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AbstratWe show that the next-to-leading-order renormalization-group-improved asymptotially-free BFKL Pomeron provides a good �t to HERA data on virtual photoprodution at small xand largeQ2. The leading disrete Pomeron pole reprodues qualitatively the Q2 dependeneof the HERA data for x � 10�3, and a �t using the three leading disrete singularitiesreprodues quantitatively the Q2 and x dependene of the HERA data for x < 10�2. This�t �xes the phase for all the BFKL wavefuntions at a hosen infrared sale.
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The nature of the QCD Pomeron ontinues to perplex and intrigue both experimentalistsand theorists [1℄. Study of the Pomeron has been one of the most interesting aspets ofthe HERA experimental programme, with the disovery of a `hard' Pomeron in virtualphotoprodution [2℄ whose relation to the `soft' Pomeron that is familiar from traditionalhadroni reations [3℄ is still the subjet of theoretial speulation. In the near future, theLHC will provide possibilities to test theoretial approahes that have been honed withHERA data and may provide novel opportunities to study new Pomeron physis.Most of the HERA data on deep-inelasti struture funtions are desribed well bythe asymptotially-free renormalization-group evolution expressed in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [4℄ equations. On the other hand, it has been suggestedthat a more appropriate framework for desribing data at very low x is the di�usion in trans-verse momentum inarnated in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [5℄.There has been onsiderable disussion of HERA data at low x in the ontext of uni�edBFKL and DGLAP equations [6℄. However, it has not yet been established whether the pureBFKL Pomeron provides an aurate desription of data in the kinemati range aessibleto HERA.The BFKL equation with �xed strong oupling yields a leading Pomeron singularity thatis a Regge ut, not a pole. Fixing the QCD oupling may be plausible in a suitable infra-redlimit, but the oupling runs signi�antly in the ranges of virtuality and transverse partonmomenta explored in inlusive measurements of struture funtions at HERA. Over 20 yearsago, it was shown [7℄ that within the BFKL formalism, the leading Pomeron singularity isa disrete Regge pole if the strong QCD oupling is treated orretly as asymptotially freeand the infrared behaviour is enoded in a �xed phase. This leading singularity is followedby an in�nite series of lower-lying poles.The next-to-leading-order (NLO) QCD orretion to the leading-order (LO) asymptotial-ly-free BFKL equation is known [8℄, and it has been shown how to re-sum higher-orderorretions so as to tame the NLO orretions [9℄. The asymptotially-free BFKL equationdesribed in [7℄ desribes both the x- dependene of the un-integrated gluon distribution andthe dependene on the transverse momentum, k, of the gluon, and hene also the Q2 depen-dene of the struture funtion at low x. The only unknown quantity is the proton impatfator, �p(k), whih desribes the ouplings of the proton to the Pomeron trajetories. Onebene�t of the disrete Pomeron approah is that a simple expression for the un-integratedgluon density an be obtained, in terms of a small number of parameters, by expandingthe proton impat fator in terms of the disrete set of solutions of the asymptotially-freeBFKL equation. We reall that the BFKL Pomeron may be expressed as an integral thatinludes DGLAP as a saddle-point approximation valid in the double limit ln(1=x)� 1 and�s(Q2)ln(1=x) � 1 [10℄. However, this DGLAP approximation to the BFKL integral is nolonger valid when the seond ondition is not satis�ed, as in the ase of low-x HERA data,where the disrete series of BFKL Pomeron Regge poles is a better systemati approximationsheme.We are unaware of any overall �t to HERA data made using the re-summed NLOasymptotially-free BFKL Pomeron. We perform suh a �t in this paper, and show that itdesribes the inlusive virtual photoprodution HERA data both qualitatively and quantita-2



