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hroton DESY, 22603 Hamburg, Germanyb Dept. of Physi
s and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam,The NetherlandsAbstra
t: We investigate the transverse-momentum-dependen
e in semi-in
lusive deepinelasti
 leptoprodu
tion of hadrons. There are two di�erent theoreti
al approa
hes tostudy this dependen
e, one for low and one for high transverse momentum of the ob-served hadron. We systemati
ally investigate their 
onne
tion, paying spe
ial attentionto azimuthal distributions and to polarization dependen
e. In the region of intermediatetransverse momentum, where both approa
hes are appli
able, we �nd that their resultsmat
h for 
ertain observables but not for others. Interpolating expressions are dis
ussedfor the 
ase where one has no mat
hing. We then use power 
ounting to determine whi
hme
hanism is dominant in various azimuthal and spin asymmetries that are integrated overthe transverse momentum. Our �ndings have 
onsequen
es for the extension of transverse-momentum-dependent fa
torization beyond leading twist. They also shed light on theproblem of resumming logarithms of transverse momentum for azimuthal distributions.Our results 
an be 
arried over to the Drell-Yan pro
ess and to two-hadron produ
tion ine+e� annihilation.Keywords: Deep Inelasti
 S
attering, Spin and Polarization E�e
ts, QCD.
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1. Introdu
tionShort-distan
e fa
torization is a key 
on
ept in quantum 
hromodynami
s, providing mu
hof the predi
tive power of the theory in high-energy s
attering pro
esses. Among the sim-plest pro
esses to whi
h this 
on
ept 
an be applied are one-parti
le or single jet in
lusiveprodu
tion in lepton-nu
leon s
attering, two-parti
le or dijet in
lusive produ
tion in e+e�annihilation, and Drell-Yan lepton pair produ
tion via a photon or ele
troweak gauge bo-son in hadron-hadron 
ollisions. Crossing of the hard-s
attering subpro
ess 
losely relatesthese rea
tions, and many results obtained for one of them 
arry over to the other ones. Anumber of nontrivial issues for fa
torization arise espe
ially when one observes the trans-verse momentum qT and the angular distribution of the produ
ed parti
le with respe
t toa suitable referen
e dire
tion. The problem then involves three s
ales, namely the s
ale ofnonperturbative QCD dynami
s, whi
h we represent by the nu
leon mass M , the trans-verse momentum qT , and the photon or ele
troweak boson virtuality Q, whi
h throughoutthis paper we require to be large 
ompared with M .There are two basi
 des
riptions for the produ
tion of a parti
le with spe
i�ed trans-verse momentum. One of them is appli
able for qT � Q and involves transverse-momentum-dependent (also 
alled unintegrated) parton distribution and fragmentation fun
tions. Theother one requires that qT �M and generates transverse momentum in the �nal state byperturbative radiation, using 
ollinear (or integrated) distribution and fragmentation fun
-tions as nonperturbative input. In the following we refer to the two momentum regionsand the asso
iated theoreti
al des
riptions as \low-qT " and \high-qT", respe
tively. Thelow- and high-qT domains overlap for M � qT � Q, where both des
riptions 
an hen
e beapplied. An important question is whether in this intermediate qT region they des
ribe thesame dynami
s or two 
ompeting me
hanisms. Depending on the answer, one 
an eithertry to 
onstru
t a formulation that smoothly interpolates between the two des
riptions, orto add their results in a 
onsistent manner.For the 
ross se
tion depending on q2T but integrated over the angular distribution of theprodu
ed parti
le, the work of Collins, Soper and Sterman [1℄ showed that the des
riptionsbased on intrinsi
 transverse momentum and on hard perturbative radiation indeed mat
hat intermediate qT and permit a smooth interpolation at all orders in �s. A key elementof the derivation was that for suÆ
iently large transverse momentum one 
an expressunintegrated parton distributions and fragmentation fun
tions in terms of their integrated
ounterparts and of perturbatively 
al
ulable hard-s
attering kernels. The mat
hing ofthe two des
riptions allowed the authors of [1℄ to resum large logarithms ln(Q2=q2T ) to allorders using renormalization group te
hniques|a pro
edure that remains the 
ornerstonefor transverse-momentum resummation in a wide range of 
ollider pro
esses.For the angular distribution, however, the situation is less well understood. Bothme
hanisms just mentioned give rise to nontrivial angular dependen
e, as has been pointedout long ago for semi-in
lusive deep inelasti
 s
attering (SIDIS) by Cahn [2, 3℄ and byGeorgi and Politzer [4℄ for the low- and high-qT me
hanism, respe
tively. To the bestof our knowledge, the relation between the two des
riptions for the angular distributionin unpolarized s
attering has not been analyzed so far. Important progress has re
ently{ 2 {



been made in the understanding of a parti
ular azimuthal asymmetry for a transverselypolarized target in SIDIS or Drell-Yan produ
tion. The authors of [5{8℄ have shown thatthe des
ription of this asymmetry by the Sivers e�e
t for small qT and by the Qiu-Stermanme
hanism for large qT mat
h at order �s in the intermediate region M � qT � Q. It isnatural to ask if one has a similar situation for other observables as well.In the present work we therefore present a systemati
 analysis of the interplay betweenthe low-qT and the high-qT me
hanisms for angular distributions, both in unpolarizedand in polarized s
attering. This provides guidan
e for the theoreti
al des
ription of avariety of observables, determining in parti
ular whether or not one should add di�erent
ontributions. For de�niteness we will 
onsider the 
ase of SIDIS, but as remarked above,analogous studies 
an be performed for e+e� 
ollisions and for the Drell-Yan pro
ess. Ourresults are relevant to the possible extension of transverse-momentum resummation forspe
i�
 azimuthal distributions, whi
h was re
ently 
onsidered for the 
ase of Drell-Yanprodu
tion in [9℄ and [10℄.A key �nding of our work is that for 
ertain observables, the leading terms of thelow-and high-qT des
riptions mat
h in the region M � qT � Q of intermediate transversemomenta, whereas for others they do not mat
h. That this may happen 
an be understoodalready at the level of power 
ounting. The low-qT des
ription, whi
h uses transversemomentum dependent parton densities and fragmentation fun
tions, is based on taking Q2large 
ompared with q2T and all nonperturbative s
ales. We 
hose qT =Q rather than M=Qas parameter for power 
ounting, sin
e in the intermediate-qT region it is the larger of thetwo. Taking for example an observable F with mass dimension �2, we 
an thus expandF (qT ; Q) qT�Q= 1M2 Xn �qTQ �n�2 ln�MqT � ; (1.1)where ln are dimensionless fun
tions. In our appli
ations, the term with index n will
orrespond to twist-n a

ura
y in the low-qT 
al
ulation, where n � 2. In the region ofintermediate qT we 
an further expand the fun
tions ln(M=qT ) for small M=qT and thenhave F (qT ; Q) M�qT�Q= 1M2 Xn;k ln;k �qTQ �n�2 �MqT �k (1.2)with 
oeÆ
ients ln;k. The high-qT 
al
ulation, whi
h is based on 
ollinear fa
torization,treats both Q and qT as large 
ompared with nonperturbative s
ales like M . The relevantparameter for power 
ounting in the intermediate region is therefore M=qT , and we haveF (qT ; Q) M�qT= 1M2 Xn �MqT �n hn�qTQ � (1.3)
{ 3 {



with dimensionless fun
tions hn. In our appli
ations, the term with index n will 
orrespondto twist n in the high-qT 
al
ulation, where again n � 2. In the intermediate-qT region we
an then expand hn(qT =Q) for small qT =Q :F (qT ; Q) M�qT�Q= 1M2 Xn;k hn;k �MqT �n �qTQ �k�2 (1.4)with 
oeÆ
ients hn;k. Sin
e both (1.2) and (1.4) are valid in the intermediate region, we
an identify the 
oeÆ
ients ln;k = hk;n. As a 
onsequen
e, a term of twist n in the low-qT
al
ulation will only 
orrespond to a term of the same twist in the high-qT 
al
ulation ifn = k. We will for instan
e en
ounter observables withM2F (qT ; Q) = l2;2 �qTQ �0 �MqT �2 + l4;2 �qTQ �2 �MqT �2 + : : : ; (1.5)where the term with l2;2 = h2;2 is of leading twist in both the low- and high-qT 
al
ulations.The term with l4;2 = h2;4 is subleading in the low-qT 
al
ulation and be
omes subleadingin the high-qT when one takes the additional limit qT � Q. For other observables, we will�nd M2F (qT ; Q) = l2;4 �qTQ �0 �MqT �4 + l4;2 �qTQ �2 �MqT �2 + : : : : (1.6)Here the term with l2;4 = h4;2 is leading in the low-qT 
al
ulation but subleading in thehigh-qT one, whereas the reverse holds for the term with l4;2 = h2;4. The respe
tive leading-order terms in the two 
al
ulations will hen
e not mat
h in the intermediate region of qT .Whi
h term in (1.6) is larger in given kinemati
s obviously depends on the relative sizeof the two small parameters qT =Q and M=qT . We will dis
uss in se
tion 6.1 how one 
an
onstru
t interpolating expressions using both terms.An important question is whi
h terms in the expansions (1.1) and (1.3), and hen
e in(1.2) and (1.4), 
an a
tually be 
al
ulated in pra
ti
e. We dis
uss this in some detail in themain body of the paper, but already mention here that in the high-qT framework there is alarge number of results at twist two and three. In low-qT framework fa
torization is ratherwell understood at twist-two level, whereas its status is less 
lear at twist three. Little isknown about the validity of fa
torization at twist-four a

ura
y in either framework. In theexample (1.6) one 
an thus envisage to 
ompute the terms l2;4 and h2;4, whi
h are leadingin their respe
tive power 
ounting s
heme. The simultaneous validity of the expansions(1.2) and (1.4) in the intermediate region requires that h4;2 = l2;4 and l4;2 = h2;4, butat present one 
annot 
he
k this expli
itly be
ause a 
al
ulation of the power-suppressedterms h4;2 and l4;2 is beyond the state of the art.Several investigations have been performed assuming fa
torization for twist-three ob-servables in the low-qT des
ription. Detailed 
al
ulations at tree level [11{14℄ are found tobe self-
onsistent and give results with a stru
ture similar to that of twist-two observables.Their extension to higher orders in �s, in
luding a proper treatment of soft gluon ex
hangehas not been a
hieved yet, and the study [15℄ suggests that su
h an extension will not be{ 4 {



trivial. In se
tions 5.4 and 8.3 we will investigate observables where the leading terms inthe expansions (1.2) and (1.4) 
oin
ide and have the 
oeÆ
ient l3;2 = h2;3. The twist-twoquantity h2;3 is readily 
omputed, and its 
omparison with the result for l3;2 obtained witha 
andidate fa
torization formula will shed light on low-qT fa
torization at twist three.In experimental analyses one often has to integrate over the observed qT in orderto a

umulate statisti
s. One may simply integrate an observable over q2T or 
onsiderweighted observables like R dq2T (qT =M)pF (qT ; Q) with some power p. If in turn the mea-surement of the qT -dependen
e su�ers from large un
ertainties, then both a di�erentialobservable and weighted integrals will be a�e
ted with large errors, so that the simpleintegral R dq2T F (qT ; Q) may be the best quantity to 
onsider from an experimental pointof view. For the theoreti
al analysis it is important to identify the relative importan
e ofthe di�erent qT regions in an integrated observable, and to 
larify their interplay if severalregions are important. Our results will allow us to address this question at the level ofpower 
ounting.Our paper is organized as follows. In the next se
tion we de�ne the stru
ture fun
tionsfor SIDIS, whi
h are the observables we study in detail in this work. To set the stage, were
all in se
tion 3 some important results for SIDIS taken di�erential in qT but integratedover the angular distribution of the observed hadron, re
alling in parti
ular the foundationsof qT resummation in this 
ontext. In se
tion 4 we 
olle
t the well-known results of the
al
ulation of SIDIS with qT �M in 
ollinear fa
torization at leading order in �s, and thenapproximate these results for qT � Q. In se
tion 5 we take the opposite path, re
alling theresults for SIDIS with qT � Q and approximating them for qT �M . For this we need thebehavior of distribution and fragmentation fun
tions at high transverse momentum, and wewill derive the 
orresponding power behavior of these fun
tions based on general grounds.In se
tion 6 we will see for whi
h observables the 
al
ulations of the two previous se
tionsmat
h for intermediate qT and for whi
h ones they do not. The 
onsequen
es for integratedobservables are dis
ussed in se
tion 7. Whereas in se
tion 5 we derive the power behaviorfor all stru
ture fun
tions introdu
ed in se
tion 2, we give in se
tion 8 expli
it resultsfor those observables that appear at twist two in the high-qT regime. The 
omparison ofthe high-qT with the low-qT expressions will allow us to draw some 
on
lusions about theunsolved problem of qT resummation for angular distributions, as well as the possibility ofextending low-qT fa
torization to twist three. The main results of our work are summarizedin se
tion 9, and some te
hni
al details are given in the appendi
es.2. Stru
ture fun
tions in semi-in
lusive deep inelasti
 s
atteringThe physi
al pro
ess we investigate in this work is semi-in
lusive DIS,`(l) + p(P )! `(l0) + h(Ph) +X; (2.1)where ` denotes the beam lepton, p the proton target, and h the observed hadron, withfour-momenta given in parentheses. We allow for polarization of beam and target, butrestri
t ourselves to the 
ase of an unpolarized �nal state, i.e. to the situation in whi
hh has spin zero or where its polarization is not observed. The 
orresponding observables{ 5 {
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Figure 1: De�nition of azimuthal angles for semi-in
lusive deep inelasti
 s
attering in the targetrest frame [23℄. Ph? and S? are the transverse parts of Ph and S with respe
t to the photonmomentum.
over a variety of situations with di�erent types of power behavior we wish to dis
uss.Many of them have been measured in experiment, see [16{21℄ and the re
ent review in [22℄.Working in the one-photon ex
hange approximation, we de�ne the photon momentumq = l � l0 and its virtuality Q2 = �q2. We use the 
onventional variables for SIDISx = Q22P � q ; y = P � qP � l ; z = P � PhP � q ; (2.2)and write M and Mh for the respe
tive masses of the proton target and the produ
edhadron h. We take the limit of large Q2 at �xed x, y, z, and throughout this paper wenegle
t 
orre
tions in the masses of the hadrons or the lepton.It is 
onvenient to dis
uss the experimental observables for SIDIS in a frame where Pand q 
ollinear. We de�ne the transverse part P �h? of P �h as orthogonal with respe
t to themomenta P and q. Likewise, we de�ne the transverse part S�? of the spin ve
tor S� of thetarget, as well as its longitudinal proje
tion Sk along P �. We further de�ne the azimuthalangles �h and �S of P �h and S� with respe
t to the lepton plane in a

ordan
e with theTrento 
onventions [23℄, as shown in Fig. 1. Covariant expressions for the quantities justdis
ussed 
an be found in [14℄. Finally, we write �e for the longitudinal polarization of thein
oming lepton, with �e = 1 
orresponding to a purely right-handed beam.The lepton-hadron 
ross se
tion 
an then be parameterized as [14℄d�dx dy dz d�S d�h dP 2h? = �2xQ2 y2 (1 � ")��FUU;T + "FUU;L +p2 "(1 + ") 
os�h F 
os �hUU + " 
os(2�h)F 
os 2�hUU+ �ep2 "(1 � ") sin�h F sin�hLU+ Sk �p2 "(1 + ") sin�h F sin�hUL + " sin(2�h)F sin 2�hUL �
{ 6 {



+ Sk�e �p1� "2 FLL +p2 "(1 � ") 
os�h F 
os �hLL �+ jS?j � sin(�h � �S)�F sin(�h��S)UT;T + "F sin(�h��S)UT;L �+ " sin(�h + �S)F sin(�h+�S)UT + " sin(3�h � �S)F sin(3�h��S)UT+p2 "(1 + ") sin�S F sin�SUT +p2 "(1 + ") sin(2�h � �S)F sin(2�h��S)UT �+ jS?j�e �p1� "2 
os(�h � �S)F 
os(�h��S)LT +p2 "(1 � ") 
os�S F 
os�SLT+p2 "(1 � ") 
os(2�h � �S)F 
os(2�h��S)LT �� ; (2.3)where � is the �ne stru
ture 
onstant and " the ratio of longitudinal and transverse photon
ux, " = 1� y1� y + y2=2 : (2.4)The 18 stru
ture fun
tions F on the r.h.s. depend on x, Q2, z and P 2h? and en
ode thestrong-intera
tion dynami
s of the hadroni
 subpro
ess 
� + p ! h + X. Their �rst andse
ond subs
ript respe
tively spe
i�es the polarization of the beam and the target. In thestru
ture fun
tions FUU;T , FUU;L and F sin(�h��S)UT;T , F sin(�h��S)UT;L , the third subs
ript refers tothe transverse and longitudinal polarization of the photon.To 
al
ulate the SIDIS stru
ture fun
tions it is 
onvenient to use light-
one 
oordinateswith respe
t to the dire
tions of the relevant hadron momenta. We introdu
e light-likeve
tors n+ and n� with n+ � n� = 1 su
h that, up to mass 
orre
tions, n+ is proportionalto P and n� proportional to Ph. A res
alingn+ ! �n+ ; n� ! ��1n� (2.5)
orresponds to boosts in the 
ollinear dire
tion. The o�-
ollinearity of the pro
ess is de-termined by the ve
tor q�T = q� + (1� r)xP � � P �h =z (2.6)with r = q2T =Q2. For ease of notation we denote the length of this ve
tor byqT = ��q�T qT��1=2 ; (2.7)so that q2T is positive. There is a simple relation between the transverse momentum q�T ofthe photon with respe
t to the hadrons and the transverse momentum P �h? of the produ
edhadron with respe
t to the photon and proton: P �h? = �zq�T � 2rzxP �. The SIDIS 
rossse
tion di�erential in q2T instead of P 2h? is hen
e equal to z2 times the r.h.s. of (2.3).3. Fa
torization and qT resummationIn this se
tion we re
all some important results for the des
ription of hard pro
esses withmeasured qT , in parti
ular the fa
torization for low qT formulated by Collins and Soper [24℄{ 7 {



and its 
onne
tion to the pro
edure of transverse momentum resummation by Collins, Soperand Sterman [1℄. In the following we refer to these authors as CS and CSS, respe
tively.In the next two subse
tions we fo
us on the unpolarized SIDIS 
ross se
tion di�erential inqT but integrated over the azimuthal angle �h.3.1 Collins-Soper fa
torizationIn the work of CS, fa
torization was derived for the produ
tion of ba
k-to-ba
k jets inele
tron-positron annihilation, or more spe
i�
ally for e+e� ! A+B+X, where A and Bare two hadrons belonging to opposite-side jets in the e+e� 
.m. In general the momentaPA and PB of the two hadrons are not exa
tly ba
k-to-ba
k be
ause of their re
oil againstthe additional parti
les X produ
ed in the pro
ess. The 
ross se
tion, or equivalently thehadron tensor, depends on the transverse momentum q�T of the virtual photon w.r.t. thehadrons in the 
.m. of A and B, whi
h is the analog of q�T introdu
ed for SIDIS in (2.6).For qT � Q the CS paper derived a fa
torized expression of the hadron tensor, whi
h isa 
onvolution in transverse momentum of a soft fa
tor U and two fragmentation fun
tionsDA=a1 and DB=�a1 for the fragmentation of a quark or antiquark into A or B. In additionthere is a hard-s
attering fa
tor H, whi
h does not depend on any transverse momentum.To be spe
i�
, Eq. (7.14) in [24℄ gives the following expression for the hadron tensor:W ��e+e� / Tr�P=A
� P=B
�	 ��He+e��z�1A �1=2A ; z�1B �1=2B ���2 Xa e2a Z d2pT d2kT d2lT� Æ(2)(pT + kT + lT � qT )DA=a1 (zA; p2T ; �A)DB=�a1 (zB ; k2T ; �B)U(l2T ) + : : : ; (3.1)where : : : stands for terms that either vanish after integration over the azimuthal angle of qTor are power suppressed in 1=Q. The index a runs over 
avors of quarks and of antiquarkswith fra
tional 
harge ea. For 
onsisten
y within the present paper we have slightly 
hangednotation 
ompared with CS.1 The individual fa
tors H, DA=a1 , DB=�a1 , and U depend on anultraviolet fa
torization s
ale �, whi
h we have not displayed for brevity. The derivationby CS is done in an axial gauge spe
i�ed by a spa
elike ve
tor v, and the dependen
eof individual fa
tors on this ve
tor is through the parameters �A = �(2PA � v)2=v2 and�B = �(2PB � v)2=v2. More generally, �A and �B serve as 
ut-o�s for rapidity divergen
esand in a gauge-invariant de�nition of the fragmentation fun
tions arise from path-orderedexponentials involving the ve
tor v, see e.g. [25{27℄. The hadron tensor as a whole is of
ourse independent of �A and �B , so that the dependen
e on these parameters has to 
an
elbetween the fragmentation fun
tions and the hard-s
attering fa
tor. The fa
t that the softfa
tor de�ned by CS does not depend on them is less obvious.21We write D1 instead of P for the fragmentation fun
tions, v instead of n for the gauge �xing ve
tor,and n+, n� instead of vA, vB for the light-
one dire
tions. Our normalization 
ondition for U di�ers fromthe one of CS by a fa
tor (2�)2.2The four-ve
tors entering the 
onstru
tion of U are v, n+, n� and lT . The gauge ve
tor v used byCS has a zero transverse 
omponent, so that the only s
alar produ
ts involving v are v � n+, v � n� andv2 = 2(v � n+)(v � n�). Gauges related by s
aling v ! �v are equivalent, whi
h leaves only a possibledependen
e on v �n+=v �n�. This is however ex
luded by boost invarian
e, whi
h requires that U must not
hange under the res
aling (2.5). { 8 {



