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1. IntrodutionShort-distane fatorization is a key onept in quantum hromodynamis, providing muhof the preditive power of the theory in high-energy sattering proesses. Among the sim-plest proesses to whih this onept an be applied are one-partile or single jet inlusiveprodution in lepton-nuleon sattering, two-partile or dijet inlusive prodution in e+e�annihilation, and Drell-Yan lepton pair prodution via a photon or eletroweak gauge bo-son in hadron-hadron ollisions. Crossing of the hard-sattering subproess losely relatesthese reations, and many results obtained for one of them arry over to the other ones. Anumber of nontrivial issues for fatorization arise espeially when one observes the trans-verse momentum qT and the angular distribution of the produed partile with respet toa suitable referene diretion. The problem then involves three sales, namely the sale ofnonperturbative QCD dynamis, whih we represent by the nuleon mass M , the trans-verse momentum qT , and the photon or eletroweak boson virtuality Q, whih throughoutthis paper we require to be large ompared with M .There are two basi desriptions for the prodution of a partile with spei�ed trans-verse momentum. One of them is appliable for qT � Q and involves transverse-momentum-dependent (also alled unintegrated) parton distribution and fragmentation funtions. Theother one requires that qT �M and generates transverse momentum in the �nal state byperturbative radiation, using ollinear (or integrated) distribution and fragmentation fun-tions as nonperturbative input. In the following we refer to the two momentum regionsand the assoiated theoretial desriptions as \low-qT " and \high-qT", respetively. Thelow- and high-qT domains overlap for M � qT � Q, where both desriptions an hene beapplied. An important question is whether in this intermediate qT region they desribe thesame dynamis or two ompeting mehanisms. Depending on the answer, one an eithertry to onstrut a formulation that smoothly interpolates between the two desriptions, orto add their results in a onsistent manner.For the ross setion depending on q2T but integrated over the angular distribution of theprodued partile, the work of Collins, Soper and Sterman [1℄ showed that the desriptionsbased on intrinsi transverse momentum and on hard perturbative radiation indeed mathat intermediate qT and permit a smooth interpolation at all orders in �s. A key elementof the derivation was that for suÆiently large transverse momentum one an expressunintegrated parton distributions and fragmentation funtions in terms of their integratedounterparts and of perturbatively alulable hard-sattering kernels. The mathing ofthe two desriptions allowed the authors of [1℄ to resum large logarithms ln(Q2=q2T ) to allorders using renormalization group tehniques|a proedure that remains the ornerstonefor transverse-momentum resummation in a wide range of ollider proesses.For the angular distribution, however, the situation is less well understood. Bothmehanisms just mentioned give rise to nontrivial angular dependene, as has been pointedout long ago for semi-inlusive deep inelasti sattering (SIDIS) by Cahn [2, 3℄ and byGeorgi and Politzer [4℄ for the low- and high-qT mehanism, respetively. To the bestof our knowledge, the relation between the two desriptions for the angular distributionin unpolarized sattering has not been analyzed so far. Important progress has reently{ 2 {



been made in the understanding of a partiular azimuthal asymmetry for a transverselypolarized target in SIDIS or Drell-Yan prodution. The authors of [5{8℄ have shown thatthe desription of this asymmetry by the Sivers e�et for small qT and by the Qiu-Stermanmehanism for large qT math at order �s in the intermediate region M � qT � Q. It isnatural to ask if one has a similar situation for other observables as well.In the present work we therefore present a systemati analysis of the interplay betweenthe low-qT and the high-qT mehanisms for angular distributions, both in unpolarizedand in polarized sattering. This provides guidane for the theoretial desription of avariety of observables, determining in partiular whether or not one should add di�erentontributions. For de�niteness we will onsider the ase of SIDIS, but as remarked above,analogous studies an be performed for e+e� ollisions and for the Drell-Yan proess. Ourresults are relevant to the possible extension of transverse-momentum resummation forspei� azimuthal distributions, whih was reently onsidered for the ase of Drell-Yanprodution in [9℄ and [10℄.A key �nding of our work is that for ertain observables, the leading terms of thelow-and high-qT desriptions math in the region M � qT � Q of intermediate transversemomenta, whereas for others they do not math. That this may happen an be understoodalready at the level of power ounting. The low-qT desription, whih uses transversemomentum dependent parton densities and fragmentation funtions, is based on taking Q2large ompared with q2T and all nonperturbative sales. We hose qT =Q rather than M=Qas parameter for power ounting, sine in the intermediate-qT region it is the larger of thetwo. Taking for example an observable F with mass dimension �2, we an thus expandF (qT ; Q) qT�Q= 1M2 Xn �qTQ �n�2 ln�MqT � ; (1.1)where ln are dimensionless funtions. In our appliations, the term with index n willorrespond to twist-n auray in the low-qT alulation, where n � 2. In the region ofintermediate qT we an further expand the funtions ln(M=qT ) for small M=qT and thenhave F (qT ; Q) M�qT�Q= 1M2 Xn;k ln;k �qTQ �n�2 �MqT �k (1.2)with oeÆients ln;k. The high-qT alulation, whih is based on ollinear fatorization,treats both Q and qT as large ompared with nonperturbative sales like M . The relevantparameter for power ounting in the intermediate region is therefore M=qT , and we haveF (qT ; Q) M�qT= 1M2 Xn �MqT �n hn�qTQ � (1.3)
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with dimensionless funtions hn. In our appliations, the term with index n will orrespondto twist n in the high-qT alulation, where again n � 2. In the intermediate-qT region wean then expand hn(qT =Q) for small qT =Q :F (qT ; Q) M�qT�Q= 1M2 Xn;k hn;k �MqT �n �qTQ �k�2 (1.4)with oeÆients hn;k. Sine both (1.2) and (1.4) are valid in the intermediate region, wean identify the oeÆients ln;k = hk;n. As a onsequene, a term of twist n in the low-qTalulation will only orrespond to a term of the same twist in the high-qT alulation ifn = k. We will for instane enounter observables withM2F (qT ; Q) = l2;2 �qTQ �0 �MqT �2 + l4;2 �qTQ �2 �MqT �2 + : : : ; (1.5)where the term with l2;2 = h2;2 is of leading twist in both the low- and high-qT alulations.The term with l4;2 = h2;4 is subleading in the low-qT alulation and beomes subleadingin the high-qT when one takes the additional limit qT � Q. For other observables, we will�nd M2F (qT ; Q) = l2;4 �qTQ �0 �MqT �4 + l4;2 �qTQ �2 �MqT �2 + : : : : (1.6)Here the term with l2;4 = h4;2 is leading in the low-qT alulation but subleading in thehigh-qT one, whereas the reverse holds for the term with l4;2 = h2;4. The respetive leading-order terms in the two alulations will hene not math in the intermediate region of qT .Whih term in (1.6) is larger in given kinematis obviously depends on the relative sizeof the two small parameters qT =Q and M=qT . We will disuss in setion 6.1 how one anonstrut interpolating expressions using both terms.An important question is whih terms in the expansions (1.1) and (1.3), and hene in(1.2) and (1.4), an atually be alulated in pratie. We disuss this in some detail in themain body of the paper, but already mention here that in the high-qT framework there is alarge number of results at twist two and three. In low-qT framework fatorization is ratherwell understood at twist-two level, whereas its status is less lear at twist three. Little isknown about the validity of fatorization at twist-four auray in either framework. In theexample (1.6) one an thus envisage to ompute the terms l2;4 and h2;4, whih are leadingin their respetive power ounting sheme. The simultaneous validity of the expansions(1.2) and (1.4) in the intermediate region requires that h4;2 = l2;4 and l4;2 = h2;4, butat present one annot hek this expliitly beause a alulation of the power-suppressedterms h4;2 and l4;2 is beyond the state of the art.Several investigations have been performed assuming fatorization for twist-three ob-servables in the low-qT desription. Detailed alulations at tree level [11{14℄ are found tobe self-onsistent and give results with a struture similar to that of twist-two observables.Their extension to higher orders in �s, inluding a proper treatment of soft gluon exhangehas not been ahieved yet, and the study [15℄ suggests that suh an extension will not be{ 4 {



trivial. In setions 5.4 and 8.3 we will investigate observables where the leading terms inthe expansions (1.2) and (1.4) oinide and have the oeÆient l3;2 = h2;3. The twist-twoquantity h2;3 is readily omputed, and its omparison with the result for l3;2 obtained witha andidate fatorization formula will shed light on low-qT fatorization at twist three.In experimental analyses one often has to integrate over the observed qT in orderto aumulate statistis. One may simply integrate an observable over q2T or onsiderweighted observables like R dq2T (qT =M)pF (qT ; Q) with some power p. If in turn the mea-surement of the qT -dependene su�ers from large unertainties, then both a di�erentialobservable and weighted integrals will be a�eted with large errors, so that the simpleintegral R dq2T F (qT ; Q) may be the best quantity to onsider from an experimental pointof view. For the theoretial analysis it is important to identify the relative importane ofthe di�erent qT regions in an integrated observable, and to larify their interplay if severalregions are important. Our results will allow us to address this question at the level ofpower ounting.Our paper is organized as follows. In the next setion we de�ne the struture funtionsfor SIDIS, whih are the observables we study in detail in this work. To set the stage, wereall in setion 3 some important results for SIDIS taken di�erential in qT but integratedover the angular distribution of the observed hadron, realling in partiular the foundationsof qT resummation in this ontext. In setion 4 we ollet the well-known results of thealulation of SIDIS with qT �M in ollinear fatorization at leading order in �s, and thenapproximate these results for qT � Q. In setion 5 we take the opposite path, realling theresults for SIDIS with qT � Q and approximating them for qT �M . For this we need thebehavior of distribution and fragmentation funtions at high transverse momentum, and wewill derive the orresponding power behavior of these funtions based on general grounds.In setion 6 we will see for whih observables the alulations of the two previous setionsmath for intermediate qT and for whih ones they do not. The onsequenes for integratedobservables are disussed in setion 7. Whereas in setion 5 we derive the power behaviorfor all struture funtions introdued in setion 2, we give in setion 8 expliit resultsfor those observables that appear at twist two in the high-qT regime. The omparison ofthe high-qT with the low-qT expressions will allow us to draw some onlusions about theunsolved problem of qT resummation for angular distributions, as well as the possibility ofextending low-qT fatorization to twist three. The main results of our work are summarizedin setion 9, and some tehnial details are given in the appendies.2. Struture funtions in semi-inlusive deep inelasti satteringThe physial proess we investigate in this work is semi-inlusive DIS,`(l) + p(P )! `(l0) + h(Ph) +X; (2.1)where ` denotes the beam lepton, p the proton target, and h the observed hadron, withfour-momenta given in parentheses. We allow for polarization of beam and target, butrestrit ourselves to the ase of an unpolarized �nal state, i.e. to the situation in whihh has spin zero or where its polarization is not observed. The orresponding observables{ 5 {
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Figure 1: De�nition of azimuthal angles for semi-inlusive deep inelasti sattering in the targetrest frame [23℄. Ph? and S? are the transverse parts of Ph and S with respet to the photonmomentum.over a variety of situations with di�erent types of power behavior we wish to disuss.Many of them have been measured in experiment, see [16{21℄ and the reent review in [22℄.Working in the one-photon exhange approximation, we de�ne the photon momentumq = l � l0 and its virtuality Q2 = �q2. We use the onventional variables for SIDISx = Q22P � q ; y = P � qP � l ; z = P � PhP � q ; (2.2)and write M and Mh for the respetive masses of the proton target and the produedhadron h. We take the limit of large Q2 at �xed x, y, z, and throughout this paper weneglet orretions in the masses of the hadrons or the lepton.It is onvenient to disuss the experimental observables for SIDIS in a frame where Pand q ollinear. We de�ne the transverse part P �h? of P �h as orthogonal with respet to themomenta P and q. Likewise, we de�ne the transverse part S�? of the spin vetor S� of thetarget, as well as its longitudinal projetion Sk along P �. We further de�ne the azimuthalangles �h and �S of P �h and S� with respet to the lepton plane in aordane with theTrento onventions [23℄, as shown in Fig. 1. Covariant expressions for the quantities justdisussed an be found in [14℄. Finally, we write �e for the longitudinal polarization of theinoming lepton, with �e = 1 orresponding to a purely right-handed beam.The lepton-hadron ross setion an then be parameterized as [14℄d�dx dy dz d�S d�h dP 2h? = �2xQ2 y2 (1 � ")��FUU;T + "FUU;L +p2 "(1 + ") os�h F os �hUU + " os(2�h)F os 2�hUU+ �ep2 "(1 � ") sin�h F sin�hLU+ Sk �p2 "(1 + ") sin�h F sin�hUL + " sin(2�h)F sin 2�hUL �
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+ Sk�e �p1� "2 FLL +p2 "(1 � ") os�h F os �hLL �+ jS?j � sin(�h � �S)�F sin(�h��S)UT;T + "F sin(�h��S)UT;L �+ " sin(�h + �S)F sin(�h+�S)UT + " sin(3�h � �S)F sin(3�h��S)UT+p2 "(1 + ") sin�S F sin�SUT +p2 "(1 + ") sin(2�h � �S)F sin(2�h��S)UT �+ jS?j�e �p1� "2 os(�h � �S)F os(�h��S)LT +p2 "(1 � ") os�S F os�SLT+p2 "(1 � ") os(2�h � �S)F os(2�h��S)LT �� ; (2.3)where � is the �ne struture onstant and " the ratio of longitudinal and transverse photonux, " = 1� y1� y + y2=2 : (2.4)The 18 struture funtions F on the r.h.s. depend on x, Q2, z and P 2h? and enode thestrong-interation dynamis of the hadroni subproess � + p ! h + X. Their �rst andseond subsript respetively spei�es the polarization of the beam and the target. In thestruture funtions FUU;T , FUU;L and F sin(�h��S)UT;T , F sin(�h��S)UT;L , the third subsript refers tothe transverse and longitudinal polarization of the photon.To alulate the SIDIS struture funtions it is onvenient to use light-one oordinateswith respet to the diretions of the relevant hadron momenta. We introdue light-likevetors n+ and n� with n+ � n� = 1 suh that, up to mass orretions, n+ is proportionalto P and n� proportional to Ph. A resalingn+ ! �n+ ; n� ! ��1n� (2.5)orresponds to boosts in the ollinear diretion. The o�-ollinearity of the proess is de-termined by the vetor q�T = q� + (1� r)xP � � P �h =z (2.6)with r = q2T =Q2. For ease of notation we denote the length of this vetor byqT = ��q�T qT��1=2 ; (2.7)so that q2T is positive. There is a simple relation between the transverse momentum q�T ofthe photon with respet to the hadrons and the transverse momentum P �h? of the produedhadron with respet to the photon and proton: P �h? = �zq�T � 2rzxP �. The SIDIS rosssetion di�erential in q2T instead of P 2h? is hene equal to z2 times the r.h.s. of (2.3).3. Fatorization and qT resummationIn this setion we reall some important results for the desription of hard proesses withmeasured qT , in partiular the fatorization for low qT formulated by Collins and Soper [24℄{ 7 {



and its onnetion to the proedure of transverse momentum resummation by Collins, Soperand Sterman [1℄. In the following we refer to these authors as CS and CSS, respetively.In the next two subsetions we fous on the unpolarized SIDIS ross setion di�erential inqT but integrated over the azimuthal angle �h.3.1 Collins-Soper fatorizationIn the work of CS, fatorization was derived for the prodution of bak-to-bak jets ineletron-positron annihilation, or more spei�ally for e+e� ! A+B+X, where A and Bare two hadrons belonging to opposite-side jets in the e+e� .m. In general the momentaPA and PB of the two hadrons are not exatly bak-to-bak beause of their reoil againstthe additional partiles X produed in the proess. The ross setion, or equivalently thehadron tensor, depends on the transverse momentum q�T of the virtual photon w.r.t. thehadrons in the .m. of A and B, whih is the analog of q�T introdued for SIDIS in (2.6).For qT � Q the CS paper derived a fatorized expression of the hadron tensor, whih isa onvolution in transverse momentum of a soft fator U and two fragmentation funtionsDA=a1 and DB=�a1 for the fragmentation of a quark or antiquark into A or B. In additionthere is a hard-sattering fator H, whih does not depend on any transverse momentum.To be spei�, Eq. (7.14) in [24℄ gives the following expression for the hadron tensor:W ��e+e� / Tr�P=A� P=B�	 ��He+e��z�1A �1=2A ; z�1B �1=2B ���2 Xa e2a Z d2pT d2kT d2lT� Æ(2)(pT + kT + lT � qT )DA=a1 (zA; p2T ; �A)DB=�a1 (zB ; k2T ; �B)U(l2T ) + : : : ; (3.1)where : : : stands for terms that either vanish after integration over the azimuthal angle of qTor are power suppressed in 1=Q. The index a runs over avors of quarks and of antiquarkswith frational harge ea. For onsisteny within the present paper we have slightly hangednotation ompared with CS.1 The individual fators H, DA=a1 , DB=�a1 , and U depend on anultraviolet fatorization sale �, whih we have not displayed for brevity. The derivationby CS is done in an axial gauge spei�ed by a spaelike vetor v, and the dependeneof individual fators on this vetor is through the parameters �A = �(2PA � v)2=v2 and�B = �(2PB � v)2=v2. More generally, �A and �B serve as ut-o�s for rapidity divergenesand in a gauge-invariant de�nition of the fragmentation funtions arise from path-orderedexponentials involving the vetor v, see e.g. [25{27℄. The hadron tensor as a whole is ofourse independent of �A and �B , so that the dependene on these parameters has to anelbetween the fragmentation funtions and the hard-sattering fator. The fat that the softfator de�ned by CS does not depend on them is less obvious.21We write D1 instead of P for the fragmentation funtions, v instead of n for the gauge �xing vetor,and n+, n� instead of vA, vB for the light-one diretions. Our normalization ondition for U di�ers fromthe one of CS by a fator (2�)2.2The four-vetors entering the onstrution of U are v, n+, n� and lT . The gauge vetor v used byCS has a zero transverse omponent, so that the only salar produts involving v are v � n+, v � n� andv2 = 2(v � n+)(v � n�). Gauges related by saling v ! �v are equivalent, whih leaves only a possibledependene on v �n+=v �n�. This is however exluded by boost invariane, whih requires that U must nothange under the resaling (2.5). { 8 {



In this work we will assume that the fatorization of Collins and Soper also holds forthe hadron tensor in SIDIS at low qT . Suh an expression, albeit with some di�erenes, hasbeen obtained by Ji, Ma and Yuan [26℄, and another relevant investigation has reently beenmade by Collins, Rogers and Sta�sto [27℄, whih gives us on�dene that our assumptionan be justi�ed. The analog of (3.1) then readsW ��SIDIS / Tr�P=� P=h�	 ��HSIDIS�x�1=2; z�1�1=2h ���2 Xa e2a Z d2pT d2kT d2lT� Æ(2)(pT � kT + lT + qT ) fa1 (x; p2T ; �)Da1(z; k2T ; �h)U(l2T ) + : : : ; (3.2)where one of the fragmentation funtions has been replaed by the distribution funtionfa1 for quarks or antiquarks in the target. In the following we refer to the fatorizationexpressed in (3.2) as \CS fatorization". The result (3.2) gives rise to just one struturefuntion, FUU;T = ��H�x�1=2; z�1�1=2h ���2 Xa xe2a Z d2pT d2kT d2lT� Æ(2)�pT � kT + lT + qT � fa1 (x; p2T ; �)Da1(z; k2T ; �h)U(l2T ) ; (3.3)where we reall that H, f1, D1, and U depend on a renormalization sale �. For brevitywe omit the subsript \SIDIS" in H from now on.In the intermediate region M � qT � Q, one an go further sine at least oneof the momenta pT , kT , lT in (3.3) is of order qT and hene large ompared with thenonperturbative sale M . For large transverse momentum the soft fator U(l2T ) an bealulated order by order in �s, whereas fa1 (x; p2T ; �) and Da1(z; k2T ; �h) are respetivelygiven as onvolutions of perturbatively alulable kernels with the ollinear distributionand fragmentation funtions fa1 (x) and Da1(z). We will follow this path in setions 5and 8. The auray of this proedure is however limited: up to mass orretions one has(��h)1=2 = x�1zQ2, and the power ounting in the CS derivation requires both � and �hto be of order Q2, so that the perturbative expressions for fa1 (x; p2T ; �) and Da1(z; k2T ; �h)involve large logarithms ln(Q=qT ). Let us sketh how these logarithms are resummed inthe work of CS. The variation of D1 with �h is desribed by the Collins-Soper equation,whih gives �D1=� ln �h as a onvolution in transverse momentum of an evolution kernelwith D1. Analogous onsiderations apply to the distribution funtion fa1 (x; p2T ; �). For theFourier transformed funtions~fa1 (x; b2; �) = Z d2pT eib�pT fa1 (x; p2T ; �) ;eDa1(z; b2; �h) = Z d2kT eib�kT Da1(z; k2T ; �h) (3.4)one obtains ordinary di�erential equations, whose solutions an be written as~fa1 (x; b2; �) = f̂a1 (x; b2) exp��bS 0(x�1=2; b)� ;eDa1(z; b2; �h) = bDa1(z; b2) exp��bS 0(z�1�1=2h ; b)� ; (3.5)
{ 9 {



where the Sudakov fator bS is onstruted from the evolution kernel. The struture funtionin (3.3) an then be rewritten asFUU;T = ��H(Q;Q;�)��2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��2bS 0(Q; b)� eU(b2;�)� f̂a1 (x; b2;�) bDa1(z; b2;�) (3.6)with eU(b2;�) = Z d2lT eib�lT U(l2T ;�) : (3.7)Here we have �xed the gauge parameters as x2� = z�2�h = Q2 and restored the dependeneon the renormalization sale �. The Sudakov fator bS 0 resums large logarithms of Qb, whihorresponds to large logarithms of Q=qT in FUU;T sine the typial values of b in the integral(3.6) are of order 1=qT .For b � 1=M the fators bS 0, eU , f̂a1 and bDa1 an be expanded in perturbation theory.To avoid large logarithms of �b in this expansion, one should take the renormalization saleof order 1=b. A ommon hoie in the MS sheme is � = b0=b with b0 = 2e�E � 1:1, whereE is the Euler onstant. This simpli�es a number of perturbative oeÆients: in partiularthe O(�s) term in the soft fator is then zero, and one has eU(b2; � = b0=b) = 1+O(�2s) upto power orretions in Mb. The small-b expansion for the distribution and fragmentationfuntions reads f̂a1 (x; b2;� = b0=b) =Xi � bC inai 
 f i1�(x;� = b0=b) ;z2 bDa1(z; b2;� = b0=b) =Xj �Dj1 
 bC outja �(z;� = b0=b) ; (3.8)where the indies i and j run over quarks, antiquarks and the gluon. f i1(x;�) and Dj1(z;�)are the usual ollinear distribution and fragmentation funtions, and 
 denotes the familiaronvolution in longitudinal momentum frations,�C 
 f�(x;�) = Z 1x dx̂̂x C(x̂;�) f� x̂x ;�� ;�D 
 C�(z;�) = Z 1z dẑ̂z D� ẑz ;��C(ẑ;�) : (3.9)With the sale hoie � = b0=b we �nd large logarithms of Qb in jHj2 = 1 +O(�s). Thesean readily be resummed using the renormalization group equation for this fator, whihallows one to write jH(Q;Q;� = b0=b)j2 = jH(Q;Q;� = Q)j2 e� bR(Q;b). In the intermediateregion M � qT � Q one therefore hasFUU;T = ��H(� = Q)��2 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��bS(Q; b)� eU(� = b0=b)�Xi � bC inai 
 f i1�(x;� = b0=b) Xj �Dj1 
 bC outja �(z;� = b0=b) (3.10)
{ 10 {



