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Appendies 45A Quark bilinear operators in the twisted basis 46B Evaluation of disonneted loops 47C �-method and data-bloking 50C.1 �-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50C.2 Binning method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51C.3 Error on the error: �-method vs data-bloking . . . . . . . . . . . 52C.4 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52D Details of the stati potential alulation 53D.1 Improved stati ation . . . . . . . . . . . . . . . . . . . . . . . . 53D.2 Spatial smearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 54D.3 Stati quark-antiquark pair orrelators . . . . . . . . . . . . . . . 541 Twisted mass fermionsDynamial Wilson twisted mass fermions, when tuned to maximal twist [2, 3℄,have been demonstrated to lead to preise results for mesoni quantities downto pseudo salar masses mPS . 300 MeV. Results in the quenhed ase weredisussed in refs. [4, 5, 6℄ and in the ase of two mass-degenerate avours ofquarks in ref. [1℄. Preparatory simulations with twisted mass dynamial fermionswere performed in [7, 8, 9, 10℄. In ref. [1℄ many of the details of our omputationshad to be omitted and it is the purpose of the present paper to supplement thoseand �ll this gap.This paper is organized as follows. In this setion we introdue twisted massfermions and disuss the important issue of tuning to maximal twist. In setion 2,we give details about our tehniques to ompute harged orrelators and in se-tion 3 to ompute neutral orrelators and quark-disonneted ontributions. Insetion 4 we disuss the algorithm details and explain our analysis tehniques forobtaining reliable error estimates. In setion 5 we provide details of our om-putation of the fore parameter r0 and in setion 6 we give some results for thepseudosalar mass and deay onstant, the untwisted PCAC quark mass and therenormalization onstant ZV. We use hiral perturbation theory to �t our dataand we detail this proedure in setion 7. We end with a short summary insetion 8.We begin with the Wilson twisted mass fermioni lattie ation for twoavours of mass degenerate quarks, whih reads (in the so alled twisted ba-
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sis [2, 3℄ and with fermion �elds having ontinuum dimensions)SFtm = a4Xx n��x [DW +m0 + i5�3�q℄�xo ;DW = 12� �r� +r���� ar2 r�r�� ; (1)where m0 is the bare untwisted quark mass and �q the bare twisted quark mass,�3 is the third Pauli matrix ating in avour spae and r is the Wilson parameter,whih we set to r = 1 in our simulations. We denote by r� and r�� the gaugeovariant nearest neighbour forward and bakward lattie derivatives. The barequark mass m0 is related to the so-alled hopping parameter �, whih we willoften use in this paper, by � = 1=(8 + 2am0). Twisted mass fermions are saidto be at maximal twist if the bare untwisted mass is tuned to its ritial value,mrit. We will disuss later how this an be ahieved in pratie.In the gauge setor we use, for reasons explained in [1℄, the so alled tree-level Symanzik improved gauge ation (tlSym) [11℄ whih inludes besides theplaquette term U1�1x;�;� also retangular (1� 2) Wilson loops U1�2x;�;�. It readsSg = �3Xx  b0 4X�;�=11��<�f1� ReTr(U1�1x;�;�)g+b1 4X�;�=1�6=� f1� ReTr(U1�2x;�;�)g! ; (2)where � is the bare inverse oupling and we set b1 = �1=12 (with b0 = 1 � 8b1as ditated by the requirement of ontinuum limit normalization). Note that atb1 = 0 this ation beomes the usual Wilson plaquette gauge ation.1.1 Tuning to maximal twistOne of the main virtues of Wilson twisted mass fermions is that by tuning thebare quark mass m0 to its ritial value an automati O(a) improvement anbe ahieved suh that expetation values of parity even operators sale to theirontinuum limit with O(a2) disretization errors [3℄. It was shown in the salingtest study arried out in [4, 5, 6℄ in the quenhed ase that O(a) improvementworks extremely well for maximally twisted mass quarks. In this ontext, themethod to tune to maximal twist by setting the so-alled (untwisted) PCACmass to zero (in the limit �q ! 0) was found to be very suessful, in agreementwith theoretial onsiderations [12, 13, 14℄. In the present paper essentially thesame approah to set to zero the (untwisted) PCAC massmPCAC = Pxh�0Aa0(x; t)P a(0)i2PxhP a(x; t)P a(0)i ; a = 1; 2 ; (3)was followed, by evaluating (3) at large enough time separation, so that thepion ground state is dominant. For a de�nition of the (twisted basis) operatorsappearing in eq. (3) see eq. (47) of Appendix A.3



In priniple one ould think of determining amrit at eah value of a�q atwhih simulations are arried out and then perform an extrapolation to vanish-ing a�q based on data satisfying the bound a�q & a3�3QCD [14℄. This methodis, however, rather CPU-time expensive. We therefore prefer to determine thevalue of amrit (at eah �xed value of �) from the simulation at the lowest avail-able value, a�q;min � a�QCD. This hoie simply a�ets the ritial quark massby O(a�q;min�QCD) terms. Therefore O(a) improvement is still guaranteed [3℄.Furthermore, and most importantly, with suh a determination of amrit also theO(a2) uto� e�ets remain small as long as �q & a2�3QCD [14℄. We reall belowthe line of arguments leading to this onlusion.1.2 Maximal twist and residual O(a2) artifatsTo start the disussion let us assume that m0 = 1=(2�) � 4 has been set to avalue orresponding to some sensible lattie estimate of the ritial mass, while�q is non-zero. In this situation one is already at maximal twist. However theunavoidable O(a) terms a�eting any determination of the ritial mass an befurther tuned in an \optimal way", i.e. in a way suh that the residual O(a2)lattie artifats in physial quantities remain under ontrol as the pion mass isdereased. We briey explain how this an be ahieved in pratie and to whatauray, following the work of ref. [14℄. In the Symanzik expansion of the lattieexpetation value hO(x)ij�q of a multiloal operator O omputed at a bare quarkmass �q there will appear at O(a2) terms whih are proportional to� 1m2� �2 �2�(�q) / 1�2q �2�(�q) ; (4)where ��(�q) = jh
jLoddj�0(0)ijont�q : (5)Here h
j and j�0(0)i denote the vauum and the one-pion neutral state at zerothree-momentum, respetively. With the symbolLodd = aL5 + a3L7 + ::: (6)we indiate the set of operators of odd dimension in the Symanzik loal e�etiveLagrangian that desribes the maximally twisted lattie theory. From eq. (4) onereognizes that ut-o� e�ets may beome large when m2� gets small.The general strategy to avoid these large ut-o� e�ets is to tune ��(�q) tozero, or at least to redue it to O(am2��2QCD) by adjusting the value of �rit.One way to realise this is preisely to tune mPCAC = 0 as explained above. Inpartiular it is suÆient to impose the vanishing of the PCAC mass at �q =�q;min [14℄. An analysis �a la Symanzik of the orrelator in the numerator of eq.(3)shows that, if � is suh that mPCAC vanishes at a given value of �q (provided4



�q < �QCD), then ��(�q) is suppressed in a suÆiently strong way, namely onegets (note that �� has mass dimension three)��(�q) = O(a�q�3QCD) + O(a�2q�2QCD) + O(a3�6QCD) ; (7)and thus (see eq. (4))��(�q)�q�2QCD = O(a�QCD) + O(a�q) + O(a�QCDa2�3QCD�q ) : (8)In this situation, the ratio ��(�q)=�q�2QCD remains small as long as �q & a2�3QCD.For eah value of �q in the region a2�3QCD . �q < �QCD � a�1 the value of �at whih mPCAC vanishes provides a legitimate estimate of �rit and hene ofmrit.Estimates of mrit orresponding to di�erent values of �q di�er by O(a�q�QCD)from eah other. In partiular, working at �rit(�q;min) leads to O(a2) uto� e�etswhih are at worst of the form a2(�q;min=�q)2 and thus perfetly tolerable as longas �q & �q;min > a2�3QCD. This result an be heked by expanding ��(�q) around�q;min in eq. (8) and using the expression of ��(�q;min) from eq. (7).1.3 Numerial preision for tuning to maximal twistIt remains to be disussed to what numerial preision the ondition mPCAC =0 has to be ful�lled. This question is important if one wants to avoid thatnumerial unertainties jeopardize the tuning proedure. Suppose jamPCACj =a� 6= 0, where a� denotes a small deviation, due to numerial limitations, fromthe ondition of vanishing PCAC mass. As a rule of thumb the value of a� anbe taken as the maximum (in modulus) between the �nite statistis entral valueof amPCAC and its (estimated) standard deviation. It then follows by expanding�� = ��(�q; �) around � = 0��(�q; �) = ��(�q) + O ��2QCD��� O(a�q�3QCD) + O(a�2q�2QCD) + O(�2QCD�) : (9)Thus for the relative size of �� ompared to the atual value of the quark mass,one gets ��(�q; �)�q�2QCD = O(a�QCD) + O(a�q) + O( ��q ) : (10)A smooth approah to the ontinuum is, of ourse, guaranteed when j�=�qj is oforder a�QCD or smaller. In fat, from the form of the dimension �ve term in theSymanzik e�etive Lagrangian of the twisted mass lattie QCD, it follows that,lose to maximal twist, a�QCDj�=�qj is the expeted order of magnitude of the(unwanted) relative O(a) uto� e�ets stemming from violations of the onditionof vanishing PCAC mass. The requirement j�=�qj . a�QCD thus implies that5



the relative magnitude of these unwanted uto� e�ets satis�es the onstrainta�QCDj�=�qj . a2�2QCD, whih is onsistent with O(a) improvement.In pratie, sine we are interested in simulations performed at lattie spaingsabout (or slightly below) 0.1 fm, where a�QCD � 0:1, a value of j�=�qj . 0:1 (andideally dereasing with a) will represent an aeptable level of preision in theproedure of determining the ritial mass. This ondition is not too restritiveas in atual simulations it is suÆient that it holds at �q;min. We also remarkthat in order to hek saling and perform a reliable ontinuum extrapolation,the value of �q;min should be kept roughly �xed in physial units as the lattiespaing is dereased.Although these theoretial arguments show that we an work in onditionssuh that we are e�etively left with only O(a2) lattie artefats, numerial om-putations are required to hek the saling behaviour and determine the order ofmagnitude of the oeÆient multiplying a2 terms for the observables of interest.In this paper, where data at only one value of a are analyzed, we annot evaluatethese oeÆients. Nevertheless, for the observables we disuss here preliminaryresults from our ollaboration presented in ref. [15, 16℄ indiate that the residualuto� e�ets are indeed small and onsistent with O(a) improvement.2 Computations in the harged meson setorIn this paper we will be mainly using the twisted quark basis where the fermioniation takes the form (1). Even though there is no fundamental reason for thishoie, employing the twisted quark basis makes immediately transparent the wayseveral omputational methods, whih have been invented for, or widely appliedto, untwisted Wilson fermions, arry over to the ase of maximally twisted Wilsonquarks. Of ourse, in suh an unphysial basis, the two avour omponents ofthe fermion �eld � = (u; d)T appearing in the ation do not oinide with theanonial quark �elds in the \physial" basis,  = (uphys; dphys)T , rather theformer are related to the latter by the axial rotation� = e�i5�3!=2j!=�=2 , u = e�i5�=4uphys ; d = ei5�=4dphys ; (11)whih we write here in the ase of maximal twist, ! = �=2. Sine the axialtransformation above is avour diagonal, the names of the omponents (u,d) ofthe twisted basis �eld � are still appropriate to their avour ontent. In spiteof that, the orret interpretation of gauge invariant omposite bare operators inthe (�, ��) basis is obtained only one they are expressed in terms of the physialbasis bare �elds ( , � ). Examples onerning quark bilinear �elds an be foundin Appendix A.In this ontext it may be useful to remark that, sine parity and isospin areno longer exat symmetries (reall however that I3, the third isospin omponent,6



is unbroken), a physial basis bare omposite operator with given formal par-ity and isospin properties an interpolate a hadron with opposite parity and/ordi�erent isospin. As a onsequene in the quantum-mehanial representationof the orrelators there will be ontributions ontaining matrix elements of aphysial basis omposite operator with given formal parity and isospin betweenthe vauum and a state with opposite parity and/or di�erent isospin, as wellas between a neutral pion state (whih has the same lattie quantum numbersas the vauum) and a state with the same parity and isospin properties as theonsidered operator. Suh parity- and/or isospin-violating matrix elements areof ourse of order a. Their ourrene in the quantum-mehanial representationof orrelators is not in ontradition with the O(a) improvement of the expe-tation values of parity-even, or isospin-invariant, multiloal operators [3℄. Forthese spei� orrelators, indeed, an analysis �a la Symanzik shows that eah termof their quantum-mehanial representation an ontain only an even number ofO(a) fators given by parity- and/or isospin-violating matrix elements 1.From the formulae in Appendix A, it is lear that at maximal twist, ! = �=2,the operator �d5u is assoiated to the �+ meson, in the sense that ( �d5u)y reatesthe �+ state from the vauum. The two-point �+ meson orrelator reeivesontributions only from (fermionially) onneted diagrams, and after integrationover fermion �elds, it is given byC(t) = htr[Gu(0; t)5Gd(t; 0)5℄i ; (12)where h: : :i means average over the gauge ensemble, the trae tr[: : : ℄ is restritedto spin and olour indies only, and we denote by Gu(0; t) the propagator for au-quark from 0 to t, and orrespondingly by Gd the similar propagator for thed-quark. Here three-spae indies are understood as at this stage we need notspeify the spatial separation, or equivalently the three-momentum. We an usethe identity 2 Gd(y; z) = 5Gu(z; y)+5 to relate the onneted orrelator (12) topropagators from a ommon soure (at time x0 = 0) throughC(t) = htr[Gu(0; t)Gu(0; t)+℄i : (13)Thus only propagators for one avour at one soure point are needed for theomputation of the harged meson orrelator. As we disuss later, it is moreeÆient, however, to evaluate orrelation funtions from a wider set of soures.In the Table below we give the orrespondene between bilinear operatorsof the form �d�u, where � is an hermitian ombination of Dira -matries, andthe mesoni state that is assoiated with eah of them (in the limit a ! 0, i.e.negleting O(a) ontamination from states of di�erent parity and isospin).1This result essentially follows from the property that, at maximal twist, the order a pieeof the Symanzik e�etive Lagrangian, aL5, is odd under parity and the avour exhange u$ d.2Here (with a little abuse of notation) by + we mean omplex onjugation and transpositionwith respet to spin-olour indies only, while y = (y; y0) and z = (z; z0) are the spaetimeoordinates. 7



