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removes disretization errors order by order in the lattie spaing a has been proposedby Symanzik [1℄ and developed for on-shell quantities in [2, 3℄. O(a) improvement of theWilson fermion ation is ahieved by omplementing it with the so-alled lover term [3℄,provided the assoiated lover oeÆient is tuned properly.Wilson-type fermions break all hiral symmetries. This introdues an additive negativemass renormalization term in the ation, whih gives rise to singularities in the quarkpropagator at small quark masses and makes the approah to the hiral regime diÆult.A hiral improvement of the ation is expeted to redue the additive mass renormalizationand the spread of negative eigenvalues. Surprisingly, this is not aomplished by the loveration.While the magnitude of the additive mass term dereases with inreasing lover term,the problem of negative eigenvalues is more severe for the lover than for the standardWilson ation. It is well known that via a ombination of link fattening and tuning of thelover oeÆient, it is possible to redue both the negative mass term and the spread ofnegative eigenvalues [4, 5, 6℄.The fous of this investigation is to determine the lover oeÆient and the additivemass renormalization for plaquette and Symanzik improved gauge ation and stout linklover fermions in one-loop lattie perturbation theory.The Symanzik improved gauge ation reads [1℄SSymG = 6g2 (0 XPlaquette 13 ReTr (1� UPlaquette) + 1 XRetangle 13 ReTr (1� URetangle)) (1)with 0 + 81 = 1 and 0 = 53 ; 1 = � 112 : (2)This redues to the standard plaquette ation SPlaqG for 1 = 0.Clover fermions have the ation for eah quark avor [3℄SF = a4 Xx n� 12a h � (x)eU�(x) (1� �) (x+ a�̂)+ � (x)eU y�(x� a�̂) (1 + �) (x� a�̂)i (3)+ 1a (4 + am0 + am) � (x) (x)� SW g a4 � (x) ���F��(x) (x)o ;2



where am0 = 12� � 4 ; (4)� being the ritial hopping parameter, is the additive mass renormalization term, andF��(x) is the �eld strength tensor in lover form with ��� = (i=2) (�� � ��). Weonsider a version of lover fermions in whih we do not smear links in the lover term,but the link variables U� in the next neighbor terms have been replaed by (uniterated)stout links [7℄ eU�(x) = eiQ�(x) U�(x) (5)withQ�(x) = !2 i �V�(x)U y�(x)� U�(x)V y� (x)� 13Tr �V�(x)U y�(x)� U�(x)V y� (x)�� : (6)V�(x) denotes the sum over all staples assoiated with the link and ! is a tunable weightfator. Stout smearing is preferred beause (5) is expandable as a power series in g2,so we an use perturbation theory. Many other forms of smearing do not have this nieproperty. Beause both the unit matrix and the � terms are smeared, eah link is still aprojetion operator in the Dira spin index.The reason for not smearing the lover term is that we want to keep the physialextent in lattie units of the fermion matrix small whih is relevant for non-perturbativealulations. In that respet we refer to these fermions as SLiNC fermions, from thephrase Stout LinkNon-perturbative Clover.The improvement oeÆient SW as well as the additive mass renormalization am0are assoiated with the hiral limit. So we will arry out the alulations for masslessquarks, whih simpli�es things, though it means that we annot present values for themass dependent orretions.For omplete O(a) improvement of the ation there are �ve terms whih would haveto be added to the O(a) e�etive ation, they are listed, for example, in [8℄. Fortunately,in the massless ase only two remain,O1 = � ���F�� ; (7)O2 = � $D$D  : (8)The �rst is the lover term, the seond is the Wilson mass term. We have both in ouration, there is no need to add any other terms to the ation.In perturbation theory SW = 1 + g2 (1)SW +O(g4) : (9)3



The one-loop oeÆient (1)SW has been omputed for the plaquette ation using twistedantiperiodi boundary onditions [9℄ and Shr�odinger funtional methods [10℄. Moreover,using onventional perturbation theory, Aoki and Kuramashi [11℄ have omputed (1)SW forertain improved gauge ations. All alulations were performed for non-smeared linksand limited to on-shell quantities.We extend previous alulations of (1)SW to inlude stout links. This is done by omput-ing the one-loop orretion to the o�-shell quark-quark-gluon three-point funtion. Theimprovement of the ation is not suÆient to remove disretization errors from Greenfuntions. To ahieve this, one must also improve the quark �elds. The most generalform onsistent with BRST symmetry is [12℄1 ?(x) = �1 + a D !=D +a i g NGI =A(x)�  (x) : (10)From now we denote improved quark �elds and improved Green funtions by an index ?.These are made free of O(a) e�ets by �xing the relevant improvement oeÆients.There is no a priori reason that the gauge variant ontribution NGI =A(x) vanishes.The perturbative expansion of NGI has to start with the one-loop ontribution [12℄. Asa byprodut of our alulation we determine that oeÆient (1)NGINGI = g2 (1)NGI +O(g4) (11)and �nd that it is indeed nonvanishing.2 O�-shell improvementIt is known [11℄ that the one-loop ontribution of the Sheikoleslami-Wohlert oeÆient inonventional perturbation theory an be determined using the quark-quark-gluon vertex��(p1; p2; SW ) sandwihed between on-shell quark states. p1 (p2) denotes the inoming(outgoing) quark momentum. In general that vertex is an amputated three-point Greenfuntion.Let us look at the O(a) expansion of tree-level �(0)� (p1; p2; SW ) whih is derived fromation (3)�(0)� (p1; p2; SW ) = �i g � � g 12 a 1(p1 + p2)� + SW i g 12 a ���(p1 � p2)� +O(a2) : (12)1In [12℄ the authors use !=D and =� instead of !=D and =A - both hoies are equivalent. Our hoie ismotivated by the disussion of o�-shell improvement in the next setion.4