with bS = 2bS 0 + bR. Here we have used that for dimensional reasons H(Q;Q;�) dependson Q only in the ombination Q=�, so that the only Q-dependene in H(Q;Q;� = Q) isthrough the argument of the running oupling. An analogous statement holds for the b-dependene in eU(b2;� = b0=b) at small b. The result (3.10) only involves the usual ollineardistribution and fragmentation funtions, together with fators H, bS, eU , bC in, bC out whoseperturbative expansions are free of large logarithms.3.2 Collins-Soper-Sterman resummationWe now turn to the region of large qT �M , where one an evaluate the hadron tensor instandard ollinear fatorization. To leading order in �s we haveFUU;T = 1Q2 �s(2�z)2 Xa xe2a Z 1x dx̂̂x Z 1z dẑ̂z Æ� q2TQ2 � (1� x̂)(1 � ẑ)x̂ ẑ �� �fa1� x̂x�Da1� ẑz�C(�q!qg)UU;T + fa1� x̂x�Dg1� ẑz�C(�q!gq)UU;T + fg1� x̂x�Da1� ẑz�C(�g!q�q)UU;T �(3.11)with power orretions in M=qT . The hard-sattering oeÆients CUU;T for the indiatedpartoni subproesses are funtions of x̂, ẑ, and qT=Q, and will be given in setion 4.Approximating (3.11) for qT � Q one obtainsFUU;T = 1q2T �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ �Pqq 
 fa1 + Pqg 
 fg1 �(x)Da1 (z)� (3.12)with power orretions in qT=Q and in M=qT . The fator L is de�ned asL�Q2q2T � = 2CF ln Q2q2T � 3CF ; (3.13)and Pqq, Pgq, Pqg are the DGLAP splitting funtions at lowest order in �s, given in (4.29)below. We see that a large logarithm of Q2=q2T appears in the �xed-order alulationwhen qT � Q. Corresponding logarithms at higher orders in �s spoil the onvergene ofthe perturbative series. Collins, Soper and Sterman [1℄ have shown that these logarithmsexponentiate and that their resummation results in a fatorized expression, whih we willrefer to as \CSS fatorization". The disussion in the CSS paper is given for the rosssetion of Drell-Yan prodution di�erential in q2T but integrated over the azimuthal angleof qT . The orresponding result for SIDIS is given in [28℄ and an be written asFUU;T = 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��S(Q; b)��Xi �C inai 
 f i1�(x;� = b0=b) Xj �Dj1 
 Coutja �(z;� = b0=b) : (3.14)
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This form is valid forM � qT � Q. It an be extended to the full large-qT region, qT �M ,by adding the di�erene between (3.11) and its approximated form (3.12). For furtherdisussion of this mathing of resummed and �xed-order terms we refer to [29℄. As an aside,we remark that at qT � Q the longitudinal struture funtion FUU;L is parametrially ofthe same order as FUU;T , whereas at qT � Q it is suppressed by a relative fator q2T=Q2.One may hene also apply the CSS presription to FUU;T + "FUU;L or to FUU;T + FUU;Linstead of FUU;T . The term to whih resummation is applied is the same in all ases, andonly the unresummed part of the �xed-order alulation is di�erent.Let us see how (3.14) redues to (3.12) at leading order in �s. The Sudakov fatorS(Q; b) reads S(Q; b) = Z Q2b20=b2 d�2�2 �A��s(�)� ln Q2�2 +B��s(�)�� (3.15)with A (�s) = 1Xk=1Ak ��s� �k ; B (�s) = 1Xk=1Bk ��s� �k ; (3.16)where A1 = CF and B1 = �3CF =2. The oeÆient funtions C in an be written asC inai(x;� = b0=b) = Æai Æ(1� x) + 1Xk=1C in (k)ai (x) ��s� �k ; (3.17)and an analogous expansion holds for Cout. Using the DGLAP equation we an evolve f1from the sale � = b0=b to � = Q and obtainfa1 (x; b0=b) = fa1 (x;Q)� �s2� �Pqq 
 fa1 + Pqg 
 fg1 �(x) ln b2Q2b20 +O(�2s) : (3.18)Evolving D1 in the same way and putting everything together, we obtainFUU;T = 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT "1� �s2� CF �ln2 b2Q2b20 � 3 ln b2Q2b20 �#� "fa1 (x;Q)� �s2� �Pqq 
 fa1 + Pqg 
 fg1 �(x) ln b2Q2b20 + �s� Xi �C in (1)ai 
 f i1�(x)#� "Da1(z;Q)� �s2� �Da1 
 Pqq +Dg1 
 Pgq�(z) ln b2Q2b20 + �s� Xj �Dj1 
 Cout (1)ja �(z)#+O(�2s) : (3.19)The running of �s is irrelevant at the auray of this expression. Expanding the squarebrakets one obtains a term fa1 (x;Q)Da1 (z;Q) of order �0s, whih is independent of b andhene gives a ontribution proportional to Æ(2)(qT ) to FUU;T . Sine we require qT � M ,this term must be disarded. For the same reason, the �rst-order oeÆients C in (1)ai andCout (1)ja do not ontribute to FUU;T at order �s. With the integrals [30℄Z d2b e�ib�qT ln2 b2Q2b20 = �8�q2T ln Q2q2T ; Z d2b e�ib�qT ln b2Q2b20 = �4�q2T (3.20)
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we reover the lowest-order result (3.12) from (3.19). Going to higher orders in �s,one �nds that the term with A1 in the Sudakov fator produes the leading logarithms�ks ln2k�1 �Q2=q2T � in FUU;T , whereas the next-to-leading logarithms �ks ln2k�2 �Q2=q2T � alsoreeive ontributions from the oeÆient B1, from the one-loop running of �s, and fromthe leading-order evolution of f1(x) and D1(z).The �s expansion of the CSS fatorization formula (3.14), whih we have just performedto leading order, allows one to determine the funtions S, C in and Cout at a given order inperturbation theory by omparing with the ollinear �xed-order alulation in the high-qTregion. The funtional form of (3.14) was however derived by CSS using the result of CSfatorization in the intermediate region M � qT � Q. This is not immediately obviousby omparing (3.14) with (3.10), beause in the former expression there is no hard andno soft fator. As pointed out in [31℄, one an however introdue the hard fator into theCSS expression. jH(� = Q)j2 depends on Q only through the argument of �s, so thatone an use the renormalization group equation for the running oupling to rewrite it asjH(� = Q)j2 = jH(� = b0=b)j2 eR(Q;b). Sine C in and Cout in (3.14) are also evaluated at� = b0=b, we an ombine fators into C 0 in = jHj�1 C in and C 0 out = jHj�1 Cout at thatsale, whih givesFUU;T = ��H(� = Q)��2 1z2 Xa xe2a Z d2b(2�)2 e�ib�qT exp��S 0(Q; b)��Xi �C 0 inai 
 f i1�(x;� = b0=b) Xj �Dj1 
 C 0 outja �(z;� = b0=b) : (3.21)with S 0 = S + R. Identifying C 0 in = eU1=2 bC in, C 0 out = eU1=2 bC out, and S 0 = bS, we �nallyreognize the CS result (3.10).The upshot of this disussion is essential in our ontext: the CSS derivation of trans-verse momentum resummation for FUU;T and its analogs in e+e� annihilation and Drell-Yanprodution makes use of two fats:1. CS fatorization is valid for these observables at qT � Q, and2. in the intermediate region M � qT � Q its results math those obtained fromollinear fatorization in the high-qT region.In suh a situation one an go further and onstrut expressions that interpolate betweenthe fatorization formulae for low and for high qT and are thus valid for all qT , from qT = 0to qT � Q. A presription for this had already been given by CSS, and a number ofdi�erent methods have been proposed later; see [32℄ for a disussion and referenes. Weshall not dwell on this issue here.3.3 Azimuthal dependene and polarizationSo far we have disussed only FUU;T . The situation for the other unpolarized struturefuntions, FUU;L, F os�hUU , F os 2�hUU , annot readily be inferred from the results of CSS. Insetion 4 we will see that the splitting funtions appearing in the analogs of (3.12) for{ 13 {



these three struture funtions di�er from the usual ones. Sine the splitting funtions arerelevant at next-to-leading logarithmi auray, it is not lear if and how resummationbeyond the leading logarithmi approximation an be performed in this ase. An analogousobservation for the angular distribution in Drell-Yan prodution has been made in [9℄.(Resummation at leading logarithmi auray has reently been onsidered in [10℄.)The extension of CSS fatorization for polarized sattering is relatively straightforwardas long as one integrates over the azimuthal angle of qT . For SIDIS this onerns the stru-ture funtion FLL, and a orresponding alulation in this framework has been presentedin [32℄. CSS resummation for Drell-Yan prodution with longitudinal beam polarizationhas been investigated in [33, 34℄. A detailed disussion of polarization in the ontext ofollinear fatorization an be found in [35℄.In the present work we will apply CS fatorization to polarized sattering and to theSIDIS ross setion depending on the azimuth �h, as has been done in [36℄. The fatorsP=fa1 (x; p2T ; �) and P=hDa1(z; k2T ; �h) in the fatorization formula (3.2) are then replaedby the quark-quark orrelator �a(x;pT ; �) and the fragmentation orrelator �a(z;kT ; �h),whih will be de�ned in setion 5.1. The result readsW ��SIDIS / ��H�x�1=2; z�1�1=2h ���2 Xa e2a Z d2pT d2kT d2lT Æ(2)(pT � kT + lT + qT )�Tr f�a(x;pT ; �)��a(z;kT ; �h)�g U(l2T ) (3.22)and gives rise to a number of spin and azimuthal asymmetries at leading order in 1=Q.It is an open question if and how CS fatorization an be extended to power suppressedobservables, at least to those oming with one fator of 1=Q. The alulations of our workare relevant to this question, as we shall see in setion 8.3.A struture funtion that has reeived muh attention in the literature is F sin(�h��S)UT;T ,whih arises when the initial hadron is transversely polarized. At low qT this observableis nonzero due to the Sivers e�et [37℄: the CS fatorization formula (3.22) gives a leadingontribution in 1=Q proportional to the Sivers funtion f?1T (x; p2T ) [12℄. At high qT onean desribe the same observable in terms of the Qiu-Sterman mehanism [38℄. The or-responding alulation uses ollinear fatorization at twist-three level, i.e., F sin(�h��S)UT;T issuppressed by 1=qT ompared with FUU;T . Calulating the behavior of the Sivers funtionat high transverse momentum, the analysis in [7, 8℄ has shown that at order �s the twodesriptions exatly math in the intermediate region M � qT � Q. The situation is thesame for the orresponding asymmetry in Drell-Yan prodution [5,6,8℄. This suggests thatfor F sin(�h��S)UT;T and its Drell-Yan analog it should be possible to use the CSS resummationproedure for large logarithms of Q=qT , as disussed in [39℄.In the following setions we will derive the power behavior for the full set of SIDIS stru-ture funtions, both in the low-qT and in the high-qT desription. This will in partiulardetermine whether or not one an envisage to use CSS resummation for these observables.To determine the power behavior we an restrit our alulations to the leading order in�s. Sine we will not attempt to atually perform a resummation of large logarithms,we need not go to b-spae as in (3.10) or (3.14). We will instead diretly work with themomentum-spae version (3.22) of CS fatorization. In partiular, we shall reover the{ 14 {



�xed-order result (3.12) for the intermediate region when expanding the CS expression(3.3) of FUU;T in the limit qT �M .4. From high to intermediate qTIn this setion we present the alulation of SIDIS struture funtions at high transversemomentum in terms of ollinear distribution and fragmentation funtions, and then takethe limit qT � Q. We give expliit results for the six struture funtions appearing atleading twist and order �s. For seven of the remaining struture funtions, whih are ofhigher twist or higher order in �s, there exist studies in the literature, whih we will brieydisuss.In the high-qT alulation, the generation of large transverse momentum is desribedby hard-sattering proesses at parton level. The diagrams for the ontributions at �rstorder in �s are shown in Fig. 2. We introdue the saling variablesx̂ = Q22pa � q ; ẑ = pa � pbpa � q (4.1)for the partoni subproess, where pa is the momentum of the inoming parton and pb themomentum of the parton whih fragments into the observed hadron h. We furthermoreuse the transverse momentum q�T introdued in (2.6). Negleting mass orretions we havex̂pa = xP and pb=ẑ = Ph=z, so thatq�T = q� + (1� r) x̂p�a � p�b =ẑ (4.2)with r = q2T =Q2. The partoni Mandelstam variables are then given byŝ = (q + pa)2 = 1� x̂x̂ Q2 ; t̂ = (q � pb)2 = �1� ẑx̂ Q2 = � ẑ1� x̂ q2T ;û = (pa � pb)2 = � ẑ̂x Q2 : (4.3)
(a) (c)(a′)

pbpa

q

pbpa pa pb

qq

(b) (c′)(b′)

pb

pa

q

pa

pb

pa

pbqq

Figure 2: Feynman diagrams for the proesses �q ! qg, �q ! gq, and �g ! q�q.
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The struture funtions de�ned in setion 2 an be written as onvolutions of hard-sattering oeÆients with ollinear parton distribution and fragmentation funtions,FUU;T = 1Q2 �s(2�z)2 Xa xe2a Z 1x dx̂̂x Z 1z dẑ̂z Æ� q2TQ2 � (1� x̂)(1 � ẑ)x̂ẑ �� �fa1� x̂x�Da1� ẑz�C(�q!qg)UU;T + fa1� x̂x�Dg1� ẑz�C(�q!gq)UU;T + fg1� x̂x�Da1� ẑz�C(�g!q�q)UU;T � ;(4.4)as we have already seen in setion 3.2. We reall that a runs over avors of quarks andof antiquarks. Analogous expressions with di�erent kernels C give the struture funtionsFUU;L, F os�hUU , and F os 2�hUU . At order �s (but not at higher order) one �nds the relationFUU;L = 2F os 2�hUU : (4.5)The struture funtions FLL and F os�hLL for longitudinal target and beam polarizationare also given by expressions analogous to (4.4), with di�erent kernels C and with theunpolarized parton densities fa1 and fg1 replaed by their polarized ounterparts ga1 and gg1 .The hard-sattering oeÆients for the partoni proesses �q ! qg, �q ! gq, �g ! q�qan be omputed from the respetive diagrams (a; a0), (b; b0), (; 0) in Fig. 2, and thosefor ��q ! �qg, ��q ! g�q, �g ! �qq are idential to their ounterparts obtained by hargeonjugation. Proess by proess we have� �q ! qg CUU;T = 2CF �(1� x̂)(1� ẑ) + 1 + x̂2ẑ2x̂ẑ Q2q2T �; (4.6)Cos�hUU = �4CF �x̂ẑ + (1� x̂)(1� ẑ)� QqT ; (4.7)Cos 2�hUU = 4CF x̂ẑ; (4.8)CLL = 2CF �2(x̂+ ẑ) + x̂2 + ẑ2x̂ẑ Q2q2T �; (4.9)Cos�hLL = �4CF (x̂+ ẑ � 1) QqT ; (4.10)� �q ! gq CUU;T = 2CF �(1� x̂) ẑ + 1 + x̂2(1� ẑ)2x̂ẑ 1� ẑẑ Q2q2T �; (4.11)Cos�hUU = 4CF � x̂ (1� ẑ) + (1� x̂) ẑ � 1� ẑẑ QqT ; (4.12)Cos 2�hUU = 4CF x̂ (1� ẑ); (4.13)CLL = 2CF �2x̂+ 2(1 � ẑ) + x̂2 + (1� ẑ)2x̂ẑ 1� ẑẑ Q2q2T �; (4.14)Cos�hLL = 4CF (x̂� ẑ) 1� ẑẑ QqT ; (4.15)
{ 16 {



� �g ! q�q CUU;T = 2TR � x̂2 + (1� x̂)2 �� ẑ2 + (1� ẑ)2 � 1� x̂x̂ẑ2 Q2q2T ; (4.16)Cos�hUU = �4TR (2x̂� 1) (2ẑ � 1) 1� x̂ẑ QqT ; (4.17)Cos 2�hUU = 8TR x̂ (1� x̂); (4.18)CLL = 2TR (2x̂� 1) � ẑ2 + (1� ẑ)2 � 1� x̂x̂ẑ2 Q2q2T ; (4.19)Cos�hLL = �4TR (2ẑ � 1)1� x̂ẑ QqT (4.20)with CF = 4=3 and TR = 1=2. The relation CUU;L = 2Cos 2�hUU holds for eah individualsubproess. Our results agree with those in [32, 40℄.The behavior of the above results in the region q2T � Q2 an be obtained by rewritingthe Æ funtion in Eq. (4.4) as [41℄Æ� q2TQ2 � (1� x̂)(1� ẑ)x̂ẑ � = Æ(1 � x̂) Æ(1 � ẑ) ln Q2q2T + x̂(1� x̂)+ Æ(1 � ẑ)+ ẑ(1� ẑ)+ Æ(1 � x̂) +O� q2TQ2 ln Q2q2T � ; (4.21)where the plus-distribution is as usual de�ned byZ 1z dy G(y)(1� y)+ = Z 1z dy G(y)�G(1)1� y �G(1) ln 11� z : (4.22)We have written the hard-sattering oeÆients in (4.6) to (4.20) in a way that allows foran easy extration of the leading power behavior at small qT =Q. The result isFUU;T = 1q2T �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ �Pqq 
 fa1 + Pqg 
 fg1 �(x)Da1 (z)�; (4.23)FUU;L = 2F os 2�hUU ; (4.24)F os�hUU = � 1QqT �s2�2z2 Xa xe2a �fa1 (x)Da1 (z)L�Q2q2T �+ fa1 (x) �Da1 
 P 0qq +Dg1 
 P 0gq�(z)+ �P 0qq 
 fa1 + P 0qg 
 fg1 �(x)Da1 (z)�; (4.25)F os 2�hUU = 1Q2 �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 P 00qq +Dg1 
 P 00gq�(z)+ �P 00qq 
 fa1 + P 00qg 
 fg1 �(x)Da1 (z)�; (4.26)
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and FLL = 1q2T �s2�2z2 Xa xe2a �ga1 (x)Da1(z)L�Q2q2T �+ ga1(x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ ��Pqq 
 ga1 +�Pqg 
 gg1�(x)Da1(z)�; (4.27)F os�hLL = � 1QqT �s2�2z2 Xa xe2a �ga1 (x)Da1(z)L�Q2q2T �+ ga1(x) �Da1 
 P 0qq +Dg1 
 P 0gq�(z)+ ��P 0qq 
 ga1 +�P 0qg 
 gg1�(x)Da1(z)�: (4.28)The fator L ontains a logarithm of Q2=q2T and is given in (3.13), and the onvolutionsare de�ned in (3.9). The splitting funtions are given byPqq(x̂) = CF� 1 + x̂2(1� x̂)+ + 32 Æ(1 � x̂)� ; Pqg(x̂) = TR �x̂2 + (1� x̂)2� ;Pgq(ẑ) = CF 1 + (1� ẑ)2ẑ ; (4.29)P 0qq(x̂) = CF� 2x̂2(1� x̂)+ + 32 Æ(1 � x̂)� ; P 0qg(x̂) = 2TR x̂ (2x̂� 1) ;P 0gq(ẑ) = �2CF (1� ẑ) ; (4.30)P 00qq(x̂) = P 0qq(x̂) ; P 00qg(x̂) = 4TR x̂2 ;P 00gq(ẑ) = 2CF ẑ (4.31)for onvolutions with unpolarized distribution or fragmentation funtions, and by�Pqq(x̂) = Pqq(x̂) ; �Pqg(x̂) = TR (2x̂� 1) ; (4.32)�P 0qq(x̂) = P 0qq(x̂) ; �P 0qg(x̂) = 2TR x̂ (4.33)for onvolutions with polarized distributions. Similar results for the Drell-Yan proess havebeen obtained by Boer and Vogelsang in Ref. [9℄. We note that our P 0qq and P 00qq orrespondto P�qq in Eq. (38) of Ref. [9℄, while our P 0qg orresponds to their ~P�qg and our P 00qg to theirP 0�qg =2.Let us remark that the 1=qT power behavior of F os �hUU and F os �hLL arises as qT =q2T ,where 1=q2T omes from the t-hannel propagators in the hard-sattering graphs of Fig. 2.Likewise, the onstant qT behavior (up to ln q2T terms) of FUU;L and F os 2�hUU arises as q2T =q2T ,where the 1=q2T from the hard propagators is fully aneled by numerator fators. Weemphasize that, although they do not have a power-law divergene, the above expressionsfor FUU;L and F os 2�hUU annot be used for small qT , beause the approximations giving1=q2T for the hard propagators break down when qT <�M . In fat, angular momentumonservation requires F os �hUU and F os �hLL to vanish like qT and F os 2�hLL to vanish like q2T forqT ! 0, as shown e.g. in [42℄. { 18 {



The six FUT struture funtions for transverse target polarization vanish in the leading-twist approximation at high transverse momentum, beause they would require the ombi-nation of the transversity distribution funtion h1 with a hiral-odd ollinear fragmentationfuntion of twist two, whih does not exist for an unpolarized hadron. They are howevernonzero at twist three, where ollinear quark-gluon-quark and three-gluon orrelation fun-tions appear, so that many more diagrams than the ones in Fig. 2 need to be omputed.Suh a omputation has been performed by Eguhi, Koike and Tanaka in Refs. [43, 44℄.The results for the di�erent struture funtions involve the produt of D1 with GF and eGF ,whih are hiral-even funtions appearing in the deomposition of the quark-gluon-quarkdistribution orrelator given in (5.37). Some observables involve in addition the produt ofh1 with bEF , whih is a hiral-odd funtion appearing in the deomposition of the quark-gluon-quark fragmentation orrelator. The struture funtion F sin(�h��S)UT;T has also beenomputed in [7℄. The result di�ers from the one in [43, 44℄ beause both alulations weremissing ertain terms. With the orretions disussed in [8℄, agreement between the twogroups has been ahieved. We note, however, that the twist-three alulation of the FUTstruture funtions is presently not omplete. Terms involving bEF are only onsideredin [43℄, where they are found to ontribute to F sin(�h��S)UT;T , F sin(�h+�S)UT , and F sin�SUT . Thealulation of that work is restrited to so-alled derivative terms due to soft gluon poleontributions. The remaining soft gluon pole ontributions, as well as ontributions fromsoft fermion poles and hard poles are evaluated in [44℄, but only for GF and eGF . In [8℄it is shown that soft fermion pole ontributions from further diagrams must be added tothose results. Finally, all alulations in the literature are restrited to quark-gluon-quarkfuntions of twist three, so that three-gluon orrelators do not appear.Using the soft gluon pole and the hard pole ontributions omputed in [43,44℄ we haveextrated the leading behavior of all FUT struture funtions in the limit qT � Q. Thestruture of the results is listed in Eqs. (6.8) to (6.13) of setion 6, both for the powerlaw and for the distribution and fragmentation funtions appearing in eah observable.We have veri�ed that this struture is not hanged by the soft fermion pole ontributionsgiven in [44℄. Sine the orretions to [44℄ disussed in [8℄ onern only soft fermion poleontributions in F sin(�h+�S)UT they do not a�et the struture of (6.10) either. The sameshould hold for the remaining �ve FUT struture funtions, but this has not been hekedexpliitly.The struture funtion F sin�hLU is nonzero at twist two and order �2s. Depending on asingle polarization, it is a T -odd observable and hene requires an absorptive part in theamplitude, whih in this ase is provided by a loop in the hard-sattering subproess. Therelevant graphs have been alulated in [45℄, and numerial estimates for spei� kinematishave been given in [45, 46℄. For the struture funtions F sin�hUL and F sin 2�hUL the situationis similar, but no expliit alulation exists in the literature. There is no ontribution toF sin�hLU , F sin�hUL , F sin 2�hUL at twist three and order �s, beause the neessary T -odd termswould need to ome from twist-three quark-gluon-quark orrelators. For an unpolarized orlongitudinally polarized hadron, these are hiral-odd [43℄ and have no twist-two hiral-oddpartners in the other orrelator. From the alulation in [45℄ we an extrat the powerbehavior of F sin�hLU for qT � Q, whih we will give in Eq. (6.5).{ 19 {