Meson Operator��, ��, X�1 �d5u, �d0u, �di05u��, ��, a�1 �dii0u, �dii5u, �diub�1 �dii05ua�0 �duIn this Table, X�1 labels an isotriplet state with JP = 0+, for whih there is noexperimental andidate. We note that the assoiated operator is in the ontinuuma omponent of a onserved urrent in the theory with two mass degeneratequarks.We evaluate the two-point (onneted) orrelators for all the pairs of operatorsin the same line of the Table above. In view of the symmetries of the lattie theoryat maximal twist [2, 3℄, suh orrelators are in general non zero: e.g. the orrelatorobtained from the insertion of the �rst (or seond) operator in the seond line ofthe Table with the third operator in the same line is an O(a) quantity (in fat�� and a�1 arry di�erent ontinuum quantum numbers). Sine we also use aloal and extended (fuzzed) soure and sink in all ases we onsider, we will haveeither 6� 6 or 2� 2 matries of orrelators available.Therefore, we measure in general orrelation funtions of several di�erentpairs of operators (hO�O�i, with �; � = 1; : : :N) at soure and sink. We thenuse a fatorizing �t expression where i = 1; : : :M states (with energy denoted byEi) are inluded C��(t) = MXi=1 i�i�(e�Eit � e�Ei(T�t)) : (14)Here T is the lattie temporal extent and the � sign is determined by the prop-erties of the hosen operators under time-reetion. By simultaneously �ttingN �N orrelators with M states, we an optimally determine energies and ou-plings. From them we evaluate other quantities of interest, suh as af� andamPCAC. We use onventional methods to determine the optimal t range, N - andM -values to be employed in the �ts. We take into aount statistial orrelationsamong observables [17℄ through orrelated �ts to establish that the �2 value isaeptable. Our �nal �tted values are obtained from unorrelated �ts, sine thatintrodues less bias [17℄, although the �2 values are smaller than those obtainedinluding orrelations. We also heked that the �ts are stable when taking intoaount orrelations. For pseudosalar mesons we use mainly M = 1 as well asN = 4 or 6, and selet the minimum value of t suh that the e�etive masses (orenergies) from di�erent matrix elements agree.We onlude by realling that, owing to reetion invariane of the lattieation (the Eulidean analog of the Minkowski omplex-onjugation, a symmetrythat is preserved by Wilson fermions, either hirally twisted or not, see ref. [3℄),all the orrelators that are expetation values of �elds with de�nite reetion8



properties are either real or purely imaginary, depending on whether the whole�eld produt has even or odd reetion-parity. In partiular, the expetationvalues of multiloal �elds with negative spatial parity, whih are O(a) quantities,ome out to be purely imaginary if one does not take are of inserting the i-fatorsthat are needed to render the multiloal �eld even (rather than odd) under thereetion.2.1 Quark propagators from stohasti souresAlthough it is feasible to use u-quark propagators from 12 olour-spin soures(with eah soure being non-zero only for one olour-spin ombination) at onespae-time point to evaluate mesoni orrelators, it is preferable to use the in-formation ontained in the gauge on�gurations more fully, espeially in the aseof suh CPU-time expensive simulations as dynamial quark simulations. OneeÆient way to ahieve this goal is to use stohasti soures. To keep the noise-to-signal ratio reasonable, it is mandatory to use time-slie soures rather than fullvolume soures. A great redution of the noise-to-signal ratio over onventionalstohasti methods (see ref. [18℄ for a review) an be obtained [19, 20℄ by usingthe \one-end-trik" whih is desribed below. A similar method, alled randomwall, was used by MILC [21℄.The starting point of all stohasti methods for omputing quark propagatorsis the introdution of random soures, �ri , where i = 1; : : : Vs spans the set of thesoure degrees of freedom (olour, spin, spae, time) and r = 1; : : :R labels thenoise samples generated for eah gauge on�guration. The orresponding averagesatis�es limR!1[��i �j℄R = Æij; limR!1[�i�j℄R = 0 ; (15)whih an be ahieved by various di�erent noise hoies, suh as �ri = (�1�i)=p2or gaussian (omplex) noise.As a next step, we invert the lattie Dira matrix M (for one given quarkavour) on eah sample of this soure,�rj =M�1jk �rk ; (16)so that averaging over r (R samples) gives[�r�i �rj ℄R = [�r�i M�1jk �rk℄R =M�1ji + noise ; (17)where j an be arbitrary and i belongs to the set of indies for whih the soureis non-vanishing, whih we assume to be of size Vs. The quantity (17) is anunbiased estimator of the quark propagator from i to j. Unfortunately, here thenoise is expeted to be as � pVs=pR whereas the signal is � 1 at best. Varianeredution is thus very neessary. Furthermore for a meson orrelator, the signalbehaves as exp(�mmesont) whih dereases rapidly with inreasing t.9



The `one-end-trik' allows [19, 20℄ a more favourable signal-to-noise ratio.Consider the produt �r�i �rj where the stohasti soure is now non-zero for allolour-spin indies and all spae points at only one time, denoted by t0 (time-sliesoure). Then upon averaging over r one has[�r�i �rj ℄R = [ (M�1ik �rk)�M�1jm�rm ℄R =M�1�ik M�1jk + noise ; (18)where the sum over k inludes all soure omponents. This quantity is an unbiasedestimator for the produt of the quark propagatorsM�1jk M�1 +ki from the soure tosites i and j on eah gauge on�guration. Then ontrating with Æij and summingover spae at �xed time-slie t yields the full zero three-momentum (��-hannel)orrelator from t0 to t. The noise ounting is now more favourable. There are V 2snoise terms, whih yield a standard deviation of order Vs, but the signal itself isof order Vs. This is suh big an advantage that it is suÆient to employ just onesample of noise per gauge on�guration (R = 1). As we disuss below, the optimalway to hoose the time-slie (t0) at whih the stohasti soure is loated, is tohange it randomly as the gauge on�guration is hanged. It should be remarkedthat the `one-end-trik', as formulated above, only works for the ase of a zerothree-momentum interpolating �eld of the form �d5u at the soure time (t0).A onvenient extension of the `one-end-trik', that allows meson-to-mesonorrelators with any Dira struture at the soure to be evaluated, requires on-sideration of four (� = 1; 2; 3; 4) \linked" soures of the form�(�; t0)�;;x;x0 = Æ��Æx0t0�;x ;where � and  are Dira and olour indies respetively, while � is a non-vanishingnoise �eld. Suh soures, whih are non-zero only on a given time-slie (t0) andwhen the Dira index value equals �, are alled \linked" beause they involve aommon noise �eld �. 3 One an hek that by replaing � and �� in the l.h.s.of eq. (18) by two of these linked soures, say �(�; t0) and �(; t0) �, and hoosingappropriately � and , it is possible to evaluate the two-point orrelators with a�eld of the form �d�u at the soure (x0 = t0) with any Dira matrix �. This veryuseful extension, whih we have thoroughly exploited in the present paper, omesat a moderate prie. One must in fat only perform four separate inversions (pergauge on�guration and per noise sample), one for eah of the four linked soures�(�; t0), � = 1; : : : 4.To further extend the one-end trik with linked soures to non-zero three-momentum or to spatially non-loal mesoni operators is ompletely straight-forward, at the ost of more inversions. One reates further linked soures F�(where F denotes a produt of links) with the desired spatial properties, andomputes the quark propagators originating from them, �F =M�1F�. Combin-ing the latter with the quark propagator stemming from �, i.e. � =M�1�, yields3Note that \linked" soures are di�erent than \spin-diluted" soures [18, 22℄ sine theserequire di�erent random numbers for eah spin.10



the produt ���F , from whih, upon averaging over the noise, one an evaluatea set of orrelators with the meson �eld �d5Fu inserted at the soure (and allpossible spatial strutures at the sink). Employing linked soures, as explainedabove, one an �nally evaluate orrelators with the meson �eld �d�Fu inserted atthe soure with any spatial struture F and Dira matrix �, while retaining alladvantages of the one-end trik.In this work we use fuzzing, see Appendix D.2 and ref. [23℄, to reate spatiallynon-loal meson operators, sine this proedure is omputationally fast also atthe sink. The fuzzed meson soure is onstruted from a sum of straight pathsof length 6a, in the six spatial diretions, between quark and anti-quark. Thesestraight paths are produts of fuzzed gauge links. Here for the fuzzed links weuse the iterative proedure de�ned in Appendix D.2 with �s = 0:25 and n = 5.In priniple one ould hope to extend the approah desribed above to bary-oni orrelators (hoosing � as a ubi root of 1) but the signal to noise ratio willbe less favourable (noise indued standard deviation will be � V 3=2s versus signal� Vs). Unfortunately one �nds that this extension of the stohasti method tobaryons is not any improvement over using point-like soures. In general, thehoie of the optimal stohasti methods needs to be investigated on a ase byase basis.2.2 On the way of hoosing the soure time-slieAs disussed above, we invert on spatial-volume stohasti soures loated attime t0, where 0 � t0 < T an be hosen di�erently for eah gauge on�guration.We have explored two ways of hanging the soure time-slie t0. One onsists inmoving t0 ylially through the lattie. This means that we hoose n equallyspaed values for the soure time loations, t(i)0 ; 0 � i < n. Then we invert onthe j-th gauge on�guration using soures that are non-vanishing only at thetime-slies t0 = t(j mod n)0 . Hene, we invert from the same time-slie only every non�gurations, i.e. after one yle. Even though this method should deorrelatethe measurement on two onseutive gauge on�gurations better than when thetime-slies are kept �xed, it has the drawbak that after a relatively short numberof on�gurations the same time-slie is used again. Atually, at least for themesoni orrelators studied in this paper, it turns out that two measurementsfrom the same time-slie, but 8 trajetories apart, are muh more orrelated thantwo measurements from di�erent time-slies, but only two trajetories apart.Furthermore the analysis with the � method of ref. [24℄ desribed in set. 4.1 andAppendix C beomes ill-de�ned, beause translational invariane is broken. Thisinvariane an be reovered, however, by averaging over yles and using the �method on the yle-averaged ensemble.The seond way of moving the time-slie we explored was to hoose the valueof t0 randomly for every gauge on�guration we inverted on. This method alsomaintains translational invariane properly for a large enough on�guration en-11



semble. It is therefore expeted to work better than the aforementioned ylialway. This will indeed turn out to be the ase, as we shall see below, where wedisuss in more detail the e�ets of these two ways of generating soure time-slies.3 Computations in the neutral meson setorLattie QCD with maximally twisted Wilson fermions enjoys the remarkableproperty that, even if the ation is not O(a) improved, all the physially rel-evant observables are a�eted by uto� e�ets only at order a2 (and higher).Among these O(a2) uto� e�ets will be a violation of parity and (in part)isospin. Isospin and parity violations have several onsequenes for meson spe-trosopy. For instane 1) neutral and harged mesons an have di�erent masses,2) quark-disonneted ontributions are needed for neutral isovetor mesons and3) orrelators reeive ontributions from states that in the ontinuum limit arrydi�erent parity and isospin quantum numbers [3℄. Here we disuss how we om-pute the orrelators for neutral mesons and, in partiular, the quark-disonneted(for brevity alled simply \disonneted" below) ontributions. We illustrate ourapproah in the relevant ase of the neutral pseudo-salar meson.The neutral pion an be reated by the operatorp2 � 5�3 whih, at maximaltwist, in the twisted quark basis reads (i=p2)��� = (i=p2)(�uu+ �dd). When thisoperator is inserted at soure and sink, we will have to onsider the orrelatorsCtot(t) = h(�uu+ �dd)(t)(�uu+ �dd)(0)i=2 ; (19)where again three-spae indies are understood. The latter an be rewritten inthe form Ctot(t) = eC(t) + eD(t) ; (20)eC(t) = �htr[Gu(0; t)Gu(t; 0)℄ + tr[Gd(0; t)Gd(t; 0)℄i=2 ; (21)eD(t) = htr[Gu(0; 0) +Gd(0; 0)℄tr[(Gu(t; t) +Gd(t; t)℄i=2 ; (22)with the trae tr[: : : ℄ running only over spin and olour indies. As usual, we anrelate the onneted ontribution ( eC) to propagators from a ommon soure (attime x0 = 0) througheC(t) = �htr[5Gu(0; t)5Gd(0; t)+℄ + tr[5Gd(0; t)5Gu(0; t)+℄i=2 : (23)The disonneted ontribution an be expressed aseD(t) = htr[Gu(0; 0) +Gu(0; 0)+℄tr[Gu(t; t) +Gu(t; t)+℄i=2 : (24)Thus we see that to evaluate the orrelation (19) we need both u and d-quarksoures for the onneted ontribution as well as an evaluation of the disonneted12



ontribution for u-quarks at both initial and �nal t-value. This is at varianewith the �+ orrelator whih an be evaluated from a u-quark soure alone andwhih has no disonneted ontribution. The evaluation of the disonneted loopsis detailed in Appendix B, inluding disussion of both the hopping-parametermethod for the redution of the stohasti noise [25℄ and a new powerful methodof variane redution appliable in many ases.In the table below we give the orrespondene between bilinear operators ofthe form �u�u� �d�d, where � is an hermitian ombination of -matries, and theneutral mesoni state that is assoiated with eah of them in the limit a! 0 (i.e.ignoring O(a) ontaminations from states of di�erent parity and isospin).Meson Operator�0, �0, f0 ��i05�3�, ���, ��5�3��, �, a00 ��i05�, ���3�, ��5��0, �0, h1 ��i�3�, ��ii05�, ��ii0�3�!, !, b01 ��i�, ��ii05�3�, ��ii0�a01 ��ii5�3�f1 ��ii5�X01 ��0�3�X00 ��0�Here X01 (X00 ) labels an isotriplet (isosinglet) state with JPC = 0+�, forwhih no experimental andidate is known. We remark that these operators areonserved isotriplet (isosinglet) urrents in the ontinuum theory with two massdegenerate quarks.As in the harged hannel, we evaluate the two-point orrelators where onlypairs of meson operators appearing in the same line of the Table above are in-serted. Sine we use a loal and extended (fuzzed) soure and sink in eah ase,we have either 6 � 6 or 2 � 2 matries of orrelators available. The onnetedorrelators are atually the same for ertain states of di�erent isospin (e.g. � or�). The same `one-end-trik' disussed above, based on the use of stohastitime-slie soures with random hoie of its position on eah gauge on�guration,an be used for the onneted neutral orrelator.In more detail, we use four \linked" soures (�(�), see set. 2.1) and furtherfour fuzzed soures based on the same noise �eld (F�(�)) to ompute ordinaryand fuzzed u-quark propagators from one time-slie to all points. This set ofeight soures is just the same we used to evaluate orrelators of harged mesons.For neutral mesons, we inverted the lattie Dira matrix of the d-quark on thesame (non-fuzzed) four stohasti soures (�(�)) as above and on the orrespond-ing four stohasti soures with the lowest possible three-momentum (2�=L, forsimpliity taken always in the x-diretion). In priniple mesoni operators withnon-zero anisotropi three-momentum have less symmetry then their ounter-parts with vanishing three-momentum, implying that more orrelators may take13