For simpliity we omit in all three-point Green funtions the ommon overall olor matrixT a. That tree-level expression between on-shell quark states is free of order O(a) if theexpansion of SW starts with one, as indiated in (9)�u(p2) �(0)?� (p1; p2) u(p1) = �u(p2) (�i g �) u(p1) : (13)Therefore, at least a one-loop alulation of the ��(p1; p2; (1)SW ) is needed as neessaryondition to determine (1)SW .The o�-shell improvement ondition states that the non-amputated improved quark-quark-gluon Green funtion G?�(p1; p2; q) has to be free of O(a) terms in one-loop au-ray. In position spae that non-amputated improved quark-quark-gluon Green funtionsis de�ned via expetation values of improved quark �elds and gauge �elds asG?�(x; y; z) = h ?(x) ?(y)A�(z)i : (14)Sine the gluon propagator is O(a)-improved already, we do not need to improve gauge�elds. Using relation (10) we an express the funtion G?� by the unimproved quark �elds G?�(x; y; z) = G�(x; y; z) + a D D� =D =D�1 + =D�1 =D�A�E+ i a g NGI D� =A =D�1 + =D�1 =A�A�E ; (15)where G�(x; y; z) is the unimproved Green funtion.Taking into aountD� =A =D�1 + =D�1 =A�A�E = 2 a D Æ(x� y) hA�(z)i (16)and setting hA�(z)i = 0 (unless there is an unexpeted symmetry breaking), we obtainthe following relation between the improved and unimproved Green funtionG?�(x; y; z) = G�(x; y; z) + i a g NGI D� =A =D�1 + =D�1 =A�A�E : (17)From (17) it is obvious that tuning only SW to its optimal value in G�(x; y; z), therewould be an O(a) ontribution left in the improved Green funtion. The requirementthat G?�(x; y; z) should be free of O(a) terms leads to an additional ondition whihdetermines the onstant NGI . It has not been alulated before.5



Taking into aount the expansion (11) of NGI we get in momentum spae (F [�℄denotes the Fourier transform)i a g NGI FhD� =A =D�1 + =D�1 =A�A�Etree i = i a g3 (1)NGI  � 1i =p1 + 1i =p2�! Ktree�� (q) ; (18)or its amputated versioni a g NGI FhD� =A =D�1 + =D�1 =A�A�Etreeamp i = �a g3 (1)NGI �=p2 � + � =p1� : (19)The relation between non-amputated and amputated unimproved and improved three-point Green funtions are de�ned byG�(p1; p2; q) = S(p2) ��(p1; p2; q; (1)SW )S(p1)K��(q) ; (20)G?�(p1; p2; q) = S?(p2) �?�(p1; p2; q)S?(p1)K��(q) ; (21)K��(q) denotes the full gluon propagator whih is O(a)-improved already, S(p) and S?(p)the orresponding quark propagators.With the de�nition of the quark self energy�(p) = 1a�0 + i =p�1(p) + a p22 �2(p) (22)the unimproved and improved inverse quark propagators are given byS�1(p) = i =p�1(p) + a p22 �2(p) = i =p�1(p)�1� 12a i =p �2(p)�1(p)� ; (23)S�1? (p) = i =p�1(p) : (24)Using the Fourier transformed (17) with (19) and amputating the Green funtion (20),taking into aount the inverse quark propagators (23), we get the o�-shell improvementondition in momentum spae��(p1; p2; q; (1)SW ) = �?�(p1; p2; q) + a g3(1)NGI(=p2 � + � =p1)� a2 i =p2 �2(p2)�1(p2) �?�(p1; p2; q)� a2 �?�(p1; p2; q) i =p1 �2(p1)�1(p1) : (25)This expression should hold to order O(g3) by determining both (1)NGI and (1)SW orretly.It is lear from (25) that the improvement term / (1)NGI does not ontribute if both quarksare on-shell. 6



3 The one-loop lattie quark-quark-gluon vertexThe diagrams ontributing to the amputated one-loop three-point funtion are shown inFig. 1. The alulation is performed with a mixture of symboli and numerial teh-
(a) (b) (c)

(d)

p1

q=p  −p
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p2

(e)Figure 1: One-loop diagrams ontributing to the amputated quark-quark-gluon vertex.niques. For the symboli omputation we use a Mathematia pakage that we developedfor one-loop alulations in lattie perturbation theory (for a more detailed desriptionsee [14℄). It is based on an algorithm of Kawai et al. [15℄. The symboli treatment hasseveral advantages: one an extrat the infrared singularities exatly and the results aregiven as funtions of lattie integrals whih an be determined with high preision. Thedisadvantage onsists in very large expressions espeially for the problem under onsider-ation. In the symboli method the divergenes are isolated by di�erentiation with respetto external momenta.Looking at the general analyti form of the gluon propagator for improved gauge7



ations [16℄ one easily reognizes that a huge analyti expression would arise. As disussedin [16℄ we split the full gluon propagator DSym�� (k; �)DSym�� (k; �) = DPlaq�� (k; �) + �D��(k) ; (26)where � is the ovariant gauge parameter (� = 0 orresponds to the Feynman gauge).The diagrams with DPlaq�� (k; �) only ontain the logarithmi parts and are treated withour Mathematia pakage. The diagrams with at least one �D��(k) are infrared �niteand an be determined safely with numerial methods. The deomposition (26) meansthat we always need to alulate the plaquette ation result, as part of the alulation forthe improved gauge ation. Therefore, we will give the results for both plaquette gaugeation and Symanzik improved gauge ation using the orresponding gluon propagatorsDPlaq�� and DSym�� , respetively.Beause the numerial part determines the auray of the total result we disuss itin more detail. There are several possibilities to ombine the various ontributions of theone-loop diagrams as given in Fig. 1. In view of a later analysis we have deided to groupall oeÆients in front of the independent olor fators CF and N and the powers of thestout parameter !�num:� = CF �C0 + C1 ! + C2 !2 + C3 !3�+N �C4 + C5 ! + C6 !2 + C7 !3� ; (27)where the Ci have to be omputed numerially. In order to obtain Ci we �rst add allontributions of the diagrams shown in (1) and integrate afterwards. We have used aGauss-Legendre integration algorithm in four dimensions (for a desription of the methodsee [14℄) and have hosen a sequene of small external momenta (p1; p2) to perform anextrapolation to vanishing momenta.Let us illustrate this by an example: the alulation of the oeÆient C4. We knowthe general struture of the one-loop amputated three-point funtion as (we set a = 1)M�(p1; p2) = �A(p1; p2) + 1 p1;�B(p1; p2) + 1 p2;�C(p1; p2)+ ��� p1;�D(p1; p2) + ��� p2;�E(p1; p2) : (28)From this we an extrat the oeÆients by the following projetionsTr �M� = 4A(p1; p2); � �xed ;TrM� = 4 p1;�B(p1; p2) + 4 p2;�C(p1; p2) ; (29)X� Tr ���M� = 12 p1;�D(p1; p2) + 12 p2;� E(p1; p2) :8