In this work we will assume that the fa
torization of Collins and Soper also holds forthe hadron tensor in SIDIS at low qT . Su
h an expression, albeit with some di�eren
es, hasbeen obtained by Ji, Ma and Yuan [26℄, and another relevant investigation has re
ently beenmade by Collins, Rogers and Sta�sto [27℄, whi
h gives us 
on�den
e that our assumption
an be justi�ed. The analog of (3.1) then readsW ��SIDIS / Tr�P=
� P=h
�	 ��HSIDIS�x�1=2; z�1�1=2h ���2 Xa e2a Z d2pT d2kT d2lT� Æ(2)(pT � kT + lT + qT ) fa1 (x; p2T ; �)Da1(z; k2T ; �h)U(l2T ) + : : : ; (3.2)where one of the fragmentation fun
tions has been repla
ed by the distribution fun
tionfa1 for quarks or antiquarks in the target. In the following we refer to the fa
torizationexpressed in (3.2) as \CS fa
torization". The result (3.2) gives rise to just one stru
turefun
tion, FUU;T = ��H�x�1=2; z�1�1=2h ���2 Xa xe2a Z d2pT d2kT d2lT� Æ(2)�pT � kT + lT + qT � fa1 (x; p2T ; �)Da1(z; k2T ; �h)U(l2T ) ; (3.3)where we re
all that H, f1, D1, and U depend on a renormalization s
ale �. For brevitywe omit the subs
ript \SIDIS" in H from now on.In the intermediate region M � qT � Q, one 
an go further sin
e at least oneof the momenta pT , kT , lT in (3.3) is of order qT and hen
e large 
ompared with thenonperturbative s
ale M . For large transverse momentum the soft fa
tor U(l2T ) 
an be
al
ulated order by order in �s, whereas fa1 (x; p2T ; �) and Da1(z; k2T ; �h) are respe
tivelygiven as 
onvolutions of perturbatively 
al
ulable kernels with the 
ollinear distributionand fragmentation fun
tions fa1 (x) and Da1(z). We will follow this path in se
tions 5and 8. The a

ura
y of this pro
edure is however limited: up to mass 
orre
tions one has(��h)1=2 = x�1zQ2, and the power 
ounting in the CS derivation requires both � and �hto be of order Q2, so that the perturbative expressions for fa1 (x; p2T ; �) and Da1(z; k2T ; �h)involve large logarithms ln(Q=qT ). Let us sket
h how these logarithms are resummed inthe work of CS. The variation of D1 with �h is des
ribed by the Collins-Soper equation,whi
h gives �D1=� ln �h as a 
onvolution in transverse momentum of an evolution kernelwith D1. Analogous 
onsiderations apply to the distribution fun
tion fa1 (x; p2T ; �). For theFourier transformed fun
tions~fa1 (x; b2; �) = Z d2pT eib�pT fa1 (x; p2T ; �) ;eDa1(z; b2; �h) = Z d2kT eib�kT Da1(z; k2T ; �h) (3.4)one obtains ordinary di�erential equations, whose solutions 
an be written as~fa1 (x; b2; �) = f̂a1 (x; b2) exp��bS 0(x�1=2; b)� ;eDa1(z; b2; �h) = bDa1(z; b2) exp��bS 0(z�1�1=2h ; b)� ; (3.5)
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where the Sudakov fa
tor bS is 
onstru
ted from the evolution kernel. The stru
ture fun
tionin (3.3) 
an then be rewritten asFUU;T = ��H(Q;Q;�)��2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��2bS 0(Q; b)� eU(b2;�)� f̂a1 (x; b2;�) bDa1(z; b2;�) (3.6)with eU(b2;�) = Z d2lT eib�lT U(l2T ;�) : (3.7)Here we have �xed the gauge parameters as x2� = z�2�h = Q2 and restored the dependen
eon the renormalization s
ale �. The Sudakov fa
tor bS 0 resums large logarithms of Qb, whi
h
orresponds to large logarithms of Q=qT in FUU;T sin
e the typi
al values of b in the integral(3.6) are of order 1=qT .For b � 1=M the fa
tors bS 0, eU , f̂a1 and bDa1 
an be expanded in perturbation theory.To avoid large logarithms of �b in this expansion, one should take the renormalization s
aleof order 1=b. A 
ommon 
hoi
e in the MS s
heme is � = b0=b with b0 = 2e�
E � 1:1, where
E is the Euler 
onstant. This simpli�es a number of perturbative 
oeÆ
ients: in parti
ularthe O(�s) term in the soft fa
tor is then zero, and one has eU(b2; � = b0=b) = 1+O(�2s) upto power 
orre
tions in Mb. The small-b expansion for the distribution and fragmentationfun
tions reads f̂a1 (x; b2;� = b0=b) =Xi � bC inai 
 f i1�(x;� = b0=b) ;z2 bDa1(z; b2;� = b0=b) =Xj �Dj1 
 bC outja �(z;� = b0=b) ; (3.8)where the indi
es i and j run over quarks, antiquarks and the gluon. f i1(x;�) and Dj1(z;�)are the usual 
ollinear distribution and fragmentation fun
tions, and 
 denotes the familiar
onvolution in longitudinal momentum fra
tions,�C 
 f�(x;�) = Z 1x dx̂̂x C(x̂;�) f� x̂x ;�� ;�D 
 C�(z;�) = Z 1z dẑ̂z D� ẑz ;��C(ẑ;�) : (3.9)With the s
ale 
hoi
e � = b0=b we �nd large logarithms of Qb in jHj2 = 1 +O(�s). These
an readily be resummed using the renormalization group equation for this fa
tor, whi
hallows one to write jH(Q;Q;� = b0=b)j2 = jH(Q;Q;� = Q)j2 e� bR(Q;b). In the intermediateregion M � qT � Q one therefore hasFUU;T = ��H(� = Q)��2 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��bS(Q; b)� eU(� = b0=b)�Xi � bC inai 
 f i1�(x;� = b0=b) Xj �Dj1 
 bC outja �(z;� = b0=b) (3.10)
{ 10 {



with bS = 2bS 0 + bR. Here we have used that for dimensional reasons H(Q;Q;�) dependson Q only in the 
ombination Q=�, so that the only Q-dependen
e in H(Q;Q;� = Q) isthrough the argument of the running 
oupling. An analogous statement holds for the b-dependen
e in eU(b2;� = b0=b) at small b. The result (3.10) only involves the usual 
ollineardistribution and fragmentation fun
tions, together with fa
tors H, bS, eU , bC in, bC out whoseperturbative expansions are free of large logarithms.3.2 Collins-Soper-Sterman resummationWe now turn to the region of large qT �M , where one 
an evaluate the hadron tensor instandard 
ollinear fa
torization. To leading order in �s we haveFUU;T = 1Q2 �s(2�z)2 Xa xe2a Z 1x dx̂̂x Z 1z dẑ̂z Æ� q2TQ2 � (1� x̂)(1 � ẑ)x̂ ẑ �� �fa1� x̂x�Da1� ẑz�C(
�q!qg)UU;T + fa1� x̂x�Dg1� ẑz�C(
�q!gq)UU;T + fg1� x̂x�Da1� ẑz�C(
�g!q�q)UU;T �(3.11)with power 
orre
tions in M=qT . The hard-s
attering 
oeÆ
ients CUU;T for the indi
atedpartoni
 subpro
esses are fun
tions of x̂, ẑ, and qT=Q, and will be given in se
tion 4.Approximating (3.11) for qT � Q one obtainsFUU;T = 1q2T �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ �Pqq 
 fa1 + Pqg 
 fg1 �(x)Da1 (z)� (3.12)with power 
orre
tions in qT=Q and in M=qT . The fa
tor L is de�ned asL�Q2q2T � = 2CF ln Q2q2T � 3CF ; (3.13)and Pqq, Pgq, Pqg are the DGLAP splitting fun
tions at lowest order in �s, given in (4.29)below. We see that a large logarithm of Q2=q2T appears in the �xed-order 
al
ulationwhen qT � Q. Corresponding logarithms at higher orders in �s spoil the 
onvergen
e ofthe perturbative series. Collins, Soper and Sterman [1℄ have shown that these logarithmsexponentiate and that their resummation results in a fa
torized expression, whi
h we willrefer to as \CSS fa
torization". The dis
ussion in the CSS paper is given for the 
rossse
tion of Drell-Yan produ
tion di�erential in q2T but integrated over the azimuthal angleof qT . The 
orresponding result for SIDIS is given in [28℄ and 
an be written asFUU;T = 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��S(Q; b)��Xi �C inai 
 f i1�(x;� = b0=b) Xj �Dj1 
 Coutja �(z;� = b0=b) : (3.14)
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This form is valid forM � qT � Q. It 
an be extended to the full large-qT region, qT �M ,by adding the di�eren
e between (3.11) and its approximated form (3.12). For furtherdis
ussion of this mat
hing of resummed and �xed-order terms we refer to [29℄. As an aside,we remark that at qT � Q the longitudinal stru
ture fun
tion FUU;L is parametri
ally ofthe same order as FUU;T , whereas at qT � Q it is suppressed by a relative fa
tor q2T=Q2.One may hen
e also apply the CSS pres
ription to FUU;T + "FUU;L or to FUU;T + FUU;Linstead of FUU;T . The term to whi
h resummation is applied is the same in all 
ases, andonly the unresummed part of the �xed-order 
al
ulation is di�erent.Let us see how (3.14) redu
es to (3.12) at leading order in �s. The Sudakov fa
torS(Q; b) reads S(Q; b) = Z Q2b20=b2 d�2�2 �A��s(�)� ln Q2�2 +B��s(�)�� (3.15)with A (�s) = 1Xk=1Ak ��s� �k ; B (�s) = 1Xk=1Bk ��s� �k ; (3.16)where A1 = CF and B1 = �3CF =2. The 
oeÆ
ient fun
tions C in 
an be written asC inai(x;� = b0=b) = Æai Æ(1� x) + 1Xk=1C in (k)ai (x) ��s� �k ; (3.17)and an analogous expansion holds for Cout. Using the DGLAP equation we 
an evolve f1from the s
ale � = b0=b to � = Q and obtainfa1 (x; b0=b) = fa1 (x;Q)� �s2� �Pqq 
 fa1 + Pqg 
 fg1 �(x) ln b2Q2b20 +O(�2s) : (3.18)Evolving D1 in the same way and putting everything together, we obtainFUU;T = 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT "1� �s2� CF �ln2 b2Q2b20 � 3 ln b2Q2b20 �#� "fa1 (x;Q)� �s2� �Pqq 
 fa1 + Pqg 
 fg1 �(x) ln b2Q2b20 + �s� Xi �C in (1)ai 
 f i1�(x)#� "Da1(z;Q)� �s2� �Da1 
 Pqq +Dg1 
 Pgq�(z) ln b2Q2b20 + �s� Xj �Dj1 
 Cout (1)ja �(z)#+O(�2s) : (3.19)The running of �s is irrelevant at the a

ura
y of this expression. Expanding the squarebra
kets one obtains a term fa1 (x;Q)Da1 (z;Q) of order �0s, whi
h is independent of b andhen
e gives a 
ontribution proportional to Æ(2)(qT ) to FUU;T . Sin
e we require qT � M ,this term must be dis
arded. For the same reason, the �rst-order 
oeÆ
ients C in (1)ai andCout (1)ja do not 
ontribute to FUU;T at order �s. With the integrals [30℄Z d2b e�ib�qT ln2 b2Q2b20 = �8�q2T ln Q2q2T ; Z d2b e�ib�qT ln b2Q2b20 = �4�q2T (3.20)
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we re
over the lowest-order result (3.12) from (3.19). Going to higher orders in �s,one �nds that the term with A1 in the Sudakov fa
tor produ
es the leading logarithms�ks ln2k�1 �Q2=q2T � in FUU;T , whereas the next-to-leading logarithms �ks ln2k�2 �Q2=q2T � alsore
eive 
ontributions from the 
oeÆ
ient B1, from the one-loop running of �s, and fromthe leading-order evolution of f1(x) and D1(z).The �s expansion of the CSS fa
torization formula (3.14), whi
h we have just performedto leading order, allows one to determine the fun
tions S, C in and Cout at a given order inperturbation theory by 
omparing with the 
ollinear �xed-order 
al
ulation in the high-qTregion. The fun
tional form of (3.14) was however derived by CSS using the result of CSfa
torization in the intermediate region M � qT � Q. This is not immediately obviousby 
omparing (3.14) with (3.10), be
ause in the former expression there is no hard andno soft fa
tor. As pointed out in [31℄, one 
an however introdu
e the hard fa
tor into theCSS expression. jH(� = Q)j2 depends on Q only through the argument of �s, so thatone 
an use the renormalization group equation for the running 
oupling to rewrite it asjH(� = Q)j2 = jH(� = b0=b)j2 eR(Q;b). Sin
e C in and Cout in (3.14) are also evaluated at� = b0=b, we 
an 
ombine fa
tors into C 0 in = jHj�1 C in and C 0 out = jHj�1 Cout at thats
ale, whi
h givesFUU;T = ��H(� = Q)��2 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��S 0(Q; b)��Xi �C 0 inai 
 f i1�(x;� = b0=b) Xj �Dj1 
 C 0 outja �(z;� = b0=b) : (3.21)with S 0 = S + R. Identifying C 0 in = eU1=2 bC in, C 0 out = eU1=2 bC out, and S 0 = bS, we �nallyre
ognize the CS result (3.10).The upshot of this dis
ussion is essential in our 
ontext: the CSS derivation of trans-verse momentum resummation for FUU;T and its analogs in e+e� annihilation and Drell-Yanprodu
tion makes use of two fa
ts:1. CS fa
torization is valid for these observables at qT � Q, and2. in the intermediate region M � qT � Q its results mat
h those obtained from
ollinear fa
torization in the high-qT region.In su
h a situation one 
an go further and 
onstru
t expressions that interpolate betweenthe fa
torization formulae for low and for high qT and are thus valid for all qT , from qT = 0to qT � Q. A pres
ription for this had already been given by CSS, and a number ofdi�erent methods have been proposed later; see [32℄ for a dis
ussion and referen
es. Weshall not dwell on this issue here.3.3 Azimuthal dependen
e and polarizationSo far we have dis
ussed only FUU;T . The situation for the other unpolarized stru
turefun
tions, FUU;L, F 
os�hUU , F 
os 2�hUU , 
annot readily be inferred from the results of CSS. Inse
tion 4 we will see that the splitting fun
tions appearing in the analogs of (3.12) for{ 13 {



these three stru
ture fun
tions di�er from the usual ones. Sin
e the splitting fun
tions arerelevant at next-to-leading logarithmi
 a

ura
y, it is not 
lear if and how resummationbeyond the leading logarithmi
 approximation 
an be performed in this 
ase. An analogousobservation for the angular distribution in Drell-Yan produ
tion has been made in [9℄.(Resummation at leading logarithmi
 a

ura
y has re
ently been 
onsidered in [10℄.)The extension of CSS fa
torization for polarized s
attering is relatively straightforwardas long as one integrates over the azimuthal angle of qT . For SIDIS this 
on
erns the stru
-ture fun
tion FLL, and a 
orresponding 
al
ulation in this framework has been presentedin [32℄. CSS resummation for Drell-Yan produ
tion with longitudinal beam polarizationhas been investigated in [33, 34℄. A detailed dis
ussion of polarization in the 
ontext of
ollinear fa
torization 
an be found in [35℄.In the present work we will apply CS fa
torization to polarized s
attering and to theSIDIS 
ross se
tion depending on the azimuth �h, as has been done in [36℄. The fa
torsP=fa1 (x; p2T ; �) and P=hDa1(z; k2T ; �h) in the fa
torization formula (3.2) are then repla
edby the quark-quark 
orrelator �a(x;pT ; �) and the fragmentation 
orrelator �a(z;kT ; �h),whi
h will be de�ned in se
tion 5.1. The result readsW ��SIDIS / ��H�x�1=2; z�1�1=2h ���2 Xa e2a Z d2pT d2kT d2lT Æ(2)(pT � kT + lT + qT )�Tr f�a(x;pT ; �)
��a(z;kT ; �h)
�g U(l2T ) (3.22)and gives rise to a number of spin and azimuthal asymmetries at leading order in 1=Q.It is an open question if and how CS fa
torization 
an be extended to power suppressedobservables, at least to those 
oming with one fa
tor of 1=Q. The 
al
ulations of our workare relevant to this question, as we shall see in se
tion 8.3.A stru
ture fun
tion that has re
eived mu
h attention in the literature is F sin(�h��S)UT;T ,whi
h arises when the initial hadron is transversely polarized. At low qT this observableis nonzero due to the Sivers e�e
t [37℄: the CS fa
torization formula (3.22) gives a leading
ontribution in 1=Q proportional to the Sivers fun
tion f?1T (x; p2T ) [12℄. At high qT one
an des
ribe the same observable in terms of the Qiu-Sterman me
hanism [38℄. The 
or-responding 
al
ulation uses 
ollinear fa
torization at twist-three level, i.e., F sin(�h��S)UT;T issuppressed by 1=qT 
ompared with FUU;T . Cal
ulating the behavior of the Sivers fun
tionat high transverse momentum, the analysis in [7, 8℄ has shown that at order �s the twodes
riptions exa
tly mat
h in the intermediate region M � qT � Q. The situation is thesame for the 
orresponding asymmetry in Drell-Yan produ
tion [5,6,8℄. This suggests thatfor F sin(�h��S)UT;T and its Drell-Yan analog it should be possible to use the CSS resummationpro
edure for large logarithms of Q=qT , as dis
ussed in [39℄.In the following se
tions we will derive the power behavior for the full set of SIDIS stru
-ture fun
tions, both in the low-qT and in the high-qT des
ription. This will in parti
ulardetermine whether or not one 
an envisage to use CSS resummation for these observables.To determine the power behavior we 
an restri
t our 
al
ulations to the leading order in�s. Sin
e we will not attempt to a
tually perform a resummation of large logarithms,we need not go to b-spa
e as in (3.10) or (3.14). We will instead dire
tly work with themomentum-spa
e version (3.22) of CS fa
torization. In parti
ular, we shall re
over the{ 14 {



�xed-order result (3.12) for the intermediate region when expanding the CS expression(3.3) of FUU;T in the limit qT �M .4. From high to intermediate qTIn this se
tion we present the 
al
ulation of SIDIS stru
ture fun
tions at high transversemomentum in terms of 
ollinear distribution and fragmentation fun
tions, and then takethe limit qT � Q. We give expli
it results for the six stru
ture fun
tions appearing atleading twist and order �s. For seven of the remaining stru
ture fun
tions, whi
h are ofhigher twist or higher order in �s, there exist studies in the literature, whi
h we will brie
ydis
uss.In the high-qT 
al
ulation, the generation of large transverse momentum is des
ribedby hard-s
attering pro
esses at parton level. The diagrams for the 
ontributions at �rstorder in �s are shown in Fig. 2. We introdu
e the s
aling variablesx̂ = Q22pa � q ; ẑ = pa � pbpa � q (4.1)for the partoni
 subpro
ess, where pa is the momentum of the in
oming parton and pb themomentum of the parton whi
h fragments into the observed hadron h. We furthermoreuse the transverse momentum q�T introdu
ed in (2.6). Negle
ting mass 
orre
tions we havex̂pa = xP and pb=ẑ = Ph=z, so thatq�T = q� + (1� r) x̂p�a � p�b =ẑ (4.2)with r = q2T =Q2. The partoni
 Mandelstam variables are then given byŝ = (q + pa)2 = 1� x̂x̂ Q2 ; t̂ = (q � pb)2 = �1� ẑx̂ Q2 = � ẑ1� x̂ q2T ;û = (pa � pb)2 = � ẑ̂x Q2 : (4.3)
(a) (c)(a′)

pbpa

q

pbpa pa pb

qq

(b) (c′)(b′)

pb

pa

q

pa

pb

pa

pbqq

Figure 2: Feynman diagrams for the pro
esses 
�q ! qg, 
�q ! gq, and 
�g ! q�q.
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The stru
ture fun
tions de�ned in se
tion 2 
an be written as 
onvolutions of hard-s
attering 
oeÆ
ients with 
ollinear parton distribution and fragmentation fun
tions,FUU;T = 1Q2 �s(2�z)2 Xa xe2a Z 1x dx̂̂x Z 1z dẑ̂z Æ� q2TQ2 � (1� x̂)(1 � ẑ)x̂ẑ �� �fa1� x̂x�Da1� ẑz�C(
�q!qg)UU;T + fa1� x̂x�Dg1� ẑz�C(
�q!gq)UU;T + fg1� x̂x�Da1� ẑz�C(
�g!q�q)UU;T � ;(4.4)as we have already seen in se
tion 3.2. We re
all that a runs over 
avors of quarks andof antiquarks. Analogous expressions with di�erent kernels C give the stru
ture fun
tionsFUU;L, F 
os�hUU , and F 
os 2�hUU . At order �s (but not at higher order) one �nds the relationFUU;L = 2F 
os 2�hUU : (4.5)The stru
ture fun
tions FLL and F 
os�hLL for longitudinal target and beam polarizationare also given by expressions analogous to (4.4), with di�erent kernels C and with theunpolarized parton densities fa1 and fg1 repla
ed by their polarized 
ounterparts ga1 and gg1 .The hard-s
attering 
oeÆ
ients for the partoni
 pro
esses 
�q ! qg, 
�q ! gq, 
�g ! q�q
an be 
omputed from the respe
tive diagrams (a; a0), (b; b0), (
; 
0) in Fig. 2, and thosefor 
��q ! �qg, 
��q ! g�q, 
�g ! �qq are identi
al to their 
ounterparts obtained by 
harge
onjugation. Pro
ess by pro
ess we have� 
�q ! qg CUU;T = 2CF �(1� x̂)(1� ẑ) + 1 + x̂2ẑ2x̂ẑ Q2q2T �; (4.6)C
os�hUU = �4CF �x̂ẑ + (1� x̂)(1� ẑ)� QqT ; (4.7)C
os 2�hUU = 4CF x̂ẑ; (4.8)CLL = 2CF �2(x̂+ ẑ) + x̂2 + ẑ2x̂ẑ Q2q2T �; (4.9)C
os�hLL = �4CF (x̂+ ẑ � 1) QqT ; (4.10)� 
�q ! gq CUU;T = 2CF �(1� x̂) ẑ + 1 + x̂2(1� ẑ)2x̂ẑ 1� ẑẑ Q2q2T �; (4.11)C
os�hUU = 4CF � x̂ (1� ẑ) + (1� x̂) ẑ � 1� ẑẑ QqT ; (4.12)C
os 2�hUU = 4CF x̂ (1� ẑ); (4.13)CLL = 2CF �2x̂+ 2(1 � ẑ) + x̂2 + (1� ẑ)2x̂ẑ 1� ẑẑ Q2q2T �; (4.14)C
os�hLL = 4CF (x̂� ẑ) 1� ẑẑ QqT ; (4.15)
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� 
�g ! q�q CUU;T = 2TR � x̂2 + (1� x̂)2 �� ẑ2 + (1� ẑ)2 � 1� x̂x̂ẑ2 Q2q2T ; (4.16)C
os�hUU = �4TR (2x̂� 1) (2ẑ � 1) 1� x̂ẑ QqT ; (4.17)C
os 2�hUU = 8TR x̂ (1� x̂); (4.18)CLL = 2TR (2x̂� 1) � ẑ2 + (1� ẑ)2 � 1� x̂x̂ẑ2 Q2q2T ; (4.19)C
os�hLL = �4TR (2ẑ � 1)1� x̂ẑ QqT (4.20)with CF = 4=3 and TR = 1=2. The relation CUU;L = 2C
os 2�hUU holds for ea
h individualsubpro
ess. Our results agree with those in [32, 40℄.The behavior of the above results in the region q2T � Q2 
an be obtained by rewritingthe Æ fun
tion in Eq. (4.4) as [41℄Æ� q2TQ2 � (1� x̂)(1� ẑ)x̂ẑ � = Æ(1 � x̂) Æ(1 � ẑ) ln Q2q2T + x̂(1� x̂)+ Æ(1 � ẑ)+ ẑ(1� ẑ)+ Æ(1 � x̂) +O� q2TQ2 ln Q2q2T � ; (4.21)where the plus-distribution is as usual de�ned byZ 1z dy G(y)(1� y)+ = Z 1z dy G(y)�G(1)1� y �G(1) ln 11� z : (4.22)We have written the hard-s
attering 
oeÆ
ients in (4.6) to (4.20) in a way that allows foran easy extra
tion of the leading power behavior at small qT =Q. The result isFUU;T = 1q2T �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ �Pqq 
 fa1 + Pqg 
 fg1 �(x)Da1 (z)�; (4.23)FUU;L = 2F 
os 2�hUU ; (4.24)F 
os�hUU = � 1QqT �s2�2z2 Xa xe2a �fa1 (x)Da1 (z)L�Q2q2T �+ fa1 (x) �Da1 
 P 0qq +Dg1 
 P 0gq�(z)+ �P 0qq 
 fa1 + P 0qg 
 fg1 �(x)Da1 (z)�; (4.25)F 
os 2�hUU = 1Q2 �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 P 00qq +Dg1 
 P 00gq�(z)+ �P 00qq 
 fa1 + P 00qg 
 fg1 �(x)Da1 (z)�; (4.26)
{ 17 {



and FLL = 1q2T �s2�2z2 Xa xe2a �ga1 (x)Da1(z)L�Q2q2T �+ ga1(x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ ��Pqq 
 ga1 +�Pqg 
 gg1�(x)Da1(z)�; (4.27)F 
os�hLL = � 1QqT �s2�2z2 Xa xe2a �ga1 (x)Da1(z)L�Q2q2T �+ ga1(x) �Da1 
 P 0qq +Dg1 
 P 0gq�(z)+ ��P 0qq 
 ga1 +�P 0qg 
 gg1�(x)Da1(z)�: (4.28)The fa
tor L 
ontains a logarithm of Q2=q2T and is given in (3.13), and the 
onvolutionsare de�ned in (3.9). The splitting fun
tions are given byPqq(x̂) = CF� 1 + x̂2(1� x̂)+ + 32 Æ(1 � x̂)� ; Pqg(x̂) = TR �x̂2 + (1� x̂)2� ;Pgq(ẑ) = CF 1 + (1� ẑ)2ẑ ; (4.29)P 0qq(x̂) = CF� 2x̂2(1� x̂)+ + 32 Æ(1 � x̂)� ; P 0qg(x̂) = 2TR x̂ (2x̂� 1) ;P 0gq(ẑ) = �2CF (1� ẑ) ; (4.30)P 00qq(x̂) = P 0qq(x̂) ; P 00qg(x̂) = 4TR x̂2 ;P 00gq(ẑ) = 2CF ẑ (4.31)for 
onvolutions with unpolarized distribution or fragmentation fun
tions, and by�Pqq(x̂) = Pqq(x̂) ; �Pqg(x̂) = TR (2x̂� 1) ; (4.32)�P 0qq(x̂) = P 0qq(x̂) ; �P 0qg(x̂) = 2TR x̂ (4.33)for 
onvolutions with polarized distributions. Similar results for the Drell-Yan pro
ess havebeen obtained by Boer and Vogelsang in Ref. [9℄. We note that our P 0qq and P 00qq 
orrespondto P�qq in Eq. (38) of Ref. [9℄, while our P 0qg 
orresponds to their ~P�qg and our P 00qg to theirP 0�qg =2.Let us remark that the 1=qT power behavior of F 
os �hUU and F 
os �hLL arises as qT =q2T ,where 1=q2T 
omes from the t-
hannel propagators in the hard-s
attering graphs of Fig. 2.Likewise, the 
onstant qT behavior (up to ln q2T terms) of FUU;L and F 
os 2�hUU arises as q2T =q2T ,where the 1=q2T from the hard propagators is fully 
an
eled by numerator fa
tors. Weemphasize that, although they do not have a power-law divergen
e, the above expressionsfor FUU;L and F 
os 2�hUU 
annot be used for small qT , be
ause the approximations giving1=q2T for the hard propagators break down when qT <�M . In fa
t, angular momentum
onservation requires F 
os �hUU and F 
os �hLL to vanish like qT and F 
os 2�hLL to vanish like q2T forqT ! 0, as shown e.g. in [42℄. { 18 {



