 
ontained not only within the domain of a

elerated expansion,but also in the se
tion of the phase spa
e boundary de�ned by 
AD = 1: Therefore, inthis 
ase we �nd no qualitative di�eren
e with respe
t to se
tion 3. (See �gure 2 for
omparison.)In the se
ond 
ase, the limiting traje
tory itself 
rosses the a

eleration boundarywhile spiraling onto the attra
tor. (See �gure 3 for 
omparison.) In parti
ular, anytraje
tory whi
h enters the a

eleration domain before approa
hing the saddle pointG will experien
e at least two distin
t stages of a

elerated expansion. The �rst stage
orresponds to the well-known freezing regime [2℄ of single-�eld models of dark energy:the dilaton �eld velo
ity remains 
lose to zero due to the Hubble fri
tion term dominat-ing the equation of motion. The se
ond stage is rea
hed, when the traje
tory re-entersthe domain of a

eleration in approa
hing the 
onne
ting traje
tory and the regime ofthe late time attra
tor. If J is lo
ated inside the domain, a

elerated expansion will
ontinue forever.In the third 
ase the saddle point F is dynami
ally relevant. Moreover, at Fwe� = wAD = 0 and the expansion is either dominated by matter or by the AD sys-tem s
aling like matter, with 
AD < 1: Due to the �nite 
ontribution of matter to thetotal energy density of the universe, we have now { in 
ontrast to the previous 
ases {we� > wAD along the 
onne
ting traje
tory. Thus, even if the 
onne
ting traje
toryos
illates around wAD(J) � �1=3 before rea
hing the spiral fo
us, re
urrent a

elera-tion is not implied. In parti
ular, in any model with we�(J) � �1=3 it will never enterthe domain of a

eleration at all. However, we 
annot ex
lude the possibility of we�
rossing the a

eleration boundary more than on
e, if at the attra
tor we�(J) < �1=3.
13



4.2 Numeri
al examplesThe 
on
lusions we drew in the previous subse
tion 
an be 
ir
umvented by resortingto a very spe
ial 
hoi
e of initial 
onditions. For instan
e, the s
enario of [14℄ 
an bere
overed by setting zin = 0; (x21 + x22 + y2)in = 1:However, sin
e we are ultimately interested in models whi
h are able to reprodu
equalitatively the standard evolution of the universe, as it 
an be re
onstru
ted from
osmologi
al observations [2℄, we will hereafter only 
onsider traje
tories whi
h are (atleast marginally) 
onsistent with the 
on
ordan
e �CDM 
osmology. Furthermore, wewill hen
eforth identify 
AD with 
DE and wAD with wDE, where the subs
ript DErefers to dark energy.It is a well-known, serious problem of dynami
al dark energy models that their latetime evolution typi
ally still depends on initial 
onditions: In single-�eld models, forinstan
e, the energy s
ale of the potential, i.e. in our notation yin, has to be �ne tunedto satisfy 
DE,today � 0:75: In the present 
ase one has to deal with an additionalsensitivity on x2;in, whi
h will be explained below.We will dis
uss these issues on the basis of two numeri
al examples, whi
h are both
hara
terized by an attra
tor solution given by �xed point J; pre
eded by a saddlepoint, whi
h is G in the �rst 
ase, and in the se
ond one F . We have spe
i�ed therespe
tive traje
tory by imposing initial 
onditions for the AD system at a temper-ature of O(1) MeV when (
rad=
mat)in � 106, thereby ensuring the validity of our
lassi
al des
ription. We assume the s
alar �elds to have already rea
hed the freezingregime, relying on the fa
t that s
alar �eld kineti
 energy s
ales as a�6. This leaves thepossibility of a stage of kination [16℄ during a pre
eding epo
h of higher temperature.As it 
an be seen in �gures 8 and 9, we �nd, in both 
ases, three su