Relations (30) show that one has to ompute the three-point funtion for all four valuesof �. Further they suggest hoosing the external momenta orthogonal to eah other:p1 � p2 = 0. A simple hoie is p1;� = (0; 0; 0; p1;4) and p2;� = (0; 0; p2;3; 0).We disuss the determination of B(p1; p2) and C(p1; p2) in more detail. For smallmomenta they an be desribed by the ansatzB(p1; p2) = B0 +B1 p21 +B2 p22 ;C(p1; p2) = C0 + C1 p21 + C2 p22 : (30)The hoie of the momenta is arbitrary exept for two points. First, they should besuÆiently small in order to justify ansatz (30). Seond, they should not be integermultiples of eah other in order to avoid aidental symmetri results. The symmetryof the problem demands the relation B0 = C0 whih must result from the numerialintegration also. Performing the integration at �xed p1 and p2 we obtain omplex 4 � 4matries for M3(p1; p2) and M4(p1; p2) from whih the quantities B(p1; p2) and C(p1; p2)are extrated via (30).A nonlinear regression �t with ansatz (30) givesB0 = 0:00553791 with �t error ÆB0 = 7� 10�8 ;C0 = 0:00553789 with �t error ÆC0 = 6� 10�8 : (31)It shows that the symmetry is ful�lled up to an error ofO(10�7) whih sets one sale for theoverall error of our numerial alulations. In Fig. 2 we show the almost linear dependeneof B(p1; p2) and C(p1; p2) on p21. (In the integration we haven hosen p1;� = 0:87 p2;� sothat we an restrit the plot to one variable.)Another soure of errors is the numerial Gauss-Legendre integration routine itself.We have hosen a sequene of n4 = 144, 184, 224, 264 and 304 nodes in the four-dimensionalhyperube and have performed an extrapolation to in�nite nodes with an 1=n4 �t ansatz.Both proedures, Gauss-Legendre integration and the �t p ! 0, give a ombined �nalerror of 10�6.The third error soure are the errors of the lattie integrals of our Mathematia alu-lation for the terms ontaining the plaquette propagator DPlaq�� only. These integrals havebeen alulated up to a preision of O(10�10). Therefore, their errors an be negleted inomparison with the others.Summarizing we �nd that the error of our numerial proedure is of O(10�6). Addi-tionally, we have heked our results by an independent ode whih ompletely numerially9
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Figure 2: B(p1; p2) (irles) and C(p1; p2) (squares) as funtion of p21 together with theirorresponding linear �ts in p21.omputes the one-loop ontributions for eah diagram inluding the infrared logarithms.Both methods agree within errors.The Feynman rules for non-smeared Symanzik gauge ation have been summarizedin [11℄. For the stout smeared gauge links in the lover ation the rules restrited to equalinitial and �nal quark momenta are given in [6℄. As mentioned in the introdution weperform a one-level smearing of the Wilson part in the lover ation. The orrespondingFeynman rules needed for the one-loop quark-quark-gluon vertex are muh more ompli-ated than those in [6℄. The qqgg-vertex needed in diagrams () and (d) of Fig. 1 reeivesan additional antisymmetri piee. The qqggg-vertex in diagram (e) does not even existin the forward ase. The Feynman rules are given in Appendix A. The diagrams whihare needed for the alulation of the quark propagator are shown in Fig. 3. We haveperformed our alulation in general ovariant gauge.
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p p
(a) (b)Figure 3: One-loop diagrams ontributing to the quark self energy.4 Results for the improvement oeÆients and riti-al hopping parameterThe antiipated general struture for the amputated three-point funtion in one-loop is��(p1; p2; q) = �MS� (p1; p2; q) + Alat i g316�2 �+Blat a2 g316�2 �=p2 � + � =p1� + Clat i a2 g316�2 ��� q� : (32)�MS� (p1; p2; q) is the universal part of the three-point funtion, independent of the hosengauge ation, omputed in the MS-sheme�MS� (p1; p2; q) = �i g � � g a2 1 (p1;� + p2;�)� SW i g a2��� q�+ i 12 g316�2 �MS1;� (p1; p2; q) + a2 g316�2 �MS2;� (p1; p2; q) : (33)We have alulated the omplete expressions for �MS1;� (p1; p2; q) and �MS2;� (p1; p2; q).The O(a) ontribution, �MS2;� (p1; p2; q), simpli�es if we set SW = 1 +O(g2) as in (9).After some algebra we �nd�MS2;� (p1; p2; q) = 12 �=p2 �MS1;� (p1; p2; q) + �MS1;� (p1; p2; q) =p1��CF �=p2 � (1� �)(1� log(p22=�2)) (34)+� =p1 (1� �)(1� log(p21=�2))� ;11



where �2 is the MS mass sale (not to be onfused with the index �). Therefore, weonly need �MS1;� (p1; p2; q) to present the one-loop result (33). �MS1;� (p1; p2; q) is given inAppendix B.If we insert (32) and (33) with (34) into the o�-shell improvement relation (25) we getthe following onditions that all terms of order O(ag3) have to vanish�(1)SW � Clat16�2� ��� q� = 0 ; (35)�(1)NGI � 132�2 (Alat � Blat � �21)��=p2 � + � =p1� = 0 ; (36)with �21 de�ned from (23) as�2(p)�1(p) = 1 + g2CF16�2 �(1� �)(1� log(a2p2)) + �21;0�� 1 + g2CF16�2 �(1� �)(1� log(p2=�2))�+ g216�2�21 (37)and �21 = CF ��(1� �) log(a2�2) + �21;0� : (38)The onstant �21;0 depends on the hosen lattie ation.It should be noted that equations (35) and (36) are obtained by using the general stru-ture (34) only { we do not need to insert the omplete alulated result for �MS1;� (p1; p2; q).In order to get momentum independent and gauge invariant improvement oeÆients wesee from (35) that Clat itself has to be onstant and gauge invariant. From (36) and (38) wefurther onlude that the log(a2�2)-terms from Alat and Blat have to anel those from �21.The same is true for the orresponding gauge terms. The terms / (1� �)(1� log(p2i =�2))(i = 1; 2) oming from (37) are aneled by the orresponding terms in (34).Therefore, the relation between �MS1;� (p1; p2; q) and �MS2;� (p1; p2; q) as given in (34) is anontrivial result. One more, it should be emphasized that this relation only holds if weuse SW = 1 at leading order in g2. If (34) were not true, we would not be able to improvethe Green funtions by adding the simple O(a) terms we have onsidered.For ompleteness we also give the orresponding one-loop values for the quark �eldimprovement oeÆient D as de�ned in (10). They an be derived from the O(a) im-provement of the quark propagator. The one-loop improvement oeÆient (1)D is relatedto the quark self energy byD = �14 �1 + g2CF16�2 (2�1 � �2)� +O(g4) � �14 �1 + g2 (1)D �+O(g4) : (39)12