5. From low to intermediate qT : power ountingIn this setion we derive the behavior of distribution and fragmentation funtions at hightransverse momentum. Plugging the results into the known low-qT expressions of theSIDIS struture funtions, we will obtain their power behavior in the intermediate regionM � qT � Q. To begin with, we speify in the next two subsetions the distribution andfragmentation funtions that will appear in our alulation.5.1 Transverse-momentum-dependent distribution and fragmentation funtionsFor the disussion of distribution and fragmentation funtions we use light-one oordinatesde�ned with respet to the momenta P and Ph, whih we already introdued at the endof setion 2. For any four-vetor a we then have the plus-omponent a+ = a � n�, theminus-omponent a� = a � n+, and the transverse part a�T = a� � a+n�+ � a�n��. Thehadron momenta readP � = P+n�+ + M22P+ n�� ; P �h = P�h n�� + M2h2P�h n�+ ; (5.1)and the spin vetor of the target an be deomposed into longitudinal and transverseomponents as S� = SL�P+M n�+ � M2P+ n���+ S�T : (5.2)The transverse-momentum-dependent quark distributions appearing in the desription ofSIDIS are de�ned from the quark-quark orrelation funtion�[U ℄ij (x; pT ) = Z d��d2�T(2�)3 eip�� hP j � j(0)U(0;�)  i(�)jP i �����+=0 ; (5.3)where p+ = xP+ and summation over olor indies is understood. The orrespondingorrelation funtion for antiquarks is obtained by replaing the quark �elds by their trans-forms under harge onjugation, see Ref. [11℄. The quark �elds in (5.3) are renormalized�elds, and the orresponding sale dependene of the orrelation funtion is given by arenormalization group equation involving the quark anomalous dimension [24℄.The gauge link U(0;�) in (5.3) is a Wilson line that onnets the quark �elds and thusmakes the orrelation funtion olor gauge invariant. In the fatorization theorems forsattering proesses, the gauge link inorporates the exhange of gluons between partonsthat move in the opposite light-one diretions n+ and n�. Consideration of gluons ollinearto the target yields Wilson lines with paths that point along n� and lead to light-onein�nity, a� = �1, where they are losed by transverse segments from 0T to �T [13, 47℄.Di�erent proesses require di�erent gauge links. In partiular, the simplest links losed ata� = �1, whih we denote by U�, give rise to the orrelators �[+℄(x; pT ) and �[�℄(x; pT )appearing in SIDIS and Drell-Yan prodution, respetively. More ompliated gauge linksshow up in other proesses [48, 49℄.When de�ned with stritly lightlike Wilson lines, the orrelator (5.3) ontains diver-genes in gluon rapidity (sometimes referred to as \endpoint singularities") and hene must{ 20 {



be modi�ed [25℄. Di�erent shemes have been disussed in the literature. One possibilityis to use paths that point in a non-lightlike diretion v instead of n� [26,27℄. Up to subtleissues we will mention in Appendix A, this is equivalent to working in axial gauge, A�v = 0,whih was used in the original sheme of Collins and Soper [24℄. In a number of di�erentshemes, the proton matrix element in (5.3) is divided by vauum expetation values ofsuitably hosen Wilson lines [27,50{52℄. The arguments in the present setion use Lorentzinvariane and power ounting, so that we need not speify the detailed hoie of sheme.As long as v is a linear superposition of n+ and n�, no new four-vetor is introdued in�(x; pT ), whih therefore depends on v only via the salar parameter � = �(2P �v)2=v2 wealready enountered in setion 3.1.The orrelation funtion (5.3) an be parameterized in terms of distributions funtionsdepending on x and p2T as [14℄�(x; pT )= 12 �f1 n=+ + f?1T ST� ���T pT�M n=+ + g1LSL5 n=+ � g1T ST �pTM 5 n=++ h1 5� S=T ; n=+�2 � h?1T ST� p(�T p�)TM2 5��; n=+�2 + h?1LSL 5� p=T ; n=+�2M + h?1 i� p=T ; n=+�2M �+ M2P+ �e� eLSL i5 + eT ST �pTM i5 + e?T ST� ���T pT�M+ f? p=TM + f?L SL pT����TM � � f?T ST� p(�T p�)T �T��M2 � + fT ST� ���T �+ g?LSL 5 p=TM + g? pT����TM 5� � g?T ST� p(�T p�)TM2 5� + gT 5 S=T+ h?T 5� S=T ; p=T �2M � hT ST �pTM 5[ n=+; n=�℄2 + hLSL 5[ n=+; n=�℄2 + h i� n=+; n=��2 �+ M22(P+)2 � : : : 	 ; (5.4)where the two-dimensional antisymmetri tensor is given by���T = �����n+�n�� (5.5)with �0123 = 1. Index pairs in parentheses indiate that the trae is subtrated in the twotransverse dimensions, p(�T p�)T = p�T p�T � 12 (pT �pT ) g��T ; (5.6)where the transverse metri tensor is g��T = g�� � n�+n��� n��n�+. The �rst eight distribu-tions in (5.4) are referred to as twist two, and the next sixteen distributions as twist three.The : : : stand for the remaining eight distributions of twist four, whih are given in [53℄.We will not need them in the following and taitly omit them in further parameterizations.Corresponding to the Dira matrix struture in the deomposition (5.4), funtions denoted{ 21 {



target polarizationunpolarized longitudinal transversef1 f? g? g1L g?L f?L f?1T f?T fT g1T g?T gT�f + + � + + � � � � + + +n 2 2 2 2 2 2 4 4 2 4 4 2h?1 h e h?1L hL eL h1 h?1T hT h?T eT e?T�f � � + + + � + + + + � �n 4 2 2 4 2 2 2 4 2 2 2 2Table 1: Behavior of distribution funtions under time reversal and in the high-pT limit. Thetime reversal fator �f is de�ned in (5.7) and the exponent n for the high-pT behavior in (5.8).with letters f , g or e, h are respetively referred to as hiral-even or hiral-odd. Funtionswith subsripts L or T appear in the parts of �(x; pT ) that depend on the longitudinalor transverse omponent of the spin vetor. (An exeption to this rule of notation is thetransversity distribution h1.)It is understood that the orrelator and eah of the funtions in (5.4) should arrya label speifying the gauge link, as well as a label for the quark avor. Time reversalonnets �[U ℄ with �[UT ℄, and in partiular �[+℄ with �[�℄. This provides relations [54℄f [+℄(x; p2T ) = �f f [�℄(x; p2T ) ; (5.7)where f stands for any of the distributions in (5.4). We all a distribution T -even if �f = +1and T -odd if �f = �1. The values of �f are given in table 1. We also antiipate in thetable the power behavior f [�℄(x; p2T ) � 1=pnT (5.8)of the distributions for pT �M , whih we shall derive in setion 5.3.Fragmentation funtions are de�ned from the orrelator�ij(z; kT ) = 12Nz XX Z d�+d2�T(2�)3 eik��� h0j U(1;�)  i(�)jh;Xiout outhh;Xj � j(0)U(0;1)j0i ������=0 ; (5.9)where k� = P�h =z and N = 3. The prefator 1=(2N) omes from averaging over thepolarization and olor of the fragmenting quark. The subsript 1 in the gauge linksindiates a spae-time point with plus-oordinate a+ = 1. The preise hoie of Wilsonlines involves the same issues we mentioned for the distribution orrelator. Aspets spei�to the ase of fragmentation funtions are disussed in [49, 50℄. Notie that fragmentationfuntions with di�erent gauge links are not related by time reversal, beause time reversaltransforms \out" states jh;Xiout into \in" states jh;Xiin, and the di�erene between thesestates amounts in general to more than just a phase.{ 22 {



For an unpolarized hadron h the deomposition of the fragmentation orrelator reads�(z; kT ) = 12 �D1 n=� +H?1 i� k=T ; n=��2Mh �+ Mh2P�h �E +D? k=TMh +H i� n=�; n=+�2 �G?kT� ���TMh 5�� ; (5.10)where the funtions on the r.h.s. depend on z and k2T . In a more expliit notation theyshould also arry a avor index.5.2 Collinear distribution and fragmentation funtionsIn appliations of ollinear fatorization, the struture of inoming hadrons is representedby the light-one distribution orrelator�ij(x) = Z d��2� eip�� hP j � j(0)Un�(0;�)  i(�)jP i�����+=0; �T=0T ; (5.11)where the gauge link Un�(0;�) onnets the quark �elds along a path in the n� diretion. Thiswould simply be the integral of the pT -dependent orrelator introdued in the previoussubsetion, �(x) = Z d2pT �[U ℄(x; pT ) ; (5.12)were it not for two ompliations. On the one hand, the orrelator (5.11) has ultravioletdivergenes due to the fat that all �eld operators are taken at the same transverse position.Their regularization and subtration gives rise to a sale dependene desribed by theDGLAP equations. Correspondingly, the integrand on the r.h.s. of (5.12) diverges like 1=p2Tat high pT , as we will see in the next subsetion, so that the pT -integral must be regularized.On the other hand, the rapidity divergenes of the pT -dependent orrelator, whih wedisussed in the previous subsetion, anel under the integral over pT [25,51℄. They requireno regularization in the ollinear orrelation funtion (5.11), whih hene is independentof the parameter �. The di�erent regularization proedures in the orrelators �(x; pT )and �(x) reet the di�erent types of subtrations required when onstruting transverse-momentum-dependent or ollinear fatorization theorems. We will shortly disuss how therelation (5.12) should be understood.The orrelation funtion (5.11) an be parameterized as�(x) = 12 �f1 n=+ + g1SL5 n=+ + h15� S=T ; n=+�2 �+ M2P+ �e� eLSL i5+ fT ST����T � + gT 5 S=T + hLSL 5[ n=+; n=�℄2 + h i� n=+; n=��2 � ; (5.13)where the distributions on the r.h.s. depend only on x. They are given byf1(x) = Z d2pT f1(x; p2T ) (5.14)
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and similarly for the other funtions, with one ommon exeption of notation,g1(x) = Z d2pT g1L(x; p2T ) : (5.15)Sine the gauge link in (5.11) is along a �nite light-like path from 0 to �, time reversalrelates the ollinear orrelator with itself, and as a onsequene fT (x) = eL(x) = h(x) = 0.This ensures that (5.12) an simultaneously hold for di�erent links U , in partiular for U+and U�, whih aording to (5.7) give pT -dependent distributions f [�℄T , e[�℄L , and h[�℄ ofopposite sign.To make the meaning of (5.12) more preise, we observe that the ombination ofEqs. (3.5) and (3.8) gives~f1(x; b; �; �) = Z d2pT eib�pT f1(x; p2T ; �; �) = f1(x;�) +O��s ln2(�b2)� (5.16)for small enough b, where we have set � = b0=b and used the perturbative expansionsbS 0 = O��s ln2(�b2)� and bC inai = Æai Æ(1 � x) + O(�s). The fator eib�pT in (5.16) regulatesthe logarithmi divergene of R d2pT f1(x; p2T ) by damping the integrand for large pT > 1=b.Alternatively one an ut o� the integral at pT = b0=b, sineZ d2pT eib�pT f1(x; p2T ; �; �) = Z d2pT ���2 � p2T � f1(x; p2T ; �; �) (5.17)up to orretions of order b2, as we will show in appendix B. We thus see that the relation(5.12) should be understood with a suitable regulator of the integral on the r.h.s. and asup to orretions of order �s. The same holds for (5.14), (5.15), and for similar integralrelations in the following. Let us remark that an extension of (5.16) to the full orrelationfuntion � has not been given in the literature.As we will see in the next subsetion, alulations at subleading power or those in-volving azimuthal asymmetries lead in the ollinear expansion to pT -weighted orrelationfuntions ��[�℄� (x) = Z d2pT p�T �[�℄(x; pT ) ; (5.18)where the Lorentz index � is restrited to be transverse, and where the same remarksabout regularization apply as for (5.12). In ontrast to �(x), the orrelator ��[U ℄� (x) doesdepend on the hoie of Wilson lines in �[U ℄(x; pT ) and hene ontains both T -even andT -odd distributions. Omitting the supersript [U ℄ for the sake of legibility, we have thedeomposition��� (x) = �M2 �f?(1)1T ST����T n=+ � g(1)1T S�T 5 n=++ h?(1)1L SL 5��T ; n=+�2 + h?(1)1 i��T ; n=+�2 �+ M22P+ �: : :	 ; (5.19)where we have only displayed the terms of leading twist and de�ned p2T momentsf?(n)1T (x) = Z d2pT � p2T2M2�nf?1T (x; p2T ) ; (5.20)
{ 24 {



and similarly for the other funtions. The funtions f?(n)1T and h?(n)1 are T -odd and thushange sign when going from ��[+℄� (x) to ��[�℄� (x).The fator p�T in (5.18) an be onverted into a derivative �� ating on the matrixelement that appears in the de�nition (5.3) of �(x; pT ). One an then express ��� (x)in terms of orrelators with either a gluon �eld or a ovariant derivative between theantiquark and quark �elds. The former is a ollinear quark-antiquark-gluon orrelationfuntion, whereas the latter an be rewritten in terms of the quark-quark orrelator �(x)using the equation of motion for the quark �eld. In this way, the p2T moments given in(5.19) an be traded for funtions of twist three, up to twist-two distributions multipliedby the quark mass [14℄.The kT -integrated fragmentation orrelator for an unpolarized hadron has the deom-position�(z) = z2 Z d2kT �(z; kT ) = 12D1 n=� + Mh2P�h �E +H i� n=�; n=+�2 � ; (5.21)where the fragmentation funtions on the r.h.s. depend on z. They are given byD1(z) = z2 Z d2kT D1(z; k2T ) ; (5.22)and similarly for the other funtions. Notie the fator z2, whih appears beause D1(z; k2T )is a probability density w.r.t. the transverse momentum k0T = �zkT of the �nal-state hadronrelative to the fragmenting quark [11, 55℄. As already disussed, time reversal invarianedoes not onstrain fragmentation orrelators, so that H(z) an be nonzero unlike its distri-bution ounterpart h(x). For the kT -weighted orrelation funtion needed in alulationsat twist three and higher, we have��� (z) = z2 Z d2kT k�T �(z; kT ) = �Mh2 H?(1)1 i��T ; n=��2 + M2h2P�h �: : :	 (5.23)with H?(n)1 (z) = z2 Z d2kT � k2T2M2h�nH?1 (z; k2T ) ; (5.24)where again � is restrited to be transverse.5.3 Distribution and fragmentation funtions at high transverse momentumWe are now ready to derive the behavior of orrelation funtions at high transverse mo-mentum. We onsider the distribution orrelator �(x; pT ) for transverse momentum pTmuh larger than the sale of nonperturbative interations. The generation of the largetransverse momentum an be desribed in perturbation theory. Tehnially, we approxi-mate �(x; pT ) in powers of 1=pT using a ollinear expansion that leads to the fatorizationof the transverse momentum dependene. To derive a formal proof of fatorization, onewould use the same tehniques as for, say, the prodution of a high-pT jet in deep in-elasti sattering. We shall not attempt this here, but limit ourselves to determining thepower-law behavior of the distribution funtions that parameterize �(x; pT ), using Lorentz{ 25 {



l l1

P

(b)

PP

(a)

P

l2

Φ Φ
α
A

p p

Figure 3: Example diagrams for the alulation of the high-pT behavior of the quark-quarkorrelator �(x; pT ). The dashed lines represent the �nal-state ut.invariane and dimensional analysis as our main tools. The expliit alulation in setion 8and the one for the Sivers funtion f?1T in [6,8℄ provide examples for the onsisteny of theollinear fatorization formalism at leading order in �s and to leading and �rst subleadingpower in 1=pT . One should, however, be aware that fatorization might break down atsome higher-order or higher-power auray.The evaluation of �(x; pT ) at lowest order in 1=pT involves diagrams as in Fig. 3a,whereas at higher orders orrelators with three or more partons appear at the bottom ofthe graphs, as shown in Fig. 3b. To set up the power ounting, we generially write p forthe hard sale and take p+; p�;pT � P+ � l+; l+1 ; l+2 � p ; (5.25)lT ; l1T ; l2T � M ; (5.26)P� � l�; l�1 ; l�2 � M2=p ; (5.27)where the mass M represents the soft sale. In (5.27) we have used that the loop momental, l1 and l2 are attahed to a soft funtion at the bottom of the graphs and thus have virtu-alities of order M2. Starting point of the alulation is the orrelation funtion dependingon the full four-momentum p,�[�℄ij (p) = Z d4�(2�)4 eip�� hP j � j(0)U�(0;�)  i(�)jP i ; (5.28)from whih we obtain �[�℄(x; pT ) = R dp��[�℄(p). We omit the supersript [�℄ for larityof notation in the next few steps, and will restore it when required later on. We restritourselves to the leading and �rst subleading order of �(x; pT ) in the 1=p expansion. To thisorder, the relevant fatorized graphs an be written as the onvolution of hard-satteringkernels and orrelation funtions in the form�(x; pT ) = Z dp�d4l H(p; l)�(l) + Z dp�d4l1 d4l2 H�A(p; l1; l2)�A�(l1; l2)+ fterms with two- and three-gluon orrelatorsg+ : : : (5.29)with : : : representing terms of higher order in 1=p. It is understood that the hard-satteringkernels H(p; l) and H�A(p; l1; l2) inlude Æ funtions putting the ut lines on shell|this{ 26 {



an readily be used to perform the integration over p�. The lower blob in Fig. 3b isparameterized by the quark-gluon-quark orrelator ��A, whih ontains the gluon potentialA� between the quark and antiquark �elds. The gluon polarization index � in (5.29) isrestrited to be transverse: the ontribution from A� gluons is power suppressed by atleast 1=p2, whereas the orresponding ontribution of A+ gluons ends up in the gauge linkof the quark-quark orrelator when the terms in the fatorization formula are arranged ina gauge-invariant manner.We now expand the hard-sattering kernels in the small momentum omponents (5.26)and (5.27). To the order we are onsidering, we an neglet l�1 , l�2 and l1T , l2T inH�A(p; l1; l2), whereas in H(p; l) we an neglet l� but must expand the lT -dependeneup to �rst order. This givesZ dp�H(p; l) = 1p+ x̂H2(x̂; p+; pT ) + lT�p+ x̂H�3 (x̂; p+; pT ) + : : : ; (5.30)Z dp�H�A(p; l1; l2) = 1p+ x̂1x̂2H�A;3(x̂1; x̂2; p+; pT ) + : : : ; (5.31)where we have introdued the plus-momentum frationsx̂ = p+= l+ ; x̂1 = p+= l+1 ; x̂2 = p+= l+2 (5.32)and hosen prefators suh that H2, H�3 and H�A;3 are invariant under longitudinal boosts,i.e. under the resaling (2.5) of n� and the orresponding hange of plus- and minus om-ponents. The onvolution (5.29) now takes the form�(x; pT )= Z dx̂̂x H2(x̂; p+; pT )Z dl� d2lT �(l) + Z dx̂̂x H�3 (x̂; p+; pT )Z dl� d2lT lT� �(l)+ p+ Z dx̂1x̂1 dx̂2x̂2 H�A;3(x̂1; x̂2; p+; pT )Z dl�1 dl�2 d2l1T d2l2T �A�(l1; l2)+ fterms with two- and three-gluon orrelatorsg+ : : : : (5.33)In the �rst two terms we reognize the ollinear quark-quark orrelators from (5.12) and(5.18), �(y) = Z dl�d2lT �(l) ; ��� (y) = Z dl�d2lT l�T �(l) (5.34)with y = l+=P+, whereas the third term involves a ollinear quark-gluon-quark orrelationfuntion ��A(y1; y2) = Z dl�1 dl�2 d2l1T d2l2T ��A(l1; l2) (5.35)with y1 = l+1 =P+ and y2 = l+2 =P+. In order for these orrelators to be gauge invariantone must reshu�e ertain piees among the di�erent terms in (5.33), as shown for instanein [13℄. On the r.h.s. of (5.34) and (5.35) this implies subtration of terms with the gluon{ 27 {



potential A� at light-one in�nity, whih we have not displayed. One also �nds that takingthe gauge link U� in �[�℄(x; pT ) leads to the orresponding path-dependent orrelators��[�℄� (y) and ��[�℄A (y1; y2) = 1iP+ ��G(y1; y2)y1 � y2 � i� (5.36)in the fatorization formula, where��G ij(y1; y2) = Z d��12� d��22� eil1��1 ei(l2�l1)��2� hP j � j(0)Un�(0;�2) gG+�(�2)Un�(�2;�1)  i(�1)jP i �����+1 =�+2 =0; �1T=�2T=0T (5.37)does not arry a supersript [�℄ beause, like �(y), it involves only Wilson lines of �nitelength along n�. We now deompose the orrelation funtions into terms of de�nite twist,�(y) = �2(y) + MP+ �3(y) + : : : ; ��� (y) =M ���;3(y) + : : : ;��A(y1; y2) = MP+ ��A;3(y1; y2) + : : : ; (5.38)where the prefators are hosen suh that �2, �3 and ��;3, �A;3 are dimensionless and in-dependent of P+. Under a longitudinal boost �3 is invariant, whereas the other orrelatorstransform like n+. Dimensional ounting readily gives H2 � 1=p2 and H3;HA;3 � 1=p3.Using p+ = xP+ and (5.32) we an then rewrite (5.33) as�(x; pT ) = Z dx̂̂x H2(x̂; p+; pT )�2� x̂x�+M �Z dx̂̂x H2(x̂; p+; pT )p+ x�3� x̂x�+ Z dx̂̂x H�3 (x̂; p+; pT )��;3�� x̂x�+ Z dx̂1x̂1 dx̂2x̂2 H�A;3(x̂1; x̂2; p+; pT ) x�A;3�� x̂x1 ; x̂x2��+ fterms with two- and three-gluon orrelatorsg+O�1=p4� ; (5.39)where the �rst term is of order 1=p2 and the terms with prefator M are of order 1=p3.To obtain the high-pT behavior of the individual distribution funtions parameterizing�(x; pT ), we need to analyze the dependene of the hard-sattering kernels on p+ and pT .The kernels arry four Dira indies, so that (5.39) expliitly reads�ij(x; pT ) = Z dx̂̂x H2;ijkl(x̂; p+; pT )�2;kl� x̂x�+ : : : ; (5.40)and similarly for the terms of order 1=p3. We an deompose H2 asH2(x̂; p+; pT ) = 1p2T �Xmn �m 
 �n tmn(x̂; p+; pT ) +Xmn �m;� 
 �n;� t��mn(x̂; p+; pT )+ ������ t����(x̂; p+; pT )� (5.41)
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with �m 2 f1; 5g and �m;� 2 f�; �5g, where the �rst matrix in the tensor produtsarries Dira indies ik and the seond one indies jl. Only an even number of  matriesappears in this deomposition, i.e., no strutures like �m;� 
 �n or �m;� 
 �n;�� , whihreets that hirality is onserved in the hard sattering kernel. The salars tmn and thetensors t��mn, t���� are dimensionless and invariant under longitudinal boosts, and thereforethey an be onstruted from g�� , �����, and the vetorsp�TjpT j ; p+n�+jpT j ; jpT jn��p+ : (5.42)Sine the tensors have an even number of indies, the fators jpT j ombine suh thatH2(x̂; p+; pT ) depends only on integer powers of 1=p2T . The same is readily shown forthe kernels H�3 (x̂; p+; pT ) and H�A;3(x̂1; x̂2; p+; pT ), whih go like 1=p3 instead of 1=p2 butinvolve one more Lorentz index in the analog of the deomposition (5.41). Analogousarguments an be given for the kernels onneted with two- or three-gluon orrelationfuntions at the bottom of the graphs (whih have two instead of four Dira indies andtwo additional Lorentz indies for the exhanged gluons) and for the kernels that appearwhen �(x; pT ) is evaluated to order 1=p4 or higher.The upshot of this argument is that the distributions parameterizing the orrelator�(x; pT ) behave like integer powers of 1=p2T for p2T � M2. Together with the onstraintsfrom dimensional ounting and Lorentz invariane, this allows us to determine the leadingpower behavior of eah distribution. Mathing the dependene on p+, we �nd for instanethat terms on the r.h.s. of (5.39) ontribute to the twist-two and twist-three parts of�(x; pT ) = �2(x; pT ) + (M=P+)�3(x; pT ) + : : : as1p2T ! �2(x; pT ) ; p�Tp+ p2T ! x�3(x; pT ) ;Mp+p2T ! x�3(x; pT ) ; Mp�Tp4T ! �2(x; pT ) ; (5.43)where we have used that 1=P+ = x=p+. Comparing with the parameterization (5.4) of�(x; pT ) we see e.g. that f?1T (x; p2T ) and g1T (x; p2T ) derease as M2=p4T . If there had beenterms going like p�T =jpT j3 on the r.h.s. of (5.39), they would instead derease as M=jpT j3.A number of seletion rules speify whih ollinear distributions an ontribute tothe high-pT behavior of a given pT -dependent distribution. Clearly, the dependene onthe target polarization must math. Beause the hard sattering onserves hirality, thehirality of distributions must math as well. Finally, we reall that the orrelator �(x; pT )depends on the gauge link and ontains terms whih are even or odd under the exhange�[+℄(x; pT ) $ �[�℄(x; pT ). The T -odd terms in �[�℄� (y) and �[�℄A (y1; y2) thus ontributeto the T -odd distributions in �[�℄(x; pT ), and vie versa. The ollinear orrelator �(y)only ontains T -even terms, but it an ontribute to T -odd distributions in �[�℄(x; pT )through graphs with absorptive parts in the hard-sattering subproess, starting at order�2s. An example is shown in Fig. 4. Graphs involving the quark-gluon-quark orrelator(suh as the one in Fig. 3b) have absorptive parts already at order �s, whih providesfurther ontributions to the T -odd part of �[�℄(x; pT ).{ 29 {