Run L3 � T a�q Ntraj NfgB1a 243 � 48 0:0040 5000 2500B1b 0:0040 1341 670B1 0:0040 3380 1690B2 0:0064 5192 2500B3a 0:0085 3753 1876B3b 0:0085 940 470B4 0:0100 5000 2500B5a;b 0:0150 2500 1250Table 1: Summary of all simulation points. We give the lattie size L3 � T and the value ofthe twisted mass a�q . In the last two olumns we quote the number of equilibrated trajetoriesNtraj produed and the number of on�gurations Nfg saved to disk and �nally stored withinILDG, see the review [27℄ for further links and referenes. All runs listed in the Table havebeen performed at � = 3:9 and � = 0:160856.non-zero values. Here we do not evaluate these additional orrelators. We do takeare, however, to distinguish between the vetor meson orrelators with three-momentum parallel to spin and those with three-momentum perpendiular to it.As shown elsewhere [26℄, a study of the di�erene between these orrelators anshed some light on the mixing of � mesons with their deay produts (��).4 Simulation algorithm and error analysisIn this setion we provide details on the algorithms we used to generate thegauge on�gurations and information on the methods employed for the estimateof statistial errors.In Table 1 we give the list of the key parameters haraterising the simulationswe are going to use in this paper. All simulations B1 � B5 have been performedat a �xed value of the gauge oupling � = 3:9 and a �xed value of the hoppingparameter � = (8 + 2am0)�1 = 0:160856 on 243 � 48 latties. In addition to thevalues of a�q we provide in Table 1 the number of trajetories, Ntraj, produedafter allowing for 1500 equilibration trajetories, and the number of gauge on�g-urations, Nfg, that were saved on disk (one every seond trajetory). For everyvalue of a�q we have reahed � 5000 equilibrated trajetories.In ase we have several ensembles (as for instane for B1) or several replias (asfor instane for B5) for the same lattie parameter set, we denote this by addingan extra subsript, a; b; :::. For our smallest value a�q = 0:004 we extended our14



statisti from about 5000 trajetories (ensemble B1a) to � 10000 trajetories (ifalso trajetories from ensembles B1b and B1 are ounted).The algorithmwe used is a HMC algorithm [28℄ with mass preonditioning [29,30℄ and multiple time sale integration, as desribed in detail in refs. [31, 32℄. Thealgorithm parameters we employed for the various runs an be found in Table 2,where we mostly follow the notation of ref. [31℄. The integration shemes we usedare the Sexton-Weingarten (SW) sheme [33℄, the seond order minimal normsheme (2MN) [34℄ and its position version (2MNp). We also list the number ofintegration steps Ni for time-sale i (for details see ref. [31℄). We reall that N2represents the number of integration steps of the outermost (largest) time-sale.Thus the number of integration steps of the smallest (i.e. innermost) time-sale(the one referring to the gauge �eld integration) is given by N2 � N1 � N0. Thepreonditioning mass is given by ~�1 = 2��1, with �1 typially larger than �q bya fator O(10).The seond order minimal norm integration sheme on time-sale i isparametrised by one real number, �i. We also give the number, N sgi , of so-lutions of the Dira equation we save for the hronologial solver guess [35℄ withthe purpose of evaluating the two fore terms (i = 1; 2) assoiated to pseudo-fermion integration (i = 0 refers to the pure gauge fore). The notation N sg1;2 = 0means that no hronologial solver guess was used there. Finally, we quote theaeptane rate Pa observed in the simulation and the integrated autoorrela-tion time �int(P ) of the plaquette expetation value. The trajetory length wasset to � = 1=2 in all our runs and we always used NPF = 2 pseudo-fermion �elds.For details on the linear solvers we employed to invert the Dira matrix we referto ref. [36℄.To give guidane on the omputational ost of suh simulations, we speify theresoure used at our lightest �q-value where the CG iterations for one trajetoryost about 115 Top. The prodution of 5000 trajetories amounted to about 17rak days on the BlueGene/L installation in J�ulih, with our ode running withan eÆieny of about 18% for the B1 parameter set.4.1 Statistial error analysisA reliable estimate of the statistial errors on the measured quantities is extremelyimportant for many reasons. We disuss here only the points whih are of speialrelevane in our analysis. If the basi systemati e�ets in the lattie simulation,originating from the lattie disretization, the �nite volume and the mass of thedynamial quarks are to be addressed, the statistial auray on all the relevantquantities has to be understood very well. In fat, on the one hand, relevantbut tiny systemati e�ets an only be deteted with high statistial auray,on the other hand underestimated statistial errors an arti�ially inrease thesigni�ane of systemati e�ets. The PCAC quark mass, though not a physialquantity, plays here a speial role, sine the preision by whih it is set to zero15



Run Int. N0;1;2 ~�1 �0;1;2 N sg1;2 Pa �int(P )B1a;b 2MNp 2; 3; 6 0:018 0:19; 0:20; 0:21 0; 0 0:85 47(15)B1 SW 2; 3; 6 0:018 � 0; 0 0:90 43(15)B2 2MNp 2; 3; 6 0:025 0:19; 0:20; 0:21 0; 0 0:90 23(7)B3a;b 2MN 2; 3; 5 0:020 0:19; 0:20; 0:21 7; 1 0:90 13(3)B4 2MNp 2; 3; 6 0:035 0:19; 0:20; 0:21 0; 0 0:90 15(4)B5a;b SW 2; 2; 6 0:050 � 0; 0 0:90 30(8)Table 2: HMC algorithm parameters. For all ensembles we speify the integration sheme, thenumber of time steps on eah time sale N0;1;2, the preondition mass ~�1 = 2��1, the �-valuesfor the 2MN integration sheme, the number of saved solutions Nsg for the hronologial solverguess, the aeptane rate Pa observed in the run and the integrated autoorrelation time ofthe plaquette �int(P ). The trajetory length was set to � = 1=2 for all runs and we used alwaysNPF = 2 pseudo-fermion �elds.is related to the auray (see sets. 1.2{1.3) by whih we an expet to be atmaximal twist. Seondly, small statistial errors in low-energy hadroni quantitiesis an expeted virtue of the twisted mass formulation, where a sharp infra-redut-o� ensures a stable MC evolution of the lattie system. Of ourse we haveto make sure that an apparently small statistial error does not ome as a resultof large unnotied autoorrelations in the MC history. So autoorrelations in themeasured quantities must be aurately analysed. Finally, a detailed analysis ofthe statistial errors delivers as a by-produt the integrated autoorrelation time�int of the studied observable, from whih the eÆieny of the employed algorithmas a funtion of the simulation parameters an be quanti�ed (see set. 4.2).Given the importane of getting a reliable estimate of statistial errors, resultshave been ross-heked using di�erent approahes. As for the estimate of auto-orrelation times two di�erent kinds of analyses have been performed: one basedon a standard data-bloking (or binning) proedure and another one relying onthe so-alled �-method [37, 24℄. In order to keep self-ontained this paper we dis-uss these methods in some detail in Appendix C. Sine there are arguments [24℄supporting the superiority of the �-method over data-bloking, the former willbe our method of hoie in the evaluation of �int and the error on it, for severalobservables. In partiular the �-method has been used to estimate the statistialerror on the plaquette and mPCAC, whih turn out to have large autoorrelationtimes. For all the other observables having signi�antly smaller autoorrelationtimes data-bloking and �-method typially give quite similar error estimates.Cross-orrelations among di�erent observables are properly taken into aountin our error analysis by using standard jakknife or bootstrap [38℄ or performing16



�ts based on a de�nition of �2 that involves the inverse ovariane matrix (seeeq. (42) and the disussion of Method A in set. 7.1).4.2 Autoorrelation timesFor a primary observable O, i.e. one that an be viewed as a linear ombination ofexpetation values of multi-loal operators, the integrated autoorrelation timeis in priniple given by �int(O) = 12 + 1Xn=1 �O(n)�O(0) ; (25)where �O(n) is the autoorrelation funtion of the observable O (see eq. (69)).The autoorrelation times for the plaquette and fermioni quantities, like amPS,afPS and amPCAC, were determined using the �-method as desribed in ref. [24℄(see also Appendix C). This method allows the determination of �int also fornon-primary quantities, as the aforementioned fermioni observables. The valuesfor the plaquette integrated autoorrelation time are olleted in Table 2, thosefor amPS, afPS and amPCAC in Table 3. All quoted values are given in units oftrajetories of length 1/2.In the ase of the ensemble B1a we employed the two ways of moving thestohasti soure through the lattie desribed in set. 2.2. As an be seen inTable 3, indeed the random way performs better. This is espeially signi�antfor amPCAC, for whih we observe the longest autoorrelation time among thefermioni quantities. For amPS and afPS the di�erene between the two methodsis not signi�ant. The somewhat larger autoorrelation time of By2 , in partiularfor mPS and fPS, stems presumably from the fat that the time slie soures werehosen loser to eah other than at the other ensembles.Table 4 gives details on the omputational methods employed to extrat thevarious fermioni quantities. In the ase where the random way of moving thesoure is used, the value of tp reported there represents the number of trajetories(of length 1/2) between two onseutively measured gauge on�gurations. Wealso give in this Table the value of �2/d.o.f. obtained when the harged pionorrelators (for Eulidean time separations in the range 10 � t=a � 23) are �ttedusing the Ansatz (14).Looking at the three fermioni observables reported in Table 3, we observethat the integrated autoorrelation times of amPCAC are signi�antly larger thanthose of amPS and afPS. We attribute the large value of the autoorrelationtime of amPCAC to the peuliar phase struture of twisted mass lattie QCD withWilson type quarks as disussed in ref. [7℄. The simulated values of �q are not ina region where the phase transition ours. However, the system may still feel thepresene of this phase transition. The situation is similar for the plaquette value,as also disussed in ref. [7℄, and indeed the integrated autoorrelation times forthe plaquette and amPCAC are rather similar.17
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Figure 1: The Monte Carlo history of the ratio of orrelators de�ning the PCAC quark massestimator desribed in the text on the on�gurations of the ensemble B1. The on�gurationnumber orresponds to the number of trajetories divided by two.We show the Monte Carlo (MC) history of an estimator of amPCAC, seeeq. (32), for our lightest quark mass (a�q = 0:0040) in �g. 1. More pre-isely, we plot for eah gauge on�guration the axial-pseudosalar orrelator att=a = 10 (where the pion ground state is dominant) multiplied by the fator0:5amPS=CPP(10), where the average over all gauge on�gurations is used inCPP(10) 4. The plot in �g. 1 shows long-ranged utuations in MC time. Theautoorrelation funtion in eq. (69) from this data set is reported in �g. 2.From it an integrated autoorrelation equal to 32(9) trajetories is obtained,in agreement with the result quoted in Table. 3 (third line).Conerning the neutral pseudosalar meson, a study of the orresponding or-relators indiates that the autoorrelations are de�nitely shorter than 100 (length1/2) trajetories. Thus our error estimates, oming from a bootstrap analysis onbloked data with bloks made of measurements taken from 80 trajetories, areexpeted to be reliable.4Note that the average of this quantity over all gauges is not our best estimator of amPCAC,sine it does not exploit the possibility of averaging over t (the Eulidean time separation).18
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Figure 2: The autoorrelation funtion (see eq. (69)) from the data presented in �g. 1. Thevertial line shows the window W from eq. (70) used to evaluate the integrated autoorrelationfuntion.Within the relatively large errors of our estimates of the autoorrelation times,it is atually not possible to �nd a signi�ant dependene on the value of thetwisted mass a�q for any of the fermioni quantities disussed here.5 The sale from the stati potentialA onvenient way to set the sale in lattie simulations is through measurementsof the stati potential and the assoiated hadroni sale r0 [39℄. Although we will�nally not use r0 to set the sale in our dynamial simulations, we will use it fora saling analysis towards the ontinuum limit and its reliable determination istherefore important for us. The sale r0 is de�ned via the fore between statiquarks at intermediate distane r20F (r0) = 1:65 ; (26)where numerial alulations are most reliable and hene are expeted to leadto very aurate results. We measure the stati quark-antiquark potential by19



Run �int(amPS) �int(afPS) �int(amPCAC)By1a 7(1) 13(4) 60(24)Brnd1a 6:6(1:1) 8(1) 20(5)Brnd1a;b; 5:9(7) 7(1) 23(5)By2 17(4) 33(8) 43(14)By3 10(2) 11(2) 66(27)By4 7(2) 14(4) 54(23)By5a;b 20(6) 14(3) 105(51)Table 3: Estimated integrated autoorrelation times for amPS, afPS and amPCAC. The labelsy and rnd refer to the yli and random hoie of the soure, see text. All integratedautoorrelation times are given in units of trajetories of length 1=2. The fat that for theensemble By5 we �nd a rather large autoorrelation time with, however, a large error weattribute to the usage of 2 replia in the analysis.determining expetation values of Wilson loops of size r � t on our ensembles ofon�gurations. Unfortunately, the relative errors of the Wilson loop expetationvalues inrease exponentially with the temporal extension t. To redue thesestatistial utuations one an employ improved stati ations amounting to usemodi�ed temporal links for building Wilson loops 5. However, it is also importantto enhane the overlap with the physial ground state of the stati system andthis an be ahieved by invoking iterative spatial smearing tehniques togetherwith a variational method to extrat the ground state. The omputational detailsfor alulating the stati potential are given in Appendix D while in the followingwe want to onentrate on analysis details and physial results.5.1 Analysis details and resultsIn order to extrat the physial sale through eq. (26) we need an interpolation ofthe potential and orrespondingly of the fore between the quarks for arbitrarydistanes r. This interpolation is ahieved by �tting the form of V (r) with theansatz 6 V (r) = V0 + �r + �r : (27)We employ a two step proedure to perform the interpolation. First we extratthe values of the potential V (r) for eah r separately using standard variationaltehniques. In a seond step we �t diretly the potential ansatz in eq. (27) to5See ref. [40℄ for a �rst use of this idea.6Note that we do not use tree level improved distanes.20