The six FUT stru
ture fun
tions for transverse target polarization vanish in the leading-twist approximation at high transverse momentum, be
ause they would require the 
ombi-nation of the transversity distribution fun
tion h1 with a 
hiral-odd 
ollinear fragmentationfun
tion of twist two, whi
h does not exist for an unpolarized hadron. They are howevernonzero at twist three, where 
ollinear quark-gluon-quark and three-gluon 
orrelation fun
-tions appear, so that many more diagrams than the ones in Fig. 2 need to be 
omputed.Su
h a 
omputation has been performed by Egu
hi, Koike and Tanaka in Refs. [43, 44℄.The results for the di�erent stru
ture fun
tions involve the produ
t of D1 with GF and eGF ,whi
h are 
hiral-even fun
tions appearing in the de
omposition of the quark-gluon-quarkdistribution 
orrelator given in (5.37). Some observables involve in addition the produ
t ofh1 with bEF , whi
h is a 
hiral-odd fun
tion appearing in the de
omposition of the quark-gluon-quark fragmentation 
orrelator. The stru
ture fun
tion F sin(�h��S)UT;T has also been
omputed in [7℄. The result di�ers from the one in [43, 44℄ be
ause both 
al
ulations weremissing 
ertain terms. With the 
orre
tions dis
ussed in [8℄, agreement between the twogroups has been a
hieved. We note, however, that the twist-three 
al
ulation of the FUTstru
ture fun
tions is presently not 
omplete. Terms involving bEF are only 
onsideredin [43℄, where they are found to 
ontribute to F sin(�h��S)UT;T , F sin(�h+�S)UT , and F sin�SUT . The
al
ulation of that work is restri
ted to so-
alled derivative terms due to soft gluon pole
ontributions. The remaining soft gluon pole 
ontributions, as well as 
ontributions fromsoft fermion poles and hard poles are evaluated in [44℄, but only for GF and eGF . In [8℄it is shown that soft fermion pole 
ontributions from further diagrams must be added tothose results. Finally, all 
al
ulations in the literature are restri
ted to quark-gluon-quarkfun
tions of twist three, so that three-gluon 
orrelators do not appear.Using the soft gluon pole and the hard pole 
ontributions 
omputed in [43,44℄ we haveextra
ted the leading behavior of all FUT stru
ture fun
tions in the limit qT � Q. Thestru
ture of the results is listed in Eqs. (6.8) to (6.13) of se
tion 6, both for the powerlaw and for the distribution and fragmentation fun
tions appearing in ea
h observable.We have veri�ed that this stru
ture is not 
hanged by the soft fermion pole 
ontributionsgiven in [44℄. Sin
e the 
orre
tions to [44℄ dis
ussed in [8℄ 
on
ern only soft fermion pole
ontributions in F sin(�h+�S)UT they do not a�e
t the stru
ture of (6.10) either. The sameshould hold for the remaining �ve FUT stru
ture fun
tions, but this has not been 
he
kedexpli
itly.The stru
ture fun
tion F sin�hLU is nonzero at twist two and order �2s. Depending on asingle polarization, it is a T -odd observable and hen
e requires an absorptive part in theamplitude, whi
h in this 
ase is provided by a loop in the hard-s
attering subpro
ess. Therelevant graphs have been 
al
ulated in [45℄, and numeri
al estimates for spe
i�
 kinemati
shave been given in [45, 46℄. For the stru
ture fun
tions F sin�hUL and F sin 2�hUL the situationis similar, but no expli
it 
al
ulation exists in the literature. There is no 
ontribution toF sin�hLU , F sin�hUL , F sin 2�hUL at twist three and order �s, be
ause the ne
essary T -odd termswould need to 
ome from twist-three quark-gluon-quark 
orrelators. For an unpolarized orlongitudinally polarized hadron, these are 
hiral-odd [43℄ and have no twist-two 
hiral-oddpartners in the other 
orrelator. From the 
al
ulation in [45℄ we 
an extra
t the powerbehavior of F sin�hLU for qT � Q, whi
h we will give in Eq. (6.5).{ 19 {



5. From low to intermediate qT : power 
ountingIn this se
tion we derive the behavior of distribution and fragmentation fun
tions at hightransverse momentum. Plugging the results into the known low-qT expressions of theSIDIS stru
ture fun
tions, we will obtain their power behavior in the intermediate regionM � qT � Q. To begin with, we spe
ify in the next two subse
tions the distribution andfragmentation fun
tions that will appear in our 
al
ulation.5.1 Transverse-momentum-dependent distribution and fragmentation fun
tionsFor the dis
ussion of distribution and fragmentation fun
tions we use light-
one 
oordinatesde�ned with respe
t to the momenta P and Ph, whi
h we already introdu
ed at the endof se
tion 2. For any four-ve
tor a we then have the plus-
omponent a+ = a � n�, theminus-
omponent a� = a � n+, and the transverse part a�T = a� � a+n�+ � a�n��. Thehadron momenta readP � = P+n�+ + M22P+ n�� ; P �h = P�h n�� + M2h2P�h n�+ ; (5.1)and the spin ve
tor of the target 
an be de
omposed into longitudinal and transverse
omponents as S� = SL�P+M n�+ � M2P+ n���+ S�T : (5.2)The transverse-momentum-dependent quark distributions appearing in the des
ription ofSIDIS are de�ned from the quark-quark 
orrelation fun
tion�[U ℄ij (x; pT ) = Z d��d2�T(2�)3 eip�� hP j � j(0)U(0;�)  i(�)jP i �����+=0 ; (5.3)where p+ = xP+ and summation over 
olor indi
es is understood. The 
orresponding
orrelation fun
tion for antiquarks is obtained by repla
ing the quark �elds by their trans-forms under 
harge 
onjugation, see Ref. [11℄. The quark �elds in (5.3) are renormalized�elds, and the 
orresponding s
ale dependen
e of the 
orrelation fun
tion is given by arenormalization group equation involving the quark anomalous dimension [24℄.The gauge link U(0;�) in (5.3) is a Wilson line that 
onne
ts the quark �elds and thusmakes the 
orrelation fun
tion 
olor gauge invariant. In the fa
torization theorems fors
attering pro
esses, the gauge link in
orporates the ex
hange of gluons between partonsthat move in the opposite light-
one dire
tions n+ and n�. Consideration of gluons 
ollinearto the target yields Wilson lines with paths that point along n� and lead to light-
onein�nity, a� = �1, where they are 
losed by transverse segments from 0T to �T [13, 47℄.Di�erent pro
esses require di�erent gauge links. In parti
ular, the simplest links 
losed ata� = �1, whi
h we denote by U�, give rise to the 
orrelators �[+℄(x; pT ) and �[�℄(x; pT )appearing in SIDIS and Drell-Yan produ
tion, respe
tively. More 
ompli
ated gauge linksshow up in other pro
esses [48, 49℄.When de�ned with stri
tly lightlike Wilson lines, the 
orrelator (5.3) 
ontains diver-gen
es in gluon rapidity (sometimes referred to as \endpoint singularities") and hen
e must{ 20 {



be modi�ed [25℄. Di�erent s
hemes have been dis
ussed in the literature. One possibilityis to use paths that point in a non-lightlike dire
tion v instead of n� [26,27℄. Up to subtleissues we will mention in Appendix A, this is equivalent to working in axial gauge, A�v = 0,whi
h was used in the original s
heme of Collins and Soper [24℄. In a number of di�erents
hemes, the proton matrix element in (5.3) is divided by va
uum expe
tation values ofsuitably 
hosen Wilson lines [27,50{52℄. The arguments in the present se
tion use Lorentzinvarian
e and power 
ounting, so that we need not spe
ify the detailed 
hoi
e of s
heme.As long as v is a linear superposition of n+ and n�, no new four-ve
tor is introdu
ed in�(x; pT ), whi
h therefore depends on v only via the s
alar parameter � = �(2P �v)2=v2 wealready en
ountered in se
tion 3.1.The 
orrelation fun
tion (5.3) 
an be parameterized in terms of distributions fun
tionsdepending on x and p2T as [14℄�(x; pT )= 12 �f1 n=+ + f?1T ST� ���T pT�M n=+ + g1LSL
5 n=+ � g1T ST �pTM 
5 n=++ h1 
5� S=T ; n=+�2 � h?1T ST� p(�T p�)TM2 
5�
�; n=+�2 + h?1LSL 
5� p=T ; n=+�2M + h?1 i� p=T ; n=+�2M �+ M2P+ �e� eLSL i
5 + eT ST �pTM i
5 + e?T ST� ���T pT�M+ f? p=TM + f?L SL pT����TM 
� � f?T ST� p(�T p�)T �T��M2 
� + fT ST� ���T 
�+ g?LSL 
5 p=TM + g? pT����TM 
5
� � g?T ST� p(�T p�)TM2 
5
� + gT 
5 S=T+ h?T 
5� S=T ; p=T �2M � hT ST �pTM 
5[ n=+; n=�℄2 + hLSL 
5[ n=+; n=�℄2 + h i� n=+; n=��2 �+ M22(P+)2 � : : : 	 ; (5.4)where the two-dimensional antisymmetri
 tensor is given by���T = �����n+�n�� (5.5)with �0123 = 1. Index pairs in parentheses indi
ate that the tra
e is subtra
ted in the twotransverse dimensions, p(�T p�)T = p�T p�T � 12 (pT �pT ) g��T ; (5.6)where the transverse metri
 tensor is g��T = g�� � n�+n��� n��n�+. The �rst eight distribu-tions in (5.4) are referred to as twist two, and the next sixteen distributions as twist three.The : : : stand for the remaining eight distributions of twist four, whi
h are given in [53℄.We will not need them in the following and ta
itly omit them in further parameterizations.Corresponding to the Dira
 matrix stru
ture in the de
omposition (5.4), fun
tions denoted{ 21 {



target polarizationunpolarized longitudinal transversef1 f? g? g1L g?L f?L f?1T f?T fT g1T g?T gT�f + + � + + � � � � + + +n 2 2 2 2 2 2 4 4 2 4 4 2h?1 h e h?1L hL eL h1 h?1T hT h?T eT e?T�f � � + + + � + + + + � �n 4 2 2 4 2 2 2 4 2 2 2 2Table 1: Behavior of distribution fun
tions under time reversal and in the high-pT limit. Thetime reversal fa
tor �f is de�ned in (5.7) and the exponent n for the high-pT behavior in (5.8).with letters f , g or e, h are respe
tively referred to as 
hiral-even or 
hiral-odd. Fun
tionswith subs
ripts L or T appear in the parts of �(x; pT ) that depend on the longitudinalor transverse 
omponent of the spin ve
tor. (An ex
eption to this rule of notation is thetransversity distribution h1.)It is understood that the 
orrelator and ea
h of the fun
tions in (5.4) should 
arrya label spe
ifying the gauge link, as well as a label for the quark 
avor. Time reversal
onne
ts �[U ℄ with �[UT ℄, and in parti
ular �[+℄ with �[�℄. This provides relations [54℄f [+℄(x; p2T ) = �f f [�℄(x; p2T ) ; (5.7)where f stands for any of the distributions in (5.4). We 
all a distribution T -even if �f = +1and T -odd if �f = �1. The values of �f are given in table 1. We also anti
ipate in thetable the power behavior f [�℄(x; p2T ) � 1=pnT (5.8)of the distributions for pT �M , whi
h we shall derive in se
tion 5.3.Fragmentation fun
tions are de�ned from the 
orrelator�ij(z; kT ) = 12N
z XX Z d�+d2�T(2�)3 eik��� h0j U(1;�)  i(�)jh;Xiout outhh;Xj � j(0)U(0;1)j0i ������=0 ; (5.9)where k� = P�h =z and N
 = 3. The prefa
tor 1=(2N
) 
omes from averaging over thepolarization and 
olor of the fragmenting quark. The subs
ript 1 in the gauge linksindi
ates a spa
e-time point with plus-
oordinate a+ = 1. The pre
ise 
hoi
e of Wilsonlines involves the same issues we mentioned for the distribution 
orrelator. Aspe
ts spe
i�
to the 
ase of fragmentation fun
tions are dis
ussed in [49, 50℄. Noti
e that fragmentationfun
tions with di�erent gauge links are not related by time reversal, be
ause time reversaltransforms \out" states jh;Xiout into \in" states jh;Xiin, and the di�eren
e between thesestates amounts in general to more than just a phase.{ 22 {



For an unpolarized hadron h the de
omposition of the fragmentation 
orrelator reads�(z; kT ) = 12 �D1 n=� +H?1 i� k=T ; n=��2Mh �+ Mh2P�h �E +D? k=TMh +H i� n=�; n=+�2 �G?kT� ���TMh 
5
�� ; (5.10)where the fun
tions on the r.h.s. depend on z and k2T . In a more expli
it notation theyshould also 
arry a 
avor index.5.2 Collinear distribution and fragmentation fun
tionsIn appli
ations of 
ollinear fa
torization, the stru
ture of in
oming hadrons is representedby the light-
one distribution 
orrelator�ij(x) = Z d��2� eip�� hP j � j(0)Un�(0;�)  i(�)jP i�����+=0; �T=0T ; (5.11)where the gauge link Un�(0;�) 
onne
ts the quark �elds along a path in the n� dire
tion. Thiswould simply be the integral of the pT -dependent 
orrelator introdu
ed in the previoussubse
tion, �(x) = Z d2pT �[U ℄(x; pT ) ; (5.12)were it not for two 
ompli
ations. On the one hand, the 
orrelator (5.11) has ultravioletdivergen
es due to the fa
t that all �eld operators are taken at the same transverse position.Their regularization and subtra
tion gives rise to a s
ale dependen
e des
ribed by theDGLAP equations. Correspondingly, the integrand on the r.h.s. of (5.12) diverges like 1=p2Tat high pT , as we will see in the next subse
tion, so that the pT -integral must be regularized.On the other hand, the rapidity divergen
es of the pT -dependent 
orrelator, whi
h wedis
ussed in the previous subse
tion, 
an
el under the integral over pT [25,51℄. They requireno regularization in the 
ollinear 
orrelation fun
tion (5.11), whi
h hen
e is independentof the parameter �. The di�erent regularization pro
edures in the 
orrelators �(x; pT )and �(x) re
e
t the di�erent types of subtra
tions required when 
onstru
ting transverse-momentum-dependent or 
ollinear fa
torization theorems. We will shortly dis
uss how therelation (5.12) should be understood.The 
orrelation fun
tion (5.11) 
an be parameterized as�(x) = 12 �f1 n=+ + g1SL
5 n=+ + h1
5� S=T ; n=+�2 �+ M2P+ �e� eLSL i
5+ fT ST����T 
� + gT 
5 S=T + hLSL 
5[ n=+; n=�℄2 + h i� n=+; n=��2 � ; (5.13)where the distributions on the r.h.s. depend only on x. They are given byf1(x) = Z d2pT f1(x; p2T ) (5.14)
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and similarly for the other fun
tions, with one 
ommon ex
eption of notation,g1(x) = Z d2pT g1L(x; p2T ) : (5.15)Sin
e the gauge link in (5.11) is along a �nite light-like path from 0 to �, time reversalrelates the 
ollinear 
orrelator with itself, and as a 
onsequen
e fT (x) = eL(x) = h(x) = 0.This ensures that (5.12) 
an simultaneously hold for di�erent links U , in parti
ular for U+and U�, whi
h a

ording to (5.7) give pT -dependent distributions f [�℄T , e[�℄L , and h[�℄ ofopposite sign.To make the meaning of (5.12) more pre
ise, we observe that the 
ombination ofEqs. (3.5) and (3.8) gives~f1(x; b; �; �) = Z d2pT eib�pT f1(x; p2T ; �; �) = f1(x;�) +O��s ln2(�b2)� (5.16)for small enough b, where we have set � = b0=b and used the perturbative expansionsbS 0 = O��s ln2(�b2)� and bC inai = Æai Æ(1 � x) + O(�s). The fa
tor eib�pT in (5.16) regulatesthe logarithmi
 divergen
e of R d2pT f1(x; p2T ) by damping the integrand for large pT > 1=b.Alternatively one 
an 
ut o� the integral at pT = b0=b, sin
eZ d2pT eib�pT f1(x; p2T ; �; �) = Z d2pT ���2 � p2T � f1(x; p2T ; �; �) (5.17)up to 
orre
tions of order b2, as we will show in appendix B. We thus see that the relation(5.12) should be understood with a suitable regulator of the integral on the r.h.s. and asup to 
orre
tions of order �s. The same holds for (5.14), (5.15), and for similar integralrelations in the following. Let us remark that an extension of (5.16) to the full 
orrelationfun
tion � has not been given in the literature.As we will see in the next subse
tion, 
al
ulations at subleading power or those in-volving azimuthal asymmetries lead in the 
ollinear expansion to pT -weighted 
orrelationfun
tions ��[�℄� (x) = Z d2pT p�T �[�℄(x; pT ) ; (5.18)where the Lorentz index � is restri
ted to be transverse, and where the same remarksabout regularization apply as for (5.12). In 
ontrast to �(x), the 
orrelator ��[U ℄� (x) doesdepend on the 
hoi
e of Wilson lines in �[U ℄(x; pT ) and hen
e 
ontains both T -even andT -odd distributions. Omitting the supers
ript [U ℄ for the sake of legibility, we have thede
omposition��� (x) = �M2 �f?(1)1T ST����T n=+ � g(1)1T S�T 
5 n=++ h?(1)1L SL 
5�
�T ; n=+�2 + h?(1)1 i�
�T ; n=+�2 �+ M22P+ �: : :	 ; (5.19)where we have only displayed the terms of leading twist and de�ned p2T momentsf?(n)1T (x) = Z d2pT � p2T2M2�nf?1T (x; p2T ) ; (5.20)
{ 24 {



and similarly for the other fun
tions. The fun
tions f?(n)1T and h?(n)1 are T -odd and thus
hange sign when going from ��[+℄� (x) to ��[�℄� (x).The fa
tor p�T in (5.18) 
an be 
onverted into a derivative �� a
ting on the matrixelement that appears in the de�nition (5.3) of �(x; pT ). One 
an then express ��� (x)in terms of 
orrelators with either a gluon �eld or a 
ovariant derivative between theantiquark and quark �elds. The former is a 
ollinear quark-antiquark-gluon 
orrelationfun
tion, whereas the latter 
an be rewritten in terms of the quark-quark 
orrelator �(x)using the equation of motion for the quark �eld. In this way, the p2T moments given in(5.19) 
an be traded for fun
tions of twist three, up to twist-two distributions multipliedby the quark mass [14℄.The kT -integrated fragmentation 
orrelator for an unpolarized hadron has the de
om-position�(z) = z2 Z d2kT �(z; kT ) = 12D1 n=� + Mh2P�h �E +H i� n=�; n=+�2 � ; (5.21)where the fragmentation fun
tions on the r.h.s. depend on z. They are given byD1(z) = z2 Z d2kT D1(z; k2T ) ; (5.22)and similarly for the other fun
tions. Noti
e the fa
tor z2, whi
h appears be
ause D1(z; k2T )is a probability density w.r.t. the transverse momentum k0T = �zkT of the �nal-state hadronrelative to the fragmenting quark [11, 55℄. As already dis
ussed, time reversal invarian
edoes not 
onstrain fragmentation 
orrelators, so that H(z) 
an be nonzero unlike its distri-bution 
ounterpart h(x). For the kT -weighted 
orrelation fun
tion needed in 
al
ulationsat twist three and higher, we have��� (z) = z2 Z d2kT k�T �(z; kT ) = �Mh2 H?(1)1 i�
�T ; n=��2 + M2h2P�h �: : :	 (5.23)with H?(n)1 (z) = z2 Z d2kT � k2T2M2h�nH?1 (z; k2T ) ; (5.24)where again � is restri
ted to be transverse.5.3 Distribution and fragmentation fun
tions at high transverse momentumWe are now ready to derive the behavior of 
orrelation fun
tions at high transverse mo-mentum. We 
onsider the distribution 
orrelator �(x; pT ) for transverse momentum pTmu
h larger than the s
ale of nonperturbative intera
tions. The generation of the largetransverse momentum 
an be des
ribed in perturbation theory. Te
hni
ally, we approxi-mate �(x; pT ) in powers of 1=pT using a 
ollinear expansion that leads to the fa
torizationof the transverse momentum dependen
e. To derive a formal proof of fa
torization, onewould use the same te
hniques as for, say, the produ
tion of a high-pT jet in deep in-elasti
 s
attering. We shall not attempt this here, but limit ourselves to determining thepower-law behavior of the distribution fun
tions that parameterize �(x; pT ), using Lorentz{ 25 {
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Figure 3: Example diagrams for the 
al
ulation of the high-pT behavior of the quark-quark
orrelator �(x; pT ). The dashed lines represent the �nal-state 
ut.invarian
e and dimensional analysis as our main tools. The expli
it 
al
ulation in se
tion 8and the one for the Sivers fun
tion f?1T in [6,8℄ provide examples for the 
onsisten
y of the
ollinear fa
torization formalism at leading order in �s and to leading and �rst subleadingpower in 1=pT . One should, however, be aware that fa
torization might break down atsome higher-order or higher-power a