P
ΦFigure 4: Example of a diagram at order �2s, whose absorptive part gives rise to T -odd terms inthe quark-quark orrelator. The double line denotes an eikonal line originating from the gauge linkin �(x; pT ), as spei�ed in appendix A.With the time reversal properties given in table 1, we �nd that at order �s ollinearfuntions denoted by letters f , g, e, h an only ontribute to the high-pT behavior ofdistributions denoted by the same letter. Putting everything together we �ndf1 � 1p2T �sF�f1� ; g1L � 1p2T �s F�g1� ; h1 � 1p2T �sF�h1� ;xf? � 1p2T �sF�f1� ; xg?L � 1p2T �s F�g1� ;xhT � 1p2T �sF�h1� ; xh?T � 1p2T �s F�h1� (5.44)from the 1=p2 part of �(x; pT ), andf?1T � M2p4T �sF�f?(1)1T ; : : :� ; g1T � M2p4T �sF�g(1)1T ; : : :� ;h?1L � M2p4T �sF�h?(1)1L ; : : :� ; h?1 � M2p4T �sF�h?(1)1 ; : : :� ;xf?T � M2p4T �sF�f?(1)1T ; : : :� ; xg?T � M2p4T �sF�g(1)1T ; : : :� ;xfT � 1p2T �sF�f?(1)1T ; : : :� ; xgT � 1p2T �s F�g(1)1T ; : : :� ;xhL � 1p2T �sF�h?(1)1L ; : : :� ; xh � 1p2T �s F�h?(1)1 ; : : :� ;xeL � 1p2T �sF�: : :� ; xe � 1p2T �s F�xe; : : :� (5.45)from the 1=p3 part of �(x; pT ). The distributions on the l.h.s. depend on x and pT , andon the right-hand side we have onvolutions of the formF�f� = Kq 
 fa +Kg 
 fg ; (5.46)where a is the quark or antiquark avor of the pT -dependent funtions on the l.h.s. of (5.44)or (5.45). We note that at higher orders in �s one has instead a sum over all quark andantiquark avors, as in (3.8). The ontribution from gluon distributions in (5.46) is absent{ 30 {



for hiral-odd distributions. The kernels Kq and Kg are of ourse not the same for thedi�erent funtions in (5.44) and (5.45), and we use F in a generi sense. We have expliitlyalulated the hard-sattering kernels H2 and H3 de�ned by (5.30) and veri�ed that theygive nonzero ontributions for the funtions given as arguments of F in (5.44) and (5.45).By : : : we have denoted ontributions from three-parton orrelation funtions. We havenot listed the twist-three distributions parameterizing �3(x) as arguments of F , beausethey an (up to quark mass suppressed terms) be related to the funtions in ��;3(x) andto quark-gluon-quark orrelation funtions, as we remarked after Eq. (5.20). An exeptionis e(x), whih has no ounterpart in ��;3(x). Furthermore, there is no distribution in �2or ��;3 that is multiplied by SL and both T -odd and hiral-odd. At order �s and 1=p3 thehigh-pT behavior of eL(x; p2T ) an hene only be generated from the �A;3 term in �(x; pT ).The relations in (5.44) only involve ollinear funtions of twist two and those in (5.45)only ollinear funtions of twist three, orresponding to the respetive order in the 1=pexpansion of the orrelation funtion �(x; pT ). On the other hand, there are pT -dependentfuntions of twist two and twist three in both (5.44) and (5.45). In other words, the twistof the ollinear distributions and the pT -dependent distributions in the high-pT limit neednot be the same.By power ounting, the pT -dependent distributions f?L , g?, eT , e?T an reeive a on-tribution from the 1=p2 part of �(x; pT ), but expliit alulation at order �s gives a zeroresult. This readily follows from our disussion above (5.44) beause these distributionsare T -odd. Their high-pT behavior therefore starts at order �2s=p2 and readsxf?L � 1p2T �2s F�g1� ; xg? � 1p2T �2s F�f1� ;xeT � 1p2T �2s F�h1� ; xe?T � 1p2T �2s F�h1� : (5.47)There will also be ontributions to these funtions from �(x; pT ) order �s=p4, where theneessary T -odd e�ets an ome from lowest-order graphs with three- or four-parton or-relation funtions. By power ounting in 1=p, these ontributions are subleading omparedwith ones in (5.47), although they appear at lower order in the �s expansion. We omitthem in our subsequent disussion, but they an easily be restored.Expliit alulation also reveals that neither h?1T (x; pT ) nor the ombination hT (x; pT )+h?T (x; pT ) reeives ontributions at order �s and 1=p2, although this would be allowed bypower ounting. We shall not investigate the reason of this here, and simply writeh?1T � M2p4T �2s F�h1� ; xhT + xh?T � 1p2T �2s F�h1� : (5.48)Again there will also be power suppressed ontributions at lower order in �s, whih golike �s=p6 for h?1T and like �s=p4 for hT + h?T . We aution that without a full alulationof the graphs with multi-parton orrelators we annot exlude that the ontributions tothe distributions given in (5.45) vanish when all terms are added up. A orrespondingaveat applies to the �2s ontributions in (5.47) and (5.48). For �(x; pT ) at order �s and1=p2 we give omplete and expliit results in setion 8. As for the 1=p3 part of �(x; pT ),{ 31 {



the expliit alulation in [6, 8℄ gives f?1T (x; p2T ) � (M2=p4T )�sF�GF ; eGF �, where F nowdenotes two-variable onvolutions of the formZ dx̂1x̂1 dx̂2x̂2 K(x̂1; x̂2)GF� x̂x1 ; x̂x2� : (5.49)Given that f?(1)[�℄1T (x) = ��2 GF (x; x), the struture of our result for f?1T (x; p2T ) in (5.45)is hene onsistent with the full alulation.3At this point we briey return to the question of ultraviolet divergenes in ollinearorrelation funtions, whih we mentioned after (5.12). With the high-pT behavior givenin (5.44) and (5.45) one expliitly sees that the integral R d2pT �(x; pT ) diverges loga-rithmially at high pT , both for the twist-two and the twist-three part of �(x; pT ). Theorresponding ultraviolet subtrations in the ollinear orrelator �(x) result in a logarith-mi dependene on the subtration sale � for all distributions in (5.13). This dependeneis desribed by DGLAP equations, whose evolution kernels are losely related to the ker-nels appearing in the onvolutions of (5.44) and (5.45). With (5.45) one also �nds thatthe integral R d2pT p�T �2(x; pT ) diverges logarithmially. This leads to DGLAP equationsfor the p2T moments of twist-two distributions in the parameterization (5.19) of ��(x),whih have been investigated in [57℄. In ontrast, the integral R d2pT p�T �3(x; pT ) divergesquadratially in pT aording to (5.44) and (5.47). In a proper de�nition for p2T -momentsof twist-three distributions, suh as f?(1)(x) or g?(1)(x), one would hene have to deal withpower-like divergenes.In the dimensional analysis following (5.42) we have ignored that the hard-satteringkernels also depend on the regularization parameter �, whih is Lorentz invariant and hasmass dimension two. In appliations of low-qT fatorization one needs � omparable to thelarge sale, as already mentioned in setion 3.1, so that we an restrit our attention to� � p2T . Terms in the hard-sattering kernels going with a positive power of p2T=� are thennegligible. In ontrast, terms with a positive power of �=p2T would lead to a faster p2T fallo�than derived in this setion. They would orrespond to power-like rapidity divergenes in�(x; pT ). In the expliit alulations at order 1=p2 in setion 8 we will not enounter suhterms, obtaining only a modi�ation of the power-laws in (5.44) by logarithms ln(�=p2T ).A orresponding statement holds for the alulation of f?1T (x; p2T ) in [6, 8℄.The high-kT behavior of the fragmentation orrelator �(z; kT ) an be obtained infull analogy to the ase of �(x; pT ). One an readily obtain results by rossing the hard-sattering graphs alulated for the distribution funtions, replaing x! 1=z and pT ! kT .This gives D1 � 1k2T �sF�D1� ; D?z � 1k2T �sF�D1� ;H?1 � M2k4T �sF�H?(1)1 ; : : :� ; G?z � 1k2T �2s F�D1� ;3The relation between f?(1)1T and GF an be obtained by ombining (5.19) in the present work withEq. (2) in [43℄ and Eqs. (29), (40) in [13℄. Corresponding relations using di�erent parameterizations havebeen given in [56℄ and [5℄. { 32 {



Hz � 1k2T �sF�H?(1)1 ; : : :� ; Ez � 1k2T �sF�Ez ; : : :� : (5.50)Compared with their analogs (5.46), the onvolutionsF�D� = 1z2 hDa 
Kq +Dg 
Kgi (5.51)have an additional fator 1=z2, whih reets the orresponding fator in (5.21).5.4 Results for struture funtionsLet us begin this setion by realling the expressions for SIDIS struture funtions at lowqT in terms of transverse-momentum-dependent distribution and fragmentation funtions.Extending earlier work in [11, 12℄, the study [14℄ has given a omplete set of results atleading and �rst subleading order in 1=Q, i.e., at twist-two and twist-three auray. Adetailed investigation of olor gauge invariane and the appropriate hoie of gauge linkshas been given in [13℄. The alulations just quoted take into aount tree-level graphs,where gluons are restrited to be ollinear to the target or to the observed hadron h andonly appear when they are attahed to the distribution or fragmentation orrelators (seeFig. 2 in [14℄).For a ompat presentation of the results, we introdue the unit vetor ĥ = �qT =jqT jand the transverse-momentum onvolutionC�wfD� =Xa xe2a Z d2pT d2kT Æ(2)�pT �kT + qT �w(pT ;kT ) fa(x; p2T )Da(z; k2T ); (5.52)where w(pT ;kT ) is an arbitrary funtion and the sum runs over quarks and antiquarks.The results for the struture funtions appearing in (2.3) then read [14℄FUU;T = C�f1D1�; (5.53)FUU;L = O�M2Q2 ; q2TQ2�; (5.54)F os�hUU = 2MQ C�� ĥ �kTMh �xhH?1 + MhM f1 ~D?z �� ĥ �pTM �xf?D1 + MhM h?1 ~Hz ��; (5.55)F os 2�hUU = C��2 �ĥ �kT � �ĥ �pT �� kT �pTMMh h?1 H?1 �; (5.56)F sin�hLU = 2MQ C�� ĥ �kTMh �xeH?1 + MhM f1 ~G?z �+ ĥ �pTM �xg?D1 + MhM h?1 ~Ez ��; (5.57)F sin�hUL = 2MQ C�� ĥ �kTMh �xhLH?1 +MhM g1L ~G?z �+ ĥ �pTM �xf?LD1 � MhM h?1L ~Hz ��; (5.58)F sin 2�hUL = C��2 �ĥ �kT � �ĥ �pT �� kT �pTMMh h?1LH?1 �; (5.59)
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FLL = C�g1LD1�; (5.60)F os�hLL = 2MQ C� ĥ �kTMh �xeLH?1 � MhM g1L ~D?z �� ĥ �pTM �xg?LD1 + MhM h?1L ~Ez ��; (5.61)
F sin(�h��S)UT;T = C�� ĥ �pTM f?1TD1�; (5.62)F sin(�h��S)UT;L = O�M2Q2 ; q2TQ2�; (5.63)F sin(�h+�S)UT = C�� ĥ �kTMh h1H?1 �; (5.64)F sin(3�h��S)UT = C�2 �ĥ �pT � �pT �kT �+ p2T �ĥ �kT �� 4 (ĥ �pT )2 (ĥ �kT )2M2Mh h?1TH?1 �; (5.65)F sin�SUT = 2MQ C��xfTD1 � MhM h1 ~Hz �� kT �pT2MMh ��xhTH?1 + MhM g1T ~G?z ���xh?TH?1 � MhM f?1T ~D?z ���; (5.66)F sin(2�h��S)UT = 2MQ C�2 (ĥ �pT )2 � p2T2M2 �xf?T D1 � MhM h?1T ~Hz �� 2 �ĥ �kT � �ĥ �pT �� kT �pT2MMh ��xhTH?1 + MhM g1T ~G?z �+�xh?TH?1 � MhM f?1T ~D?z ���; (5.67)F os(�h��S)LT = C� ĥ �pTM g1TD1�; (5.68)F os�SLT = 2MQ C���xgTD1 + MhM h1 ~Ez �+ kT �pT2MMh ��xeTH?1 � MhM g1T ~D?z �+�xe?TH?1 + MhM f?1T ~G?z ���; (5.69)F os(2�h��S)LT = 2MQ C��2 (ĥ �pT )2 � p2T2M2 �xg?TD1 + MhM h?1T ~Ez �+ 2 �ĥ �kT � �ĥ �pT �� kT �pT2MMh ��xeTH?1 � MhM g1T ~D?z ���xe?TH?1 + MhM f?1T ~G?z ���: (5.70)In the entries for FUU;L and F sin(�h��S)UT;L we have indiated that these struture funtionsome out to be zero when the alulation inludes only terms up to order 1=Q. The{ 34 {



fragmentation funtions with a tilde are given by~D?z = D?z �D1; (5.71)~G?z = G?z � mMh H?1 ; (5.72)~Ez = Ez � mMh D1; (5.73)~Hz = Hz + k2TM2h H?1 : (5.74)Using (5.50) and negleting the small ontributions proportional to the quark mass m, wereadily see that the behavior for kT �M is the same for orresponding funtions with andwithout a tilde.The tree-level alulations in [11,13,14℄ do not take into aount soft gluon exhange orvirtual orretions involving hard loops, so that the soft and hard fators we enounteredin (3.3) and (3.22) do not appear in the onvolution (5.52). Detailed investigations offatorization for SIDIS with measured qT have reently been given in [26, 36℄ and [27, 50℄,extending the seminal work of Collins and Soper [24℄. The fatorization formulae disussedin these papers have the form (3.22) and are valid at all orders in �s but restrited to theleading order in 1=Q. Although a number of subtle issues remain to be fully lari�ed [27℄, wewill use (3.22) in the following. Sine we aim at deriving expressions at lowest nonvanishingorder in �s, we an neglet the hard fator jHj2 = 1 + O(�s). The onvolution in (5.52)should then be extended toC�wfD� =Xa xe2a Z d2pT d2kT d2lT Æ(2)�pT � kT + lT + qT �� w(pT ;kT ) fa(x; p2T )Da(z; k2T )U(l2T ) : (5.75)At high transverse momentum lT � M the soft fator behaves as U(l2T ) � �s=l2T , with aoeÆient we shall give in (8.51) below. Our normalization onvention isZ d2lT U(l2T ) = 1 +O(�s) ; (5.76)where it is understood that the integral must be suitably regularized at large lT .Whether Collins-Soper fatorization an be extended to struture funtions that areof order 1=Q is not known. We note that the study of olor gauge invariane in [13℄was limited to qT -integrated observables in this ase, and that a problem with twist-threefatorization has been found in a spetator model alulation [15℄. In the following weadopt the working hypothesis that the twist-two fatorization formula an simply be takenover at twist-three auray, using the onvolution (5.75) also for evaluating the high-qTbehavior of the 1=Q suppressed struture funtions in (5.53) to (5.70). We will return tothis point at the end of setion 8.3.We now show how to alulate the high-qT behavior of the onvolution (5.75). Atorder �s, only one of the fators f(x; p2T ), D(z; k2T ), U(l2T ) an be taken at high transverse{ 35 {



momentum. Let us �rst onsider the simple ase where w(pT ;kT ) = 1. In the region wherepT is large, we use the Æ funtion in (5.75) to perform the pT integral and approximatepT = kT � lT �qT � �qT in f(x; p2T ). The remaining integrals over kT and lT an then bearried out independently. Aording to (5.21) and our disussion after (5.16), the integralover kT gives a ollinear fragmentation funtion, up to �s-orretions that an be negletedto our auray. Likewise, the integral over lT gives unity up to �s-orretions aordingto (5.76). Sine we are onsidering the region where kT and lT are small ompared with qTthe integrals over these momenta should be suitably ut o�, as is required for (5.21) and(5.76) to make sense. Repeating these arguments for the ases where kT or lT are large,we obtain Z d2pT d2kT d2lT Æ(2)�pT � kT + lT + qT � f(x; p2T )D(z; k2T )U(l2T )� f(x; q2T ) D(z)z2 + f(x)D(z; q2T ) + f(x) D(z)z2 U(q2T ) : (5.77)For nontrivial funtions w(pT ;kT ) the alulation is slightly more involved. Instead ofapproximating e.g. pT = kT � lT � qT � �qT , we need to Taylor expand the funtions ofpT around �qT . We take as an example the onvolution C��kT �pT �h?1 H?1 � appearing inF os 2�hUU and onsider the region where pT is large. We perform the integral over pT usingthe Æ funtion and obtainZ d2kT d2lT H?1 (z; k2T )U(l2T ) �k2T � kT � lT � kT �qT � h?1 �x; (kT � lT � qT )2 �� Z d2kT d2lT H?1 (z; k2T )U(l2T )� �k2T � kT � lT � kT �qT � �h?1 �x; q2T )� 2�kT �qT � lT �qT � ��q2T h?1 �x; q2T )�+ : : :� Z d2kT H?1 (z; k2T ) �k2T h?1 �x; q2T ) + 2�kT �qT �2 ��q2T h?1 �x; q2T )�+ : : := 2M2h H?(1)1 (z)z2 �h?1 �x; q2T ) + q2T ��q2T h?1 �x; q2T )�+ : : : (5.78)where both terms in square brakets behave as 1=q4T . The : : : represent ontributions fromthe regions where kT or lT is large, whih are of the same order in 1=qT .As we see in (5.47), (5.48), and (5.50), the leading power behavior of some distributionor fragmentation funtions omes with a fator �2s. At this order, one must also take intoaount regions of integration in (5.75) where two out of the three momenta pT , kT , lT arelarge, but it turns out that these do not ontribute to the �2s terms given in the following.Using the high-transverse-momentum behavior in (5.44) to (5.48) and (5.50), we obtainFUU;T � 1q2T �sF�f1D1� ; (5.79)F os�hUU � 1QqT �sF�f1D1� ; (5.80)
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F os 2�hUU � M2q4T �sF�h?(1)1 H?(1)1 ; : : :� ; (5.81)F sin�hLU � 1QqT �2s F�f1D1� ; (5.82)F sin�hUL � 1QqT �2s F�g1D1� ; (5.83)F sin 2�hUL � M2q4T �sF�h?(1)1L H?(1)1 ; : : :� ; (5.84)FLL � 1q2T �sF�g1D1� ; (5.85)F os�hLL � 1QqT �sF�g1D1� ; (5.86)F sin(�h��S)UT;T � Mq3T �sF�f?(1)1T D1; : : :� ; (5.87)F sin(�h+�S)UT � Mq3T �sF�h1H?(1)1 ; : : :� ; (5.88)F sin(3�h��S)UT � Mq3T �2s F�h1H?(1)1 ; : : :� ; (5.89)F sin�SUT � MQq2T �sF�f?(1)1T D1; h1H?(1)1 ; : : :� ; (5.90)F sin(2�h��S)UT � MQq2T �sF�f?(1)1T D1; : : :� ; (5.91)F os(�h��S)LT � Mq3T �sF�g(1)1T D1; : : :� ; (5.92)F os �SLT � MQq2T �sF�g(1)1T D1; h1 Ez ; : : :� ; (5.93)F os(2�h��S)LT � MQq2T �sF�g(1)1T D1; : : :� : (5.94)Here either the parton distributions or the fragmentation funtions are onvoluted withkernels Ki or Li :F�fD� = 1z2 Xa;i e2a h�Ki 
 f i�(x)Da(z) + fa(x) �Di 
 Li�(z)i ; (5.95)where the sum runs over quarks and antiquarks for a and over quarks, antiquarks andgluons for i. As we will see in setion 8, these kernels ontain logarithms of Q=qT . Theirorigin is the dependene of f1(x; p2T ) or D1(z; k2T ) on � or �h, whih we taitly omittedin (5.75). When resummed to all orders in �s in the way we skethed in setion 3, theselogarithms an lead to a substantial modi�ation of the power laws in (5.79) to (5.94).A numerial study of these e�ets on azimuthal asymmetries in Drell-Yan prodution hasbeen performed in [58℄.We note that for the 1=Q suppressed struture funtions in (5.79) to (5.94), ontribu-tions from U(l2T ) taken at lT � �qT are power suppressed or have the same power behavior{ 37 {



as ontributions where either pT � �qT or kT � qT . For these struture funtions, thepower behavior at high qT hene remains the same if we simply ignore the soft fator andwork with the tree-level onvolution (5.52) instead of (5.75).6. Comparing results at intermediate qTWe an now ompare the results for the region M � qT � Q obtained in the low-qTalulation of the previous setion with those obtained in the high-qT alulation. As wementioned in setion 4, not all struture funtions have been alulated in the high-qTpiture. For the ases where results are available, we �ndFUU;T � 1q2T �sF�f1D1� ; (6.1)FUU;L � 1Q2 �sF�f1D1� ; (6.2)F os�hUU � 1QqT �sF�f1D1� ; (6.3)F os 2�hUU � 1Q2 �sF�f1D1� ; (6.4)F sin�SLU � 1QqT �2s F�f1D1� ; (6.5)FLL � 1q2T �sF�g1D1� ; (6.6)F os�hLL � 1QqT �sF�g1D1� ; (6.7)F sin(�h��S)UT;T � Mq3T �sF�GFD1; eGF D1�; (6.8)F sin(�h��S)UT;L � MQ2qT �sF�GFD1�; (6.9)F sin(�h+�S)UT � Mq3T �sF�h1 bEF �; (6.10)F sin(3�h��S)UT � MQ2qT �sF�GFD1; eGFD1�; (6.11)F sin�SUT � MQq2T �sF�GFD1; eGF D1; h1 bEF �; (6.12)F sin(2�h��S)UT � MQq2T �sF�GFD1; eGF D1�: (6.13)The symbol F in (6.1) to (6.7) has the same meaning as in (5.95), whereas for the termsinvolving the three-parton orrelation funtions GF and eGF we haveF�GD� = 1z2 Xa;i e2a h�Ki 
Gi�(x)Da(z) +Ga(x; x) �Di 
 Li�(z)i ; (6.14)where the two-variable onvolution �Ki
Gi�(x) is of the form (5.49). The terms involvingthe three-parton fragmentation funtion bEF in (6.10) and (6.12) are de�ned in analogy to(6.14). { 38 {



