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1. IntrodutionGrand uni�ed theories (GUTs) appear to be the most promising framework [1, 2℄ toaddress the still hallenging question of quark and lepton masses and mixings. Duringthe past years new results from neutrino physis have shed new light on this problem,and the large di�erenes between the mass hierarhies and mixing angles of quarks,harged leptons and neutrinos impose strong onstraints on uni�ed extensions ofthe Standard Model (SM) [3, 4℄. Massive neutrinos are most easily inorporated intheories with right-handed neutrinos, whih leads to SO(10) as preferred GUT gaugegroup [5, 6℄.Higher-dimensional theories o�er new possibilities to desribe gauge symmetrybreaking, the notorious doublet-triplet splitting and also fermion masses. A simpleand elegant sheme is provided by orbifold ompati�ations whih have reentlybeen onsidered for GUT models in �ve and six dimensions [7�12℄. In this paperwe analyse in detail the onnetion between quark and lepton mass matries in the� 1 �



six-dimensional (6D) GUT model suggested in [13℄, for whih also proton deay [14℄,supersymmetry breaking [15℄ and gauge oupling uni�ation [16℄ have been studied.An alternative SO(10) model in �ve and six dimensions has previously been studiedin [17℄. For a reent disussion of CP violation in a 5D orbifold GUT model, see [18℄.An important ingredient of orbifold GUTs is the presene of split bulk multipletswhose mixings with omplete GUT multiplets, loalised at the �xed points, an sig-ni�antly modify ordinary GUT mass relations. This extends the known mehanismof mixing with vetorlike multiplets [19�21℄. Suh models have a large mixing ofleft-handed leptons and right-handed down quarks, while small mixings of the left-handed down quarks. In this way large mixings in the leptoni harged urrent arenaturally reoniled with small CKM mixings in the quark urrent.Our model of quark and lepton masses and mixings relates di�erent orders ofmagnitude whereas fators O(1) remain undetermined. Hene, we an only disussqualitative features of quark and lepton mass matries. Reently, orbifold ompat-i�ations of the heteroti string have been onstruted whih an aount for thestandard model in four dimensions and whih have a six-dimensional GUT strutureas intermediate step very similar to familiar orbifold GUT models [22�24℄. In suhmodels the urrently unknown O(1) fators are in priniple alulable, whih wouldthen allow for quantitative preditions.The goal of the present paper is twofold: As a typial example, we �rst studythe model [13℄ in more detail and expliitly ompute the mass eigenstates, massesand mixing angles. Seond, we investigate the question of CP violation, both inthe quark and lepton setor and possible onnetions between the two. In previousstudies, CP violation has mostly been negleted assuming that, barring fortunateanellations, the phases and mixings are pratially independent. Nevertheless thisquestion and the �avour struture are strongly interonneted, and we will see that aspei� pattern of mass matries an give a distint signature also in the CP violationinvariants.This paper is organised as follows: In Setion 2 we desribe the 6D orbifoldGUT model and the diagonalisation of the mass matries de�ning the low energySM fermions. In Setion 3 we disuss the CP violation in the quark setor, whereasSetion 4 is devoted to the CP violation in the leptoni setor. Conlusions aregiven in Setion 5. Two appendies provide details to the omputation of the masseigenstates and CP violation in extensions of the SM.2. SO(10) Uni�ation in six dimensionsWe study an SO(10) GUT model in 6D with N = 1 supersymmetry ompati�edon the orbifold T2=(ZI2 � ZPS2 � ZGG2 ) [11, 12℄. The theory has four �xed points, OI,OPS, OGG and O�, loated at the four orners of a `pillow' orresponding to the twoompat dimensions (f. Fig. 1). The extended supersymmetry is broken at all �xed� 2 �



Oi [SO(10)]

Ogg [Ggg] Ofl [Gfl]

Ops [Gps]Figure 1: The three SO(10) subgroups at the orresponding �xed points (branes) of theorbifold T2=(ZI2 � ZPS2 � ZGG2 ).points; in addition, the gauge group SO(10) is broken to its three subgroups GPS =SU(4) � SU(2) � SU(2); GGG = SU(5) � U(1)X ; and �ipped SU(5), G� = SU(5)0 �U(1)0, at OPS, OGG and O�, respetively. The intersetion of all these GUT groupsyields the standard model group with an additional U(1) fator, GSM0 = SU(3) �SU(2) � U(1)Y � U(1)Y 0 , as unbroken gauge symmetry below the ompati�ationsale.The �eld ontent of the theory is strongly onstrained by imposing the anella-tion of irreduible bulk and brane anomalies [25℄. The model proposed in Ref. [13℄ontains three spinors  i(16), i = 1 : : : 3, as brane �elds as well as six vetorial �eldsHj(10), j = 1 : : : 6, and two pairs of spinors, �(16) + �(16) and �(16) + �(16) asbulk hypermultiplets.The massless zero modes N(�) and N (�) aquire vauum expetation values(vevs), vN = hNi = hN i, breaking B�L and thus GSM0 to GSM. The breaking saleis lose to the ompati�ation sale so that v2N=M� � 1014 GeV, where M� is theuto� of the 6D theory. At the weak sale, the doublets Hd(H1) and Hu(H2) aquirevevs, v1 = hHdi and v2 = hHui, breaking the eletroweak symmetry.The three sequential 16-plets are loated on the three branes where SO(10) isbroken to its three GUT subgroups; in partiular, we plae  1 at OGG,  2 at O� and 3 at OPS. The parities of H5, H6, �, and � are hosen suh that their zero modes,L(�) = ��4e4� ; L(�) = ��4e4� ; d4(H5) ; d4(H6) ; (2.1)have the quantum numbers of a lepton doublet and antidoublet as well as anti-downand down-quark singlets, respetively. Both L(�) and L(�) are SU(2)L doublets.Together these zero modes at as a fourth vetorial generation of down quarks andleptons.The three `families'  i are separated by distanes large ompared to the uto�sale M�. Hene, they an only have diagonal Yukawa ouplings with the bulk Higgs�elds; diret mixings are exponentially suppressed. The brane �elds, however, anmix with the bulk zero modes for whih we expet no suppression. These mixings� 3 �



take plae only among left-handed leptons and right-handed down quarks, leadingto a harateristi pattern of mass matries [13, 14℄.The mass terms assume the harateristi form,W = uimui ui + d�md��d� + e�me��e� + ��mD���� + 12 �imNi �i ; (2.2)where latin indies only span 1; 2; 3, while greak indies inlude the forth generationstates. The up quark and Majorana neutrino mass matries,mu andmN , are diagonal3� 3 matries,mu = 0�hu11v2 0 00 hu22v2 00 0 hu33v21A ; mN = 0B�hN11 v2NM� 0 00 hN22 v2NM� 00 0 hN33 v2NM�1CA : (2.3a)Sine �4 is part of an SU(2)L doublet, it annot ouple to the other SM singlets in i via the B � L breaking �eld. Furthermore, there is no other oupling giving it adiret Majorana mass.The Dira mass matries of down quarks, harged leptons and neutrinos, md, meand mD, respetively, are 4 � 4 matries instead, due to the mixing with the bulk�eld zero modes,md = 0BBB�hd11v1 0 0 gd1 vNM�v10 hd22v1 0 gd2 vNM�v10 0 hd33v1 gd3 vNM�v1f1vN f2vN f3vN Md 1CCCA ; (2.3b)
me = 0BBB�hd11v1 0 0 he14v10 he22v1 0 he24v10 0 hd33v1 he34v1M l1 M l2 M l3 M l4

1CCCA ; mD = 0BBB�hD11v2 0 0 hD14v20 hu22v2 0 hD24v20 0 hu33v2 hD34v2M l1 M l2 M l3 M l4
1CCCA ; (2.3)up to orretions O(v2N=M2� ). The diagonal elements satisfy four GUT relationswhih orrespond only to the loal unbroken groups, i.e., SU(5), �ipped SU(5) andPati-Salam subgroups of SO(10). The hypothesis of a universal strength of Yukawaouplings at eah �xpoint leads to the identi�ation of the diagonal and o�-diagonalelements of mu= tan�, md, me, and mD= tan�, where tan� = v2=v1, up to oe�-ients of order one. This implies an approximate top-bottom uni�ation with largetan � and a parametrisation of quark and lepton mass hierarhies in terms of the sixparameters �i and e�i.The ruial feature of the matries md, me and mD are the mixings between thesix brane states and the two bulk states. The �rst three rows of the matries areproportional to the eletroweak sale. The orresponding Yukawa ouplings have tobe hierarhial in order to obtain a realisti spetrum of quark and lepton masses.� 4 �



This orresponds to di�erent strengths of the Yukawa ouplings at the di�erent �xedpoints of the orbifold. The fourth row, proportional to Md, M l and vN , is of orderthe uni�ation sale and, we assume, non-hierarhial.The mass matries md, me and mD are of the ommon formm = 0BBB� �1 0 0 e�10 �2 0 e�20 0 �3 e�3fM1 fM2 fM3 fM4
1CCCA ; (2.4)where �i; e�i = O(v1;2) and fMi = O(MGUT). This matrix an be diagonalised usingthe unitary matries m = U4U3DV y3 V y4 (2.5)where the matries U4 and V4 single out the heavy mass eigenstate, that an thenbe integrated away, while U3 and V3 at only on the SM �avour indies and performthe �nal diagonalisation also in the 3� 3 subspae. The expliit expressions for themixing matries and the mass eigenstates are given in Appendix A.The parameters in the matrix Eq. (2.4) are generally omplex; however, we anabsorb seven phases with appropriate �eld rede�nitions and hoose the remainingthree physial phases to be ontained into the diagonal parameters �i,m = 0BBB�j�1j ei�1 0 0 e�10 j�2j ei�2 0 e�20 0 j�3j ei�3 e�3fM1 fM2 fM3 fM4

1CCCA : (2.6)This is the maximal number of physial phases for four generations of Dira fermions,given as usual by (n� 1)(n� 2)=2 for n generations, so our texture above does notredue the CP violation from the typial n = 4 ase. We will see that the phasessurvive in the low energy parameters, but that only one ombination de�nes thesingle phase harateristi of three generations.With this hoie, the matrix V4 is real, while U4 ontains omplex parameters;however, the imaginary part is suppressed by j�ij =fM so that their e�et on the lowenergy CP violation is negligible as long as the mass of the heavy eigenstate is largeompared to the eletroweak sale. From the uni�ation of the gauge ouplings, weexpet indeed fM to be of the order of the GUT sale [16℄. Then the disussion ofthe low energy CP violation, whih would in general be haraterised by many CPinvariants [26, 27℄, redues to the ase of three light generations (see Appendix B).The e�etive mass matrix is given by bm, the 3� 3 part ofm0 = U y4mV4 =  bm 00 fM!+O� v2fM2� ; bm = 0��1(V4)1j + e�1(V4)4j�2(V4)2j + e�2(V4)4j�3(V4)3j + e�3(V4)4j1A ; (2.7)
� 5 �



in terms of the parameters in Eq. (2.4), it reads
bm = 0BBBBBBB��1

fM4pfM21+fM24 � e�1 fM1pfM21+fM24 0 ��1 fM1pfM22+fM23fMpfM21+fM24 � e�1 fM4pfM22+fM23fMpfM21+fM24� e�2 fM1pfM21+fM24 �2 fM3pfM22+fM23 �2 fM2pfM21+fM24fMpfM22+fM23 � e�2 fM4pfM22+fM23fMpfM21+fM24� e�3 fM1pfM21+fM24 ��3 fM2pfM22+fM23 �3 fM3pfM21+fM24fMpfM22+fM23 � e�3 fM4pfM22+fM23fMpfM21+fM24
1CCCCCCCA :