(1)D has been alulated for ordinary lover fermions and plaquette gauge ation in [13℄.Now we present our numerial results for general ovariant gauge � and as funtion ofthe stout parameter !. For the plaquette ation with stout smearing the quantities Alat,Blat and Clat are obtained asAPlaqlat = CF �9:206269 + 3:792010 � � 196:44601! + 739:683641!2+(1� �) log(a2�2)�+N ��4:301720 + 0:693147 � + (1� �=4) log(a2�2)� ;BPlaqlat = CF �9:357942 + 5:727769 � � 208:583208! + 711:565256!2+2 (1� �) log(a2�2)� (40)+N ��4:752081 + 0:693147 � + 3:683890! + (1� �=4) log(a2�2)� ;CPlaqlat = CF �26:471857 + 170:412296!� 582:177099!2�+N �2:372649 + 1:518742! � 44:971612!2� :For the stout smeared Symanzik ation we getASymlat = CF �5:973656 + 3:792010 � � 147:890719! + 541:380348!2+(1� �) log(a2�2)�+N ��3:08478 + 0:693159 � � 0:384236! + (1� �=4) log(a2�2)� ;BSymlat = CF �6:007320 + 5:727769 � � 163:833410! + 542:892478!2+2 (1� �) log(a2�2)� (41)+N ��13:841082 + 0:693179 � + 3:039641! + (1� �=4) log(a2�2)� ;CSymlat = CF �18:347163 + 130:772885! � 387:690744!2�+N �2:175560 + 2:511657!� 50:832203!2� :As shown in (25) (or equivalently (36)) we need the self energy parts �1(p) and �2(p) asde�ned in (23) to solve the o�-shell improvement ondition. They have the general form�1(p) = 1� g2CF16�2 �(1� �) log(a2p2) + �1;0� ;�2(p) = 1� g2CF16�2 �2 (1� �) log(a2p2) + �2;0� : (42)13



For the plaquette and Symanzik ations we obtain�Plaq1;0 = 8:206268� 196:446005! + 739:683641!2 + 4:792010 � ;�Plaq2;0 = 7:357942� 208:583208! + 711:565260!2 + 7:727769 � ;�Sym1;0 = 4:973689� 147:890720! + 541:380518!2 + 4:792010 � ; (43)�Sym2;0 = 4:007613� 163:833419! + 542:892535!2 + 7:727769 � :This results in the following expressions for �21 as de�ned in (38)�Plaq21 = CF �� 0:151673� 1:935759 � + 12:137203! + 28:118384!2� (1� �) log(a2�2)� ;�Sym21 = CF �� 0:033924� 1:935759 � + 15:942699!� 1:512017!2 (44)� (1� �) log(a2�2)� :Inserting the orresponding numbers into (35), (36) and (39), we obtain the one-loopontributions of the lover improvement oeÆient(1);PlaqSW = CF �0:167635 + 1:079148! � 3:697285!2�+N �0:015025 + 0:009617!� 0:284786!2� ; (45)(1);SymSW = CF �0:116185 + 0:828129! � 2:455080!2�+N �0:013777 + 0:015905!� 0:321899!2� ; (46)the o�-shell quark �eld improvement oeÆient(1);PlaqNGI = N (0:001426� 0:011664!) ; (47)(1);SymNGI = N (0:002395� 0:010841!) ; (48)and the on-shell quark �eld improvement oeÆient(1);PlaqD = CF �0:057339 + 0:011755 � � 1:167149! + 4:862163!2� ; (49)(1);SymD = CF �0:037614 + 0:011755 � � 0:835571! + 3:418757!2� ; (50)for the plaquette and Symanzik ation, respetively. For ! = 0 both the plaquette result(45) and the Symanzik result (46) agree, within the auray of our alulations, with thenumbers quoted in [9, 10℄ and [11℄. 14



From Ward identity onsiderations it is known that the oeÆient NGI has to beproportional to N only. Additionally, NGI and SW should be gauge invariant. Bothonditions are ful�lled within the errors whih have been disussed in the previous setion.It should be noted that (47) and (48) are the �rst one-loop results for the quark �eldimprovement oeÆient NGI . The gauge dependent improvement oeÆient D dependsonly on the olor fator CF beause it is determined by O(a) improvement of the quarkpropagator.The additive mass renormalization is given byam0 = g2CF16�2 �04 : (51)This leads to the ritial hopping parameter �, at whih hiral symmetry is approximatelyrestored, � = 18 �1� g2CF16�2 �04 � : (52)Using the plaquette or Symanzik gauge ations, we obtain�Plaq0 = �31:986442 + 566:581765! � 2235:407087!2 ; (53)�Sym0 = �23:832351 + 418:212508! � 1685:597405!2 : (54)This leads to the perturbative expression for ��Plaq = 18 �1 + g2CF �0:050639� 0:896980! + 3:697285!2�� ; (55)�Sym = 18 �1 + g2CF �0:037730� 0:662090! + 2:668543!2�� : (56)For both ations am0 an be tuned to zero for admissible values of !. Using the smallerpossible value we �nd ! = 0:089396 for the plaquette ation and ! = 0:088689 for theSymanzik gauge ation.5 Mean �eld improvementIt is well known that one-loop perturbation theory in the bare oupling onstant g2 leadsto a poor approximation. The oeÆient of g2 is large in most quantities, and the seriesonverges poorly. One traditional way to redue this problem is by mean �eld improve-ment, whih onsists of two ideas. 15



