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Abstra
tWe show that the next-to-leading-order renormalization-group-improved asymptoti
ally-free BFKL Pomeron provides a good �t to HERA data on virtual photoprodu
tion at small xand largeQ2. The leading dis
rete Pomeron pole reprodu
es qualitatively the Q2 dependen
eof the HERA data for x � 10�3, and a �t using the three leading dis
rete singularitiesreprodu
es quantitatively the Q2 and x dependen
e of the HERA data for x < 10�2. This�t �xes the phase for all the BFKL wavefun
tions at a 
hosen infrared s
ale.
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The nature of the QCD Pomeron 
ontinues to perplex and intrigue both experimentalistsand theorists [1℄. Study of the Pomeron has been one of the most interesting aspe
ts ofthe HERA experimental programme, with the dis
overy of a `hard' Pomeron in virtualphotoprodu
tion [2℄ whose relation to the `soft' Pomeron that is familiar from traditionalhadroni
 rea
tions [3℄ is still the subje
t of theoreti
al spe
ulation. In the near future, theLHC will provide possibilities to test theoreti
al approa
hes that have been honed withHERA data and may provide novel opportunities to study new Pomeron physi
s.Most of the HERA data on deep-inelasti
 stru
ture fun
tions are des
ribed well bythe asymptoti
ally-free renormalization-group evolution expressed in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [4℄ equations. On the other hand, it has been suggestedthat a more appropriate framework for des
ribing data at very low x is the di�usion in trans-verse momentum in
arnated in the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [5℄.There has been 
onsiderable dis
ussion of HERA data at low x in the 
ontext of uni�edBFKL and DGLAP equations [6℄. However, it has not yet been established whether the pureBFKL Pomeron provides an a

urate des
ription of data in the kinemati
 range a

essibleto HERA.The BFKL equation with �xed strong 
oupling yields a leading Pomeron singularity thatis a Regge 
ut, not a pole. Fixing the QCD 
oupling may be plausible in a suitable infra-redlimit, but the 
oupling runs signi�
antly in the ranges of virtuality and transverse partonmomenta explored in in
lusive measurements of stru
ture fun
tions at HERA. Over 20 yearsago, it was shown [7℄ that within the BFKL formalism, the leading Pomeron singularity isa dis
rete Regge pole if the strong QCD 
oupling is treated 
orre
tly as asymptoti
ally freeand the infrared behaviour is en
oded in a �xed phase. This leading singularity is followedby an in�nite series of lower-lying poles.The next-to-leading-order (NLO) QCD 
orre
tion to the leading-order (LO) asymptoti
al-ly-free BFKL equation is known [8℄, and it has been shown how to re-sum higher-order
orre
tions so as to tame the NLO 
orre
tions [9℄. The asymptoti
ally-free BFKL equationdes
ribed in [7℄ des
ribes both the x- dependen
e of the un-integrated gluon distribution andthe dependen
e on the transverse momentum, k, of the gluon, and hen
e also the Q2 depen-den
e of the stru
ture fun
tion at low x. The only unknown quantity is the proton impa
tfa
tor, �p(k), whi
h des
ribes the 
ouplings of the proton to the Pomeron traje
tories. Onebene�t of the dis
rete Pomeron approa
h is that a simple expression for the un-integratedgluon density 
an be obtained, in terms of a small number of parameters, by expandingthe proton impa
t fa
tor in terms of the dis
rete set of solutions of the asymptoti
ally-freeBFKL equation. We re
all that the BFKL Pomeron may be expressed as an integral thatin
ludes DGLAP as a saddle-point approximation valid in the double limit ln(1=x)� 1 and�s(Q2)ln(1=x) � 1 [10℄. However, this DGLAP approximation to the BFKL integral is nolonger valid when the se
ond 
ondition is not satis�ed, as in the 
ase of low-x HERA data,where the dis
rete series of BFKL Pomeron Regge poles is a better systemati
 approximations
heme.We are unaware of any overall �t to HERA data made using the re-summed NLOasymptoti
ally-free BFKL Pomeron. We perform su
h a �t in this paper, and show that itdes
ribes the in
lusive virtual photoprodu
tion HERA data both qualitatively and quantita-2