The results in (6.1) to (6.4) and (6.6) to (6.7) are diretly taken from our expressions(4.23) to (4.28), whereas the result for F sin�hLU in (6.5) has been extrated from the alula-tion in [45℄. The form of the FUT struture funtions in (6.8) to (6.13) an be obtained bytaking the limit qT � Q of the results of Eguhi et al. [43,44℄, with the aveats disussed insetion 4. We note that the results of [43,44℄ also ontain terms involving the produt h1 bEFin F sin(�h��S)UT;T , as well as terms involving GFD1 or eGFD1 in F sin(�h+�S)UT . However, theseontributions behave like M=(Q2 qT ) for qT � Q and are thus power suppressed omparedwith the terms given in (6.8) and (6.10).Let us �rst disuss the unpolarized struture funtions. Comparing the high-qT results(6.1) to (6.4) with the low-qT results (5.79) to (5.81), we �nd that at intermediate qT thepower behavior of both FUU;T and F os�hUU agrees in the two alulations. We shall see insetion 8.3 that in the ase of FUU;T this agreement extends to the expliit expression of thestruture funtion at order �s. By ontrast, the leading power behavior obtained for F os 2�hUUin the intermediate region is not the same in the low- and the high-qT alulations. In fat,the two results (6.4) and (5.81) desribe two di�erent physial mehanisms, sine the low-qTalulation involves hiral-odd distribution and fragmentation funtions, whereas the high-qT alulation involves hiral-even ones. Finally, the longitudinal struture funtion FUU;Lonly appears at order 1=Q2 in the low-qT alulation and is hene beyond the aurayof the results given in setion 5.4. We remark that it is far from lear whether small-qTfatorization still holds at twist-four level, given that even the twist-three ase is not fullyunderstood.At this point we wish to disuss the alulation of the unpolarized struture funtions atlow transverse momentum in the parton model [59℄, where intrinsi transverse momentumis inluded in distribution and fragmentation funtions and the kinematis is taken suhthat the quarks in the parton-level subproess �q ! q are on shell. Using Eqs. (4) and(32) of [59℄ and expanding in 1=Q, we obtain FUU;T = C�f1D1� as in (5.53), whereas up torelative orretions in 1=Q the other unpolarized struture funtions readF os�hUU = �2MQ C� ĥ �pTM f1D1� ;F os 2�hUU = 4M2Q2 C�2 (ĥ �pT )2 � p2T2M2 f1D1� ; FUU;L = 4M2Q2 C� p2TM2 f1D1� ; (6.15)with the tree-level onvolution C de�ned in (5.52). The modulations in os�h and os 2�hobtained in this alulation are often referred to as Cahn e�et [2, 3℄. Taking the limitqT � M of the expressions in (6.15) we �nd the same power behavior as in the high-qTexpressions (6.2) to (6.4). However, the high-qT behavior of (6.15) omes only from thehigh-pT tail of f1 but not from the high-kT tail of D1. It hene only involves terms ofthe form (Ki 
 f i1)Da1 , with the same kernels Ki for F os�hUU , F os 2�hUU , and FUU;L. Thisreadily implies that at intermediate qT the parton-model results (6.15) do not math withthe expliit results (4.24) to (4.26) of the high-qT alulation.We remark that the high-qT limit of the full twist-three result (5.55) for F os �hUU omes{ 39 {



from the hiral-even terms�2MQ C� ĥ �kTM f1 ~D?z + ĥ �pTM xf?D1� : (6.16)As observed in [14℄, this oinides with the parton model result (6.15) if one makes theWandzura-Wilzek approximation, i.e., if one sets to zero the funtions ~D? = D? � zD1and x ~f? = xf? � f1, whih are related to quark-gluon-quark orrelation funtions by theequation of motion for the quark �eld. We will see in setion 8 that for qT � M thesefuntions are in fat not negligible ompared with D1 and f1, so that the approximationsleading to (6.15) are not adequate in this limit. In a similar way, one may understand theparton model results for FUU;L and F os 2�hUU as part of the (unknown) omplete twist-fourexpression in a low-qT alulation. They have the orret power behavior to math theresults (4.24) and (4.26) of the high-qT alulation, but do not reprodue all terms in theseresults. We note that F os 2�hUU has the form (1.6) disussed in the introdution. The termwith oeÆient l2;4 is given by the low-qT result (5.81), the term with h2;4 by the high-qTexpression (4.26), whereas the parton-model result (6.15) ontributes to the subleadingterm l4;2 in the low-qT power ounting sheme.Several phenomenologial analyses, for instane those in [60{64℄, have used the partonmodel expressions for the unpolarized struture funtions together with the high-qT results(4.23) to (4.26). We point out that in these papers a Gaussian behavior f1(x; p2T ) /exp[�ap2T ℄ and D1(z; k2T ) / exp[�Ak2T ℄ is assumed for the distribution and fragmentationfuntions appearing in the parton model alulation. Suh an approah di�ers from theone taken in the present work, where the power-law behavior of f1(x; p2T ) and D1(z; k2T ) atlarge transverse momentum is retained and expliitly alulated using perturbation theory.Turning now to polarized observables, we �nd that the struture funtions FLL andF os �hLL have the same power behavior in the high- and low-qT alulations, as do theirunpolarized ounterparts FUU;T and F os �hUU . As in the unpolarized ase, we will see insetion 8.3 that FLL mathes exatly at order �s in the two alulations. Our low-qT result(5.82) for the T -odd struture funtion F sin�SLU has the orret struture to math the limit(6.5) of the alulation at high qT and order �2s in [45℄. One may expet that our low-qTresult (5.83) for F sin�SUL would also math with a high-qT alulation at the same order, butwere are not aware of suh a alulation in the literature.For transverse polarization observables we ompare Eqs. (6.8) to (6.13) with (5.87) to(5.91) and see that four out of six struture funtions have a mathing power behavior,namely F sin(�h��S)UT;T , F sin(�h+�S)UT , F sin�SUT , and F sin(2�h��S)UT . The distribution and fragmenta-tion funtions appearing in the respetive results are ompatible as well, given that f?(1)1T isrelated with GF and H?(1)1 with bEF . As already mentioned in setion 3.3, the expliit low-and high-qT alulations of F sin(�h��S)UT;T in [7, 8℄ found exat mathing at order �s for thisobservable. Looking at the remaining two FUT struture funtions, we see that F sin(�h��S)UT;Lis beyond the auray of the low-transverse-momentum results. This is just as for FUU;L,whih is the only other struture funtion in (2.3) that involves purely longitudinal polar-ization of the virtual photon [14℄. The struture funtion F sin(3�h��S)UT does not math inthe low- and high-qT alulations. As in the ase of F os 2�hUU , the low-transverse-momentum{ 40 {



result involves hiral-odd funtions, whereas the high-transverse-momentum expression in-volves hiral-even ones. The low-qT result (5.89) for F sin(3�h��S)UT an potentially math ahigh-transverse-momentum alulation at twist three and order �2s, and the high-qT result(6.11) ould math with a low-qT alulation at twist four. Both types of alulation arebeyond the urrent state of the art.To the best of our knowledge, F os(�h��S)LT , F os �SLT and F os(2�h��S)LT have not beenomputed in the high-qT approah. From the overall fator M in (5.92) to (5.94) we anonly onlude that these low-qT results an potentially math with those of a high-qTalulation at twist-three auray.In table 2 we ollet the results for the leading power behavior of all struture funtionswe have disussed. We notie that for several observables the twist of the low-qT and thehigh-qT alulation is not the same, whih is reminisent of a similar observation we madefor the high-pT behavior of distribution funtions in setion 5.3.6.1 Interpolating from low to high qTLet us now see how one an pratially proeed when the leading terms in the low- and high-qT desriptions of an observable do not math in the intermediate region. As an examplewe take the unpolarized struture funtion F os 2�hUU . We denote its low-qT approximationgiven in (5.56) by Los 2�hUU , and its high-qT approximation (4.26) by Hos 2�hUU . Sine in theintermediate region the two expressions desribe distint ontributions to the ross setion,one may onsider to use F os 2�hUU � Los 2�hUU +Hos 2�hUU (6.17)as an approximation for this observable. The quality of this approximation an be assessedfrom the power behavior of its terms in the di�erent regions:Los 2�hUU � q2T=M4 for qT <�M ; (6.18)Los 2�hUU �M2=q4T for qT �M ; (6.19)Hos 2�hUU � 1=Q2 for all qT ; (6.20)where the behavior in (6.18) reets that Los 2�hUU must vanish like q2T for qT ! 0 due toangular momentum onservation [42℄. In the intermediate regionM � qT � Q both termsin (6.17) are required: together they give an approximation with relative orretions of orderM2=q2T or q2T=Q2. The relative weight of the two terms in this region is Los 2�hUU =Hos 2�hUU �M2=q2T �Q2=q2T and thus varies from values above to values below 1. As an aside, let usomment on the use of a transverse-momentum-dependene like h?1 (x; p2T ) / exp[�p2T ℄and H?1 (z; k2T ) / exp[�Ck2T ℄, whih is often taken in phenomenologial analyses. Whereasat small transverse momentum a Gaussian behavior of distribution and fragmentationfuntions is found to give a good desription of data in many situations, it misses theperturbative tails of these funtions. As a result it does not give a good approximationof F os 2�hUU at intermediate qT . For M � qT <� pMQ the ontribution (6.19) from theperturbative tails is atually dominant, and for pMQ <� qT � Q it is only suppressedompared with (6.20) by a fator muh larger than M2=q2T .{ 41 {



low-qT alulation high-qT alulation leading powersobservable twist order power twist order power mathFUU;T 2 �s 1=q2T 2 �s 1=q2T yesFUU;L 4 2 �s 1=Q2F os �hUU 3 �s 1=(QqT ) 2 �s 1=(QqT ) yesF os 2�hUU 2 �s 1=q4T 2 �s 1=Q2 noF sin�hLU 3 �2s 1=(QqT ) 2 �2s 1=(QqT ) yesF sin�hUL 3 �2s 1=(QqT )F sin 2�hUL 2 �s 1=q4TFLL 2 �s 1=q2T 2 �s 1=q2T yesF os �hLL 3 �s 1=(QqT ) 2 �s 1=(QqT ) yesF sin(�h��S)UT;T 2 �s 1=q3T 3 �s 1=q3T yesF sin(�h��S)UT;L 4 3 �s 1=(Q2 qT )F sin(�h+�S)UT 2 �s 1=q3T 3 �s 1=q3T yesF sin(3�h��S)UT 2 �2s 1=q3T 3 �s 1=(Q2 qT ) noF sin�SUT 3 �s 1=(Qq2T ) 3 �s 1=(Qq2T ) yesF sin(2�h��S)UT 3 �s 1=(Qq2T ) 3 �s 1=(Qq2T ) yesF os(�h��S)LT 2 �s 1=q3TF os �SLT 3 �s 1=(Qq2T )F os(2�h��S)LT 3 �s 1=(Qq2T )Table 2: Leading power behavior of SIDIS struture funtions in the intermediate region M �qT � Q, orresponding to the expansions in (1.2) and (1.4), respetively. Empty �elds indiatethat no alulation is available. The spei�ation of twist 4 for FUU;L and F sin(�h��S)UT;L reets thatthese observables are zero when alulated at twist-two and twist-three auray.For large qT � Q the ansatz (6.17) an be used as well: the low-qT alulation isnot valid in this region, but the term Los 2�hUU is power suppressed by M2=Q2 omparedwith the leading term Hos 2�hUU , whih itself provides an approximation of F os 2�hUU up toM2=Q2 orretions. Adding Los 2�hUU in this region hene does not spoil the auray ofthe desription. Likewise, the high-qT alulation is not justi�ed for qT � M , but in thisregion the term Hos 2�hUU is suppressed byM2=Q2 ompared with the orret approximationLos 2�hUU . However, one annot use (6.17) for qT ! 0 sine Hos 2�hUU does not vanish like q2T .To repair this, one may instead takeF os 2�hUU � Los 2�hUU + �� q2TM2�Hos 2�hUU (6.21)with an interpolating funtion �(r) that satis�es �(r) � r for r ! 0 and �(r)� 1 � r�1 for{ 42 {



r � 1. A simple hoie is �(r) = r=(1 + r), but obviously there are other possibilities.An often onsidered observable is the azimuthal asymmetryAos 2�hUU = "F os 2�hUUFUU;T + "FUU;L : (6.22)Depending on qT we an approximate its denominator using the high-qT expressionHUU;T+"HUU;L from (4.23) and (4.24) or the low-qT result LUU;T given in (5.53). Sine FUU;L issuppressed by 1=Q2 for qT � Q, we do not need the unknown low-qT expression for thisstruture funtion. Using LUU;T � 1=M2 for qT <�M ; (6.23)LUU;T � 1=q2T for qT �M ; (6.24)HUU;T + "HUU;L � 1=q2T for all qT (6.25)together with (6.18) to (6.20), we �nd thatAos 2�hUU � "Los 2�hUULUU;T + "Hos 2�hUUHUU;T + "HUU;L (6.26)gives a good approximation of the asymmetry in the full qT range. In the intermedi-ate region, the denominators of the two terms in (6.26) oinide up to terms of orderM2=q2T or q2T =Q2 and approximate FUU;T + "FUU;L with that preision. As disussedabove, both the low-qT and the high-qT ontributions are important in the intermediateregionM � qT � Q (where again one �nds that with a Gaussian ansatz for the transverse-momentum-dependene of distribution and fragmentation funtions, the low-qT term wouldnot be orretly desribed). For qT � Q the low-qT term is power suppressed and mayhene be kept in (6.26). For qT <�M , the high-qT term in the asymmetry is suppressedby a relative fator of M2=Q2 ompared with the low-qT term and does not degrade thequality of the approximation (6.26) in the limit qT ! 0. An additional suppression fatoras in (6.21) is therefore not required. Realling the disussion after Eq. (4.33), we anunderstand why "Hos 2�hUU =(HUU;T + "HUU;L) has the orret qT ! 0 limit required byangular momentum onservation: the propagator fators 1=q2T that lead to an unphysialbehavior of the individual struture funtions anel in this ratio.Let us �nally remark that the disussion in this subsetion is at the level of powerounting arguments. When using (6.21) or (6.26) in pratie, one an expliitly hekwhether the terms that are out of their region of validity (the L terms for qT � Q and theH terms for qT <�M) are numerially small ompared with the leading ones.7. Integrating over qT7.1 Behavior of integrated and weighted observablesUp to now we have foused on the qT -dependene of the struture funtions F (Q; qT ).As we mentioned in the introdution, observables that are integrated over qT , with or{ 43 {



without a weighting fator (qT =M)p, an be preferable to observables di�erential in qT forexperimental reasons. Without dwelling on suh pratial issues, we now use our results ofthe previous setions for disussing the theoretial interpretation of integrated observables.As a shorthand notation we introdueDD�qTM �pF (Q; qT )EE = �z2 Z q2max0 dq2T �qTM �pF (Q; qT ) ; (7.1)where qmax is the upper kinemati limit of qT , to be treated as a quantity of order Q in thepower ounting. The prefator has been hosen for later onveniene|note that �z2dq2Torresponds to d2Ph?.To make the notion of \intermediate transverse momentum" more preise, we introduetwo sales �M2 and Q2 suh that � � 1,  � 1, and �M2 < Q2. In the intermediateregion �M2 < q2T < Q2 the results of both the low-qT and the high-qT alulationsare then valid, and one an use their respetive limiting expressions given in setions 5.4and 6. It is easy to determine the power-law behavior of the ontributions from the regionsq2T < �M2 and q2T > Q2 to an integrated observable. For a single term in the generallow-qT and high-qT expansions (1.1) and (1.3), we obtain1M2 Z �M20 dq2T �qTM �p �qTQ �n�2ln�MqT � � �MQ �n�2 ; (7.2)1M2 Z q2maxQ2 dq2T �qTM �p �MqT �nhn�qTQ � � �MQ �n�2�p (7.3)from straightforward dimensional analysis. The Q-dependene of the integrals an thusbe established without knowledge of the funtions ln(qT =M) and hn(qT =Q): it is diretlydetermined by the twist n in the low-qT ase (7.2), and by the twist n and the weightingpower p in the high-qT ase (7.3). We observe in partiular that for p = 0, i.e. withoutweighting, the twist-two terms in both the low- and high-qT alulations give ontributionsto the integral that stay onstant for Q ! 1, whereas higher-twist terms die out in thatlimit. For p > 0 the ontribution from the high-qT region is enhaned: a twist-two term inthe low-qT alulation will then only dominate the integral over all qT if for the observablein question a suÆient number of terms with low twist in the high-qT result are zero.As a preparation for the disussion of azimuthal and polarization asymmetries let us�rst take a loser look at the familiar struture funtions FUU;T and FUU;L. With thebehavior FUU;T � 1=q2T in the intermediate region (obtained in both the low- and high-qTalulations), we obtain Z Q2�M2 dq2T FUU;T � ln�� Q2M2� : (7.4)For the integral in the low-qT domain q2T < �M2 we have the generi power-law behaviorgiven in (7.2) with n = 2 and p = 0. Using in addition that FUU;T � 1=q2T at the upperend of the integration region, we haveZ �M20 dq2T FUU;T � ln ��0 (7.5)
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with some number �0 � 1. Likewise, we an use that FUU;T � 1=q2T at the lower end ofthe integration region in the high-qT domain q2T > Q2, and getZ q2maxQ2 dq2T FUU;T � ln 0 (7.6)with some 0 � 1. In the omplete integral hhFUU;T ii all three regions in (7.4) to (7.6)thus ontribute at leading power in 1=Q, and the dependene on the arti�ial separationparameters � and  anels as it should. We note that, sine we are onerned with powerbehavior in this setion, we have not taken into aount logarithms of Q=qT in the high- orlow-qT results for FUU;T , whih would modify the logarithms on the r.h.s. of (7.4) to (7.6).To alulate the integrated struture funtion one must not double ount the ontribu-tions from the low-qT and high-qT alulations in the intermediate region. Sine the resultsof the two alulations oinide there, one may simply swith from one to the other desrip-tion at a suitable point, say at q2T = Q2. We an now make ontat with the standarddesription of qT -integrated SIDIS in the ollinear fatorization framework, where hhFUU;T iiis expressed in terms of the ollinear funtions f1(x) and D1(z). Let us in this frameworktake �2 = Q2 for the fatorization sale and onsider the Born graph as well as the realand virtual �s-orretions, i.e., the one-loop graphs where a gluon either does or does notross the �nal-state ut. Loosely speaking, the Born term then orresponds to the sumof (7.4) and (7.5), and the real orretions to (7.6). The virtual orretions orrespond tothe hard fator jHj2 in the Collins-Soper fatorization formula (3.3), whih we negleted insetion 5.3 when extrating results at lowest order in �s. The logarithm of Q2 in (7.4) or-responds to the sale dependene of the ollinear distribution and fragmentation funtions,whereas the -dependene in (7.6) orresponds to an expliit logarithm ln(Q2=�2) in thereal orretions. At the tehnial level, however, ollinear fatorization is typially imple-mented by using dimensional regularization instead of a transverse-momentum uto�. Thereal orretions are then integrated down to qT = 0, whereas ollinear distribution and frag-mentation funtions are de�ned from integrals R d2�"pT f1(x; p2T ) and R d2�"kT D1(x; k2T )over the full transverse-momentum region. Subtrations de�ned for instane by the MSpresription are then performed, whih on one hand ensure that there is no double ount-ing and on the other hand remove terms orresponding to logarithmi divergenes in thephysial limit "! 0. Sine the inoming and outgoing parton momenta are approximatedas ollinear to the assoiated hadron momenta, the Born term and the virtual orretionsappear with a fator Æ(2)(qT ) in the alulation.For the longitudinal struture funtion FUU;L the situation is quite di�erent. Usingthe same proedure as for FUU;T we obtainZ Q2�M2 dq2T FUU;L � �1� �M2Q2 � �  ; (7.7)Z q2maxQ2 dq2T FUU;L � 0 �  � 1 (7.8)from the result (6.2) of the high-qT alulation. For the seond step in (7.7) we have as-sumed that (�M2)=(Q2) is suÆiently small ompared to 1|otherwise the orresponding{ 45 {



integral beomes small simply beause its integration region shrinks to zero. After theseond step in (7.8), the dependene on  no longer expliitly anels in the sum of the twointegrals, but this leads to no inonsisteny beause (7.7) is negligible ompared with (7.8).One easily sees that the parton-model approximation (6.15), whose power behavior agreeswith the high-qT result in the intermediate region, gives a result suppressed as M2=Q2when integrated over the low-qT domain q2T < �M2. We thus �nd that the integratedstruture funtion hhFUU;L ii is dominated by large qT � Q and an be alulated from thehigh-qT result alone. Moreover, one an integrate this result down to qT = 0, sine theontribution from q2T < �M2 is power suppressed by M2=Q2 and thus of the same order asthe auray of the result in the high-qT region. Put di�erently, one an use the high-qTresult extrapolated to q2T < �M2 instead of the (unknown) low-qT result when evaluatingthe integrated longitudinal struture funtion. This is just what is done in the standardalulation using ollinear fatorization, where the �rst nonvanishing ontribution to thisobservable starts at order �s. The integration over all qT of the high-qT expression forFUU;L is onvergent and simply removes the Æ funtion in the analog of (4.4). No subtra-tion is neessary, and orrespondingly no dependene on the fatorization sale � arises atorder �s.Let us now turn to the struture funtions that desribe the �h-dependene of the un-polarized ross setion. In table 3 we see that the integrated struture funtion hhF os �hUU iiis dominated by large transverse momenta qT , whereas the region where the low-qT al-ulation is valid ontributes only as a power orretion of order M=Q. The ondition(�M2)=(Q2) < 1 implies p�M=Q < p � 1, so that the fator p� annot ompen-sate the suppression by M=Q. An important onsequene is that hhF os�hUU ii is not a goodobservable to study the transverse-momentum-dependent distribution and fragmentationfuntions appearing in the low-qT result (5.55). An appropriate observable for this purposeis the struture funtion di�erential in qT . If integration over qT is required by statistis,one should impose a suitable upper uto� on the integral. Aording to table 3, the depen-dene of the integral on this uto� is not negligible and must hene expliitly be kept in thetheoretial alulation. Note that in order not to introdue an arti�ial �h-dependene, theuto� should be imposed on q2T , or equivalently on P 2h?, but not on a transverse momentumw.r.t. the lepton beam axis.Integrated observables whih are weighted with a suitable power of qT=M have thedesirable property that the transverse-momentum onvolutions (5.52) in the low-qT resultsfatorize into separate integrals over either distribution or fragmentation funtions [12,65℄.With ĥ = �qT =qT one readily �nds from (5.55) that R dq2T (qT =M)F os�hUU formally fa-torizes into terms involving the p2T -moments f?(1)(x) and h?(1)1 (x) and orresponding k2T -moments of fragmentation funtions. However, this deonvolution only takes plae if oneintegrates over all qT up to in�nity. This is learly inadequate beause (qT =M)F os�hUU be-omes onstant for qT � M . A reetion of this is the fat that the p2T -moment f?(1)(x)involves a quadrati divergene at large pT , as we already noted in setion 5.3. Moreover,we see in table 3 that the ontribution from the low-qT region to hh(qT =M)F os�hUU ii is powersuppressed by M2=Q2 ompared with the ontribution from qT � Q, so that this observ-able is even less well suited to study small qT than the unweighted struture funtion.{ 46 {



low qT intermediate qT high qTf(qT ) �M2Z0 dq2T f(qT ) Q2Z�M2 dq2T f(qT ) q2maxZQ2 dq2T f(qT )FUU;T ln� ln�� Q2M2� ln 1FUU;L M2Q2 �  1F os�hUU MQ p� p 1qTM F os�hUU MQ �  QM QMF os 2�hUU (low qT ) 1 1�(high qT )  1q2TM2 F os 2�hUU (low qT ) ln� ln�� Q2M2�(high qT ) 2 Q2M2 Q2M2F sin(�h��S)UT;T , F sin(�h+�S)UT 1 1p� 1p MQqTM F sin(�h��S)UT;T , qTM F sin(�h+�S)UT ln� ln�� Q2M2� ln 1F sin�SUT , F sin(2�h��S)UT MQ ln� MQ ln�� Q2M2 � MQ ln 1q2TM2 F sin�SUT , q2TM2 F sin(2�h��S)UT MQ �  QM QMTable 3: Behavior of seleted observables integrated over di�erent regions of q2T . It is assumed that�� 1,  � 1 and that (�M2)=(Q2) is suÆiently small ompared to 1. In ases where the low-qTand high-qT alulations do not math in the intermediate region, their respetive ontributions aregiven in separate rows. The low-qT entry for FUU;L orresponds to the parton-model approximationin (6.15).Conversely, the weighted struture funtion is a good observable for studying large qT . Thehigh-qT expression for F os�hUU depends on the same ollinear funtions f1(x) and D1(z) asFUU;T but involves di�erent hard-sattering kernels, so that F os�hUU provides an additionalobservable if one aims, for instane, at separating the fragmentation funtions for di�erentquark and antiquark avors and the gluon, or at testing the adequay of the theoretialdesription. Up to orretions of order M2=Q2 one an evaluate hh(qT =M)F os �hUU ii from{ 47 {