As any matrix, bm an be transformed into upper triangular form just by basis redef-inition on the right, m = bm bV3 = 0��1 �1 ��10 �2 ��20 0 �3 1A : (2.8)This form is partiularly suitable in the ase of the down quarks, where bV3 ats onthe right-handed quarks and disappears from the low energy Lagrangian due to theabsene of right-handed urrent interations. Note that we an reshu�e the phases,reabsorbing three of them into the unitary transformation bV3, but we are still leftwith three omplex parameters. We an exploit this freedom to obtain real diagonalelements �2, �3 and �1, while �, �, and �1 remain omplex.On the other hand, we an still rede�ne two phases on the left-hand side, keepingan overall phase free, with a diagonal matrixPL3 = diag �e�i�1 ; e�i�2; 1� : (2.9)This transformation allows us to shift the phase of �1 into , whih will be onvenientlater in the limit where  vanishes. Again, suh a phase shift does not redue thenumber of omplex parameters in the down quark matrix, whih remains three.Moreover, this reparametrisation does not hange the CKM matrix, sine the upquark mass matrix is diagonal and so suh phase transformation an be ompensatedby an idential one for both ui and ui .The matrix bV3 di�ers from the upper 3 � 3 part of the diagonalising matrixV3 = bV3V 03 ; however, they are very similar in the hierarhial ase. The relationbetween these two an be found in Appendix A, together with the general expressionfor U3, the 3� 3 part of whih is the CKM matrix.For the leptons, it is the matrix V4V3 that ats on the left-handed states, so themismath between the harged leptons and neutrinos (see Eq. (2.3)) basis appears inthe harged urrent interation and the de�nition of the �avour neutrino eigenstates.However, the matrix V4 whih ontains large mixing angles and rotates away theheavy eigenstate is the same for harged leptons and neutrinos sine the heavy stateis an SU(2)L doublet. Therefore the PMNS matrix will be given only by the mismathbetween the bV3 ' V3 matries for harged leptons and neutrinos.� 6 �



The omplete expressions for the parameters in m are given in Appendix A; inthis setion, we will only onsider the limit of small �1 as well as small e�1 and/or�2. For �1 = e�1 = 0, the �rst row simply vanishes, whereas for �1 = �2 = 0, thetwo �rst rows of the mass matrix are aligned (see Eq. (2.6)). Therefore both asesorrespond to vanishing down-quark and eletron mass.Sine e�1=e�2 gives Vus, we fous on the ase �1 = �2 = 0, where1� = � = e�2�2  e�3�3 � fM4fM ��3fM3 + e�3fM4�3fM ! ;  = 0 ;�1e�1 = �2e�2 = j�3j�3 qfM21 + fM22fM : (2.10)The eigenvalues of the heavier states are given bym2b = �23 ; (2.11a)m2s = �22 + j�1j2 = �22�1 + e�21e�22� � �22 ; where e�1e�2 � Vus : (2.11b)In this limit, only one single physial CP violating phase survives, even in the 4� 4piture; it is ontained in �3 and so in � and � (see Eq. (2.10)). We will see, however,that this single phase is not su�ient to have low-energy CP violation.The down-quark mass is indeed very small, so we will use these expressions asthe order zero approximation, together with the orretions proportional to j�2j =�2,whih determine the masses of the down-quark and the eletron. Our expansionparameter will therefore be of the order of the mass ratio of the down and strange-quark, md=ms. In fat, for j�1j � j�2j we have at leading ordermd = �1 ' e�1 j�2j�2 j�3j�3 ' j�2j j�1j�2 ' Vus j�2j ; (2.11)so our expansion parameter is j�2j�2 ' mdmsVus � 0:23 : (2.12)The mass ratio of eletron and muon is muh smaller than the ratio of downand strange quark. This implies (�2e�1=e�22)e � (�2e�1=e�22)d. Assuming that thedi�erene is due to the smallest matrix elements, this indiates (�2)e=(�2)d � 1and/or (e�1)e=(e�1)d � 1 for (e�2)e ' (e�2)d. This fat an easily be aommodated,as we see in Eqs. (2.3): the presene of the seond generation on the �ipped SU(5)1As mentioned above, it is instrutive to hoose the basis in whih �1 is real and the vanishingparameter �1 omplex. Then it is obvious that we are left with only two omplex parameters inm, namely � and �, ontaining the same phase.� 7 �



brane leads to di�erent values of �2 for the down quarks and harged leptons andthe parameter e�1 stems from di�erent ouplings in the superpotential.While we derived the fermion mass matries (2.3) within a spei� model, theyan also arise in other models, where additional matter is present at the GUT (orompati�ation) sale. Thus we ould take these matries as a starting point forthe following disussion, leaving open the question of their origin.3. CP violation in the quark setorWe will �rst onsider the CP violation in the quark setor. As we have seen in theprevious setion, our e�etive 3 � 3 down quark mass matrix ontains three phasesas a remnant of the original 4� 4 matrix, with the dominant omplex element being��2. We will now derive the ombination of the three phases, whih plays the roleof the CKM phase.To desribe CP violation for three generations, as is the ase in the SM, it isonvenient to use the Jarlskog invariant [28℄, Jq, whih is given by6 i�M 2u �M 2d Jq = tr [Hu; Hd℄3 = 6 Im tr �H2uH2dHuHd� ; (3.1)where H = mmy and�M 2 = �m23 �m22� �m23 �m21� �m22 �m21� ; (3.2)note that �M 2 has mass-dimension six. In our model, the up quark mass matrix isdiagonal, as is Hu. Then the invariant strongly simpli�es and readsJq = Im(H12d H23d H31d )�M 2d : (3.3)It is lear from this expression, that any diagonal phase transformation of m on theleft does not have any e�et on the Jarlskog invariant.As disussed in Appendix B, we an use the e�etive 3 � 3 mass matrixHe�d = bm bmy = mmy. By means of Eq. (2.8), we obtainHe�d = 0�j�1j2 �1 + j�j2 + jj2� �1�2 (1 + ���) �1�3���1�2 (1 + ���) �22 �1 + j�j2� �2�3���1�3�� �2�3�� �23 1A ; (3.4)where �2 and �3 are real parameters, as displayed in Eqs. (A.4). Then we haveIm h�He�d �12 �He�d �23 �He�d �31i = j�1j2 �22�23 Im��� (1 + ���) (3.5)= j�1j2 �22�23 Im���= �2�23 Im [(��2) (��1)� �1℄ :
� 8 �



We see that the Jarlskog invariant is always independent of the argument of  and itvanishes in the limit �1; e�1 ! 0 suh that �1 = 0. As we might expet, Jq vanishesfor � = � as well, i.e., in the limit �1; �2 ! 0.So the presene of a single phase in � is not su�ient to give CP violation in thelow energy: this phase anels out in the Jarlskog invariant. This e�et stems fromthe alignment of the vetors in �avour spae; however, even in the ase of vanishing�rst generation mass, the orresponding eigenvetor does not deouple from the othertwo and the mixing matrix does not redue to the two-generational ase. In fat, theCKM matrix is given by (see Appendix A)2VCKM (md = 0) ' 0BBB� 1 �1�2 �1��3� ��1�2 1 �2��30 ��2���3 1 1CCCA ; U3 =  V yCKM 00 1! : (3.6)Hene, we annot onlude that the CP e�ets disappear due to the redution ofthe system to two generations, nor to the mass degeneray between quarks. Insteadthe absene of low energy CP violation is aused by the partiular texture of m inexatly the same basis for the left-handed quark doublet, where the up quark matrixis diagonal. This feature is similar to the absene of CP violation in 4D SO(10)onstrutions, where a single ten-dimensional Higgs �eld generates fermioni masses,yielding a trivial CKM matrix. Note that there is still some CP violation e�etarising from the dominant phase �3 in �3, but it is only apparent in the mixingsinvolving the fourth heavy state.Now, the down quark is not massless and the real physial ase orresponds tonon-zero �1, �2 and e�1. From the up quark phenomenology, we know that �1 : �2is similar to the mass ratio of up and harm-quark [13℄; in addition, e�1 : e�2 is �xedby the Cabibbo angle. We will therefore fous on the linear terms in �2 and keep�1 ' 0.As is apparent in Eq. (3.5), ontributions to Jq ome from the omplex quantities��2, ��1, and �1; however, ��1 is independent of �2 (see Eq. (A.4)),��1 = e�1 "e�3�3 � fM4fM e�3fM4 + ��3fM3�3fM # : (3.7)The �rst order terms areÆ(��2) = ��2fM2fM e�3fM4 + ��3fM3�3fM ;Æ�1 = e�1��2�2 �3�23 fM2fM e�3fM3 � ��3fM4�3fM ; (3.8)2We an exploit the phase transformation P3L (2.9) to absorb the phases of �1; � and make allelements of the CKM matrix real showing expliitly that the CP violation disappears.� 9 �



and the Jarlskog invariant readsJq = �e�21e�22e�23�M 2d fM2fM3fM2 " 1� fM24fM2! Im �3��2e�3e�2 + fM3fM4fM2 j�3j2e�23 Im �2e�2# : (3.9)We see that Jq vanishes if either �2 or �3 vanish, so two omplex quantities areneeded to obtain CP violation at low energies.It is instrutive to alulateHe�d also from the matrix bm, Eq. (2.7). Here we notiethat the o�-diagonal elements of suh matrix are relatively simple sine we an exploitthe unitarity of the matrix V4, whih gives P3k=1(V4)ik(V4)�jk = Æij � (V4)i4(V4)�j4. Sowe have for i 6= j�He�d �ij = e�ie�j �1� aia�j� ; ai � e�ifM4 + �ifMie�ifM ; (3.10)from whih we get the simple expressionIm h�He�d �12 �He�d �23 �He�d �31i = e�21e�22e�23 Xyl. perm ijk �1 + jaij2� Im �a�jak� : (3.11)In the limit of vanishing �i, we see that ai = fM4=fM ; thus for �1 = �2 = 0, theexpression simpli�es toIm h�He�d �12 �He�d �23 �He�d �31i = e�21e�22e�23 1 + fM24fM2! Im"��3fM4fM + �3fM4fM # = 0 :For �1 = 0 but �2 6= 0, we then obtainIm h�He�d �12 �He�d �23 �He�d �31i = e�21e�22e�23fM2fM3fM2 " 1� fM24fM2! Im��3��2e�3e�2� (3.12)+fM3fM4fM2 j�3j2e�23 Im��2e�2�� fM2fM4fM2 j�2j2e�22 Im��3e�3�# :The omplete expression for Jq is displayed in Eq. (A.19); the dominant terms areexatly those given in Eq. (3.9).For degenerate heavy masses fM , the result simpli�es toJq = 116 e�21e�2�M 2d �3 e�3 Im (�3��2) + j�3j2 Im (�2)� : (3.13)Note that the numerial fator, 116 , is minimal for degenerate fM . Due to the hierarhyof the down quarks, �M 2d ' m2sm4b ' �22�43. So we �nally obtain, substituting theorder of magnitude of the parameters, with e�3 ' j�3j,Jq ' Vusmdmsm2b 14p2 (3 sin (�3 � �2) + sin �2) ' 10�5 (3 sin (�3 � �2) + sin �2) :(3.14)
� 10 �



This is the right order of magnitude; the urrent experimental value is Jq = 3� 10�5[29℄. From Eq. (3.14) we an onlude that a single omplex parameter, with theother two vanishing, is not enough to have low-energy CP violation in the quark setorand that the CKM phase is a ombination of the high-energy phases �i weighted bymass hierarhies. Moreover, maximal phases seem to be needed to give the largelow-energy phase observed.4. CP violation in the leptoni setorThe harged lepton and Dira neutrino mass matries an be transformed like thedown quark mass matrix. The heavy state is an SU(2)L doublet, so V4 singles outthe same state for harged leptons and neutrinos.The e�etive 3� 3-matries read (f. Eq. (2.7))bme = 0��1(V4)1j + e�1(V4)4j�2(V4)2j + e�2(V4)4j�3(V4)3j + e�3(V4)4j1A ; bmD = 0��1(V4)1j + e�1(V4)4j�2(V4)2j + e�2(V4)4j�3(V4)3j + e�3(V4)4j1A : (4.1)Within our model we assume the hierarhial patterns of �i and �i as well as e�i ande�i (i = 1::3) to be the same as for down quarks. The preise values, however, anbe di�erent sine they originate from di�erent Yukawa ouplings, see Eqs. (2.3).Again, we hoose the ouplings between the brane states, �i and �i, omplex.Although some of the harged lepton and down quark parameters, namely �1and �3, are related by GUT symmetries, the orresponding phases after the redef-inition leading to Eq. (2.6) are ompletely unorrelated. Thus, there is no diretrelation between the CP violation in the leptoni and in the hadroni observables,even though, barring anellations, we expet the leptoni CP violation to be largeas well. Furthermore, we will see that di�erent ombinations of the phases determinethe experimental observables. Thus even if there were relations between the phasesin the quark and lepton setor, these would not be observable. Some orrelations,however, ould survive between harged and neutral leptons. As in the quark setor,we expet similar suppression for the CP violation due to the spei� mass texturein our model.The disussion of the harged lepton masses losely follows the disussion of thedown quarks in the previous setion. The parameters are hosen suh that theymath the observed hierarhy, as desribed in Appendix A.1. The light neutrinomasses, however, result from the seesaw mehanism, sine we have heavy Majoranamasses for the right-handed neutrinos. This Majorana matrix is diagonal, but anhave omplex entries (f. Eq. (2.3a)),mN = 0�M1e2i�1 0 00 M2e2i�2 00 0 M3e2i�31A = e2i�30�M1e2i��13 0 00 M2e2i��23 00 0 M31A ; (4.2)
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where ��ij = �i � �j. Altogether, we have nine independent phases in the lep-ton setor; in the limit of small �1 and �1, they redue to seven. Sine neutrinosare Majorana, we have less freedom in the phase reshu�ing. However, exept foreletroweak breaking e�ets in U4, the heavy state is e�etively an SU(2)-doublet ofDira fermions. This allows us to absorb some phases in the Dira mass matrix andredue the system to three generations for both harged and neutral leptons at thesame time. In the following, we will neglet any e�et of this heavy fourth generationdoublet and onentrate on the three light generations inluding the right-handedneutrinos. We expet this approximation to be valid as long as fM �MGUT is muhlarger than the Majorana masses Mi [16℄.4.1 Seesaw Mehanism and E�etive Mass MatrixIn the ase of the leptons, neither bme nor bmD is diagonal and therefore we will hangethe basis in order to simplify the disussion of the CP violation. Lukily, the largerotations of type bV3, whih bring the Dira matries into triangular form, are similarfor harged leptons and neutrinos, thanks to the same hierarhial struture.To distinguish the �avour of the light neutrinos, we �rst at on the neutrinoDira mass matrix with exatly the same bV3 that transforms the harged leptonmass matrix into the upper triangular form, see Eq. (2.8), and obtainmD = 0�A�1 D�1 �1B�2 E�2 �2C�3 F�3 �31A : (4.3)At this stage the harged lepton mass matrix is not yet diagonal, but not very farfrom it: the omplete diagonalisation an be obtained by applying another nearlydiagonal rotation matrix on the right, orresponding to the mismath between V3and bV3, and a CKM-like rotation U3 on the left as desribed in Appendix A. Notethat suh a transformation from the left, as U4, in this ase ats on the right-handed�elds and leaves both H = mym and the light neutrino Majorana mass matrix,m�e� = � �mD�> �mN��1mD; (4.4)unhanged. In fat U4 ats in very good approximation as the unity matrix on mNup to terms O(v2=fM2), while U3 just anels out.So apart for the small rotation on the right needed to diagonalise H, whiha�ets the CP violation in the neutrino osillation only weakly (see Setion 4.3), theneutrino masses and mixings an be obtained from Eq. (4.4), in the formm�e� = �0� C2%3 +B2%2 + A2%1 CF%3 +BE%2 + AD%1 C%3 +B%2 + A%1CF%3 +BE%2 + AD%1 F 2%3 + E2%2 +D2%1 F%3 + E%2 +D%1C%3 +B%2 + A%1 F%3 + E%2 +D%1 %3 + %2 + %1 1A ;(4.5)
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where %i = e�2i�i�2i =Mi. Note that the determinant of the (23)-submatrix of m�e�is not of order %23; instead it reads %3%2 (F � E)2 + %3%1 (F �D)2 + %2%1 (E �D)2,allowing a large solar mixing angle [30℄.The leading part of the light neutrino mass matrix (4.5) is obtained in the limit�1; �1 ! 0. From the general expressions (A.24) one obtains�1 = e�1 1�3 1fM2 he�3fM2123 � ��3fM3fM4i ;�2 = 1�3 1fM2 ne�2 he�3fM2123 � ��3fM3fM4i� �2fM2 he�3fM4 + ��3fM3io ;�3 = 1�3 1fM2 ne�3 he�3fM2123 � ��3fM3fM4i� �3 he�3fM3fM4 � ��3fM2124io ; (4.6)where we have introdued fM�� =qfM2� + fM2� + fM2 .In our model, the Dira neutrino mass matrix has a hierarhial struture similarto the one of down quarks and harged leptons. The three smallest elements, however,have a onsiderable unertainty. Sine me 6= md, these elements annot be equal forthe three matries. Inspetion ofmd suggests for e�1 the range between md andmsVus;the di�erene is a fator O(1). In the following we shall onsider the ase of smalle�1. For large e�1 so that j%1j > j%3j, in the following disussion we should interhange�3; %3 with �1; %1 and onsider it as the dominant sale.We here assume �3 : �2 : �1 � e�3 : e�2 : e�1 � mb : ms : md, whih yields [13℄j%2jj%3j � �22�23M3M2 � m2sm2b mtm � 0:2 ; j%1jj%3j � �21�23M3M1 � m2dm2b mtmu � 0:2 ; (4.7)suh that %1 � %2 < %3. Hene, in this model, the weak hierarhy in the neutrinosetor an be traed bak to the nearly perfet ompensation between down and upquark hierarhies.The relation %1 � %2 implies for the two small neutrino masses jm1j � jm2jbarring anellations or small parameters. As omputed in Appendix A, the massesat leading order assuming %3 to dominate are given bym3 = �%3 �1 + jF j2 + jCj2� ;jm2m1j = j%2%1j j(F � E)(A� B) + (D � E)(B � C)j21 + jF j2 + jCj2 : (4.8)The light neutrino mass spetrum has normal hierarhy, and the ratio m22=m23 anbe identi�ed with �m2sol=�m2atm, whih is indeed onsistent with observations withinthe theoretial unertainties. � 13 �



The oe�ients A : : : F of the neutrino mass matrix m�e� beome in the limit�1; �1 ! 0,A = �e�1�1 �2�2 �3�3 fM1fM ;B = �2e�2 � e�2�2�2�2 �3�3 fM1fM ;C = e�3�3 � �3e�3�3�3 �2�2 fM1fM ;D = e�1�1 1�2 1�23 1fM2 he�2 j�3j2 fM212 + ��2�3fM2 �e�3fM3 � ��3fM4�i ;E = D + e�1�1 �2�2 1�2 1�3 1fM2 he�2��3fM2fM3 + ��2 �e�3fM213 � ��3fM3fM4�i ;F = 1�3 1�2 1�23 1fM2 (e�3�3 � �3e�3) he�2��3fM212 + ��2fM2 �e�3fM3 � ��3fM4�i : (4.9)Note that B, C, F vanish in the limiting ase of equal hierarhy in the neutrinoand harged lepton Dira mass matrix, i.e., for �i=e�i = �i=e�i, and A is in this aseproportional to �1. In fat, if the neutrino and harged lepton vetors are perfetlyaligned in �avour spae the neutrino Dira matrix beomes triangular at the sametime as the harged lepton one and we annot reprodue large neutrino mixing.There is though no reason to expet suh alignment sine the parameters e�i, e�i arenot related by any GUT relation, as an be seen in Eq. (2.3). So the large neutrinomixing angles are not generated simply by the large LH rotation ontained in theharged lepton's bV3, but from its misalignment with the neutrinos.Using the relations between e�i, �i and �i, and e�i, �i and �i due to the hierarhialstruture of the mass matries in our model, one obtains the simple expressions,A � C � �2�2 ; B � �2�2 � �2�2 ; D � E � F � 1 : (4.10)The mixing angles are omputed in Appendix A.2; in the ase the parametersA, C are small, they are given bytan �23 ' jF j ;tan �12 � jBjjE � F jq1 + jF j2 ;sin �13 � Cq1 + jF j2 + B (EF + 1)�1 + jF j2�3=2 j%2jj%3j : (4.11)The atmospheri mixing angle �23 is naturally large; the urrent best �t [29, 31℄restrits the parameter F as 0:7 . jF j . 1:4 to have it maximal. Note that F � 0:7an naturally be obtained even for j�3j =e�3 � j�3j =e�3, as disussed in Appendix A.2.� 14 �



For (�2=�2)e � (�2=�2)d � 0:1 one then obtains jCj � 0:1 and a value for �13lose to the urrent upper bound. In this ase though, ~�e1 has to be suppressed withrespet to the down quark ase in order to give a onsistently small me. The largesolar mixing �12 an then be ahieved for B � 0:1�1 with moderate tuning of E�F .Another possibility is that a very small �2 is alled for to explain the smallnessof the eletron mass. In this ase, we have naturally jAj ; jCj � 0:01 and the reatorangle is dominated by the seond term in Eq. (4.11). Then the angles �12 and �13depend on the same parameter B, but for the seond one there is a suppression by%2=%3. So in the ase of hierarhial %i, both a large and small angle an be explainedeven with relatively large B. Suh value for B is not unnatural, even for small �2,if we aept �2 > (�2)e. In this ase we have sin �13 . 0:1 orrelated with the masseigenvalues m1 . m2 . m3. Note that in general, if all parameters A, B, and C aresmaller than one, we obtain the predition m1 < m2, while for B � 1 the two lowesteigenvalues are nearly degenerate.The largest of the heavy neutrino masses is given by M3 � m2t=p�m2atm �1015 GeV. For the lightest heavy Majorana state the model provides the roughestimate M1 �M3mu=mt � 1010 GeV.4.2 Neutrinoless Double Beta Deay (0���)The simultaneous deay of two neutrons may result in neutrinoless double beta deay,e.g., 78Ge ! 76Se + 2e. This proess is urrently most promising to prove theMajorana nature of neutrinos. The deay width an be expressed as� = G ��M2�� jmeej2 ; (4.12)where G is a phase spae fator,M the nulear 0��� matrix element, and mee is the(11)-element of the light neutrino mass matrix.Sine the eletron mass is very small, the harged lepton mass matrix in trian-gular form has nearly a vanishing �rst row. Then the left-handed eletron is alreadysingled out; the remaining rotation mostly a�ets the (23)-blok. Therefore we analready make an estimate of mee from the e�etive neutrino Majorana matrix, m�e�.From Eq. (4.5), we read o�jmeej = ��C2%3 +B2%2 + A2%1�� ; (4.13)where the last term an be negleted. This result has the same form as the standardformula in the ase of hierarhial neutrinos [32℄,jmeej = ����p�m2atm sin2 �13ei(�3��2) +q�m2sol sin2 �12 os2 �13���� ; (4.14)where �3 and �2 are the two Majorana phases in the onventional parametrization ofneutrino mass matrix (A.34). � 15 �



We an estimate the size of jmeej in our model usingj�3j ' e�3; j�3j ' e�3; �2�2 � 1; j%3j 'p�m2atm; j%2j 'q�m2sol ; (4.15)whih gives jmeej � �����22�22p�m2atm e2i(�2��3) + �22�22q�m2sol���� : (4.16)Clearly, the last term dominates, yielding the familiar result for hierarhial neutrinosjmeej �<p�m2sol � 0:01 eV if �2=e�2 � �2=e�2.4.3 CP Violation in Neutrino OsillationsLeptoni CP violation at low energies an be deteted via neutrino osillations, whihare sensitive to the Dira phase of the light neutrino mass matrix. For a diagonalharged lepton mass matrix, the strength of Dira-type CP violation is obtained fromthe invariant [27℄ tr [h�; he℄3 = 6i�M 2e Im �(h�)12 (h�)23 (h�)31� ; (4.17)where h� = (m�)ym� and �M 2e is the produt of the mass squared di�erenes of theharged leptons, f. Eq. (3.2). This quantity is onneted to the leptoni equivalentof the Jarlskog invariant throughJ` = � 1M 2� Im �(h�)12 (h�)23 (h�)31� ; (4.18)where�M 2 = �m23 �m22� �m23 �m21� �m22 �m21� = Æm2solÆm4atm � j%2j2 j%3j4 (4.19)is now the produt of the light neutrino mass squared di�erenes. In the standardparametrisation given in Eq. (A.34),J` = Im [(V�)11(V�)22(V�)�12(V�)�21℄ = 18 os �13 sin 2�13 sin 2�12 sin 2�23 sin Æ ; (4.20)where Æ is the CP violating Dira phase in the SM with massive neutrinos.The expressions (4.18) and (4.20) assume that the harged lepton mass matrixis diagonal. In our ase, this matrix is nearly diagonal after the bV3 rotation, asthe eletron mass is very small; in fat, the remaining rotation V 03 deviates from aunit matrix only in the 23 setor and at order O �m2�=m2�� � 1 (see Eq. (A.13)).Therefore up to orretions of this order, we an use Eq. (4.18) with the e�etiveneutrino mass matrix m�e� given in Eq. (4.5), i.e.,J` = � 1M 2� Im �(h�e�)12 (h�e�)23 (h�e�)31� ; (4.21)
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with now h�e� = (m�e�)ym�e�. We ompute the �rst few terms and obtain(h�e�)12= C�F jm3j21+jF j2+jCj2+ C�E (1+F �E+C�B) %2%�3+B�F (1+F �E+C�B)� %�2%3 ;(h�e�)23= F � jm3j21+jF j2+jCj2+ F � (1+F �E+C�B) %2%�3 + E� (1+F �E+C�B)� %�2%3 ;(h�e�)31= C jm3j21+jF j2+jCj2 +B (1+F �E+C�B) %2%�3 + C (1+F �E+C�B)� %�2%3 :(4.22)The leading ontribution in the yli produt of h�e�, whih is / jm3j6, is real anddoes not ontribute to J`; that is to be expeted sine it orresponds to the limit oftwo massless neutrinos where no physial Dira phase an be de�ned. In general the�rst non-trivial terms are of order j%3j4 j%2j2, as �M 2� , so that we expet jJ`j �< 1.We obtain in fatJ` � �1 + jBj2 + jEj2� �jEj2 � jF j2 + jBj2 � jCj2��1 + jF j2 + jCj2�3 Im [C�F (F � E)�(B � C)℄ :(4.23)Note that the imaginary part vanishes for E = F or B = C, when the �avour eigen-vetors are partially aligned. Furthermore, the ontribution disappears for C = 0, soit is suppressed by the small reator angle as expeted. Due to the unknown param-eters O(1), no useful upper bound on J` an be derived in the general ase, but wesee that the Dira CP phase is given by a ombination of the phases of the neutrinoDira mass oe�ients B, C, E and F , derived from the omplex parameters �3, �2,�3, �2. No dependene arises from the heavy neutrino Majorana phases �3;2 sinethey anel out in j%3j4 j%2j2.In the limit �2 ! 0, where A = C = 0, but with B of order unity, the dominantontribution to J` omes from higher order terms. We an obtain it from(h�e�)12 = B�F (1 + F �E)� %�2%3 +B�E �1 + jBj2 + jEj2� j%2j2 ;(h�e�)23 = F � j%3j2 �1 + jF j2�+ F � (1 + F �E) %2%�3 + E� (1 + F �E)� %�2%3 ;(h�e�)31 = B (1 + F �E) %2%�3 +B �1 + jBj2 + jEj2� j%2j2 : (4.24)Note that the leading term, proportional to jBj2 j%3j4 j%2j2, is real, and in fat we didnot have any jBj2 ontributions at that order above. Hene, we onsider the nextterms, (h�e�)12 (h�e�)23 (h�e�)31 / (1 + F �E)F � (�1E + �2F ) %2%�3+ (1 + F �E)� F (�1F � + �2E�) %�2%3 ; (4.25)
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where we de�ned the real parameters�1 = �1 + jBj2 + jEj2� �1 + jF j2� ;�2 = j1 + E�F j2 : (4.26)Note again that the two terms in Eq. (4.25) are exatly onjugate to eah otherfor E = F when the two heavy eigenstates are nearly aligned. In this limit tan �12beomes maximal. Therefore, if B gives the dominant ontribution, the Dira typeCP violation is suppressed for maximal solar angle. The CP invariant vanishes aswell if B = 0 as the system e�etively redues to two generations and sin �13 = 0(reall that we are already in the limit A = C = 0). We then obtainIm �(h�e�)12 (h�e�)23 (h�e�)31� = jBj2 j%2j2 j%3j4 (�1 � �2) Im (
) (4.27)with 
 = (1 + EF �)F � (E � F ) %2%3 ;whih yields J` � � jBj2 (�1 � �2) Im (
) : (4.28)Comparison with Eq. (4.20) shows then that in this ase the standard Dira phase Æ isa ompliated funtion of the phases of �3, �3, �2 in the leptoni Dira mass matries,the di�erene between two of the Majorana phases ��32 and neutrino masses. It issuppressed by the ratio j%2j = j%3j, as is sin �13.Whenever only few of the parameters in the Dira neutrino mass matrix mat-ter, we expet orrelations between the lightest eigenvalue, the mixing angles andthe maximal value for J`. In Appendix A.2, we onsider the simple ase where Bdominates and the lightest eigenvalue m1 vanishes; then all the observables are onlyfuntion of B, E, F , %2=%3 and we show relations among them. In this spei� ase,even allowing for the unertainty on the phases, upper bounds an be obtained forsin �13; mee and J`. In the more general ase, subleading terms and other parametersbeome important and relax any suh bounds.4.4 LeptogenesisThe out-of-equilibrium deays of heavy Majorana neutrinos is a natural soure ofthe osmologial matter-antimatter asymmetry [33℄. In reent years this leptogenesismehanism has been studied in great detail. The main ingredients are CP asymmetryand washout proesses, whih depend on neutrino masses and mixings.It is onvenient to work with a diagonal and real matrix for the right-handedneutrinos, whih is obtained from mN by the phase transformationPM = diag �e�i�1 ; e�i�2 ; e�i�3� : (4.29)
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For hierarhial heavy neutrinos the generated baryon asymmetry is dominated bydeays of the lightest state N1. In supersymmetri models the orresponding CPasymmetry is [34℄"1 = � 38�Xi Im (M21i)M11v2u M1Mi ; M = PM bmD bmDyP �M ; (4.30)where the matrix elements are given, analogously to Eq. (3.10),Mij = ei��jie�ie�j �1� bib�j� ; bi � e�ifM4 + �ifMie�ifM : (4.31)The terms involving one index 1 simplify for �1 = 0 asM11 = e�21 1� fM24fM2! ;M1j = ei��j1e�1e�j  1� fM4fM e�jfM4 + ��jfMje�jfM ! : (4.32)The result then reads "1 ' 38� M1v2u  1� fM24fM2!�1 Xj=2;3 e�2jMj �j ; (4.33)where �j = � Im24ei��j1  1� fM4fM e�jfM4 + ��jfMje�jfM !235 : (4.34)Sine e�22M3=(e�23M2) � 0:2, the CP asymmetry is dominated by the intermedi-ate state N3, i.e., "1 ' 3=(8�)M1p�m2atm=v2u. In any ase, the phases involved,��13;��12 and the phases of �3; �2, are ompletely independent of the low-energyCP violating phase in the quark setor and also not so diretly onneted to thatin neutrino osillations (even if they an ontribute to it). For M1 � 1010GeV, oneobtains "1 � 10�6, with a baryogenesis temperature TB � M1 � 1010 GeV. Theseare typial parameters of thermal leptogenesis [35, 36℄.The strength of the washout proesses ruially depends on the e�etive neutrinomass em1 = M11M1 = e�21M1  1� fM24fM2! � %1 �< 0:01 eV : (4.35)With the e�ieny fator [37℄�f � 10�2�0:01 eVem1 �1:1 � 10�2 ; (4.36)
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one obtains for the baryon asymmetry�B � 10�2"�f � 10�8�f � 10�10 ; (4.37)onsistent with observation. So for suessful leptogenesis we need a non vanishinge�1; %1 and in partiular %1 � %2. In suh ase a zero neutrino eigenvalue is onlypossible due to alignment.In the above estimate of the baryon asymmetry we have summed over the lepton�avours in the �nal state. In general, the CP asymmetries as well as the washout pro-esses depend on the lepton �avour, whih an lead to a onsiderable enhanementof the generated baryon asymmetry [38, 39℄. The neutrino masses M1 � 1010 GeV,em1 � 0:01 eV lie in the `fully �avoured regime' where these e�ets an indeed be im-portant [40℄. Hene, depending on the CP violating phases the generated asymmetrymay be signi�antly larger than the estimate (4.37).5. ConlusionsWe have studied in detail a spei� pattern of quark and lepton mass matries ob-tained from a six-dimensional GUT model ompati�ed on an orbifold. Up quarksand right-handed neutrinos have diagonal 3 � 3 matries with the same hierarhywhereas down quarks, harged leptons and Dira neutrino mass terms are desribedby 4� 4 matries whih have one large eigenvalue O(MGUT). The origin of this pat-tern are diagonal mass terms for three ordinary quark-lepton families together withlarge mixings O(MGUT) with a pair of SU(5) (5+ �5) plets. This vetorial fourthgeneration though is made of di�erent split multiplets allowing for a relaxation ofGUT relations. The six mass parameters of the model in the quark setor an be�xed by the up and down quark masses. This pattern of mass matries has severalremarkable features: The CKM matrix is orretly predited and the eletron massis naturally di�erent from the down quark mass.The mismath between down and up quark mass hierarhies leads, via the seesawmehanism, to three light neutrino masses with a muh milder hierarhy. Left-handedleptons and right-handed quarks have large mixings. This leads to large neutrinomixings and to small CKM mixings of the left-handed down quarks in agreementwith observation.Fators O(1) of the mass matries are unknown, and the preditive power ofthe model is therefore limited. The neutrino mixings sin �23 � 1 and sin �13 . 0:1are naturally aommodated. The orresponding neutrino masses are m1 . m2 �p�m2sol < m3 �p�m2atm and jmeej �p�m2sol �< 0:01 eV.The elements of the mass matries arise from a large number of di�erent oper-ators. Hene, most of the CP violating high-energy phases are unrelated. We �ndthat the measured CP violation in the quark setor an be obtained, even if the CP� 20 �



invariant is suppressed by the alignment between the two lightest mass eigenstates.Due to the unertainties of O(1) fators no useful upper bound on the CP violationin neutrino osillations is obtained in general. Some onstraints an be given in thelimited ase where the number of dominant parameters is redued, as it happens ifthe parameters A, C in the neutrino Dira mass matrix are suppressed by the small-ness of the eletron mass. It is indeed intriguing that in our setting the smallnessof the reator angle an be onneted to the lightness of the eletron. The modelis onsistent with thermal leptogenesis, with a possible enhanement of the baryonasymmetry by �avour e�ets.We onlude that mixings O(MGUT) of three sequential quark-lepton familieswith vetorial split multiplets, a pair of lepton doublets and right-handed downquarks, an aount simultaneously for small quark mixings and large neutrino mix-ings in the harged weak urrent and, orrespondingly, for hierarhial quark massestogether with almost degenerate neutrino masses. The CP phases in the quark se-tor, neutrino osillations and leptogenesis are unrelated. Quantitative preditions forthe lightest neutrino mass m1 and sin �13 require urrently unknown O(1) fators inmore spei� GUT models.AknowledgementsWe would like to thank R. Fleisher and S. Willenbrok for helpful disussions.SW thanks the SLAC Theoretial Physis Group, the DESY Theory Group, andthe CERN Theory Division for hospitality during various stages of this work. LCaknowledges the support of the �Impuls- and Vernetzungsfond� of the HelmholtzAssoiation, ontrat number VH-NG-006. SW is supported in part by the U. S. De-partment of Energy under ontrat No. DE-FG02-91ER40677. The work of DEC ispresently supported by a CFTP-FCT UNIT 777 fellowship and through the projetsPOCTI/FNU/44409/2002, PDCT/FP/63914/2005, PDCT/FP/63912/2005 (Funda-ção para a Ciênia e a Tenologia � FCT, Portugal).

� 21 �



A. Mass matriesWe will disuss here the mass eigenvalues and the mixing matries for the low energytheory in relation to the high energy parameters.Given a general matrix of the form as in Eq. (2.4),m = 0BBB� �1 0 0 e�10 �2 0 e�20 0 �3 e�3fM1 fM2 fM3 fM4
1CCCA ;where �i; e�i = O(v1;2) and fMi = O(MGUT), the matries U4 and V4 that single outthe heavy state an be given as [14℄U4 ' 0BBBB� 1 0 0 �1fM1+e�1fM4fM20 1 0 �2fM2+e�2fM4fM20 0 1 �3fM3+e�3fM4fM2��1fM1+e�1fM4fM2 ��2fM2+e�2fM4fM2 ��3fM3+e�3fM4fM2 1

1CCCCA ; (A.1)
V4 = 0BBBBBBBB�

fM4pfM21+fM24 0 �fM1pfM22+fM23fMpfM21+fM24 fM1fM0 fM3pfM22+fM23 fM2pfM21+fM24fMpfM22+fM23 fM2fM0 � fM2pfM22+fM23 fM3pfM21+fM24fMpfM22+fM23 fM3fM� fM1pfM21+fM24 0 �fM4pfM22+fM23fMpfM21+fM24 fM4fM
1CCCCCCCCA ; (A.2)

with fM =qPi fM2i . In general V4 ontains large mixings, while U4 is approximatelythe unity matrix, up to terms O (v=fM). Next, U3 and V3 = bV3V 03 diagonalisem0 = U y4mV4 =  bm 00 fM!+O� v2fM2� ;so both U3 and V3 have a non-trivial 3 � 3 part only. In the following we will usethe symbols U3; V3 both for the that non-trivial upper-left orners and the full 4� 4matries obtained adding a row and olumn of zeros and a diagonal 1 to those. Thee�etive mass matrix bm an be brought into the upper triangular form by a unitarymatrix bV3 � V3 suh that m = bm bV3 = 0��1 �1 ��10 �2 ��20 0 �3 1A :
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With vi = (bmi1; bmi2; bmi3), the new basis is given by~e3 = ~v3j~v3j ; ~e2 = ~v2j~v2j � ~e�3 � ~v2~v2 ~e3 ; ~e1 = ~e2 � ~e3 : (A.3)Note that V3 orresponds to a large angle rotation for the right-handed quark �elds.While �3 and �2 are real by onstrution, we have the freedom to hoose anyentry of the �rst row to be real. For onrete alulations, it is onvenient to have�1 real or even use the parameters as given in the basis (A.3); however, �1 vanishesin the limit �2 ! 0, so for a general disussion, it is more appropriate to have �1real. Here, we list the entries of m with �1 real in a general form,�3 = jv3j =rj�3j2 + je�3j2 � 1fM ����3fM3 + e�3fM4���2 ;��2 = e�2e��3�3 � �2fM2 + e�2fM4fM ��3fM3 + e�3fM4�3fM ;�2 =rj�2j2 + je�2j2 � 1fM2 ����2fM2 + e�2fM4���2 � j��2j2 ;��1 = e�1e�3�3 � �1fM1 + e�1fM4fM ��3fM3 + e�3fM4�3fM ;�1 = e�1�e�2�2 � �� e�3�3�� �1fM1 + e�1fM4fM "fM4fM �e�2�2 � �� e�3�3�+ ��2�2 fM2fM � ����3�3 fM3fM #
�1 = j�1j =rj�1j2 + je�1j2 � 1fM2 ����1fM1 + e�1fM4���2 � j�1j2 �1 + j�j2�: (A.4)In partiular, we �nd as well the simple expressions��2e�2 � ��1e�1 = e�3fM4 + ��3fM3�3fM "�1e�1 fM1fM � �2e�2 fM2fM # (A.5)�1 = �e�1�2�2 �3�3 fM1fM � �1 "e�2�2 �3�3 fM2fM + �2�2 e�3fM3 � �3fM4�3fM # ; (A.6)These expressions vanish trivially in the limit �1; �2 ! 0 and then we obtain thelimiting ase disussed in Setion 2. As already disussed in Setion 3, ��1 is inde-pendent of �2.A.1 Down Quarks and Charged LeptonsMass Eigenvalues and Eigenvetors. Now take the matrixm as a starting pointand ompute the eigenvalues, eigenvetors and mixing matries. For making thingssimpler, onsider for the moment all the parameters as omplex, even if atually �3,�2, �1, or �3, �2, �1 an be hosen real absorbing the phases into V3. To ompute� 23 �



the eigenvalues, it is better to onsider the hermitian matries mym or mmy. The�rst option simply givesmym = 0�j�1j2jj2 j�1j2� j�1j2��j�1j2 j�2j2 + j�1j2 j�2j2� + j�1j2�j�1j2�� j�2j2�� + j�1j2�� j�3j2 + j�2j2j�j2 + j�1j2j�j21A : (A.7)Then the determinant is simplydet �mym� = jdet (m)j2 = jj2j�1j2j�2j2j�3j2 (A.8)and is only non-vanishing if �1 6= 0.The eigenvalue equation is a ubi equation; to obtain the dominant terms, weexpand around  = 0. In this ase the equation redues to a quadrati one with thesolutions�2=3 = 12 �j�3j2 + j�2j2(1 + j�j2) + j�1j2(1 + j�j2)� (A.9)� 12q[j�3j2 � j�2j2(1� j�j2)� j�1j2(1� j�j2)℄2 + 4 ��j�2j2 � + j�1j2 ���2 :So in this limit, we have eigenvalues at lowest order�3 = j�3j2 + j�2j2j�j2 + j�1j2j�j2 +O��22�3� ;�2 = j�2j2 + j�1j2 �O��22�3� ; �1 = 0 : (A.10)We an also ompute the �rst orretion to the zero eigenvalue simply as�1 = det(mym)�2�3 = jj2j�1j2j�2j2j�3j2j�3j2(j�2j2 + j�1j2) ' jj2j�1j2j�2j2j�2j2 + j�1j2 j�1j�j�2j�������! jj2j�1j2 : (A.11)This means that for vanishing �1 we havemd ' jjj�1j ' j�2jj�2j je�1j : (A.12)Using the eigenvalues, we an also solve for the mixing matries at lowest order,V 03 = 0BB�1 0 00 1 j�2j2�+j�1j2�j�3j0 � j�2j2��+j�1j2��j�3j 1 1CCA ; (A.13)where we must reall that we had already ated on the mass matrix with a largeangle rotation bV3, so the V 03 above is just a small orretion to it.� 24 �



For the left-handed quark �elds, we have instead at leading orderU3 = 0BB� 1 �1�2 �1��3���1��2 1 �2��3��1��3 (�� � ��) ���2����3 1 1CCA : (A.14)Sine the up quark mass matrix is already diagonal, this last mixing matrix or-responds to the CKM matrix. From U y3 mV 03 = mdiag, we get VCKM = U3, so for� = � we have the predition Vtd = (�� � ��)��1=��3 = 0 at leading order, and theCP violation vanishes! On the other hand, Vub has the right order of magnitude aswe thought.Quark Masses and Mixing Angles. We an reprodue the observed quark masseigenvalues and mixing, that satisfy the relationsmu : m : mt ' �7 : �3 : 1 ;md : ms : mb ' �4 : �2 : 1 ; (A.15)where � ' Vus � 0:22 is the Cabibbo angle. In fat, if we assume�1 : �2 : �3 ' �7 : �3 : 1 ;e�1 : e�2 : e�3 ' �3 : �2 : 1 ; (A.16)it gives orretlyjVusj � j�1jj�2j � je�1jje�2j � � ; (A.17)jVubj � j�1jj�3j � je�1jje�3j � �3 ; jVbj � j�2jj�3j � je�2jje�3j � �2 ;moreover, md ' jjp1 + j�j2 j�1j ' j�2jj�2j je�1j�3 mb ' ��3mb ' �4mb : (A.18)Again Vtd is suppressed by the di�erene of ����� ' �2=�2; �1=�1, as is the Jarlskoginvariant, Jq.Low-energy CP violation As disussed in the following Appendix, we an ex-press the low-energy CP violation in the quark setion via an e�etive Jarlskoginvariant. We alulate this invariant, using Eqs. (A.4). The dominant terms are� 25 �



displayed in Eq. (3.9); the omplete expression readsJq = e�21e�22e�23�M 2d (fM2fM3fM2 " 1� fM24fM2! Im �3��2e�3e�22 + fM3fM4fM2 j�3j2e�23 Im �2e�2# (A.19)� fM22fM3fM4fM4 j�2j2e�22 Im �3e�3� fM1fM3fM2 " 1� fM24fM2! Im �3��1e�3e�1 + fM3fM4fM2 je�3j2e�23 Im �1e�1#+ fM1fM2fM2 " 1� fM24fM2!+ fM23fM2 j�3j2e�23 # Im �2��1e�2e�1+ fM1fM22fM3 j�2j2e�22 "fM4fM Im �1e�1 � fM3fM Im �3��1e�3e�1#+fM21fM2 j�1j2e�21 "fM3fM4fM2 Im �3e�3 � fM2fM4fM2 Im �2e�2 + fM2fM3fM2 Im �3��2e�3e�2#) :Charged Leptons. The harged leptons show a di�erent hierarhy than the downquarks, we have in fat me : m� : m� ' �5�6 : �2 : 1md : ms : mb ' �4 : �2 : 1 : (A.20)The disrepany an be solved with a smaller value for (�2~�1)e, ompared to (�2~�1)d.As an example, we hoose �e2 ' �4 and e�e1 ' �3�4 suh thatme ' jejp1 + j�j2 j�1j ' j�e2jj�2j je�e1j�3 m� ' �2�3�4m� ' �5�6m� : (A.21)Regarding the rotations, the large V4 rotation ats now on the left-handed �elds,but it has to at on both the harged leptons and the neutrinos, so it has not a largee�et in the harged urrent. There is, however, an e�et oming from the mismathbetween the two V3's in the harged leptons and neutrino ases.A.2 NeutrinosThe harged lepton mass matrix is eventually diagonalised via V3 = bV3V 03 and U3 asthe down quark matrix. For the light neutrino Majorana mass matrix, given bym�e� = � �mD�> �mN��1mD; (A.22)we an neglet the rotation U3 of the right-handed �elds as this transformationanels out. U4 does in priniple rotate the RH states, but its e�et is suppressed aslong as Mi < ~M . Regarding V3, we do not expet it to be the same for both harged� 26 �



and neutral leptons, so the mismath between the two provides �avour mixing in theneutrino setor.The neutrino Dira mass matrix an be written after the large rotation bV3 thatbring the harged lepton mass matrix into triangular form asmD = bmD bV3 = 0�A�1 D�1 �1B�2 E�2 �2C�3 F�3 �31A ; (A.23)where�1 = 1�3 1fM2 ne�1 he�3fM2123 � ��3fM3fM4i� �1fM1 he�3fM4 + ��3fM3io ;�2 = 1�3 1fM2 ne�2 he�3fM2123 � ��3fM3fM4i� �2fM2 he�3fM4 + ��3fM3io ;�3 = 1�3 1fM2 ne�3 he�3fM2123 � ��3fM3fM4i� �3 he�3fM3fM4 � ��3fM2124io ;and, using the notation fM�� =qfM2� + fM2� ,A = � 1�1 1�2 1�3 1fM ne�1�2�3fM1 � �1 he�2�3fM2 + �2 �e�3fM3 � �3fM4�io ;B = �2e�2 � e�2�2�2�2 �3�3 fM1fM ;C = e�3�3 � �3e�3�3�3 �2�2 fM1fM ;D = 1�1 1�2 1�23 1fM2 ne�1 he�2 j�3j2 fM212 + ��2�3fM2 �e�3fM3 � ��3fM4�i+ �1fM1 he�2��3 ��3fM4 � e�3fM3� + ��2fM2 �e�23 + j�3j2�io ;E = 1�2 1�2 1�23 1fM2 ne�2 he�2 j�3j2 fM212 + ��2�3fM2 �e�3fM3 � ��3fM4�i+ �2 he�2��3fM2 �e�3fM3 � �3fM4�+ ��2 �e�23fM213 � 2 j�3j e�3fM3fM4 os �3 + j�3j2 fM214�io ;F = 1�3 1�2 1�23 1fM2 (e�3�3 � �3e�3) he�2��3fM212 + ��2fM2 �e�3fM3 � ��3fM4�i : (A.24)Note that we are here projeting the neutrino �avour states into the basis de�nedby the harged leptons as in Eq. (A.3). So we an immediately see that if the neutrino�avour vetors are aligned with the harged leptons B;C; F should vanish and theneutrino mass matrix would beome triangular as well. This orresponds to having� 27 �



exatly the same hierarhy in the rows of the harged and neutral lepton Dira massmatries, i.e. �ie�i = �ie�i . We do not expet suh alignment sine the parameterse�i; e�i are generated by di�erent operators and not related by any GUT relation, asan be seen from Eq. (2.3). We will onsider in the following the ase where theneutrino hierarhies are similar to those of the down quark matrix, while the hargedleptons di�er due to the lighter eletron mass. Of ourse even more involved senariosare possible. In the following we neglet as well orretions oming from the �naldiagonalisation, sine the entries of V 03 are suppressed by (�2=�2)2 . 0:01.Mass eigenvalues and eigenvetors. We need to ompute the eigenvalues ofthe neutrino mass matrix and the �rst step is again to ompute the determinant ofthe matrix m�e�. Note that this is a symmetri matrix, but not real. Therefore theeigenvalues are in general omplex and the matrix is diagonalised using a unitarymatrix V� as V >� m�e�V� = diag (m1; m2; m3) : (A.25)Consider for the moment just the absolute value of the eigenvalues and then see thatwe have the relation3 det (m�e�) = ��det �mD��2det (mN) : (A.26)The last determinant is simply the produt of the heavy neutrino masses, while the�rst one is given bydet(mD) = �1�2�3 [(F � E)(A� B) + (D � E)(B � C)℄ : (A.27)In order to have three non-vanishing eigenvalues, we need all �i 6= 0 and at least oneof A, B, and C di�erent from zero. Also the three vetors orresponding to the rowsof the Dira matrix must not be aligned with eah other. So we obtainm1m2m3 = �%1%2%3 [(F � E)(A� B) + (D � E)(B � C)℄2= �%1%2%3 e�1�1 �2�2 �3�3 1�22 1�23 1fM2 fM1fM (A.28)� ne�22 j�3j2 fM212 + 2 j�2j e�2 j�3jfM2 he�3fM3 os (�2 � �3)� �3fM4 os �2i+ j�2j2 he�23fM213 � 2 j�3j e�3fM3fM4 os �3 + j�3j2 fM214io ;for �1 = 0, where %i = e�2i�i�2i =Mi.3Note that for a n� n mass matrix, the minus sign on the r.h.s. gives a (�1)n ontribution.� 28 �



Singling out the heaviest mass eigenstate. In the ase when %3 � %2;1, it iseasy to single out the heaviest eigenstate:(v0�;3)> = 1p1 + jF j2 + jCj2 (C�; F �; 1) ; (A.29)and the mass eigenvalue to lowest order is given bym03 = �%3 �1 + jF j2 + jCj2� : (A.30)Then up to a rotation in the 12 submatrix, at lowest order the mixing matrix an bewritten as V 0� = 0BBB� p1+jF j2p1+jF j2+jCj2 0 C�p1+jF j2+jCj2�CF �p1+jF j2+jCj2p1+jF j2 1p1+jF j2 F �p1+jF j2+jCj2�Cp1+jF j2+jCj2p1+jF j2 �Fp1+jF j2 1p1+jF j2+jCj2
1CCCA ; (A.31)this is the basis whih gives deoupling of the �rst eigenstate in the limit of vanishingC. From this matrix, we an diretly read o� the dominant part of the mixing angleswith the heavy eigenstate, �23 and �13. The harged lepton mass matrix is nearlydiagonal, so we an atually relate with good auray the �rst row to the eletronneutrino �avour. The left-handed harged lepton �avour eigenstates are given as afuntion of the mass eigenstates bỳf = �bV3V 03�y `i (A.32)and therefore the neutrino �avour eigenstates orrespond to�f = �bV3V 03�y bV3V��i = (V 03)y V��i ; (A.33)where bV3 anels out as it ats equally on the whole lepton doublet; moreover, as wehave seen, V 03 is limited to the 23 orner and does not modify the eletron entry. Weuse here the onvention of [32℄, and de�ne the PMNS matrix asV� = 0� 1312 13s12 s13�s1223 � 12s23s13eiÆ 1223 � s12s23s13eiÆ 13s23eiÆs12s23 � 1223s13eiÆ �12s23 � s1223s13eiÆ 1323eiÆ1A0�1 0 00 ei�2=2 00 0 ei�3=21A= 0�1 0 00 23 s230 �s23 231A0� 13 0 s13e�iÆ0 1 0�s13eiÆ 0 13 1A0� 12 s12 0�s12 12 00 0 11A0�1 0 00 ei�2=2 00 0 ei(Æ+�3=2)1A ;(A.34)where ij = os �ij, sij = sin �ij, Æ is the Dira phase and �1;2 are the Majoranaphases. � 29 �



So we have at lowest order for �13 that(V 0� )13 = sin �13 ' jCjq1 + jF j2 + jCj2 : (A.35)This gives us diretly a onstraint on the parameter C from the upper bound onjsin �13j � 0:1: jCj 'q1 + jF j2 + jCj2 jsin �13j . 0:1q1 + jF j2: (A.36)Then sine the mixing with the �rst �avour is small, the atmospheri mixing matrixis given simply by requiring the 23 orner of the matrix in Eq. (A.31) to giveVatm; 23 = � os �23 sin �23e�i�23� sin �23ei�23 os �23 � : (A.37)So onsidering the 23 setor, we get, again at lowest order,�23 = arg (F ) ;tan �23 = jF j : (A.38)To have large mixing angle tan 2�23 � 3 [29, 31℄, we must restrit jF j between0:7 � jF j � 1:4 : (A.39)Suh a value is natural in the ase where �3, e�3 and �3, e�3 are of the same orderbut not exatly equal, while �2 is small. Note that even a phase di�erene an beimportant. Assuming simply �3e�3 = ei!3 �3e�3 and degenerate fMi givesjF j = 2p2(1� os!3)3� os!3 ; (A.40)so we obtain jF j = 1 for the maximal phase di�erene !3 = �, while jF j � 0:7 arisesin the wide interval 0:26 � � !3 � 1:73 �. Hene, a nearly maximal atmospheriangle is natural even for the most simple hoie of parameters. Of ourse, moresolutions are possible for the general ase.Thus in order to reprodue the observed pattern of mixing parameters, C has tobe small, while jF j is nearly unity. We an use the maximal value for jF j and theexperimental bound on �13 to derive an upper limit on jCj,jCj � 0:17 ; (A.41)in agreement e.g. with the ratio �2e�2 neessary to have a small eletron mass. Note,however, that we an obtain signi�ant orretions from %2;1 6= 0.� 30 �



Light eigenstates and solar mixing angle. The other two eigenvalues and theorretion to the heavy mass an be obtained from the trae and determinant of thematrix (m�e�)ym�e�, whih an be omputed in any basis. Expanding both the massmatrix and the eigenvalues to �rst order,m�e� = m%3 +m%1;2 ;m3 = m03 + Æm3 while m1;2 = Æm1;2 ; (A.42)we have thenÆm3 =tr �my%3m%1;2�(m03)� ; jm1j2 + jm2j2 + jÆm3j2 =tr hmy%1;2m%1;2i ;jm2j2 jm1j2 = jdet(m�e�)j2jm3j2 : (A.43)Choosing the basis appropriately, the relations an be simpli�ed to giveÆm3 = �(V 0� )>m%1;2V 0� �33 ;jm1j2 + jm2j2 =tr hmy%1;2m%1;2i� ���(V 0� )>m%1;2V 0� �33��2 ;jm2j2 jm1j2 � j%1%2j2 j(F � E)(A� B) + (D � E)(B � C)j2�1 + jF j2 + jCj2�2 : (A.44)We will give the result of these expressions for vanishing C and %1 = q%2:Æm3 =%2 (1� FE)2 + q(1� FD)21 + jF j2 ;tr hmy%1;2m%1;2i = j%2j2 hj1 + qj2 + ��E2 + qD2��2 + ��B2 + qA2��2+2 jBE + qADj2 + 2 jB + qAj2 + 2 jE + qDj2� ;jm2j2 jm1j2 � j%2j4 jqj2 jA(F � E) +B(D � F )j4�1 + jF j2�2 : (A.45)Then the mass splitting whih should generate the solar osillations is given byÆm2sol =q�jm1j2 + jm2j2�2 � 4 jm2j2 jm1j2= j%2j2(1 + jF j2)2 nh�1 + jF j2�2 �j1 + qj2 + ��E2 + qD2��2 + ��B2 + qA2��2+ 2 jBE + qADj2 + 2 jB + qAj2 + 2 jE + qDj2�� ��(1� FE)2 + q(1� FD)2��2i2� 4 jqj2 �1 + jF j2�2 jA(F � E) +B(D � F )j4o1=2 : (A.46)
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So the solar neutrino mass splitting an be mathed even in the ase q = 0 orA (F � E) + B (D � F ) = 0, i.e., when the lightest neutrino is massless. However,we do not expet the �rst limit to be realised, if we assume the same hierarhiesbetween ��i as in the ��i in the down quark setor, while for Mi as the up quarksetor. In that ase we have in fat j%2j � j%1j and the two lighter eigenvalues aresimilar in sale, m1 ' m2 ' pÆm2sol. On the other hand, the determinant ould besuppressed by alignment, i.e., for jA (F � E) +B (D � F )j � 1, and ould give us ahierarhy also between the two light eigenvalues.We an then ompute the solar mixing angle and the �rst order orretions tothe Ve3 mixing parameter. After rotating with the V 0� matrix, we an estimate thesolar angle by using only the 12 part of the mass matrix; for C ' 0 the matrix isgiven bym%1;2(12) = 0� B2%2 + A2%1 B%2 E�Fp1+jF j2 + A%1 D�Fp1+jF j2B%2 E�Fp1+jF j2 + A%1 D�Fp1+jF j2 %2 (E�F )21+jF j2 + %1 (D�F )21+jF j2 1A : (A.47)Taking the solar mixing matrix as in Eq. (A.37) with �23; �23 ! �12; �12 we obtaine�i�12 = (m%1;2)12(m%1;2)�11 + (m%1;2)22(m%1;2)�12��(m%1;2)12(m%1;2)�11 + (m%1;2)22(m%1;2)�12�� ;tan 2�12 = 2 ��(m%1;2)12(m%1;2)�11 + (m%1;2)22(m%1;2)�12����(m%1;2)22��2 � ��(m%1;2)11��2 = 2q1 + jF j2 jN jD ;where, for q = %1=%2,N = [B(E � F ) + qA(D � F )℄ �B2 + qA2�� �1 + jF j2�+ �(E � F )2 + q (D � F )2� [B (E � F ) + qA (D � F )℄� ;D = ��(E � F )2 + q (D � F )2��2 � ��B2 + qA2��2 �1 + jF j2�2 :In order to have a large solar mixing angle, either Aq or B must not be smallompared to E � F and D � F . But sine A; C / �2e�2 , we are led to the aseA = C � 0 ; B = �2�2 fM1fM = O (1) : (A.48)Then we an neglet the terms proportional to A and we have simplytan 2�12 = 2 jBj jE � F jq1 + jF j2 jBj2 (1 + jF j2) + jE � F j2 + q(D � F )2 (E�F )�E�F��(E � F )2 + q (D � F )2��2 � jBj4 �1 + jF j2�2 :(A.49)
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This formula simpli�es further if we neglet the q (D � F ) terms as well.4 Then usinggeneral trigonometri formulae leads to the expression in Eq. (4.11),tan �12 ' jBjjE � F jq1 + jF j2 : (A.50)Taking the experimental value for the solar angle, tan2 �12 = 0:45� 0:05, gives us forjF j � 1 the range jBj � (0:45� 0:50) jE � F j.We an also ompute the orretions of order %1;2 to the other two mixing angles,that we have disussed in the lowest order. In fat, sine �2 � e�2, the ontribution(A.35) is small and the leading ontribution to �13 omes from the B%2 term,(V (1)� )13 = sin �13 ' jB (EF + 1)j�1 + jF j2�3=2 j%2jj%3j � jBj m2m3 � 0:2 jBj : (A.51)So even for vanishing leading order, we expet the �rst order term to bring �13 nearto the experimental bound. Note that it is the large solar angle that naturally gives�13 � %2=%3; in our model it seems pretty di�ult to suppress this angle to muhsmaller values, apart if there is a tuned anellation between zero and �rst order.The orretions to the atmospheri angle are of the same order %2=%3 and donot have a large e�et sine we need in any ase large parameters in the 23 setor.This small shift an in fat be easily ompensated by a small hange in the value ofF , espeially sine we do not have any partiular symmetry in the model imposingF = 1.Sum Rules for B dominane and vanishingm1. We have seen in the previousparagraph that in ase of vanishing C, A and %1, simple expressions an be obtainedfor all observables as funtions of only few parameters B, E, F and %3;2. Then it ispossible to obtain relations between the di�erent observables,tan �23 = jF j ;tan �12 = jBjjE � F jq1 + jF j2 ;sin �13 = jB (EF + 1)j�1 + jF j2�3=2 j%2jj%3j ;ÆmsolÆmatm = j%2jj%3jq(1 + jF j2)2 �1 + jEj2 + jBj2�2 � j1� FEj4�1 + jF j2�2 : (A.52)4Note that taking A = C = D � F = 0 gives a zero determinant for the neutrino mass matrix,so this ase applies when the lightest eigenvalue is suppressed ompared to the solar mass sale.� 33 �



Now we an write the following relation,sin �13tan �12 ÆmatmÆmsol = jE � F j jEF + 1jq��1 + jF j2� �1 + jEj2�+ jE � F j2 tan2 �12�2 � j1� EF j4 :(A.53)To estimate its value, we an use the fat that jF j � 1 and vary only jEj and thephases of E, F . We obtain then a maximal value of the r.h.s. for EF = 1 so thatsin �13 � ÆmsolÆmatm tan �121 + tan2 �12 ' 0:09 : (A.54)Of ourse, the angle �13 an always be redued by an appropriate hoie of the phasesand in partiular for E = F , so that there is no lower bound in this type of models.The e�etive neutrino Majorana matrix, whih is relevant for neutrinoless doublebeta deay, simpli�es suh thatjmeej = jBj2 j%2j= Æmsol tan2 �12 jE � F j2q��1 + jF j2� �1 + jEj2�+ tan2 �12 jE � F j2�2 � j1� FEj4 : (A.55)Again varying the phases and the modulus of E, we �nd the maximal value forEF = �1, jmeej � Æmsol tan �12p2 + tan2 �12 � 0:43 Æmsol : (A.56)Moreover, we an give a simple relation between mee and the reator angle,jmeejÆmatm = jE � F jjEF + 1j sin �13 tan �12 : (A.57)Note that the singular value for EF +1 = 0 orresponds to a vanishing reator angle.We an even derive a maximal value for the Dira CP violation for this ase.From Eqs. (4.21) and (4.27) we getJ` = � jBj2 (�1 � �2) Im (
)(1 + jF j2)2 h(1 + jF j2)2 �1 + jEj2 + jBj2�2 � j1� EF j4i (A.58)= �jE � F j41 + jF j2 tan2 �12 (1 + tan2 �12) Im (
)��1 + jF j2� �1 + jEj2�+ jE � F j2 tan2 �12�2 � j1� EF j4= � ÆmsolÆmatm jE � F j41 + jF j2 tan2 �12 (1 + tan2 �12) Im �(1 + EF �)F � (E � F ) ei�23�h��1+jF j2� �1+jEj2�+jE�F j2tan2 �12�2�j1�EF j4i3=2 ;
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where �23 is the phase of %2=%3. Again, the prefator is maximal for EF = �1 andE = �F , givingjJ`j � ÆmsolÆmatm 1 + tan2 �122 tan �12 (2 + tan2 �12)3=2 jsin�23j � 0:06 : (A.59)Here the imaginary part is only given by the phase �23, but in more general ases thephases of E and F will play a role as well. So even for the CP violation in the leptonisetor, the model displays a suppression given by the ratio of the mass eigenvalues.Contrary to the quark ase, however, the CP violation is not proportional to thesmallest mass eigenvalue, but it an be non-vanishing even for m1 = 0.B. CP Violation and Weak Basis InvariantsFor ompleteness we disuss here the CP invariants in the ase of an additionalvetorial state. We prove that if the additional state is muh heavier than theeletroweak sale, the low energy CP violation an be expressed by the Jarlskoginvariant de�ned from an e�etive 3� 3 down quark mass matrix.The transformation of a Dira spinor  (t; ~x) under parity and harge onjugationis given by P  (t; ~x) P�1 = �P 0 (t;�~x);C  (t; ~x) C�1 = �C C � (t; ~x)>; (B.1)where �P;C are non-observable phases. The matrix C obeys the relation �C =�CT� . Sine the Lagrangian is a Lorentz salar, it only depends on fermioni �eldbilinears. Thus, we dedue the CP transformation for suh terms,CP � i j (CP)�1 = � j i ;CP � i5 j (CP)�1 = � � j5 i ;CP � i� j (CP)�1 = � � j� i ;CP � i�5 j (CP)�1 = � � j�5 i : (B.2)Note that the operator �� transforms under CP as �� ! ��.Quark Setor. In the Standard Model, it is easy to verify the existene of the CPsymmetry in the Lagrangian, up to mass terms. In general, the quark mass terms areCP invariant if and only if it is possible to �nd a weak basis transformation whihrealises Hu� = WLHuW yL ; Hd� = WLHdW yL ; (B.3)where Hu;d =Mu;d �Mu;d�y. It follows thatWL [Hu; Hd℄W yL = � [Hu; Hd℄> ; (B.4)
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suh that, for r odd, tr [Hu; Hd℄r = 0 (B.5)is a neessary and su�ient ondition for CP invariane [42℄.The ase of r = 1 is trivial: the trae of a ommutator [Hu; Hd℄ is zero. Forr = 3 and three generations, we haveISM � tr [Hu; Hd℄3 = 6i �m2t �m2� �m2t �m2u� �m2 �m2u��m2b �m2s� �m2b �m2d� �m2s �m2d� Jq ; (B.6)where the quantity Jq does not depend of the mass spetrum, and an be related, upto a sign, with the CKM matrix, V , as jJqj = jIm(V12V �13V �22V23)j. We onlude that inorder to have CP violation, we need to have Jq 6= 0. This quantity is the lowest weakbasis invariant whih measure CP violating e�ets and it has mass-dimension twelve.Apart from CP violation in the strong interations, there is no other mehanism inthe SM whih an generate CP violating e�ets if Jq = 0. Note that in the hirallimit, mu = md = ms = 0, we do not generate CP violation even if Jq 6= 0.In the literature, the lowest weak basis invariant is alled Jarlskog determinant[28℄, det [Hu; Hd℄ = 2i �m2t �m2� �m2t �m2u� �m2 �m2u��m2b �m2s� �m2b �m2d� �m2s �m2d�Jq : (B.7)whih is equivalent to the Eq. (B.6).5 The Jarlskog determinant is only appliable tothe ase of three generations, in ontrast to the more general invariant in Eq. (B.5).Now let us add a down quark isosinglet. The gauge ouplings to quarks andtheir mass terms are (i; j = 1; 2; 3 and � = 1; 2; 3; 4):L qW = � gp2 ��uLi�dLiW+� + h..�� eJ�EMA�� g2 os �W ��uLi�uLi � �dLi�dLi � 2 sin2 �W J�EM�Z� (B.8a)L qM = � ��uLiM iju uRj + �dLiM i�d dR� + �dL4m�d dR��+ h.. (B.8b)where the matriesMu,Md andmd are of dimension 3�3, 3�4 and 1�4, respetively.The eletromagneti urrent is given by J�EM = 23 �u�u� 13 �d�d.The most general weak basis transformation onsistent with the Lagrangian ofEq. (B.8) is:�uLidLi� �! U ijL �uLjdLj� ; uRi �! (UuR)ij uRj ; dR� �! �UdR��� dR� : (B.9)5For any 3� 3 traeless Hermitian matrix M one has: trM3 = 3 jM j.� 36 �



where UL and UuR are 3� 3 unitary matries, while UdR is 4� 4. One we diagonalisethe mass terms, the Lagrangian readsLW = � gp2 ��uLi� (VCKM)i� dL�W+� + h..�� eJ�EMA�� g2 os �W ��uLi�uLi � �dL�� �V yCKMVCKM��� dL� � 2 sin2 �W J�EM�Z� ;LM = � ��uLiDui uRi + �dL�Dd� dR��+ h.. ; (B.10)where VCKM = Uu yL UdL is a 3 � 4 matrix. The number of independent phases whihare related to CP violation is, for N = 3,nCP = N (N + 1)� 12N (N � 1)� 2N = 12N(N � 1) = 3 : (B.11)With the matries as de�ned in Eq. (B.8b) and Hu =MuM yu, Hd =MdM yd , andhd =Mdmyd, we an write down a set of weak basis invariants,I1 = ImtrHuHdhdhyd ; I2 = ImtrH2uHdhdhyd ;I3 = ImtrH2u [Hu; Hd℄ hdhyd ; I4 = ImtrHuH2dhdhyd ;I5 = ImtrH2uH2dhdhyd ; I6 = ImtrH2u �Hu; H2d�hdhyd ;I7 = ImtrH2uHdHuH2d ; (B.12)representing a set of neessary and su�ient onditions for having CP invariane inthe quark setor [43℄.In our model, Hd and hd readHd = 0�j�1j2 + e�21 e�1e�2 e�1e�3e�1e�2 j�2j2 + e�22 e�2e�3e�1e�3 e�2e�3 j�3j2 + e�231A ; hd = 0B��1fM1 + e�1fM4�2fM2 + e�2fM4�3fM3 + e�3fM41CA : (B.13)Sine Hu and Hd are real, I7 vanishes. The remaining invariants are in generaldi�erent from zero; the dominant terms areI1 = �m2t �e�21 + e�22� e�3fM4 Im�3 ; I2 = m2t I1 ;I3 = �m6t �e�21 + e�22� e�3fM3fM4 Im�3 ;I4 = �m2t �e�21 + e�22� �e�21 + e�22 + e�23 + �23� e�3fM3fM4 Im�3 ; I5 = m2t I4 ;I6 = �m6t �e�21 + e�22� �e�21 + e�22 + e�23 + �23� e�3fM3fM4 Im�3 : (B.14)Hene, CP is generally violated even by the presene of a single omplex parameter�3. Note that this ase is not equivalent to the hiral limit beause both the harmand strange masses are di�erent from zero, m / �2 and ms � e�2 (albeit �2 �� 37 �



e�2). As we might expet, the invariants vanish if all quarks of the �rst and seondgeneration are massless.Now we single out the heavy eigenstate with the rotations V4, U4. While theation of V4 leaves the invariants una�eted, U4 strongly modi�es them and reshu�esterms from one to the other. In fat after this transformation, hd vanishes to lowestorder and survives only at order O(v2EW=fM2); then in the new basis all the invariantsinvolving hd, i.e., I1� I6 are suppressed by v2EW=fM2 and vanish for fM !1. On theother hand I7 is now non-vanishing and given byI 07 = ImtrH2uHe�d Hu �He�d �2 ; (B.15)where He�d = bmbmy (see Eq. (2.7)). Note that U4 also hanges the weak interations,ÆLW = � gp2 �ui� (U4 � 1)i4 d4W+� + �di� �U y4U4 � 1�i4 d4 Z� + h..; (B.16)so we expet both CP violation and CKM unitarity violation from these terms aswell. However, the mass of the heavy state is O (MGUT) so that the ontributions tolow-energy proesses are suppressed by a fator MEW=MGUT and are negligible.Hene, at the eletroweak sale, we are left to onsider the single invariantI 07 = ImtrH2uHe�d HuHe� 2d ; (B.17)whih orresponds to the usual Jarlskog invariant Jq for three generations, but om-puted for the e�etive quark mass bm.Lepton Setor. As disussed above, we an ignore the heavy states for low-energyCP violation and use the e�etive 3� 3 Yukawa matries instead.In the SM, extended by right-handed neutrinos, we have three mass terms forthe leptons,LM̀ = ���eLimije eRj + ��LimijD �Rj + 12 �>RiC mijN �Rj� + h.. (B.18)In analogy to the quark setor, invariane of the mass terms under CP transformationrequiresU ymeV = m�e ; U ymDW = m�D ; W>mNW = �M�R ; (B.19)where U , V , andW are unitary matries ating in �avour spae. De�ning h = myDmDand H = myNmN , we obtainW yhW = h� ; W yHW = H� : (B.20)Now we an write down the weak basis invariantsI1̀ = ImtrhH m�Nh�mN ; I2̀ = ImtrhH2m�Nh�mN ;I3̀ = ImtrhH2m�Nh�mNH; (B.21)
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for the three further invariants, substitute h = myDmemyemD for h [26℄. In the basiswhere the right-handed neutrino mass is diagonal, one obtainsI1̀ =M1M2 �M22 �M21 � Imh212+M1M3 �M23 �M21 � Imh213 +M2M3 �M23 �M22 � Imh223 ;I2̀ =M1M2 �M42 �M41 � Imh212+M1M3 �M43 �M41 � Imh213 +M2M3 �M43 �M42 � Imh223 ;I3̀ =M31M32 �M22 �M21 � Im h212+M31M33 �M23 �M21 � Imh213 +M32M33 �M23 �M22 � Imh223 :If none of the Mi vanish and there is no degeneray, the vanishing of I1, I2, and I3implies the vanishing of Imh212, Im h213, and Imh223 for CP invariane.Note that in our model, mD stands for the e�etive 3 � 3 part of the Diraneutrino mass matrix, mD, as given in Eq. (A.23). Then we obtain from Eq. (4.3),h12 = A�D�21 +B�E�22 + C�F�23 ;h13 = A�21 +B�22 + C�23 ;h23 = D��21 + E��22 + F ��23 : (B.22)The oe�ients A; : : : ; F are displayed in Eqs. (A.24). They are generially omplex,so we do not expet CP to be onserved.As in the quark setor, these invariants are rather general and give the neessaryonditions for the presene of CP violation. On the other hand, only few of the phasesremain important also in the low-energy limit. In our ase, to study the low-energyDira invariant, we an use the analogue of the Jarlskog invariant,J` = � 1M 2�M 2e tr [h�e�; he℄3 ; (B.23)as disussed in Setion 4.3. Here, h�e� = (m�e�)ym�e� and �M 2� and �M 2e are theproduts of the mass squared di�erenes of the light neutrinos and harged leptons,respetively.
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