tively. We show �rst that the leading BFKL Pomeron pole provides a su

essful qualitativedes
ription of HERA data on in
lusive virtual photoprodu
tion at small x � 10�3, over alarge range of Q2. This �t improves if lower-lying BFKL Pomeron poles are in
luded, andwe show that the asymptoti
ally-free BFKL approa
h provides an ex
ellent quantitative �tto all the in
lusive HERA data at x � 10�2, if the three leading BFKL Pomeron Regge polesare in
luded. As well as the residues of the three BFKL Pomeron poles at zero momentumtransfer, t, the BFKL �t has an additional free parameter 
orresponding to the value of thephase of the BFKL wave fun
tion that is assumed to be �xed by infra-red dynami
s at amomentum k0 � 0:3 GeV 1.We 
onsider �rst the BFKL analysis of a zero-momentum-transfer pro
ess, at �xed strong
oupling, �s. In this 
ase, the eigenfun
tions of the BFKL kernel are representations of thetwo-dimensional 
onformal group in the spa
e of the transverse 
oordinates of the gluons, �.We in
lude the BFKL 
hara
teristi
 fun
tion up to NLO [8℄, and use the re-summation ofS
heme 3 proposed by Salam [9℄, whi
h moderates the 
orre
tion to the leading inter
ept aswell as preserving the sign of the 
urvature of the 
hara
teristi
 fun
tion near the inter
ept,up to large values of �s.Considering only the leading 
onformal spin, the eigenfun
tions may be written in mo-mentum spa
e as f!(k2) = f!(k)pk2 ; (1)with f!(k) = �k2�i� ; (2)where the eigenvalue ! is the solution to the equation! � �(�s; �) = ��s (1� A��s)�0 �12 + ��sB + !2 + i�� + ��2s�1(�): (3)Here ��s � CA� �s;�0(z) = 2 ( (1)� <e [ (z)℄)A � nf36C3A �10C2A + 13�� �26 ;and B = 118 � nf12C3A �C2A � 2� ;where CA = 3 and nf is the number of a
tive 
avours at momentum k. �1(�) is theNLO 
hara
teristi
 fun
tion given in [8℄, omitting the 
onformal symmetry-violating partasso
iated with the running of the 
oupling (whi
h is subtra
ted so that the O(��2s) terms onthe RHS of (3) are not double-
ounted: see [9℄). The impli
it equation (3) for ! is readilysolved using an appropriate 
ombination of Newton's method and iteration.1The pre
ise value of k0 is not an essential parameter.3



Turning now to the 
ase of running 
oupling, it was shown in [7℄ that the frequen
y �of the os
illations a
quires a dependen
e on k, su
h that for a �xed eigenvalue !, �!(k) =��1(!; �s(k)) is the solution to ! = � (�s(k); �!(k)) : (4)This leads immediately to a 
riti
al value of the transverse momentum, k
rit, su
h that! = �(�s(k
rit); 0): (5)Provided �00(�s(k
rit); 0) is negative 2, the value of �!(k) be
omes imaginary for k > k
ritand the eigenfun
tion de
reases exponentially as k ! 1. It is in order to ensure that�00(�s(k
rit); 0) remains negative that we have opted for S
heme 3 of the re-summation pro-
edure des
ribed in [9℄.For k � k
rit, the BFKL equation may be approximated as" d2d[ln(k2=k2
rit)℄2 + �02� _�(�s(k
rit); 0)�00(�s(k
rit); 0) ln k2k2
rit!# f!(k) = 0; (6)with �0 = 11CA3 � 23nf :We re
ognize this as Airy's equation with argument proportional to ln(k2=k2
rit). Away fromk
rit, provided the running of the 
oupling is not too fast, so thatd�!(k)d ln(k2) � �!(k);the BFKL equation may be approximated semi-
lassi
ally by"i dd ln(k2) + �!(k)# f!(k) = 0; (7)whi
h has the solutions f!(k) = e�i'!(k); (8)where '!(k) = 2 Z k
ritk dk0k0 j�!(k)j : (9)In all regions, the solutions de
rease as k ! 1, and are well approximated byf!(k) = p3 3q'!(k)K 13 ('!(k)) (k > k
rit); (10)whereas f!(k) = 3q'!(k) hJ 13 ('!(k)) + J� 13 ('!(k))i (k < k
rit); (11)2 We use the notations �00(�s; �) � d2�(�s; �)=d�2 and _�(�s; �) � d�(�s; �)=d�s.4