ura
y.The evaluation of �(x; pT ) at lowest order in 1=pT involves diagrams as in Fig. 3a,whereas at higher orders 
orrelators with three or more partons appear at the bottom ofthe graphs, as shown in Fig. 3b. To set up the power 
ounting, we generi
ally write p forthe hard s
ale and take p+; p�;pT � P+ � l+; l+1 ; l+2 � p ; (5.25)lT ; l1T ; l2T � M ; (5.26)P� � l�; l�1 ; l�2 � M2=p ; (5.27)where the mass M represents the soft s
ale. In (5.27) we have used that the loop momental, l1 and l2 are atta
hed to a soft fun
tion at the bottom of the graphs and thus have virtu-alities of order M2. Starting point of the 
al
ulation is the 
orrelation fun
tion dependingon the full four-momentum p,�[�℄ij (p) = Z d4�(2�)4 eip�� hP j � j(0)U�(0;�)  i(�)jP i ; (5.28)from whi
h we obtain �[�℄(x; pT ) = R dp��[�℄(p). We omit the supers
ript [�℄ for 
larityof notation in the next few steps, and will restore it when required later on. We restri
tourselves to the leading and �rst subleading order of �(x; pT ) in the 1=p expansion. To thisorder, the relevant fa
torized graphs 
an be written as the 
onvolution of hard-s
atteringkernels and 
orrelation fun
tions in the form�(x; pT ) = Z dp�d4l H(p; l)�(l) + Z dp�d4l1 d4l2 H�A(p; l1; l2)�A�(l1; l2)+ fterms with two- and three-gluon 
orrelatorsg+ : : : (5.29)with : : : representing terms of higher order in 1=p. It is understood that the hard-s
atteringkernels H(p; l) and H�A(p; l1; l2) in
lude Æ fun
tions putting the 
ut lines on shell|this{ 26 {




an readily be used to perform the integration over p�. The lower blob in Fig. 3b isparameterized by the quark-gluon-quark 
orrelator ��A, whi
h 
ontains the gluon potentialA� between the quark and antiquark �elds. The gluon polarization index � in (5.29) isrestri
ted to be transverse: the 
ontribution from A� gluons is power suppressed by atleast 1=p2, whereas the 
orresponding 
ontribution of A+ gluons ends up in the gauge linkof the quark-quark 
orrelator when the terms in the fa
torization formula are arranged ina gauge-invariant manner.We now expand the hard-s
attering kernels in the small momentum 
omponents (5.26)and (5.27). To the order we are 
onsidering, we 
an negle
t l�1 , l�2 and l1T , l2T inH�A(p; l1; l2), whereas in H(p; l) we 
an negle
t l� but must expand the lT -dependen
eup to �rst order. This givesZ dp�H(p; l) = 1p+ x̂H2(x̂; p+; pT ) + lT�p+ x̂H�3 (x̂; p+; pT ) + : : : ; (5.30)Z dp�H�A(p; l1; l2) = 1p+ x̂1x̂2H�A;3(x̂1; x̂2; p+; pT ) + : : : ; (5.31)where we have introdu
ed the plus-momentum fra
tionsx̂ = p+= l+ ; x̂1 = p+= l+1 ; x̂2 = p+= l+2 (5.32)and 
hosen prefa
tors su
h that H2, H�3 and H�A;3 are invariant under longitudinal boosts,i.e. under the res
aling (2.5) of n� and the 
orresponding 
hange of plus- and minus 
om-ponents. The 
onvolution (5.29) now takes the form�(x; pT )= Z dx̂̂x H2(x̂; p+; pT )Z dl� d2lT �(l) + Z dx̂̂x H�3 (x̂; p+; pT )Z dl� d2lT lT� �(l)+ p+ Z dx̂1x̂1 dx̂2x̂2 H�A;3(x̂1; x̂2; p+; pT )Z dl�1 dl�2 d2l1T d2l2T �A�(l1; l2)+ fterms with two- and three-gluon 
orrelatorsg+ : : : : (5.33)In the �rst two terms we re
ognize the 
ollinear quark-quark 
orrelators from (5.12) and(5.18), �(y) = Z dl�d2lT �(l) ; ��� (y) = Z dl�d2lT l�T �(l) (5.34)with y = l+=P+, whereas the third term involves a 
ollinear quark-gluon-quark 
orrelationfun
tion ��A(y1; y2) = Z dl�1 dl�2 d2l1T d2l2T ��A(l1; l2) (5.35)with y1 = l+1 =P+ and y2 = l+2 =P+. In order for these 
orrelators to be gauge invariantone must reshu�e 
ertain pie
es among the di�erent terms in (5.33), as shown for instan
ein [13℄. On the r.h.s. of (5.34) and (5.35) this implies subtra
tion of terms with the gluon{ 27 {



potential A� at light-
one in�nity, whi
h we have not displayed. One also �nds that takingthe gauge link U� in �[�℄(x; pT ) leads to the 
orresponding path-dependent 
orrelators��[�℄� (y) and ��[�℄A (y1; y2) = 1iP+ ��G(y1; y2)y1 � y2 � i� (5.36)in the fa
torization formula, where��G ij(y1; y2) = Z d��12� d��22� eil1��1 ei(l2�l1)��2� hP j � j(0)Un�(0;�2) gG+�(�2)Un�(�2;�1)  i(�1)jP i �����+1 =�+2 =0; �1T=�2T=0T (5.37)does not 
arry a supers
ript [�℄ be
ause, like �(y), it involves only Wilson lines of �nitelength along n�. We now de
ompose the 
orrelation fun
tions into terms of de�nite twist,�(y) = �2(y) + MP+ �3(y) + : : : ; ��� (y) =M ���;3(y) + : : : ;��A(y1; y2) = MP+ ��A;3(y1; y2) + : : : ; (5.38)where the prefa
tors are 
hosen su
h that �2, �3 and ��;3, �A;3 are dimensionless and in-dependent of P+. Under a longitudinal boost �3 is invariant, whereas the other 
orrelatorstransform like n+. Dimensional 
ounting readily gives H2 � 1=p2 and H3;HA;3 � 1=p3.Using p+ = xP+ and (5.32) we 
an then rewrite (5.33) as�(x; pT ) = Z dx̂̂x H2(x̂; p+; pT )�2� x̂x�+M �Z dx̂̂x H2(x̂; p+; pT )p+ x�3� x̂x�+ Z dx̂̂x H�3 (x̂; p+; pT )��;3�� x̂x�+ Z dx̂1x̂1 dx̂2x̂2 H�A;3(x̂1; x̂2; p+; pT ) x�A;3�� x̂x1 ; x̂x2��+ fterms with two- and three-gluon 
orrelatorsg+O�1=p4� ; (5.39)where the �rst term is of order 1=p2 and the terms with prefa
tor M are of order 1=p3.To obtain the high-pT behavior of the individual distribution fun
tions parameterizing�(x; pT ), we need to analyze the dependen
e of the hard-s
attering kernels on p+ and pT .The kernels 
arry four Dira
 indi
es, so that (5.39) expli
itly reads�ij(x; pT ) = Z dx̂̂x H2;ijkl(x̂; p+; pT )�2;kl� x̂x�+ : : : ; (5.40)and similarly for the terms of order 1=p3. We 
an de
ompose H2 asH2(x̂; p+; pT ) = 1p2T �Xmn �m 
 �n tmn(x̂; p+; pT ) +Xmn �m;� 
 �n;� t��mn(x̂; p+; pT )+ ������ t����(x̂; p+; pT )� (5.41)
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with �m 2 f1; 
5g and �m;� 2 f
�; 
�
5g, where the �rst matrix in the tensor produ
ts
arries Dira
 indi
es ik and the se
ond one indi
es jl. Only an even number of 
 matri
esappears in this de
omposition, i.e., no stru
tures like �m;� 
 �n or �m;� 
 �n;�� , whi
hre
e
ts that 
hirality is 
onserved in the hard s
attering kernel. The s
alars tmn and thetensors t��mn, t���� are dimensionless and invariant under longitudinal boosts, and thereforethey 
an be 
onstru
ted from g�� , �����, and the ve
torsp�TjpT j ; p+n�+jpT j ; jpT jn��p+ : (5.42)Sin
e the tensors have an even number of indi
es, the fa
tors jpT j 
ombine su
h thatH2(x̂; p+; pT ) depends only on integer powers of 1=p2T . The same is readily shown forthe kernels H�3 (x̂; p+; pT ) and H�A;3(x̂1; x̂2; p+; pT ), whi
h go like 1=p3 instead of 1=p2 butinvolve one more Lorentz index in the analog of the de
omposition (5.41). Analogousarguments 
an be given for the kernels 
onne
ted with two- or three-gluon 
orrelationfun
tions at the bottom of the graphs (whi
h have two instead of four Dira
 indi
es andtwo additional Lorentz indi
es for the ex
hanged gluons) and for the kernels that appearwhen �(x; pT ) is evaluated to order 1=p4 or higher.The upshot of this argument is that the distributions parameterizing the 
orrelator�(x; pT ) behave like integer powers of 1=p2T for p2T � M2. Together with the 
onstraintsfrom dimensional 
ounting and Lorentz invarian
e, this allows us to determine the leadingpower behavior of ea
h distribution. Mat
hing the dependen
e on p+, we �nd for instan
ethat terms on the r.h.s. of (5.39) 
ontribute to the twist-two and twist-three parts of�(x; pT ) = �2(x; pT ) + (M=P+)�3(x; pT ) + : : : as1p2T ! �2(x; pT ) ; p�Tp+ p2T ! x�3(x; pT ) ;Mp+p2T ! x�3(x; pT ) ; Mp�Tp4T ! �2(x; pT ) ; (5.43)where we have used that 1=P+ = x=p+. Comparing with the parameterization (5.4) of�(x; pT ) we see e.g. that f?1T (x; p2T ) and g1T (x; p2T ) de
rease as M2=p4T . If there had beenterms going like p�T =jpT j3 on the r.h.s. of (5.39), they would instead de
rease as M=jpT j3.A number of sele
tion rules spe
ify whi
h 
ollinear distributions 
an 
ontribute tothe high-pT behavior of a given pT -dependent distribution. Clearly, the dependen
e onthe target polarization must mat
h. Be
ause the hard s
attering 
onserves 
hirality, the
hirality of distributions must mat
h as well. Finally, we re
all that the 
orrelator �(x; pT )depends on the gauge link and 
ontains terms whi
h are even or odd under the ex
hange�[+℄(x; pT ) $ �[�℄(x; pT ). The T -odd terms in �[�℄� (y) and �[�℄A (y1; y2) thus 
ontributeto the T -odd distributions in �[�℄(x; pT ), and vi
e versa. The 
ollinear 
orrelator �(y)only 
ontains T -even terms, but it 
an 
ontribute to T -odd distributions in �[�℄(x; pT )through graphs with absorptive parts in the hard-s
attering subpro
ess, starting at order�2s. An example is shown in Fig. 4. Graphs involving the quark-gluon-quark 
orrelator(su
h as the one in Fig. 3b) have absorptive parts already at order �s, whi
h providesfurther 
ontributions to the T -odd part of �[�℄(x; pT ).{ 29 {



P
ΦFigure 4: Example of a diagram at order �2s, whose absorptive part gives rise to T -odd terms inthe quark-quark 
orrelator. The double line denotes an eikonal line originating from the gauge linkin �(x; pT ), as spe
i�ed in appendix A.With the time reversal properties given in table 1, we �nd that at order �s 
ollinearfun
tions denoted by letters f , g, e, h 
an only 
ontribute to the high-pT behavior ofdistributions denoted by the same letter. Putting everything together we �ndf1 � 1p2T �sF�f1� ; g1L � 1p2T �s F�g1� ; h1 � 1p2T �sF�h1� ;xf? � 1p2T �sF�f1� ; xg?L � 1p2T �s F�g1� ;xhT � 1p2T �sF�h1� ; xh?T � 1p2T �s F�h1� (5.44)from the 1=p2 part of �(x; pT ), andf?1T � M2p4T �sF�f?(1)1T ; : : :� ; g1T � M2p4T �sF�g(1)1T ; : : :� ;h?1L � M2p4T �sF�h?(1)1L ; : : :� ; h?1 � M2p4T �sF�h?(1)1 ; : : :� ;xf?T � M2p4T �sF�f?(1)1T ; : : :� ; xg?T � M2p4T �sF�g(1)1T ; : : :� ;xfT � 1p2T �sF�f?(1)1T ; : : :� ; xgT � 1p2T �s F�g(1)1T ; : : :� ;xhL � 1p2T �sF�h?(1)1L ; : : :� ; xh � 1p2T �s F�h?(1)1 ; : : :� ;xeL � 1p2T �sF�: : :� ; xe � 1p2T �s F�xe; : : :� (5.45)from the 1=p3 part of �(x; pT ). The distributions on the l.h.s. depend on x and pT , andon the right-hand side we have 
onvolutions of the formF�f� = Kq 
 fa +Kg 
 fg ; (5.46)where a is the quark or antiquark 
avor of the pT -dependent fun
tions on the l.h.s. of (5.44)or (5.45). We note that at higher orders in �s one has instead a sum over all quark andantiquark 
avors, as in (3.8). The 
ontribution from gluon distributions in (5.46) is absent{ 30 {



for 
hiral-odd distributions. The kernels Kq and Kg are of 
ourse not the same for thedi�erent fun
tions in (5.44) and (5.45), and we use F in a generi
 sense. We have expli
itly
al
ulated the hard-s
attering kernels H2 and H3 de�ned by (5.30) and veri�ed that theygive nonzero 
ontributions for the fun
tions given as arguments of F in (5.44) and (5.45).By : : : we have denoted 
ontributions from three-parton 
orrelation fun
tions. We havenot listed the twist-three distributions parameterizing �3(x) as arguments of F , be
ausethey 
an (up to quark mass suppressed terms) be related to the fun
tions in ��;3(x) andto quark-gluon-quark 
orrelation fun
tions, as we remarked after Eq. (5.20). An ex
eptionis e(x), whi
h has no 
ounterpart in ��;3(x). Furthermore, there is no distribution in �2or ��;3 that is multiplied by SL and both T -odd and 
hiral-odd. At order �s and 1=p3 thehigh-pT behavior of eL(x; p2T ) 
an hen
e only be generated from the �A;3 term in �(x; pT ).The relations in (5.44) only involve 
ollinear fun
tions of twist two and those in (5.45)only 
ollinear fun
tions of twist three, 
orresponding to the respe
tive order in the 1=pexpansion of the 
orrelation fun
tion �(x; pT ). On the other hand, there are pT -dependentfun
tions of twist two and twist three in both (5.44) and (5.45). In other words, the twistof the 
ollinear distributions and the pT -dependent distributions in the high-pT limit neednot be the same.By power 
ounting, the pT -dependent distributions f?L , g?, eT , e?T 
an re
eive a 
on-tribution from the 1=p2 part of �(x; pT ), but expli
it 
al
ulation at order �s gives a zeroresult. This readily follows from our dis
ussion above (5.44) be
ause these distributionsare T -odd. Their high-pT behavior therefore starts at order �2s=p2 and readsxf?L � 1p2T �2s F�g1� ; xg? � 1p2T �2s F�f1� ;xeT � 1p2T �2s F�h1� ; xe?T � 1p2T �2s F�h1� : (5.47)There will also be 
ontributions to these fun
tions from �(x; pT ) order �s=p4, where thene
essary T -odd e�e
ts 
an 
ome from lowest-order graphs with three- or four-parton 
or-relation fun
tions. By power 
ounting in 1=p, these 
ontributions are subleading 
omparedwith ones in (5.47), although they appear at lower order in the �s expansion. We omitthem in our subsequent dis
ussion, but they 
an easily be restored.Expli
it 
al
ulation also reveals that neither h?1T (x; pT ) nor the 
ombination hT (x; pT )+h?T (x; pT ) re
eives 
ontributions at order �s and 1=p2, although this would be allowed bypower 
ounting. We shall not investigate the reason of this here, and simply writeh?1T � M2p4T �2s F�h1� ; xhT + xh?T � 1p2T �2s F�h1� : (5.48)Again there will also be power suppressed 
ontributions at lower order in �s, whi
h golike �s=p6 for h?1T and like �s=p4 for hT + h?T . We 
aution that without a full 
al
ulationof the graphs with multi-parton 
orrelators we 
annot ex
lude that the 
ontributions tothe distributions given in (5.45) vanish when all terms are added up. A 
orresponding
aveat applies to the �2s 
ontributions in (5.47) and (5.48). For �(x; pT ) at order �s and1=p2 we give 
omplete and expli
it results in se
tion 8. As for the 1=p3 part of �(x; pT ),{ 31 {



the expli
it 
al
ulation in [6, 8℄ gives f?1T (x; p2T ) � (M2=p4T )�sF�GF ; eGF �, where F nowdenotes two-variable 
onvolutions of the formZ dx̂1x̂1 dx̂2x̂2 K(x̂1; x̂2)GF� x̂x1 ; x̂x2� : (5.49)Given that f?(1)[�℄1T (x) = ��2 GF (x; x), the stru
ture of our result for f?1T (x; p2T ) in (5.45)is hen
e 
onsistent with the full 
al
ulation.3At this point we brie
y return to the question of ultraviolet divergen
es in 
ollinear
orrelation fun
tions, whi
h we mentioned after (5.12). With the high-pT behavior givenin (5.44) and (5.45) one expli
itly sees that the integral R d2pT �(x; pT ) diverges loga-rithmi
ally at high pT , both for the twist-two and the twist-three part of �(x; pT ). The
orresponding ultraviolet subtra
tions in the 
ollinear 
orrelator �(x) result in a logarith-mi
 dependen
e on the subtra
tion s
ale � for all distributions in (5.13). This dependen
eis des
ribed by DGLAP equations, whose evolution kernels are 
losely related to the ker-nels appearing in the 
onvolutions of (5.44) and (5.45). With (5.45) one also �nds thatthe integral R d2pT p�T �2(x; pT ) diverges logarithmi
ally. This leads to DGLAP equationsfor the p2T moments of twist-two distributions in the parameterization (5.19) of ��(x),whi
h have been investigated in [57℄. In 
ontrast, the integral R d2pT p�T �3(x; pT ) divergesquadrati
ally in pT a

ording to (5.44) and (5.47). In a proper de�nition for p2T -momentsof twist-three distributions, su
h as f?(1)(x) or g?(1)(x), one would hen
e have to deal withpower-like divergen
es.In the dimensional analysis following (5.42) we have ignored that the hard-s
atteringkernels also depend on the regularization parameter �, whi
h is Lorentz invariant and hasmass dimension two. In appli
ations of low-qT fa
torization one needs � 
omparable to thelarge s
ale, as already mentioned in se
tion 3.1, so that we 
an restri
t our attention to� � p2T . Terms in the hard-s
attering kernels going with a positive power of p2T=� are thennegligible. In 
ontrast, terms with a positive power of �=p2T would lead to a faster p2T fallo�than derived in this se
tion. They would 
orrespond to power-like rapidity divergen
es in�(x; pT ). In the expli
it 
al
ulations at order 1=p2 in se
tion 8 we will not en
ounter su
hterms, obtaining only a modi�
ation of the power-laws in (5.44) by logarithms ln(�=p2T ).A 
orresponding statement holds for the 
al
ulation of f?1T (x; p2T ) in [6, 8℄.The high-kT behavior of the fragmentation 
orrelator �(z; kT ) 
an be obtained infull analogy to the 
ase of �(x; pT ). One 
an readily obtain results by 
rossing the hard-s
attering graphs 
al
ulated for the distribution fun
tions, repla
ing x! 1=z and pT ! kT .This gives D1 � 1k2T �sF�D1� ; D?z � 1k2T �sF�D1� ;H?1 � M2k4T �sF�H?(1)1 ; : : :� ; G?z � 1k2T �2s F�D1� ;3The relation between f?(1)1T and GF 
an be obtained by 
ombining (5.19) in the present work withEq. (2) in [43℄ and Eqs. (29), (40) in [13℄. Corresponding relations using di�erent parameterizations havebeen given in [56℄ and [5℄. { 32 {



Hz � 1k2T �sF�H?(1)1 ; : : :� ; Ez � 1k2T �sF�Ez ; : : :� : (5.50)Compared with their analogs (5.46), the 
onvolutionsF�D� = 1z2 hDa 
Kq +Dg 
Kgi (5.51)have an additional fa
tor 1=z2, whi
h re
e
ts the 
orresponding fa
tor in (5.21).5.4 Results for stru
ture fun
tionsLet us begin this se
tion by re
alling the expressions for SIDIS stru
ture fun
tions at lowqT in terms of transverse-momentum-dependent distribution and fragmentation fun
tions.Extending earlier work in [11, 12℄, the study [14℄ has given a 
omplete set of results atleading and �rst subleading order in 1=Q, i.e., at twist-two and twist-three a

ura
y. Adetailed investigation of 
olor gauge invarian
e and the appropriate 
hoi
e of gauge linkshas been given in [13℄. The 
al
ulations just quoted take into a

ount tree-level graphs,where gluons are restri
ted to be 
ollinear to the target or to the observed hadron h andonly appear when they are atta
hed to the distribution or fragmentation 
orrelators (seeFig. 2 in [14℄).For a 
ompa
t presentation of the results, we introdu
e the unit ve
tor ĥ = �qT =jqT jand the transverse-momentum 
onvolutionC�wfD� =Xa xe2a Z d2pT d2kT Æ(2)�pT �kT + qT �w(pT ;kT ) fa(x; p2T )Da(z; k2T ); (5.52)where w(pT ;kT ) is an arbitrary fun
tion and the sum runs over quarks and antiquarks.The results for the stru
ture fun
tions appearing in (2.3) then read [14℄FUU;T = C�f1D1�; (5.53)FUU;L = O�M2Q2 ; q2TQ2�; (5.54)F 
os�hUU = 2MQ C�� ĥ �kTMh �xhH?1 + MhM f1 ~D?z �� ĥ �pTM �xf?D1 + MhM h?1 ~Hz ��; (5.55)F 
os 2�hUU = C��2 �ĥ �kT � �ĥ �pT �� kT �pTMMh h?1 H?1 �; (5.56)F sin�hLU = 2MQ C�� ĥ �kTMh �xeH?1 + MhM f1 ~G?z �+ ĥ �pTM �xg?D1 + MhM h?1 ~Ez ��; (5.57)F sin�hUL = 2MQ C�� ĥ �kTMh �xhLH?1 +MhM g1L ~G?z �+ ĥ �pTM �xf?LD1 � MhM h?1L ~Hz ��; (5.58)F sin 2�hUL = C��2 �ĥ �kT � �ĥ �pT �� kT �pTMMh h?1LH?1 �; (5.59)
{ 33 {



