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ompa
ti�ed on an orbifold.The physi
al quarks and leptons are mixtures of brane and bulk states. This leadsto a 
hara
teristi
 pattern of mass matri
es and high-energy CP violating phases.The hierar
hy of up and down quark masses determines the CKM matrix and most
harged lepton and neutrino masses and mixings. The small hierar
hy of neutrinomasses is a 
onsequen
e of the mismat
h of the up and down quark mass hierar-
hies. The e�e
tive CP violating phases in the quark se
tor, neutrino os
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1. Introdu
tionGrand uni�ed theories (GUTs) appear to be the most promising framework [1, 2℄ toaddress the still 
hallenging question of quark and lepton masses and mixings. Duringthe past years new results from neutrino physi
s have shed new light on this problem,and the large di�eren
es between the mass hierar
hies and mixing angles of quarks,
harged leptons and neutrinos impose strong 
onstraints on uni�ed extensions ofthe Standard Model (SM) [3, 4℄. Massive neutrinos are most easily in
orporated intheories with right-handed neutrinos, whi
h leads to SO(10) as preferred GUT gaugegroup [5, 6℄.Higher-dimensional theories o�er new possibilities to des
ribe gauge symmetrybreaking, the notorious doublet-triplet splitting and also fermion masses. A simpleand elegant s
heme is provided by orbifold 
ompa
ti�
ations whi
h have re
entlybeen 
onsidered for GUT models in �ve and six dimensions [7�12℄. In this paperwe analyse in detail the 
onne
tion between quark and lepton mass matri
es in the� 1 �



six-dimensional (6D) GUT model suggested in [13℄, for whi
h also proton de
ay [14℄,supersymmetry breaking [15℄ and gauge 
oupling uni�
ation [16℄ have been studied.An alternative SO(10) model in �ve and six dimensions has previously been studiedin [17℄. For a re
ent dis
ussion of CP violation in a 5D orbifold GUT model, see [18℄.An important ingredient of orbifold GUTs is the presen
e of split bulk multipletswhose mixings with 
omplete GUT multiplets, lo
alised at the �xed points, 
an sig-ni�
antly modify ordinary GUT mass relations. This extends the known me
hanismof mixing with ve
torlike multiplets [19�21℄. Su
h models have a large mixing ofleft-handed leptons and right-handed down quarks, while small mixings of the left-handed down quarks. In this way large mixings in the leptoni
 
harged 
urrent arenaturally re
on
iled with small CKM mixings in the quark 
urrent.Our model of quark and lepton masses and mixings relates di�erent orders ofmagnitude whereas fa
tors O(1) remain undetermined. Hen
e, we 
an only dis
ussqualitative features of quark and lepton mass matri
es. Re
ently, orbifold 
ompa
t-i�
ations of the heteroti
 string have been 
onstru
ted whi
h 
an a

ount for thestandard model in four dimensions and whi
h have a six-dimensional GUT stru
tureas intermediate step very similar to familiar orbifold GUT models [22�24℄. In su
hmodels the 
urrently unknown O(1) fa
tors are in prin
iple 
al
ulable, whi
h wouldthen allow for quantitative predi
tions.The goal of the present paper is twofold: As a typi
al example, we �rst studythe model [13℄ in more detail and expli
itly 
ompute the mass eigenstates, massesand mixing angles. Se
ond, we investigate the question of CP violation, both inthe quark and lepton se
tor and possible 
onne
tions between the two. In previousstudies, CP violation has mostly been negle
ted assuming that, barring fortunate
an
ellations, the phases and mixings are pra
ti
ally independent. Nevertheless thisquestion and the �avour stru
ture are strongly inter
onne
ted, and we will see that aspe
i�
 pattern of mass matri
es 
an give a distin
t signature also in the CP violationinvariants.This paper is organised as follows: In Se
tion 2 we des
ribe the 6D orbifoldGUT model and the diagonalisation of the mass matri
es de�ning the low energySM fermions. In Se
tion 3 we dis
uss the CP violation in the quark se
tor, whereasSe
tion 4 is devoted to the CP violation in the leptoni
 se
tor. Con
lusions aregiven in Se
tion 5. Two appendi
es provide details to the 
omputation of the masseigenstates and CP violation in extensions of the SM.2. SO(10) Uni�
ation in six dimensionsWe study an SO(10) GUT model in 6D with N = 1 supersymmetry 
ompa
ti�edon the orbifold T2=(ZI2 � ZPS2 � ZGG2 ) [11, 12℄. The theory has four �xed points, OI,OPS, OGG and O�, lo
ated at the four 
orners of a `pillow' 
orresponding to the two
ompa
t dimensions (
f. Fig. 1). The extended supersymmetry is broken at all �xed� 2 �



Oi [SO(10)]

Ogg [Ggg] Ofl [Gfl]

Ops [Gps]Figure 1: The three SO(10) subgroups at the 
orresponding �xed points (branes) of theorbifold T2=(ZI2 � ZPS2 � ZGG2 ).points; in addition, the gauge group SO(10) is broken to its three subgroups GPS =SU(4) � SU(2) � SU(2); GGG = SU(5) � U(1)X ; and �ipped SU(5), G� = SU(5)0 �U(1)0, at OPS, OGG and O�, respe
tively. The interse
tion of all these GUT groupsyields the standard model group with an additional U(1) fa
tor, GSM0 = SU(3) �SU(2) � U(1)Y � U(1)Y 0 , as unbroken gauge symmetry below the 
ompa
ti�
ations
ale.The �eld 
ontent of the theory is strongly 
onstrained by imposing the 
an
ella-tion of irredu
ible bulk and brane anomalies [25℄. The model proposed in Ref. [13℄
ontains three spinors  i(16), i = 1 : : : 3, as brane �elds as well as six ve
torial �eldsHj(10), j = 1 : : : 6, and two pairs of spinors, �(16) + �
(16) and �(16) + �
(16) asbulk hypermultiplets.The massless zero modes N(�) and N 
(�
) a
quire va
uum expe
tation values(vevs), vN = hNi = hN 
i, breaking B�L and thus GSM0 to GSM. The breaking s
aleis 
lose to the 
ompa
ti�
ation s
ale so that v2N=M� � 1014 GeV, where M� is the
uto� of the 6D theory. At the weak s
ale, the doublets Hd(H1) and Hu(H2) a
quirevevs, v1 = hHdi and v2 = hHui, breaking the ele
troweak symmetry.The three sequential 16-plets are lo
ated on the three branes where SO(10) isbroken to its three GUT subgroups; in parti
ular, we pla
e  1 at OGG,  2 at O� and 3 at OPS. The parities of H5, H6, �, and �
 are 
hosen su
h that their zero modes,L(�) = ��4e4� ; L
(�
) = ��
4e
4� ; d
4(H5) ; d4(H6) ; (2.1)have the quantum numbers of a lepton doublet and antidoublet as well as anti-downand down-quark singlets, respe
tively. Both L(�) and L
(�
) are SU(2)L doublets.Together these zero modes a
t as a fourth ve
torial generation of down quarks andleptons.The three `families'  i are separated by distan
es large 
ompared to the 
uto�s
ale M�. Hen
e, they 
an only have diagonal Yukawa 
ouplings with the bulk Higgs�elds; dire
t mixings are exponentially suppressed. The brane �elds, however, 
anmix with the bulk zero modes for whi
h we expe
t no suppression. These mixings� 3 �



take pla
e only among left-handed leptons and right-handed down quarks, leadingto a 
hara
teristi
 pattern of mass matri
es [13, 14℄.The mass terms assume the 
hara
teristi
 form,W = uimui u
i + d�md��d
� + e
�me��e� + �
�mD���� + 12 �
imNi �
i ; (2.2)where latin indi
es only span 1; 2; 3, while greak indi
es in
lude the forth generationstates. The up quark and Majorana neutrino mass matri
es,mu andmN , are diagonal3� 3 matri
es,mu = 0�hu11v2 0 00 hu22v2 00 0 hu33v21A ; mN = 0B�hN11 v2NM� 0 00 hN22 v2NM� 00 0 hN33 v2NM�1CA : (2.3a)Sin
e �
4 is part of an SU(2)L doublet, it 
annot 
ouple to the other SM singlets in i via the B � L breaking �eld. Furthermore, there is no other 
oupling giving it adire
t Majorana mass.The Dira
 mass matri
es of down quarks, 
harged leptons and neutrinos, md, meand mD, respe
tively, are 4 � 4 matri
es instead, due to the mixing with the bulk�eld zero modes,md = 0BBB�hd11v1 0 0 gd1 vNM�v10 hd22v1 0 gd2 vNM�v10 0 hd33v1 gd3 vNM�v1f1vN f2vN f3vN Md 1CCCA ; (2.3b)
me = 0BBB�hd11v1 0 0 he14v10 he22v1 0 he24v10 0 hd33v1 he34v1M l1 M l2 M l3 M l4

1CCCA ; mD = 0BBB�hD11v2 0 0 hD14v20 hu22v2 0 hD24v20 0 hu33v2 hD34v2M l1 M l2 M l3 M l4
1CCCA ; (2.3
)up to 
orre
tions O(v2N=M2� ). The diagonal elements satisfy four GUT relationswhi
h 
orrespond only to the lo
al unbroken groups, i.e., SU(5), �ipped SU(5) andPati-Salam subgroups of SO(10). The hypothesis of a universal strength of Yukawa
ouplings at ea
h �xpoint leads to the identi�
ation of the diagonal and o�-diagonalelements of mu= tan�, md, me, and mD= tan�, where tan� = v2=v1, up to 
oe�-
ients of order one. This implies an approximate top-bottom uni�
ation with largetan � and a parametrisation of quark and lepton mass hierar
hies in terms of the sixparameters �i and e�i.The 
ru
ial feature of the matri
es md, me and mD are the mixings between thesix brane states and the two bulk states. The �rst three rows of the matri
es areproportional to the ele
troweak s
ale. The 
orresponding Yukawa 
ouplings have tobe hierar
hi
al in order to obtain a realisti
 spe
trum of quark and lepton masses.� 4 �



This 
orresponds to di�erent strengths of the Yukawa 
ouplings at the di�erent �xedpoints of the orbifold. The fourth row, proportional to Md, M l and vN , is of orderthe uni�
ation s
ale and, we assume, non-hierar
hi
al.The mass matri
es md, me and mD are of the 
ommon formm = 0BBB� �1 0 0 e�10 �2 0 e�20 0 �3 e�3fM1 fM2 fM3 fM4
1CCCA ; (2.4)where �i; e�i = O(v1;2) and fMi = O(MGUT). This matrix 
an be diagonalised usingthe unitary matri
es m = U4U3DV y3 V y4 (2.5)where the matri
es U4 and V4 single out the heavy mass eigenstate, that 
an thenbe integrated away, while U3 and V3 a
t only on the SM �avour indi
es and performthe �nal diagonalisation also in the 3� 3 subspa
e. The expli
it expressions for themixing matri
es and the mass eigenstates are given in Appendix A.The parameters in the matrix Eq. (2.4) are generally 
omplex; however, we 
anabsorb seven phases with appropriate �eld rede�nitions and 
hoose the remainingthree physi
al phases to be 
ontained into the diagonal parameters �i,m = 0BBB�j�1j ei�1 0 0 e�10 j�2j ei�2 0 e�20 0 j�3j ei�3 e�3fM1 fM2 fM3 fM4