the high-qT result alone, whih in addition may be integrated down to qT = 0. One thenobtains a simple expression, just as in the analogous ase of hhFUU;L ii. The unweightedintegral hhF os �hUU ii is less attrative for studying the high-qT result sine the ontributionfrom the low-qT region is only suppressed byM=Q. To evaluate that ontribution is diÆultin pratie as it ontains transverse-momentum-dependent distribution and fragmentationfuntions that are poorly known. If the weighted integral and the di�erential struturefuntion are a�eted with large experimental unertainties, one may instead have to on-sider the integral of F os �hUU with a lower uto� on qT . This was for instane done in [17℄and [62, 66℄.As disussed in the previous setion, the struture funtion F os 2�hUU reeives ontribu-tions from the low-qT and high-qT alulations whih do not math in the intermediateregion and have distint dynamial origins, given that they respetively involve hiral-odd and hiral-even distribution and fragmentation funtions. As we see in table 3, bothmehanisms ontribute to the integrated struture funtion at leading power, with onlymoderate ontributions from intermediate qT . For alulating the integrated struturefuntion it is appropriate to add the ontributions from the two mehanisms. Further-more, it is onsistent to perform the qT -integral over the entire kinematial region for bothmehanisms, i.e. without introduing uto� parameters, given that ontributions from re-gions where the approahes are not valid (low qT for the high-qT alulation and vie versa)are power-suppressed by M2=Q2. This is similar to the ase of the interpolation formula(6.17) disussed in the previous subsetion, but for the integrated struture funtion theunphysial behavior of the high-qT result in the limit qT ! 0 does not matter, at least atthe level of power ounting. The weighted struture funtion hh(qT =M)2F os 2�hUU ii has beenproposed for obtaining a low-qT result in terms of the moments h?(1)1 (x) andH?(1)1 (z) of theBoer-Mulders and the Collins funtions, without any onvolution of transverse-momentum-dependent fators [12℄. Aording to table 3 this observable is, however, dominated byqT � Q and only sensitive to h?(1)1 (x) and H?(1)1 (z) at the level of M2=Q2 orretions.Suh ontributions are not under ontrol in the integrated observable, beause unalu-lated orretions of the same size appear in the high-qT region as well. Negleting M2=Q2orretions, one an evaluate hh(qT =M)2F os 2�hUU ii as an integral of the high-qT expressionover the full qT domain. In the same way as hh(qT =M)F os �hUU ii, this provides an indepen-dent observable sensitive to the twist-two funtions f1(x) and D1(z).7.2 Polarization dependeneAmong the many observables for polarized SIDIS, the struture funtions F sin(�h��S)UT;T andF sin(�h+�S)UT have reeived partiular attention in the reent literature. Aording to thelow-qT results (5.62) and (5.64), they provide aess to the Sivers funtion f?1T in the�rst and to the transversity distribution h1 and the Collins funtion H?1 in the seondase [67℄. Both struture funtions have been found to be of signi�ant size in HERMESmeasurements on a proton target [20℄.As we see in table 3, the integrated struture funtion hhF sin(�h��S)UT;T ii is dominatedby the low-qT region and an hene be used for extrating information about f?1T (x; p2T ).The high-qT region is however only suppressed by M=Q, so that it may be of advantage to{ 48 {



impose an upper uto� on the qT integral in suh analysis. The weighted struture funtionhh(qT =M)F sin(�h��S)UT;T ii reeives ontributions from both high and low qT at leading orderin M=Q. One an thus ompute the weighted integral by swithing from one to the otherformulation at some qT . To ahieve a fatorization of the transverse-momentum onvolutionin the low-qT expression, one should however integrate it over all qT up to in�nity. Sine(qT =M)F sin(�h��S)UT;T behaves as 1=q2T for qT �M , a suitable regularization is required. Thissuggests a proedure akin to the desription of hhFUU;T ii in ollinear fatorization, whihwe reviewed in the previous subsetion. As dimensional regularization preserves rotationinvariane in the transverse plane, the integral over all qT of the weighted low-qT result(5.62) turns into the produthh(qT =M)F sin(�h��S)UT;T ii = �2Xa xe2a fa?(1)1T (x;Q)Da1 (z;Q) (7.9)of ollinear funtions de�ned in the MS sheme. One an trade f?(1)1T (x) for the twist-threefuntion GF (x; x), whih appears in the high-qT alulation [7,8,44℄. In order to integratethe high-qT result down to qT = 0, one must extend it to 4� " dimensions and perform theneessary MS subtrations. Adding graphs with virtual orretions to the hard-satteringsubproess (whih give the hard fator jHj2 in the Collins-Soper formalism) one will obtaina omplete NLO result in �s. Suh a proedure would be the analog of a standard NLOomputation for integrated observables within ollinear fatorization at twist-two level.Note that (7.9) gives a onsistent approximation of the weighted struture funtion at LOin �s, in analogy to the well-known tree-level expression hhFUU;T ii =Pa xe2a fa1 (x)Da1(z).The fatorization sale � of the funtions in (7.9) has been set to Q in order to avoid largelogarithms of Q=� appearing in the �s-orretions. To leading order, the logarithmi Qdependene of the weighted struture funtion then follows from the evolution equationsfor D1(z) and f?(1)1T (x). The latter have been investigated in [57℄.The situation for the struture funtion F sin(�h+�S)UT is the same as for F sin(�h��S)UT;T sinethe power behavior of these observables oinides in both the low- and high-qT alulations.The evaluation of the weighted struture funtion in ollinear fatorization giveshh(qT =Mh)F sin(�h+�S)UT ii = 2Xa xe2a ha1(x;Q)Ha?(1)1 (z;Q) (7.10)for the Born term. The k2T -moment H?(1)1 (z) is related to the twist-three fragmentationfuntion bEF appearing at order �s. We note that aording to the high-qT results in [43,44℄the �s-orretions to both (7.9) and (7.10) involve eah of the twist-three funtions GF ,eGF , and bEF .Aording to table 3, the integrated struture funtions hhF sin�SUT ii and hhF sin(2�h��S)UT iireeive omparable ontributions from all regions of qT . Weighting the struture funtionswith (qT =M)2 one obtains integrals that an be evaluated in the high-qT formalism upto orretions of order M2=Q2, similarly to the ase of hh(qT =M)F os �hUU ii we disussedin the previous subsetion. The high-qT expressions omputed in [43, 44℄ imply thathh(qT =M)2F sin(2�h��S)UT ii is sensitive to GF and eGF , whereas hh(qT =M)2F sin�SUT ii also de-pends on bEF . Whether these observables are large enough to be measured in pratie is,of ourse, a di�erent question. { 49 {



From (5.89) we an infer that the integral of F sin(3�h��S)UT reeives a ontribution oforder 1 from low qT , whereas the high-qT result (6.11) is suppressed by M=Q. Aordingto (5.65) the integrated struture funtion hhF sin(3�h��S)UT ii may hene be used to extratinformation on h?1T (x; pT ) and on the Collins fragmentation funtion, with the same aveatwe disussed for hhF sin(�h��S)UT;T ii. To obtain an integral that is dominated by the high-qTresult up to M2=Q2 orretions, one must weight F sin(3�h��S)UT with (qT =M)3.Let us now turn to observables that involve longitudinal polarization. Similarly toF os �hUU , the lepton-heliity-dependent struture funtion F sin�hLU for an unpolarized targetreeives a ontribution of order M=Q from low qT and of order unity from high qT . It istherefore in priniple suitable for investigating the high-qT result of Hagiwara et al. [45℄.However, the ontribution from large qT omes with a fator �2s in this ase, whih may notbe suÆient for negleting power-suppressed ontributions from low qT in pratie. Fromthis point of view, it would be advantageous to weight the struture funtion with qT=M ,or to integrate over qT starting from a lower uto�.Finally, the struture funtions FLL and F os �hLL have the same power behavior as theirunpolarized ounterparts FUU;T and F os �hUU , and their disussion is analogous to the onein the previous subsetion. In partiular, the weighted integral hh(qT =M)F os �hLL ii dependson the polarized parton densities g1 and, if measurable with suÆient auray, ould beused in addition to the well-known observable hhFLL ii for disentangling the ontributionsfrom di�erent quark and antiquark avors and from the gluon.8. From low to intermediate qT : expliit alulationIn this setion we ompute the high-transverse-momentum tails of the quark distributionsin (5.44) and of the analogous fragmentation funtions. These are the funtions whihappear at lowest order in the 1=pT expansion of setion 5.3 and are hene expressed interms of ollinear funtions of twist two. While in setion 6 we identi�ed observableswhose power behavior agrees in the low- and high-qT alulations, we will then be ableto hek for seleted struture funtions whether agreement is also found for their expliitexpressions.8.1 High-pT tails of distribution funtionsLet us begin with the quark distribution funtions. We work in the original sheme ofCollins and Soper [24℄, using a spaelike axial gauge with the singularities of the gluonpropagator regulated by the prinipal value presription. The only Feynman diagramsto be evaluated are then those depited in Fig. 5a and b. For further disussion and aomparison with the alulation in Feynman gauge, we refer to appendix A.The ontribution of the quark-to-quark term shown in Fig. 5a reads�q(x; pT ) ���(5a) = 4��s(2�)3 CF Z dp� Z dl+ Æ�(l � p)2� �(l+ � p+)� d��(l � p; v) p=p2 ��q2� x̂x�� p=p2 ����� l�=0; lT=0T ; (8.1)
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µνFigure 5: Diagrams for the alulation of the leading high-pT behavior of the quark-quarkorrelator �(x; pT ) in axial gauge A � v = 0.where it is understood that p+ = xP+ and l+ = p+=x̂. As explained in setion 5.3, therestrition to leading order in 1=pT allows us to set l� and lT to zero when alulating thehard-sattering subproess, and to retain only the twist-two part �q2(x=x̂) of the ollinearquark-quark orrelator at the bottom of the graph. The gluon polarization sum in A �v = 0gauge is given by d��(q; v) = �g�� + q�v� + q�v�q �v � q�q�(q �v)2 v2 ; (8.2)where the singularities at q �v = 0 are to be regulated by the prinipal value presription.Using the Æ-funtion to perform the p� integration,Æ�(l � p)2� ��� l�=0; lT=0T = x̂2p+(1� x̂) Æ�p� + p2T2p+ x̂1� x̂� (8.3)we obtain�q(x; pT ) ���(5a) = �s(2�)2 CF 1p4T Z 1x dx̂̂x (1� x̂) d��(�l � �p; v) �p= ��q2� x̂x�� �p= ; (8.4)where we have introdued the notation�p = p+n+ � p2T2p+ x̂1� x̂ n� + pT ; (8.5)�l = p+̂x n+ (8.6)for the approximated momenta in the hard-sattering kernel. We note that the virtualityof the upper quark legs �p2 = � p2T1� x̂ (8.7)is always spaelike. The gauge �xing vetor an be written asv = v�n� � 2(P+)2 v�� n+ (8.8)with � = �(2P �v)2v2 = �2(P+)2 v�v+ ; (8.9)
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where in the seond step we have negleted M2 ompared with �. We therefore have(�l � �p) �v = (�l � �p)+v� � 2(p+)2x2� (�l � �p)�v� = 1̂x �1� x̂� � x̂21� x̂� p+v� ; (8.10)where we have introdued the parameter� = p2Tx2 � = � p2T2(p+)2 v+v� : (8.11)We now deompose the gluon polarization sum asd��(�l � �p; v) = 4Xi=1 d��(i)(�l � �p; v) ; (8.12)with d��(1)(�l � �p; v) = 1� x̂1� x̂� � x̂21�x̂ d��(�l � �p;n�) ; (8.13)d��(2)(�l � �p; v) = � x̂21� x̂ g��1� x̂� � x̂21�x̂ ; (8.14)d��(3)(�l � �p; v) = �� 2x̂p+p2T (�l � �p)�n�+ + (�l � �p)�n�+1� x̂� � x̂21�x̂ ; (8.15)d��(4)(�l � �p; v) = � 4x̂2p2T (�l � �p)� (�l � �p)��1� x̂� � x̂21�x̂ �2 : (8.16)Notie that the �rst term (8.13) is proportional to the polarization sum d��(�l � �p;n�)one would use when alulating in light-one gauge A � n� = 0. We will see shortly thatthe prefator in (8.13) regulates the divergene at x̂ = 1 whih would arise in that gauge.From the parameterization (5.13) we readily see that the twist-two part of the quark-quarkorrelator satis�es n=+�q2 = �q2 n=+ = 0, so that terms with n�+ or n�+ in d�� vanish wheninserted into (8.4). With �l being proportional to n+, we hene need only the �rst two termsand the �p��p� part of the last term in the deomposition (8.12). This gives�q(x; pT ) ���(5a) = �s(2�)2 CF 1p2T Z 1x dx̂̂x� " 1� x̂(1� x̂)2 � � x̂2 1p2T (1� x̂)2 d��(�l � �p;n�) �p= � �q2� x̂x� � �p=+ �(1� x̂)2 � � x̂2 x̂2p2T (1� x̂) �p= � �q2� x̂x� � �p=+ � (1� x̂)[(1� x̂)2 � � x̂2 ℄2 4x̂2�q2� x̂x�# : (8.17)
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To proeed we must determine the behavior of the di�erent terms in the limit x̂! 1, where�p� � (1� x̂)�1 beomes singular. Using the form (8.2) with v replaed by n�, we obtain(1� x̂)2 d��(�l � �p;n�) �p= � �q2 � �p== � (1� x̂)2 �p= � �q2 � �p=+ x̂p2Tp+ � �p= n=��q2 +�q2 n=� �p=� : (8.18)Sine the minus-omponent of �p drops out in �p= n=� and n=� �p=, the expression in (8.18) is�nite for x̂! 1. For the seond term in (8.17) we have(1� x̂) �p= � �q2 � �p= = �(1� x̂) �p= �f q1 n=+ � gq1SL5 n=+� �p= (8.19)after plugging in the parameterization of �q2 from (5.13). This ontains a piee with twofators of �p�, whih is proportional to the Dira matries n=� or 5 n=�. Aording to thedeomposition (5.4) it therefore does not ontribute to the twist-two or twist-three partsof the orrelator �(x; pT ), on whih we onentrate here. In the twist-four part of (8.1)this piee leads to a singularity at x̂ = 1, or in other words at �p� ! �1, showing thatat twist-four level the A � v = 0 gauge is insuÆient to render the integral over p� in�(x; pT ) = R dp��(p) well de�ned.In the following we take the limit p2T � �, orresponding to � � 1. The motivationfor this is that in physial proesses we need the orrelator �(x; pT ; �) for p2T � Q2 andx2� � Q2, as disussed in setion 3.1. We note that in a frame where xP+ � Q thisorresponds to v+ � v�. Aording to (8.11) the parameter p� is then proportional to thesmall angle between the quark momentum p and the hadron momentum P , with a fatorof proportionality of order 1. Notie that at this point we introdue a hierarhy in sizebetween pT and P+, whih were not distinguished in the power ounting of setion 5.3.This is similar to what we have done with the high-qT alulation of struture funtions insetion 4 : we started with the result (4.4), whih is derived without making a distintionbetween the size of qT and Q, and in a seond step we took its limit for qT � Q.For � � 1 the �rst term in the square brakets of (8.17) an be rewritten by usingthat for any funtion G(x̂) whih is regular at x̂ = 1lim�!0 PVZ 1x dx̂ 1� x̂(1� x̂)2 � � x̂2 G(x̂) = Z 1x dx̂ G(x̂)(1� x̂)+ + 12G(1) ln 1j� j ; (8.20)where the plus-distribution is de�ned as in (4.22). Fromlim�!0 PVZ 1x dx̂ �(1� x̂)2 � � x̂2 G(x̂) = 0 (8.21)we see that the seond term in (8.17) does not ontribute in the small-� limit when restritedto the twist-two and twist-three parts of �(x; pT ). In ontrast, the third term in (8.17)does ontribute, sinelim�!0 PVZ 1x dx̂ � (1� x̂)[(1� x̂)2 � � x̂2 ℄2 G(x̂) = �12G(1) : (8.22)
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Therefore, our �nal result reads�q(x; pT ) ���(5a) = �s2�2 CF 1p2T Z 1x dx̂̂x �� 1(1� x̂)+ + 12 Æ(1 � x̂) ln 1� �� (1� x̂)22p2T d��(�l � �p;n�) �p= ��q2� x̂x�� �p=� Æ(1 � x̂)�q2� x̂x�� (8.23)to leading order in 1=pT , where it is understood that we have restrited ourselves to thetwist-two and twist-three parts of the orrelator on the l.h.s. We note at this point thatif we work with a timelike axial gauge, i.e. with negative � and � in (8.8) to (8.11), weobtain the same result as in (8.23) with ln(���1) instead of ln(��1). The polarization sumd��(�l � �p; v) is then nonsingular in the whole region x � x̂ � 1, and the prinipal valuepresription in (8.20) to (8.22) is not required. A timelike vetor v was indeed used forthe onstrution of fatorization by Ji et al. [26℄, whereas arguments in favor of taking vspaelike were given by Collins and Metz in [50℄.The gluon-to-quark ontribution to the orrelation funtion omes from the diagramin Fig. 5b. Its alulation is simpler than the previous one, due to the absene of a gluonpolarization sum in axial gauge. Correspondingly, the result is independent of �. Theounterpart of the expression in (8.4) now reads�q(x; pT ) ���(5b) = �s(2�)2 TR 1p4T Z 1x dx̂̂x (1� x̂) �g;��2 � x̂x� �p= � � �l=� �p=�� �p= ; (8.24)where the twist-two part of the ollinear gluon orrelation funtion is given by�g;��2 (x) = 12xP+ n� g��T fg1 (x) + i���T SLgg1(x)o ; (8.25)see e.g. [68℄. Inserting (8.5) and (8.6) and using some Dira algebra, one �nds that theintegrand of (8.24) is �nite at x̂ = 1.From (8.23) and (8.24) we an easily projet out the ontributions to the individualterms in the deomposition (5.4) of �q(x; pT ). For the high-pT behavior of the unpolarizeddistributions we obtainf q1 (x; p2T ) = �s2�2 1p2T �L(��1)2 f q1 (x)� CF f q1 (x) + �Pqq 
 f q1 + Pqg 
 fg1 �(x)� ; (8.26)xf?q(x; p2T ) = �s2�2 12p2T �L(��1)2 f q1 (x) + �P 0qq 
 f q1 + P 0qg 
 fg1 �(x)� ; (8.27)whereas for the polarized distributions we �ndgq1L(x; p2T ) = �s2�2 1p2T �L(��1)2 gq1(x)� CF gq1(x) + ��Pqq 
 gq1 +�Pqg 
 gg1�(x)� ; (8.28)xg?qL (x; p2T ) = �s2�2 12p2T �L(��1)2 gq1(x) + ��P 0qq 
 gq1 +�P 0qg 
 gg1�(x)� ; (8.29)
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Figure 6: Diagrams for the alulation of the leading high-kT behavior of the quark-quarkfragmentation orrelator �(z; kT ) in axial gauge A � v = 0.and hq1(x; p2T ) = �s2�2 1p2T �L(��1)2 hq1(x)� CF hq1(x) + �ÆPqq 
 hq1�(x)� ; (8.30)xh?qT (x; p2T ) = �s2�2 12p2T �L(��1)2 hq1(x) + �ÆPqq 
 hq1�(x)� ; (8.31)xhqT (x; p2T ) = �xh?qT (x; p2T ) ; (8.32)where L(��1) is de�ned as in (3.13). HereÆPqq(x̂) = CF � 2x̂(1� x̂)+ + 32 Æ(1 � x̂)� (8.33)is the leading-order DGLAP splitting funtion for the transversity distribution [69℄, andthe remaining splitting funtions are given in (4.29) to (4.33). The hiral-odd quark distri-butions in (8.30) to (8.32) reeive no ontribution from (8.24) beause hirality is onservedfor the quark line in the graph of Fig. 5b.The diagrams for the high-pT behavior of the antiquark orrelation funtion ��q(x; pT )are obtained from those in Fig. 5 by reversing the diretion of the fermion lines. Theresults have the form of (8.26) to (8.32), with idential splitting funtions and with allquark distributions replaed by antiquark distributions.8.2 High-kT tails of fragmentation funtionsThe alulation of the high-transverse-momentum tails of quark fragmentation funtionsproeeds in lose analogy to the ase of distribution funtions. We nevertheless present theessential steps in this subsetion, so as to show that no problems our when going from aspaelike to a timelike situation.The Feynman diagrams to be evaluated in A �v = 0 gauge are drawn in Fig. 6. We �rstonsider the quark-to-quark ontribution of Fig. 6a. The analog of the starting expression{ 55 {



(8.1) now reads�q(z; kT ) ���(6a) = 4��s(2�)3 CF 1z Z dk+ Z dl� Æ�(k � l)2� �(k� � l�)� d��(k � l; v) k=k2 � ẑz�q2� ẑz�� k=k2 ����� l+=0; lT=0T ; (8.34)where k� = P�h =z and l� = ẑk�. The fators 1=z and ẑ=z in (8.34) arise from thede�nitions (5.9) and (5.21) of the fragmentation orrelators. We perform the k+-integrationusing Æ�(k � l)2� ��� l+=0; lT=0T = 12k�(1� ẑ) Æ�k+ � k2T2k�(1� ẑ)� (8.35)and obtain�q(z; kT ) ���(6a) = �s(2�)2 CF 1z2k4T Z 1z dẑ̂z (1� ẑ) d��(�k � �l; v) �k= ��q2� ẑz�� �k= (8.36)with �k = k2T2k�(1� ẑ) n+ + k�n� + kT ; (8.37)�l = ẑ k�n� : (8.38)The virtuality of the fragmenting quark�k2 = ẑk2T1� ẑ (8.39)is always timelike, in ontrast to its ounterpart �p2 in the distribution orrelator. For thealulation of the fragmentation orrelator, it is useful to write the gauge vetor asv = v+n+ � 2(P�h )2 v+�h n� (8.40)with �h = �(2Ph �v)2v2 = �2(P�h )2 v+v� : (8.41)In analogy to (8.10) and (8.11) we an then write(�k � �l) � v = (�k � �l)�v+ � 2(k�)2z�2�h (�k � �l)+v+ = �1� ẑ � �h 11� ẑ� k�v+ ; (8.42)where we have introdued �h = k2Tz�2 �h = � k2T2(k�)2 v�v+ : (8.43)Taking the limit k2T � �h and following similar steps as in the previous subsetion, weobtain�q(z; kT ) ���(6a) = �s2�2 CF 1z2k2T Z 1z dẑ̂z �� 1(1� ẑ)+ + 12 Æ(1 � ẑ) ln 1�h �� (1� ẑ)22k2T d��(�k � �l;n+) �k= ��q2� ẑz�� �k= � Æ(1 � ẑ)�q2� ẑz�� (8.44)
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to leading order in 1=kT , where as in the ase of distribution funtions the result is restritedto the twist-two and twist-three parts of the orrelation funtion on the l.h.s. For thequark-to-gluon ontribution, the diagram of Fig. 6b gives�q(z; kT ) ���(6b) = �s(2�)2 CF 1z2k4T Z 1z dẑ̂z (1� ẑ) �g;��2 � ẑz� �k= � � �k=� �l=�� �k= ; (8.45)where the twist-two part of the gluon fragmentation orrelator is parameterized by justone funtion, �g;��2 (z) = � z2P�h g��T Dg1(z) ; (8.46)beause we onsider an unpolarized hadron. With the parameterization (5.9) of �q(z; kT )we obtain the high-kT behaviorDq1(z; k2T ) = �s2�2 1z2k2T �L(��1h )2 Dq1(z)� CFDq1(z) + �Dq1 
 Pqq +Dg1 
 Pgq�(z)� ;(8.47)D?q(z; k2T )z = �s2�2 1z2k2T �L(��1h )4 Dq1(z) + Z 1z dẑ̂z Dq1� ẑz� CF � 1(1� ẑ)+ + 34 Æ(1 � ẑ)�+ Z 1z dẑ̂z Dg1� ẑz� CF 2� ẑẑ � (8.48)from (8.44) and (8.45). For ~D?q this implies~D?q(z; k2T )z = � �s2�2 12z2k2T �L(��1h )2 Dq1(z)� 2CFDq1(z) + �Dq1 
 P 0qq +Dg1 
 P 0gq�(z)� :(8.49)aording to its de�nition (5.71). Analogous results with the same kernels are obtained forthe antiquark fragmentation funtions D�q1, D?�q, and ~D?�q.8.3 Results for struture funtions and their onsequenesWe are now ready to ompute the behavior of the struture funtions FUU;T , FLL, F os�hUU ,and F os�hLL at intermediate transverse momentum. For FUU;T we start from the low-qTresult (5.53), with the onvolution de�ned in (5.75). Using the expansion (5.77) we haveFUU;T =Xa xe2a �fa1 (x; q2T ) Da1(z)z2 + fa1 (x)Da1(z; q2T ) + fa1 (x) Da1(z)z2 U(q2T )� (8.50)for M � qT � Q. The high-transverse-momentum limits of fa1 (x; q2T ) and Da1(z; q2T ) arerespetively given in (8.26) and (8.47). For the orresponding limit of the soft fator oneobtains U(q2T ) = �sCF�2 1q2T (8.51)
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from [24℄, as we show in appendix C. Given that 2P+P�h = zQ2=x up to mass orretions,the relations (8.9), (8.11) and (8.41), (8.43) implyp��h = zQ2x ; p��h = q2TQ2 ; (8.52)where in the seond equation we have set k2T and p2T equal to q2T , as appropriate forevaluating (8.50). Putting the above results together, we obtainFUU;T = �s2�2 1z2q2T Xa xe2a���L(��1)2 fa1 (x)� CF fa1 (x) + �Pqq 
 fa1 + Pqg 
 fg1 �(x)�Da1(z)+ fa1 (x) �L(��1h )2 Da1(z)� CFDa1(z) + �Da1 
 Pqq +Dg1 
 Pgq�(z)�+ 2CF fa1 (x)Da1(z)�= 1q2T �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 Pqq +Dg1 
 Pgq�(z)+ �Pqq 
 fa1 + Pqg 
 fg1 �(x)Da1(z)� ; (8.53)whih is idential with the result (4.23) of the high-qT alulation. The same agreementhas been found by Ji et al. [7℄, who used the low-qT fatorization sheme spei�ed in [26℄instead of the original Collins-Soper sheme [24℄. Note that the terms with CF fa1 (x)Da1(z)anel among the di�erent ontributions in (8.53). By virtue of (8.52) the dependene onthe gauge parameters � and �h also anels, as it should. We remark that we obtain thesame �nal result if we take a timelike vetor v instead of a spaelike one. Both � and �hare then negative, and L(��1) and L(��1h ) are replaed by L(���1) and L(���1h ), so thatthey still add up to 2L(Q2=q2T ). For FLL we obtain a result analogous to (8.53), with theparton distributions f1 replaed by g1 and the onvolutions P 
f1 by �P 
g1. This resultexatly mathes the expression (4.27) obtained in the high-qT alulation.We now turn to the struture funtion F os�hUU . Aording to (5.45) and (5.50) theterms with h?1 and H?1 in the low-qT expression (5.55) are power suppressed ompared tothe terms with f? and ~D? when qT �M . For intermediate qT we therefore haveF os �hUU = �2qTQ Xa xe2a �xf?a(x; q2T ) Da1(z)z2 � fa1 (x) ~D?a(z; q2T )z � (8.54)at leading power and leading order in �s. In this ase there is no leading ontributionfrom the soft fator taken at large transverse momentum. Proeeding as we did in (5.78),one �nds that the leading term in the expansion of U(l2T ) around lT = �qT gives zero inthe onvolution (5.55) beause it does not depend on a diretion in the transverse plane,whereas the next terms in the expansion only give ontributions that are power suppressedompared to those in (8.54). We therefore obtain the same result (8.54) if we omit thesoft fator in the transverse-momentum onvolution (5.75). Using the high-transverse-momentum limits (8.27) and (8.49) of f?a(x; q2T ) and ~D?a(z; q2T ), we get{ 58 {