The �rst is that we alulate eah quantity in a simple mean �eld approximation, andthen re-express the perturbative result as the mean �eld result multiplied by a perturbativeorretion fator. If the mean �eld approximation is good, the orretion fator will belose to 1, and we have resolved the problem of the large one-loop oeÆient. As agood internal test of this part, we an simply look to see how large the oeÆient inthis orretion fator is (the \tadpole improved oeÆient"), ompared with the initialunimproved oeÆient.The seond part of the mean �eld approximation is that we hange our expansionparameter from the bare oupling g2 to some \boosted" oupling onstant, g2MF , whihwe hope represents physis at a more relevant sale, and leads to a more rapidly on-vergent series. A well-hosen boosted oupling would redue the two-loop oeÆient.Unfortunately we usually annot test this part of the improvement proedure, beausethe two-loop oeÆient is unknown. Fortunately, if the mean �eld approximation is good,the exat hoie of boosted oupling onstant will not be too ruial, beause the lowestorder improved oeÆient will be a small number.5.1 Mean �eld approximation for smeared fermionsIn the mean �eld approximation we typially assume that the gauge �elds on eah linkare independently utuating variables, and that we an simply represent the links by anaverage value u0. Typial hoies for u0 would be to hoose u40 to be the average plaquettevalue, or to hoose u0 to be the average link value in the Landau gauge.A natural question is how we should extend the mean �eld approximation if we employsmearing. One possibility is to express everything in terms of two quantities, u0, a meanvalue for the unsmeared link, and uS, a mean value for smeared links2. We will disuss therelation between these two quantities later, �rst we want to make a general point aboutmean �eld approximations and smearing.The reason we smear our gauge links is to suppress very short range utuations inthe gauge �eld, whih is justi�ed by the argument that these short range utuationsare very lattie-dependent, rather than physial. However, put another way, suppressingshort range utuations means that we are orrelating nearby gauge links. So there is aertain tension between smearing and the mean �eld notion that eah link is utuatingindependently. We will take the attitude that it does still make sense to use the mean�eld approximation if smearing is mild { but we should treat the results with some degree2PR would like to thank Colin Morningstar for onversations on this point.16



of aution if extreme smearing is used.Applying this double-u mean �eld approximation to the SLiNC fermion matrix we�nd the following results for the prinipal fermion quantities,�1(p) � uS ; �2(p) � uS ; Z � uS ; � � 18uS ; SW � uSu40 (57)(we de�ne Z by the relation Sren = Z Slat). For reasonable smearing we expet thesmeared link uS to be loser to 1 than the bare link u0, so most quantities will lie loser totheir tree-level values with smearing. However, the lover oeÆient SW is an exeption;it will be further from 1 with smearing than without, beause we onstrut our loverterm from unsmeared links.As a result, we obtain the mean �eld expressions for � and SW by performing thefollowing replaements�(g2)! �MF (g2MF ; uS) = 18 upertS (g2MF )uS �(g2MF ) (58)and SW (g2)! MFSW (g2MF ; uS; u0) = uSu40 upert0 (g2MF ) 4upertS (g2MF ) SW (g2MF ) : (59)Here uS and u0 are the measured smeared and unsmeared links at the given oupling andupertS and upert0 denote the orresponding expressions in lattie perturbation theory.5.2 The smeared plaquette in perturbation theoryWe will use upertS derived from the smeared perturbative plaquette PSupertS � P 1=4S : (60)To one-loop order we have upertS = 1� g2CF16�2 kS ; (61)with3kS = 8�2a4 Z d4k(2�)4 D��(k)hV�1(k; !)V�1(k; !)s22(k) + V�2(k; !)V�2(k; !)s21(k)� (V�1(k; !)V�2(k; !) + V�1(k; !)V�2(k; !)) s1(k)s2(k)i (62)3We have written this integral for the ase of a plaquette in the 1-2 plane, any orientation gives thesame result. 17



where D��(k) the gluon propagator for the ation in question. The smearing funtionV��(k; !) is de�ned in (A.5) in Appendix A, s�(k) and s2(k) used below are given in (A.2).Using symmetry and the de�nition of V , the expression simpli�es tokS = 16�2a4 Z d4k(2�)4 [D11(k)s2(k)s2(k)�D12(k)s1(k)s2(k)℄ �1� 4! s2(k)�2 : (63)We an see from this form that mild smearing has the e�et of suppressing the ontributionfrom large k. Setting ! = 0 in kS, we reover the unsmeared link in perturbation theoryupert0 = 1� g2CF16�2 kS(! = 0) : (64)For the plaquette ation propagator we an alulate the integral exatly. The resultis kPlaqS = �2 �1� 16! + 72!2� : (65)Let us see how well this improves the expressions for � and SW . Using the result (55)we �nd �Plaq;MF = 18uS �1 + g2MF CF ��0:011861 + 0:103020!� 0:802715!2�� (66)whih suessfully redues the perturbative oeÆients for every power of !. Trying thesame thing with the lover oeÆient (45) givesPlaq;MFSW = uSu40 n1+ g2MF hCF ��0:019865 + 0:079148! + 0:813321!2�+N �0:015025 + 0:009617!� 0:284786!2� io : (67)Again, mean �eld improvement works well.For the Symanzik ation we alulate the integral in (63) numerially, and get theresult kSymS = �2 �0:732525� 11:394696! + 50:245225!2� : (68)The orresponding mean �eld improved expressions for � (56) and SW (46) are�Sym;MF = 18uS �1 + g2MF CF ��0:008053 + 0:0500781!� 0:471784!2�� ; (69)Sym;MFSW = uSu40 n1 + g2MF hCF ��0:0211635 + 0:115961! + 0:685247!2�+N �0:013777 + 0:015905! � 0:321899!2� io : (70)18



5.3 Choie of g2MFIn this setion we disuss the boosted oupling for SU(3), we have set N = 3, CF = 4=3throughout.From higher order ontinuum alulations we know that g2MS(�) is a good expansionparameter if � is lose to the appropriate physial sale. On the other hand, series in thebare lattie oupling g2(a) usually onverge poorly. To understand this di�erene let usompare the two ouplings. To one-loop order we have1g2MS(�) � 1g2(a) = 2b0�log ��MS � log 1a�lat� = 2b0 log(a�) + dg +Nf df ; (71)where b0 = (11�2Nf=3)=(4�)2, andNf is the number of avors. The ratio of � parametersis thus given by �lat�MS = exp�dg +Nf df2b0 � : (72)The oeÆient dg is known for the plaquette and Symanzik gauge ation [17℄:dPlaqg = �0:4682 ; dSymg = �0:2361 : (73)In Appendix C we show that df is independent of the stout smearing parameter !. There-fore, we an use the value for lover fermions omputed in [18℄df = 0:0314917 : (74)For Nf = 3 this leads to �lat�MS = 0:038 Plaquette ; (75)�lat�MS = 0:289 Symanzik : (76)These ratios are far from 1, espeially for the plaquette ation, whih explains the pooronvergene of series in g2(a).Now let us see what happens to the Lambda ratio if we make the popular hoie ofboosted oupling g2MF = g2u40 : (77)19



