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Abstra
tIn a re
ent paper [1℄ we presented pre
ise latti
e QCD results of our Eu-ropean Twisted Mass Collaboration (ETMC). They were obtained by em-ploying two mass-degenerate 
avours of twisted mass fermions at maximaltwist. In the present paper we give details on our simulations and the 
om-putation of physi
al observables. In parti
ular, we dis
uss the problem oftuning to maximal twist, the te
hniques we have used to 
ompute 
orre-lators and error estimates. In addition, we provide more information onthe algorithm used, the auto
orrelation times and s
ale determination, theevaluation of dis
onne
ted 
ontributions and the des
ription of our databy means of 
hiral perturbation theory formulae.Contents1 Twisted mass fermions 21.1 Tuning to maximal twist . . . . . . . . . . . . . . . . . . . . . . . 31.2 Maximal twist and residual O(a2) artifa
ts . . . . . . . . . . . . . 41.3 Numeri
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Appendi
es 45A Quark bilinear operators in the twisted basis 46B Evaluation of dis
onne
ted loops 47C �-method and data-blo
king 50C.1 �-method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50C.2 Binning method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51C.3 Error on the error: �-method vs data-blo
king . . . . . . . . . . . 52C.4 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52D Details of the stati
 potential 
al
ulation 53D.1 Improved stati
 a
tion . . . . . . . . . . . . . . . . . . . . . . . . 53D.2 Spatial smearing . . . . . . . . . . . . . . . . . . . . . . . . . . . 54D.3 Stati
 quark-antiquark pair 
orrelators . . . . . . . . . . . . . . . 541 Twisted mass fermionsDynami
al Wilson twisted mass fermions, when tuned to maximal twist [2, 3℄,have been demonstrated to lead to pre
ise results for mesoni
 quantities downto pseudo s
alar masses mPS . 300 MeV. Results in the quen
hed 
ase weredis
ussed in refs. [4, 5, 6℄ and in the 
ase of two mass-degenerate 
avours ofquarks in ref. [1℄. Preparatory simulations with twisted mass dynami
al fermionswere performed in [7, 8, 9, 10℄. In ref. [1℄ many of the details of our 
omputationshad to be omitted and it is the purpose of the present paper to supplement thoseand �ll this gap.This paper is organized as follows. In this se
tion we introdu
e twisted massfermions and dis
uss the important issue of tuning to maximal twist. In se
tion 2,we give details about our te
hniques to 
ompute 
harged 
orrelators and in se
-tion 3 to 
ompute neutral 
orrelators and quark-dis
onne
ted 
ontributions. Inse
tion 4 we dis
uss the algorithm details and explain our analysis te
hniques forobtaining reliable error estimates. In se
tion 5 we provide details of our 
om-putation of the for
e parameter r0 and in se
tion 6 we give some results for thepseudos
alar mass and de
ay 
onstant, the untwisted PCAC quark mass and therenormalization 
onstant ZV. We use 
hiral perturbation theory to �t our dataand we detail this pro
edure in se
tion 7. We end with a short summary inse
tion 8.We begin with the Wilson twisted mass fermioni
 latti
e a
tion for two
avours of mass degenerate quarks, whi
h reads (in the so 
alled twisted ba-
2