1CCCA : (2.6)This is the maximal number of physi
al phases for four generations of Dira
 fermions,given as usual by (n� 1)(n� 2)=2 for n generations, so our texture above does notredu
e the CP violation from the typi
al n = 4 
ase. We will see that the phasessurvive in the low energy parameters, but that only one 
ombination de�nes thesingle phase 
hara
teristi
 of three generations.With this 
hoi
e, the matrix V4 is real, while U4 
ontains 
omplex parameters;however, the imaginary part is suppressed by j�ij =fM so that their e�e
t on the lowenergy CP violation is negligible as long as the mass of the heavy eigenstate is large
ompared to the ele
troweak s
ale. From the uni�
ation of the gauge 
ouplings, weexpe
t indeed fM to be of the order of the GUT s
ale [16℄. Then the dis
ussion ofthe low energy CP violation, whi
h would in general be 
hara
terised by many CPinvariants [26, 27℄, redu
es to the 
ase of three light generations (see Appendix B).The e�e
tive mass matrix is given by bm, the 3� 3 part ofm0 = U y4mV4 =  bm 00 fM!+O� v2fM2� ; bm = 0��1(V4)1j + e�1(V4)4j�2(V4)2j + e�2(V4)4j�3(V4)3j + e�3(V4)4j1A ; (2.7)
� 5 �



in terms of the parameters in Eq. (2.4), it reads
bm = 0BBBBBBB��1

fM4pfM21+fM24 � e�1 fM1pfM21+fM24 0 ��1 fM1pfM22+fM23fMpfM21+fM24 � e�1 fM4pfM22+fM23fMpfM21+fM24� e�2 fM1pfM21+fM24 �2 fM3pfM22+fM23 �2 fM2pfM21+fM24fMpfM22+fM23 � e�2 fM4pfM22+fM23fMpfM21+fM24� e�3 fM1pfM21+fM24 ��3 fM2pfM22+fM23 �3 fM3pfM21+fM24fMpfM22+fM23 � e�3 fM4pfM22+fM23fMpfM21+fM24
1CCCCCCCA :

As any matrix, bm 
an be transformed into upper triangular form just by basis redef-inition on the right, m = bm bV3 = 0�
�1 �1 ��10 �2 ��20 0 �3 1A : (2.8)This form is parti
ularly suitable in the 
ase of the down quarks, where bV3 a
ts onthe right-handed quarks and disappears from the low energy Lagrangian due to theabsen
e of right-handed 
urrent intera
tions. Note that we 
an reshu�e the phases,reabsorbing three of them into the unitary transformation bV3, but we are still leftwith three 
omplex parameters. We 
an exploit this freedom to obtain real diagonalelements �2, �3 and 
�1, while �, �, and �1 remain 
omplex.On the other hand, we 
an still rede�ne two phases on the left-hand side, keepingan overall phase free, with a diagonal matrixPL3 = diag �e�i�1 ; e�i�2; 1� : (2.9)This transformation allows us to shift the phase of �1 into 
, whi
h will be 
onvenientlater in the limit where 
 vanishes. Again, su
h a phase shift does not redu
e thenumber of 
omplex parameters in the down quark matrix, whi
h remains three.Moreover, this reparametrisation does not 
hange the CKM matrix, sin
e the upquark mass matrix is diagonal and so su
h phase transformation 
an be 
ompensatedby an identi
al one for both ui and u
i .The matrix bV3 di�ers from the upper 3 � 3 part of the diagonalising matrixV3 = bV3V 03 ; however, they are very similar in the hierar
hi
al 
ase. The relationbetween these two 
an be found in Appendix A, together with the general expressionfor U3, the 3� 3 part of whi
h is the CKM matrix.For the leptons, it is the matrix V4V3 that a
ts on the left-handed states, so themismat
h between the 
harged leptons and neutrinos (see Eq. (2.3
)) basis appears inthe 
harged 
urrent intera
tion and the de�nition of the �avour neutrino eigenstates.However, the matrix V4 whi
h 
ontains large mixing angles and rotates away theheavy eigenstate is the same for 
harged leptons and neutrinos sin
e the heavy stateis an SU(2)L doublet. Therefore the PMNS matrix will be given only by the mismat
hbetween the bV3 ' V3 matri
es for 
harged leptons and neutrinos.� 6 �



The 
omplete expressions for the parameters in m are given in Appendix A; inthis se
tion, we will only 
onsider the limit of small �1 as well as small e�1 and/or�2. For �1 = e�1 = 0, the �rst row simply vanishes, whereas for �1 = �2 = 0, thetwo �rst rows of the mass matrix are aligned (see Eq. (2.6)). Therefore both 
ases
orrespond to vanishing down-quark and ele
tron mass.Sin
e e�1=e�2 gives Vus, we fo
us on the 
ase �1 = �2 = 0, where1� = � = e�2�2  e�3�3 � fM4fM ��3fM3 + e�3fM4�3fM ! ; 
 = 0 ;�1e�1 = �2e�2 = j�3j�3 qfM21 + fM22fM : (2.10)The eigenvalues of the heavier states are given bym2b = �23 ; (2.11a)m2s = �22 + j�1j2 = �22�1 + e�21e�22� � �22 ; where e�1e�2 � Vus : (2.11b)In this limit, only one single physi
al CP violating phase survives, even in the 4� 4pi
ture; it is 
ontained in �3 and so in � and � (see Eq. (2.10)). We will see, however,that this single phase is not su�
ient to have low-energy CP violation.The down-quark mass is indeed very small, so we will use these expressions asthe order zero approximation, together with the 
orre
tions proportional to j�2j =�2,whi
h determine the masses of the down-quark and the ele
tron. Our expansionparameter will therefore be of the order of the mass ratio of the down and strange-quark, md=ms. In fa
t, for j�1j � j�2j we have at leading ordermd = 
�1 ' e�1 j�2j�2 j�3j�3 ' j�2j j�1j�2 ' Vus j�2j ; (2.11
)so our expansion parameter is j�2j�2 ' mdmsVus � 0:23 : (2.12)The mass ratio of ele
tron and muon is mu
h smaller than the ratio of downand strange quark. This implies (�2e�1=e�22)e � (�2e�1=e�22)d. Assuming that thedi�eren
e is due to the smallest matrix elements, this indi
ates (�2)e=(�2)d � 1and/or (e�1)e=(e�1)d � 1 for (e�2)e ' (e�2)d. This fa
t 
an easily be a

ommodated,as we see in Eqs. (2.3): the presen
e of the se
ond generation on the �ipped SU(5)1As mentioned above, it is instru
tive to 
hoose the basis in whi
h �1 is real and the vanishingparameter 
�1 
omplex. Then it is obvious that we are left with only two 
omplex parameters inm, namely � and �, 
ontaining the same phase.� 7 �



brane leads to di�erent values of �2 for the down quarks and 
harged leptons andthe parameter e�1 stems from di�erent 
ouplings in the superpotential.While we derived the fermion mass matri
es (2.3) within a spe
i�
 model, they
an also arise in other models, where additional matter is present at the GUT (or
ompa
ti�
ation) s
ale. Thus we 
ould take these matri
es as a starting point forthe following dis
ussion, leaving open the question of their origin.3. CP violation in the quark se
torWe will �rst 
onsider the CP violation in the quark se
tor. As we have seen in theprevious se
tion, our e�e
tive 3 � 3 down quark mass matrix 
ontains three phasesas a remnant of the original 4� 4 matrix, with the dominant 
omplex element being��2. We will now derive the 
ombination of the three phases, whi
h plays the roleof the CKM phase.To des
ribe CP violation for three generations, as is the 
ase in the SM, it is
onvenient to use the Jarlskog invariant [28℄, Jq, whi
h is given by6 i�M 2u �M 2d Jq = tr [Hu; Hd℄3 = 6 Im tr �H2uH2dHuHd� ; (3.1)where H = mmy and�M 2 = �m23 �m22� �m23 �m21� �m22 �m21� ; (3.2)note that �M 2 has mass-dimension six. In our model, the up quark mass matrix isdiagonal, as is Hu. Then the invariant strongly simpli�es and readsJq = Im(H12d H23d H31d )�M 2d : (3.3)It is 
lear from this expression, that any diagonal phase transformation of m on theleft does not have any e�e
t on the Jarlskog invariant.As dis
ussed in Appendix B, we 
an use the e�e
tive 3 � 3 mass matrixHe�d = bm bmy = mmy. By means of Eq. (2.8), we obtainHe�d = 0�j�1j2 �1 + j�j2 + j
j2� �1�2 (1 + ���) �1�3���1�2 (1 + ���) �22 �1 + j�j2� �2�3���1�3�� �2�3�� �23 1A ; (3.4)where �2 and �3 are real parameters, as displayed in Eqs. (A.4). Then we haveIm h�He�d �12 �He�d �23 �He�d �31i = j�1j2 �22�23 Im��� (1 + ���) (3.5)= j�1j2 �22�23 Im���= �2�23 Im [(��2) (��1)� �1℄ :
� 8 �



We see that the Jarlskog invariant is always independent of the argument of 
 and itvanishes in the limit �1; e�1 ! 0 su
h that �1 = 0. As we might expe
t, Jq vanishesfor � = � as well, i.e., in the limit �1; �2 ! 0.So the presen
e of a single phase in � is not su�
ient to give CP violation in thelow energy: this phase 
an
els out in the Jarlskog invariant. This e�e
t stems fromthe alignment of the ve
tors in �avour spa
e; however, even in the 
ase of vanishing�rst generation mass, the 
orresponding eigenve
tor does not de
ouple from the othertwo and the mixing matrix does not redu
e to the two-generational 
ase. In fa
t, theCKM matrix is given by (see Appendix A)2VCKM (md = 0) ' 0BBB� 1 �1�2 �1��3� ��1�2 1 �2��30 ��2���3 1 1CCCA ; U3 =  V yCKM 00 1! : (3.6)Hen
e, we 
annot 
on
lude that the CP e�e
ts disappear due to the redu
tion ofthe system to two generations, nor to the mass degenera
y between quarks. Insteadthe absen
e of low energy CP violation is 
aused by the parti
ular texture of m inexa
tly the same basis for the left-handed quark doublet, where the up quark matrixis diagonal. This feature is similar to the absen
e of CP violation in 4D SO(10)
onstru
tions, where a single ten-dimensional Higgs �eld generates fermioni
 masses,yielding a trivial CKM matrix. Note that there is still some CP violation e�e
tarising from the dominant phase �3 in �3, but it is only apparent in the mixingsinvolving the fourth heavy state.Now, the down quark is not massless and the real physi
al 
ase 
orresponds tonon-zero �1, �2 and e�1. From the up quark phenomenology, we know that �1 : �2is similar to the mass ratio of up and 
harm-quark [13℄; in addition, e�1 : e�2 is �xedby the Cabibbo angle. We will therefore fo
us on the linear terms in �2 and keep�1 ' 0.As is apparent in Eq. (3.5), 
ontributions to Jq 
ome from the 
omplex quantities��2, ��1, and �1; however, ��1 is independent of �2 (see Eq. (A.4)),��1 = e�1 "e�3�3 � fM4fM e�3fM4 + ��3fM3�3fM # : (3.7)The �rst order terms areÆ(��2) = ��2fM2fM e�3fM4 + ��3fM3�3fM ;Æ�1 = e�1��2�2 �3�23 fM2fM e�3fM3 � ��3fM4�3fM ; (3.8)2We 
an exploit the phase transformation P3L (2.9) to absorb the phases of �1; � and make allelements of the CKM matrix real showing expli
itly that the CP violation disappears.� 9 �



and the Jarlskog invariant readsJq = �e�21e�22e�23�M 2d fM2fM3fM2 " 1� fM24fM2! Im �3��2e�3e�2 + fM3fM4fM2 j�3j2e�23 Im �2e�2# : (3.9)We see that Jq vanishes if either �2 or �3 vanish, so two 
omplex quantities areneeded to obtain CP violation at low energies.It is instru
tive to 
al
ulateHe�d also from the matrix bm, Eq. (2.7). Here we noti
ethat the o�-diagonal elements of su
h matrix are relatively simple sin
e we 
an exploitthe unitarity of the matrix V4, whi
h gives P3k=1(V4)ik(V4)�jk = Æij � (V4)i4(V4)�j4. Sowe have for i 6= j�He�d �ij = e�ie�j �1� aia�j� ; ai � e�ifM4 + �ifMie�ifM ; (3.10)from whi
h we get the simple expressionIm h�He�d �12 �He�d �23 �He�d �31i = e�21e�22e�23 X
y
l. perm ijk �1 + jaij2� Im �a�jak� : (3.11)In the limit of vanishing �i, we see that ai = fM4=fM ; thus for �1 = �2 = 0, theexpression simpli�es toIm h�He�d �12 �He�d �23 �He�d �31i = e�21e�22e�23 1 + fM24fM2! Im"��3fM4fM + �3fM4fM # = 0 :For �1 = 0 but �2 6= 0, we then obtainIm h�He�d �12 �He�d �23 �He�d �31i = e�21e�22e�23fM2fM3fM2 " 1� fM24fM2! Im��3��2e�3e�2� (3.12)+fM3fM4fM2 j�3j2e�23 Im��2e�2�� fM2fM4fM2 j�2j2e�22 Im��3e�3�# :The 
omplete expression for Jq is displayed in Eq. (A.19); the dominant terms areexa
tly those given in Eq. (3.9).For degenerate heavy masses fM , the result simpli�es toJq = 116 e�21e�2�M 2d �3 e�3 Im (�3��2) + j�3j2 Im (�2)� : (3.13)Note that the numeri
al fa
tor, 116 , is minimal for degenerate fM . Due to the hierar
hyof the down quarks, �M 2d ' m2sm4b ' �22�43. So we �nally obtain, substituting theorder of magnitude of the parameters, with e�3 ' j�3j,Jq ' Vusmdmsm2b 14p2 (3 sin (�3 � �2) + sin �2) ' 10�5 (3 sin (�3 � �2) + sin �2) :(3.14)
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This is the right order of magnitude; the 
urrent experimental value is Jq = 3� 10�5[29℄. From Eq. (3.14) we 
an 
on
lude that a single 
omplex parameter, with theother two vanishing, is not enough to have low-energy CP violation in the quark se
torand that the CKM phase is a 
ombination of the high-energy phases �i weighted bymass hierar
hies. Moreover, maximal phases seem to be needed to give the largelow-energy phase observed.4. CP violation in the leptoni
 se
torThe 
harged lepton and Dira
 neutrino mass matri
es 
an be transformed like thedown quark mass matrix. The heavy state is an SU(2)L doublet, so V4 singles outthe same state for 
harged leptons and neutrinos.The e�e
tive 3� 3-matri
es read (
f. Eq. (2.7))bme = 0��1(V4)1j + e�1(V4)4j�2(V4)2j + e�2(V4)4j�3(V4)3j + e�3(V4)4j1A ; bmD = 0��1(V4)1j + e�1(V4)4j�2(V4)2j + e�2(V4)4j�3(V4)3j + e�3(V4)4j1A : (4.1)Within our model we assume the hierar
hi
al patterns of �i and �i as well as e�i ande�i (i = 1::3) to be the same as for down quarks. The pre
ise values, however, 
anbe di�erent sin
e they originate from di�erent Yukawa 
ouplings, see Eqs. (2.3
).Again, we 
hoose the 
ouplings between the brane states, �i and �i, 
omplex.Although some of the 
harged lepton and down quark parameters, namely �1and �3, are related by GUT symmetries, the 
orresponding phases after the redef-inition leading to Eq. (2.6) are 
ompletely un
orrelated. Thus, there is no dire
trelation between the CP violation in the leptoni
 and in the hadroni
 observables,even though, barring 
an
ellations, we expe
t the leptoni
 CP violation to be largeas well. Furthermore, we will see that di�erent 
ombinations of the phases determinethe experimental observables. Thus even if there were relations between the phasesin the quark and lepton se
tor, these would not be observable. Some 
orrelations,however, 
ould survive between 
harged and neutral leptons. As in the quark se
tor,we expe
t similar suppression for the CP violation due to the spe
i�
 mass texturein our model.The dis
ussion of the 
harged lepton masses 
losely follows the dis
ussion of thedown quarks in the previous se
tion. The parameters are 
hosen su
h that theymat
h the observed hierar
hy, as des
ribed in Appendix A.1. The light neutrinomasses, however, result from the seesaw me
hanism, sin
e we have heavy Majoranamasses for the right-handed neutrinos. This Majorana matrix is diagonal, but 
anhave 
omplex entries (
f. Eq. (2.3a)),mN = 0�M1e2i�1 0 00 M2e2i�2 00 0 M3e2i�31A = e2i�30�M1e2i��13 0 00 M2e2i��23 00 0 M31A ; (4.2)
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where ��ij = �i � �j. Altogether, we have nine independent phases in the lep-ton se
tor; in the limit of small �1 and �1, they redu
e to seven. Sin
e neutrinosare Majorana, we have less freedom in the phase reshu�ing. However, ex
ept forele
troweak breaking e�e
ts in U4, the heavy state is e�e
tively an SU(2)-doublet ofDira
 fermions. This allows us to absorb some phases in the Dira
 mass matrix andredu
e the system to three generations for both 
harged and neutral leptons at thesame time. In the following, we will negle
t any e�e
t of this heavy fourth generationdoublet and 
on
entrate on the three light generations in
luding the right-handedneutrinos. We expe
t this approximation to be valid as long as fM �MGUT is mu
hlarger than the Majorana masses Mi [16℄.4.1 Seesaw Me
hanism and E�e
tive Mass MatrixIn the 
ase of the leptons, neither bme nor bmD is diagonal and therefore we will 
hangethe basis in order to simplify the dis
ussion of the CP violation. Lu
kily, the largerotations of type bV3, whi
h bring the Dira
 matri
es into triangular form, are similarfor 
harged leptons and neutrinos, thanks to the same hierar
hi
al stru
ture.To distinguish the �avour of the light neutrinos, we �rst a
t on the neutrinoDira
 mass matrix with exa
tly the same bV3 that transforms the 
harged leptonmass matrix into the upper triangular form, see Eq. (2.8), and obtainmD = 0�A�1 D�1 �1B�2 E�2 �2C�3 F�3 �31A : (4.3)At this stage the 
harged lepton mass matrix is not yet diagonal, but not very farfrom it: the 
omplete diagonalisation 
an be obtained by applying another nearlydiagonal rotation matrix on the right, 
orresponding to the mismat
h between V3and bV3, and a CKM-like rotation U3 on the left as des
ribed in Appendix A. Notethat su
h a transformation from the left, as U4, in this 
ase a
ts on the right-handed�elds and leaves both H = mym and the light neutrino Majorana mass matrix,m�e� = � �mD�> �mN��1mD; (4.4)un
hanged. In fa
t U4 a
ts in very good approximation as the unity matrix on mNup to terms O(v2=fM2), while U3 just 
an
els out.So apart for the small rotation on the right needed to diagonalise H, whi
ha�e
ts the CP violation in the neutrino os
illation only weakly (see Se
tion 4.3), theneutrino masses and mixings 
an be obtained from Eq. (4.4), in the formm�e� = �0� C2%3 +B2%2 + A2%1 CF%3 +BE%2 + AD%1 C%3 +B%2 + A%1CF%3 +BE%2 + AD%1 F 2%3 + E2%2 +D2%1 F%3 + E%2 +D%1C%3 +B%2 + A%1 F%3 + E%2 +D%1 %3 + %2 + %1 1A ;(4.5)
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where %i = e�2i�i�2i =Mi. Note that the determinant of the (23)-submatrix of m�e�is not of order %23; instead it reads %3%2 (F � E)2 + %3%1 (F �D)2 + %2%1 (E �D)2,allowing a large solar mixing angle [30℄.The leading part of the light neutrino mass matrix (4.5) is obtained in the limit�1; �1 ! 0. From the general expressions (A.24) one obtains�1 = e�1 1�3 1fM2 he�3fM2123 � ��3fM3fM4i ;�2 = 1�3 1fM2 ne�2 he�3fM2123 � ��3fM3fM4i� �2fM2 he�3fM4 + ��3fM3io ;�3 = 1�3 1fM2 ne�3 he�3fM2123 � ��3fM3fM4i� �3 he�3fM3fM4 � ��3fM2124io ; (4.6)where we have introdu
ed fM��
 =qfM2� + fM2� + fM2
 .In our model, the Dira
 neutrino mass matrix has a hierar
hi
al stru
ture similarto the one of down quarks and 
harged leptons. The three smallest elements, however,have a 
onsiderable un
ertainty. Sin
e me 6= md, these elements 
annot be equal forthe three matri
es. Inspe
tion ofmd suggests for e�1 the range between md andmsVus;the di�eren
e is a fa
tor O(1). In the following we shall 
onsider the 
ase of smalle�1. For large e�1 so that j%1j > j%3j, in the following dis
ussion we should inter
hange�3; %3 with �1; %1 and 
onsider it as the dominant s
ale.We here assume �3 : �2 : �1 � e�3 : e�2 : e�1 � mb : ms : md, whi
h yields [13℄j%2jj%3j � �22�23M3M2 � m2sm2b mtm
 � 0:2 ; j%1jj%3j � �21�23M3M1 � m2dm2b mtmu � 0:2 ; (4.7)su
h that %1 � %2 < %3. Hen
e, in this model, the weak hierar
hy in the neutrinose
tor 
an be tra
ed ba
k to the nearly perfe
t 
ompensation between down and upquark hierar
hies.The relation %1 � %2 implies for the two small neutrino masses jm1j � jm2jbarring 
an
ellations or small parameters. As 
omputed in Appendix A, the massesat leading order assuming %3 to dominate are given bym3 = �%3 �1 + jF j2 + jCj2� ;jm2m1j = j%2%1j j(F � E)(A� B) + (D � E)(B � C)j21 + jF j2 + jCj2 : (4.8)The light neutrino mass spe
trum has normal hierar
hy, and the ratio m22=m23 
anbe identi�ed with �m2sol=�m2atm, whi
h is indeed 
onsistent with observations withinthe theoreti
al un
ertainties. � 13 �



The 
oe�
ients A : : : F of the neutrino mass matrix m�e� be
ome in the limit�1; �1 ! 0,A = �e�1�1 �2�2 �3�3 fM1fM ;B = �2e�2 � e�2�2�2�2 �3�3 fM1fM ;C = e�3�3 � �3e�3�3�3 �2�2 fM1fM ;D = e�1�1 1�2 1�23 1fM2 he�2 j�3j2 fM212 + ��2�3fM2 �e�3fM3 � ��3fM4�i ;E = D + e�1�1 �2�2 1�2 1�3 1fM2 he�2��3fM2fM3 + ��2 �e�3fM213 � ��3fM3fM4�i ;F = 1�3 1�2 1�23 1fM2 (e�3�3 � �3e�3) he�2��3fM212 + ��2fM2 �e�3fM3 � ��3fM4�i : (4.9)Note that B, C, F vanish in the limiting 
ase of equal hierar
hy in the neutrinoand 
harged lepton Dira
 mass matrix, i.e., for �i=e�i = �i=e�i, and A is in this 
aseproportional to 
�1. In fa
t, if the neutrino and 
harged lepton ve
tors are perfe
tlyaligned in �avour spa
e the neutrino Dira
 matrix be
omes triangular at the sametime as the 
harged lepton one and we 
annot reprodu
e large neutrino mixing.There is though no reason to expe
t su
h alignment sin
e the parameters e�i, e�i arenot related by any GUT relation, as 
an be seen in Eq. (2.3
). So the large neutrinomixing angles are not generated simply by the large LH rotation 
ontained in the
harged lepton's bV3, but from its misalignment with the neutrinos.Using the relations between e�i, �i and �i, and e�i, �i and �i due to the hierar
hi
alstru
ture of the mass matri
es in our model, one obtains the simple expressions,A � C � �2�2 ; B � �2�2 � �2�2 ; D � E � F � 1 : (4.10)The mixing angles are 
omputed in Appendix A.2; in the 
ase the parametersA, C are small, they are given bytan �23 ' jF j ;tan �12 � jBjjE � F jq1 + jF j2 ;sin �13 � Cq1 + jF j2 + B (EF + 1)�1 + jF j2�3=2 j%2jj%3j : (4.11)The atmospheri
 mixing angle �23 is naturally large; the 
urrent best �t [29, 31℄restri
ts the parameter F as 0:7 . jF j . 1:4 to have it maximal. Note that F � 0:7
an naturally be obtained even for j�3j =e�3 � j�3j =e�3, as dis
ussed in Appendix A.2.� 14 �



For (�2=�2)e � (�2=�2)d � 0:1 one then obtains jCj � 0:1 and a value for �13
lose to the 
urrent upper bound. In this 
ase though, ~�e1 has to be suppressed withrespe
t to the down quark 
ase in order to give a 
onsistently small me. The largesolar mixing �12 
an then be a
hieved for B � 0:1�1 with moderate tuning of E�F .Another possibility is that a very small �2 is 
alled for to explain the smallnessof the ele
tron mass. In this 
ase, we have naturally jAj ; jCj � 0:01 and the rea
torangle is dominated by the se
ond term in Eq. (4.11). Then the angles �12 and �13depend on the same parameter B, but for the se
ond one there is a suppression by%2=%3. So in the 
ase of hierar
hi
al %i, both a large and small angle 
an be explainedeven with relatively large B. Su
h value for B is not unnatural, even for small �2,if we a

ept �2 > (�2)e. In this 
ase we have sin �13 . 0:1 
orrelated with the masseigenvalues m1 . m2 . m3. Note that in general, if all parameters A, B, and C aresmaller than one, we obtain the predi
tion m1 < m2, while for B � 1 the two lowesteigenvalues are nearly degenerate.The largest of the heavy neutrino masses is given by M3 � m2t=p�m2atm �1015 GeV. For the lightest heavy Majorana state the model provides the roughestimate M1 �M3mu=mt � 1010 GeV.4.2 Neutrinoless Double Beta De
ay (0���)The simultaneous de
ay of two neutrons may result in neutrinoless double beta de
ay,e.g., 78Ge ! 76Se + 2e. This pro
ess is 
urrently most promising to prove theMajorana nature of neutrinos. The de
ay width 
an be expressed as� = G ��M2�� jmeej2 ; (4.12)where G is a phase spa
e fa
tor,M the nu
lear 0��� matrix element, and mee is the(11)-element of the light neutrino mass matrix.Sin
e the ele
tron mass is very small, the 
harged lepton mass matrix in trian-gular form has nearly a vanishing �rst row. Then the left-handed ele
tron is alreadysingled out; the remaining rotation mostly a�e
ts the (23)-blo
k. Therefore we 
analready make an estimate of mee from the e�e
tive neutrino Majorana matrix, m�e�.From Eq. (4.5), we read o�jmeej = ��C2%3 +B2%2 + A2%1�� ; (4.13)where the last term 
an be negleted. This result has the same form as the standardformula in the 
ase of hierar
hi
al neutrinos [32℄,jmeej = ����p�m2atm sin2 �13ei(�3��2) +q�m2sol sin2 �12 
os2 �13���� ; (4.14)where �3 and �2 are the two Majorana phases in the 
onventional parametrization ofneutrino mass matrix (A.34). � 15 �



We 
an estimate the size of jmeej in our model usingj�3j ' e�3; j�3j ' e�3; �2�2 � 1; j%3j 'p�m2atm; j%2j 'q�m2sol ; (4.15)whi
h gives jmeej � �����22�22p�m2atm e2i(�2��3) + �22�22q�m2sol���� : (4.16)Clearly, the last term dominates, yielding the familiar result for hierar
hi
al neutrinosjmeej �<p�m2sol � 0:01 eV if �2=e�2 � �2=e�2.4.3 CP Violation in Neutrino Os
illationsLeptoni
 CP violation at low energies 
an be dete
ted via neutrino os
illations, whi
hare sensitive to the Dira
 phase of the light neutrino mass matrix. For a diagonal
harged lepton mass matrix, the strength of Dira
-type CP violation is obtained fromthe invariant [27℄ tr [h�; he℄3 = 6i�M 2e Im �(h�)12 (h�)23 (h�)31� ; (4.17)where h� = (m�)ym� and �M 2e is the produ
t of the mass squared di�eren
es of the
harged leptons, 
f. Eq. (3.2). This quantity is 
onne
ted to the leptoni
 equivalentof the Jarlskog invariant throughJ` = � 1M 2� Im �(h�)12 (h�)23 (h�)31� ; (4.18)where�M 2 = �m23 �m22� �m23 �m21� �m22 �m21� = Æm2solÆm4atm � j%2j2 j%3j4 (4.19)is now the produ
t of the light neutrino mass squared di�eren
es. In the standardparametrisation given in Eq. (A.34),J` = Im [(V�)11(V�)22(V�)�12(V�)�21℄ = 18 
os �13 sin 2�13 sin 2�12 sin 2�23 sin Æ ; (4.20)where Æ is the CP violating Dira
 phase in the SM with massive neutrinos.The expressions (4.18) and (4.20) assume that the 
harged lepton mass matrixis diagonal. In our 
ase, this matrix is nearly diagonal after the bV3 rotation, asthe ele
tron mass is very small; in fa
t, the remaining rotation V 03 deviates from aunit matrix only in the 23 se
tor and at order O �m2�=m2�� � 1 (see Eq. (A.13)).Therefore up to 
orre
tions of this order, we 
an use Eq. (4.18) with the e�e
tiveneutrino mass matrix m�e� given in Eq. (4.5), i.e.,J` = � 1M 2� Im �(h�e�)12 (h�e�)23 (h�e�)31� ; (4.21)
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with now h�e� = (m�e�)ym�e�. We 
ompute the �rst few terms and obtain(h�e�)12= C�F jm3j21+jF j2+jCj2+ C�E (1+F �E+C�B) %2%�3+B�F (1+F �E+C�B)� %�2%3 ;(h�e�)23= F � jm3j21+jF j2+jCj2+ F � (1+F �E+C�B) %2%�3 + E� (1+F �E+C�B)� %�2%3 ;(h�e�)31= C jm3j21+jF j2+jCj2 +B (1+F �E+C�B) %2%�3 + C (1+F �E+C�B)� %�2%3 :(4.22)The leading 
ontribution in the 
y
li
 produ
t of h�e�, whi
h is / jm3j6, is real anddoes not 
ontribute to J`; that is to be expe
ted sin
e it 
orresponds to the limit oftwo massless neutrinos where no physi
al Dira
 phase 
an be de�ned. In general the�rst non-trivial terms are of order j%3j4 j%2j2, as �M 2� , so that we expe
t jJ`j �< 1.We obtain in fa
tJ` � �1 + jBj2 + jEj2� �jEj2 � jF j2 + jBj2 � jCj2��1 + jF j2 + jCj2�3 Im [C�F (F � E)�(B � C)℄ :(4.23)Note that the imaginary part vanishes for E = F or B = C, when the �avour eigen-ve
tors are partially aligned. Furthermore, the 
ontribution disappears for C = 0, soit is suppressed by the small rea
tor angle as expe
ted. Due to the unknown param-eters O(1), no useful upper bound on J` 
an be derived in the general 
ase, but wesee that the Dira
 CP phase is given by a 
ombination of the phases of the neutrinoDira
 mass 
oe�
ients B, C, E and F , derived from the 
omplex parameters �3, �2,�3, �2. No dependen
e arises from the heavy neutrino Majorana phases �3;2 sin
ethey 
an
el out in j%3j4 j%2j2.In the limit �2 ! 0, where A = C = 0, but with B of order unity, the dominant
ontribution to J` 
omes from higher order terms. We 
an obtain it from(h�e�)12 = B�F (1 + F �E)� %�2%3 +B�E �1 + jBj2 + jEj2� j%2j2 ;(h�e�)23 = F � j%3j2 �1 + jF j2�+ F � (1 + F �E) %2%�3 + E� (1 + F �E)� %�2%3 ;(h�e�)31 = B (1 + F �E) %2%�3 +B �1 + jBj2 + jEj2� j%2j2 : (4.24)Note that the leading term, proportional to jBj2 j%3j4 j%2j2, is real, and in fa
t we didnot have any jBj2 
ontributions at that order above. Hen
e, we 
onsider the nextterms, (h�e�)12 (h�e�)23 (h�e�)31 / (1 + F �E)F � (�1E + �2F ) %2%�3+ (1 + F �E)� F (�1F � + �2E�) %�2%3 ; (4.25)
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where we de�ned the real parameters�1 = �1 + jBj2 + jEj2� �1 + jF j2� ;�2 = j1 + E�F j2 : (4.26)Note again that the two terms in Eq. (4.25) are exa
tly 
onjugate to ea
h otherfor E = F when the two heavy eigenstates are nearly aligned. In this limit tan �12be
omes maximal. Therefore, if B gives the dominant 
ontribution, the Dira
 typeCP violation is suppressed for maximal solar angle. The CP invariant vanishes aswell if B = 0 as the system e�e
tively redu
es to two generations and sin �13 = 0(re
all that we are already in the limit A = C = 0). We then obtainIm �(h�e�)12 (h�e�)23 (h�e�)31� = jBj2 j%2j2 j%3j4 (�1 � �2) Im (
) (4.27)with 
 = (1 + EF �)F � (E � F ) %2%3 ;whi
h yields J` � � jBj2 (�1 � �2) Im (
) : (4.28)Comparison with Eq. (4.20) shows then that in this 
ase the standard Dira
 phase Æ isa 
ompli
ated fun
tion of the phases of �3, �3, �2 in the leptoni
 Dira
 mass matri
es,the di�eren
e between two of the Majorana phases ��32 and neutrino masses. It issuppressed by the ratio j%2j = j%3j, as is sin �13.Whenever only few of the parameters in the Dira
 neutrino mass matrix mat-ter, we expe
t 
orrelations between the lightest eigenvalue, the mixing angles andthe maximal value for J`. In Appendix A.2, we 
onsider the simple 
ase where Bdominates and the lightest eigenvalue m1 vanishes; then all the observables are onlyfun
tion of B, E, F , %2=%3 and we show relations among them. In this spe
i�
 