essive evolu-tionary stages of the AD system: The �rst one, the freezing regime, is asso
iated withthe radiation dominated epo
h (RDE) if F is the saddle point, or 
ontinues during thematter dominated epo
h (MDE), if G is the saddle point. Thereafter the system entersthe regime of the saddle point, whi
h in both 
ases lasts for a signi�
ant number ofe-foldings of expansion. Finally, there is the late time attra
tor regime. Remarkably,our present situation 
orresponds to the transition between stage one and two in one
ase (saddle point G), and two and three in the other (saddle point F ). This is re-lated to the signi�
ant dis
repan
y in yin in our two examples (see the �gure 
aptions).Changes in yin a�e
t in parti
ular the termination of the freezing regime, while the
hoi
e of x2;in determines the duration of the saddle point regime.The value of x2 de
reases monotoni
ally along a given traje
tory as long as x1 <p3=2 
�1 and turns to in
rease when x1 > p3=2 
�1 (whi
h is already true at thesaddle point F ). The saddle point regime 
eases, on
e x2 has in
reased suÆ
iently to14



perturb x1 away from its �xed point value: A non-zero axion kineti
 term 
ontributesto the e�e
tive potential in the dilaton equation of motion, Eq. (3).On the 
ontrary, the initial 
ondition x1;in in
uen
es just the early stage of thedynami
al evolution: A set of traje
tories di�ering only in x1;in �rst 
onverge towardthe saddle point before they start to approa
h the attra
tor, thereby washing out anydependen
e of the late time evolution on x1;in. The 
orresponding evolutionary path inphase-spa
e is therefore 
ompletely determined by the 
onne
ting traje
tory, providedwe 
an safely assume x2;in to be suÆ
iently small.To demonstrate the impa
t of a 
osmologi
al ba
kground 
uid on the AD dynami
s,in parti
ular 
on
erning the phenomenon of re
urrent a

eleration present in the 
aseS
uid = 0; we have also plotted { for 
omparison { the evolution of the system'sequation of state in absen
e of the 
uid ba
kground (observe the green lines in the�gures). The admixture of a perfe
t 
uid 
omponent to the initial 
omposition hastwo e�e
ts on the evolution of the s
alar �elds: First, the redu
tion of 
DE;in by a hugefa
tor O(10�10) allows for the existen
e of a freezing regime during RDE and/or MDE.Se
ondly (see �gure 9), due to the existen
e of the s
aling saddle point F , the �rst few,large amplitude os
illations of the equation of state are suppressed and partly repla
edby os
illations around the saddle point value, leaving only rapid, small amplitudeos
illations around the attra
tor value. Needless to say, this kind of os
illations inthe DE and e�e
tive equation of state are { at low redshift { already disfavored byobservational data [2, 19℄.We have to 
on
lude that the 
hara
teristi
 feature of re
urrent a

eleration, as illus-trated in �gure 5, disappears if we allow for a perfe
t 
uid 
ontribution dominating theearlier stages of evolution. In parti
ular, the existen
e of a s
aling solution pre
edingthe spiral fo
us regime redu
es number, amplitude and period of possible os
illationsin we� 
rossing the a

eleration boundary.
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Figure 8: Model with parameters (�; 
) = (85 ; 4). Evolution of wDE (blue, dark 
urve),weff (yellow, light 
urve), with N := � ln(1 + z); N = 0 referring to the present. Thetraje
tory is spe
i�ed by initial 
onditions (x1; x2; y)in = (10�18; 10�18; 10�17). For 
om-parison, the green 
urve shows the evolution along a traje
tory with 
mat = 
rad = 0,as in the Sonner Townsend 
ase, but the same ratio between initial kineti
 and potentialenergy of the s
alar �elds.
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tory is spe
i�ed by initial 
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tory with 
mat =
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and potential energy in the s
alar �eld se
tor.
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5 Axion-dilaton dynami
s in presen
e of
osmologi
al 
uids: the 
ase Q > 0The set of equations (10){(13), withQ allowed to be non-zero, de�nes a three-parameterfamily of models, ea
h 
hara
terized by a set of �xed points in a four-dimensional
ompa
t phase-spa
e. These �xed points are:A :  r23Q; 0; 0; 0! ;B1; B2 : (�1; 0; 0; 0);C : (0; 0; 0; 1);D : � 1p6Q; 0; 0;r1� 12Q2� ;E :  2p2p3�; 0; 2p3�;r1� 4�2! ;F : 0� q32��Q; 0;s2Q(Q� �) + 32(��Q)2 ; 01A ;G :  �p6 ; 0;r1� �26 ; 0! ;H : 0� q32
 +Q;s2Q(
 +Q)� 32(
 +Q)2 ; 0; 01A ;J :  p6
 + �;s�(
 + �)� 6(
 + �)2 ;r 