tively. We show �rst that the leading BFKL Pomeron pole provides a suessful qualitativedesription of HERA data on inlusive virtual photoprodution at small x � 10�3, over alarge range of Q2. This �t improves if lower-lying BFKL Pomeron poles are inluded, andwe show that the asymptotially-free BFKL approah provides an exellent quantitative �tto all the inlusive HERA data at x � 10�2, if the three leading BFKL Pomeron Regge polesare inluded. As well as the residues of the three BFKL Pomeron poles at zero momentumtransfer, t, the BFKL �t has an additional free parameter orresponding to the value of thephase of the BFKL wave funtion that is assumed to be �xed by infra-red dynamis at amomentum k0 � 0:3 GeV 1.We onsider �rst the BFKL analysis of a zero-momentum-transfer proess, at �xed strongoupling, �s. In this ase, the eigenfuntions of the BFKL kernel are representations of thetwo-dimensional onformal group in the spae of the transverse oordinates of the gluons, �.We inlude the BFKL harateristi funtion up to NLO [8℄, and use the re-summation ofSheme 3 proposed by Salam [9℄, whih moderates the orretion to the leading interept aswell as preserving the sign of the urvature of the harateristi funtion near the interept,up to large values of �s.Considering only the leading onformal spin, the eigenfuntions may be written in mo-mentum spae as f!(k2) = f!(k)pk2 ; (1)with f!(k) = �k2�i� ; (2)where the eigenvalue ! is the solution to the equation! � �(�s; �) = ��s (1� A��s)�0 �12 + ��sB + !2 + i�� + ��2s�1(�): (3)Here ��s � CA� �s;�0(z) = 2 ( (1)� <e [ (z)℄)A � nf36C3A �10C2A + 13�� �26 ;and B = 118 � nf12C3A �C2A � 2� ;where CA = 3 and nf is the number of ative avours at momentum k. �1(�) is theNLO harateristi funtion given in [8℄, omitting the onformal symmetry-violating partassoiated with the running of the oupling (whih is subtrated so that the O(��2s) terms onthe RHS of (3) are not double-ounted: see [9℄). The impliit equation (3) for ! is readilysolved using an appropriate ombination of Newton's method and iteration.1The preise value of k0 is not an essential parameter.3



Turning now to the ase of running oupling, it was shown in [7℄ that the frequeny �of the osillations aquires a dependene on k, suh that for a �xed eigenvalue !, �!(k) =��1(!; �s(k)) is the solution to ! = � (�s(k); �!(k)) : (4)This leads immediately to a ritial value of the transverse momentum, krit, suh that! = �(�s(krit); 0): (5)Provided �00(�s(krit); 0) is negative 2, the value of �!(k) beomes imaginary for k > kritand the eigenfuntion dereases exponentially as k ! 1. It is in order to ensure that�00(�s(krit); 0) remains negative that we have opted for Sheme 3 of the re-summation pro-edure desribed in [9℄.For k � krit, the BFKL equation may be approximated as" d2d[ln(k2=k2rit)℄2 + �02� _�(�s(krit); 0)�00(�s(krit); 0) ln k2k2rit!# f!(k) = 0; (6)with �0 = 11CA3 � 23nf :We reognize this as Airy's equation with argument proportional to ln(k2=k2rit). Away fromkrit, provided the running of the oupling is not too fast, so thatd�!(k)d ln(k2) � �!(k);the BFKL equation may be approximated semi-lassially by"i dd ln(k2) + �!(k)# f!(k) = 0; (7)whih has the solutions f!(k) = e�i'!(k); (8)where '!(k) = 2 Z kritk dk0k0 j�!(k)j : (9)In all regions, the solutions derease as k ! 1, and are well approximated byf!(k) = p3 3q'!(k)K 13 ('!(k)) (k > krit); (10)whereas f!(k) = 3q'!(k) hJ 13 ('!(k)) + J� 13 ('!(k))i (k < krit); (11)2 We use the notations �00(�s; �) � d2�(�s; �)=d�2 and _�(�s; �) � d�(�s; �)=d�s.4