FLL = C�g1LD1�; (5.60)F 
os�hLL = 2MQ C� ĥ �kTMh �xeLH?1 � MhM g1L ~D?z �� ĥ �pTM �xg?LD1 + MhM h?1L ~Ez ��; (5.61)
F sin(�h��S)UT;T = C�� ĥ �pTM f?1TD1�; (5.62)F sin(�h��S)UT;L = O�M2Q2 ; q2TQ2�; (5.63)F sin(�h+�S)UT = C�� ĥ �kTMh h1H?1 �; (5.64)F sin(3�h��S)UT = C�2 �ĥ �pT � �pT �kT �+ p2T �ĥ �kT �� 4 (ĥ �pT )2 (ĥ �kT )2M2Mh h?1TH?1 �; (5.65)F sin�SUT = 2MQ C��xfTD1 � MhM h1 ~Hz �� kT �pT2MMh ��xhTH?1 + MhM g1T ~G?z ���xh?TH?1 � MhM f?1T ~D?z ���; (5.66)F sin(2�h��S)UT = 2MQ C�2 (ĥ �pT )2 � p2T2M2 �xf?T D1 � MhM h?1T ~Hz �� 2 �ĥ �kT � �ĥ �pT �� kT �pT2MMh ��xhTH?1 + MhM g1T ~G?z �+�xh?TH?1 � MhM f?1T ~D?z ���; (5.67)F 
os(�h��S)LT = C� ĥ �pTM g1TD1�; (5.68)F 
os�SLT = 2MQ C���xgTD1 + MhM h1 ~Ez �+ kT �pT2MMh ��xeTH?1 � MhM g1T ~D?z �+�xe?TH?1 + MhM f?1T ~G?z ���; (5.69)F 
os(2�h��S)LT = 2MQ C��2 (ĥ �pT )2 � p2T2M2 �xg?TD1 + MhM h?1T ~Ez �+ 2 �ĥ �kT � �ĥ �pT �� kT �pT2MMh ��xeTH?1 � MhM g1T ~D?z ���xe?TH?1 + MhM f?1T ~G?z ���: (5.70)In the entries for FUU;L and F sin(�h��S)UT;L we have indi
ated that these stru
ture fun
tions
ome out to be zero when the 
al
ulation in
ludes only terms up to order 1=Q. The{ 34 {



fragmentation fun
tions with a tilde are given by~D?z = D?z �D1; (5.71)~G?z = G?z � mMh H?1 ; (5.72)~Ez = Ez � mMh D1; (5.73)~Hz = Hz + k2TM2h H?1 : (5.74)Using (5.50) and negle
ting the small 
ontributions proportional to the quark mass m, wereadily see that the behavior for kT �M is the same for 
orresponding fun
tions with andwithout a tilde.The tree-level 
al
ulations in [11,13,14℄ do not take into a

ount soft gluon ex
hange orvirtual 
orre
tions involving hard loops, so that the soft and hard fa
tors we en
ounteredin (3.3) and (3.22) do not appear in the 
onvolution (5.52). Detailed investigations offa
torization for SIDIS with measured qT have re
ently been given in [26, 36℄ and [27, 50℄,extending the seminal work of Collins and Soper [24℄. The fa
torization formulae dis
ussedin these papers have the form (3.22) and are valid at all orders in �s but restri
ted to theleading order in 1=Q. Although a number of subtle issues remain to be fully 
lari�ed [27℄, wewill use (3.22) in the following. Sin
e we aim at deriving expressions at lowest nonvanishingorder in �s, we 
an negle
t the hard fa
tor jHj2 = 1 + O(�s). The 
onvolution in (5.52)should then be extended toC�wfD� =Xa xe2a Z d2pT d2kT d2lT Æ(2)�pT � kT + lT + qT �� w(pT ;kT ) fa(x; p2T )Da(z; k2T )U(l2T ) : (5.75)At high transverse momentum lT � M the soft fa
tor behaves as U(l2T ) � �s=l2T , with a
oeÆ
ient we shall give in (8.51) below. Our normalization 
onvention isZ d2lT U(l2T ) = 1 +O(�s) ; (5.76)where it is understood that the integral must be suitably regularized at large lT .Whether Collins-Soper fa
torization 
an be extended to stru
ture fun
tions that areof order 1=Q is not known. We note that the study of 
olor gauge invarian
e in [13℄was limited to qT -integrated observables in this 
ase, and that a problem with twist-threefa
torization has been found in a spe
tator model 
al
ulation [15℄. In the following weadopt the working hypothesis that the twist-two fa
torization formula 
an simply be takenover at twist-three a

ura
y, using the 
onvolution (5.75) also for evaluating the high-qTbehavior of the 1=Q suppressed stru
ture fun
tions in (5.53) to (5.70). We will return tothis point at the end of se
tion 8.3.We now show how to 
al
ulate the high-qT behavior of the 
onvolution (5.75). Atorder �s, only one of the fa
tors f(x; p2T ), D(z; k2T ), U(l2T ) 
an be taken at high transverse{ 35 {



momentum. Let us �rst 
onsider the simple 
ase where w(pT ;kT ) = 1. In the region wherepT is large, we use the Æ fun
tion in (5.75) to perform the pT integral and approximatepT = kT � lT �qT � �qT in f(x; p2T ). The remaining integrals over kT and lT 
an then be
arried out independently. A

ording to (5.21) and our dis
ussion after (5.16), the integralover kT gives a 
ollinear fragmentation fun
tion, up to �s-
orre
tions that 
an be negle
tedto our a

ura
y. Likewise, the integral over lT gives unity up to �s-
orre
tions a

ordingto (5.76). Sin
e we are 
onsidering the region where kT and lT are small 
ompared with qTthe integrals over these momenta should be suitably 
ut o�, as is required for (5.21) and(5.76) to make sense. Repeating these arguments for the 
ases where kT or lT are large,we obtain Z d2pT d2kT d2lT Æ(2)�pT � kT + lT + qT � f(x; p2T )D(z; k2T )U(l2T )� f(x; q2T ) D(z)z2 + f(x)D(z; q2T ) + f(x) D(z)z2 U(q2T ) : (5.77)For nontrivial fun
tions w(pT ;kT ) the 
al
ulation is slightly more involved. Instead ofapproximating e.g. pT = kT � lT � qT � �qT , we need to Taylor expand the fun
tions ofpT around �qT . We take as an example the 
onvolution C��kT �pT �h?1 H?1 � appearing inF 
os 2�hUU and 
onsider the region where pT is large. We perform the integral over pT usingthe Æ fun
tion and obtainZ d2kT d2lT H?1 (z; k2T )U(l2T ) �k2T � kT � lT � kT �qT � h?1 �x; (kT � lT � qT )2 �� Z d2kT d2lT H?1 (z; k2T )U(l2T )� �k2T � kT � lT � kT �qT � �h?1 �x; q2T )� 2�kT �qT � lT �qT � ��q2T h?1 �x; q2T )�+ : : :� Z d2kT H?1 (z; k2T ) �k2T h?1 �x; q2T ) + 2�kT �qT �2 ��q2T h?1 �x; q2T )�+ : : := 2M2h H?(1)1 (z)z2 �h?1 �x; q2T ) + q2T ��q2T h?1 �x; q2T )�+ : : : (5.78)where both terms in square bra
kets behave as 1=q4T . The : : : represent 
ontributions fromthe regions where kT or lT is large, whi
h are of the same order in 1=qT .As we see in (5.47), (5.48), and (5.50), the leading power behavior of some distributionor fragmentation fun
tions 
omes with a fa
tor �2s. At this order, one must also take intoa

ount regions of integration in (5.75) where two out of the three momenta pT , kT , lT arelarge, but it turns out that these do not 
ontribute to the �2s terms given in the following.Using the high-transverse-momentum behavior in (5.44) to (5.48) and (5.50), we obtainFUU;T � 1q2T �sF�f1D1� ; (5.79)F 
os�hUU � 1QqT �sF�f1D1� ; (5.80)
{ 36 {



F 
os 2�hUU � M2q4T �sF�h?(1)1 H?(1)1 ; : : :� ; (5.81)F sin�hLU � 1QqT �2s F�f1D1� ; (5.82)F sin�hUL � 1QqT �2s F�g1D1� ; (5.83)F sin 2�hUL � M2q4T �sF�h?(1)1L H?(1)1 ; : : :� ; (5.84)FLL � 1q2T �sF�g1D1� ; (5.85)F 
os�hLL � 1QqT �sF�g1D1� ; (5.86)F sin(�h��S)UT;T � Mq3T �sF�f?(1)1T D1; : : :� ; (5.87)F sin(�h+�S)UT � Mq3T �sF�h1H?(1)1 ; : : :� ; (5.88)F sin(3�h��S)UT � Mq3T �2s F�h1H?(1)1 ; : : :� ; (5.89)F sin�SUT � MQq2T �sF�f?(1)1T D1; h1H?(1)1 ; : : :� ; (5.90)F sin(2�h��S)UT � MQq2T �sF�f?(1)1T D1; : : :� ; (5.91)F 
os(�h��S)LT � Mq3T �sF�g(1)1T D1; : : :� ; (5.92)F 
os �SLT � MQq2T �sF�g(1)1T D1; h1 Ez ; : : :� ; (5.93)F 
os(2�h��S)LT � MQq2T �sF�g(1)1T D1; : : :� : (5.94)Here either the parton distributions or the fragmentation fun
tions are 
onvoluted withkernels Ki or Li :F�fD� = 1z2 Xa;i e2a h�Ki 
 f i�(x)Da(z) + fa(x) �Di 
 Li�(z)i ; (5.95)where the sum runs over quarks and antiquarks for a and over quarks, antiquarks andgluons for i. As we will see in se
tion 8, these kernels 
ontain logarithms of Q=qT . Theirorigin is the dependen
e of f1(x; p2T ) or D1(z; k2T ) on � or �h, whi
h we ta
itly omittedin (5.75). When resummed to all orders in �s in the way we sket
hed in se
tion 3, theselogarithms 
an lead to a substantial modi�
ation of the power laws in (5.79) to (5.94).A numeri
al study of these e�e
ts on azimuthal asymmetries in Drell-Yan produ
tion hasbeen performed in [58℄.We note that for the 1=Q suppressed stru
ture fun
tions in (5.79) to (5.94), 
ontribu-tions from U(l2T ) taken at lT � �qT are power suppressed or have the same power behavior{ 37 {



as 
ontributions where either pT � �qT or kT � qT . For these stru
ture fun
tions, thepower behavior at high qT hen
e remains the same if we simply ignore the soft fa
tor andwork with the tree-level 
onvolution (5.52) instead of (5.75).6. Comparing results at intermediate qTWe 
an now 
ompare the results for the region M � qT � Q obtained in the low-qT
al
ulation of the previous se
tion with those obtained in the high-qT 
al
ulation. As wementioned in se
tion 4, not all stru
ture fun
tions have been 
al
ulated in the high-qTpi
ture. For the 
ases where results are available, we �ndFUU;T � 1q2T �sF�f1D1� ; (6.1)FUU;L � 1Q2 �sF�f1D1� ; (6.2)F 
os�hUU � 1QqT �sF�f1D1� ; (6.3)F 
os 2�hUU � 1Q2 �sF�f1D1� ; (6.4)F sin�SLU � 1QqT �2s F�f1D1� ; (6.5)FLL � 1q2T �sF�g1D1� ; (6.6)F 
os�hLL � 1QqT �sF�g1D1� ; (6.7)F sin(�h��S)UT;T � Mq3T �sF�GFD1; eGF D1�; (6.8)F sin(�h��S)UT;L � MQ2qT �sF�GFD1�; (6.9)F sin(�h+�S)UT � Mq3T �sF�h1 bEF �; (6.10)F sin(3�h��S)UT � MQ2qT �sF�GFD1; eGFD1�; (6.11)F sin�SUT � MQq2T �sF�GFD1; eGF D1; h1 bEF �; (6.12)F sin(2�h��S)UT � MQq2T �sF�GFD1; eGF D1�: (6.13)The symbol F in (6.1) to (6.7) has the same meaning as in (5.95), whereas for the termsinvolving the three-parton 
orrelation fun
tions GF and eGF we haveF�GD� = 1z2 Xa;i e2a h�Ki 
Gi�(x)Da(z) +Ga(x; x) �Di 
 Li�(z)i ; (6.14)where the two-variable 
onvolution �Ki
Gi�(x) is of the form (5.49). The terms involvingthe three-parton fragmentation fun
tion bEF in (6.10) and (6.12) are de�ned in analogy to(6.14). { 38 {



The results in (6.1) to (6.4) and (6.6) to (6.7) are dire
tly taken from our expressions(4.23) to (4.28), whereas the result for F sin�hLU in (6.5) has been extra
ted from the 
al
ula-tion in [45℄. The form of the FUT stru
ture fun
tions in (6.8) to (6.13) 
an be obtained bytaking the limit qT � Q of the results of Egu
hi et al. [43,44℄, with the 
aveats dis
ussed inse
tion 4. We note that the results of [43,44℄ also 
ontain terms involving the produ
t h1 bEFin F sin(�h��S)UT;T , as well as terms involving GFD1 or eGFD1 in F sin(�h+�S)UT . However, these
ontributions behave like M=(Q2 qT ) for qT � Q and are thus power suppressed 
omparedwith the terms given in (6.8) and (6.10).Let us �rst dis
uss the unpolarized stru
ture fun
tions. Comparing the high-qT results(6.1) to (6.4) with the low-qT results (5.79) to (5.81), we �nd that at intermediate qT thepower behavior of both FUU;T and F 
os�hUU agrees in the two 
al
ulations. We shall see inse
tion 8.3 that in the 
ase of FUU;T this agreement extends to the expli
it expression of thestru
ture fun
tion at order �s. By 
ontrast, the leading power behavior obtained for F 
os 2�hUUin the intermediate region is not the same in the low- and the high-qT 
al
ulations. In fa
t,the two results (6.4) and (5.81) des
ribe two di�erent physi
al me
hanisms, sin
e the low-qT
al
ulation involves 
hiral-odd distribution and fragmentation fun
tions, whereas the high-qT 
al
ulation involves 
hiral-even ones. Finally, the longitudinal stru
ture fun
tion FUU;Lonly appears at order 1=Q2 in the low-qT 
al
ulation and is hen
e beyond the a

ura
yof the results given in se
tion 5.4. We remark that it is far from 
lear whether small-qTfa
torization still holds at twist-four level, given that even the twist-three 
ase is not fullyunderstood.At this point we wish to dis
uss the 
al
ulation of the unpolarized stru
ture fun
tions atlow transverse momentum in the parton model [59℄, where intrinsi
 transverse momentumis in
luded in distribution and fragmentation fun
tions and the kinemati
s is taken su
hthat the quarks in the parton-level subpro
ess 
�q ! q are on shell. Using Eqs. (4) and(32) of [59℄ and expanding in 1=Q, we obtain FUU;T = C�f1D1� as in (5.53), whereas up torelative 
orre
tions in 1=Q the other unpolarized stru
ture fun
tions readF 
os�hUU = �2MQ C� ĥ �pTM f1D1� ;F 
os 2�hUU = 4M2Q2 C�2 (ĥ �pT )2 � p2T2M2 f1D1� ; FUU;L = 4M2Q2 C� p2TM2 f1D1� ; (6.15)with the tree-level 
onvolution C de�ned in (5.52). The modulations in 
os�h and 
os 2�hobtained in this 
al
ulation are often referred to as Cahn e�e
t [2, 3℄. Taking the limitqT � M of the expressions in (6.15) we �nd the same power behavior as in the high-qTexpressions (6.2) to (6.4). However, the high-qT behavior of (6.15) 
omes only from thehigh-pT tail of f1 but not from the high-kT tail of D1. It hen
e only involves terms ofthe form (Ki 
 f i1)Da1 , with the same kernels Ki for F 
os�hUU , F 
os 2�hUU , and FUU;L. Thisreadily implies that at intermediate qT the parton-model results (6.15) do not mat
h withthe expli
it results (4.24) to (4.26) of the high-qT 
al
ulation.We remark that the high-qT limit of the full twist-three result (5.55) for F 
os �hUU 
omes{ 39 {



from the 
hiral-even terms�2MQ C� ĥ �kTM f1 ~D?z + ĥ �pTM xf?D1� : (6.16)As observed in [14℄, this 
oin
ides with the parton model result (6.15) if one makes theWandzura-Wil
zek approximation, i.e., if one sets to zero the fun
tions ~D? = D? � zD1and x ~f? = xf? � f1, whi
h are related to quark-gluon-quark 
orrelation fun
tions by theequation of motion for the quark �eld. We will see in se
tion 8 that for qT � M thesefun
tions are in fa
t not negligible 
ompared with D1 and f1, so that the approximationsleading to (6.15) are not adequate in this limit. In a similar way, one may understand theparton model results for FUU;L and F 
os 2�hUU as part of the (unknown) 
omplete twist-fourexpression in a low-qT 
al
ulation. They have the 
orre
t power behavior to mat
h theresults (4.24) and (4.26) of the high-qT 
al
ulation, but do not reprodu
e all terms in theseresults. We note that F 
os 2�hUU has the form (1.6) dis
ussed in the introdu
tion. The termwith 
oeÆ
ient l2;4 is given by the low-qT result (5.81), the term with h2;4 by the high-qTexpression (4.26), whereas the parton-model result (6.15) 
ontributes to the subleadingterm l4;2 in the low-qT power 
ounting s
heme.Several phenomenologi
al analyses, for instan
e those in [60{64℄, have used the partonmodel expressions for the unpolarized stru
ture fun
tions together with the high-qT results(4.23) to (4.26). We point out that in these papers a Gaussian behavior f1(x; p2T ) /exp[�ap2T ℄ and D1(z; k2T ) / exp[�Ak2T ℄ is assumed for the distribution and fragmentationfun
tions appearing in the parton model 
al
ulation. Su
h an approa
h di�ers from theone taken in the present work, where the power-law behavior of f1(x; p2T ) and D1(z; k2T ) atlarge transverse momentum is retained and expli
itly 
al
ulated using perturbation theory.Turning now to polarized observables, we �nd that the stru
ture fun
tions FLL andF 
os �hLL have the same power behavior in the high- and low-qT 
al
ulations, as do theirunpolarized 
ounterparts FUU;T and F 
os �hUU . As in the unpolarized 
ase, we will see inse
tion 8.3 that FLL mat
hes exa
tly at order �s in the two 
al
ulations. Our low-qT result(5.82) for the T -odd stru
ture fun
tion F sin�SLU has the 
orre
t stru
ture to mat
h the limit(6.5) of the 
al
ulation at high qT and order �2s in [45℄. One may expe
t that our low-qTresult (5.83) for F sin�SUL would also mat
h with a high-qT 
al
ulation at the same order, butwere are not aware of su
h a 
al
ulation in the literature.For transverse polarization observables we 
ompare Eqs. (6.8) to (6.13) with (5.87) to(5.91) and see that four out of six stru
ture fun
tions have a mat
hing power behavior,namely F sin(�h��S)UT;T , F sin(�h+�S)UT , F sin�SUT , and F sin(2�h��S)UT . The distribution and fragmenta-tion fun
tions appearing in the respe
tive results are 
ompatible as well, given that f?(1)1T isrelated with GF and H?(1)1 with bEF . As already mentioned in se
tion 3.3, the expli
it low-and high-qT 
al
ulations of F sin(�h��S)UT;T in [7, 8℄ found exa
t mat
hing at order �s for thisobservable. Looking at the remaining two FUT stru
ture fun
tions, we see that F sin(�h��S)UT;Lis beyond the a

ura
y of the low-transverse-momentum results. This is just as for FUU;L,whi
h is the only other stru
ture fun
tion in (2.3) that involves purely longitudinal polar-ization of the virtual photon [14℄. The stru
ture fun
tion F sin(3�h��S)UT does not mat
h inthe low- and high-qT 
al
ulations. As in the 
ase of F 
os 2�hUU , the low-transverse-momentum{ 40 {



result involves 
hiral-odd fun
tions, whereas the high-transverse-momentum expression in-volves 
hiral-even ones. The low-qT result (5.89) for F sin(3�h��S)UT 
an potentially mat
h ahigh-transverse-momentum 
al
ulation at twist three and order �2s, and the high-qT result(6.11) 
ould mat
h with a low-qT 
al
ulation at twist four. Both types of 
al
ulation arebeyond the 
urrent state of the art.To the best of our knowledge, F 
os(�h��S)LT , F 
os �SLT and F 
os(2�h��S)LT have not been
omputed in the high-qT approa
h. From the overall fa
tor M in (5.92) to (5.94) we 
anonly 
on
lude that these low-qT results 
an potentially mat
h with those of a high-qT
al
ulation at twist-three a

ura
y.In table 2 we 
olle
t the results for the leading power behavior of all stru
ture fun
tionswe have dis
ussed. We noti
e that for several observables the twist of the low-qT and thehigh-qT 
al
ulation is not the same, whi
h is reminis
ent of a similar observation we madefor the high-pT behavior of distribution fun
tions in se
tion 5.3.6.1 Interpolating from low to high qTLet us now see how one 
an pra
ti
ally pro
eed when the leading terms in the low- and high-qT des
riptions of an observable do not mat
h in the intermediate region. As an examplewe take the unpolarized stru
ture fun
tion F 
os 2�hUU . We denote its low-qT approximationgiven in (5.56) by L
os 2�hUU , and its high-qT approximation (4.26) by H
os 2�hUU . Sin
e in theintermediate region the two expressions des
ribe distin
t 
ontributions to the 
ross se
tion,one may 
onsider to use F 
os 2�hUU � L
os 2�hUU +H
os 2�hUU (6.17)as an approximation for this observable. The quality of this approximation 
an be assessedfrom the power behavior of its terms in the di�erent regions:L
os 2�hUU � q2T=M4 for qT <�M ; (6.18)L
os 2�hUU �M2=q4T for qT �M ; (6.19)H
os 2�hUU � 1=Q2 for all qT ; (6.20)where the behavior in (6.18) re
e
ts that L
os 2�hUU must vanish like q2T for qT ! 0 due toangular momentum 
onservation [42℄. In the intermediate regionM � qT � Q both termsin (6.17) are required: together they give an approximation with relative 
orre
tions of orderM2=q2T or q2T=Q2. The relative weight of the two terms in this region is L
os 2�hUU =H
os 2�hUU �M2=q2T �Q2=q2T and thus varies from values above to values below 1. As an aside, let us
omment on the use of a transverse-momentum-dependen
e like h?1 (x; p2T ) / exp[�
p2T ℄and H?1 (z; k2T ) / exp[�Ck2T ℄, whi
h is often taken in phenomenologi
al analyses. Whereasat small transverse momentum a Gaussian behavior of distribution and fragmentationfun
tions is found to give a good des
ription of data in many situations, it misses theperturbative tails of these fun
tions. As a result it does not give a good approximationof F 
os 2�hUU at intermediate qT . For M � qT <� pMQ the 
ontribution (6.19) from theperturbative tails is a
tually dominant, and for pMQ <� qT � Q it is only suppressed
ompared with (6.20) by a fa
tor mu
h larger than M2=q2T .{ 41 {



low-qT 
al
ulation high-qT 
al
ulation leading powersobservable twist order power twist order power mat
hFUU;T 2 �s 1=q2T 2 �s 1=q2T yesFUU;L 4 2 �s 1=Q2F 
os �hUU 3 �s 1=(QqT ) 2 �s 1=(QqT ) yesF 
os 2�hUU 2 �s 1=q4T 2 �s 1=Q2 noF sin�hLU 3 �2s 1=(QqT ) 2 �2s 1=(QqT ) yesF sin�hUL 3 �2s 1=(QqT )F sin 2�hUL 2 �s 1=q4TFLL 2 �s 1=q2T 2 �s 1=q2T yesF 
os �hLL 3 �s 1=(QqT ) 2 �s 1=(QqT ) yesF sin(�h��S)UT;T 2 �s 1=q3T 3 �s 1=q3T yesF sin(�h��S)UT;L 4 3 �s 1=(Q2 qT )F sin(�h+�S)UT 2 �s 1=q3T 3 �s 1=q3T yesF sin(3�h��S)UT 2 �2s 1=q3T 3 �s 1=(Q2 qT ) noF sin�SUT 3 �s 1=(Qq2T ) 3 �s 1=(Qq2T ) yesF sin(2�h��S)UT 3 �s 1=(Qq2T ) 3 �s 1=(Qq2T ) yesF 
os(�h��S)LT 2 �s 1=q3TF 
os �SLT 3 �s 1=(Qq2T )F 
os(2�h��S)LT 3 �s 1=(Qq2T )Table 2: Leading power behavior of SIDIS stru
ture fun
tions in the intermediate region M �qT � Q, 
orresponding to the expansions in (1.2) and (1.4), respe
tively. Empty �elds indi
atethat no 
al
ulation is available. The spe
i�
ation of twist 4 for FUU;L and F sin(�h��S)UT;L re
e
ts thatthese observables are zero when 
al
ulated at twist-two and twist-three a

ura
y.For large qT � Q the ansatz (6.17) 
an be used as well: the low-qT 
al
ulation isnot valid in this region, but the term L
os 2�hUU is power suppressed by M2=Q2 
omparedwith the leading term H
os 2�hUU , whi
h itself provides an approximation of F 
os 2�hUU up toM2=Q2 
orre
tions. Adding L
os 2�hUU in this region hen
e does not spoil the a

ura
y ofthe des
ription. Likewise, the high-qT 
al
ulation is not justi�ed for qT � M , but in thisregion the term H
os 2�hUU is suppressed byM2=Q2 
ompared with the 
orre
t approximationL
os 2�hUU . However, one 
annot use (6.17) for qT ! 0 sin
e H
os 2�hUU does not vanish like q2T .To repair this, one may instead takeF 
os 2�hUU � L
os 2�hUU + �� q2TM2�H
os 2�hUU (6.21)with an interpolating fun
tion �(r) that satis�es �(r) � r for r ! 0 and �(r)� 1 � r�1 for{ 42 {