Run method tp timeslies �2=d:o:f:B1a yli 8 0; 12; 24; 36 0:12=39B1a;b; random 10 - 2:50=39B2 yli 16 0; 6; 12; 18; 24; 30; 36; 42 1:15=39B3 yli 8 0; 12; 24; 36 2:38=39B4 yli 8 0; 12; 24; 36 1:85=39B5a;b yli 8 0; 12; 24; 36 0:99=39Table 4: Measurement methods for fermioni quantities. The soure timeslies are eitherhosen in a yli way or randomly. For the yli way, tp denotes the number of trajetoriesbetween two on�gurations for whih the same time-slie was used. For the random way, itspei�es the number of trajetories between two measured on�gurations. In the yli asewe also speify the time-slies where the soure was loated. Finally, the �t range we hoseto determine afPS and amPS was always 10-23 and the orresponding values of �2=d:o:f: for a2� 2 fatorising �t (see eq. (14)) are quoted in the last olumn.the Wilson loop orrelators taking into aount all spatial and temporal ross-orrelations in the data. These two steps are now desribed in more detail (seealso [41℄).We use �ve spatial smearing levels SnU; n = 8; 16; 24; 32; 40; and hene weend up measuring a 5 � 5 orrelation matrix C(r; t) of spatially smeared andtemporally improved Wilson loops (see Appendix D). The variational methodresults in a linear ombination of the string operators, whih projets suÆientlywell to the ground state of the string, i.e. has the e�et of eliminating the losestexited string states. This is done by solving the generalised eigenvalue problemC(r; t1)vi = �i(r; t0; t1)C(r; t0)vi; �1 � : : : � �5 ; (28)with t0 = 3a and t1 = 4a and projeting the orrelation matrix to the eigenspaeorresponding to the largest eigenvalue, i.e. the ground state,�C(r; t) = (v1; C(r; t)v1) : (29)Based on e�etive masses and on a �2-test whih takes the temporal ross-orrelations between �C(r; t) and �C(r; t0) into aount, we hoose a plateau regionfrom tmin to tmax. Too small t values distort the results due to ontamination ofexited states, while too large values introdue noise. Examples of e�etive massplateaus and the hosen �t ranges are provided in �gure 3 for the Wilson looporrelators of the �ve ensembles B1;:::;5 at quark-antiquark separation r=a = 4.The results of our �ts are olleted in Tables 5{9 where we list the plateauregions (�t range), the values of the extrated potential, V (r), and the �2 per21
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r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3308(10) 1.095 8 10 0.3974(15) 0.096 7 9 0.4577(26) 2.487 7 9 0.5126(31) 1.60Table 5: Fit parameters for the Wilson loop orrelators for run B1.r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3319(07) 1.565 8 10 0.3994(09) 3.276 7 9 0.4589(12) 0.167 7 9 0.5129(21) 0.13Table 6: Fit parameters for the Wilson loop orrelators for run B2.so obtained with the ansatz (27). However, one an diminish the errors on the �tparameters by exploiting the fat that data at di�erent values of r are orrelated.Therefore, in a seond step we use the ground state projeted orrelator �C(r; t)to estimate the ovariane matrixCov(r; t; r0; t0) � h �C(r; t) �C(r0; t0)i � h �C(r; t)ih �C(r0; t0)ifrom the bootstrap samples of �C(r; t) and use Cov(r; t; r0; t0) to onstrut the �2funtion (see the disussion in set. 7.1). The r and t dependene of �C(r; t) is�tted with the formula (see eq. (27))�C(r; t) � Z(r) exp [�tV (r)℄ = Z(r) exp [�t (V0 + �=r + �r)℄ : (30)For the temporal �t interval we use the �t ranges tmin(r) to tmax(r) determinedin the �rst step. The �t range in r is hosen so as to inlude only a few values ofr losest to r0 in order to minimise both the statistial error and the systematierror oming from the hoie of the interpolation formula. One the best �tparameters (V0, � and �) in eq. (30) are found, the value of r0=a is obtainedstraightforwardly by omputing the stati fore from the derivative w.r.t. r ofeq. (27) and imposing the ondition (26) that de�nes r0.A ompilation of the results of our �ts is provided in Table 10 where we givethe number of measurements Nmeas and the �2 per degree of freedom, in additionto the results for r0=a. The �nal error on r0=a is estimated through jakknifeand bootstrap proedures using binning to take residual autoorrelations intoaount. In Table 10 we give the errors from the jakknife proedure using abinning fator equal to 4. 23



r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3321(08) 0.755 8 10 0.4002(11) 4.396 7 9 0.4617(17) 0.407 7 9 0.5177(22) 0.02Table 7: Fit parameters for the Wilson loop orrelators for run B3.r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3335(06) 1.405 8 10 0.4013(12) 0.416 7 9 0.4616(15) 0.377 7 9 0.5177(25) 0.98Table 8: Fit parameters for the Wilson loop orrelators for run B4.5.2 DisussionThere are several soures of systemati e�ets whih an distort a preise andaurate determination of the sale r0=a. Here we would like to disuss a fewheks that we have performed in order to asses these systemati e�ets andsome proedures to minimise their inuene.Exited statesFirst of all there are ontaminations of the ground state energy of the Wilsonloops from exited states. We expet that these should be eliminated by ourvariational alulation of the ground state and our hoie of the �t range in t,and we have arefully heked the stability of the results under variation of the�t parameters (see �gure 4). In partiular we have heked that we an resolvethe �rst exited state and that the ground state energy remains stable under thisproedure. Moreover we have also heked the stability of the ground state undera trunation of the variational operator basis. We would also like to point outthat the �t ranges in t were not hosen independently for eah value of �q and r,rather we hose them after taking a global view of the e�etive mass data for allvalues of �q at given �xed r (see �g. 3 for the ase r = 4a). This proedure makessense sine the �q-dependene of the Wilson loop orrelators is expeted to berather weak (see below) and is partiularly useful in ases where the hoie ofthe �t range for the e�etive masses annot be determined unambiguously giventhe available statistis. Finally we note that ontaminations from exited statestend to inrease the potential energies and the e�et will be more pronouned forthe larger Wilson loops. As a onsequene, residual ontributions from exitedstates will tend to derease the value of r0=a.24



r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3373(07) 1.015 8 10 0.4062(08) 3.216 7 9 0.4692(14) 1.247 7 9 0.5272(22) 2.28Table 9: Fit parameters for the Wilson loop orrelators for run B5.Run Nmeas d.o.f. �2=d.o.f. r0=aB1 625 5 1.44 5.196(28)B2 695 5 1.80 5.216(27)B3 598 5 2.58 5.130(28)B4 602 5 0.57 5.143(25)B5 645 5 1.92 5.038(24)Table 10: Results of the �ts for the sale r0=a from the stati potential. The �t range wasalways r=a = 4� 7. The number of measurements, Nmeas, and �2/d.o.f. are also reported.Interpolation errorThe interpolation of the potential (or the fore) as a funtion of r is not unique.Here we would like to emphasise that we use eq. (27) only loally as a simpleinterpolation ansatz without attahing to it any speial physial meaning. Asa hek of this interpolation ansatz, one an use separately the matries oforrelators omputed for r=a = 4 � 6 and for 5 � 7 to obtain two di�erentdeterminations of r0=a. Their di�erene then provides an estimate of the erroroming from the interpolation proedure. It turns out that our hoie of the �trange r=a = 4� 7 overs this spread typially within 1{2 standard deviations ofour �nal result (see �gure 4).CorrelationsWe have already pointed out that it is important to take both the spatialand temporal ross-orrelations of the Wilson loop operators into aountwhen �tting them to the ansatz (30). Our �nite statistis limits ourselvesto short �t ranges in order to obtain a stable ovariane matrix, and this isone of the motivations for the rather narrow �t ranges in t in Tables 5{9.In order to assess the e�et arising from Wilson loop autoorrelations, weform bins of the data of various sizes, though this redues the amount ofdata available for estimating the ovariane matrix even further. In fat,it turns out that the �ts beome unreliable beyond bin size 4 and beforethe binning error beomes stable. As a onsequene we annot exlude thatthe errors on r0=a are somewhat underestimated due to residual autoorrelations.25



Mass dependeneOur results for (r0=a) are plotted in �gure 4. We note that the a�q dependeneappears to be rather weak, and hene we expet the data for the (purely gluoni)observable r0=a(a�q) to be well desribed by polynomials of low order in a�q. InTable 11 we ollet the results obtained by �tting our data at di�erent values ofa�q (see Table 10) to few simple funtional forms, namely(I) : r0=a+ 2(a�q)2 ;(II) : r0=a+ 1(a�q) ;(III) : r0=a+ 1(a�q) + 2(a�q)2 :The ansatz (I) is inspired by the fat that with maximally twisted (unlike thease of untwisted) Wilson quarks the lattie fermioni determinant of the Nf = 2theory depends only quadratially on the bare quark mass. A weaker depen-dene on the bare quark mass an only appear via the e�ets of spontaneoushiral symmetry breaking on the stati quark potential and would atually be adependene 7 on ja�qj. This is the motivation for the �t ansatz (II), if it an beassumed that a�q is suÆiently small to make the (a�q)2-dependene negligible,and (III), if the (a�q)2-dependene is instead statistially signi�ant.The �t based on the ansatz (I) desribes our data rather well, as shown in�gure 4, suggesting that possible e�ets of spontaneous hiral symmetry breakingin the stati potential at distanes around 0:5 fm are negligible within our statis-tial errors. This interpretation is supported also by the other two �ts: even if a�q-dependene of the type (II) annot be ruled out ompletely, we observe thatnot only the �2=d:o:f: of the �t (I) ompared to (II) is better, but also the best-�tvalues of 2 from �ts (I) and (III) are more onsistent between themselves (andless onsistent with zero) than the best-�t values of 1 oming from �ts (II) and(III). We would like to note that these �ndings are orroborated by analogous�ts of the a�q dependene of the stati potential at �xed values of r=a, i.e. insituations where no interpolation in r=a is involved.r0=a 1 � 10�2 2 � 10�4 �t range �2=d:o:f:5.22(2) { -0.08(2) B1 �B5 0.855.22(3) { -0.09(4) B1 �B4 1.265.28(3) -0.16(3) { B1 �B5 1.105.26(5) -0.12(6) { B1 �B4 1.375.22(8) -0.01(18) -0.08(9) B1 �B5 1.28Table 11: Results of the �ts of the a�q dependene of r0=a aording to the ansatz (I), (II)and (III) in the text.We onlude that the mass dependene is well desribed by the ansatz(I) and remark that an almost idential entral value for r0=a at the hiral7We are indebted to R. Sommer for very useful disussions on this point.26
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Figure 4: Mass dependene of r0=a. The shaded area shows the error band of the quadrati �t(full line) to the data (irles). The additional plus symbols are further determinations of r0=aorresponding to di�erent values of the �t parameters to the ansatz (30). The spread providesan indiation of the systemati error due to interpolation (see text) in r0=a.point is obtained from the ansatz (III), whih also allows for a linear termin a�q. The ansatz (II) gives a entral value for r0=a at the hiral pointlying two standard deviations above that from the ansatz (I). Finally we notethat, if the ansatz (I) for the �q-dependene of r0=a is used, the relative sta-tistial auray of our determination of r0=a in the hiral limit is better than 1%.6 Some seleted resultsIn this setion we present results for quantities related to the pseudosalar (PS)hannel. This inludes, apart from harged and neutral PS masses and deayonstants, also the renormalization onstant ZV, whih is spei�ally relevant tomaximally twisted mass QCD.
27



6.1 Charged and neutral pseudosalar massesCharged pseudosalar meson massTo extrat the harged PS mass mPS we onsider the orrelation funtionsdisussed in set. 2.1. We refer to this setion and set. 4.1 for a detailed disus-sion of how the orrelation funtions are evaluated and the errors are estimated.The results for the harged PS masses an be found in Table 12.In order to make the e�et of the longest runs at � = 0:004 visible, we quotethe results for run B1a and the omplete run B1 separately. While for B1a we have1811 measurements made in the yli way explained in set. 4.2, there are 895measurements for B1 performed moving the soure time-slie randomly throughthe lattie. Even though in the latter ase we have fewer measurements, they aremore deorrelated beause the single measurements are more separated in MonteCarlo time and beause the distane of the position of the soures in Eulideantime for two onseutive measurements is on average larger. It is reassuring tosee that results and errors are onsistent between the two sets of data withinerrors. From this omparison it is also lear that moving the soure time-slierandomly through the lattie is the most onvenient of the two methods.In �g. 5 we show examples for e�etive masses in the PS hannel at ourlightest quark mass, extrated from the PS orrelation funtion (with insertionof the �d5u operator) only. We plot the data for the three di�erent hoies of theinterpolating operators, namely loal-loal, loal-fuzzed, and fuzzed-fuzzed. Onean see in �g. 5 that the three di�erent operators give ompatible results fromt=a � 10 on. Hene we are on�dent that the ground state energy dominates fort=a > 9 and we hose the �t range aordingly.We also attempted to determine the energy of the �rst exited state of the PSmeson from a 2-state �t to the 6�6 matrix of orrelators. Even though we wereunable to determine the �rst exited level in a reliable way from an unonstrained�t, �xing it to the theoretial value (3 times the ground state mass), as expetedin the ontinuum limit, does allow an aeptable �t.This result is quite interesting, as with maximally twisted Wilson quarks oneexpets on general grounds also an O(a2) ontamination from the �0(0)��(0) two-pion state. Suh a ontamination beomes negligible, if ompared to the expetedthree-pion state one in the ontinuum limit (taken at �xed quark mass). It shouldalso be observed that when the pion mass is dereased, the two-pion ontributionremains negligible with respet to the three-pion one until a2�2QCD � e�mPSt.For the range of mPS and t values relevant for our data we �nd that two-pionontamination e�ets an hardly be deteted despite our (small) statistial errors(see �g. 5).Neutral pseudosalar meson massAs disussed in set. 3, the neutral PS meson an be reated by interpo-lating �elds that at maximal twist and in the twisted basis are of the form28
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Figure 5: E�etive mass for the pseudosalar hannel from B1 lattie data. The e�etivemasses obtained using 3 di�erent interpolating operators as desribed in the text are shown.Run a�q amPS afPS amPCAC ZV(�q)B1a 0:0040 0:13587(68) 0:06531(40) �0:00001(27) 0:6114(85)B1 0:0040 0:13623(65) 0:06459(37) +0:00017(17) 0:6136(19)B2 0:0064 0:16937(36) 0:07051(35) �0:00009(17) 0:6096(21)B3 0:0085 0:19403(50) 0:07420(24) �0:00037(20) 0:6115(22)B4 0:0100 0:21004(52) 0:07591(40) �0:00097(26) 0:6209(25)B5 0:0150 0:25864(70) 0:08307(34) �0:00145(42) 0:6165(22)Table 12: Results for masses and deay onstants in the harged pseudosalar hannel, PCACquark mass and ZV. The results for the �rst three quantities ome from a �t to a 4�4 submatrixwith operators �d5u and i �d05u, while for ZV we used the full 6 � 6 matrix. Note that thedi�erene between the �rst two rows is just the length of the simulation. The time range of the�t was always 10� 23 and the �2=d:o:f: was always smaller than one.��� and ��05�. We evaluate the orrelator (both quark-onneted and quark-disonneted piees) with eah of these operators at soure and sink (also withloal and fuzzed variants, thus giving a 4� 4 matrix of orrelators) as desribed29