where we have expressed the appropriate Airy funtion in terms of the modi�ed Besselfuntion of the seond kind, K 13 , and Bessel funtions of the �rst kind, J� 13 . Away fromk � krit where '! beomes large, these Bessel funtion solutions approximate the solutionto the semi-lassial equation (7).It is important to note that the mathing of the solutions at k = krit determines thephase of the osillations in the region where k < krit, for a given value of !. Following [7℄, weenode the unknown infrared behaviour of QCD by assuming that it leads to a �xed phase,�, at some low value of the transverse momentum, k0, whih we take for de�niteness to be0.3 GeV 3. More preisely, the infrared ondition is given by'!(k0) � 2 Z kritk0 dk0k0 j�!(k)j = �n� 14�� + �; (12)and means that, just above k = k0, the wavefuntion behaves likef!(k) � sin �!(k0)k20 �k2 � k20�� �! : (13)One the phase ondition (12) is imposed, only a disrete set of values of the eigenvalue ! areallowed simultaneously by the infrared phase ondition and the phase ondition imposed bythe mathing, giving rise to a desription of the QCD Pomeron as a disrete set of isolatedpoles, as opposed to the ut found if the running of the strong oupling is negleted.In order to express the low-x struture funtion of the proton, F2(x;Q2), in terms ofthese eigenfuntions, the eigenfuntions themselves must be onvoluted with the impatfator �p(k), that desribes how the proton ouples to these trajetories at zero momentumtransfer. In the ase of the un-integrated gluon density xg(x; k), we havexg(x; k) = Xn Z dk0k0 �p(k0)x�!nk2f �!n(k0)f!n(k); (14)and the un-integrated gluon density is related to the struture funtion byF2(x;Q2) = Z Q0 dkk �DIS(Q; k)xg(x; k); (15)where the impat fator, �DIS, that desribes the oupling of the virtual photon to thetrajetories is given by (see [1℄)�DIS(Q; k) = Q2�s(Q2) nfXq=1 e2q Z 10 d�d� 1� 2�(1� �)� 2�(1� �) + 12�(1� �)�(1� �)Q2�(1� �) + k2�(1� �) :(16)The proton impat fator, �p(k) is unknown a priori and has to be �t to data. Sine theeigenfuntions f!n(k) form an orthonormal set, we an expand the impat fator as a seriesin these eigenfuntions with a disrete set of oeÆients, an:�p(k) =Xn ank2f!n(k); (17)3 A hange in this value of the infrared momentum sale an be ompensated by a hange in the phase,�, so that the infrared behaviour of QCD is in fat enoded using a single parameter.5



and exploit the orthogonality properties to writexg(x; k) = Xn anx�!nk2f!n(k): (18)A model for �p(k) ould be used to estimate the oeÆients an, whih ould be also on-strained using other HERA data, e.g., on the di�rative prodution of vetor mesons.At suÆiently small x, we expet this sum to be dominated by the �rst few poles. Theontribution from the remaining poles ould be approximated by assuming that the e�etof �xing the phase at k0 on the allowed values of ! is negligible for ! < 0:1, and that thedisrete set of eigenfuntions may be replaed by a ontinuum. In this ase, one simplyadds to the expression (18) for the un-integrated gluon density the following integral thatrepresents the ontribution from suh a ontinuum:xg(x; k)(ontinuum) = k Z 10 d� bp(�) sin � ln k2k20!� �!x��(�s(k2);�)� �0:1� �(�s(k2); �)� ;(19)where bp(�) is a funtion that enodes the oupling of the proton to all the remaining eigen-funtions, and is hosen to be real so that the wavefuntions in this ontinuum also respetthe imposed infrared ondition (13). In order to implement suh a programme one wouldneed additional parameters to haraterize the arbitrary funtion bp(�). However, in the re-gion of x and Q2 onsidered, we �nd an exellent �t without making use of suh a ontinuumand the assoiated extra parameters, and hene do not onsider it further. Nevertheless, itshould be emphasized that at Q2 that is suÆiently large for the DGLAP analysis to beomevalid, the double-leading-logarithm DGLAP behaviour would be embedded mainly withinthis ontinuum ontribution.We have determined numerially the eigenfuntions of the leading four poles of the NLOasymptotially-free BFKL Pomeron. We limited ourselves to the �rst four poles beausetheir ! values are in the same range as the observed rate of rise, �, of the F2 measurements.This is determined by �tting the measured F2 to x�� at �xed Q2 and is losely related to thelogarithmi derivative d log(F2)=d log(1=x). The values of � determined phenomenologiallyby experiment vary