 + �; 0! :With respe
t to the 
ase Q = 0, we �nd two additional stationary points, namelyD and H. The �xed point D is asso
iated to RDE. Properties of the �xed points aredisplayed in table 3.In �gures 10 and 11 we show two se
tions of parameter spa
e, with Q = 1=2 andQ = 1 respe
tively, to 
over the di�erent possibilities of stable �xed points. Due tothe positivity of Q, the AD energy density gets enhan
ed at expense of the matterse
tor. If Q is suÆ
iently large, not a single �xed point remains with we� equal or atleast 
lose to zero, indi
ating suppression of MDE. However, we have to note that su
hlarge values of Q are unphysi
al be
ause of the existing bounds on a universal metri

oupling between matter and gravity [5, 20℄.Moreover, let us emphasize that in
reasing Q does not re-establish re
urrent a

eler-18



f.p. existen
e stability 
DE weffA Q �q32 stable:Q2 < minf12 ; 32 � 
Q; �Q� 32g 23Q2 23Q2B1 saddle point:8(
; �;Q) � > p6 ^ Q >q32 ^ 
 < 0 1 1B2 unstableC 8(
; �;Q) unstable 0 13D Q � 1p2 stable: � > 4Q > 2
 16Q2 13E � � 2 stable: 2
 < � < 4Q 4�2 13F 32Q +Q � � � Q+pQ2+122 stable: Q < 1p2^Q �q32 ^ � > maxf4Q; 2Q + 
g 3+Q2�Q�(Q��)2 Q��QG � � p6 stable:�2 < minf4; 3 +Q�; 6� 
�g 1 �1 + �23H 
 � maxf0; 32Q �Qg stable: � > 
 + 2Q^ 
 > 2Q Q
+Q Q
+QJ �(�+ 
) > 6 stable:^ 
 � 0 � < minf2
; 
 + 2Qg 1 ��
�+
Table 3: Properties of the �xed points in the 
ase Q > 0:ation. As in the 
ase Q = 0, generi
 traje
tories whi
h 
onverge toward the spiral fo
usJ approa
hing the 
onne
ting traje
tory, always spend a 
ertain number of e-foldings
lose to a saddle point, where either radiation or matter dominate. Depending on theparameter values, the relevant saddle point is either F , A, H, D or E.
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Figure 10: Parameter-spa
e in the 
ase Q = 12 . Horizontal axis: �, verti
al axis:
. Regions of stability of the various �xed points are indi
ated. The full line is thestability boundary of J . F 
an only be stable if 2 < � < 7=2: For � > 7=2 we �nd newattra
tors A (if 
 < 5=2) and H. In the shaded region a

eleration is impossible at theattra
tor.
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Figure 11: As above, now the 
ase Q = 1: Attra
tors F and A are repla
ed by E (if2 < � < 4) and D, both 
orresponding to radiation era.
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6 Dis
ussion and 
on
lusionsWe have investigated a family of 
at FRW 
osmologi
al models in D = 4, fo
using onthe dynami
s of a s
alar (dilaton) and a pseudo-s
alar (axion) partner of the metri
 �eldin presen
e of 
osmologi
al ba
kground 
uids. Negle
ting any spe
i�
 intera
tion termof the axion and the dilaton, whi
h are present in parti
le physi
s or string motivatedmodels, we have 
onsidered the { simpli�ed { s
enario of universal metri
 
oupling.Motivated by re
ent results of [14℄, where re
urrent a

eleration was veri�ed in a large
lass of AD models in absen
e of matter or radiation, we have analyzed the possibilityto 
ombine the phenomenon of re
urrent a