r � 1. A simple 
hoi
e is �(r) = r=(1 + r), but obviously there are other possibilities.An often 
onsidered observable is the azimuthal asymmetryA
os 2�hUU = "F 
os 2�hUUFUU;T + "FUU;L : (6.22)Depending on qT we 
an approximate its denominator using the high-qT expressionHUU;T+"HUU;L from (4.23) and (4.24) or the low-qT result LUU;T given in (5.53). Sin
e FUU;L issuppressed by 1=Q2 for qT � Q, we do not need the unknown low-qT expression for thisstru
ture fun
tion. Using LUU;T � 1=M2 for qT <�M ; (6.23)LUU;T � 1=q2T for qT �M ; (6.24)HUU;T + "HUU;L � 1=q2T for all qT (6.25)together with (6.18) to (6.20), we �nd thatA
os 2�hUU � "L
os 2�hUULUU;T + "H
os 2�hUUHUU;T + "HUU;L (6.26)gives a good approximation of the asymmetry in the full qT range. In the intermedi-ate region, the denominators of the two terms in (6.26) 
oin
ide up to terms of orderM2=q2T or q2T =Q2 and approximate FUU;T + "FUU;L with that pre
ision. As dis
ussedabove, both the low-qT and the high-qT 
ontributions are important in the intermediateregionM � qT � Q (where again one �nds that with a Gaussian ansatz for the transverse-momentum-dependen
e of distribution and fragmentation fun
tions, the low-qT term wouldnot be 
orre
tly des
ribed). For qT � Q the low-qT term is power suppressed and mayhen
e be kept in (6.26). For qT <�M , the high-qT term in the asymmetry is suppressedby a relative fa
tor of M2=Q2 
ompared with the low-qT term and does not degrade thequality of the approximation (6.26) in the limit qT ! 0. An additional suppression fa
toras in (6.21) is therefore not required. Re
alling the dis
ussion after Eq. (4.33), we 
anunderstand why "H
os 2�hUU =(HUU;T + "HUU;L) has the 
orre
t qT ! 0 limit required byangular momentum 
onservation: the propagator fa
tors 1=q2T that lead to an unphysi
albehavior of the individual stru
ture fun
tions 
an
el in this ratio.Let us �nally remark that the dis
ussion in this subse
tion is at the level of power
ounting arguments. When using (6.21) or (6.26) in pra
ti
e, one 
an expli
itly 
he
kwhether the terms that are out of their region of validity (the L terms for qT � Q and theH terms for qT <�M) are numeri
ally small 
ompared with the leading ones.7. Integrating over qT7.1 Behavior of integrated and weighted observablesUp to now we have fo
used on the qT -dependen
e of the stru
ture fun
tions F (Q; qT ).As we mentioned in the introdu
tion, observables that are integrated over qT , with or{ 43 {



without a weighting fa
tor (qT =M)p, 
an be preferable to observables di�erential in qT forexperimental reasons. Without dwelling on su
h pra
ti
al issues, we now use our results ofthe previous se
tions for dis
ussing the theoreti
al interpretation of integrated observables.As a shorthand notation we introdu
eDD�qTM �pF (Q; qT )EE = �z2 Z q2max0 dq2T �qTM �pF (Q; qT ) ; (7.1)where qmax is the upper kinemati
 limit of qT , to be treated as a quantity of order Q in thepower 
ounting. The prefa
tor has been 
hosen for later 
onvenien
e|note that �z2dq2T
orresponds to d2Ph?.To make the notion of \intermediate transverse momentum" more pre
ise, we introdu
etwo s
ales �M2 and 
Q2 su
h that � � 1, 
 � 1, and �M2 < 
Q2. In the intermediateregion �M2 < q2T < 
Q2 the results of both the low-qT and the high-qT 
al
ulationsare then valid, and one 
an use their respe
tive limiting expressions given in se
tions 5.4and 6. It is easy to determine the power-law behavior of the 
ontributions from the regionsq2T < �M2 and q2T > 
Q2 to an integrated observable. For a single term in the generallow-qT and high-qT expansions (1.1) and (1.3), we obtain1M2 Z �M20 dq2T �qTM �p �qTQ �n�2ln�MqT � � �MQ �n�2 ; (7.2)1M2 Z q2max
Q2 dq2T �qTM �p �MqT �nhn�qTQ � � �MQ �n�2�p (7.3)from straightforward dimensional analysis. The Q-dependen
e of the integrals 
an thusbe established without knowledge of the fun
tions ln(qT =M) and hn(qT =Q): it is dire
tlydetermined by the twist n in the low-qT 
ase (7.2), and by the twist n and the weightingpower p in the high-qT 
ase (7.3). We observe in parti
ular that for p = 0, i.e. withoutweighting, the twist-two terms in both the low- and high-qT 
al
ulations give 
ontributionsto the integral that stay 
onstant for Q ! 1, whereas higher-twist terms die out in thatlimit. For p > 0 the 
ontribution from the high-qT region is enhan
ed: a twist-two term inthe low-qT 
al
ulation will then only dominate the integral over all qT if for the observablein question a suÆ
ient number of terms with low twist in the high-qT result are zero.As a preparation for the dis
ussion of azimuthal and polarization asymmetries let us�rst take a 
loser look at the familiar stru
ture fun
tions FUU;T and FUU;L. With thebehavior FUU;T � 1=q2T in the intermediate region (obtained in both the low- and high-qT
al
ulations), we obtain Z 
Q2�M2 dq2T FUU;T � ln�
� Q2M2� : (7.4)For the integral in the low-qT domain q2T < �M2 we have the generi
 power-law behaviorgiven in (7.2) with n = 2 and p = 0. Using in addition that FUU;T � 1=q2T at the upperend of the integration region, we haveZ �M20 dq2T FUU;T � ln ��0 (7.5)
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with some number �0 � 1. Likewise, we 
an use that FUU;T � 1=q2T at the lower end ofthe integration region in the high-qT domain q2T > 
Q2, and getZ q2max
Q2 dq2T FUU;T � ln 
0
 (7.6)with some 
0 � 1. In the 
omplete integral hhFUU;T ii all three regions in (7.4) to (7.6)thus 
ontribute at leading power in 1=Q, and the dependen
e on the arti�
ial separationparameters � and 
 
an
els as it should. We note that, sin
e we are 
on
erned with powerbehavior in this se
tion, we have not taken into a

ount logarithms of Q=qT in the high- orlow-qT results for FUU;T , whi
h would modify the logarithms on the r.h.s. of (7.4) to (7.6).To 
al
ulate the integrated stru
ture fun
tion one must not double 
ount the 
ontribu-tions from the low-qT and high-qT 
al
ulations in the intermediate region. Sin
e the resultsof the two 
al
ulations 
oin
ide there, one may simply swit
h from one to the other des
rip-tion at a suitable point, say at q2T = 
Q2. We 
an now make 
onta
t with the standarddes
ription of qT -integrated SIDIS in the 
ollinear fa
torization framework, where hhFUU;T iiis expressed in terms of the 
ollinear fun
tions f1(x) and D1(z). Let us in this frameworktake �2 = 
Q2 for the fa
torization s
ale and 
onsider the Born graph as well as the realand virtual �s-
orre
tions, i.e., the one-loop graphs where a gluon either does or does not
ross the �nal-state 
ut. Loosely speaking, the Born term then 
orresponds to the sumof (7.4) and (7.5), and the real 
orre
tions to (7.6). The virtual 
orre
tions 
orrespond tothe hard fa
tor jHj2 in the Collins-Soper fa
torization formula (3.3), whi
h we negle
ted inse
tion 5.3 when extra
ting results at lowest order in �s. The logarithm of 
Q2 in (7.4) 
or-responds to the s
ale dependen
e of the 
ollinear distribution and fragmentation fun
tions,whereas the 
-dependen
e in (7.6) 
orresponds to an expli
it logarithm ln(Q2=�2) in thereal 
orre
tions. At the te
hni
al level, however, 
ollinear fa
torization is typi
ally imple-mented by using dimensional regularization instead of a transverse-momentum 
uto�. Thereal 
orre
tions are then integrated down to qT = 0, whereas 
ollinear distribution and frag-mentation fun
tions are de�ned from integrals R d2�"pT f1(x; p2T ) and R d2�"kT D1(x; k2T )over the full transverse-momentum region. Subtra
tions de�ned for instan
e by the MSpres
ription are then performed, whi
h on one hand ensure that there is no double 
ount-ing and on the other hand remove terms 
orresponding to logarithmi
 divergen
es in thephysi
al limit "! 0. Sin
e the in
oming and outgoing parton momenta are approximatedas 
ollinear to the asso
iated hadron momenta, the Born term and the virtual 
orre
tionsappear with a fa
tor Æ(2)(qT ) in the 
al
ulation.For the longitudinal stru
ture fun
tion FUU;L the situation is quite di�erent. Usingthe same pro
edure as for FUU;T we obtainZ 
Q2�M2 dq2T FUU;L � 
�1� �M2
Q2 � � 
 ; (7.7)Z q2max
Q2 dq2T FUU;L � 
0 � 
 � 1 (7.8)from the result (6.2) of the high-qT 
al
ulation. For the se
ond step in (7.7) we have as-sumed that (�M2)=(
Q2) is suÆ
iently small 
ompared to 1|otherwise the 
orresponding{ 45 {



integral be
omes small simply be
ause its integration region shrinks to zero. After these
ond step in (7.8), the dependen
e on 
 no longer expli
itly 
an
els in the sum of the twointegrals, but this leads to no in
onsisten
y be
ause (7.7) is negligible 
ompared with (7.8).One easily sees that the parton-model approximation (6.15), whose power behavior agreeswith the high-qT result in the intermediate region, gives a result suppressed as M2=Q2when integrated over the low-qT domain q2T < �M2. We thus �nd that the integratedstru
ture fun
tion hhFUU;L ii is dominated by large qT � Q and 
an be 
al
ulated from thehigh-qT result alone. Moreover, one 
an integrate this result down to qT = 0, sin
e the
ontribution from q2T < �M2 is power suppressed by M2=Q2 and thus of the same order asthe a

ura
y of the result in the high-qT region. Put di�erently, one 
an use the high-qTresult extrapolated to q2T < �M2 instead of the (unknown) low-qT result when evaluatingthe integrated longitudinal stru
ture fun
tion. This is just what is done in the standard
al
ulation using 
ollinear fa
torization, where the �rst nonvanishing 
ontribution to thisobservable starts at order �s. The integration over all qT of the high-qT expression forFUU;L is 
onvergent and simply removes the Æ fun
tion in the analog of (4.4). No subtra
-tion is ne
essary, and 
orrespondingly no dependen
e on the fa
torization s
ale � arises atorder �s.Let us now turn to the stru
ture fun
tions that des
ribe the �h-dependen
e of the un-polarized 
ross se
tion. In table 3 we see that the integrated stru
ture fun
tion hhF 
os �hUU iiis dominated by large transverse momenta qT , whereas the region where the low-qT 
al-
ulation is valid 
ontributes only as a power 
orre
tion of order M=Q. The 
ondition(�M2)=(
Q2) < 1 implies p�M=Q < p
 � 1, so that the fa
tor p� 
annot 
ompen-sate the suppression by M=Q. An important 
onsequen
e is that hhF 
os�hUU ii is not a goodobservable to study the transverse-momentum-dependent distribution and fragmentationfun
tions appearing in the low-qT result (5.55). An appropriate observable for this purposeis the stru
ture fun
tion di�erential in qT . If integration over qT is required by statisti
s,one should impose a suitable upper 
uto� on the integral. A

ording to table 3, the depen-den
e of the integral on this 
uto� is not negligible and must hen
e expli
itly be kept in thetheoreti
al 
al
ulation. Note that in order not to introdu
e an arti�
ial �h-dependen
e, the
uto� should be imposed on q2T , or equivalently on P 2h?, but not on a transverse momentumw.r.t. the lepton beam axis.Integrated observables whi
h are weighted with a suitable power of qT=M have thedesirable property that the transverse-momentum 
onvolutions (5.52) in the low-qT resultsfa
torize into separate integrals over either distribution or fragmentation fun
tions [12,65℄.With ĥ = �qT =qT one readily �nds from (5.55) that R dq2T (qT =M)F 
os�hUU formally fa
-torizes into terms involving the p2T -moments f?(1)(x) and h?(1)1 (x) and 
orresponding k2T -moments of fragmentation fun
tions. However, this de
onvolution only takes pla
e if oneintegrates over all qT up to in�nity. This is 
learly inadequate be
ause (qT =M)F 
os�hUU be-
omes 
onstant for qT � M . A re
e
tion of this is the fa
t that the p2T -moment f?(1)(x)involves a quadrati
 divergen
e at large pT , as we already noted in se
tion 5.3. Moreover,we see in table 3 that the 
ontribution from the low-qT region to hh(qT =M)F 
os�hUU ii is powersuppressed by M2=Q2 
ompared with the 
ontribution from qT � Q, so that this observ-able is even less well suited to study small qT than the unweighted stru
ture fun
tion.{ 46 {



low qT intermediate qT high qTf(qT ) �M2Z0 dq2T f(qT ) 
Q2Z�M2 dq2T f(qT ) q2maxZ
Q2 dq2T f(qT )FUU;T ln� ln�
� Q2M2� ln 1
FUU;L M2Q2 � 
 1F 
os�hUU MQ p� p
 1qTM F 
os�hUU MQ � 
 QM QMF 
os 2�hUU (low qT ) 1 1�(high qT ) 
 1q2TM2 F 
os 2�hUU (low qT ) ln� ln�
� Q2M2�(high qT ) 
2 Q2M2 Q2M2F sin(�h��S)UT;T , F sin(�h+�S)UT 1 1p� 1p
 MQqTM F sin(�h��S)UT;T , qTM F sin(�h+�S)UT ln� ln�
� Q2M2� ln 1
F sin�SUT , F sin(2�h��S)UT MQ ln� MQ ln�
� Q2M2 � MQ ln 1
q2TM2 F sin�SUT , q2TM2 F sin(2�h��S)UT MQ � 
 QM QMTable 3: Behavior of sele
ted observables integrated over di�erent regions of q2T . It is assumed that�� 1, 
 � 1 and that (�M2)=(
Q2) is suÆ
iently small 
ompared to 1. In 
ases where the low-qTand high-qT 
al
ulations do not mat
h in the intermediate region, their respe
tive 
ontributions aregiven in separate rows. The low-qT entry for FUU;L 
orresponds to the parton-model approximationin (6.15).Conversely, the weighted stru
ture fun
tion is a good observable for studying large qT . Thehigh-qT expression for F 
os�hUU depends on the same 
ollinear fun
tions f1(x) and D1(z) asFUU;T but involves di�erent hard-s
attering kernels, so that F 
os�hUU provides an additionalobservable if one aims, for instan
e, at separating the fragmentation fun
tions for di�erentquark and antiquark 
avors and the gluon, or at testing the adequa
y of the theoreti
aldes
ription. Up to 
orre
tions of order M2=Q2 one 
an evaluate hh(qT =M)F 
os �hUU ii from{ 47 {



the high-qT result alone, whi
h in addition may be integrated down to qT = 0. One thenobtains a simple expression, just as in the analogous 
ase of hhFUU;L ii. The unweightedintegral hhF 
os �hUU ii is less attra
tive for studying the high-qT result sin
e the 
ontributionfrom the low-qT region is only suppressed byM=Q. To evaluate that 
ontribution is diÆ
ultin pra
ti
e as it 
ontains transverse-momentum-dependent distribution and fragmentationfun
tions that are poorly known. If the weighted integral and the di�erential stru
turefun
tion are a�e
ted with large experimental un
ertainties, one may instead have to 
on-sider the integral of F 
os �hUU with a lower 
uto� on qT . This was for instan
e done in [17℄and [62, 66℄.As dis
ussed in the previous se
tion, the stru
ture fun
tion F 
os 2�hUU re
eives 
ontribu-tions from the low-qT and high-qT 
al
ulations whi
h do not mat
h in the intermediateregion and have distin
t dynami
al origins, given that they respe
tively involve 
hiral-odd and 
hiral-even distribution and fragmentation fun
tions. As we see in table 3, bothme
hanisms 
ontribute to the integrated stru
ture fun
tion at leading power, with onlymoderate 
ontributions from intermediate qT . For 
al
ulating the integrated stru
turefun
tion it is appropriate to add the 
ontributions from the two me
hanisms. Further-more, it is 
onsistent to perform the qT -integral over the entire kinemati
al region for bothme
hanisms, i.e. without introdu
ing 
uto� parameters, given that 
ontributions from re-gions where the approa
hes are not valid (low qT for the high-qT 
al
ulation and vi
e versa)are power-suppressed by M2=Q2. This is similar to the 
ase of the interpolation formula(6.17) dis
ussed in the previous subse
tion, but for the integrated stru
ture fun
tion theunphysi
al behavior of the high-qT result in the limit qT ! 0 does not matter, at least atthe level of power 
ounting. The weighted stru
ture fun
tion hh(qT =M)2F 
os 2�hUU ii has beenproposed for obtaining a low-qT result in terms of the moments h?(1)1 (x) andH?(1)1 (z) of theBoer-Mulders and the Collins fun
tions, without any 
onvolution of transverse-momentum-dependent fa
tors [12℄. A

ording to table 3 this observable is, however, dominated byqT � Q and only sensitive to h?(1)1 (x) and H?(1)1 (z) at the level of M2=Q2 
orre
tions.Su
h 
ontributions are not under 
ontrol in the integrated observable, be
ause un
al
u-lated 
orre
tions of the same size appear in the high-qT region as well. Negle
ting M2=Q2
orre
tions, one 
an evaluate hh(qT =M)2F 
os 2�hUU ii as an integral of the high-qT expressionover the full qT domain. In the same way as hh(qT =M)F 
os �hUU ii, this provides an indepen-dent observable sensitive to the twist-two fun
tions f1(x) and D1(z).7.2 Polarization dependen
eAmong the many observables for polarized SIDIS, the stru
ture fun
tions F sin(�h��S)UT;T andF sin(�h+�S)UT have re
eived parti
ular attention in the re
ent literature. A

ording to thelow-qT results (5.62) and (5.64), they provide a

ess to the Sivers fun
tion f?1T in the�rst and to the transversity distribution h1 and the Collins fun
tion H?1 in the se
ond
ase [67℄. Both stru
ture fun
tions have been found to be of signi�
ant size in HERMESmeasurements on a proton target [20℄.As we see in table 3, the integrated stru
ture fun
tion hhF sin(�h��S)UT;T ii is dominatedby the low-qT region and 
an hen
e be used for extra
ting information about f?1T (x; p2T ).The high-qT region is however only suppressed by M=Q, so that it may be of advantage to{ 48 {



impose an upper 
uto� on the qT integral in su
h analysis. The weighted stru
ture fun
tionhh(qT =M)F sin(�h��S)UT;T ii re
eives 
ontributions from both high and low qT at leading orderin M=Q. One 
an thus 
ompute the weighted integral by swit
hing from one to the otherformulation at some qT . To a
hieve a fa
torization of the transverse-momentum 
onvolutionin the low-qT expression, one should however integrate it over all qT up to in�nity. Sin
e(qT =M)F sin(�h��S)UT;T behaves as 1=q2T for qT �M , a suitable regularization is required. Thissuggests a pro
edure akin to the des
ription of hhFUU;T ii in 
ollinear fa
torization, whi
hwe reviewed in the previous subse
tion. As dimensional regularization preserves rotationinvarian
e in the transverse plane, the integral over all qT of the weighted low-qT result(5.62) turns into the produ
thh(qT =M)F sin(�h��S)UT;T ii = �2Xa xe2a fa?(1)1T (x;Q)Da1 (z;Q) (7.9)of 
ollinear fun
tions de�ned in the MS s
heme. One 
an trade f?(1)1T (x) for the twist-threefun
tion GF (x; x), whi
h appears in the high-qT 
al
ulation [7,8,44℄. In order to integratethe high-qT result down to qT = 0, one must extend it to 4� " dimensions and perform thene
essary MS subtra
tions. Adding graphs with virtual 
orre
tions to the hard-s
atteringsubpro
ess (whi
h give the hard fa
tor jHj2 in the Collins-Soper formalism) one will obtaina 
omplete NLO result in �s. Su
h a pro
edure would be the analog of a standard NLO
omputation for integrated observables within 
ollinear fa
torization at twist-two level.Note that (7.9) gives a 
onsistent approximation of the weighted stru
ture fun
tion at LOin �s, in analogy to the well-known tree-level expression hhFUU;T ii =Pa xe2a fa1 (x)Da1(z).The fa
torization s
ale � of the fun
tions in (7.9) has been set to Q in order to avoid largelogarithms of Q=� appearing in the �s-
orre
tions. To leading order, the logarithmi
 Qdependen
e of the weighted stru
ture fun
tion then follows from the evolution equationsfor D1(z) and f?(1)1T (x). The latter have been investigated in [57℄.The situation for the stru
ture fun
tion F sin(�h+�S)UT is the same as for F sin(�h��S)UT;T sin
ethe power behavior of these observables 
oin
ides in both the low- and high-qT 
al
ulations.The evaluation of the weighted stru
ture fun
tion in 
ollinear fa
torization giveshh(qT =Mh)F sin(�h+�S)UT ii = 2Xa xe2a ha1(x;Q)Ha?(1)1 (z;Q) (7.10)for the Born term. The k2T -moment H?(1)1 (z) is related to the twist-three fragmentationfun
tion bEF appearing at order �s. We note that a

ording to the high-qT results in [43,44℄the �s-
orre
tions to both (7.9) and (7.10) involve ea
h of the twist-three fun
tions GF ,eGF , and bEF .A

ording to table 3, the integrated stru
ture fun
tions hhF sin�SUT ii and hhF sin(2�h��S)UT iire
eive 
omparable 
ontributions from all regions of qT . Weighting the stru
ture fun
tionswith (qT =M)2 one obtains integrals that 
an be evaluated in the high-qT formalism upto 
orre
tions of order M2=Q2, similarly to the 
ase of hh(qT =M)F 
os �hUU ii we dis
ussedin the previous subse
tion. The high-qT expressions 
omputed in [43, 44℄ imply thathh(qT =M)2F sin(2�h��S)UT ii is sensitive to GF and eGF , whereas hh(qT =M)2F sin�SUT ii also de-pends on bEF . Whether these observables are large enough to be measured in pra
ti
e is,of 
ourse, a di�erent question. { 49 {