F os �hUU = �2qTQ �s2�2 12z2q2T Xa xe2a���L(��1)2 fa1 (x) + �P 0qq 
 fa1 + P 0qg 
 fg1 �(x)�Da1(z)+ fa1 (x) �L(��1h )2 Da1(z)� 2CFDa1(z) + �Da1 
 P 0qq +Dg1 
 P 0gq�(z)��= � 1QqT �s2�2z2 Xa xe2a �fa1 (x)Da1(z)L�Q2q2T �+ fa1 (x) �Da1 
 P 0qq +Da1 
 P 0gq�(z)+ �P 0qq 
 fa1 + P 0qg 
 fg1 �(x)Da1(z)� 2CF fa1 (x)Da1(z)� ; (8.55)whih is not idential to the high-qT result (4.25) beause of the extra term 2CF fa1 (x)Da1(z)in the brakets. The same situation is found for F os �hLL , with f1 replaed by g1 and P 0
f1by �P 0 
 g1This disagreement has important onsequenes. Sine the leading terms in the high-qTand the low-qT alulation of F os�hUU have the same power behavior for M � qT � Q,their expliit expressions in that region must agree if both of them are alulated orretly.This is lear, sine both alulations give the same term of a double expansion in M=qTand qT =Q, as given in (1.2) and (1.4). We have no reason to doubt the validity of the high-qT result (4.25), whih omes from a twist-two alulation in ollinear fatorization. Thesame holds for the high-transverse-momentum behavior of the funtions f?a(x; q2T ) and~D?a(z; q2T ) in (8.27) and (8.49). In ontrast, the low-qT expression we used for F os�hUU is atwist-three result, for whih no proof of fatorization is available. To obtain the expressionin (8.54) we have assumed that the tree-level result (5.55) an be generalized by takingover the onvolution (5.75) established for the twist-two setor. The omparison of (8.55)with (4.25) implies that this assumption is inorret.Based on our �nding, one may speulate how a orret twist-three fatorization formulawill look like if fatorization an be established at that level. Simple modi�ation of thesoft fator U(l2T ) an obviously not yield agreement with the high-qT result sine this fatordoes not appear in the limiting expression (8.54) for the reasons we explained above. Thesituation would be di�erent if the soft fator were dependent on the diretion of lT , whihwould require it to have a nontrivial struture in either Lorentz or Dira spae (throughfators l�T or l=T ). Suh a dependene would go beyond the eikonal approximation for theoupling of soft gluons to fast partons, whih may be neessary at subleading order in1=Q. We shall not pursue suh speulations here. Clearly, the requirement to math thehigh-qT result (4.25) for F os�hUU at intermediate qT an be used as a onsisteny hek forany framework that extends Collins-Soper fatorization to the twist-three setor.It is instrutive to note that the low- and high-qT results disagree by a term pro-portional to fa1 (x)Da1(z), where neither the distribution nor the fragmentation funtionappears in a onvolution over longitudinal momentum frations. In the alulations of theprevious subsetions, suh terms arise from on�gurations where a gluon has zero plus- orminus-momentum. The orret treatment of this phase spae region is nontrivial alreadyin proofs of fatorization at the twist-two level [26,27℄, so that it is not too surprising that{ 59 {



this is where problems our in the naive extension to twist three whih we have explored.At this point we return to the issue of transverse-momentum-resummation for F os�hUU ,whih we have briey disussed in setion 3.3. We an now understand why the splittingfuntions P 0qq, P 0qg, and P 0gq in the high-qT result (4.25) are di�erent from the usual DGLAPkernels. Up to Æ-funtion terms they desribe the high-transverse-momentum behavior off? and ~D?, rather than the one of the more familiar funtions f1 and D1. A orrespondingremark applies to the os� asymmetry in Drell-Yan prodution investigated in [9℄. If a low-qT fatorization formula for these observables an be established, it should also allow oneto adapt the original CSS proedure [1℄ for the resummation of large logarithms ln(Q2=q2T )at next-to-leading logarithmi auray and beyond. From this point of view, resummationfor F os 2�hUU and its analogs in Drell-Yan prodution or e+e� annihilation appears ratherdaunting sine it would require a formulation of low-qT fatorization at twist-four level,extending the simple parton-model result in (6.15) and putting it on a rigorous footing.9. SummaryThe desription of semi-inlusive deep inelasti sattering with measured transverse mo-mentum qT involves two theoretial frameworks: at low qT one has a fatorized representa-tion in terms of transverse-momentum-dependent distribution and fragmentation funtions,whereas at high qT standard ollinear fatorization an be used. We have systematiallyanalyzed the relation between the two desriptions at intermediate transverse momentumM � qT � Q, where both are appliable. Depending on the spei� observable, theleading terms in the two desriptions may or may not oinide.Using dimensional analysis and Lorentz invariane, we have derived the general behav-ior at high pT for all transverse momentum-dependent parton distributions of twist two orthree. The results, listed in Eqs. (5.44) to (5.48), involve the onvolution of ollinear partondistributions with hard-sattering kernels, whih in the simplest ases are losely relatedto the well-known DGLAP splitting funtions. We have omputed these kernels at leadingorder in �s for those ases where the ollinear distributions are of leading twist, obtain-ing the expressions (8.26) to (8.32). With these results and their analogs for transverse-momentum-dependent fragmentation funtions we ould establish in Eqs. (5.79) to (5.94)the power behavior for M � qT � Q of all SIDIS struture funtions that appear in thelow-qT desription at twist-two or twist-three auray, allowing for arbitrary polarizationof target and beam.In the high-qT desription at order �s one �nds a onsiderable simpli�ation whentaking the limit qT � Q : the expressions of the struture funtions then involve a onvolu-tion of either the distribution or the fragmentation funtions with hard-sattering kernels,whereas the other funtion is evaluated at the momentum fration x or z �xed by the kine-matis of the �nal state. For observables where the high-qT and low-qT alulations math,these kernels an be identi�ed with the ones desribing the high-transverse-momentum be-havior of the funtions appearing in the low-qT desription. In suh a situation one anuse the proedure of Collins, Soper, and Sterman to resum large logarithms of Q2=q2T toall orders in perturbation theory. A prerequisite for this is that the power behavior of{ 60 {



the observable in the low- and high-qT alulations must math. We have ompared theorresponding powers for a wide range of observables, using our low-qT results (5.79) to(5.94) and their ounterparts (6.1) to (6.13) for those struture funtions that have beenevaluated in the high-qT formulation. This omparison, ompiled in table 2, is one of themain results of our work.When the two formulations give the same power law at intermediate qT for a givenobservable, their expliit results must agree exatly beause they desribe the same term ofa double expansion inM=qT and qT =Q. This onstitutes a nontrivial onsisteny hek forboth the low- and high-qT alulations. Con�rming earlier results in the literature, we haveveri�ed that there is suh an agreement for the unpolarized struture funtion FUU;T , aswell as for its analog FLL for longitudinal beam and target polarization. By ontrast, thestruture funtion FUU;L for longitudinal photon polarization only appears at twist four inthe low-qT framework, where a omplete result is not available. A simple alulation in theparton model gives a power behavior whih in the intermediate region mathes the one ofthe well-established high-qT result but fails to reprodue its exat form.A more involved piture arises for azimuthal asymmetries, even in unpolarized sat-tering. At low qT the struture funtion F os 2�hUU is expressed in terms of the Boer-Muldersfuntion h?1 and the Collins fragmentation funtion H?1 , both of whih are hiral-odd,whereas the high-qT expression involves the usual unpolarized distribution and fragmen-tation funtions f1 and D1, whih are hiral-even. The two results thus desribe di�erentphysial mehanisms, whih is onsistent with our �nding that at intermediate qT theyhave a di�erent power behavior. In this region, the two results may hene be added. Inpratie, some arbitrariness is involved in deiding what \intermediate" qT values are. Wehave shown that the sum of the high-qT and the low-qT expressions gives a valid approxi-mation for F os 2�hUU also at large qT , where the low-qT result annot be trusted but is powersuppressed ompared with the high-qT expression. The latter, however, fails to vanish inthe limit qT ! 0, as required by angular momentum onservation, and should hene not beused at low qT . A more favorable observable in this respet is the os 2�h asymmetry, i.e.,the ratio of F os 2�hUU and the �h independent part FUU;T + "FUU;L of the ross setion. Inthis ase, the sum (6.26) of the expressions alulated for low and high qT gives a onsistentapproximation for all transverse momenta, up to orretions of order M2=q2T and q2T=Q2.The result of a parton-model alulation at low qT , often referred to as Cahn e�et, has thesame property for F os 2�hUU as it has for FUU;L: its power behavior agrees with the high-qTresult in the intermediate region, but its expliit expression does not. The parton-modelresult may hene only be regarded as a partial estimate for the full but unknown twist-fourorretion to F os 2�hUU at low qT .The desription of the struture funtion F os�hUU is more problemati: at high qT it anbe evaluated in ollinear fatorization at twist-two level, but at low qT it requires a twist-three alulation, for whih transverse-momentum-dependent fatorization at all orders in�s has not been established. As a working hypothesis we have taken the well-establishedresult of a tree-level alulation at low qT and assumed that the soft fator whih expliitlyappears in the fatorization theorem for twist-two observables is also appliable at twistthree. This leads to an expression that for intermediate qT agrees with the high-qT result{ 61 {



in its power behavior and in the form of the hard-sattering kernels, exept for a termproportional to f1(x)D1(z). We �nd this partial agreement enouraging, but it does showthat our andidate fatorization formula at twist three is inorret as it stands, and thata proper analysis will have to devote speial attention to gluons with vanishing plus- orminus-momentum and to the preise form of soft fators. We emphasize that the orretdesription of F os�hUU at low qT is a prerequisite for applying the method of Collins, Soper,and Sterman to resum large logarithms of Q2=q2T .The struture funtion F sin(�h��S)UT;T for a transversely polarized target presents a asewhere the low-qT alulation is of twist two, whereas the high-qT desription is at the twist-three level. The expliit omputations in [5{8℄ �nd exat agreement of the two desriptionsat intermediate qT and thus validate both frameworks. One may expet that the same istrue for F sin(�h+�S)UT , whih at low qT is desribed in terms of the Collins e�et.Observables that are integrated over qT are at times preferable to di�erential ones froman experimental point of view. We have shown that some of them have the added virtue ofadmitting a relatively simple desription at the theory level, both for the omplexity of theexpressions and for the number of distribution and fragmentation funtions on whih theydepend. With the power-ounting behavior listed in table 2 one an readily determine towhih region of qT a given integrated observable is primarily sensitive. The results for se-leted observables are given in table 3. We �nd for instane that hhF os 2�hUU ii and hhF sin�SUT iireeive leading ontributions from both low and high qT . The integrated struture fun-tion hhF os �hUU ii is dominated by large qT , with ontributions from the low-qT region beingsuppressed byM=Q. Conversely, both hhF sin(�h��S)UT;T ii and hhF sin(�h+�S)UT ii reeive their dom-inant ontributions from low qT , whereas the high-qT domain is suppressed byM=Q. Theyare hene sensitive to the Sivers funtion in the �rst ase, and to the transversity distri-bution and the Collins fragmentation funtion in the seond. A suppression by M=Q may,however, not be suÆient to simply neglet the orresponding ontributions in an analysisat experimentally ahievable values of Q.A theoretially leaner aess to the high-qT region is through observables that areweighted with an appropriate power of qT =M . We �nd in partiular that hh(qT =M)F os�hUU ii,hh(qT =M)2F os 2�hUU ii, and hh(qT =M)2F sin�SUT ii an be evaluated from the high-qT resultsalone, up to orretions of order M2=Q2, and that at the same auray one an extendthe integration down to qT = 0. This leads to simple expressions, similar to the one for theintegrated longitudinal struture funtion hhFUU;L ii. The observables hh(qT =M)F os �hUU iiand hh(qT =M)2F os 2�hUU ii are sensitive to the twist-two funtions f1 and D1 and may forinstane be useful for separating the ontributions from di�erent quark avors, serving asomplements to hhFUU;T ii. In ontrast, hh(qT =M)2F sin�SUT ii is sensitive to distribution andfragmentation funtions of twist three.The weighted struture funtions hh(qT =M)F sin(�h��S)UT;T ii and hh(qT =M)F sin(�h+�S)UT iiplay a speial role in this ontext. They reeive leading-power ontributions from both lowand high qT and, as already pointed out in [12℄, lead to a deonvolution of the transverse-momentum integrals in the low-qT result. We argued that they should permit a desriptionin terms of ollinear funtions of twist two and three, de�ned in the standard MS sheme.{ 62 {



In this desription, the low-qT expression gives the Born-level result, whereas the high-qTalulation of [8, 43, 44℄ gives part of the �s orretions. If ompleted, suh a desriptionwould provide a full NLO result in �s and be an extension to twist-three level of the stan-dard NLO alulation for hhFUU;T ii within ollinear fatorization at twist-two auray.The leading-order expressions (7.9) and (7.10) for the weighted struture funtions areanalogs of the familiar tree-level formula hhFUU;T ii = Pa xe2a fa1 (x)Da1(z). These expres-sions reeive orretions from the high-qT region whih are of leading power but suppressedby �s.Let us �nally remark that the results we have disussed here arry over to the analo-gous observables in the Drell-Yan proess and in e+e� annihilation. The SIDIS struturefuntions F os�hUU and F os 2�hUU orrespond for instane to the os� and os 2� asymmetriesin the angular distribution of the lepton pair in unpolarized Drell-Yan prodution, whihhave been measured [70℄ and given rise to several theoretial investigations, see e.g. thereferenes in [9℄. Furthermore, F os 2�hUU orresponds to a os 2� asymmetry for two-pionprodution in e+e� annihilation, whih has been measured by BELLE [71℄ and providesthe possibility for an independent determination of the Collins fragmentation funtion [72℄.For a reliable extration, our disussion of mathing low- and high-transverse-momentumontributions should be of relevane.AknowledgmentsIt is our pleasure to aknowledge valuable disussions with John Collins and Werner Vo-gelsang. We thank Johen Bartels for helpful remarks on the manusript. This researh ispart of the Integrated Infrastruture Initiative \Hadron Physis" of the European Unionunder ontrat number RII3-CT-2004-506078. The work of M.D. is partially supported bythe Helmholtz Assoiation, ontrat number VH-NG-004, and the work of A.B. is partiallysupported by the SFB \Partiles, Strings and the Early Universe". The Feynman diagramsin this paper were drawn using JaxoDraw [73℄.A. Distribution funtions at high pT : Feynman versus axial gaugeOur alulation in setion 8.1 is done in axial gauge A � v = 0. Let us see how the samealulation proeeds in Feynman gauge. In this ase one must expliitly take into aountthe gauge link U in the de�nition (5.3) of the orrelation funtion �(x; pT ), whih onsistsof setions pointing along v and a transverse setion at in�nity. The detailed path of thegauge link reets important physis, as shown for instane in [13, 47{50, 54℄.Let us onsider the orrelation funtion �[+℄(x; pT ) relevant for SIDIS, whose gaugelink U+ is losed at a� = +1. To evaluate the quark-to-quark ontribution to the high-pT behavior of �(x; pT ) at leading order in 1=pT , one has to take into aount the fourdiagrams shown in Fig. 7. The graphs with eikonal lines are due to gluons oupling to the{ 63 {
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Figure 7: Diagrams for the alulation of the leading high-pT behavior of the quark-quarkorrelator �(x; pT ) in Feynman gauge.gauge link in the operator � j(0)U(0;�)  i(�). The orresponding Feynman rules read [24,55℄
a, µ

= ig tav� ; l = il � v + i� ; (A.1)where the sign of i� for the eikonal line orresponds to a gauge link pointing to a� = +1if one takes v� > 0. In ut diagrams one must take the onjugate of these expressions forverties and propagators on the right of the �nal-state ut (indiated by the dashed linesin Fig. 7).After performing the integration over p� using the Æ funtion in (8.3), we have for therespetive diagrams�[+℄q(x; pT ) ���(7a) = � �s(2�)2 CF Z dx̂x̂(1� x̂) g�� �p=�p2 � �q2� x̂x�� �p=�p2 ; (A.2)�[+℄q(x; pT ) ���(7b) = � �s(2�)2 CF Z dx̂x̂(1� x̂) �p=�p2 v=�q2� x̂x� 1(�l � �p) �v � i� ; (A.3)�[+℄q(x; pT ) ���(7) = � �s(2�)2 CF Z dx̂x̂(1� x̂) 1(�l � �p) �v + i� �q2� x̂x� v= �p=�p2 ; (A.4)�[+℄q(x; pT ) ���(7d) = � �s(2�)2 CF Z dx̂x̂(1� x̂) �q2� x̂x� v2�(�l � �p) �v + i���(�l � �p) �v � i�� (A.5)with �p and �l given in (8.5) and (8.6). Sine �p2 is always spaelike aording to (8.7), wehave omitted the i� in the quark propagators.{ 64 {



In the alulation using axial gauge only the �rst of the four diagrams ontributes, butinstead of g�� in (A.2) we then have to take�d��(�l � �p; v) = g�� � (�l � �p)�v� + (�l � �p)� v�(�l � �p) �v + (�l � �p)� (�l � �p)�[(�l � �p) �v ℄2 v2 : (A.6)Eah term in (A.6) orresponds to one of the four diagrams in the Feynman gauge alu-lation. The orrespondene between the �rst term and diagram 7a in Feynman gauge istrivial. To establish the orrespondene between the seond term and diagram 7b we usethat v=�q2 ( �l=� �p=) �p=�p2 = v=�q2 �l= �p=�p2 � v=�q2 = � v=�q2 ; (A.7)where in the seond step we have used that the twist-two part of the ollinear quark orrela-tor satis�es �q2 �l= = �q2 n=+ l+ = 0. In an analogous way one establishes the orrespondenebetween the last two terms in (A.6) with the respetive ontributions of diagrams 7 and7d in Feynman gauge.A mismath between the expressions in (A.3) to (A.5) and the alulation in axial gaugeis, however, the di�erent treatment of the singularities at (�l� �p)�v = 0. The prinipal valuepresription we employed when using the spaelike axial gauge of the original Collins-Soper paper [24℄ di�ers from the i� presription for the di�erent terms in the Feynmangauge alulation, whih arises from the struture of the Wilson line U+ in the orrelationfuntion. We note that the integral in (A.5) is atually not well de�ned as it stands,sine the double pole at (�l � �p) � v = 0 is pinhed. The ontribution from suh unphysialpoles must be absent in the physial ross setion and should hene anel between thedistribution funtion, the fragmentation funtion, and the soft fator in the fatorizationformula (3.22). How to implement this by regulating the individual fators has so far notbeen addressed in the literature. It is also urrently unknown if and how the prinipal-value presription in axial gauge an be implemented in terms of Wilson lines for Feynmangauge. The disussion in [47℄ is for a light-one rather than an axial gauge and hene doesnot ontain the problemati term (A.5).We remark that orresponding problems did not appear in the Feynman gauge alu-lation of Ji et al. [26℄, where the vetor v was hosen to be timelike. If we do the same inour ontext, then the alulations in Feynman and axial gauge exatly oinide. This isbeause (�l� �p) �v remains positive in (A.3) to (A.5) aording to (8.10), so that the singu-larity at (�l� �p) �v = 0 is not reahed in the loop integral. As a onsequene, the partiularregularization of the axial-gauge propagator does not inuene our results of setion 8 ifwe take v timelike. Likewise, there is then no ontribution from transverse segments of thegauge link at in�nity, whih involve a Æ funtion in (�l� �p)�v. This is not implausible, sinethe distribution funtions onsidered in setion 8 are T -even and must in partiular be thesame for the gauge links U+ and U�.B. Integrated distribution funtions and transverse-momentum uto�In this appendix we derive Eq. (5.17), whih relates two di�erent ways of regularizing theintegral over the transverse-momentum-dependent distribution f1(x; p2T ). More preisely{ 65 {



we show that with � = b0=b one hasZ d2p eib�p f(p2) = � Z 10 dp2J0(bp) f(p2) = � Z �20 dp2 f(p2) +O�b2�2� (B.1)for any funtion that an be expanded asf(p2) = 2p2 + 4p4 + 6p6 + : : : (B.2)for p > �, where 2, 4, 6, et. are onstants. The intermediate sale � an be taken justlarge enough for (B.2) to be valid, sine orretions going for instane like M=� do notappear. The power orretions in (B.1) are understood as up to logarithms in b2�2. Forease of notation we have written p = jpj and omitted the subsript T .To establish (B.1) we split the integrals into the regions p < � and p > �. In the �rstregion we an write Z �20 dp2J0(bp) f(p2) = Z �20 dp2f(p2) +O�b2�2� ; (B.3)using that the Bessel funtion admits a Taylor expansion J0(x) = 1 � 14x2 + : : : in evenpowers of x. In the region p > � we make use of the expansion (B.2). Fousing �rst on the1=p2 term, we writeZ 1�2 dp2p2 J0(bp) = 2Z 1b� dxx J0(x) = �2 ln(b�)J0(b�) + 2Z 1b� dx lnxJ1(x) ; (B.4)where in the seond step we have integrated by parts. We now use that R10 dx lnxJ1(x) =ln 2 � E and R y0 dx lnxJ1(x) � y2 for y ! 0, where the latter relation holds beauseJ1(x) � x for x! 0. Realling that b0 = 2e�E we obtainZ 1�2 dp2p2 J0(bp) = 2�ln(2e�E )� ln(b�)�+O�b2�2� = Z �2�2 dp2p2 +O�b2�2� : (B.5)For the 1=p4 term in (B.2) we use again integration by parts to writeZ 1�2 dp2p4 J0(bp) = 2b2 Z 1b� dxx3 J0(x) = J0(b�)�2 � b2 Z 1b� dxx2 J1(x) : (B.6)Sine the integrand in the last term behaves like 1=x for x! 0, we haveZ 1�2 dp2p4 J0(bp) = 1�2 +O�b2�2� = Z �2�2 dp2p4 +O�b2�2� : (B.7)A similar argument an be given for terms going like 1=p2n with n > 2, whih ompletesthe proof of (B.1).As an illustration of our result let us onsider the simple form f(p2) = 1=(p2 + �2).The relevant integrals then areZ 10 dp2p2 + �2 J0(b�) = 2K0(b�) ; Z �20 dp2p2 + �2 = ln�1 + �2�2� : (B.8)
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With the behavior K0(x) = � lnx+ln b0+O(x2) of the modi�ed Bessel funtion at small xone readily �nds that the relation (B.1) is satis�ed.As we have seen in setion 8.1, a logarithmi fator ln(�=p2) appears in the expliitalulation for the high-pT behavior of distribution funtions at order �s. One an easilyrepeat the above arguments for the ase where the 1=p2 term in (B.2) is multiplied byln p2 and the subleading terms by some power of ln p2. Using that R10 dx(lnx)2J1(x) =(ln 2� E)2 one �nds that (B.1) holds without modi�ation also in this ase.C. One-loop expression of the soft fatorIn this appendix we show how to obtain the momentum-spae expression (8.51) of thesoft fator in the Collins-Soper fatorization formula [24℄. The orresponding expression inb-spae is given in Eq. (7.22) of [24℄. With our de�nition (3.7) we obtain U(l2T ) from thisby setting " = 0 and omitting R d2lT eib�lT . The result isU(l2T ) = �4CF �s Z dl+dl�(2�)2 Æ(l2) �(l+)l+l� d+�(l; v)= 4CF �s Z dl+dl�(2�)2 Æ�2l+l� � l2T � �(l+) v2(l �v)2= CF �s�2 PVZ 10 dl+ 4l+v�=v+�2(l+)2 v�=v+ + l2T �2 = CF �s�2 1l2T ; (C.1)where on the last line we have indiated that for a spaelike gauge vetor we need theprinipal value presription to regulate the integral, given that v�=v+ < 0. In aordanewith our footnote on page 8, the result of the integration is independent of v. Fouriertransforming the result (C.1) to b-spae in 2� " transverse dimensions, we obtainCF �s�2 �" Z d2�" lT(2�)�" eilT �b 1l2T = � CF �s� �ln��2b2� e�+ 2"� (C.2)in agreement with Eq. (7.23) in [24℄.Referenes[1℄ J. C. Collins, D. E. Soper, and G. Sterman, Transverse momentum distribution in Drell-Yanpair and W and Z boson prodution, Nul. Phys. B250 (1985) 199.[2℄ R. N. Cahn, Azimuthal dependene in leptoprodution: a simple parton model alulation,Phys. Lett. B78 (1978) 269.[3℄ R. N. Cahn, Critique of parton model alulations of azimuthal dependene inleptoprodution, Phys. Rev. D40 (1989) 3107.[4℄ H. Georgi and H. D. Politzer, Clean tests of QCD in �p sattering, Phys. Rev. Lett. 40(1978) 3.[5℄ X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, A uni�ed piture for single transverse-spinasymmetries in hard proesses, Phys. Rev. Lett. 97 (2006) 082002 [hep-ph/0602239℄.{ 67 {