where we have expressed the appropriate Airy fun
tion in terms of the modi�ed Besselfun
tion of the se
ond kind, K 13 , and Bessel fun
tions of the �rst kind, J� 13 . Away fromk � k
rit where '! be
omes large, these Bessel fun
tion solutions approximate the solutionto the semi-
lassi
al equation (7).It is important to note that the mat
hing of the solutions at k = k
rit determines thephase of the os
illations in the region where k < k
rit, for a given value of !. Following [7℄, ween
ode the unknown infrared behaviour of QCD by assuming that it leads to a �xed phase,�, at some low value of the transverse momentum, k0, whi
h we take for de�niteness to be0.3 GeV 3. More pre
isely, the infrared 
ondition is given by'!(k0) � 2 Z k
ritk0 dk0k0 j�!(k)j = �n� 14�� + �; (12)and means that, just above k = k0, the wavefun
tion behaves likef!(k) � sin �!(k0)k20 �k2 � k20�� �! : (13)On
e the phase 
ondition (12) is imposed, only a dis
rete set of values of the eigenvalue ! areallowed simultaneously by the infrared phase 
ondition and the phase 
ondition imposed bythe mat
hing, giving rise to a des
ription of the QCD Pomeron as a dis
rete set of isolatedpoles, as opposed to the 
ut found if the running of the strong 
oupling is negle
ted.In order to express the low-x stru
ture fun
tion of the proton, F2(x;Q2), in terms ofthese eigenfun
tions, the eigenfun
tions themselves must be 
onvoluted with the impa
tfa
tor �p(k), that des
ribes how the proton 
ouples to these traje
tories at zero momentumtransfer. In the 
ase of the un-integrated gluon density xg(x; k), we havexg(x; k) = Xn Z dk0k0 �p(k0)x�!nk2f �!n(k0)f!n(k); (14)and the un-integrated gluon density is related to the stru
ture fun
tion byF2(x;Q2) = Z Q0 dkk �DIS(Q; k)xg(x; k); (15)where the impa
t fa
tor, �DIS, that des
ribes the 
oupling of the virtual photon to thetraje
tories is given by (see [1℄)�DIS(Q; k) = Q2�s(Q2) nfXq=1 e2q Z 10 d�d� 1� 2�(1� �)� 2�(1� �) + 12�(1� �)�(1� �)Q2�(1� �) + k2�(1� �) :(16)The proton impa
t fa
tor, �p(k) is unknown a priori and has to be �t to data. Sin
e theeigenfun
tions f!n(k) form an orthonormal set, we 
an expand the impa
t fa
tor as a seriesin these eigenfun
tions with a dis
rete set of 
oeÆ
ients, an:�p(k) =Xn ank2f!n(k); (17)3 A 
hange in this value of the infrared momentum s
ale 
an be 
ompensated by a 
hange in the phase,�, so that the infrared behaviour of QCD is in fa
t en
oded using a single parameter.5