between � � 0:1 for Q2 � 0:6 GeV2 and � � 0:33 for Q2 � 60 GeV2 [11℄.The leading eigenvalue, !1, depends on the infrared phase, �, varying between !1 = 0:235 at� = 0 and !1 = 0:315 at � = �=2, The sub-leading eigenvalues are smaller, the fourth one,!4, being � 0:10.We determined simultaneously the best-�t value of the infrared phase � and the oeÆ-ients, an. The �t was performed in the low-x region, x � 0:01 and for Q2 > 4 GeV2, soas to avoid saturation e�ets. The saturation sale at HERA was found to be Q2 � 0:5GeV2 [12℄, implying that saturation e�ets should fall below the measurement preision forQ2 > 4 GeV2 [13℄. The best �t is obtained for � = �0:21�, with the values for the �rst foureigenvalues and their orresponding krit, given in Table 1 ; the orresponding eigenfuntions(normalized in the domain k > k0) are shown in Fig. 1. We see that the eigenvalues indeedderease as n inreases, so that for suÆiently small x the leading trajetories should besuÆient to desribe the data over any �xed range in k. We note also that the eigenvaluesapproah eah other as n inreases. 6



n ! krit (GeV)1 0.26 5.92 0.17 3303 0.13 2:8� 1044 0.10 2:6� 106Table 1: The eigenvalues and values of krit for the 4 leading eigenfuntions of theasymptotially-free BFKL Pomeron, for � = �0:21� at k0 = 0:3 GeV.

k 
f ω

k (GeV)Figure 1: The �rst four eigenfuntions of the NLO BFKL kernel with running oupling andinfrared phase � = �0:21� at k0 = 0:3 GeV. The arrows indiate the values of krit.Number of poles �2=Ndf a1 a2 a3 a41 3624/101 0.035 - - -2 264/100 0.029 -0.028 - -3 91.4/99 0.041 0.055 0.085 -4 91.3/98 0.042 0.067 0.11 0.016Table 2: The qualities of �ts using up to 4 poles, and the orresponding pole residues, as-suming � = �0:21� at k0 = 0:3 GeV. 7



Having �xed the value of �, we investigate the number of eigenfuntions required fora good desription of the HERA data for x � 10�2. An overall 1-pole �t using only theleading eigenfuntion has very poor quality: �2=Ndf = 3624=101, though it does reproduequalitatively the data for x � 10�3, where it is more likely to dominate over the non-leadingPomeron poles. The quality of the overall �t improves signi�antly when the two �rsteigenfuntions are used: �2=Ndf = 264=100, and the 3-pole �t is exellent: �2=Ndf = 91:4=99.On the other hand, adding a fourth eigenfuntion does not improve the �t any further:�2=Ndf = 91:3=98. Sine also the oeÆient of the leading eigenfuntion, a1, is almost thesame in the 3- and 4-pole �ts, in the following we onsider only the �ts with 3 or lesseigenfuntions.Fig. 2 ompares the results of the 1- and 3-pole �ts with the measured values of F2. Wesee that the 3-pole �t indeed desribes the data very well, orresponding to its very good�2. Fig. 2 also displays the 1-pole �t; despite its very high �2, it reprodues qualitativelythe main features of the data, partiularly for moderate Q2. We note that the oeÆient,a1, of the leading eigenfuntion in the 1-pole �t is about 20% smaller than in the 3-pole�t. This indiates that the exellent agreement of the 3-pole �t with the data is due inpart to anellations between the di�erent eigenfuntions. To illustrate the properties of the3-pole �t, we show in Fig. 3 the ontributions to F2 from the 3 eigenfuntions separatelyas funtions of the momenta k2 at several harateristi x values. Fig. 3 shows that, inthe region of medium Q2 values: 4 < Q2 < 20 GeV2, the ontribution of the leadingeigenfuntion oinides with the �tted F2 urve, i.e., the ontributions of the seond and thirdeigenfuntions anel eah other. However, at larger Q2, espeially above Q2 > 100 GeV2,the �t has large anellations between all three omponents, and the leading eigenfuntionannot �t the data by itself.Fig. 4 ompares the Q2 dependene of the e�etive value of the exponent � determinedfrom a phenomenologial �t to the data, and as extrated from our �ts 4. In the ase of the1-pole �t (dashed line), � is idential with the leading eigenvalue: ! = 0:26, and in the 2-pole�t (dotted line) the values of � beome mostly smaller than the leading eigenvalue. However,in the 3-pole �t, whilst the � values are smaller than the leading eigenvalue for Q2 < 20GeV2 (solid line), they beome larger at higher Q2, and are loser to the values extratedform a phenomenologial �t to the data. The surprising fat that the sum of the ontributionwith small eigenvalues an give a larger rate of rise than the leading eigenvalue is due tothe fat that � is losely onneted to the logarithmi derivative, � � d log(F2)=d log(1=x).Owing to these anellations, the logarithmi derivative an beome larger than the largesteigenvalue. The fat that the 3-pole BFKL �t gives somewhat smaller values of � thanthe phenomenologial �t for Q2 � 20 to 70 GeV2 is losely related to the fat that thelowest-x point at eah of these values of Q2 lies slightly above the 3-pole �t, as seen in theorresponding panels of Fig. 2. However, the minor disrepanies for these few points doesnot spoil the quality of the overall �t, whih is a better measure of its validity than the �plot shown in Fig. 4.In summary: we obtain a very good desription of the HERA low-x data in a large range4In Fig. 4 we have also inluded reent data from Zeus [14℄ whih are fully onsistent with previous data,and therefore have not been used in the �t. 8
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of Q2, from 4 < Q2 < 650 GeV2, using just three eigenfuntions and adjust 4 free onstants:the phase � and the oeÆients a1;2;3 5. Important roles are played in the �t not only bythe leading eigenfuntion, but also by the pattern of anellations between the sub-leadingtrajetories, whih is very sensitive to the parameter �. For this reason, the quality of the �tis also very sensitive to the value of �. Thus, for � = �0:3� the �2 grows to 142 for the 3 pole�t (instead 91.4 at the minimum), and at the extreme values of � = ��=2 and � = 0 the �2values are 430 and 680, respetively. Consequently, the data determine the infrared phasequite preisely (within the theoretial framework desribed above) 6: � = �0:21� 0:02� Inturn, the leading eigenvalue is also preisely determined: ! = 0:26�0:01. The relatively lowvalue of this eigenvalue is responsible for the fat that, although the � plot is reprodued bythe 3-pole �t only in a qualitative way, we obtain a very good overall �t to the data.To our knowledge, this is the �rst time that the disrete asymptotially-free BFKLPomeron has been shown to �t the HERA data at low x and high Q2. As suh, we be-lieve that it is also the �rst time that a parametrization of the Pomeron derived from �rstpriniples in QCD has been onfronted suessfully with experimental data. A natural nextstep would be to extend this omparison to inlude other low-x HERA data, inluding thoseon the di�rative prodution of vetor mesons, et. One ould also envisage the developmentof a BFKL Pomeron alulus and its deployment to make preditions for both inlusive andexlusive phenomena at the LHC.AknowledgementsWe express our warm appreiation for the inspiration and guidane o�ered to us by LevLipatov. In addition, HK thanks Johen Bartels and Leszek Motyka for useful disussions.Referenes[1℄ J.R. Forshaw and D.A. Ross, Quantum Chromodynamis and the Pomeron (CambridgeUniversity Press, 1997).[2℄ M. Derrik et al. [ZEUS Collaboration℄, Phys. Lett. B 315 (1993) 481.[3℄ A. Donnahie and P.V. Landsho� Nul. Phys.B231 (1984) 189; B244 (1984) 322; Phys.Lett. B296 (1992) 227[4℄ V.N. Gribov and L.N. Lipatov, Sov. J. Nul. Phys. 15 (1972) 438;L.N. Lipatov, Sov. J. Nul. Phys. 20 (1975) 943;G. Altarelli and G. Parisi, Nul. Phys, B126 (1977) 298;Yu.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641.5We reall that adding the fourth pole does not improve the �t.6 We emphasize that the value of � is linked to the arbitrary value hosen for the infrared sale, k0, andfurthermore that � is very sensitive to the theoretial input (e.g. the proedure employed for resumming thelarge NLO orretions). 11
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