http://xxx.lanl.gov/abs/hep-ph/0602239


[6℄ X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Single transverse-spin asymmetry in Drell-Yanprodution at large and moderate transverse momentum, Phys. Rev. D73 (2006) 094017[hep-ph/0604023℄.[7℄ X. Ji, J.-W. Qiu, W. Vogelsang, and F. Yuan, Single-transverse spin asymmetry insemi-inlusive deep inelasti sattering, Phys. Lett. B638 (2006) 178 [hep-ph/0604128℄.[8℄ Y. Koike, W. Vogelsang, and F. Yuan, On the relation between mehanisms forsingle-transverse-spin asymmetries, Phys. Lett. B659 (2008) 878 [arXiv:0711.0636[hep-ph℄℄.[9℄ D. Boer and W. Vogelsang, Drell-Yan lepton angular distribution at small transversemomentum, Phys. Rev. D74 (2006) 014004 [hep-ph/0604177℄.[10℄ E. L. Berger, J.-W. Qiu, and R. A. Rodriguez-Pedraza, Transverse momentum dependene ofthe angular distribution of the Drell-Yan proess, Phys. Rev. D76 (2007) 074006[arXiv:0708.0578 [hep-ph℄℄.[11℄ P. J. Mulders and R. D. Tangerman, The omplete tree-level result up to order 1=Q forpolarized deep-inelasti leptoprodution, Nul. Phys. B461 (1996) 197 [hep-ph/9510301℄;Erratum-ibid. B484 (1997) 538.[12℄ D. Boer and P. J. Mulders, Time-reversal odd distribution funtions in leptoprodution, Phys.Rev. D57 (1998) 5780 [hep-ph/9711485℄.[13℄ D. Boer, P. J. Mulders, and F. Pijlman, Universality of T-odd e�ets in single spin andazimuthal asymmetries, Nul. Phys. B667 (2003) 201 [hep-ph/0303034℄.[14℄ A. Bahetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders, and M. Shlegel, Semi-inlusivedeep inelasti sattering at small transverse momentum, JHEP 02 (2007) 093[hep-ph/0611265℄.[15℄ L. P. Gamberg, D. S. Hwang, A. Metz, and M. Shlegel, Light-one divergene in twist-3orrelation funtions, Phys. Lett. B639 (2006) 508 [hep-ph/0604022℄.[16℄ EMC Collaboration, M. Arneodo et al., Measurement of hadron azimuthal distributions indeep inelasti muon proton sattering, Z. Phys. C34 (1987) 277;E665 Collaboration, M. R. Adams et al., Perturbative QCD e�ets observed in 490 GeV deepinelasti muon sattering, Phys. Rev. D48 (1993) 5057;ZEUS Collaboration, M. Derrik et al., Inlusive harged partile distributions in deepinelasti sattering events at HERA, Z. Phys. C70 (1996) 1 [hep-ex/9511010℄;H1 Collaboration, C. Adlo� et al., Measurement of harged partile transverse momentumspetra in deep inelasti sattering, Nul. Phys. B485 (1997) 3 [hep-ex/9610006℄;E665 Collaboration, M. R. Adams et al., Inlusive single-partile distributions and transversemomenta of forward produed harged hadrons in �p sattering at 470 GeV, Z. Phys. C76(1997) 441;ZEUS Collaboration, J. Breitweg et al., Measurement of multipliity and momentum spetrain the urrent and target regions of the Breit frame in deep inelasti sattering at HERA,Eur. Phys. J. C11 (1999) 251 [hep-ex/9903056℄;H. Mkrthyan et al., Transverse momentum dependene of semi-inlusive pion prodution,Phys. Lett. B665 (2008) 20 [arXiv:0709.3020 [hep-ph℄℄.[17℄ ZEUS Collaboration, J. Breitweg et al., Measurement of azimuthal asymmetries in deepinelasti sattering, Phys. Lett. B481 (2000) 199 [hep-ex/0003017℄;{ 68 {

http://xxx.lanl.gov/abs/hep-ph/0604023
http://xxx.lanl.gov/abs/hep-ph/0604128
http://xxx.lanl.gov/abs/arXiv:0711.0636
http://xxx.lanl.gov/abs/arXiv:0711.0636
http://xxx.lanl.gov/abs/hep-ph/0604177
http://xxx.lanl.gov/abs/arXiv:0708.0578
http://xxx.lanl.gov/abs/hep-ph/9510301
http://xxx.lanl.gov/abs/hep-ph/9711485
http://xxx.lanl.gov/abs/hep-ph/0303034
http://xxx.lanl.gov/abs/hep-ph/0611265
http://xxx.lanl.gov/abs/hep-ph/0604022
http://xxx.lanl.gov/abs/hep-ex/9511010
http://xxx.lanl.gov/abs/hep-ex/9610006
http://xxx.lanl.gov/abs/hep-ex/9903056
http://xxx.lanl.gov/abs/arXiv:0709.3020
http://xxx.lanl.gov/abs/hep-ex/0003017


ZEUS Collaboration, S. Chekanov et al., Measurement of azimuthal asymmetries in neutralurrent deep inelasti sattering at HERA, Eur. Phys. J. C51 (2007) 289 [hep-ex/0608053℄.[18℄ CLAS Collaboration, H. Avakian et al., Measurement of beam-spin asymmetries for deepinelasti �+ eletroprodution, Phys. Rev. D69 (2004) 112004 [hep-ex/0301005℄;HERMES Collaboration, A. Airapetian et al., Beam-spin asymmetries in the azimuthaldistribution of pion eletroprodution, Phys. Lett. B648 (2007) 164 [hep-ex/0612059℄.[19℄ HERMES Collaboration, A. Airapetian et al., Observation of a single-spin azimuthalasymmetry in semi-inlusive pion eletro-prodution, Phys. Rev. Lett. 84 (2000) 4047[hep-ex/9910062℄;HERMES Collaboration, A. Airapetian et al., Single-spin azimuthal asymmetries ineletroprodution of neutral pions in semi-inlusive deep-inelasti sattering, Phys. Rev. D64(2001) 097101 [hep-ex/0104005℄;HERMES Collaboration, A. Airapetian et al., Measurement of single-spin azimuthalasymmetries in semi-inlusive eletroprodution of pions and kaons on a longitudinallypolarised deuterium target, Phys. Lett. B562 (2003) 182 [hep-ex/0212039℄;HERMES Collaboration, A. Airapetian et al., Subleading-twist e�ets in single-spinasymmetries in semi-inlusive deep-inelasti sattering on a longitudinally polarized hydrogentarget, Phys. Lett. B622 (2005) 14 [hep-ex/0505042℄.[20℄ HERMES Collaboration, A. Airapetian et al., Single-spin asymmetries in semi-inlusivedeep-inelasti sattering on a transversely polarized hydrogen target, Phys. Rev. Lett. 94(2005) 012002 [hep-ex/0408013℄;HERMES Collaboration, M. Diefenthaler, HERMES measurements of Collins and Siversasymmetries from a transversely polarised hydrogen target arXiv:0706.2242 [hep-ex℄.[21℄ COMPASS Collaboration, V. Y. Alexakhin et al., First measurement of the transverse spinasymmetries of the deuteron in semi-inlusive deep inelasti sattering, Phys. Rev. Lett. 94(2005) 202002 [hep-ex/0503002℄;COMPASS Collaboration, E. S. Ageev et al., A new measurement of the Collins and Siversasymmetries on a transversely polarised deuteron target, Nul. Phys. B765 (2007) 31[hep-ex/0610068℄;COMPASS Collaboration, A. Kotzinian, Beyond Collins and Sivers: further measurements ofthe target transverse spin-dependent azimuthal asymmetries in semi-inlusive DIS fromCOMPASS, arXiv:0705.2402 [hep-ex℄.[22℄ U. D'Alesio and F. Murgia, Azimuthal and single spin asymmetries in hard satteringproesses, arXiv:0712.4328 [hep-ph℄.[23℄ A. Bahetta, U. D'Alesio, M. Diehl, and C. A. Miller, Single-spin asymmetries: The Trentoonventions, Phys. Rev. D70 (2004) 117504 [hep-ph/0410050℄.[24℄ J. C. Collins and D. E. Soper, Bak-to-bak jets in QCD, Nul. Phys. B193 (1981) 381.[25℄ J. C. Collins, What exatly is a parton density?, Ata Phys. Polon. B34 (2003) 3103[hep-ph/0304122℄.[26℄ X. Ji, J.-P. Ma, and F. Yuan, QCD fatorization for semi-inlusive deep-inelasti satteringat low transverse momentum, Phys. Rev. D71 (2005) 034005 [hep-ph/0404183℄.[27℄ J. C. Collins, T. C. Rogers, and A. M. Stasto, Fully unintegrated parton orrelation funtionsand fatorization in lowest order hard sattering, Phys. Rev. D77 (2008) 085009[arXiv:0708.2833 [hep-ph℄℄. { 69 {

http://xxx.lanl.gov/abs/hep-ex/0608053
http://xxx.lanl.gov/abs/hep-ex/0301005
http://xxx.lanl.gov/abs/hep-ex/0612059
http://xxx.lanl.gov/abs/hep-ex/9910062
http://xxx.lanl.gov/abs/hep-ex/0104005
http://xxx.lanl.gov/abs/hep-ex/0212039
http://xxx.lanl.gov/abs/hep-ex/0505042
http://xxx.lanl.gov/abs/hep-ex/0408013
http://xxx.lanl.gov/abs/arXiv:0706.2242
http://xxx.lanl.gov/abs/hep-ex/0503002
http://xxx.lanl.gov/abs/hep-ex/0610068
http://xxx.lanl.gov/abs/arXiv:0705.2402
http://xxx.lanl.gov/abs/arXiv:0712.4328
http://xxx.lanl.gov/abs/hep-ph/0410050
http://xxx.lanl.gov/abs/hep-ph/0304122
http://xxx.lanl.gov/abs/hep-ph/0404183
http://xxx.lanl.gov/abs/arXiv:0708.2833


[28℄ P. M. Nadolsky, D. R. Stump, and C. P. Yuan, Semi-inlusive hadron prodution at HERA:The e�et of QCD gluon resummation, Phys. Rev. D61 (2000) 014003 [hep-ph/9906280℄;P. M. Nadolsky, D. R. Stump, and C. P. Yuan, Phenomenology of multiple parton radiationin semi-inlusive deep-inelasti sattering, Phys. Rev. D64 (2001) 114011 [hep-ph/0012261℄.[29℄ A. Kulesza, G. Sterman, and W. Vogelsang, Joint resummation in eletroweak bosonprodution, Phys. Rev. D66 (2002) 014011 [hep-ph/0202251℄.[30℄ P. M. Nadolsky, Multiple parton radiation in hadroprodution at lepton hadron olliders,hep-ph/0108099.[31℄ S. Catani, D. de Florian, and M. Grazzini, Universality of non-leading logarithmiontributions in transverse momentum distributions, Nul. Phys. B596 (2001) 299[hep-ph/0008184℄.[32℄ Y. Koike, J. Nagashima, and W. Vogelsang, Resummation for polarized semi-inlusivedeep-inelasti sattering at small transverse momentum, Nul. Phys. B744 (2006) 59[hep-ph/0602188℄.[33℄ A. Weber, Soft gluon resummations for polarized Drell-Yan dimuon prodution, Nul. Phys.B382 (1992) 63.[34℄ P. M. Nadolsky and C. P. Yuan, Soft parton radiation in polarized vetor boson prodution:Theoretial issues, Nul. Phys. B666 (2003) 3 [hep-ph/0304001℄.[35℄ J. C. Collins, Hard sattering in QCD with polarized beams, Nul. Phys. B394 (1993) 169[hep-ph/9207265℄.[36℄ X. Ji, J.-P. Ma, and F. Yuan, QCD fatorization for spin-dependent ross setions in DISand Drell-Yan proesses at low transverse momentum, Phys. Lett. B597 (2004) 299[hep-ph/0405085℄.[37℄ D. W. Sivers, Single spin prodution asymmetries from the hard sattering of pointlikeonstituents, Phys. Rev. D41 (1990) 83.[38℄ J.-W. Qiu and G. Sterman, Single transverse spin asymmetries, Phys. Rev. Lett. 67 (1991)2264.[39℄ A. Idilbi, X. Ji, J.-P. Ma, and F. Yuan, Collins-Soper equation for the energy evolution oftransverse-momentum and spin dependent parton distributions, Phys. Rev. D70 (2004)074021 [hep-ph/0406302℄.[40℄ A. M�endez, QCD preditions for semi-inlusive and inlusive leptoprodution, Nul. Phys.B145 (1978) 199.[41℄ R. Meng, F. I. Olness, and D. E. Soper, Semi-inlusive deeply inelasti sattering at small qT ,Phys. Rev. D54 (1996) 1919 [hep-ph/9511311℄.[42℄ M. Diehl and S. Sapeta, On the analysis of lepton sattering on longitudinally or transverselypolarized protons, Eur. Phys. J. C41 (2005) 515 [hep-ph/0503023℄.[43℄ H. Eguhi, Y. Koike, and K. Tanaka, Single transverse spin asymmetry for large-pT pionprodution in semi-inlusive deep inelasti sattering, Nul. Phys. B752 (2006) 1[hep-ph/0604003℄.[44℄ H. Eguhi, Y. Koike, and K. Tanaka, Twist-3 formalism for single transverse spin asymmetryreexamined: Semi-inlusive deep inelasti sattering, Nul. Phys. B763 (2007) 198[hep-ph/0610314℄. { 70 {

http://xxx.lanl.gov/abs/hep-ph/9906280
http://xxx.lanl.gov/abs/hep-ph/0012261
http://xxx.lanl.gov/abs/hep-ph/0202251
http://xxx.lanl.gov/abs/hep-ph/0108099
http://xxx.lanl.gov/abs/hep-ph/0008184
http://xxx.lanl.gov/abs/hep-ph/0602188
http://xxx.lanl.gov/abs/hep-ph/0304001
http://xxx.lanl.gov/abs/hep-ph/9207265
http://xxx.lanl.gov/abs/hep-ph/0405085
http://xxx.lanl.gov/abs/hep-ph/0406302
http://xxx.lanl.gov/abs/hep-ph/9511311
http://xxx.lanl.gov/abs/hep-ph/0503023
http://xxx.lanl.gov/abs/hep-ph/0604003
http://xxx.lanl.gov/abs/hep-ph/0610314


[45℄ K. Hagiwara, K. Hikasa, and N. Kai, Time reversal odd asymmetry in semiinlusiveleptoprodution in quantum hromodynamis, Phys. Rev. D27 (1983) 84.[46℄ T. Gehrmann, Time-reversal-odd asymmetries at HERA, hep-ph/9608469;M. Ahmed and T. Gehrmann, Azimuthal asymmetries in hadroni �nal states at HERA,Phys. Lett. B465 (1999) 297 [hep-ph/9906503℄.[47℄ A. V. Belitsky, X. Ji, and F. Yuan, Final state interations and gauge invariant partondistributions, Nul. Phys. B656 (2003) 165 [hep-ph/0208038℄.[48℄ C. J. Bomhof, P. J. Mulders, and F. Pijlman, Gauge link struture in quark quark orrelatorsin hard proesses, Phys. Lett. B596 (2004) 277 [hep-ph/0406099℄.[49℄ C. J. Bomhof, P. J. Mulders, and F. Pijlman, The onstrution of gauge-links in arbitraryhard proesses, Eur. Phys. J. C47 (2006) 147 [hep-ph/0601171℄.[50℄ J. C. Collins and A. Metz, Universality of soft and ollinear fators in hard-satteringfatorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249℄.[51℄ F. Hautmann, Endpoint singularities in unintegrated parton distributions, Phys. Lett. B655(2007) 26 [hep-ph/0702196℄.[52℄ I. O. Cherednikov and N. G. Stefanis, Renormalization, Wilson lines, andtransverse-momentum dependent parton distribution funtions, Phys. Rev. D77 (2008)094001 [arXiv:0710.1955 [hep-ph℄℄.[53℄ K. Goeke, A. Metz, and M. Shlegel, Parameterization of the quark-quark orrelator of aspin-1/2 hadron, Phys. Lett. B618 (2005) 90 [hep-ph/0504130℄.[54℄ J. C. Collins, Leading-twist single-transverse-spin asymmetries: Drell-Yan and deep-inelastisattering, Phys. Lett. B536 (2002) 43 [hep-ph/0204004℄.[55℄ J. C. Collins and D. E. Soper, Parton distribution and deay funtions, Nul. Phys. B194(1982) 445.[56℄ D. Boer, Theoretial aspets of spin physis, hep-ph/0312149.[57℄ A. A. Henneman, Sale dependene of orrelations on the light-front, PhD thesis, VrijeUniversiteit Amsterdam, 2005,http://www.nikhef.nl/pub/servies/newbiblio/theses.php.[58℄ D. Boer, Sudakov suppression in azimuthal spin asymmetries, Nul. Phys. B603 (2001) 195[hep-ph/0102071℄.[59℄ M. Anselmino, M. Boglione, U. D'Alesio, A. Kotzinian, F. Murgia, and A. Prokudin, The roleof Cahn and Sivers e�ets in deep inelasti sattering, Phys. Rev. D71 (2005) 074006[hep-ph/0501196℄.[60℄ A. M�endez, A. Rayhaudhuri, and V. J. Stenger, QCD E�ets In Semiinlusive NeutrinoProesses, Nul. Phys. B148 (1979) 499.[61℄ A. K�onig and P. Kroll, A Realisti Calulation Of The Azimuthal Asymmetry InSemiinlusive Deep Inelasti Sattering, Z. Phys. C16 (1982) 89.[62℄ J. Chay, S. D. Ellis, and W. J. Stirling, Azimuthal asymmetry in lepton-photon sattering athigh energies, Phys. Rev. D45 (1992) 46.[63℄ K. A. Oganessyan, H. R. Avakian, N. Bianhi, and P. Di Nezza, Investigations of azimuthalasymmetry in semi-inlusive leptoprodution, Eur. Phys. J. C5 (1998) 681 [hep-ph/9709342℄.{ 71 {

http://xxx.lanl.gov/abs/hep-ph/9608469
http://xxx.lanl.gov/abs/hep-ph/9906503
http://xxx.lanl.gov/abs/hep-ph/0208038
http://xxx.lanl.gov/abs/hep-ph/0406099
http://xxx.lanl.gov/abs/hep-ph/0601171
http://xxx.lanl.gov/abs/hep-ph/0408249
http://xxx.lanl.gov/abs/hep-ph/0702196
http://xxx.lanl.gov/abs/arXiv:0710.1955
http://xxx.lanl.gov/abs/hep-ph/0504130
http://xxx.lanl.gov/abs/hep-ph/0204004
http://xxx.lanl.gov/abs/hep-ph/0312149
http://www.nikhef.nl/pub/services/newbiblio/theses.php
http://xxx.lanl.gov/abs/hep-ph/0102071
http://xxx.lanl.gov/abs/hep-ph/0501196
http://xxx.lanl.gov/abs/hep-ph/9709342


[64℄ M. Anselmino, M. Boglione, A. Prokudin, and C. T�urk, Semi-inlusive deep inelastisattering proesses from small to large PT , Eur. Phys. J. A31 (2007) 373 [hep-ph/0606286℄.[65℄ A. M. Kotzinian and P. J. Mulders, Longitudinal quark polarization in transversely polarizednuleons, Phys. Rev. D54 (1996) 1229 [hep-ph/9511420℄.[66℄ J. Chay and S. M. Kim, Azimuthal orrelation in lepton hadron sattering via hargedweak-urrent proesses, Phys. Rev. D57 (1998) 224 [hep-ph/9705284℄.[67℄ J. C. Collins, Fragmentation of transversely polarized quarks probed in transverse momentumdistributions, Nul. Phys. B396 (1993) 161 [hep-ph/9208213℄.[68℄ S. Meissner, A. Metz, and K. Goeke, Relations between generalized and transverse momentumdependent parton distributions, Phys. Rev. D76 (2007) 034002 [hep-ph/0703176℄.[69℄ X. Artru and M. Mekh�, Transversely polarized parton densities, their evolution and theirmeasurement, Z. Phys. C45 (1990) 669.[70℄ NA10 Collaboration, S. Faliano et al., Angular distributions of muon pairs produed by 194GeV/ negative pions, Z. Phys. C31 (1986) 513;NA10 Collaboration, M. Guanziroli et al., Angular distributions of muon pairs produed bynegative pions on deuterium and tungsten, Z. Phys. C37 (1988) 545;J. S. Conway et al., Experimental study of muon pairs produed by 252-GeV pions ontungsten, Phys. Rev. D39 (1989) 92;FNAL-E866/NuSea Collaboration, L. Y. Zhu et al., Measurement of angular distributions ofDrell-Yan dimuons in p+ d interation at 800 GeV/, Phys. Rev. Lett. 99 (2007) 082301[hep-ex/0609005℄.[71℄ BELLE Collaboration, K. Abe et al., Measurement of azimuthal asymmetries in inlusiveprodution of hadron pairs in e+e� annihilation at BELLE, Phys. Rev. Lett. 96 (2006)232002 [hep-ex/0507063℄.[72℄ D. Boer, R. Jakob, and P. J. Mulders, Asymmetries in polarized hadron prodution in e+e�annihilation up to order 1/Q, Nul. Phys. B504 (1997) 345 [hep-ph/9702281℄.[73℄ D. Binosi and L. Theussl, JaxoDraw: A graphial user interfae for drawing Feynmandiagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015℄.

{ 72 {

http://xxx.lanl.gov/abs/hep-ph/0606286
http://xxx.lanl.gov/abs/hep-ph/9511420
http://xxx.lanl.gov/abs/hep-ph/9705284
http://xxx.lanl.gov/abs/hep-ph/9208213
http://xxx.lanl.gov/abs/hep-ph/0703176
http://xxx.lanl.gov/abs/hep-ex/0609005
http://xxx.lanl.gov/abs/hep-ex/0507063
http://xxx.lanl.gov/abs/hep-ph/9702281
http://xxx.lanl.gov/abs/hep-ph/0309015