Upon inserting (64) and (77) in (71), we obtain1g2MS(�)� 1g2MF (a) = 2b0 �log ��MS � log 1a�MFlat � = 2b0 log(a�)+dg+Nf df + ku3�2 ; (78)whih gives �MFlat�MS = exp�dg +Nf df + ku=3�22b0 � : (79)For Nf = 3 the numerial values of this ratio are�MFlat�MS = 0:702 Plaquette ; (80)�MFlat�MS = 2:459 Symanzik : (81)We see that mean �eld improvement drives �lat towards �MS for both the plaquette andSymanzik gauge ation, giving g2MF � g2MS, so that g2MF appears to be a good expansionparameter in both ases. A perfet math is obtained for � = 1=0:702a (� = 1=2:459a)for the plaquette (Symanzik) ation.6 Conluding remarksIn the present paper we have omputed the improvement oeÆient SW and the additivemass renormalization/ritial hopping parameter in one-loop perturbation theory for gen-eral stout parameter ! performing a single smearing. To separate the e�et of improvingthe gauge ation from the e�et of tuning the fermion ation, we have done the alulationfor both the plaquette ation and the tree-level Symanzik gauge ation. In addition wealso present the O(g2) orretions to the oeÆients NGI and D needed to O(a) improvethe quark �elds in the most general ase.We give mean �eld (tadpole) improved results for � and SW . For both the plaquetteand the Symanzik ation the boosted oupling g2MF turns out to be lose to g2MS, whihmakes g2MF a good expansion parameter. We thus may expet that the perturbative seriesonverges rapidly.For Nf = 3 avors of dynamial quarks it turns out that the one-loop improvedSymanzik gauge ation [2℄ oinides largely with its tree-level ounterpart, with oeÆients0 � 5=3, 1 � �1=12 and 2 � 0 [19℄. This makes the tree-level Symanzik ation (1)20



stand out against other improved gauge ations, at least from the perturbative point ofview. SLiNC fermions represent a family of ultraloal, ultraviolet �ltered lover fermions.While they share all prominent features of lover fermions, among themO(a) improvementand avor symmetry, they allow to further optimize the hiral properties of the ationby tuning the fattening of the links. In our forthoming simulations with Nf = 2 + 1and 2 + 1 + 1 avors of dynamial quarks at realisti pion masses we shall employ thisombination of gauge and fermion ations.Knowing the perturbative (asymptoti) value of SW , we an derive a losed expressionfor SW that overs the whole range of g2. We will do so in a subsequent paper employingthe Shr�odinger funtional method. The one-loop oeÆient (1)SW varies only slightlywithin the interval 0 � ! � 0:2 for both the plaquette and Symanzik ation. For ! = 0:1,whih is our favorite value, the tadpole improved one-loop oeÆient beomes (1)SW � 0,indiating that mean �eld approximation works well. The �nal result is MFSW � uS=u40 toa very good approximation for both gauge ations, where uS is the average smeared link,found by measuring the smeared plaquette, and u0 the average unsmeared link, found bymeasuring the unsmeared plaquette.This is to be ompared with MFSW � 1=u30 over fermions with no smearing. We thereforeexpet SW to be a steeper funtion of g2 in the ase of SLiNC fermions than for loverfermions.Stout link fattening redues the additive mass renormalization onsiderably, with andwithout tadpole improvement, as expeted. In fat, the ritial hopping parameter � anbe tuned to its ontinuum value of 1=8 for an appropriate hoie of !. We also on�rmby early simulations with this ation [20℄ that the spread of the negative eigenvaluesis redued by a fator of � 2 for ! = 0:1 and non-perturbative SW , as ompared toordinary lover fermions. SLiNC fermions have many other appealing features as well.The renormalization fators of quark bilinear operators, for example, ome out to be verylose to unity, whih hints at virtually ontinuum-like behavior.AknowledgmentThis investigation has been supported by DFG under ontrat FOR 465 (ForshergruppeGitter-Hadronen-Ph�anomenologie). We also aknowledge support by the EU IntegratedInfrastruture Initiative Hadron Physis (I3HP) under ontrat number RII3-CT-2004-506078. 21



Appendix A: Feynman rulesIn this Appendix we give the Feynman rules for quark-gluon verties derived from ation(3) with single stout smeared gauge link variables in the Wilson part and general Wilsonparameter r. The piees in the verties proportional to SW are denoted with eV . Theyhave been rederived using our notations and they agree with the Feynman rules givenin [11℄. In the verties we denote the inoming/outgoing quark momenta by p1=p2. Theinoming gluons are desribed by momenta ki, Lorentz indies �; �;  and olor indiesa; b;  = 1; : : : ; N2 � 1.For the olor matries we have:T aT b = 12N ÆabIN + 12(dab + i fab)T CF = N2 � 12N ; [T a; T b℄ = T aT b � T bT a ; fT a; T bg = T aT b + T bT a (A.1)T abss = fT a; fT b; T gg ; T abaa = [T a; [T b; T ℄℄ ; T absa = fT a; [T b; T ℄g :We use the abbreviationss�(k) = sin�a2k�� ; �(k) = os�a2k�� ; s2(k) =X� s2�(k) ;s2(k1; k2) =X� s�(k1 + k2) s�(k1 � k2) � s2(k1)� s2(k2) : (A.2)For later use we give the bare massless quark propagatorS(k) = aiP� � s�(2k) + rP� (1� �(2k) ) : (A.3)The struture of the Wilson quark-gluon verties isW1�(p2; p1) = i �(p2 + p1) � + r s�(p2 + p1)W2�(p2; p1) = i s�(p2 + p1) � � r �(p2 + p1) : (A.4)Let us introdue the following funtions to be useful in the de�nitions of the improved
22



verties V��(k; !) = Æ�� + 4! v��(k) (A.5)v��(k) = s�(k) s�(k) � Æ�� s2(k)g���(k1; k2) = Æ�� �(k1 + k2) s�(k1 � k2)� Æ�� �(k2) s�(2k1 + k2) + Æ�� �(k1) s�(2k2 + k1) (A.6)w��(k1; k2) = s�(k1 + k2) s�(k1 � k2) � Æ�� s2(k1; k2) ; (A.7)w��(k; 0) = v��(k)The qqg-vertex: V a� (p2; p1; k1; SW ; !)The qqg-vertex inluding stout smeared links and lover ontribution is given by theexpression (p1 + k1 = p2)V a� (p2; p1; k1; SW ; !) = �g T a X� V��(k1; !)W1�(p2; p1) + SW eV a� (k1) : (A.8)The stout smeared part shows the separation property mentioned in [6℄. The lover partis given by eV a� (k1) = �i g T a r2 X� ��� �(k1) s�(2k1) : (A.9)The qqgg-vertex: V ab��(p2; p1; k1; k2; SW ; !)We de�ne the qqgg-vertex as follows (p1 + k1 + k2 = p2):V ab��(p2; p1; k1; k2; SW ; !) = V fa;bg�� + V [a;b℄�� + SW eV ab��(k1; k2) : (A.10)The stout smeared part is separated into two parts proportional to fT a; T bg and [T a; T b℄.The antiommutator part shows the fatorization property mentioned for two and fourquark operatorsV fa;bg�� = 12a g2 fT a; T bgX� V��(k1; !)V��(k2; !)W2�(p2; p1) : (A.11)
23