and exploit the orthogonality properties to writexg(x; k) = Xn anx�!nk2f!n(k): (18)A model for �p(k) 
ould be used to estimate the 
oeÆ
ients an, whi
h 
ould be also 
on-strained using other HERA data, e.g., on the di�ra
tive produ
tion of ve
tor mesons.At suÆ
iently small x, we expe
t this sum to be dominated by the �rst few poles. The
ontribution from the remaining poles 
ould be approximated by assuming that the e�e
tof �xing the phase at k0 on the allowed values of ! is negligible for ! < 0:1, and that thedis
rete set of eigenfun
tions may be repla
ed by a 
ontinuum. In this 
ase, one simplyadds to the expression (18) for the un-integrated gluon density the following integral thatrepresents the 
ontribution from su
h a 
ontinuum:xg(x; k)(
ontinuum) = k Z 10 d� bp(�) sin � ln k2k20!� �!x��(�s(k2);�)� �0:1� �(�s(k2); �)� ;(19)where bp(�) is a fun
tion that en
odes the 
oupling of the proton to all the remaining eigen-fun
tions, and is 
hosen to be real so that the wavefun
tions in this 
ontinuum also respe
tthe imposed infrared 
ondition (13). In order to implement su
h a programme one wouldneed additional parameters to 
hara
terize the arbitrary fun
tion bp(�). However, in the re-gion of x and Q2 
onsidered, we �nd an ex
ellent �t without making use of su
h a 
ontinuumand the asso
iated extra parameters, and hen
e do not 
onsider it further. Nevertheless, itshould be emphasized that at Q2 that is suÆ
iently large for the DGLAP analysis to be
omevalid, the double-leading-logarithm DGLAP behaviour would be embedded mainly withinthis 
ontinuum 
ontribution.We have determined numeri
ally the eigenfun
tions of the leading four poles of the NLOasymptoti
ally-free BFKL Pomeron. We limited ourselves to the �rst four poles be
ausetheir ! values are in the same range as the observed rate of rise, �, of the F2 measurements.This is determined by �tting the measured F2 to x�� at �xed Q2 and is 
losely related to thelogarithmi
 derivative d log(F2)=d log(1=x). The values of � determined phenomenologi
allyby experiment vary between � � 0:1 for Q2 � 0:6 GeV2 and � � 0:33 for Q2 � 60 GeV2 [11℄.The leading eigenvalue, !1, depends on the infrared phase, �, varying between !1 = 0:235 at� = 0 and !1 = 0:315 at � = �=2, The sub-leading eigenvalues are smaller, the fourth one,!4, being � 0:10.We determined simultaneously the best-�t value of the infrared phase � and the 
oeÆ-
ients, an. The �t was performed in the low-x region, x � 0:01 and for Q2 > 4 GeV2, soas to avoid saturation e�e
ts. The saturation s
ale at HERA was found to be Q2 � 0:5GeV2 [12℄, implying that saturation e�e
ts should fall below the measurement pre
ision forQ2 > 4 GeV2 [13℄. The best �t is obtained for � = �0:21�, with the values for the �rst foureigenvalues and their 
orresponding k
rit, given in Table 1 ; the 
orresponding eigenfun
tions(normalized in the domain k > k0) are shown in Fig. 1. We see that the eigenvalues indeedde
rease as n in
reases, so that for suÆ
iently small x the leading traje
tories should besuÆ
ient to des
ribe the data over any �xed range in k. We note also that the eigenvaluesapproa
h ea
h other as n in
reases. 6



n ! k
rit (GeV)1 0.26 5.92 0.17 3303 0.13 2:8� 1044 0.10 2:6� 106Table 1: The eigenvalues and values of k
rit for the 4 leading eigenfun
tions of theasymptoti
ally-free BFKL Pomeron, for � = �0:21� at k0 = 0:3 GeV.

k 
f ω

k (GeV)Figure 1: The �rst four eigenfun
tions of the NLO BFKL kernel with running 
oupling andinfrared phase � = �0:21� at k0 = 0:3 GeV. The arrows indi
ate the values of k
rit.Number of poles �2=Ndf a1 a2 a3 a41 3624/101 0.035 - - -2 264/100 0.029 -0.028 - -3 91.4/99 0.041 0.055 0.085 -4 91.3/98 0.042 0.067 0.11 0.016Table 2: The qualities of �ts using up to 4 poles, and the 
orresponding pole residues, as-suming � = �0:21� at k0 = 0:3 GeV. 7