From (5.89) we 
an infer that the integral of F sin(3�h��S)UT re
eives a 
ontribution oforder 1 from low qT , whereas the high-qT result (6.11) is suppressed by M=Q. A

ordingto (5.65) the integrated stru
ture fun
tion hhF sin(3�h��S)UT ii may hen
e be used to extra
tinformation on h?1T (x; pT ) and on the Collins fragmentation fun
tion, with the same 
aveatwe dis
ussed for hhF sin(�h��S)UT;T ii. To obtain an integral that is dominated by the high-qTresult up to M2=Q2 
orre
tions, one must weight F sin(3�h��S)UT with (qT =M)3.Let us now turn to observables that involve longitudinal polarization. Similarly toF 
os �hUU , the lepton-heli
ity-dependent stru
ture fun
tion F sin�hLU for an unpolarized targetre
eives a 
ontribution of order M=Q from low qT and of order unity from high qT . It istherefore in prin
iple suitable for investigating the high-qT result of Hagiwara et al. [45℄.However, the 
ontribution from large qT 
omes with a fa
tor �2s in this 
ase, whi
h may notbe suÆ
ient for negle
ting power-suppressed 
ontributions from low qT in pra
ti
e. Fromthis point of view, it would be advantageous to weight the stru
ture fun
tion with qT=M ,or to integrate over qT starting from a lower 
uto�.Finally, the stru
ture fun
tions FLL and F 
os �hLL have the same power behavior as theirunpolarized 
ounterparts FUU;T and F 
os �hUU , and their dis
ussion is analogous to the onein the previous subse
tion. In parti
ular, the weighted integral hh(qT =M)F 
os �hLL ii dependson the polarized parton densities g1 and, if measurable with suÆ
ient a

ura
y, 
ould beused in addition to the well-known observable hhFLL ii for disentangling the 
ontributionsfrom di�erent quark and antiquark 
avors and from the gluon.8. From low to intermediate qT : expli
it 
al
ulationIn this se
tion we 
ompute the high-transverse-momentum tails of the quark distributionsin (5.44) and of the analogous fragmentation fun
tions. These are the fun
tions whi
happear at lowest order in the 1=pT expansion of se
tion 5.3 and are hen
e expressed interms of 
ollinear fun
tions of twist two. While in se
tion 6 we identi�ed observableswhose power behavior agrees in the low- and high-qT 
al
ulations, we will then be ableto 
he
k for sele
ted stru
ture fun
tions whether agreement is also found for their expli
itexpressions.8.1 High-pT tails of distribution fun
tionsLet us begin with the quark distribution fun
tions. We work in the original s
heme ofCollins and Soper [24℄, using a spa
elike axial gauge with the singularities of the gluonpropagator regulated by the prin
ipal value pres
ription. The only Feynman diagramsto be evaluated are then those depi
ted in Fig. 5a and b. For further dis
ussion and a
omparison with the 
al
ulation in Feynman gauge, we refer to appendix A.The 
ontribution of the quark-to-quark term shown in Fig. 5a reads�q(x; pT ) ���(5a) = 4��s(2�)3 CF Z dp� Z dl+ Æ�(l � p)2� �(l+ � p+)� d��(l � p; v) p=p2 
��q2� x̂x�
� p=p2 ����� l�=0; lT=0T ; (8.1)
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µνFigure 5: Diagrams for the 
al
ulation of the leading high-pT behavior of the quark-quark
orrelator �(x; pT ) in axial gauge A � v = 0.where it is understood that p+ = xP+ and l+ = p+=x̂. As explained in se
tion 5.3, therestri
tion to leading order in 1=pT allows us to set l� and lT to zero when 
al
ulating thehard-s
attering subpro
ess, and to retain only the twist-two part �q2(x=x̂) of the 
ollinearquark-quark 
orrelator at the bottom of the graph. The gluon polarization sum in A �v = 0gauge is given by d��(q; v) = �g�� + q�v� + q�v�q �v � q�q�(q �v)2 v2 ; (8.2)where the singularities at q �v = 0 are to be regulated by the prin
ipal value pres
ription.Using the Æ-fun
tion to perform the p� integration,Æ�(l � p)2� ��� l�=0; lT=0T = x̂2p+(1� x̂) Æ�p� + p2T2p+ x̂1� x̂� (8.3)we obtain�q(x; pT ) ���(5a) = �s(2�)2 CF 1p4T Z 1x dx̂̂x (1� x̂) d��(�l � �p; v) �p= 
��q2� x̂x�
� �p= ; (8.4)where we have introdu
ed the notation�p = p+n+ � p2T2p+ x̂1� x̂ n� + pT ; (8.5)�l = p+̂x n+ (8.6)for the approximated momenta in the hard-s
attering kernel. We note that the virtualityof the upper quark legs �p2 = � p2T1� x̂ (8.7)is always spa
elike. The gauge �xing ve
tor 
an be written asv = v�n� � 2(P+)2 v�� n+ (8.8)with � = �(2P �v)2v2 = �2(P+)2 v�v+ ; (8.9)
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where in the se
ond step we have negle
ted M2 
ompared with �. We therefore have(�l � �p) �v = (�l � �p)+v� � 2(p+)2x2� (�l � �p)�v� = 1̂x �1� x̂� � x̂21� x̂� p+v� ; (8.10)where we have introdu
ed the parameter� = p2Tx2 � = � p2T2(p+)2 v+v� : (8.11)We now de
ompose the gluon polarization sum asd��(�l � �p; v) = 4Xi=1 d��(i)(�l � �p; v) ; (8.12)with d��(1)(�l � �p; v) = 1� x̂1� x̂� � x̂21�x̂ d��(�l � �p;n�) ; (8.13)d��(2)(�l � �p; v) = � x̂21� x̂ g��1� x̂� � x̂21�x̂ ; (8.14)d��(3)(�l � �p; v) = �� 2x̂p+p2T (�l � �p)�n�+ + (�l � �p)�n�+1� x̂� � x̂21�x̂ ; (8.15)d��(4)(�l � �p; v) = � 4x̂2p2T (�l � �p)� (�l � �p)��1� x̂� � x̂21�x̂ �2 : (8.16)Noti
e that the �rst term (8.13) is proportional to the polarization sum d��(�l � �p;n�)one would use when 
al
ulating in light-
one gauge A � n� = 0. We will see shortly thatthe prefa
tor in (8.13) regulates the divergen
e at x̂ = 1 whi
h would arise in that gauge.From the parameterization (5.13) we readily see that the twist-two part of the quark-quark
orrelator satis�es n=+�q2 = �q2 n=+ = 0, so that terms with n�+ or n�+ in d�� vanish wheninserted into (8.4). With �l being proportional to n+, we hen
e need only the �rst two termsand the �p��p� part of the last term in the de
omposition (8.12). This gives�q(x; pT ) ���(5a) = �s(2�)2 CF 1p2T Z 1x dx̂̂x� " 1� x̂(1� x̂)2 � � x̂2 1p2T (1� x̂)2 d��(�l � �p;n�) �p= 
� �q2� x̂x� 
� �p=+ �(1� x̂)2 � � x̂2 x̂2p2T (1� x̂) �p= 
� �q2� x̂x� 
� �p=+ � (1� x̂)[(1� x̂)2 � � x̂2 ℄2 4x̂2�q2� x̂x�# : (8.17)
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To pro
eed we must determine the behavior of the di�erent terms in the limit x̂! 1, where�p� � (1� x̂)�1 be
omes singular. Using the form (8.2) with v repla
ed by n�, we obtain(1� x̂)2 d��(�l � �p;n�) �p= 
� �q2 
� �p== � (1� x̂)2 �p= 
� �q2 
� �p=+ x̂p2Tp+ � �p= n=��q2 +�q2 n=� �p=� : (8.18)Sin
e the minus-
omponent of �p drops out in �p= n=� and n=� �p=, the expression in (8.18) is�nite for x̂! 1. For the se
ond term in (8.17) we have(1� x̂) �p= 
� �q2 
� �p= = �(1� x̂) �p= �f q1 n=+ � gq1SL
5 n=+� �p= (8.19)after plugging in the parameterization of �q2 from (5.13). This 
ontains a pie
e with twofa
tors of �p�, whi
h is proportional to the Dira
 matri
es n=� or 
5 n=�. A

ording to thede
omposition (5.4) it therefore does not 
ontribute to the twist-two or twist-three partsof the 
orrelator �(x; pT ), on whi
h we 
on
entrate here. In the twist-four part of (8.1)this pie
e leads to a singularity at x̂ = 1, or in other words at �p� ! �1, showing thatat twist-four level the A � v = 0 gauge is insuÆ
ient to render the integral over p� in�(x; pT ) = R dp��(p) well de�ned.In the following we take the limit p2T � �, 
orresponding to � � 1. The motivationfor this is that in physi
al pro
esses we need the 
orrelator �(x; pT ; �) for p2T � Q2 andx2� � Q2, as dis
ussed in se
tion 3.1. We note that in a frame where xP+ � Q this
orresponds to v+ � v�. A

ording to (8.11) the parameter p� is then proportional to thesmall angle between the quark momentum p and the hadron momentum P , with a fa
torof proportionality of order 1. Noti
e that at this point we introdu
e a hierar
hy in sizebetween pT and P+, whi
h were not distinguished in the power 
ounting of se
tion 5.3.This is similar to what we have done with the high-qT 
al
ulation of stru
ture fun
tions inse
tion 4 : we started with the result (4.4), whi
h is derived without making a distin
tionbetween the size of qT and Q, and in a se
ond step we took its limit for qT � Q.For � � 1 the �rst term in the square bra
kets of (8.17) 
an be rewritten by usingthat for any fun
tion G(x̂) whi
h is regular at x̂ = 1lim�!0 PVZ 1x dx̂ 1� x̂(1� x̂)2 � � x̂2 G(x̂) = Z 1x dx̂ G(x̂)(1� x̂)+ + 12G(1) ln 1j� j ; (8.20)where the plus-distribution is de�ned as in (4.22). Fromlim�!0 PVZ 1x dx̂ �(1� x̂)2 � � x̂2 G(x̂) = 0 (8.21)we see that the se
ond term in (8.17) does not 
ontribute in the small-� limit when restri
tedto the twist-two and twist-three parts of �(x; pT ). In 
ontrast, the third term in (8.17)does 
ontribute, sin
elim�!0 PVZ 1x dx̂ � (1� x̂)[(1� x̂)2 � � x̂2 ℄2 G(x̂) = �12G(1) : (8.22)
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Therefore, our �nal result reads�q(x; pT ) ���(5a) = �s2�2 CF 1p2T Z 1x dx̂̂x �� 1(1� x̂)+ + 12 Æ(1 � x̂) ln 1� �� (1� x̂)22p2T d��(�l � �p;n�) �p= 
��q2� x̂x�
� �p=� Æ(1 � x̂)�q2� x̂x�� (8.23)to leading order in 1=pT , where it is understood that we have restri
ted ourselves to thetwist-two and twist-three parts of the 
orrelator on the l.h.s. We note at this point thatif we work with a timelike axial gauge, i.e. with negative � and � in (8.8) to (8.11), weobtain the same result as in (8.23) with ln(���1) instead of ln(��1). The polarization sumd��(�l � �p; v) is then nonsingular in the whole region x � x̂ � 1, and the prin
ipal valuepres
ription in (8.20) to (8.22) is not required. A timelike ve
tor v was indeed used forthe 
onstru
tion of fa
torization by Ji et al. [26℄, whereas arguments in favor of taking vspa
elike were given by Collins and Metz in [50℄.The gluon-to-quark 
ontribution to the 
orrelation fun
tion 
omes from the diagramin Fig. 5b. Its 
al
ulation is simpler than the previous one, due to the absen
e of a gluonpolarization sum in axial gauge. Correspondingly, the result is independent of �. The
ounterpart of the expression in (8.4) now reads�q(x; pT ) ���(5b) = �s(2�)2 TR 1p4T Z 1x dx̂̂x (1� x̂) �g;��2 � x̂x� �p= 
� � �l=� �p=�
� �p= ; (8.24)where the twist-two part of the 
ollinear gluon 
orrelation fun
tion is given by�g;��2 (x) = 12xP+ n� g��T fg1 (x) + i���T SLgg1(x)o ; (8.25)see e.g. [68℄. Inserting (8.5) and (8.6) and using some Dira
 algebra, one �nds that theintegrand of (8.24) is �nite at x̂ = 1.From (8.23) and (8.24) we 
an easily proje
t out the 
ontributions to the individualterms in the de
omposition (5.4) of �q(x; pT ). For the high-pT behavior of the unpolarizeddistributions we obtainf q1 (x; p2T ) = �s2�2 1p2T �L(��1)2 f q1 (x)� CF f q1 (x) + �Pqq 
 f q1 + Pqg 
 fg1 �(x)� ; (8.26)xf?q(x; p2T ) = �s2�2 12p2T �L(��1)2 f q1 (x) + �P 0qq 
 f q1 + P 0qg 
 fg1 �(x)� ; (8.27)whereas for the polarized distributions we �ndgq1L(x; p2T ) = �s2�2 1p2T �L(��1)2 gq1(x)� CF gq1(x) + ��Pqq 
 gq1 +�Pqg 
 gg1�(x)� ; (8.28)xg?qL (x; p2T ) = �s2�2 12p2T �L(��1)2 gq1(x) + ��P 0qq 
 gq1 +�P 0qg 
 gg1�(x)� ; (8.29)
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Figure 6: Diagrams for the 
al
ulation of the leading high-kT behavior of the quark-quarkfragmentation 
orrelator �(z; kT ) in axial gauge A � v = 0.and hq1(x; p2T ) = �s2�2 1p2T �L(��1)2 hq1(x)� CF hq1(x) + �ÆPqq 
 hq1�(x)� ; (8.30)xh?qT (x; p2T ) = �s2�2 12p2T �L(��1)2 hq1(x) + �ÆPqq 
 hq1�(x)� ; (8.31)xhqT (x; p2T ) = �xh?qT (x; p2T ) ; (8.32)where L(��1) is de�ned as in (3.13). HereÆPqq(x̂) = CF � 2x̂(1� x̂)+ + 32 Æ(1 � x̂)� (8.33)is the leading-order DGLAP splitting fun
tion for the transversity distribution [69℄, andthe remaining splitting fun
tions are given in (4.29) to (4.33). The 
hiral-odd quark distri-butions in (8.30) to (8.32) re
eive no 
ontribution from (8.24) be
ause 
hirality is 
onservedfor the quark line in the graph of Fig. 5b.The diagrams for the high-pT behavior of the antiquark 
orrelation fun
tion ��q(x; pT )are obtained from those in Fig. 5 by reversing the dire
tion of the fermion lines. Theresults have the form of (8.26) to (8.32), with identi
al splitting fun
tions and with allquark distributions repla
ed by antiquark distributions.8.2 High-kT tails of fragmentation fun
tionsThe 
al
ulation of the high-transverse-momentum tails of quark fragmentation fun
tionspro
eeds in 
lose analogy to the 
ase of distribution fun
tions. We nevertheless present theessential steps in this subse
tion, so as to show that no problems o

ur when going from aspa
elike to a timelike situation.The Feynman diagrams to be evaluated in A �v = 0 gauge are drawn in Fig. 6. We �rst
onsider the quark-to-quark 
ontribution of Fig. 6a. The analog of the starting expression{ 55 {



(8.1) now reads�q(z; kT ) ���(6a) = 4��s(2�)3 CF 1z Z dk+ Z dl� Æ�(k � l)2� �(k� � l�)� d��(k � l; v) k=k2 
� ẑz�q2� ẑz�
� k=k2 ����� l+=0; lT=0T ; (8.34)where k� = P�h =z and l� = ẑk�. The fa
tors 1=z and ẑ=z in (8.34) arise from thede�nitions (5.9) and (5.21) of the fragmentation 
orrelators. We perform the k+-integrationusing Æ�(k � l)2� ��� l+=0; lT=0T = 12k�(1� ẑ) Æ�k+ � k2T2k�(1� ẑ)� (8.35)and obtain�q(z; kT ) ���(6a) = �s(2�)2 CF 1z2k4T Z 1z dẑ̂z (1� ẑ) d��(�k � �l; v) �k= 
��q2� ẑz�
� �k= (8.36)with �k = k2T2k�(1� ẑ) n+ + k�n� + kT ; (8.37)�l = ẑ k�n� : (8.38)The virtuality of the fragmenting quark�k2 = ẑk2T1� ẑ (8.39)is always timelike, in 
ontrast to its 
ounterpart �p2 in the distribution 
orrelator. For the
al
ulation of the fragmentation 
orrelator, it is useful to write the gauge ve
tor asv = v+n+ � 2(P�h )2 v+�h n� (8.40)with �h = �(2Ph �v)2v2 = �2(P�h )2 v+v� : (8.41)In analogy to (8.10) and (8.11) we 
an then write(�k � �l) � v = (�k � �l)�v+ � 2(k�)2z�2�h (�k � �l)+v+ = �1� ẑ � �h 11� ẑ� k�v+ ; (8.42)where we have introdu
ed �h = k2Tz�2 �h = � k2T2(k�)2 v�v+ : (8.43)Taking the limit k2T � �h and following similar steps as in the previous subse
tion, weobtain�q(z; kT ) ���(6a) = �s2�2 CF 1z2k2T Z 1z dẑ̂z �� 1(1� ẑ)+ + 12 Æ(1 � ẑ) ln 1�h �� (1� ẑ)22k2T d��(�k � �l;n+) �k= 
��q2� ẑz�
� �k= � Æ(1 � ẑ)�q2� ẑz�� (8.44)
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to leading order in 1=kT , where as in the 
ase of distribution fun
tions the result is restri
tedto the twist-two and twist-three parts of the 
orrelation fun
tion on the l.h.s. For thequark-to-gluon 
ontribution, the diagram of Fig. 6b gives�q(z; kT ) ���(6b) = �s(2�)2 CF 1z2k4T Z 1z dẑ̂z (1� ẑ) �g;��2 � ẑz� �k= 
� � �k=� �l=�
� �k= ; (8.45)where the twist-two part of the gluon fragmentation 
orrelator is parameterized by justone fun
tion, �g;��2 (z) = � z2P�h g��T Dg1(z) ; (8.46)be
ause we 
onsider an unpolarized hadron. With the parameterization (5.9) of �q(z; kT )we obtain the high-kT behaviorDq1(z; k2T ) = �s2�2 1z2k2T �L(��1h )2 Dq1(z)� CFDq1(z) + �Dq1 
 Pqq +Dg1 
 Pgq�(z)� ;(8.47)D?q(z; k2T )z = �s2�2 1z2k2T �L(��1h )4 Dq1(z) + Z 1z dẑ̂z Dq1� ẑz� CF � 1(1� ẑ)+ + 34 Æ(1 � ẑ)�+ Z 1z dẑ̂z Dg1� ẑz� CF 2� ẑẑ � (8.48)from (8.44) and (8.45). For ~D?q this implies~D?q(z; k2T )z = � �s2�2 12z2k2T �L(��1h )2 Dq1(z)� 2CFDq1(z) + �Dq1 
 P 0qq +Dg1 
 P 0gq�(z)� :(8.49)a

ording to its de�nition (5.71). Analogous results with the same kernels are obtained forthe antiquark fragmentation fun
tions D�q1, D?�q, and ~D?�q.8.3 Results for stru
ture fun
tions and their 
onsequen
esWe are now ready to 
ompute the behavior of the stru
ture fun
tions FUU;T , FLL, F 
os�hUU ,and F 
os�hLL at intermediate transverse momentum. For FUU;T we start from the low-qTresult (5.53), with the 
onvolution de�ned in (5.75). Using the expansion (5.77) we haveFUU;T =Xa xe2a �fa1 (x; q2T ) Da1(z)z2 + fa1 (x)Da1(z; q2T ) + fa1 (x) Da1(z)z2 U(q2T )� (8.50)for M � qT � Q. The high-transverse-momentum limits of fa1 (x; q2T ) and Da1(z; q2T ) arerespe
tively given in (8.26) and (8.47). For the 
orresponding limit of the soft fa
tor oneobtains U(q2T ) = �sCF�2 1q2T (8.51)
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from [24℄, as we show in appendix C. Given that 2P+P�h = zQ2=x up to mass 
orre
tions,the relations (8.9), (8.11) and (8.41), (8.43) implyp��h = zQ2x ; p��h = q2TQ2 ; (8.52)where in the se
ond equation we have set k2T and p2T equal to q2T , as appropriate forevaluating (8.50). Putting the above results together, we obtainFUU;T = �s2�2 1z2q2T Xa xe2a���L(��1)2 fa1 (x)� CF fa1 (x) + �Pqq 
 fa1 + Pqg 
 fg1 �(x)�Da1(z)+ fa1 (x) �L(��1h )2 Da1(z)� CFDa1(z) + �Da1 
 Pqq +Dg1 
 Pgq�(z)�+ 2CF fa1 (x)Da1(z)�= 1q2T �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ �Pqq 
 fa1 + Pqg 
 fg1 �(x)Da1(z)� ; (8.53)whi
h is identi
al with the result (4.23) of the high-qT 
al
ulation. The same agreementhas been found by Ji et al. [7℄, who used the low-qT fa
torization s
heme spe
i�ed in [26℄instead of the original Collins-Soper s
heme [24℄. Note that the terms with CF fa1 (x)Da1(z)
an
el among the di�erent 
ontributions in (8.53). By virtue of (8.52) the dependen
e onthe gauge parameters � and �h also 
an
els, as it should. We remark that we obtain thesame �nal result if we take a timelike ve
tor v instead of a spa
elike one. Both � and �hare then negative, and L(��1) and L(��1h ) are repla
ed by L(���1) and L(���1h ), so thatthey still add up to 2L(Q2=q2T ). For FLL we obtain a result analogous to (8.53), with theparton distributions f1 repla
ed by g1 and the 
onvolutions P 
f1 by �P 
g1. This resultexa
tly mat
hes the expression (4.27) obtained in the high-qT 
al
ulation.We now turn to the stru
ture fun
tion F 
os�hUU . A

ording to (5.45) and (5.50) theterms with h?1 and H?1 in the low-qT expression (5.55) are power suppressed 
ompared tothe terms with f? and ~D? when qT �M . For intermediate qT we therefore haveF 
os �hUU = �2qTQ Xa xe2a �xf?a(x; q2T ) Da1(z)z2 � fa1 (x) ~D?a(z; q2T )z � (8.54)at leading power and leading order in �s. In this 
ase there is no leading 
ontributionfrom the soft fa
tor taken at large transverse momentum. Pro
eeding as we did in (5.78),one �nds that the leading term in the expansion of U(l2T ) around lT = �qT gives zero inthe 
onvolution (5.55) be
ause it does not depend on a dire
tion in the transverse plane,whereas the next terms in the expansion only give 
ontributions that are power suppressed
ompared to those in (8.54). We therefore obtain the same result (8.54) if we omit thesoft fa
tor in the transverse-momentum 
onvolution (5.75). Using the high-transverse-momentum limits (8.27) and (8.49) of f?a(x; q2T ) and ~D?a(z; q2T ), we get{ 58 {