The ommutator part is given byV [a;b℄�� = 12a g2 [T a; T b℄ 4!X� g���(k1; k2) W1�(p2; p1) : (A.12)Note that this part is proportional to !. The part / SW has been used in the formeV ab��(k1; k2) = i r4a g2 [T a; T b℄n2 ����2 �(k1) �(k2) �(k1 + k2) �(k1 + k2) (A.13)� �(k1) �(k2) �+ Æ�� X� ��� s�(k1 + k2) [ s�(2k2) � s�(2k1) ℄o :Both (A.12) and (A.13) vanish for tadpole diagrams along quark lines.The qqggg-vertex: V ab��(p2; p1; k1; k2; k3; SW ; !)We present that vertex ontribution in the following form (p1 + k1 + k2 + k3 = p2)V ab��(p2; p1; k1; k2; k3; SW ; !) = 16 a2g3 �X� �W1�(p2; p1) hF ab���(k1; k2; k3) + yli perm:i� 6!W2�(p2; p1) hT absa V��(k1) g��(k2; k3) + yli perm:i�+ SW eV ab��(k1; k2; k3) : (A.14)Cyli permutations have to be performed in the gluon momenta as well as in the olorand Lorentz indies of the three gluons. Note that the general stout smeared part isproportional both to W1� and W2�.The oeÆient F ab���(k1; k2; k3) is deomposed into its di�erent olor strutures:F ab���(k1; k2; k3) = T abss f (1)���(k1; k2; k3) + T abaa �f (2)���(k1; k2; k3)� f (2)���(k1; k3; k2)�+ �T abss � 1Ndab� f (3)���(k1; k2; k3) ; (A.15)
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where the f (i)��� are given asf (1)���(k1; k2; k3) = 12 V��(k1; !)V��(k2; !)V�(k3; !) ;f (2)���(k1; k2; k3) = 12 V��(k1; !)V��(k2; !) Æ� � 12 Æ��Æ�� V�(k3; !) (A.16)+ 6! Æ��h �(k1 � k2) �(2k3 + k1 + k2) Æ� + s�(k3) s(k3 + 2k1) Æ��i ;f (3)���(k1; k2; k3) = 2! Æ�h�3w��(k1; k2 + k3) + v��(k1 + k2 + k3)� Æ��+ 12 s�(k1) s�(k2) s�(k3) � s�(k1 + k2 + k3) Æ�� � s�(k1 + k2 + k3) Æ���i :The lover part of the qqggg-vertex is given byeV ab��(k1; k2; k3) = 16 �eeV ab��(k1; k2; k3) + total perm:� (A.17)witheeV ab��(k1; k2; k3) = �3 i g3 a2 r ��T aT bT Æ��Æ�X� ����� 16 �(k1 + k2 + k3) s�(2(k1 + k2 + k3))+ �(k1 + k2 + k3) �(k1 + k2 + k3) �(k3 � k1) s�(k2)�� 12�T aT bT  + T T bT a���� � (A.18)�2 Æ� �(k1 + k2 + k3) �(k1 + k2 + k3) �(k3 + k2) s�(k1)+ Æ� s�(k3 + k2) �(k1 + 2k2)+ Æ� s�(k1 + 2k2 + k3) �(k1 + k2 + k3) �(k3 � k1)�� :In (A.17) the total permutation has to be performed in the gluon momenta, olor andLorentz indies.We only need this vertex for the gluon tadpole diagram of Fig. 1, whih simpli�es theexpressions. In the tadpole ontribution to the vertex (A.14) we denote the external gluonmomentum by q = p2�p1, the olor index of the gluon by a and the internal momenta by k25



and �k. The olor indies (b; ) of the remaining gluons forming the tadpole are summedup using the olor diagonality Æb of the gluon propagator, k is the gluon momentum inthe tadpole loop. So the stout smeared tadpole ontribution is de�ned from the generalqqggg-vertex (expliitly symmetrized in the three gluons) asV a��(p2; p1; k) = N2�1Xb=1 �V abb��(p2; p1; q; k;�k) + SW eV abb��(p2; p1; q; k;�k)�= 16a2 g3 T a X� W1�(p2; p1)V���(q; k) (A.19)+ SW N2�1Xb=1 eV abb��(p2; p1; q; k;�k) :Using that de�nition we obtain for the stout smeared partV���(q; k) = ( (6CF �N) f (1)���(q; k;�k) + N2 hf (2)���(k;�k; q)� f (2)���(k; q;�k)� f (2)���(�k; q; k) + f (2)���(�k; k; q)i+ 4CF f (3)���(q; k;�k) (A.20)+ (4CF �N)hf (3)���(k;�k; q) + f (3)���(�k; q; k)i) :From that expression a onvenient representation is found in the formV���(q; k) = ( (6CF �N) V��(q; !)V��(k; !)V�(k; !)+ N2 h2 Æ��V��(k; !)V�(k; !)� V��(q; !) �Æ�� V�(k; !) + Æ� V��(k; !) �i+2! h3 (4CF �N) C���(q; k) +ND���(q; k)i) : (A.21)
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The strutures C��� and D���, additionally ontributing to O(!), areC���(q; k) = �4 �Æ�� s2(p) � Æ� s�(p) s�(p) � �Æ� s2�(k) � Æ�� s�(k) s(k) �� 4 Æ� s�(p) s�(k) �Æ�� s�(p) s�(k) � Æ�� s�(p) s�(k) � Æ�� s�(p) s�(k) �� Æ��Æ��Æ� �2s2(p) + 2s2(k)� s2(p+ k)� s2(p� k)� ; (A.22)D���(q; k) = �3 Æ�Æ�� �(p+ k) (p+ k) � 3 Æ��Æ� �(p� k) (p� k)+ 4 Æ�(Æ�� + Æ��) s�(p) s�(p) + 4 Æ��(Æ�� + Æ�) s�(k) s(k)� 2 Æ��Æ��Æ��s2(p) + s2(k)�+ 6 Æ��Æ� �2 2(p) 2�(k) � 1� :Appendix B: Three-point funtion - universal partAs disussed above, the universal part of the three-point funtion has the form (34)when SW = 1 + O(g2). Therefore, it is suÆient to give only the one-loop result for�MS1;� (p1; p2; q). It is ast into the following form (q = p2 � p1)�MS1;� (p1; p2; q) = F1(p1; p2) � + F2(p1; p2) =p2 �=p1+ [F3(p1; p2) p1;� + F4(p1; p2) p2;�℄ =p1 (B.1)+ [F5(p1; p2) p2;� + F6(p1; p2) p1;�℄ =p2 :Due to the symmetries F5(p1; p2) = F3(p2; p1) and F6(p1; p2) = F4(p2; p1) we have fourindependent funtions Fi(p1; p2) only. We represent them as follows:F1(p1; p2) = 4CF � � N2 (12 + 2� � �2) + 2� �C1 S +N p1:p2 + CF q2�+�CF (1� �) + N4 (4� �)� log� p21p22(�2)2� (B.2)+V1(p1; p2) log�p21q2�+ V1(p2; p1) log�p22q2� ;F2(p1; p2) = �8 �2N(6� �) + C2 p1:p2 q2� � + C24� �p1:q log�p21q2�� p2:q log�p22q2�� ;(B.3)F3(p1; p2) = C3 p222� + 2N �q2 + �8�h4N �(p1:p2)2 + �2 C3 (6S + p22)� C4 p1:q� p22i+ 1q2 �V2(p1; p2) log�p21q2�+ V3(p1; p2) log�p22q2�� ; (B.4)27