Having �xed the value of �, we investigate the number of eigenfun
tions required fora good des
ription of the HERA data for x � 10�2. An overall 1-pole �t using only theleading eigenfun
tion has very poor quality: �2=Ndf = 3624=101, though it does reprodu
equalitatively the data for x � 10�3, where it is more likely to dominate over the non-leadingPomeron poles. The quality of the overall �t improves signi�
antly when the two �rsteigenfun
tions are used: �2=Ndf = 264=100, and the 3-pole �t is ex
ellent: �2=Ndf = 91:4=99.On the other hand, adding a fourth eigenfun
tion does not improve the �t any further:�2=Ndf = 91:3=98. Sin
e also the 
oeÆ
ient of the leading eigenfun
tion, a1, is almost thesame in the 3- and 4-pole �ts, in the following we 
onsider only the �ts with 3 or lesseigenfun
tions.Fig. 2 
ompares the results of the 1- and 3-pole �ts with the measured values of F2. Wesee that the 3-pole �t indeed des
ribes the data very well, 
orresponding to its very good�2. Fig. 2 also displays the 1-pole �t; despite its very high �2, it reprodu
es qualitativelythe main features of the data, parti
ularly for moderate Q2. We note that the 
oeÆ
ient,a1, of the leading eigenfun
tion in the 1-pole �t is about 20% smaller than in the 3-pole�t. This indi
ates that the ex
ellent agreement of the 3-pole �t with the data is due inpart to 
an
ellations between the di�erent eigenfun
tions. To illustrate the properties of the3-pole �t, we show in Fig. 3 the 
ontributions to F2 from the 3 eigenfun
tions separatelyas fun
tions of the momenta k2 at several 
hara
teristi
 x values. Fig. 3 shows that, inthe region of medium Q2 values: 4 < Q2 < 20 GeV2, the 
ontribution of the leadingeigenfun
tion 
oin
ides with the �tted F2 
urve, i.e., the 
ontributions of the se
ond and thirdeigenfun
tions 
an
el ea
h other. However, at larger Q2, espe
ially above Q2 > 100 GeV2,the �t has large 
an
ellations between all three 
omponents, and the leading eigenfun
tion
annot �t the data by itself.Fig. 4 
ompares the Q2 dependen
e of the e�e
tive value of the exponent � determinedfrom a phenomenologi
al �t to the data, and as extra
ted from our �ts 4. In the 
ase of the1-pole �t (dashed line), � is identi
al with the leading eigenvalue: ! = 0:26, and in the 2-pole�t (dotted line) the values of � be
ome mostly smaller than the leading eigenvalue. However,in the 3-pole �t, whilst the � values are smaller than the leading eigenvalue for Q2 < 20GeV2 (solid line), they be
ome larger at higher Q2, and are 
loser to the values extra
tedform a phenomenologi
al �t to the data. The surprising fa
t that the sum of the 
ontributionwith small eigenvalues 
an give a larger rate of rise than the leading eigenvalue is due tothe fa
t that � is 
losely 
onne
ted to the logarithmi
 derivative, � � d log(F2)=d log(1=x).Owing to these 
an
ellations, the logarithmi
 derivative 
an be
ome larger than the largesteigenvalue. The fa
t that the 3-pole BFKL �t gives somewhat smaller values of � thanthe phenomenologi
al �t for Q2 � 20 to 70 GeV2 is 
losely related to the fa
t that thelowest-x point at ea
h of these values of Q2 lies slightly above the 3-pole �t, as seen in the
orresponding panels of Fig. 2. However, the minor dis
repan
ies for these few points doesnot spoil the quality of the overall �t, whi
h is a better measure of its validity than the �plot shown in Fig. 4.In summary: we obtain a very good des
ription of the HERA low-x data in a large range4In Fig. 4 we have also in
luded re
ent data from Zeus [14℄ whi
h are fully 
onsistent with previous data,and therefore have not been used in the �t. 8
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of Q2, from 4 < Q2 < 650 GeV2, using just three eigenfun
tions and adjust 4 free 
onstants:the phase � and the 
oeÆ
ients a1;2;3 5. Important roles are played in the �t not only bythe leading eigenfun
tion, but also by the pattern of 
an
ellations between the sub-leadingtraje
tories, whi
h is very sensitive to the parameter �. For this reason, the quality of the �tis also very sensitive to the value of �. Thus, for � = �0:3� the �2 grows to 142 for the 3 pole�t (instead 91.4 at the minimum), and at the extreme values of � = ��=2 and � = 0 the �2values are 430 and 680, respe
tively. Consequently, the data determine the infrared phasequite pre
isely (within the theoreti
al framework des
ribed above) 6: � = �0:21� 0:02� Inturn, the leading eigenvalue is also pre
isely determined: ! = 0:26�0:01. The relatively lowvalue of this eigenvalue is responsible for the fa
t that, although the � plot is reprodu
ed bythe 3-pole �t only in a qualitative way, we obtain a very good overall �t to the data.To our knowledge, this is the �rst time that the dis
rete asymptoti
ally-free BFKLPomeron has been shown to �t the HERA data at low x and high Q2. As su
h, we be-lieve that it is also the �rst time that a parametrization of the Pomeron derived from �rstprin
iples in QCD has been 
onfronted su

essfully with experimental data. A natural nextstep would be to extend this 
omparison to in
lude other low-x HERA data, in
luding thoseon the di�ra
tive produ
tion of ve
tor mesons, et
. One 
ould also envisage the developmentof a BFKL Pomeron 
al
ulus and its deployment to make predi
tions for both in
lusive andex
lusive phenomena at the LHC.A
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