run a�q Nmeas am0PS;onn am0PS af 0PS=ZAB1 0:0040 888 0:212(3) 0:109(7) 0:089(3)B3 0:0085 249 0:259(3) 0:169(11) 0:106(4)Table 13: Neutral pseudo salar meson masses and deay onstants at � = 3:9 measured fromevery 10 trajetories at �q = 0:004 and every 20 at �q = 0:0085, as indiated; am0PS;onn is themass extrated from the quark-onneted orrelators only.above and in Appendix B. We �t this orrelator matrix to one or more states inthe usual way. Based on our study of autoorrelations (see set. (4)), we omputestatistial errors by a bootstrap analysis on bloked data where eah blok in-ludes measurements taken on on�gurations orresponding to a segment of MChistory 80 trajetories long.Our results for the neutral PS meson are shown in Table 13. Compared toref. [1℄, we have inreased statistis at �q = 0:004 and we have employed the morere�ned �tting proedure explained above. In partiular we used 4� 4 matrix oforrelators rather than a 2 � 2 matrix. We also inlude results at a seond �qvalue, �q = 0:0085. In order to show the ontribution of the quark-disonnetedomponent to the neutral PS meson mass determination, we show appropriateratios in �g. 6.We have also evaluated the energies of neutral PS mesons with momentum2�=L (reall L=a = 24), obtaining (by use of the ontinuum dispersion relationE2 = (2�=L)2 +m2) mass values onsistent with those shown in Table 13.The non-zero momentum results have the advantage that no vauum subtra-tion is needed for the neutral PS meson orrelator and this provides a rosshekof the approah we employed. For example, at �q = 0:004 we obtain an energyof 0.309(27) whih orrespond to a mass 0.164+47�60 in lattie units.Pseudosalar meson mass splitting and related topisConerning the PS meson mass, it is well known that with maximally twistedWilson fermions, even in the theory with Nf = 2 degenerate quarks we onsiderhere, there is di�erene of order a2 (at �xed quark mass) between the neutraland the harged PS meson mass. Moreover the latter is very mildly a�eted byuto� e�ets, one maximal twist is implemented in the optimal way of set. 1.1,as it follows from the formula m2PS � m2PSjont = O(a2�q) + O(a4) proved inrefs. [13, 14, 42℄. Finally a lattie hiral perturbation theory analysis (see e.g.refs. [43, 13, 44℄) shows that in the small �q region the di�erene between thesquared neutral and harged PS masses tends to an O(a2) quantityr20((m0PS)2 � (mPS)2) ' (a=r0)2 ; (31)whih an be related to one oeÆient (usually alled 2) of the hiral e�etiveLagrangian of (twisted and untwisted) Wilson fermion lattie QCD. From ourresults we estimate  = �5:0(1:2) and  = �6:7(2:8) respetively at �q = 0:00430
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6.2 PCAC massAs disussed in set. (1.1), we attempt to tune the value of mPCAC (see eq. (3))to zero at our minimal �q value, namely at a�q = 0:004. A de�nition of mPCACequivalent to eq. (3) for time separations so large that the lowest PS meson statedominates, is given bymPCAC = mPS2 h0jAa0jPSih0jP ajPSi ; a = 1; 2 : (32)These two matrix elements an be diretly determined from a �t to the 4 � 4matrix involving the interpolating operators �d5u and i �d05u (or from the �t tothe full 6� 6 matrix, see set. 2). The results we obtain when a 4� 4 matrix isused are summarised in Table 12 and shown as a horizontal line in �g. 7. It isimportant to notie that the ondition disussed around eq. (10) is ful�lled forall our simulation points, and in partiular for a�q = 0:004.In �g. 7, we also illustrate the time dependene of the loal determinationof the PCAC quark mass through eq. (3). We see that the values of mPCACdetermined using eq. (3) in this way and eq. (32) agree very well between them-selves, in the t-region where the ground state pseudosalar meson dominates, asexpeted.Compared to ref. [1℄ we now have a result for amPCAC available for the largestatistis run B1. It is reassuring that there is full onsisteny between the 5000trajetory run and the run extended up to 10000 trajetories. This makes uson�dent that our error estimate is realisti. Our results for amPCAC as a funtionof the bare quark mass a�q are illustrated in �g. 8, where results from the fullensemble, B1, and those from the smaller ensemble, B1a, are separately shown.6.3 Pseudosalar deay onstant and ZVUsing the exat lattie (twisted basis) PCVC relation 8h��� ~V a� (x)O(0)i = �2�q�3abhP b(x)O(0)i a = 1; 2 ; (33)where ��� is the lattie bakward derivative, O a loal lattie operator and ~V a� (x)the 1-point-split vetor urrent~V a� (x) = 14 [�(x)�aU�(x)(� � r)�(x+ �̂) +�(x+ �̂)�aU y�(x)(� + r)��(x)� ; (34)we an also ompute (in the harged meson hannel) the pseudosalar mesondeay onstant with no need of any renormalization onstant (see [2, 51, 4℄) from8We reall that at maximal twist the twisted basis vetor urrent V a� orresponds to theaxial urrent �3baA0b� (a; b = 1; 2) in the physial quark basis.32
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Figure 9: Extrapolation of ZV to zero quark mass at � = 3:9. The data are onsistent withinerrors with the onstant behaviour shown in the �gure.0:6101(2). Both approahes, the one disussed in some detail above and the oneof ref. [48℄, provide preise determinations for ZV and the virtues of both methodswill be further disussed in ref. [49℄.7 Chiral Perturbation Theory analysis of fPSand mPSIn this setion we present the details of the omparison of our data with ChiralPerturbation Theory (�PT) preditions. The main results have been already pub-lished in ref. [1℄. Here we provide further information about our �tting proedureand error analysis. The main goal of this setion is to explain the �tting proe-dure and error determination using hiral perturbation theory. We will thereforeonly use the ensembles B1-B5, i.e. the ensembles that have already been disussedin ref. [1℄. For this limited set of data at only one value of the lattie spaing ofa = 0:087fm, we are not sensitive to higher order e�ets of hiral perturbationtheory. We will therefore restrit ourselves to a 1-loop analysis of the data onMPS35



and fPS. Nevertheless, we use the 2-loop hiral perturbation theory expressionsand vary parameters of the orresponding formulae to see the possible e�ets,if the 2-loop order would be important to desribe our data. In partiular, this2-loop investigation on�rms that the here hosen dataset is indeed not sensitiveto higher loop orretions.Some preliminary results at larger volumes (L=a = 32) and �ner lattie spa-ing (� = 4:05) have been already presented [15, 16℄. However, the present work isfoused on the details of the analysis of the data points presented in ref. [1℄. Thestudy of the volume and saling dependene will be presented elsewhere. Notie,however, that, w.r.t. ref. [1℄ we have a larger statistis at the smallest quark mass.Our raw data for amPS and afPS are determined as desribed in set. 4.1.Results are reported in Table 12. As said above, there is no need to omputeany renormalisation onstant in order to make ontat with the orrespondingphysial quantities.In our �PT based analysis we have to take into aount �nite size orretionsbeause on our latties at the lowest and next-to-lowest �q-values they turn outto a�et amPS and, espeially, afPS in a signi�ant way.We have used ontinuum �PT to desribe onsistently the dependene of thedata both on the �nite spatial size (L) and on the bare quark mass (�q). Thismight look inappropriate in view of the existene of a large additive O(a2) artifatin the neutral pion mass squared 9. However this is not so, beause theoretialanalyses arried out in the framework of lattie �PT [13℄ and Symanzik expan-sion (omplemented with soft pion theorems in the ontinuum theory) [14, 42℄show that, if maximal twist is implemented as disussed in set. 7.2, the hargedpion squared mass di�ers from its ontinuum ounterpart only by O(a2�) andO(a4) terms, while the harged pion deay onstant is a�eted by (hirally non-enhaned) disretization errors of order a2. Moreover the Symanzik expansionanalysis is appliable for all spatial volumes L3, provided L is large enough tojustify the use of soft pion theorems in the ontinuum theory at the quark massof interest. This entails that also the L-dependene of the harged pion squaredmass and deay onstant is expeted to be essentially ontinuum-like. These ex-petations are also supported by preliminary and still partial results we obtainat di�erent lattie resolutions and di�erent physial volumes [15, 16℄. Last butnot least, the ontinuum �PT formulae appear to desribe well our data, as weare going to show below.We �t the appropriate (Nf = 2) next-to-leading-order (NLO) �PT formu-9Theoretial arguments have been presented [42℄ suggesting that this lattie artifat is anexeptional, though important, ase, beause it is related to the large value of a ontinuum ma-trix element appearing in the Symanzik expansion of the �0-mass and does not stem from largeoeÆients multiplying the dimension �ve and six terms of the Symanzik e�etive Lagrangian.
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lae [52, 53℄ m2PS(L) = 2B0�q �1 + 12�~g1(�)�2 �1 + � log(2B0�q=�23)� ; (39)fPS(L) = F [1� 2�~g1(�)℄ �1� 2� log(2B0�q=�24)� ; (40)to our raw data for mPS and fPS simultaneously. Here 10� = 2B0�q=(4�F )2 ; � =p2B0�qL2 : (41)The �nite size orretion funtion ~g1(�) was �rst omputed by Gasser andLeutwyler in ref. [52℄ and is also disussed in ref. [53℄ from whih we take ournotation (exept that our normalisation of f� is 130.7 MeV). In eqs. (39) and (40)next-to-next-to-leading order (NNLO) �PT orretions are assumed to be neg-ligible (this assumption is ritially disussed in set. 7.1). The formulae abovedepend on four unknown parameters, B0, F , �3 and �4, whih will be determinedby �tting to our data.7.1 Statistial errorsIn order to estimate the errors on the �t parameters it is important to aountfor both autoorrelation and ross-orrelation of the data. We have exploited twodi�erent methods to do so.Method AThe �rst method (see also [10℄) onsists in omputing the full ovariane matrixof our data for afPS and (amPS)2 and inlude it in the omputation of �2�2 =Xi;j (yi � Fi)V �1i;j (yj � Fj) ; (42)where V is the ovariane matrix 11Vi;j = ov(yi; yj) = ov((yi � Fi)(yj � Fj)) ; (43)normalised so that the diagonal elements oinide with the squared standarderror, and we have expressed the �PT ansatz, eqs. (39) and (40), in the formyi = Fi(~x; ~�) : (44)10We stress that � de�ned here should not be onfused with the ontinuum matrix element�� introdued in eq. (5).11As we have data from independent simulations (ensembles B1 to B5), in the present asethe ovariane matrix will be blok-diagonal with �ve bloks.37



Here we denote by yi the primary measured quantities (in this setion: y1 =(amPSjB1)2, y2 = afPSjB1 , y3 = (amPSjB2)2, : : : ), by ~x the independent (error-free) variables (in this setion: only x = a�q) and by ~� the parameters to bedetermined by the �t (here: �1 = 2aB0, �2 = aF , �3;4 = log(a2�23;4)). The erroron the parameters are thus given by(���)2 = (r��F TV �1r��F )�1 : (45)The autoorrelations of (amPS)2 and afPS have been estimated both by data-bloking and by means of the �-method, as disussed in set. 4.1. Both ap-proahes indiate (see Table 3) that by ombining data into bloks of 32 mea-surements eah (this orresponds always to more than 60 MC trajetories) theresulting bloked data are safely unorrelated. These bloked data are thus usedto evaluate the ovariane matrix, the �2 and the errors on the �t parameters asdisussed above (eqs. 42{45). In this way the possible e�et of ross-orrelationsamong the observables is inluded in the ovariane matrix and therefore properlyaounted for in the �t proedure.In some of the heks that we are going to present below it will not alwaysbe possible to redue the �PT formulae to the form of eq. (44). This happensin partiular in the following ases: when omputing diretly afPS as a fun-tion of amPS, when inluding the e�ets due to a non-vanishing amPCAC, wheninluding higher orders in Finite Size E�ets (FSE) alulations, as omputedin [53℄, or when we will eventually study the saling dependene for di�erentlattie spaings a. In all these ases the �PT formulae an be expressed in themore general form Gi(~y; ~x; ~�) = 0 and the errors are given by the formula [54℄:(���)2 = (r��GT (ryGVryGT )�1r��G)�1. These errors are obtained as prop-agation from the known errors on ~x, therefore they do not depend on how goodthe �t is. The quality of the �t is expressed as usual by the quantity �2=d:o:f:.To provide a further hek of possible e�ets of ross-orrelation, the �ts werealso performed by dividing the data set into two subgroups eah of half the size.The data for amPS were taken from one subgroup of gauge on�gurations andthose for afPS from the other, ensuring in this way absene of ross-orrelation.Errors sale as p2, i.e. as expeted from halving the statisti, whih indiatesa negligible e�et of ross-orrelations in the full data set. Stability was alsoheked against di�erent hoies of subgroups. This result is on�rmed by theobservation that if we suppress the o�-diagonal terms in the ovariane matrix,our error bars are a�eted only at the perent level.Method BMethod A is standard, and of ourse unbiased if for all observables the data aredistributed in a Gaussian way (whih we heked expliitly to be the ase toa good approximation) and if the funtions F (or G) have a suÆiently linearbehaviour around the relevant values of their arguments. An even safer estimateof the �nal errors an be obtained with the bootstrap method [38, 55℄.38



Method A Method B2aB0 5.04(7) 5.04(7)aF 0.0522(7) 0.0522(7)log(a2�23) -1.90(11) -1.91(10)log(a2�24) -1.00(4) -1.00(4)�2=d:o:f: 1.0/4 0.9/4Q 0.91 0.92Table 14: Comparison of �t results from methods A and B.To apply the bootstrap analysis method to our data set we proeed as follows.In order to aount for autoorrelations we �rst form bins of 32 gauge on�gura-tions for eah value of �q. Out of the bloked data we generate 1000 bootstrapsamples. The size of eah sample is hosen as large as the full (bloked) data set.From the 1000 bootstrap samples we obtained 1000 observations for 2aB0, aF ,log(a2�23;4), and �l3;4 � log(�23;4=m2�), respetively. Error estimates are then om-puted as presribed by the bootstrap method, i.e. by the standard deviation overthe (equally weighted) 1000 samples. Inidentally we remark that this proeduretakes the ross orrelation between am2PS and afPS orretly into aount. In the1000 �ts we performed we have hene always used only the diagonal elementsof the ovariane matrix (�xed to their entral values, i.e. to the square of thestatistial errors on am2PS and afPS, see Table 12) as weights to evaluate the �2formula (42). In this spei� appliation of the bootstrap method the errorbarson the basi quantities am2PS and afPS are still needed, sine the observables ofinterest, the low energy onstants (LEC), are de�ned through minimization ofthe �2 of the simultaneous �t to the �PT formulae eqs. (39){(40). Note that tosafely employ the bootstrap method data need not have a Gaussian distribution,nor do the onstraints, de�ned by the �PT formulae, need to be linear. Thebootstrap method may beome expensive if single �ts are signi�antly omputertime demanding.Both methods A and B give onsistent results, as shown in Table 14. In thispaper we use the same setup as in ref. [1℄, but we employ a somewhat largerstatistis. The results are onsistent. In addition to the error estimates we quotethe value of �2 and the merit �gure of the �t de�ned viaQ = 1� P (�2=2; d:o:f:=2) ;where P is the inomplete Gamma funtion [56℄.7.2 Disussion of systemati errorsThe error bars quoted in Table 14 are only statistial. As we also stressed inref. [1℄, a number of systemati e�ets are expeted. Here we present some39