F4(p1; p2) = �C3 p1:p22� � 2N �q2 + �8�h4(8CF �N(4� �)) (p1:p2)2� (12 C3 S + 4 C6 p21 + ( C5 + 8CF (2 + �)) p22) p1:p2 + C7 p21 p22i (B.5)+ 1q2 �V4(p1; p2) log�p21q2� + V5(p1; p2) log�p22q2�� :The funtion Vi in front of the logarithms are found as followsV1(p1; p2) = CF (3 + �)� N4 (4� �) + C1 p2:q p21� ;V2(p1; p2) = 14�h(4 C3 � C4 � 4N �) p22 q2+(12 C3 S + 4N � p1:p2 + ( C5 + 8CF ) q2) p2:qi ;V3(p1; p2) = 14� p21 ��4N � p1:p2 p2:q p21 + ��12 C3 S p1:q + C4 p21 q2� p22� ; (B.6)V4(p1; p2) = V2(p2; p1) + 14� ��8CF (1 + �) p1:q + (4CF (1� 3�) +N(5� �)�) p21� ;V5(p1; p2) = V2(p1; p2) + 14� �(8CF +N(2� �)�) p2:q + (1 + �)(4CF +N �)p22� :We have introdued the kinemati funtions� = (p1:p2)2 � p21 p22 ; S = p21 p22 q24� ;� = 4�2p� Sp p2:q +p�p22 !� Sp p2:q �p�p22 ! (B.7)+ 12 log p1:p2 �p�p1:p2 +p�! log�q2p22�! ;with Sp(x) being the Spene funtion:Sp(x) = � Z x0 dy log(1� y)y :
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The quantities Ci depend on the olor fators and gauge parameter and have the valuesC1 = CF (3 + �)� 12N (1� �) ;C2 = 8CF +N (2 + (3� �)�)) ;C3 = 4CF (1 + �)�N (4 + (1� �)�) ;C4 = 8CF (2 + �)�N (12 + (4� 3�)�) ; (B.8)C5 = �N (4� (2 + �)�) ;C6 = 4CF �N (1� �) ;C7 = 8CF �N (16� �2) :In order to express the one-loop result (B.1) in terms of Spene funtions, logarithmsand rational funtions of external momenta we have proeeded in two steps. First we haveexpanded all tensor integrals over the internal momentum into salar three-point integralstimes tensor funtions of the external momenta [21℄. Then we used reursion relations ofDavydyhev [22℄ to redue these salar three-point integrals into salar two-point integralsand �.Appendix C: !-independene of dfWe �nd df , the oeÆient whih tells us the fermioni shift in �lat, by alulating themassless quark vauum polarization in a gluon with a2q2 � 1:�ab��(q; SW ; !) =� Nf Z d4k(2�)4Tr �V a� (q + k; k; q; SW ; !)S(k)V b� (k; q + k;�q; SW ; !)S(k + q)�� Nf Z d4k(2�)4Tr hV fa;bg�� (k; k; q;�q; SW ; !)S(k)i : (C.1)The quark propagator S and the verties V are de�ned in Appendix A, the trae here isover both spin and olor. The orresponding one-loop diagrams are shown in Fig. 4.In the required limit of small a2q2 we an expand in q2 and drop any terms O(a2q4).
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Figure 4: One-loop quark vauum polarization diagrams.We then get�ab��(q; SW ; !) = �ab��(q; SW ; 0)� 2!Nf Æabg2a2 �(X� �q�q� � q2Æ��� Z d4k(2�)4Tr [W1�(k; k)S(k)W1�(k; k)S(k)℄+ a �q�q� � q2Æ��� Z d4k(2�)4Tr [W2�(k; k)S(k)℄ (C.2)+X� �q�q� � q2Æ��� Z d4k(2�)4Tr [W1�(k; k)S(k)W1�(k; k)S(k)℄+ a �q�q� � q2Æ��� Z d4k(2�)4Tr [W2�(k; k)S(k)℄)+O(a2q4)where �ab��(q; SW ; 0) is the vauum polarization tensor with no smearing, W1 and W2 arethe Wilson quark gluon verties de�ned in (A.4), and the trae is now only over the spinindex. All !2 terms have dropped out beause they �rst appear at O(a2q4). Calulating�ab��(q; SW ; 0) in one loop for SW = 1 leads to the value of df given in Eq. (74).From power ounting we would at �rst expet the integrals / ! in (C.2) to have valuesproportional to 1=a2 or 1=a3, and to make a �nite ontribution to df . However we shownow that there is a perfet anellation between the ontinuum-like diagram Fig. 4(a)(the integrals involving W1) and the tadpole ontribution Fig. 4(b) (those with W2). Todo this we use the identities ��k�S(k) = �S(k)W1�(k; k)S(k) ; (C.3)��k�W1�(k; k) = � a Æ��W2�(k; k) (C.4)30
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