ase,even allowing for the un
ertainty on the phases, upper bounds 
an be obtained forsin �13; mee and J`. In the more general 
ase, subleading terms and other parametersbe
ome important and relax any su
h bounds.4.4 LeptogenesisThe out-of-equilibrium de
ays of heavy Majorana neutrinos is a natural sour
e ofthe 
osmologi
al matter-antimatter asymmetry [33℄. In re
ent years this leptogenesisme
hanism has been studied in great detail. The main ingredients are CP asymmetryand washout pro
esses, whi
h depend on neutrino masses and mixings.It is 
onvenient to work with a diagonal and real matrix for the right-handedneutrinos, whi
h is obtained from mN by the phase transformationPM = diag �e�i�1 ; e�i�2 ; e�i�3� : (4.29)
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For hierar
hi
al heavy neutrinos the generated baryon asymmetry is dominated byde
ays of the lightest state N1. In supersymmetri
 models the 
orresponding CPasymmetry is [34℄"1 = � 38�Xi Im (M21i)M11v2u M1Mi ; M = PM bmD bmDyP �M ; (4.30)where the matrix elements are given, analogously to Eq. (3.10),Mij = ei��jie�ie�j �1� bib�j� ; bi � e�ifM4 + �ifMie�ifM : (4.31)The terms involving one index 1 simplify for �1 = 0 asM11 = e�21 1� fM24fM2! ;M1j = ei��j1e�1e�j  1� fM4fM e�jfM4 + ��jfMje�jfM ! : (4.32)The result then reads "1 ' 38� M1v2u  1� fM24fM2!�1 Xj=2;3 e�2jMj �j ; (4.33)where �j = � Im24ei��j1  1� fM4fM e�jfM4 + ��jfMje�jfM !235 : (4.34)Sin
e e�22M3=(e�23M2) � 0:2, the CP asymmetry is dominated by the intermedi-ate state N3, i.e., "1 ' 3=(8�)M1p�m2atm=v2u. In any 
ase, the phases involved,��13;��12 and the phases of �3; �2, are 
ompletely independent of the low-energyCP violating phase in the quark se
tor and also not so dire
tly 
onne
ted to thatin neutrino os
illations (even if they 
an 
ontribute to it). For M1 � 1010GeV, oneobtains "1 � 10�6, with a baryogenesis temperature TB � M1 � 1010 GeV. Theseare typi
al parameters of thermal leptogenesis [35, 36℄.The strength of the washout pro
esses 
ru
ially depends on the e�e
tive neutrinomass em1 = M11M1 = e�21M1  1� fM24fM2! � %1 �< 0:01 eV : (4.35)With the e�
ien
y fa
tor [37℄�f � 10�2�0:01 eVem1 �1:1 � 10�2 ; (4.36)
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one obtains for the baryon asymmetry�B � 10�2"�f � 10�8�f � 10�10 ; (4.37)
onsistent with observation. So for su

essful leptogenesis we need a non vanishinge�1; %1 and in parti
ular %1 � %2. In su
h 
ase a zero neutrino eigenvalue is onlypossible due to alignment.In the above estimate of the baryon asymmetry we have summed over the lepton�avours in the �nal state. In general, the CP asymmetries as well as the washout pro-
esses depend on the lepton �avour, whi
h 
an lead to a 
onsiderable enhan
ementof the generated baryon asymmetry [38, 39℄. The neutrino masses M1 � 1010 GeV,em1 � 0:01 eV lie in the `fully �avoured regime' where these e�e
ts 
an indeed be im-portant [40℄. Hen
e, depending on the CP violating phases the generated asymmetrymay be signi�
antly larger than the estimate (4.37).5. Con
lusionsWe have studied in detail a spe
i�
 pattern of quark and lepton mass matri
es ob-tained from a six-dimensional GUT model 
ompa
ti�ed on an orbifold. Up quarksand right-handed neutrinos have diagonal 3 � 3 matri
es with the same hierar
hywhereas down quarks, 
harged leptons and Dira
 neutrino mass terms are des
ribedby 4� 4 matri
es whi
h have one large eigenvalue O(MGUT). The origin of this pat-tern are diagonal mass terms for three ordinary quark-lepton families together withlarge mixings O(MGUT) with a pair of SU(5) (5+ �5) plets. This ve
torial fourthgeneration though is made of di�erent split multiplets allowing for a relaxation ofGUT relations. The six mass parameters of the model in the quark se
tor 
an be�xed by the up and down quark masses. This pattern of mass matri
es has severalremarkable features: The CKM matrix is 
orre
tly predi
ted and the ele
tron massis naturally di�erent from the down quark mass.The mismat
h between down and up quark mass hierar
hies leads, via the seesawme
hanism, to three light neutrino masses with a mu
h milder hierar
hy. Left-handedleptons and right-handed quarks have large mixings. This leads to large neutrinomixings and to small CKM mixings of the left-handed down quarks in agreementwith observation.Fa
tors O(1) of the mass matri
es are unknown, and the predi
tive power ofthe model is therefore limited. The neutrino mixings sin �23 � 1 and sin �13 . 0:1are naturally a

ommodated. The 
orresponding neutrino masses are m1 . m2 �p�m2sol < m3 �p�m2atm and jmeej �p�m2sol �< 0:01 eV.The elements of the mass matri
es arise from a large number of di�erent oper-ators. Hen
e, most of the CP violating high-energy phases are unrelated. We �ndthat the measured CP violation in the quark se
tor 
an be obtained, even if the CP� 20 �



invariant is suppressed by the alignment between the two lightest mass eigenstates.Due to the un
ertainties of O(1) fa
tors no useful upper bound on the CP violationin neutrino os
illations is obtained in general. Some 
onstraints 
an be given in thelimited 
ase where the number of dominant parameters is redu
ed, as it happens ifthe parameters A, C in the neutrino Dira
 mass matrix are suppressed by the small-ness of the ele
tron mass. It is indeed intriguing that in our setting the smallnessof the rea
tor angle 
an be 
onne
ted to the lightness of the ele
tron. The modelis 
onsistent with thermal leptogenesis, with a possible enhan
ement of the baryonasymmetry by �avour e�e
ts.We 
on
lude that mixings O(MGUT) of three sequential quark-lepton familieswith ve
torial split multiplets, a pair of lepton doublets and right-handed downquarks, 
an a

ount simultaneously for small quark mixings and large neutrino mix-ings in the 
harged weak 
urrent and, 
orrespondingly, for hierar
hi
al quark massestogether with almost degenerate neutrino masses. The CP phases in the quark se
-tor, neutrino os
illations and leptogenesis are unrelated. Quantitative predi
tions forthe lightest neutrino mass m1 and sin �13 require 
urrently unknown O(1) fa
tors inmore spe
i�
 GUT models.A
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A. Mass matri
esWe will dis
uss here the mass eigenvalues and the mixing matri
es for the low energytheory in relation to the high energy parameters.Given a general matrix of the form as in Eq. (2.4),m = 0BBB� �1 0 0 e�10 �2 0 e�20 0 �3 e�3fM1 fM2 fM3 fM4
1CCCA ;where �i; e�i = O(v1;2) and fMi = O(MGUT), the matri
es U4 and V4 that single outthe heavy state 
an be given as [14℄U4 ' 0BBBB� 1 0 0 �1fM1+e�1fM4fM20 1 0 �2fM2+e�2fM4fM20 0 1 �3fM3+e�3fM4fM2��1fM1+e�1fM4fM2 ��2fM2+e�2fM4fM2 ��3fM3+e�3fM4fM2 1

1CCCCA ; (A.1)
V4 = 0BBBBBBBB�

fM4pfM21+fM24 0 �fM1pfM22+fM23fMpfM21+fM24 fM1fM0 fM3pfM22+fM23 fM2pfM21+fM24fMpfM22+fM23 fM2fM0 � fM2pfM22+fM23 fM3pfM21+fM24fMpfM22+fM23 fM3fM� fM1pfM21+fM24 0 �fM4pfM22+fM23fMpfM21+fM24 fM4fM
1CCCCCCCCA ; (A.2)

with fM =qPi fM2i . In general V4 
ontains large mixings, while U4 is approximatelythe unity matrix, up to terms O (v=fM). Next, U3 and V3 = bV3V 03 diagonalisem0 = U y4mV4 =  bm 00 fM!+O� v2fM2� ;so both U3 and V3 have a non-trivial 3 � 3 part only. In the following we will usethe symbols U3; V3 both for the that non-trivial upper-left 
orners and the full 4� 4matri
es obtained adding a row and 
olumn of zeros and a diagonal 1 to those. Thee�e
tive mass matrix bm 
an be brought into the upper triangular form by a unitarymatrix bV3 � V3 su
h that m = bm bV3 = 0�
�1 �1 ��10 �2 ��20 0 �3 1A :
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With vi = (bmi1; bmi2; bmi3), the new basis is given by~e3 = ~v3j~v3j ; ~e2 = ~v2j~v2j � ~e�3 � ~v2~v2 ~e3 ; ~e1 = ~e2 � ~e3 : (A.3)Note that V3 
orresponds to a large angle rotation for the right-handed quark �elds.While �3 and �2 are real by 
onstru
tion, we have the freedom to 
hoose anyentry of the �rst row to be real. For 
on
rete 
al
ulations, it is 
onvenient to have
�1 real or even use the parameters as given in the basis (A.3); however, 
�1 vanishesin the limit �2 ! 0, so for a general dis
ussion, it is more appropriate to have �1real. Here, we list the entries of m with 
�1 real in a general form,�3 = jv3j =rj�3j2 + je�3j2 � 1fM ����3fM3 + e�3fM4���2 ;��2 = e�2e��3�3 � �2fM2 + e�2fM4fM ��3fM3 + e�3fM4�3fM ;�2 =rj�2j2 + je�2j2 � 1fM2 ����2fM2 + e�2fM4���2 � j��2j2 ;��1 = e�1e�3�3 � �1fM1 + e�1fM4fM ��3fM3 + e�3fM4�3fM ;�1 = e�1�e�2�2 � �� e�3�3�� �1fM1 + e�1fM4fM "fM4fM �e�2�2 � �� e�3�3�+ ��2�2 fM2fM � ����3�3 fM3fM #

�1 = j
�1j =rj�1j2 + je�1j2 � 1fM2 ����1fM1 + e�1fM4���2 � j�1j2 �1 + j�j2�: (A.4)In parti
ular, we �nd as well the simple expressions��2e�2 � ��1e�1 = e�3fM4 + ��3fM3�3fM "�1e�1 fM1fM � �2e�2 fM2fM # (A.5)
�1 = �e�1�2�2 �3�3 fM1fM � �1 "e�2�2 �3�3 fM2fM + �2�2 e�3fM3 � �3fM4�3fM # ; (A.6)These expressions vanish trivially in the limit �1; �2 ! 0 and then we obtain thelimiting 
ase dis
ussed in Se
tion 2. As already dis
ussed in Se
tion 3, ��1 is inde-pendent of �2.A.1 Down Quarks and Charged LeptonsMass Eigenvalues and Eigenve
tors. Now take the matrixm as a starting pointand 
ompute the eigenvalues, eigenve
tors and mixing matri
es. For making thingssimpler, 
onsider for the moment all the parameters as 
omplex, even if a
tually �3,�2, 
�1, or �3, �2, �1 
an be 
hosen real absorbing the phases into V3. To 
ompute� 23 �



the eigenvalues, it is better to 
onsider the hermitian matri
es mym or mmy. The�rst option simply givesmym = 0�j�1j2j
j2 j�1j2
� j�1j2
��j�1j2
 j�2j2 + j�1j2 j�2j2� + j�1j2�j�1j2
�� j�2j2�� + j�1j2�� j�3j2 + j�2j2j�j2 + j�1j2j�j21A : (A.7)Then the determinant is simplydet �mym� = jdet (m)j2 = j
j2j�1j2j�2j2j�3j2 (A.8)and is only non-vanishing if 
�1 6= 0.The eigenvalue equation is a 
ubi
 equation; to obtain the dominant terms, weexpand around 
 = 0. In this 
ase the equation redu
es to a quadrati
 one with thesolutions�2=3 = 12 �j�3j2 + j�2j2(1 + j�j2) + j�1j2(1 + j�j2)� (A.9)� 12q[j�3j2 � j�2j2(1� j�j2)� j�1j2(1� j�j2)℄2 + 4 ��j�2j2 � + j�1j2 ���2 :So in this limit, we have eigenvalues at lowest order�3 = j�3j2 + j�2j2j�j2 + j�1j2j�j2 +O��22�3� ;�2 = j�2j2 + j�1j2 �O��22�3� ; �1 = 0 : (A.10)We 
an also 
ompute the �rst 
orre
tion to the zero eigenvalue simply as�1 = det(mym)�2�3 = j
j2j�1j2j�2j2j�3j2j�3j2(j�2j2 + j�1j2) ' j
j2j�1j2j�2j2j�2j2 + j�1j2 j�1j�j�2j�������! j
j2j�1j2 : (A.11)This means that for vanishing �1 we havemd ' j
jj�1j ' j�2jj�2j je�1j : (A.12)Using the eigenvalues, we 
an also solve for the mixing matri
es at lowest order,V 03 = 0BB�1 0 00 1 j�2j2�+j�1j2�j�3j0 � j�2j2��+j�1j2��j�3j 1 1CCA ; (A.13)where we must re
all that we had already a
ted on the mass matrix with a largeangle rotation bV3, so the V 03 above is just a small 
orre
tion to it.� 24 �



For the left-handed quark �elds, we have instead at leading orderU3 = 0BB� 1 �1�2 �1��3���1��2 1 �2��3��1��3 (�� � ��) ���2����3 1 1CCA : (A.14)Sin
e the up quark mass matrix is already diagonal, this last mixing matrix 
or-responds to the CKM matrix. From U y3 mV 03 = mdiag, we get VCKM = U3, so for� = � we have the predi
tion Vtd = (�� � ��)��1=��3 = 0 at leading order, and theCP violation vanishes! On the other hand, Vub has the right order of magnitude aswe thought.Quark Masses and Mixing Angles. We 
an reprodu
e the observed quark masseigenvalues and mixing, that satisfy the relationsmu : m
 : mt ' �7 : �3 : 1 ;md : ms : mb ' �4 : �2 : 1 ; (A.15)where � ' Vus � 0:22 is the Cabibbo angle. In fa
t, if we assume�1 : �2 : �3 ' �7 : �3 : 1 ;e�1 : e�2 : e�3 ' �3 : �2 : 1 ; (A.16)it gives 
orre
tlyjVusj � j�1jj�2j � je�1jje�2j � � ; (A.17)jVubj � j�1jj�3j � je�1jje�3j � �3 ; jV
bj � j�2jj�3j � je�2jje�3j � �2 ;moreover, md ' j
jp1 + j�j2 j�1j ' j�2jj�2j je�1j�3 mb ' ��3mb ' �4mb : (A.18)Again Vtd is suppressed by the di�eren
e of ����� ' �2=�2; �1=�1, as is the Jarlskoginvariant, Jq.Low-energy CP violation As dis
ussed in the following Appendix, we 
an ex-press the low-energy CP violation in the quark se
tion via an e�e
tive Jarlskoginvariant. We 
al
ulate this invariant, using Eqs. (A.4). The dominant terms are� 25 �



displayed in Eq. (3.9); the 
omplete expression readsJq = e�21e�22e�23�M 2d (fM2fM3fM2 " 1� fM24fM2! Im �3��2e�3e�22 + fM3fM4fM2 j�3j2e�23 Im �2e�2# (A.19)� fM22fM3fM4fM4 j�2j2e�22 Im �3e�3� fM1fM3fM2 " 1� fM24fM2! Im �3��1e�3e�1 + fM3fM4fM2 je�3j2e�23 Im �1e�1#+ fM1fM2fM2 " 1� fM24fM2!+ fM23fM2 j�3j2e�23 # Im �2��1e�2e�1+ fM1fM22fM3 j�2j2e�22 "fM4fM Im �1e�1 � fM3fM Im �3��1e�3e�1#+fM21fM2 j�1j2e�21 "fM3fM4fM2 Im �3e�3 � fM2fM4fM2 Im �2e�2 + fM2fM3fM2 Im �3��2e�3e�2#) :Charged Leptons. The 
harged leptons show a di�erent hierar
hy than the downquarks, we have in fa
t me : m� : m� ' �5�6 : �2 : 1md : ms : mb ' �4 : �2 : 1 : (A.20)The dis
repan
y 
an be solved with a smaller value for (�2~�1)e, 
ompared to (�2~�1)d.As an example, we 
hoose �e2 ' �4 and e�e1 ' �3�4 su
h thatme ' j
ejp1 + j�j2 j�1j ' j�e2jj�2j je�e1j�3 m� ' �2�3�4m� ' �5�6m� : (A.21)Regarding the rotations, the large V4 rotation a
ts now on the left-handed �elds,but it has to a
t on both the 
harged leptons and the neutrinos, so it has not a largee�e
t in the 
harged 
urrent. There is, however, an e�e
t 
oming from the mismat
hbetween the two V3's in the 
harged leptons and neutrino 
ases.A.2 NeutrinosThe 
harged lepton mass matrix is eventually diagonalised via V3 = bV3V 03 and U3 asthe down quark matrix. For the light neutrino Majorana mass matrix, given bym�e� = � �mD�> �mN��1mD; (A.22)we 
an negle
t the rotation U3 of the right-handed �elds as this transformation
an
els out. U4 does in prin
iple rotate the RH states, but its e�e
t is suppressed aslong as Mi < ~M . Regarding V3, we do not expe
t it to be the same for both 
harged� 26 �



and neutral leptons, so the mismat
h between the two provides �avour mixing in theneutrino se
tor.The neutrino Dira
 mass matrix 
an be written after the large rotation bV3 thatbring the 
harged lepton mass matrix into triangular form asmD = bmD bV3 = 0�A�1 D�1 �1B�2 E�2 �2C�3 F�3 �31A ; (A.23)where�1 = 1�3 1fM2 ne�1 he�3fM2123 � ��3fM3fM4i� �1fM1 he�3fM4 + ��3fM3io ;�2 = 1�3 1fM2 ne�2 he�3fM2123 � ��3fM3fM4i� �2fM2 he�3fM4 + ��3fM3io ;�3 = 1�3 1fM2 ne�3 he�3fM2123 � ��3fM3fM4i� �3 he�3fM3fM4 � ��3fM2124io ;and, using the notation fM�� =qfM2� + fM2� ,A = � 1�1 1�2 1�3 1fM ne�1�2�3fM1 � �1 he�2�3fM2 + �2 �e�3fM3 � �3fM4�io ;B = �2e�2 � e�2�2�2�2 �3�3 fM1fM ;C = e�3�3 � �3e�3�3�3 �2�2 fM1fM ;D = 1�1 1�2 1�23 1fM2 ne�1 he�2 j�3j2 fM212 + ��2�3fM2 �e�3fM3 � ��3fM4�i+ �1fM1 he�2��3 ��3fM4 � e�3fM3� + ��2fM2 �e�23 + j�3j2�io ;E = 1�2 1�2 1�23 1fM2 ne�2 he�2 j�3j2 fM212 + ��2�3fM2 �e�3fM3 � ��3fM4�i+ �2 he�2��3fM2 �e�3fM3 � �3fM4�+ ��2 �e�23fM213 � 2 j�3j e�3fM3fM4 
os �3 + j�3j2 fM214�io ;F = 1�3 1�2 1�23 1fM2 (e�3�3 � �3e�3) he�2��3fM212 + ��2fM2 �e�3fM3 � ��3fM4�i : (A.24)Note that we are here proje
ting the neutrino �avour states into the basis de�nedby the 
harged leptons as in Eq. (A.3). So we 
an immediately see that if the neutrino�avour ve
tors are aligned with the 
harged leptons B;C; F should vanish and theneutrino mass matrix would be
ome triangular as well. This 
orresponds to having� 27 �



exa
tly the same hierar
hy in the rows of the 
harged and neutral lepton Dira
 massmatri
es, i.e. �ie�i = �ie�i . We do not expe
t su
h alignment sin
e the parameterse�i; e�i are generated by di�erent operators and not related by any GUT relation, as
an be seen from Eq. (2.3
). We will 
onsider in the following the 
ase where theneutrino hierar
hies are similar to those of the down quark matrix, while the 
hargedleptons di�er due to the lighter ele
tron mass. Of 
ourse even more involved s
enariosare possible. In the following we negle
t as well 
orre
tions 
oming from the �naldiagonalisation, sin
e the entries of V 03 are suppressed by (�2=�2)2 . 0:01.Mass eigenvalues and eigenve
tors. We need to 
ompute the eigenvalues ofthe neutrino mass matrix and the �rst step is again to 
ompute the determinant ofthe matrix m�e�. Note that this is a symmetri
 matrix, but not real. Therefore theeigenvalues are in general 
omplex and the matrix is diagonalised using a unitarymatrix V� as V >� m�e�V� = diag (m1; m2; m3) : (A.25)Consider for the moment just the absolute value of the eigenvalues and then see thatwe have the relation3 det (m�e�) = ��det �mD��2det (mN) : (A.26)The last determinant is simply the produ
t of the heavy neutrino masses, while the�rst one is given bydet(mD) = �1�2�3 [(F � E)(A� B) + (D � E)(B � C)℄ : (A.27)In order to have three non-vanishing eigenvalues, we need all �i 6= 0 and at least oneof A, B, and C di�erent from zero. Also the three ve
tors 
orresponding to the rowsof the Dira
 matrix must not be aligned with ea
h other. So we obtainm1m2m3 = �%1%2%3 [(F � E)(A� B) + (D � E)(B � C)℄2= �%1%2%3 e�1�1 �2�2 �3�3 1�22 1�23 1fM2 fM1fM (A.28)� ne�22 j�3j2 fM212 + 2 j�2j e�2 j�3jfM2 he�3fM3 
os (�2 � �3)� �3fM4 
os �2i+ j�2j2 he�23fM213 � 2 j�3j e�3fM3fM4 
os �3 + j�3j2 fM214io ;for �1 = 0, where %i = e�2i�i�2i =Mi.3Note that for a n� n mass matrix, the minus sign on the r.h.s. gives a (�1)n 
ontribution.� 28 �



Singling out the heaviest mass eigenstate. In the 
ase when %3 � %2;1, it iseasy to single out the heaviest eigenstate:(v0�;3)> = 1p1 + jF j2 + jCj2 (C�; F �; 1) ; (A.29)and the mass eigenvalue to lowest order is given bym03 = �%3 �1 + jF j2 + jCj2� : (A.30)Then up to a rotation in the 12 submatrix, at lowest order the mixing matrix 
an bewritten as V 0� = 0BBB� p1+jF j2p1+jF j2+jCj2 0 C�p1+jF j2+jCj2�CF �p1+jF j2+jCj2p1+jF j2 1p1+jF j2 F �p1+jF j2+jCj2�Cp1+jF j2+jCj2p1+jF j2 �Fp1+jF j2 1p1+jF j2+jCj2
1CCCA ; (A.31)this is the basis whi
h gives de
oupling of the �rst eigenstate in the limit of vanishingC. From this matrix, we 
an dire
tly read o� the dominant part of the mixing angleswith the heavy eigenstate, �23 and �13. The 
harged lepton mass matrix is nearlydiagonal, so we 
an a
tually relate with good a

ura
y the �rst row to the ele
tronneutrino �avour. The left-handed 
harged lepton �avour eigenstates are given as afun
tion of the mass eigenstates bỳf = �bV3V 03�y `i (A.32)and therefore the neutrino �avour eigenstates 
orrespond to�f = �bV3V 03�y bV3V��i = (V 03)y V��i ; (A.33)where bV3 
an
els out as it a
ts equally on the whole lepton doublet; moreover, as wehave seen, V 03 is limited to the 23 
orner and does not modify the ele
tron entry. Weuse here the 
onvention of [32℄, and de�ne the PMNS matrix asV� = 0� 
13
12 
13s12 s13�s12
23 � 
12s23s13eiÆ 
12
23 � s12s23s13eiÆ 
13s23eiÆs12s23 � 
12
23s13eiÆ �
12s23 � s12
23s13eiÆ 
13
23eiÆ1A0�1 0 00 ei�2=2 00 0 ei�3=21A= 0�1 0 00 
23 s230 �s23 
231A0� 
13 0 s13e�iÆ0 1 0�s13eiÆ 0 
13 1A0� 
12 s12 0�s12 
12 00 0 11A0�1 0 00 ei�2=2 00 0 ei(Æ+�3=2)1A ;(A.34)where 
ij = 
os �ij, sij = sin �ij, Æ is the Dira
 phase and �1;2 are the Majoranaphases. � 29 �



So we have at lowest order for �13 that(V 0� )13 = sin �13 ' jCjq1 + jF j2 + jCj2 : (A.35)This gives us dire
tly a 
onstraint on the parameter C from the upper bound onjsin �13j � 0:1: jCj 'q1 + jF j2 + jCj2 jsin �13j . 0:1q1 + jF j2: (A.36)Then sin
e the mixing with the �rst �avour is small, the atmospheri
 mixing matrixis given simply by requiring the 23 
orner of the matrix in Eq. (A.31) to giveVatm; 23 = � 
os �23 sin �23e�i�23� sin �23ei�23 
os �23 � : (A.37)So 
onsidering the 23 se
tor, we get, again at lowest order,�23 = arg (F ) ;tan �23 = jF j : (A.38)To have large mixing angle tan 2�23 � 3 [29, 31℄, we must restri
t jF j between0:7 � jF j � 1:4 : (A.39)Su
h a value is natural in the 
ase where �3, e�3 and �3, e�3 are of the same orderbut not exa
tly equal, while �2 is small. Note that even a phase di�eren
e 
an beimportant. Assuming simply �3e�3 = ei!3 �3e�3 and degenerate fMi givesjF j = 2p2(1� 
os!3)3� 
os!3 ; (A.40)so we obtain jF j = 1 for the maximal phase di�eren
e !3 = �, while jF j � 0:7 arisesin the wide interval 0:26 � � !3 � 1:73 �. Hen
e, a nearly maximal atmospheri
angle is natural even for the most simple 
hoi
e of parameters. Of 
ourse, moresolutions are possible for the general 
ase.Thus in order to reprodu
e the observed pattern of mixing parameters, C has tobe small, while jF j is nearly unity. We 
an use the maximal value for jF j and theexperimental bound on �13 to derive an upper limit on jCj,jCj � 0:17 ; (A.41)in agreement e.g. with the ratio �2e�2 ne
essary to have a small ele
tron mass. Note,however, that we 
an obtain signi�
ant 
orre
tions from %2;1 6= 0.� 30 �



Light eigenstates and solar mixing angle. The other two eigenvalues and the
orre
tion to the heavy mass 
an be obtained from the tra
e and determinant of thematrix (m�e�)ym�e�, whi
h 
an be 
omputed in any basis. Expanding both the massmatrix and the eigenvalues to �rst order,m�e� = m%3 +m%1;2 ;m3 = m03 + Æm3 while m1;2 = Æm1;2 ; (A.42)we have thenÆm3 =tr �my%3m%1;2�(m03)� ; jm1j2 + jm2j2 + jÆm3j2 =tr hmy%1;2m%1;2i ;jm2j2 jm1j2 = jdet(m�e�)j2jm3j2 : (A.43)Choosing the basis appropriately, the relations 
an be simpli�ed to giveÆm3 = �(V 0� )>m%1;2V 0� �33 ;jm1j2 + jm2j2 =tr hmy%1;2m%1;2i� ���(V 0� )>m%1;2V 0� �33��2 ;jm2j2 jm1j2 � j%1%2j2 j(F � E)(A� B) + (D � E)(B � C)j2�1 + jF j2 + jCj2�2 : (A.44)We will give the result of these expressions for vanishing C and %1 = q%2:Æm3 =%2 (1� FE)2 + q(1� FD)21 + jF j2 ;tr hmy%1;2m%1;2i = j%2j2 hj1 + qj2 + ��E2 + qD2��2 + ��B2 + qA2��2+2 jBE + qADj2 + 2 jB + qAj2 + 2 jE + qDj2� ;jm2j2 jm1j2 � j%2j4 jqj2 jA(F � E) +B(D � F )j4�1 + jF j2�2 : (A.45)Then the mass splitting whi
h should generate the solar os
illations is given byÆm2sol =q�jm1j2 + jm2j2�2 � 4 jm2j2 jm1j2= j%2j2(1 + jF j2)2 nh�1 + jF j2�2 �j1 + qj2 + ��E2 + qD2��2 + ��B2 + qA2��2+ 2 jBE + qADj2 + 2 jB + qAj2 + 2 jE + qDj2�� ��(1� FE)2 + q(1� FD)2��2i2� 4 jqj2 �1 + jF j2�2 jA(F � E) +B(D � F )j4o1=2 : (A.46)
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So the solar neutrino mass splitting 
an be mat
hed even in the 
ase q = 0 orA (F � E) + B (D � F ) = 0, i.e., when the lightest neutrino is massless. However,we do not expe
t the �rst limit to be realised, if we assume the same hierar
hiesbetween ��i as in the ��i in the down quark se
tor, while for Mi as the up quarkse
tor. In that 
ase we have in fa
t j%2j � j%1j and the two lighter eigenvalues aresimilar in s
ale, m1 ' m2 ' pÆm2sol. On the other hand, the determinant 
ould besuppressed by alignment, i.e., for jA (F � E) +B (D � F )j � 1, and 
ould give us ahierar
hy also between the two light eigenvalues.We 
an then 
ompute the solar mixing angle and the �rst order 
orre
tions tothe Ve3 mixing parameter. After rotating with the V 0� matrix, we 
an estimate thesolar angle by using only the 12 part of the mass matrix; for C ' 0 the matrix isgiven bym%1;2(12) = 0� B2%2 + A2%1 B%2 E�Fp1+jF j2 + A%1 D�Fp1+jF j2B%2 E�Fp1+jF j2 + A%1 D�Fp1+jF j2 %2 (E�F )21+jF j2 + %1 (D�F )21+jF j2 1A : (A.47)Taking the solar mixing matrix as in Eq. (A.37) with �23; �23 ! �12; �12 we obtaine�i�12 = (m%1;2)12(m%1;2)�11 + (m%1;2)22(m%1;2)�12��(m%1;2)12(m%1;2)�11 + (m%1;2)22(m%1;2)�12�� ;tan 2�12 = 2 ��(m%1;2)12(m%1;2)�11 + (m%1;2)22(m%1;2)�12����(m%1;2)22��2 � ��(m%1;2)11��2 = 2q1 + jF j2 jN jD ;where, for q = %1=%2,N = [B(E � F ) + qA(D � F )℄ �B2 + qA2�� �1 + jF j2�+ �(E � F )2 + q (D � F )2� [B (E � F ) + qA (D � F )℄� ;D = ��(E � F )2 + q (D � F )2��2 � ��B2 + qA2��2 �1 + jF j2�2 :In order to have a large solar mixing angle, either Aq or B must not be small
ompared to E � F and D � F . But sin
e A; C / �2e�2 , we are led to the 
aseA = C � 0 ; B = �2�2 fM1fM = O (1) : (A.48)Then we 
an negle
t the terms proportional to A and we have simplytan 2�12 = 2 jBj jE � F jq1 + jF j2 jBj2 (1 + jF j2) + jE � F j2 + q(D � F )2 (E�F )�E�F��(E � F )2 + q (D � F )2��2 � jBj4 �1 + jF j2�2 :(A.49)
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This formula simpli�es further if we negle
t the q (D � F ) terms as well.4 Then usinggeneral trigonometri
 formulae leads to the expression in Eq. (4.11),tan �12 ' jBjjE � F jq1 + jF j2 : (A.50)Taking the experimental value for the solar angle, tan2 �12 = 0:45� 0:05, gives us forjF j � 1 the range jBj � (0:45� 0:50) jE � F j.We 
an also 
ompute the 
orre
tions of order %1;2 to the other two mixing angles,that we have dis
ussed in the lowest order. In fa
t, sin
e �2 � e�2, the 
ontribution(A.35) is small and the leading 
ontribution to �13 
omes from the B%2 term,(V (1)� )13 = sin �13 ' jB (EF + 1)j�1 + jF j2�3=2 j%2jj%3j � jBj m2m3 � 0:2 jBj : (A.51)So even for vanishing leading order, we expe
t the �rst order term to bring �13 nearto the experimental bound. Note that it is the large solar angle that naturally gives�13 � %2=%3; in our model it seems pretty di�
ult to suppress this angle to mu
hsmaller values, apart if there is a tuned 
an
ellation between zero and �rst order.The 
orre
tions to the atmospheri
 angle are of the same order %2=%3 and donot have a large e�e
t sin
e we need in any 
ase large parameters in the 23 se
tor.This small shift 
an in fa
t be easily 
ompensated by a small 
hange in the value ofF , espe
ially sin
e we do not have any parti
ular symmetry in the model imposingF = 1.Sum Rules for B dominan
e and vanishingm1. We have seen in the previousparagraph that in 
ase of vanishing C, A and %1, simple expressions 
an be obtainedfor all observables as fun
tions of only few parameters B, E, F and %3;2. Then it ispossible to obtain relations between the di�erent observables,tan �23 = jF j ;tan �12 = jBjjE � F jq1 + jF j2 ;sin �13 = jB (EF + 1)j�1 + jF j2�3=2 j%2jj%3j ;ÆmsolÆmatm = j%2jj%3jq(1 + jF j2)2 �1 + jEj2 + jBj2�2 � j1� FEj4�1 + jF j2�2 : (A.52)4Note that taking A = C = D � F = 0 gives a zero determinant for the neutrino mass matrix,so this 
ase applies when the lightest eigenvalue is suppressed 
ompared to the solar mass s
ale.� 33 �



Now we 
an write the following relation,sin �13tan �12 ÆmatmÆmsol = jE � F j jEF + 1jq��1 + jF j2� �1 + jEj2�+ jE � F j2 tan2 �12�2 � j1� EF j4 :(A.53)To estimate its value, we 
an use the fa
t that jF j � 1 and vary only jEj and thephases of E, F . We obtain then a maximal value of the r.h.s. for EF = 1 so thatsin �13 � ÆmsolÆmatm tan �121 + tan2 �12 ' 0:09 : (A.54)Of 
ourse, the angle �13 
an always be redu
ed by an appropriate 
hoi
e of the phasesand in parti
ular for E = F , so that there is no lower bound in this type of models.The e�e
tive neutrino Majorana matrix, whi
h is relevant for neutrinoless doublebeta de
ay, simpli�es su
h thatjmeej = jBj2 j%2j= Æmsol tan2 �12 jE � F j2q��1 + jF j2� �1 + jEj2�+ tan2 �12 jE � F j2�2 � j1� FEj4 : (A.55)Again varying the phases and the modulus of E, we �nd the maximal value forEF = �1, jmeej � Æmsol tan �12p2 + tan2 �12 � 0:43 Æmsol : (A.56)Moreover, we 
an give a simple relation between mee and the rea
tor angle,jmeejÆmatm = jE � F jjEF + 1j sin �13 tan �12 : (A.57)Note that the singular value for EF +1 = 0 
orresponds to a vanishing rea
tor angle.We 
an even derive a maximal value for the Dira
 CP violation for this 
ase.From Eqs. (4.21) and (4.27) we getJ` = � jBj2 (�1 � �2) Im (
)(1 + jF j2)2 h(1 + jF j2)2 �1 + jEj2 + jBj2�2 � j1� EF j4i (A.58)= �jE � F j41 + jF j2 tan2 �12 (1 + tan2 �12) Im (
)��1 + jF j2� �1 + jEj2�+ jE � F j2 tan2 �12�2 � j1� EF j4= � ÆmsolÆmatm jE � F j41 + jF j2 tan2 �12 (1 + tan2 �12) Im �(1 + EF �)F � (E � F ) ei�23�h��1+jF j2� �1+jEj2�+jE�F j2tan2 �12�2�j1�EF j4i3=2 ;
� 34 �



where �23 is the phase of %2=%3. Again, the prefa
tor is maximal for EF = �1 andE = �F , givingjJ`j � ÆmsolÆmatm 1 + tan2 �122 tan �12 (2 + tan2 �12)3=2 jsin�23j � 0:06 : (A.59)Here the imaginary part is only given by the phase �23, but in more general 
ases thephases of E and F will play a role as well. So even for the CP violation in the leptoni
se
tor, the model displays a suppression given by the ratio of the mass eigenvalues.Contrary to the quark 
ase, however, the CP violation is not proportional to thesmallest mass eigenvalue, but it 
an be non-vanishing even for m1 = 0.B. CP Violation and Weak Basis InvariantsFor 
ompleteness we dis
uss here the CP invariants in the 
ase of an additionalve
torial state. We prove that if the additional state is mu
h heavier than theele
troweak s
ale, the low energy CP violation 
an be expressed by the Jarlskoginvariant de�ned from an e�e
tive 3� 3 down quark mass matrix.The transformation of a Dira
 spinor  (t; ~x) under parity and 
harge 
onjugationis given by P  (t; ~x) P�1 = �P 
0 (t;�~x);C  (t; ~x) C�1 = �C C � (t; ~x)>; (B.1)where �P;C are non-observable phases. The matrix C obeys the relation 
�C =�C
T� . Sin
e the Lagrangian is a Lorentz s
alar, it only depends on fermioni
 �eldbilinears. Thus, we dedu
e the CP transformation for su
h terms,CP � i j (CP)�1 = � j i ;CP � i
5 j (CP)�1 = � � j
5 i ;CP � i
� j (CP)�1 = � � j
� i ;CP � i
�
5 j (CP)�1 = � � j
�
5 i : (B.2)Note that the operator �� transforms under CP as �� ! ��.Quark Se
tor. In the Standard Model, it is easy to verify the existen
e of the CPsymmetry in the Lagrangian, up to mass terms. In general, the quark mass terms areCP invariant if and only if it is possible to �nd a weak basis transformation whi
hrealises Hu� = WLHuW yL ; Hd� = WLHdW yL ; (B.3)where Hu;d =Mu;d �Mu;d�y. It follows thatWL [Hu; Hd℄W yL = � [Hu; Hd℄> ; (B.4)
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su
h that, for r odd, tr [Hu; Hd℄r = 0 (B.5)is a ne
essary and su�
ient 
ondition for CP invarian
e [42℄.The 
ase of r = 1 is trivial: the tra
e of a 
ommutator [Hu; Hd℄ is zero. Forr = 3 and three generations, we haveISM � tr [Hu; Hd℄3 = 6i �m2t �m2
� �m2t �m2u� �m2
 �m2u��m2b �m2s� �m2b �m2d� �m2s �m2d� Jq ; (B.6)where the quantity Jq does not depend of the mass spe
trum, and 
an be related, upto a sign, with the CKM matrix, V , as jJqj = jIm(V12V �13V �22V23)j. We 
on
lude that inorder to have CP violation, we need to have Jq 6= 0. This quantity is the lowest weakbasis invariant whi
h measure CP violating e�e
ts and it has mass-dimension twelve.Apart from CP violation in the strong intera
tions, there is no other me
hanism inthe SM whi
h 
an generate CP violating e�e
ts if Jq = 0. Note that in the 
hirallimit, mu = md = ms = 0, we do not generate CP violation even if Jq 6= 0.In the literature, the lowest weak basis invariant is 
alled Jarlskog determinant[28℄, det [Hu; Hd℄ = 2i �m2t �m2
� �m2t �m2u� �m2
 �m2u��m2b �m2s� �m2b �m2d� �m2s �m2d�Jq : (B.7)whi
h is equivalent to the Eq. (B.6).5 The Jarlskog determinant is only appli
able tothe 
ase of three generations, in 
ontrast to the more general invariant in Eq. (B.5).Now let us add a down quark isosinglet. The gauge 
ouplings to quarks andtheir mass terms are (i; j = 1; 2; 3 and � = 1; 2; 3; 4):L qW = � gp2 ��uLi
�dLiW+� + h.
.�� eJ�EMA�� g2 
os �W ��uLi
�uLi � �dLi
�dLi � 2 sin2 �W J�EM�Z� (B.8a)L qM = � ��uLiM iju uRj + �dLiM i�d dR� + �dL4m�d dR��+ h.
. (B.8b)where the matri
esMu,Md andmd are of dimension 3�3, 3�4 and 1�4, respe
tively.The ele
tromagneti
 
urrent is given by J�EM = 23 �u
�u� 13 �d
�d.The most general weak basis transformation 
onsistent with the Lagrangian ofEq. (B.8) is:�uLidLi� �! U ijL �uLjdLj� ; uRi �! (UuR)ij uRj ; dR� �! �UdR��� dR� : (B.9)5For any 3� 3 tra
eless Hermitian matrix M one has: trM3 = 3 jM j.� 36 �



where UL and UuR are 3� 3 unitary matri
es, while UdR is 4� 4. On
e we diagonalisethe mass terms, the Lagrangian readsLW = � gp2 ��uLi
� (VCKM)i� dL�W+� + h.
.�� eJ�EMA�� g2 
os �W ��uLi
�uLi � �dL�
� �V yCKMVCKM��� dL� � 2 sin2 �W J�EM�Z� ;LM = � ��uLiDui uRi + �dL�Dd� dR��+ h.
. ; (B.10)where VCKM = Uu yL UdL is a 3 � 4 matrix. The number of independent phases whi
hare related to CP violation is, for N = 3,nCP = N (N + 1)� 12N (N � 1)� 2N = 12N(N � 1) = 3 : (B.11)With the matri
es as de�ned in Eq. (B.8b) and Hu =MuM yu, Hd =MdM yd , andhd =Mdmyd, we 
an write down a set of weak basis invariants,I1 = ImtrHuHdhdhyd ; I2 = ImtrH2uHdhdhyd ;I3 = ImtrH2u [Hu; Hd℄ hdhyd ; I4 = ImtrHuH2dhdhyd ;I5 = ImtrH2uH2dhdhyd ; I6 = ImtrH2u �Hu; H2d�hdhyd ;I7 = ImtrH2uHdHuH2d ; (B.12)representing a set of ne
essary and su�
ient 
onditions for having CP invarian
e inthe quark se
tor [43℄.In our model, Hd and hd readHd = 0�j�1j2 + e�21 e�1e�2 e�1e�3e�1e�2 j�2j2 + e�22 e�2e�3e�1e�3 e�2e�3 j�3j2 + e�231A ; hd = 0B��1fM1 + e�1fM4�2fM2 + e�2fM4�3fM3 + e�3fM41CA : (B.13)Sin
e Hu and Hd are real, I7 vanishes. The remaining invariants are in generaldi�erent from zero; the dominant terms areI1 = �m2t �e�21 + e�22� e�3fM4 Im�3 ; I2 = m2t I1 ;I3 = �m6t �e�21 + e�22� e�3fM3fM4 Im�3 ;I4 = �m2t �e�21 + e�22� �e�21 + e�22 + e�23 + �23� e�3fM3fM4 Im�3 ; I5 = m2t I4 ;I6 = �m6t �e�21 + e�22� �e�21 + e�22 + e�23 + �23� e�3fM3fM4 Im�3 : (B.14)Hen
e, CP is generally violated even by the presen
e of a single 
omplex parameter�3. Note that this 
ase is not equivalent to the 
hiral limit be
ause both the 
harmand strange masses are di�erent from zero, m
 / �2 and ms � e�2 (albeit �2 �� 37 �



e�2). As we might expe
t, the invariants vanish if all quarks of the �rst and se
ondgeneration are massless.Now we single out the heavy eigenstate with the rotations V4, U4. While thea
tion of V4 leaves the invariants una�e
ted, U4 strongly modi�es them and reshu�esterms from one to the other. In fa
t after this transformation, hd vanishes to lowestorder and survives only at order O(v2EW=fM2); then in the new basis all the invariantsinvolving hd, i.e., I1� I6 are suppressed by v2EW=fM2 and vanish for fM !1. On theother hand I7 is now non-vanishing and given byI 07 = ImtrH2uHe�d Hu �He�d �2 ; (B.15)where He�d = bmbmy (see Eq. (2.7)). Note that U4 also 
hanges the weak intera
tions,ÆLW = � gp2 �ui
� (U4 � 1)i4 d4W+� + �di
� �U y4U4 � 1�i4 d4 Z� + h.
.; (B.16)so we expe
t both CP violation and CKM unitarity violation from these terms aswell. However, the mass of the heavy state is O (MGUT) so that the 
ontributions tolow-energy pro
esses are suppressed by a fa
tor MEW=MGUT and are negligible.Hen
e, at the ele
troweak s
ale, we are left to 
onsider the single invariantI 07 = ImtrH2uHe�d HuHe� 2d ; (B.17)whi
h 
orresponds to the usual Jarlskog invariant Jq for three generations, but 
om-puted for the e�e
tive quark mass bm.Lepton Se
tor. As dis
ussed above, we 
an ignore the heavy states for low-energyCP violation and use the e�e
tive 3� 3 Yukawa matri
es instead.In the SM, extended by right-handed neutrinos, we have three mass terms forthe leptons,LM̀ = ���eLimije eRj + ��LimijD �Rj + 12 �>RiC mijN �Rj� + h.
. (B.18)In analogy to the quark se
tor, invarian
e of the mass terms under CP transformationrequiresU ymeV = m�e ; U ymDW = m�D ; W>mNW = �M�R ; (B.19)where U , V , andW are unitary matri
es a
ting in �avour spa
e. De�ning h = myDmDand H = myNmN , we obtainW yhW = h� ; W yHW = H� : (B.20)Now we 
an write down the weak basis invariantsI1̀ = ImtrhH m�Nh�mN ; I2̀ = ImtrhH2m�Nh�mN ;I3̀ = ImtrhH2m�Nh�mNH; (B.21)
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for the three further invariants, substitute h = myDmemyemD for h [26℄. In the basiswhere the right-handed neutrino mass is diagonal, one obtainsI1̀ =M1M2 �M22 �M21 � Imh212+M1M3 �M23 �M21 � Imh213 +M2M3 �M23 �M22 � Imh223 ;I2̀ =M1M2 �M42 �M41 � Imh212+M1M3 �M43 �M41 � Imh213 +M2M3 �M43 �M42 � Imh223 ;I3̀ =M31M32 �M22 �M21 � Im h212+M31M33 �M23 �M21 � Imh213 +M32M33 �M23 �M22 � Imh223 :If none of the Mi vanish and there is no degenera
y, the vanishing of I1, I2, and I3implies the vanishing of Imh212, Im h213, and Imh223 for CP invarian
e.Note that in our model, mD stands for the e�e
tive 3 � 3 part of the Dira
neutrino mass matrix, mD, as given in Eq. (A.23). Then we obtain from Eq. (4.3),h12 = A�D�21 +B�E�22 + C�F�23 ;h13 = A�21 +B�22 + C�23 ;h23 = D��21 + E��22 + F ��23 : (B.22)The 
oe�
ients A; : : : ; F are displayed in Eqs. (A.24). They are generi
ally 
omplex,so we do not expe
t CP to be 
onserved.As in the quark se
tor, these invariants are rather general and give the ne
essary
onditions for the presen
e of CP violation. On the other hand, only few of the phasesremain important also in the low-energy limit. In our 
ase, to study the low-energyDira
 invariant, we 
an use the analogue of the Jarlskog invariant,J` = � 1M 2�M 2e tr [h�e�; he℄3 ; (B.23)as dis
ussed in Se
tion 4.3. Here, h�e� = (m�e�)ym�e� and �M 2� and �M 2e are theprodu
ts of the mass squared di�eren
es of the light neutrinos and 
harged leptons,respe
tively.
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