inluding a�q = 0:015 mq =q(ZAmPCAC)2 + �2q2aB0 5.06(5) 5.05(6)aF 0.0508(5) 0.0521(7)log(a2�23) -1.93(6) -1.87(11)log(a2�24) -0.89(2) -0.99(4)�2=d:o:f: 10.3/6 0.55/4Q 0.11 0.97Table 15: Comparison of �t results from di�erent setups, as explained in the text.heks we performed in order to estimate the atual magnitude of these systematie�ets.As a �rst, simple hek on the possible impat of negleted NNLO termson the results presented in Table 14, we have also inluded the heaviest point(the one at a�q = 0:0150) in the standard �t to the formulae (39){(40). In thisase the results are still ompatible with those in Table 14 within 1.7 standarddeviations, but the �2=d:o:f: of the �t jumps from 0:24 to 1:7. This inrease of�2=d:o:f: is mainly due to the point at afPS at a�q = 0:0150, as we noted alreadyin ref. [1℄. The results of the �t are displayed in the seond olumn of Table 15.This suggests that only the �rst four quark mass points should be used whenomparing our data for afPS and amPS with NLO �PT, as was done in ref. [1℄.It is also very interesting to see how muh the tiny deviations from maximaltwist orresponding to the (statistially ompatible with zero) measured entralvalues of mPCAC a�et our results for the low energy onstants disussed in thissetion. To address this question we introdue the de�nition of bare quark mass,mq = q(ZAmPCAC)2 + �2q, whih holds for generi twist angle up to negletedO(amPCAC) and O(a2) terms. Moreover, in order to take into aount the axial-�3transformation properties of the urrent entering the formal de�nition of fPS, atthe same level of auray, the value of afPS should be orreted into afPSmq=�q.We remark that this is obtained automatially if fPS is evaluated from eq. (35)with �q replaed by mq { this an be related to the invariane of the operatorP 1;2, a matrix element of whih appears on the r.h.s. of eq. (35), under axial-�3rotations. The results of this analysis, where we set ZA = 0:76(2), as found at� = 3:9 in ref. [48℄, are shown in the last olumn of Table 15. It is reassuring tosee that, thanks to the good preision we ould reah in setting mPCAC to zero,the low energy onstants of interest here are left essentially una�eted by thiskind of orretion.We now onsider the �nite size orretions. In ref. [1℄ we estimated themwith the help of the formulae of ref. [52℄. A nie feature of these formulae is thatthey introdue no new parameter. However, they are only the �rst term of anexpansion. Hene, the question is: how large is the residual unertainty in FSE40



a�q lo [52℄ lo [53℄ nlo [53℄ nnlo [53℄0.0040 0.64 % 0.42 % 0.50 % 0.21 %0.0064 0.29 % 0.16 % 0.21 % 0.10 %0.0085 0.16 % 0.08 % 0.12 % 0.06 %0.0100 0.11 % 0.05 % 0.08 % 0.04 %Table 16: Perent Finite Size deviation (mPS(L)�mPS(1))=mPS(1) predited by �PT forour data points. Note that nlo and nnlo inlude only the last order and not the previous one(s).Aording to ref. [57℄, omparing nlo and nnlo (not lo and nlo) gives a reliable indiation aboutthe onvergene of the expansion.due to this trunation? To go beyond the �rst term in the framework of ref. [52℄is diÆult. For the pseudo salar mass the FSE orretions at two loops in �PThave been omputed in ref. [53℄. However, one an do better using the kind of�PT expansion suggested in ref. [57℄, for whih results are also given in ref. [53℄.With the help of the results from ref. [53℄ we an assess the stability of thepredition both by omparing the two approahes and by studying the onver-gene of the expansion of refs. [57, 53℄. One should also notie that higher ordersdo introdue new parameters. Sine it is not realisti to �t them, we will insteadlook at the stability of the predition while hanging those parameters in a \rea-sonable" range. The \reasonable" range is suggested in ref. [53℄ and is based onphenomenologial grounds.To avoid onfusion, we remark that the results of ref. [52℄ are given as anexpansion in powers of 1=F0, while ref. [53℄ uses an expansion in 1=F�. This isthe only reason why the �rst term of ref. [53℄ does not oinide with ref. [52℄.In Tables 16 and 17 we show the perent deviation obtained using the formulaefrom refs. [52℄ and [53℄ at di�erent orders. Note that the new low energy onstants(LECs) that at higher orders of �PT are relevant for FSE are �xed to their entralvalues estimated in ref. [53℄. See the omment below about their impat. Todistinguish the expansion of the FSE e�ets from the usual �PT expansion wewill use a lower ase notation (lo, nlo, nnlo) to denote the former one. The twoexpansions are of ourse related, but sine the FSE also depend on the lattiesize L, there is no reason to trunate the hiral expansion for FSE at the sameorder as the usual �PT expansion. Here, for instane, we will use the NLO �PTformulae, but we will ompare FSE at lo, nlo and nnlo.The onvergene of the FSE expansion is expeted to be good for all ourdata points sine the smallest value of mPSL is larger than 3. We reall that,aording to ref. [57℄, the omparison of lo and nlo is not a good indiator ofthe onvergene of the expansion. This should be rather heked by omparingnlo and nnlo. Aording to all our estimates only the FSE at the lightest point(a�q = 0:004) are relevant, while those at larger quark masses are always smallerthan statistial errors. For instane, the deviations in mPS are barely largerthan its statistial errors (whih amount to about 0:5%). In order to hek the41



a�q lo [52℄ lo [53℄ nlo [53℄0.0040 -2.57 % -1.68 % -0.76 %0.0064 -1.15 % -0.63 % -0.30 %0.0085 -0.64 % -0.32 % -0.16 %0.0100 -0.44 % -0.21 % -0.11 %Table 17: Same as in Table 16, but for (fPS(L)� fPS(1))=fPS(1).dependene of the predited FSE orretions on the LECs entering only at nlo, wehanged randomly the value of the latter within the \reasonable" range suggestedin ref. [53℄. We saw that nlo and nnlo FSE orretions are a�eted only at thelevel of about 20% (lo orretions are obviously una�eted) by suh hanges.Up to this point we have only onsidered the �PT at NLO (however orre-tions as high as nnlo are inluded in FSE alulations) impliitly assuming thatNNLO ontributions are negligible. This is reasonable, sine �PT formulae withonly NLO orretions yield a very good �t of the data at the lightest four quarkmasses, in spite of the fat that the expansion parameter, � = 2B0�q=(4�F )2,is not always very small. It is thus important to assess how muh NNLO termswould a�et our results.The NNLO orretions relevant for mPS and fPS have been alulated inref. [58℄. Here we use an expression whih is easier to ompare with lattie data,namely the one of refs. [59, 60℄ whih readsm2PS =M2(1 + � logM2�23 + 172 �2 �logM2�2M �2 + 4�2kM +O(�3)) ;fPS = F (1� 2� logM2�24 � 5�2 �logM2�2F �2 + 4�2kF +O(�3)) ; (46)where � = 2B0�q=(4�F )2 as before, M2 = 2B0�q andlog �2MM2 = 151 �28 log �21M2 + 32 log �22M2 � 9 log �23M2 + 49� ;log �2FM2 = 130 �14 log �21M2 + 16 log �22M2 + 6 log �23M2 � 6 log �24M2 + 23� :It is not realisti to attempt a �t of all the oeÆients involved in the fullNNLO expressions at least with the limited set of data used here. Rather we�x the parameters �1, �2, kF and kM to the values suggested in ref. [53℄. Sineno estimate for kM;F is available, we take kM;F = 0. Redoing the �t in theseonditions we an hek how muh NNLO terms hange the results of Table 14.The new �t results are shown in the seond olumn of Table 18. In order to42



NNLO as in [53℄ Æ�1 = �33% Æ�2 = �5% kM = �1 kF = �12aB0 4.80(6) -0.66% -0.20% 3.2% 0.07%3.44% 0.26% -2.5% -0.12%aF 0.0536(6) 0.60% 0.16% -0.19% 1.9%-1.7% -0.19% 0.21% -2.1%log(a2�23) -2.13(12) -9.6% -1.2% -29% -1.3%-5.9% 0.87% 26% 1.5%log(a2�24) -1.00(5) -4.6% -0.50% 1.3% 24%-0.35% 0.34% -1.3% -26%�2=d:o:f: 0.085 1.7 1.1 0.48 1.40.15 0.82 1.8 0.73Table 18: Fit results, inluding NNLO �PT. The seond olumn shows the results obtainedwith the hoie of �1;2 suggested in [53℄ and kM;F = 0. The other olumns give the perentorretion due to hanging the orresponding parameter in the indiated range. For eah line,the upper (lower) number orresponds to the higher (smaller) boundary value of the interval.further estimate to whih extent these numbers are sensitive to a hange in theparameters whih were held �xed, we deided to hange them one by one withinthe range proposed in refs. [53, 57℄, and perform a new �t for eah one of thesevalues. As for kM and kF , it is diÆult to tell what is a reasonable range, sine,as we said, no estimate is available for them. On general grounds the values ofkM;F are expeted to be of O(1) and somewhat arbitrarily we assume a variabilityrange kM;F = �1. This hoie is also justi�ed by the fat that larger variationsquikly lead to very bad �2. The results of this elaborated proedure are shownin olumns 3 to 6 of Table 18. Most e�ets are not signi�ant if ompared tostatistial errors, as they are never larger than a few standard deviations. Itshould be noted, however, that �3 appears to be rather sensitive to kM andsimilarly �4 to kF . These LECs an deviate by about 25% when setting kM;F to+1 or to �1. We mention that hanges of the LECs similar to those reported inTable 18 are also obtained if the NNLO terms in eq. (46) are replaed by simplepolynomial terms, like �M;F �2 (with no logarithms), and the free parameters �M;Fare set to their best �t values.7.3 CommentsIn summary the disussion developed in this setion shows that at least thesystemati errors oming from the unknown NNLO terms involving kM;F may besigni�antly larger than the statistial ones, mostly beause the adopted range ofvalues was, to some degree, arbitrarily hosen. However, as already said above,using only the datasets B1-B5 a reliable estimate of systemati unertainties onB, F , �3 and �4 from the NNLO orretions is not possible. A better assessmentabout the magnitude of NNLO e�ets will be attempted elsewhere [61℄ using43



ETMC data at di�erent lattie spaings.Although FSE to our simulation data turn out to be less than a few perent,we have made a speial e�ort to ompute them quite aurately, beause theirimpat on LECs annot be negleted, as their magnitude is omparable to thesize of our statistial errors. The omputation of FSE made in ref. [53℄ representsa onsiderable improvement on the lassial estimate of ref. [52℄, as unertaintieson the extra LECs entering the former omputation at high orders have littleimpat on the results. Atually, the validity of the preditions of FSE from �PTan be heked by performing simulations on latties of inreasing size in physialunits. Preliminary results have been presented in ref. [15℄.8 SummaryIn this paper we have illustrated and disussed a number of details onerningunquenhed simulations of Nf = 2 mass degenerate Wilson quarks at maximaltwist. We have explained in set. 1 our riterion on how to tune the theory tomaximal twist. In partiular, we provided theoretial arguments for our hoie ofmPCAC=�q � 0:1 and showed that an error �mPCAC=�q � 0:1 is appropriate forthis purpose. Useful formulae for quark bilinears and their physial interpretationin di�erent quark bases (twisted and physial) are olleted in Appendix A.We have then disussed in set. 2 the methods we have used to omputeharged meson orrelators emphasizing the e�etiveness of employing (fuzzed)stohasti time-slie soures in the so-alled \one-end trik". We have demon-strated that this method omplemented by a random hoie of the soure loationleads to a signi�ant noise redution, at least for two-point orrelators in the me-son setor.The omputation of neutral mesons and, in partiular, quark-disonnetedontributions has been desribed in set. 3 and in the orresponding Appendix B.We have spelled out the reasons for using stohasti volume soures whih anbe employed in ombination with eÆient variane redution methods. All thesetehnial improvements have allowed us to ompute quark-disonneted ontribu-tions on our sets of unquenhed gauge on�gurations to an aeptable auray.In set. 4 we have illustrated the main features of the MC algorithms used inour simulations showing that the resulting autoorrelation times are small enoughto allow for a trustworthy error analysis of physial observables. We also explainhow our error analysis of the data was performed owing to the use of �- andbinning-methods.The fore parameter r0 an serve as an important physial quantity to hekthe saling behaviour towards the ontinuum limit. We have provided in set. 5a omprehensive disussion of the methods we have used to extrat r0 on ouron�gurations. It turns out that with the present data an auray of betterthan 1% an be reahed for r0 in the hiral limit. It is also found that r0 has a44



mild quark mass dependene whih is onsistent with being quadrati in �q.Various results for the harged and neutral pseudosalar masses, the untwistedPCAC quark mass and the renormalization onstant ZV are olleted in set. 6.In partiular, we show \e�etive mass" plots demonstrating the stability of theEulidean time plateaux, whih enables us to extrat preise results for mesoniquantities.Finally, we have detailed in set. 7 how our �PT analysis of the data onmPS and fPS has been arried out, explaining how we get errors on the �ttedlow energy onstants of the e�etive hiral Lagrangian, B0, F , �3 and �4. Inaddition, we have analyzed the e�ets of higher orders in �PT on the stability of�t parameters and disussed the �nite size e�ets.We onsider the present paper as a tehnial referene work of our ollabo-ration. The methods desribed here have been and will be extensively used inour ongoing future researh on lattie QCD employing maximally twisted Wilsonfermions.AknowledgmentsWe thank all other members of the ETMC for very valuable disussions and for amost enjoyable and fruitful ollaboration. We also gratefully aknowledge disus-sions with D. Be�irevi� and N. Christian. The omputer time for this projet wasmade available to us by the John von Neumann-Institute for Computing on theJUMP and Jubl systems in J�ulih and apeNEXT system in Zeuthen, by UKQCDon the QCDOC mahine at Edinburgh, by INFN and CNRS on the apeNEXTsystems in Rome, by BSC on MareNostrum in Barelona (www.bs.es) and bythe Leibniz Computer entre in Munih on the Altix system. We thank theseomputer entres and their sta� for tehnial advie and help. On QCDOC wehave made use of Chroma [62℄ and BAGEL [63℄ software and we thank membersof UKQCD for assistane. For the analysis we used among others the R languagefor statistial omputing [64℄.This work has been supported in part by the DFG Sonderforshungsbe-reih/Transregio SFB/TR9-03, DFG projet JA 674/5-1 and the EU IntegratedInfrastruture Initiative Hadron Physis (I3HP) under ontrat RII3-CT-2004-506078. We also thank the DEISA Consortium (o-funded by the EU, FP6projet 508830), for support within the DEISA Extreme Computing Initiative(www.deisa.org). G.C.R. and R.F. thank MIUR (Italy) for partial �nanial sup-port under the ontrats PRIN04 and and PRIN06. V.G. and D.P. thank MEC(Spain) for partial �nanial support under grant FPA2005-00711.
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AppendiesA Quark bilinear operators in the twisted basisWe give in this appendix the expression of a number of bare quark bilinear oper-ators that are relevant for the topis of this paper. The operators are expressedin terms of i) simple omposite �elds (reall 5 = 0123 and ��� = i=2[�; �℄)in the twisted quark basis, where the fermioni ation takes the form (1),S0(x) = ��(x)�(x); P �(x) = ��(x)5 ��2 �(x);A��(x) = ��(x)�5 ��2 �(x); V �� (x) = ��(x)� ��2 �(x);T ���(x) = ��(x)��� �a2 �(x); T 0��(x) = ��(x)����(x) : (47)and ii) the twist angle !, where tan! = �q=(m0�mrit) and amrit is determinedas disussed in setion 1.1. The expressions we get areA0�� = (os(!)A�� + �3�� sin(!)V �� (� = 1; 2);A3� (� = 3); (48)V 0�� = (os(!)V �� + �3�� sin(!)A�� (� = 1; 2);V 3� (� = 3); (49)P 0� = (os(!)P 3 + i12 sin(!)S0 (� = 3);P� (� = 1; 2); (50)S 00 = os(!)S0 + 2i sin(!)P 3 ; (51)T 0��� = (T ��� (� = 1; 2);os(!)T 3�� � i12����� sin(!)T 0�� (� = 3) : (52)These expressions follow from the relation between twisted basis (�) and physialbasis ( ) quark �elds, whih (see eq.(1) and ref. [3℄) reads� = e�i5�3!=2 ; �� = � e�i5�3!=2 ; (53)and the (obvious) de�nitions of the bare primed operators in terms of physialbasis quark �elds (� = 1; 2; 3)A0�� = � (x)�5 ��2  (x); V 0�� = � (x)� ��2  (x);P 0� = � (x)5 ��2  (x); T 0���(x) = � (x)��� �a2  (x);S 00 = � (x) (x) : (54)46