eleration with a 
osmologi
al ba
kgroundevolution in 
on
ordan
e with �CDM 
osmology. In parti
ular, we have 
onsideredthe viability of the AD system as a 
andidate of dynami
al dark energy.Using a di�erent 
hoi
e of dynami
al variables, well-suited to the more general 
asewith ba
kground 
uids, we were able to reprodu
e the �ndings of [14℄ (
orrespondingto S
uid = 0) . The new feature of models with S
uid 6= 0 is the existen
e of a stationary
osmologi
al s
aling solution within a wide range of parameter spa
e. As long as Q is(
lose to) zero, the relevant �xed point is F , 
orresponding to matter dominan
e. Inparti
ular, if being a saddle point, F in
uen
es the evolution along generi
 traje
toriesin su
h a way that the phenomenon of re
urrent a

eleration, as observed in [14℄, isredu
ed to small amplitude os
illations of the equation of state at low redshift.We 
an 
ertainly realize a model (by spe
ifying parameters), whi
h is able to re-produ
e the present stage of 
osmi
 evolution as being a transient phenomenon. Thisis already possible in the single-�eld 
ase, 
orresponding to the 
onstant axion s
e-nario within our dynami
al system: The dilaton remains frozen, due to Hubble fri
tiondominan
e, right up to the present, and later-on evolves toward an attra
tor solutionexhibiting we� > �1=3: On the other hand, if the axion dynami
s is non-trivial, itis also possible to get a se
ond a

elerating stage in the future, whi
h will then beever-lasting.Though we have to 
on
lude that re
urrent a

eleration as des
ribed in [14℄ is notrelevant to dark energy model building, we have dis
overed a di�erent, interestingpossibility instead, whi
h we may 
all the F ! J s
enario. Does it provide a viablemodel of dynami
al dark energy?The 
o-existen
e of a matter-dominated s
aling solution and a dark energy domi-nated a

elerating solution is generally 
onsidered to be a very attra
tive feature ofdynami
al DE models [2, 18℄. In the single-�eld 
ase [17℄, the existen
e of F is ex
ludedby the stability 
ondition of the �xed point G, whi
h is the only available 
andidateto a
hieve late time a

eleration. However, in presen
e of an axion �eld, the s
alingregime of F 
an be su

eeded by a stage of a

elerated expansion, represented by the�xed point J . During radiation and matter dominated epo
hs, the evolution of the21



AD se
tor is determined by the saddle point, while our present situation 
orrespondsto the transition toward the late time attra
tor solution. Unfortunately, the onset ofthis transition is subje
t to a 
ertain �ne tuning of initial 
onditions.One single �ne tuning of the s
alar potential energy s
ale is always mandatory indynami
al models of DE, sin
e it 
orresponds to setting the 
osmi
 
lo
k. The re-quirement of naturalness [21℄ strongly disfavors models whi
h need a �ne tuning ofthe same order as in the 
osmologi
al 
onstant 
ase. In this respe
t, two-�eld modelsin
orporating the F ! J s
enario are 
ertainly promising: In our numeri
al example,the potential s
ale is initially set to O(1015)�
�j1MeV. Even larger values are possible,but have to be 
ompensated by redu
ing x2;in; in order to keep the 
osmi
 