F 
os �hUU = �2qTQ �s2�2 12z2q2T Xa xe2a���L(��1)2 fa1 (x) + �P 0qq 
 fa1 + P 0qg 
 fg1 �(x)�Da1(z)+ fa1 (x) �L(��1h )2 Da1(z)� 2CFDa1(z) + �Da1 
 P 0qq +Dg1 
 P 0gq�(z)��= � 1QqT �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 P 0qq +Da1 
 P 0gq�(z)+ �P 0qq 
 fa1 + P 0qg 
 fg1 �(x)Da1(z)� 2CF fa1 (x)Da1(z)� ; (8.55)whi
h is not identi
al to the high-qT result (4.25) be
ause of the extra term 2CF fa1 (x)Da1(z)in the bra
kets. The same situation is found for F 
os �hLL , with f1 repla
ed by g1 and P 0
f1by �P 0 
 g1This disagreement has important 
onsequen
es. Sin
e the leading terms in the high-qTand the low-qT 
al
ulation of F 
os�hUU have the same power behavior for M � qT � Q,their expli
it expressions in that region must agree if both of them are 
al
ulated 
orre
tly.This is 
lear, sin
e both 
al
ulations give the same term of a double expansion in M=qTand qT =Q, as given in (1.2) and (1.4). We have no reason to doubt the validity of the high-qT result (4.25), whi
h 
omes from a twist-two 
al
ulation in 
ollinear fa
torization. Thesame holds for the high-transverse-momentum behavior of the fun
tions f?a(x; q2T ) and~D?a(z; q2T ) in (8.27) and (8.49). In 
ontrast, the low-qT expression we used for F 
os�hUU is atwist-three result, for whi
h no proof of fa
torization is available. To obtain the expressionin (8.54) we have assumed that the tree-level result (5.55) 
an be generalized by takingover the 
onvolution (5.75) established for the twist-two se
tor. The 
omparison of (8.55)with (4.25) implies that this assumption is in
orre
t.Based on our �nding, one may spe
ulate how a 
orre
t twist-three fa
torization formulawill look like if fa
torization 
an be established at that level. Simple modi�
ation of thesoft fa
tor U(l2T ) 
an obviously not yield agreement with the high-qT result sin
e this fa
tordoes not appear in the limiting expression (8.54) for the reasons we explained above. Thesituation would be di�erent if the soft fa
tor were dependent on the dire
tion of lT , whi
hwould require it to have a nontrivial stru
ture in either Lorentz or Dira
 spa
e (throughfa
tors l�T or l=T ). Su
h a dependen
e would go beyond the eikonal approximation for the
oupling of soft gluons to fast partons, whi
h may be ne
essary at subleading order in1=Q. We shall not pursue su
h spe
ulations here. Clearly, the requirement to mat
h thehigh-qT result (4.25) for F 
os�hUU at intermediate qT 
an be used as a 
onsisten
y 
he
k forany framework that extends Collins-Soper fa
torization to the twist-three se
tor.It is instru
tive to note that the low- and high-qT results disagree by a term pro-portional to fa1 (x)Da1(z), where neither the distribution nor the fragmentation fun
tionappears in a 
onvolution over longitudinal momentum fra
tions. In the 
al
ulations of theprevious subse
tions, su
h terms arise from 
on�gurations where a gluon has zero plus- orminus-momentum. The 
orre
t treatment of this phase spa
e region is nontrivial alreadyin proofs of fa
torization at the twist-two level [26,27℄, so that it is not too surprising that{ 59 {



this is where problems o

ur in the naive extension to twist three whi
h we have explored.At this point we return to the issue of transverse-momentum-resummation for F 
os�hUU ,whi
h we have brie
y dis
ussed in se
tion 3.3. We 
an now understand why the splittingfun
tions P 0qq, P 0qg, and P 0gq in the high-qT result (4.25) are di�erent from the usual DGLAPkernels. Up to Æ-fun
tion terms they des
ribe the high-transverse-momentum behavior off? and ~D?, rather than the one of the more familiar fun
tions f1 and D1. A 
orrespondingremark applies to the 
os� asymmetry in Drell-Yan produ
tion investigated in [9℄. If a low-qT fa
torization formula for these observables 
an be established, it should also allow oneto adapt the original CSS pro
edure [1℄ for the resummation of large logarithms ln(Q2=q2T )at next-to-leading logarithmi
 a

ura
y and beyond. From this point of view, resummationfor F 
os 2�hUU and its analogs in Drell-Yan produ
tion or e+e� annihilation appears ratherdaunting sin
e it would require a formulation of low-qT fa
torization at twist-four level,extending the simple parton-model result in (6.15) and putting it on a rigorous footing.9. SummaryThe des
ription of semi-in
lusive deep inelasti
 s
attering with measured transverse mo-mentum qT involves two theoreti
al frameworks: at low qT one has a fa
torized representa-tion in terms of transverse-momentum-dependent distribution and fragmentation fun
tions,whereas at high qT standard 
ollinear fa
torization 
an be used. We have systemati
allyanalyzed the relation between the two des
riptions at intermediate transverse momentumM � qT � Q, where both are appli
able. Depending on the spe
i�
 observable, theleading terms in the two des
riptions may or may not 
oin
ide.Using dimensional analysis and Lorentz invarian
e, we have derived the general behav-ior at high pT for all transverse momentum-dependent parton distributions of twist two orthree. The results, listed in Eqs. (5.44) to (5.48), involve the 
onvolution of 
ollinear partondistributions with hard-s
attering kernels, whi
h in the simplest 
ases are 
losely relatedto the well-known DGLAP splitting fun
tions. We have 
omputed these kernels at leadingorder in �s for those 
ases where the 
ollinear distributions are of leading twist, obtain-ing the expressions (8.26) to (8.32). With these results and their analogs for transverse-momentum-dependent fragmentation fun
tions we 
ould establish in Eqs. (5.79) to (5.94)the power behavior for M � qT � Q of all SIDIS stru
ture fun
tions that appear in thelow-qT des
ription at twist-two or twist-three a

ura
y, allowing for arbitrary polarizationof target and beam.In the high-qT des
ription at order �s one �nds a 
onsiderable simpli�
ation whentaking the limit qT � Q : the expressions of the stru
ture fun
tions then involve a 
onvolu-tion of either the distribution or the fragmentation fun
tions with hard-s
attering kernels,whereas the other fun
tion is evaluated at the momentum fra
tion x or z �xed by the kine-mati
s of the �nal state. For observables where the high-qT and low-qT 
al
ulations mat
h,these kernels 
an be identi�ed with the ones des
ribing the high-transverse-momentum be-havior of the fun
tions appearing in the low-qT des
ription. In su
h a situation one 
anuse the pro
edure of Collins, Soper, and Sterman to resum large logarithms of Q2=q2T toall orders in perturbation theory. A prerequisite for this is that the power behavior of{ 60 {



the observable in the low- and high-qT 
al
ulations must mat
h. We have 
ompared the
orresponding powers for a wide range of observables, using our low-qT results (5.79) to(5.94) and their 
ounterparts (6.1) to (6.13) for those stru
ture fun
tions that have beenevaluated in the high-qT formulation. This 
omparison, 
ompiled in table 2, is one of themain results of our work.When the two formulations give the same power law at intermediate qT for a givenobservable, their expli
it results must agree exa
tly be
ause they des
ribe the same term ofa double expansion inM=qT and qT =Q. This 
onstitutes a nontrivial 
onsisten
y 
he
k forboth the low- and high-qT 
al
ulations. Con�rming earlier results in the literature, we haveveri�ed that there is su
h an agreement for the unpolarized stru
ture fun
tion FUU;T , aswell as for its analog FLL for longitudinal beam and target polarization. By 
ontrast, thestru
ture fun
tion FUU;L for longitudinal photon polarization only appears at twist four inthe low-qT framework, where a 
omplete result is not available. A simple 
al
ulation in theparton model gives a power behavior whi
h in the intermediate region mat
hes the one ofthe well-established high-qT result but fails to reprodu
e its exa
t form.A more involved pi
ture arises for azimuthal asymmetries, even in unpolarized s
at-tering. At low qT the stru
ture fun
tion F 
os 2�hUU is expressed in terms of the Boer-Muldersfun
tion h?1 and the Collins fragmentation fun
tion H?1 , both of whi
h are 
hiral-odd,whereas the high-qT expression involves the usual unpolarized distribution and fragmen-tation fun
tions f1 and D1, whi
h are 
hiral-even. The two results thus des
ribe di�erentphysi
al me
hanisms, whi
h is 
onsistent with our �nding that at intermediate qT theyhave a di�erent power behavior. In this region, the two results may hen
e be added. Inpra
ti
e, some arbitrariness is involved in de
iding what \intermediate" qT values are. Wehave shown that the sum of the high-qT and the low-qT expressions gives a valid approxi-mation for F 
os 2�hUU also at large qT , where the low-qT result 
annot be trusted but is powersuppressed 
ompared with the high-qT expression. The latter, however, fails to vanish inthe limit qT ! 0, as required by angular momentum 
onservation, and should hen
e not beused at low qT . A more favorable observable in this respe
t is the 
os 2�h asymmetry, i.e.,the ratio of F 
os 2�hUU and the �h independent part FUU;T + "FUU;L of the 
ross se
tion. Inthis 
ase, the sum (6.26) of the expressions 
al
ulated for low and high qT gives a 
onsistentapproximation for all transverse momenta, up to 
orre
tions of order M2=q2T and q2T=Q2.The result of a parton-model 
al
ulation at low qT , often referred to as Cahn e�e
t, has thesame property for F 
os 2�hUU as it has for FUU;L: its power behavior agrees with the high-qTresult in the intermediate region, but its expli
it expression does not. The parton-modelresult may hen
e only be regarded as a partial estimate for the full but unknown twist-four
orre
tion to F 
os 2�hUU at low qT .The des
ription of the stru
ture fun
tion F 
os�hUU is more problemati
: at high qT it 
anbe evaluated in 
ollinear fa
torization at twist-two level, but at low qT it requires a twist-three 
al
ulation, for whi
h transverse-momentum-dependent fa
torization at all orders in�s has not been established. As a working hypothesis we have taken the well-establishedresult of a tree-level 
al
ulation at low qT and assumed that the soft fa
tor whi
h expli
itlyappears in the fa
torization theorem for twist-two observables is also appli
able at twistthree. This leads to an expression that for intermediate qT agrees with the high-qT result{ 61 {



in its power behavior and in the form of the hard-s
attering kernels, ex
ept for a termproportional to f1(x)D1(z). We �nd this partial agreement en
ouraging, but it does showthat our 
andidate fa
torization formula at twist three is in
orre
t as it stands, and thata proper analysis will have to devote spe
ial attention to gluons with vanishing plus- orminus-momentum and to the pre
ise form of soft fa
tors. We emphasize that the 
orre
tdes
ription of F 
os�hUU at low qT is a prerequisite for applying the method of Collins, Soper,and Sterman to resum large logarithms of Q2=q2T .The stru
ture fun
tion F sin(�h��S)UT;T for a transversely polarized target presents a 
asewhere the low-qT 
al
ulation is of twist two, whereas the high-qT des
ription is at the twist-three level. The expli
it 
omputations in [5{8℄ �nd exa
t agreement of the two des
riptionsat intermediate qT and thus validate both frameworks. One may expe
t that the same istrue for F sin(�h+�S)UT , whi
h at low qT is des
ribed in terms of the Collins e�e
t.Observables that are integrated over qT are at times preferable to di�erential ones froman experimental point of view. We have shown that some of them have the added virtue ofadmitting a relatively simple des
ription at the theory level, both for the 
omplexity of theexpressions and for the number of distribution and fragmentation fun
tions on whi
h theydepend. With the power-
ounting behavior listed in table 2 one 
an readily determine towhi
h region of qT a given integrated observable is primarily sensitive. The results for se-le
ted observables are given in table 3. We �nd for instan
e that hhF 
os 2�hUU ii and hhF sin�SUT iire
eive leading 
ontributions from both low and high qT . The integrated stru
ture fun
-tion hhF 
os �hUU ii is dominated by large qT , with 
ontributions from the low-qT region beingsuppressed byM=Q. Conversely, both hhF sin(�h��S)UT;T ii and hhF sin(�h+�S)UT ii re
eive their dom-inant 
ontributions from low qT , whereas the high-qT domain is suppressed byM=Q. Theyare hen
e sensitive to the Sivers fun
tion in the �rst 
ase, and to the transversity distri-bution and the Collins fragmentation fun
tion in the se
ond. A suppression by M=Q may,however, not be suÆ
ient to simply negle
t the 
orresponding 
ontributions in an analysisat experimentally a
hievable values of Q.A theoreti
ally 
leaner a

ess to the high-qT region is through observables that areweighted with an appropriate power of qT =M . We �nd in parti
ular that hh(qT =M)F 
os�hUU ii,hh(qT =M)2F 
os 2�hUU ii, and hh(qT =M)2F sin�SUT ii 
an be evaluated from the high-qT resultsalone, up to 
orre
tions of order M2=Q2, and that at the same a

ura
y one 
an extendthe integration down to qT = 0. This leads to simple expressions, similar to the one for theintegrated longitudinal stru
ture fun
tion hhFUU;L ii. The observables hh(qT =M)F 
os �hUU iiand hh(qT =M)2F 
os 2�hUU ii are sensitive to the twist-two fun
tions f1 and D1 and may forinstan
e be useful for separating the 
ontributions from di�erent quark 
avors, serving as
omplements to hhFUU;T ii. In 
ontrast, hh(qT =M)2F sin�SUT ii is sensitive to distribution andfragmentation fun
tions of twist three.The weighted stru
ture fun
tions hh(qT =M)F sin(�h��S)UT;T ii and hh(qT =M)F sin(�h+�S)UT iiplay a spe
ial role in this 
ontext. They re
eive leading-power 
ontributions from both lowand high qT and, as already pointed out in [12℄, lead to a de
onvolution of the transverse-momentum integrals in the low-qT result. We argued that they should permit a des
riptionin terms of 
ollinear fun
tions of twist two and three, de�ned in the standard MS s
heme.{ 62 {



In this des
ription, the low-qT expression gives the Born-level result, whereas the high-qT
al
ulation of [8, 43, 44℄ gives part of the �s 
orre
tions. If 
ompleted, su
h a des
riptionwould provide a full NLO result in �s and be an extension to twist-three level of the stan-dard NLO 
al
ulation for hhFUU;T ii within 
ollinear fa
torization at twist-two a

ura
y.The leading-order expressions (7.9) and (7.10) for the weighted stru
ture fun
tions areanalogs of the familiar tree-level formula hhFUU;T ii = Pa xe2a fa1 (x)Da1(z). These expres-sions re
eive 
orre
tions from the high-qT region whi
h are of leading power but suppressedby �s.Let us �nally remark that the results we have dis
ussed here 
arry over to the analo-gous observables in the Drell-Yan pro
ess and in e+e� annihilation. The SIDIS stru
turefun
tions F 
os�hUU and F 
os 2�hUU 
orrespond for instan
e to the 
os� and 
os 2� asymmetriesin the angular distribution of the lepton pair in unpolarized Drell-Yan produ
tion, whi
hhave been measured [70℄ and given rise to several theoreti
al investigations, see e.g. thereferen
es in [9℄. Furthermore, F 
os 2�hUU 
orresponds to a 
os 2� asymmetry for two-pionprodu
tion in e+e� annihilation, whi
h has been measured by BELLE [71℄ and providesthe possibility for an independent determination of the Collins fragmentation fun
tion [72℄.For a reliable extra
tion, our dis
ussion of mat
hing low- and high-transverse-momentum
ontributions should be of relevan
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tions at high pT : Feynman versus axial gaugeOur 
al
ulation in se
tion 8.1 is done in axial gauge A � v = 0. Let us see how the same
al
ulation pro
eeds in Feynman gauge. In this 
ase one must expli
itly take into a

ountthe gauge link U in the de�nition (5.3) of the 
orrelation fun
tion �(x; pT ), whi
h 
onsistsof se
tions pointing along v and a transverse se
tion at in�nity. The detailed path of thegauge link re
e
ts important physi
s, as shown for instan
e in [13, 47{50, 54℄.Let us 
onsider the 
orrelation fun
tion �[+℄(x; pT ) relevant for SIDIS, whose gaugelink U+ is 
losed at a� = +1. To evaluate the quark-to-quark 
ontribution to the high-pT behavior of �(x; pT ) at leading order in 1=pT , one has to take into a

ount the fourdiagrams shown in Fig. 7. The graphs with eikonal lines are due to gluons 
oupling to the{ 63 {
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Figure 7: Diagrams for the 
al
ulation of the leading high-pT behavior of the quark-quark
orrelator �(x; pT ) in Feynman gauge.gauge link in the operator � j(0)U(0;�)  i(�). The 
orresponding Feynman rules read [24,55℄
a, µ

= ig tav� ; l = il � v + i� ; (A.1)where the sign of i� for the eikonal line 
orresponds to a gauge link pointing to a� = +1if one takes v� > 0. In 
ut diagrams one must take the 
onjugate of these expressions forverti
es and propagators on the right of the �nal-state 
ut (indi
ated by the dashed linesin Fig. 7).After performing the integration over p� using the Æ fun
tion in (8.3), we have for therespe
tive diagrams�[+℄q(x; pT ) ���(7a) = � �s(2�)2 CF Z dx̂x̂(1� x̂) g�� �p=�p2 
� �q2� x̂x�
� �p=�p2 ; (A.2)�[+℄q(x; pT ) ���(7b) = � �s(2�)2 CF Z dx̂x̂(1� x̂) �p=�p2 v=�q2� x̂x� 1(�l � �p) �v � i� ; (A.3)�[+℄q(x; pT ) ���(7
) = � �s(2�)2 CF Z dx̂x̂(1� x̂) 1(�l � �p) �v + i� �q2� x̂x� v= �p=�p2 ; (A.4)�[+℄q(x; pT ) ���(7d) = � �s(2�)2 CF Z dx̂x̂(1� x̂) �q2� x̂x� v2�(�l � �p) �v + i���(�l � �p) �v � i�� (A.5)with �p and �l given in (8.5) and (8.6). Sin
e �p2 is always spa
elike a

ording to (8.7), wehave omitted the i� in the quark propagators.{ 64 {



In the 
al
ulation using axial gauge only the �rst of the four diagrams 
ontributes, butinstead of g�� in (A.2) we then have to take�d��(�l � �p; v) = g�� � (�l � �p)�v� + (�l � �p)� v�(�l � �p) �v + (�l � �p)� (�l � �p)�[(�l � �p) �v ℄2 v2 : (A.6)Ea
h term in (A.6) 
orresponds to one of the four diagrams in the Feynman gauge 
al
u-lation. The 
orresponden
e between the �rst term and diagram 7a in Feynman gauge istrivial. To establish the 
orresponden
e between the se
ond term and diagram 7b we usethat v=�q2 ( �l=� �p=) �p=�p2 = v=�q2 �l= �p=�p2 � v=�q2 = � v=�q2 ; (A.7)where in the se
ond step we have used that the twist-two part of the 
ollinear quark 
orrela-tor satis�es �q2 �l= = �q2 n=+ l+ = 0. In an analogous way one establishes the 
orresponden
ebetween the last two terms in (A.6) with the respe
tive 
ontributions of diagrams 7
 and7d in Feynman gauge.A mismat
h between the expressions in (A.3) to (A.5) and the 
al
ulation in axial gaugeis, however, the di�erent treatment of the singularities at (�l� �p)�v = 0. The prin
ipal valuepres
ription we employed when using the spa
elike axial gauge of the original Collins-Soper paper [24℄ di�ers from the i� pres
ription for the di�erent terms in the Feynmangauge 
al
ulation, whi
h arises from the stru
ture of the Wilson line U+ in the 
orrelationfun
tion. We note that the integral in (A.5) is a
tually not well de�ned as it stands,sin
e the double pole at (�l � �p) � v = 0 is pin
hed. The 
ontribution from su
h unphysi
alpoles must be absent in the physi
al 
ross se
tion and should hen
e 
an
el between thedistribution fun
tion, the fragmentation fun
tion, and the soft fa
tor in the fa
torizationformula (3.22). How to implement this by regulating the individual fa
tors has so far notbeen addressed in the literature. It is also 
urrently unknown if and how the prin
ipal-value pres
ription in axial gauge 
an be implemented in terms of Wilson lines for Feynmangauge. The dis
ussion in [47℄ is for a light-
one rather than an axial gauge and hen
e doesnot 
ontain the problemati
 term (A.5).We remark that 
orresponding problems did not appear in the Feynman gauge 
al
u-lation of Ji et al. [26℄, where the ve
tor v was 
hosen to be timelike. If we do the same inour 
ontext, then the 
al
ulations in Feynman and axial gauge exa
tly 
oin
ide. This isbe
ause (�l� �p) �v remains positive in (A.3) to (A.5) a

ording to (8.10), so that the singu-larity at (�l� �p) �v = 0 is not rea
hed in the loop integral. As a 
onsequen
e, the parti
ularregularization of the axial-gauge propagator does not in
uen
e our results of se
tion 8 ifwe take v timelike. Likewise, there is then no 
ontribution from transverse segments of thegauge link at in�nity, whi
h involve a Æ fun
tion in (�l� �p)�v. This is not implausible, sin
ethe distribution fun
tions 
onsidered in se
tion 8 are T -even and must in parti
ular be thesame for the gauge links U+ and U�.B. Integrated distribution fun
tions and transverse-momentum 
uto�In this appendix we derive Eq. (5.17), whi
h relates two di�erent ways of regularizing theintegral over the transverse-momentum-dependent distribution f1(x; p2T ). More pre
isely{ 65 {



we show that with � = b0=b one hasZ d2p eib�p f(p2) = � Z 10 dp2J0(bp) f(p2) = � Z �20 dp2 f(p2) +O�b2�2� (B.1)for any fun
tion that 
an be expanded asf(p2) = 
2p2 + 
4p4 + 
6p6 + : : : (B.2)for p > �, where 
2, 
4, 
6, et
. are 
onstants. The intermediate s
ale � 
an be taken justlarge enough for (B.2) to be valid, sin
e 
orre
tions going for instan
e like M=� do notappear. The power 
orre
tions in (B.1) are understood as up to logarithms in b2�2. Forease of notation we have written p = jpj and omitted the subs
ript T .To establish (B.1) we split the integrals into the regions p < � and p > �. In the �rstregion we 
an write Z �20 dp2J0(bp) f(p2) = Z �20 dp2f(p2) +O�b2�2� ; (B.3)using that the Bessel fun
tion admits a Taylor expansion J0(x) = 1 � 14x2 + : : : in evenpowers of x. In the region p > � we make use of the expansion (B.2). Fo
using �rst on the1=p2 term, we writeZ 1�2 dp2p2 J0(bp) = 2Z 1b� dxx J0(x) = �2 ln(b�)J0(b�) + 2Z 1b� dx lnxJ1(x) ; (B.4)where in the se
ond step we have integrated by parts. We now use that R10 dx lnxJ1(x) =ln 2 � 
E and R y0 dx lnxJ1(x) � y2 for y ! 0, where the latter relation holds be
auseJ1(x) � x for x! 0. Re
alling that b0 = 2e�
E we obtainZ 1�2 dp2p2 J0(bp) = 2�ln(2e�
E )� ln(b�)�+O�b2�2� = Z �2�2 dp2p2 +O�b2�2� : (B.5)For the 1=p4 term in (B.2) we use again integration by parts to writeZ 1�2 dp2p4 J0(bp) = 2b2 Z 1b� dxx3 J0(x) = J0(b�)�2 � b2 Z 1b� dxx2 J1(x) : (B.6)Sin
e the integrand in the last term behaves like 1=x for x! 0, we haveZ 1�2 dp2p4 J0(bp) = 1�2 +O�b2�2� = Z �2�2 dp2p4 +O�b2�2� : (B.7)A similar argument 
an be given for terms going like 1=p2n with n > 2, whi
h 
ompletesthe proof of (B.1).As an illustration of our result let us 
onsider the simple form f(p2) = 1=(p2 + �2).The relevant integrals then areZ 10 dp2p2 + �2 J0(b�) = 2K0(b�) ; Z �20 dp2p2 + �2 = ln�1 + �2�2� : (B.8)
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With the behavior K0(x) = � lnx+ln b0+O(x2) of the modi�ed Bessel fun
tion at small xone readily �nds that the relation (B.1) is satis�ed.As we have seen in se
tion 8.1, a logarithmi
 fa
tor ln(�=p2) appears in the expli
it
al
ulation for the high-pT behavior of distribution fun
tions at order �s. One 
an easilyrepeat the above arguments for the 
ase where the 1=p2 term in (B.2) is multiplied byln p2 and the subleading terms by some power of ln p2. Using that R10 dx(lnx)2J1(x) =(ln 2� 
E)2 one �nds that (B.1) holds without modi�
ation also in this 
ase.C. One-loop expression of the soft fa
torIn this appendix we show how to obtain the momentum-spa
e expression (8.51) of thesoft fa
tor in the Collins-Soper fa
torization formula [24℄. The 
orresponding expression inb-spa
e is given in Eq. (7.22) of [24℄. With our de�nition (3.7) we obtain U(l2T ) from thisby setting " = 0 and omitting R d2lT eib�lT . The result isU(l2T ) = �4CF �s Z dl+dl�(2�)2 Æ(l2) �(l+)l+l� d+�(l; v)= 4CF �s Z dl+dl�(2�)2 Æ�2l+l� � l2T � �(l+) v2(l �v)2= CF �s�2 PVZ 10 dl+ 4l+v�=v+�2(l+)2 v�=v+ + l2T �2 = CF �s�2 1l2T ; (C.1)where on the last line we have indi
ated that for a spa
elike gauge ve
tor we need theprin
ipal value pres
ription to regulate the integral, given that v�=v+ < 0. In a

ordan
ewith our footnote on page 8, the result of the integration is independent of v. Fouriertransforming the result (C.1) to b-spa
e in 2� " transverse dimensions, we obtainCF �s�2 �" Z d2�" lT(2�)�" eilT �b 1l2T = � CF �s� �ln��2b2� e
�+ 2"� (C.2)in agreement with Eq. (7.23) in [24℄.Referen
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