All these bare operators renormalize multipliatively, with the exeptions of P 03and S 00, whih undergo an additive mixing with the identity (ubially divergentfor P 03, quadratially divergent and vanishing as �q ! 0 for S 00). For the ex-pression of renormalization onstants as funtions of ! and the renormalizationonstants of standard Wilson quark bilinears and further details, see ref. [3℄. Itshould be remarked that substantial simpli�ations our for ! = ��=2 (max-imal twist) in almost all formulae above. Moreover at maximal twist also theformulae for renormalization onstants [3℄ get muh simpler than at generi !.B Evaluation of disonneted loopsThe quark-disonneted (simply \disonneted" in the following for brevity) om-ponents of orrelators are intrinsially noisier than the onneted omponents, soit is essential to evaluate them as aurately as possible. For this purpose weneed to ompute the disonneted loops at every t value and for as many gaugeon�gurations as possible. This an be ahieved by using the stohasti souremethods as we now disuss. The goal of the approah is to have an error aris-ing from the stohasti nature of the method whih is smaller than the intrinsivariability assoiated with varying t and gauge on�guration. If this is ahieved,then the stohasti error is negligible in the sense that any further improvementin the signal an only be obtained if more gauge on�gurations are employed.As disussed in set. 2.1, the basi idea is to use stohasti soures (�) having ingeneral support on the whole lattie and solve the linear system for the quantities� =M�1� ; (55)where M is the lattie Dira matrix for a given avour. The equation above isthe same as eq. (16), with the omission of the noise sample label r (to lightennotation). Note also that in this appendix the normalization of M is taken suhthat, if Dlatt denotes the two-avour Dira matrix in eq. (1), thenMu = 2�tr[aDlatt(1 + �3)=2℄ = A +H ; A = 1 + 2�a�qi5 ; (56)with H the usual Wilson �rst-neighbour hopping matrix. It follows thatX[��X�℄R =XXM�1 + noise (57)where the symbol [:::℄R refers (as in set. 2.1) to the average over R samplesof the stohasti soure, the symbol P denotes the sum over olour, spin andspae-time indies and X an be (almost) any struture we wish to evaluate, like-matrix, gauge links, Fourier fator, os(kx), et... It should be observed that inevaluating the disonneted ontributions to the neutral meson orrelators eahone of the two quark loops arising from Wik ontrations must be averaged over47



ompletely independent samples of stohasti soures for the purpose of avoidingunwanted biases. Moreover, for eah quark loop diagram, the sum in eq. (57)is restrited to one single time-slie, while still ranging over all olor, spin andspae indies.A method we employed to redue the variane of the stohasti noise with-out muh additional omputational e�ort is the hopping-parameter method [25℄.This relies on the observations that the �rst four terms in the hopping parameterexpansion of PXM�1 an be easily evaluated exatly on eah gauge on�gu-ration and that replaing their stohasti estimates with the exat values sig-ni�antly redues the variane. In fat, writing Mu (see eq. (56)) in the formMu = (1 +HB)A, where B = 1=A, one easily obtains the identity1=Mu = B �BHB +B(HB)2 � B(HB)3 + (1=Mu)(HB)4 ; (58)whih an be used to giveXX=Mu = X�X(B � BHB +B(HB)2 � B(HB)3 + (1=Mu)(HB)4)	 :(59)The last term in eq. (59) an be evaluated stohastially beauseX(1=Mu)(HB)4 = limR!1[��(HB)4X�℄R (60)Sine Hy = 5H5 and 5 ommutes with B, the last formula an be rewrittenin the form X(1=Mu)(HB)4 = limR!1[(5(ByH)45�)�X�℄R : (61)Thus four extra multipliations of the soure � by ByH are needed. This isa negligible overhead ompared to the inversion needed to obtain �. The �rstfour terms in eq. (59) do not involve 1=Mu and an be, as said above, evaluatedstraightforwardly for any hoie of X. For a loal operator X, the only non-zeroontributions are from the �rst term if X is proportional to 1 or 5 and the thirdterm if X is proportional to 5. For a non-loal operator X whose length ofspatial path is more than four lattie hops (as used in this paper), the �rst fourterms are all zero.This variane redution method redues the standard error of the stohastisamples by a fator of 1.5 or more in our ase. This is valuable (it saves a fator2-3 in omputational time), but for twisted mass QCD a muh more powerfulmethod is also available, although it applies only to the ase �X(1=Mu� 1=Md).This last method an be, and has been indeed, used in many important applia-tions, essentially all those where one has to evaluate orrelators with insertionsof neutral meson operators of the form (in the twisted basis) ����3�, with anyDira matrix � and the avour matrix �3. Interpolating �elds of this type oure.g. in the two-point orrelators for �0, f0 and �0 mesons (atually only one of the48



possible operators for �0), as one an see from the table for the (twisted basis)neutral meson operators reported in set. 3.The powerful method alluded above relies on ombining the identities(Md �Mu) = �4i�a�q5 (62)and (1=Md)(Md �Mu)(1=Mu) = 1=Mu � 1=Md (63)to get 1=Mu � 1=Md = �4i�a�q(1=Md)5(1=Mu) : (64)The latter relation already serves as a method of variane redution beausethe expliit (small, in our simulations) fator of a�q redues the magnitude ofthe utuations. On top of that, an even more important point is that ther.h.s. of eq. (64) an be evaluated very e�etively with the help of the \one-end-trik" [19, 20℄ and no further inversions. In fat, sine M yu = 5Md5, onehas XX(1=Mu � 1=Md) = �4i�a�qXX5(1=Mu)y(1=Mu) ; (65)whih an be evaluated with noise/signal ratio of O(1) viaXX(1=Mu � 1=Md) = �4i�a�qX[��X5�℄R + noise ; (66)where (we reall) � = (1=Mu)� and �� = ��(1=Mu)y. Apart from the expliit sumdenoted byP, the r.h.s. of this formula ontains an impliit sum over the spae-time indies of the stohasti soure � in � and ��, whih ontributes to redue thevariane as it reeives ontributions from the whole lattie (spae-time) volume.To give an idea of the e�etiveness of the method based on eq. (66) we onsider,as an example, the speial ase X = i5, where one obtainsX i5(1=Mu � 1=Md) = 4�a�qX[���℄R + noise : (67)At � = 3:9 and �q = 0:004 (ensemble B1) the method based on eq. (67) yieldsan error whih turns out to be 6 times smaller than what would be obtainedwith a onventional stohasti volume soure. From the measured stohastiontribution to the signal, as well as the observed total utuation, one anextrat the intrinsi variation stemming from the statistial utuations of thegauge �eld. The goal of the stohasti method is to have errors arising from thestohasti method whih are negligible ompared to the intrinsi (gauge) noise.This we ahieve, �nding that the stohasti ontribution to the total error hasa standard deviation whih is 2/3 of the standard deviation arising from theintrinsi variation of the signal. In the example, above we employed 24 stohastisoures (with no omponents set to zero), resulting in a ost of 24 inversions,per gauge on�guration. Note that a similar number of inversions is needed toompute the (quark-onneted) harged meson orrelators.49



We thus �nd that this variane redution method, where appliable, is verypowerful and e�etively redues the stohasti noise in the neutral meson orre-lators, making it smaller than the intrinsi noise oming from the utuations ofthe gauge �eld.C �-method and data-blokingIn this appendix, we disuss the �-method and the data-bloking proedure wehave used to estimate the statistial errors of our physial observables.C.1 �-methodIn this setion, for ompleteness, we just reall the basis of the �-method in-trodued in [24℄. In the ase of a primary stohasti variable with \true value"A (the symbol A will also be used to denote the observable itself), a suitableestimator of the error on the ensemble average �a, i.e. its standard deviation ��a,is given by 12 �2�a = 1N WXn=�W ��a(n) ; (68)where N is the number of measurements, 2W + 1� N is the number of onse-utive measurements used in the estimation (measurement \window") and��a(n) = 1N � jnj N�jnjXi=1 (ai � �a)(ai+jnj � �a) : (69)Here ��a(n) represents the straightforward estimator of the autoorrelation fun-tion �A(n) = h(ai � A)(ai+jnj � A)i (the index i in ai labels the individual mea-surements, while h: : : i denotes the theoretial expetation value).The integrated autoorrelation time is onventionally de�ned for primaryquantities as in eq. (25) and estimated by (see eq. (68))�int(�a) = 12��a(0) WXn=�W ��a(n) � N�2�a2��2a ; (70)Note that ��a(0) � ��2a, see eq. (69), is an estimate of the a priori variane of A.The �-method an also be applied to the analysis of seondary observables,F = f(A), where f denotes a non-linear funtion of several primary observables,A � fA1; A2; : : :g. A typial example is the ase where A is given by the values oftwo-point hadron orrelators at di�erent time separations, with di�erent smear-ing levels, et., while F is a suitable estimator of the hadron mass; of ourse, the12For a disussion of these issues, see [65℄ and referenes therein.50



details of the funtion F = f(A) depend on the spei� hoie of the estimator,e.g. on the form of the �t ansatz for the orrelators and the range of time sep-arations employed in the �t. The main point here is that the deviation of anygiven �nite-statistis estimate of F , �F � f(�a), from the true value f(A) an beapproximated, in the limit of large statistis, by retaining the �rst term of theTaylor expansion of f(�a) around f(A), i.e. by writingf(�a)� f(A) 'X� �f(A)�A� (�a� � A�) ; (71)where � is the index labeling the primary quantities, A�, upon whih f depends.This remark suggests to de�ne a new quantity, Af , whih is a simple linear om-bination of primary quantities, and the orresponding �nite-statistis estimate,�af , via the formulaAf �X� �f(A)�A� A� ; �af �X� �f(A)�A� �a� ; (72)where �a� is the ensemble average of the primary stohasti variable a� (with\true value" A�, as above). The variane of �F = f(�a) will be given by�2�F � h(f(�a)� f(A))2i ' h(�af � Af )2i ; (73)where the trunation of the Taylor series produes a relative bias O(N�1)whih an be negleted if the number of measurements N is suÆiently large.A further bias of the same order of magnitude arises from the replaement�f(A)�A� ! �f(A)�A� ���A=�a in eq. (72), whih is done in pratie to evaluate the �rstderivatives of f with respet to the A�'s. At this point �2�F is estimated by theformula that is obtained from eq. (68) by replaing ��a(n) with��af (n) = 1N � jnj N�jnjXi=1 (aif � �af)(ai+jnjf � �af ) : (74)C.2 Binning methodIn the ase where a data-bloking (also alled binning) proedure is insteadadopted to aount for autoorrelations, the bin-size B plays a role similar tothat of the window W in the �-method. The integrated autoorrelation time anthus be estimated, for suÆiently large values of B, by�int( �F ) ' �2�F (B)2�2�F (1) ; (75)where � �F (B) denotes the jakknife estimate of the error on �F (the mean value ofF ) that is obtained upon binning the measurements into bloks of size B.51



C.3 Error on the error: �-method vs data-blokingThe estimator of eq. (68) allows to reah the optimal ompromise between therelative statistial error on ���a raising with pW , i.e. Æstat(���a)=���a � pW=N ,and the relative systemati error (bias) dereasing exponentially with W , i.e.Æsyst(���a) � 1=2 exp (�W=�), where � is the harateristi time of slowest expo-nential mode of �(n) (exponential autoorrelation time). An \optimal" value,Wopt, to be used as upper and lower bound for the sum in eq. (68) an be ob-tained, e.g. by gradually inreasing W and inspeting \by eye" the onset of aplateau for ���a as a funtion of W , or requiring minimisation of the total errorÆtot = Æstat + Æsyst [24℄. Any valid riterion to trunate the sum neessarily orre-sponds to values ofWopt for whih the trunation errors beome omparable withthe statistial noise level on ���a. This hoie orresponds to an unertainty on theerror on ���a dereasing like � O(N�1=2). For omparison we reall that the erroron ���a upon use of the binning method would derease only like � O(N�1=3) [24℄.In this ase in fat the optimal hoie orresponds to �nd a ompromise betweenthe relative statistial error on ���a (i.e. Æstat(���a)=���a � pB=2N) whih inreaseswith pB, and the relative systemati error (bias) (i.e. Æsyst(���a) � �=2B) whihdereases with B�1.C.4 Further remarksIn our error analysis arried out using the �-method, we deided to omparedi�erent riteria for the windowing proedure in order to test in this respet therobustness of our estimates. One method is given by the algorithm proposedin [24℄ whih is lose to optimal. A seond riterion, whih is slightly moreonservative, onsists in stopping the proedure as soon as ��(n) beomes negativedue to statistial utuations. In the 15 analysed ases (5 simulation points times3 quantities), no systemati trend ould be deteted, with the two methods givingin most of the ases similar results. In the ases where we ylially vary thetime the wall soure over the lattie (see set. 2.1) in order to restore translationinvariane in the MC time, as required by the �-method, we average beforehandorrelators over soure yles 13. We reall that the time-slie sequenes used forthe di�erent ensembles and the value of n = tp are spei�ed in Table 4.As already mentioned, the results of the �-method have been heked againstbinning proedures. For observables that are non-linear funtions of the primaryquantities, the error estimates were obtained by ombining the binning proedurewith either bootstrap-sampling (with bin sizes B = 4; 8; 16; 32 in trajetory units)or standard jakknife. In the latter ase the optimal bin size Bopt was determinedby requiring stabilization of the estimate of the error (with Bopt=�int � 10 orlarger).13We generially �nd orrelations between onseutive measurements taken on well separatedtime-slies (e.g. by �t = 12a) to be negligible.52