lo
k tuned.We need to emphasize, however, that extremely small values of the axion �eld velo
ityare by no means unphysi
al. In fa
t, the most natural solution is a 
onstant axion, aslong as the Hubble rate is large enough to keep the fri
tion term positive.To 
on
lude, let us stress an intriguing feature of the 
lass of models under 
onsid-eration. Single-�eld potentials are typi
ally required to be extremely 
at in order tosatisfy observational 
onstraints. However, in the F ! J s
enario this is not true:there is no upper bound on the parameter � determining the potential slope. Thisaspe
t opens up new possibilities for dark energy model building whi
h we believe tobe promising enough to motivate further investigation.A
knowledgmentsWe would like to thank Wilfried Bu
hm�uller for enlightening 
omments and suggestionsduring the development of this work. R. Catena a
knowledges a Resear
h Grant fundedby the VIPAC Institute.
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A Dynami
al systems terminologyWe 
onsider a system of n �rst order ordinary di�erential equations (ODE),_xi = fi(x1; :::; xn); (18)whi
h is 
alled autonomous if none of the n fun
tions fi expli
itly depends on time. Asolution of the system is given in terms of a traje
tory in phase spa
e,t 7�! X(t) := (x1(t); :::; xn(t));determined by 
hoi
e of initial 
onditions X(tinit).A point Xs := (x1;s; :::; xn;s) is said to be a 
riti
al, stationary or �xed point iffi(Xs) = 0 8 i � n;and an attra
tor if there exists a neighborhood of the �xed point su
h that everytraje
tory entering this neighborhood satis�es the following 
ondition:limt!1X(t) = Xs:Now 
onsider small perturbations around the 
riti
al point,xi = xi;s + Æxi:Linearizing the evolution equations we obtain a system of �rst order ODE linear in theperturbations, ddtÆxi =Xj MijÆxj; (19)where Mij := �fi(X)�xj ����X=Xs :The general solution of this system is given byÆxi = nXk=1 Cike�kt;where Cik are integration 
onstants and �k the eigenvalues of the Ja
obi or stabilitymatrix M , whi
h we have assumed to be distin
t for simpli
ity. Obviously the pertur-bation will de
ay if ea
h �k has negative real part.The 
riti
al points of a dynami
al system 
an be 
lassi�ed in terms of the eigenvaluesof the 
orresponding stability matrix. An attra
tor is 
hara
terized by the requirementRe[�k℄ < 0 8 k � n;and 
alled spiral fo
us if at least one pair of eigenvalues is 
omplex and stable node else.Furthermore we will use the terminus saddle point if and only if M has one eigenvaluewith positive real part. In any other 
ase we 
all the �xed point unstable.23



B Ja
obi matrix eigenvaluesIn the following we list the Ja
obi matrix eigenvalues at the di�erent �xed points ofthe models with ba
kground 
uids.B.1 Case Q = 0 A : �32 ; �32 ; 32 ; �12 ;B1 : 3; 1; r32
; 3�r32�;B2 : 3; 1; �r32
; 3 +r32�;C : 2; �1; �1; 1;E : 1; �1 + 2
� ; 12 ��1� p64�2 � 15�4�2 � ;F : �12 ; 3(
 � �)2� ; 34 ��1� p24�2 � 7�4�2 � ;G : 12(�2 � 6); 12(�(�+ 
)� 6); �2 � 3; 12(�2 � 4);J : 3�1� 2

 + �� ; 1� 3

 + �;32(
 + �)  �
 �r
2 + 8
(
 + �)� 43
�(
 + �)2! :
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B.2 Case Q 6= 0A : �12 +Q2; �32 +Q2; �32 +Q(Q + 
); 32 +Q(Q� �);B1 : 1; 3�p6Q; r32
; 3�r32�;B2 : 1; 3 +p6Q; �r32
; 3 +r32�;C : 2; �1; �1; 1;D : �1 + 
2Q; 2� �2Q; 12  �1� p2Q2 � 3Q4Q2 ! ;E : 1� 4Q� ; �1 + 2
� ; 12 ��1� p64�2 � 15�4�2 � ;F : � �� 4Q2(��Q) ; 32 ��1 + 
 +Q��Q� ;34(��Q)2  �(�� 2Q)(��Q)�r(��Q)2[24� 7�2 � 12�Q+ 20Q2 + 163 �Q(��Q)2℄! ;G : 12(�2 � 6); 12(�(�+ 
)� 6); � 3 + �(��Q); 12(�2 � 4);H : 1� 3
2(
 +Q) ; 32(1� ��Q
 +Q );14(
 +Q) ��3
 �p81
2 � 24
Q[2(
 +Q)2 � 3℄� ;J : 3�1� 2(
 +Q)
 + � � ; 1� 3

 + �:32(
 + �)  �
 �r
2 + 8
(
 + �)� 43
�(
 + �)2!
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