Di�erent methods give in general omparable results. In the ase of the bin-ning+bootstrap proedure stabilization of the error is however not always evidentat the maximal bin size (32 in trajetory units). In partiular the PCAC quarkmass turns out to be a�eted by signi�ant autoorrelations (see set. 4.2) andthe binning proedure seems not to be able to give reliable estimates of the error.In this ase indeed the results lie systematially below the estimates from the�-method. This an be understood realling that the �-method leads to a morefavourable dependene upon the number of measurements in the error attributedto the autoorrelation time than the binning method.In view of these �ndings we have deided to use the �-method for the es-timates of the errors on the plaquette and amPCAC. Also the error estimatesfor fermioni quantities (other than amPCAC) quoted in set. 6 ome from thismethod. However, similar results are obtained if a binning based proedure isemployed.D Details of the stati potential alulationIn this appendix we provide some details on the way we ompute the statiquark-antiquark potential from our dynamial gauge on�gurations.D.1 Improved stati ationAn improvement on the signal-to-noise ratio in the measurements of the Wilsonloop an be obtained by employing suitably smeared temporal links. This anbe viewed as a onvenient modi�ation (or improvement) of the ation for statiquarks [66, 67℄ as long as gauge invariane, ubi and parity symmetries as wellas the loal onservation of the stati quark number and the stati quark spinsymmetry are preserved. Under these onditions it is still guaranteed that thestati quark ation is free from O(a) uto� e�ets [68℄. The statistial improve-ment alluded above omes from a redution of the noise-to-signal ratio essentiallystemming from the fat that the modi�ed stati quark ation obtained via theuse of smeared temporal links indues a self-energy mass term with a signi�antlyredued oeÆient in front of the a�1 term [67℄. For our measurements we usethe so-alled HYP-improved stati quark ation, whih is obtained by replaingthe temporal links U4(~x; x0) in the Wilson loop by HYP-smeared links [69℄U4(~x; x0)! V HYP4 (~x; x0) : (76)The HYP-smearing requires the spei�ation of three parameters ~� = (�1; �2; �3)and, following ref. [67℄, we hoose ~� = (1:0; 1:0; 0:5) throughout our alulation.
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D.2 Spatial smearingThe smoothing of the spatial links has the e�et of reduing exited-state on-tamination in the orrelation funtions of the Wilson loops in the potential mea-surements. The operators whih we measured in the simulations are onstrutedusing the spatial APE smearing of ref. [70℄. The smoothing proedure we useonsists in replaing every spatial link Uj(x); j = 1; 2; 3 by itself plus a sum of itsneighbouring spatial staples and then projeting bak to the nearest element inthe SU(3) group, i.e. we writeS1Uj(x) � PSU(3)nUj(x) + �sXk 6=j (Uk(x)Uj(x + k̂)U yk(x+ ĵ) (77)+U yk(x� k̂)Uj(x� k̂)Uk(x� k̂ + ĵ))o :Here, PSU(3)Q denotes the unique projetion onto the SU(3) group element W ,whih maximises ReTr(WQy) for any 3�3 matrixQ. The smeared and SU(3) pro-jeted link S1Uj(x) retains all the symmetry properties of the original link Uj(x)under gauge transformations, harge onjugation, reetions and permutations ofthe oordinate axes. The whole set of spatially smeared links, fS1Uj(x); x�L4g,forms the spatially smeared gauge �eld on�guration. An operator O whih ismeasured on a n-times iteratively smeared gauge �eld on�guration is alledan operator at smearing level Sn, indiated by the symbol SnO. From ourexperiene a good hoie is to use M = 5 di�erent smearing levels Sn, withn = 8; 16; 24; 32; 40, and in all ases a smearing parameter �s = 0:25.D.3 Stati quark-antiquark pair orrelatorsThe matrix of stati quark-antiquark pair orrelation funtions, eah of whihfrom a tehnial viewpoint orresponds to a spatially smeared and temporallyimproved Wilson loop, is onstruted in the following way. At �xed x0 we �rstform smeared string (i.e. quark-antiquark pair) operators along the three spatialaxes, onneting ~x with ~x+ rî, given bySnVi(~x; ~x+ rî; x0) =SnUi(~x; x0)SnUi(~x+ âi; x0) : : :SnUi(~x+ (r � a)̂i; x0); i = 1; 2; 3 ; (78)and improved temporal links at �xed ~x, onneting x0 with x0 + t, given byV4(x0; x0 + t; ~x) = V HYP4 (~x; x0)V HYP4 (~x; x0 + a) : : : V HYP4 (~x; x0 + (t� a)) : (79)
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The smeared Wilson loop 14 is then obtained by omputingWlm(r; t) =X~x;x0 3Xi=1 TrSlVi(~x; ~x+ rî; x0)V4(x0; x0 + t; ~x + rî)SmV yi (~x; ~x+ rî; x0 + t)V y4 (x0; x0 + t; ~x) : (80)Finally we de�ne the matrix of stati quark-antiquark pair orrelators aordingto the formula Clm(r; t) = hWlm(r; t)i = Cml(r; t) ; (81)where the average is over the on�gurations of the ensemble. Sine we havehosen to employ M = 5 di�erent string operators (as disussed above) and weare onerned with orrelators where two suh operators are inserted, we end upwith a 5� 5 matrix of stati quark-antiquark pair orrelators.Referenes[1℄ ETMC, P. Bouaud et al., Phys. Lett. B650, 304 (2007), [hep-lat/0701012℄.[2℄ ALPHA, R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz, JHEP 08, 058(2001), [hep-lat/0101001℄.[3℄ R. Frezzotti and G. C. Rossi, JHEP 08, 007 (2004), [hep-lat/0306014℄.[4℄ �LF , K. Jansen, A. Shindler, C. Urbah and I. Wetzorke, Phys. Lett. B586,432 (2004), [hep-lat/0312013℄.[5℄ �LF , K. Jansen, M. Papinutto, A. Shindler, C. Urbah and I. Wetzorke,Phys. Lett. B619, 184 (2005), [hep-lat/0503031℄.[6℄ �LF , K. Jansen, M. Papinutto, A. Shindler, C. Urbah and I. Wetzorke,JHEP 09, 071 (2005), [hep-lat/0507010℄.[7℄ F. Farhioni et al., Eur. Phys. J. C39, 421 (2005), [hep-lat/0406039℄.[8℄ F. Farhioni et al., Eur. Phys. J. C42, 73 (2005), [hep-lat/0410031℄.[9℄ F. Farhioni et al., Phys. Lett. B624, 324 (2005), [hep-lat/0506025℄.[10℄ F. Farhioni et al., Eur. Phys. J. C47, 453 (2006), [hep-lat/0512017℄.[11℄ P. Weisz, Nul. Phys. B212, 1 (1983).14Let us remark that we measure the on-axis potential only, i.e. the potential extrated fromWilson loops having spatial extent in the diretion of the lattie axes î; i = 1; 2; 3 only.55



[12℄ S. Aoki and O. B�ar, Phys. Rev. D70, 116011 (2004), [hep-lat/0409006℄.[13℄ S. R. Sharpe and J. M. S. Wu, Phys. Rev. D71, 074501 (2005), [hep-lat/0411021℄.[14℄ R. Frezzotti, G. Martinelli, M. Papinutto and G. C. Rossi, JHEP 04, 038(2006), [hep-lat/0503034℄.[15℄ ETMC, C. Urbah, arXiv:0710.1517 [hep-lat℄.[16℄ ETMC, P. Dimopoulos, R. Frezzotti, G. Herdoiza, C. Urbah and U. Wenger,PoS LAT2007, 102 (2007), [arXiv:0710.2498 [hep-lat℄℄.[17℄ C. Mihael and A. MKerrell, Phys. Rev. D51, 3745 (1995), [hep-lat/9412087℄.[18℄ J. Foley, K. Jimmy Juge, A. O'Cais, M. Peardon, S. M. Ryan andJ. I. Skullerud, Comput. Phys. Commun. 172 (2005) 145, [hep-lat/0505023℄.[19℄ UKQCD, M. Foster and C. Mihael, Phys. Rev. D59, 074503 (1999), [hep-lat/9810021℄.[20℄ UKQCD, C. MNeile and C. Mihael, Phys. Rev. D73, 074506 (2006), [hep-lat/0603007℄.[21℄ MILC, C. Aubin et al., Phys. Rev. D 70 (2004) 114501, [hep-lat/0407028℄.[22℄ TXL, S. Gusken et al., Phys. Rev. D 59 (1999) 114502.[23℄ UKQCD, P. Laok, A. MKerrell, C. Mihael, I. M. Stopher and P. W.Stephenson, Phys. Rev. D51, 6403 (1995), [hep-lat/9412079℄.[24℄ ALPHA, U. Wol�, Comput. Phys. Commun. 156, 143 (2004), [hep-lat/0306017℄.[25℄ UKQCD, C. MNeile and C. Mihael, Phys. Rev. D63, 114503 (2001), [hep-lat/0010019℄.[26℄ UKQCD, C. MNeile and C. Mihael, Phys. Lett. B556, 177 (2003), [hep-lat/0212020℄.[27℄ K. Jansen, hep-lat/0609012.[28℄ S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett.B195, 216 (1987).[29℄ M. Hasenbush, Phys. Lett. B519, 177 (2001), [hep-lat/0107019℄.56



[30℄ M. Hasenbush and K. Jansen, Nul. Phys. B659, 299 (2003), [hep-lat/0211042℄.[31℄ C. Urbah, K. Jansen, A. Shindler and U. Wenger, Comput. Phys. Commun.174, 87 (2006), [hep-lat/0506011℄.[32℄ K. Jansen, A. Shindler, C. Urbah and U. Wenger, PoS LAT2005, 118(2006), [hep-lat/0510064℄.[33℄ J. C. Sexton and D. H. Weingarten, Nul. Phys. B380, 665 (1992).[34℄ T. Takaishi and P. de Forrand, Phys. Rev. E73, 036706 (2006), [hep-lat/0505020℄.[35℄ R. C. Brower, T. Ivanenko, A. R. Levi and K. N. Orginos, Nul. Phys. B484,353 (1997), [hep-lat/9509012℄.[36℄ T. Chiarappa et al., hep-lat/0609023.[37℄ ALPHA, R. Frezzotti, M. Hasenbush, U. Wol�, J. Heitger and K. Jansen,Comput. Phys. Commun. 136, 1 (2001), [hep-lat/0009027℄.[38℄ B. Efron and R. J. Tibshirani, An Introdution to the Bootstrap, Monographson Statistis and Applied Probability, Vol. 57, CRC Press, 1993.[39℄ R. Sommer, Nul. Phys. B411, 839 (1994), [hep-lat/9310022℄.[40℄ A. Hasenfratz, R. Ho�mann and F. Knehtli, Nul. Phys. Pro. Suppl. 106,418 (2002), [hep-lat/0110168℄.[41℄ F. Niedermayer, P. Rufenaht and U. Wenger, Nul. Phys. B597, 413 (2001),[hep-lat/0007007℄.[42℄ ETMC, R. Frezzotti and G. Rossi, arXiv:0710.2492 [hep-lat℄.[43℄ L. Sorzato, Eur. Phys. J. C37, 445 (2004), [hep-lat/0407023℄.[44℄ G. M�unster, JHEP 09, 035 (2004), [hep-lat/0407006℄.[45℄ F. Farhioni et al., PoS LAT2005, 033 (2006), [hep-lat/0509036℄.[46℄ S. R. Sharpe and J. Singleton, Robert L., Phys. Rev. D58, 074501 (1998),[hep-lat/9804028℄.[47℄ S. R. Sharpe and J. M. S. Wu, Phys. Rev. D70, 094029 (2004), [hep-lat/0407025℄.[48℄ ETMC, P. Dimopoulos et al., arXiv:0710.0975 [hep-lat℄.57



[49℄ ETMC, P. Bouaud et al., (2008), in preparation.[50℄ ETMC, P. Dimopoulos et al., (2008), in preparation.[51℄ R. Frezzotti and S. Sint, Nul. Phys. Pro. Suppl. 106, 814 (2002), [hep-lat/0110140℄.[52℄ J. Gasser and H. Leutwyler, Phys. Lett. B184, 83 (1987).[53℄ G. Colangelo, S. D�urr and C. Haefeli, Nul. Phys. B721, 136 (2005), [hep-lat/0503014℄.[54℄ H. Britt and R. Lueke, Tehnometris 15 (2) (1973) 233-247.[55℄ A. Davison and D. Hinkley, Cambridge Series on Statistial and ProbabilistiMathematis. Cambridge University Press (1997).[56℄ W. V. W.H. Press, S.A. Teukolsky and B. Flannery, Numerial Reipees,Fortran, 2nd ed. (Cambridge University Press, 1992).[57℄ G. Colangelo and S. Durr, Eur. Phys. J. C33, 543 (2004), [hep-lat/0311023℄.[58℄ J. Bijnens, G. Colangelo, G. Eker, J. Gasser and M. E. Sainio, Nul. Phys.B508, 263 (1997), [hep-ph/9707291℄.[59℄ H. Leutwyler, Nul. Phys. Pro. Suppl. 94, 108 (2001), [hep-ph/0011049℄.[60℄ G. Colangelo, J. Gasser and H. Leutwyler, Nul. Phys. B603, 125 (2001),[hep-ph/0103088℄.[61℄ ETMC, P. Bouaud et al., in preparation (2008).[62℄ R. G. Edwards and B. Joo, Nul. Phys. Pro. Suppl. 140, 832 (2005), [hep-lat/0409003℄.[63℄ P. Boyle, http://www.ph.ed.a.uk/~paboyle/bagel/Bagel.html.[64℄ R Development Core Team, R: A language and environment for statistialomputing, R Foundation for Statistial Computing, Vienna, Austria, 2005,ISBN 3-900051-07-0.[65℄ A. D. Sokal, Given at the Troisieme Cyle de la Physique en Suisse Romande,Lausanne, Switzerland, Jun 15-29, 1989.[66℄ ALPHA, M. Della Morte et al., Phys. Lett. B581, 93 (2004), [hep-lat/0307021℄.[67℄ M. Della Morte, A. Shindler and R. Sommer, JHEP 08, 051 (2005), [hep-lat/0506008℄. 58



[68℄ ALPHA, M. Kurth and R. Sommer, Nul. Phys. B597, 488 (2001), [hep-lat/0007002℄.[69℄ A. Hasenfratz and F. Knehtli, Phys. Rev. D64, 034504 (2001), [hep-lat/0103029℄.[70℄ APE, M. Albanese et al., Phys. Lett. B192, 163 (1987).

59


	Twisted mass fermions
	Tuning to maximal twist
	Maximal twist and residual O(a2) artifacts
	Numerical precision for tuning to maximal twist

	Computations in the charged meson sector
	Quark propagators from stochastic sources
	On the way of choosing the source time-slice

	Computations in the neutral meson sector
	Simulation algorithm and error analysis
	Statistical error analysis
	Autocorrelation times

	The scale from the static potential
	Analysis details and results
	Discussion

	Some selected results
	Charged and neutral pseudoscalar masses
	PCAC mass
	Pseudoscalar decay constant and ZV 

	Chiral Perturbation Theory analysis of fPS and mPS
	Statistical errors
	Discussion of systematic errors
	Comments

	Summary
	Appendices
	Quark bilinear operators in the twisted basis
	Evaluation of disconnected loops
	-method and data-blocking
	-method
	Binning method
	Error on the error: -method vs data-blocking
	Further remarks

	Details of the static potential calculation
	Improved static action
	Spatial smearing
	Static quark-antiquark pair correlators