sis [2, 3℄ and with fermion �elds having 
ontinuum dimensions)SFtm = a4Xx n��x [DW +m0 + i
5�3�q℄�xo ;DW = 12
� �r� +r���� ar2 r�r�� ; (1)where m0 is the bare untwisted quark mass and �q the bare twisted quark mass,�3 is the third Pauli matrix a
ting in 
avour spa
e and r is the Wilson parameter,whi
h we set to r = 1 in our simulations. We denote by r� and r�� the gauge
ovariant nearest neighbour forward and ba
kward latti
e derivatives. The barequark mass m0 is related to the so-
alled hopping parameter �, whi
h we willoften use in this paper, by � = 1=(8 + 2am0). Twisted mass fermions are saidto be at maximal twist if the bare untwisted mass is tuned to its 
riti
al value,m
rit. We will dis
uss later how this 
an be a
hieved in pra
ti
e.In the gauge se
tor we use, for reasons explained in [1℄, the so 
alled tree-level Symanzik improved gauge a
tion (tlSym) [11℄ whi
h in
ludes besides theplaquette term U1�1x;�;� also re
tangular (1� 2) Wilson loops U1�2x;�;�. It readsSg = �3Xx  b0 4X�;�=11��<�f1� ReTr(U1�1x;�;�)g+b1 4X�;�=1�6=� f1� ReTr(U1�2x;�;�)g! ; (2)where � is the bare inverse 
oupling and we set b1 = �1=12 (with b0 = 1 � 8b1as di
tated by the requirement of 
ontinuum limit normalization). Note that atb1 = 0 this a
tion be
omes the usual Wilson plaquette gauge a
tion.1.1 Tuning to maximal twistOne of the main virtues of Wilson twisted mass fermions is that by tuning thebare quark mass m0 to its 
riti
al value an automati
 O(a) improvement 
anbe a
hieved su
h that expe
tation values of parity even operators s
ale to their
ontinuum limit with O(a2) dis
retization errors [3℄. It was shown in the s
alingtest study 
arried out in [4, 5, 6℄ in the quen
hed 
ase that O(a) improvementworks extremely well for maximally twisted mass quarks. In this 
ontext, themethod to tune to maximal twist by setting the so-
alled (untwisted) PCACmass to zero (in the limit �q ! 0) was found to be very su

essful, in agreementwith theoreti
al 
onsiderations [12, 13, 14℄. In the present paper essentially thesame approa
h to set to zero the (untwisted) PCAC massmPCAC = Pxh�0Aa0(x; t)P a(0)i2PxhP a(x; t)P a(0)i ; a = 1; 2 ; (3)was followed, by evaluating (3) at large enough time separation, so that thepion ground state is dominant. For a de�nition of the (twisted basis) operatorsappearing in eq. (3) see eq. (47) of Appendix A.3



In prin
iple one 
ould think of determining am
rit at ea
h value of a�q atwhi
h simulations are 
arried out and then perform an extrapolation to vanish-ing a�q based on data satisfying the bound a�q & a3�3QCD [14℄. This methodis, however, rather CPU-time expensive. We therefore prefer to determine thevalue of am
rit (at ea
h �xed value of �) from the simulation at the lowest avail-able value, a�q;min � a�QCD. This 
hoi
e simply a�e
ts the 
riti
al quark massby O(a�q;min�QCD) terms. Therefore O(a) improvement is still guaranteed [3℄.Furthermore, and most importantly, with su
h a determination of am
rit also theO(a2) 
uto� e�e
ts remain small as long as �q & a2�3QCD [14℄. We re
all belowthe line of arguments leading to this 
on
lusion.1.2 Maximal twist and residual O(a2) artifa
tsTo start the dis
ussion let us assume that m0 = 1=(2�) � 4 has been set to avalue 
orresponding to some sensible latti
e estimate of the 
riti
al mass, while�q is non-zero. In this situation one is already at maximal twist. However theunavoidable O(a) terms a�e
ting any determination of the 
riti
al mass 
an befurther tuned in an \optimal way", i.e. in a way su
h that the residual O(a2)latti
e artifa
ts in physi
al quantities remain under 
ontrol as the pion mass isde
reased. We brie
y explain how this 
an be a
hieved in pra
ti
e and to whata

ura
y, following the work of ref. [14℄. In the Symanzik expansion of the latti
eexpe
tation value hO(x)ij�q of a multilo
al operator O 
omputed at a bare quarkmass �q there will appear at O(a2) terms whi
h are proportional to� 1m2� �2 �2�(�q) / 1�2q �2�(�q) ; (4)where ��(�q) = jh
jLoddj�0(0)ij
ont�q : (5)Here h
j and j�0(0)i denote the va
uum and the one-pion neutral state at zerothree-momentum, respe
tively. With the symbolLodd = aL5 + a3L7 + ::: (6)we indi
ate the set of operators of odd dimension in the Symanzik lo
al e�e
tiveLagrangian that des
ribes the maximally twisted latti
e theory. From eq. (4) onere
ognizes that 
ut-o� e�e
ts may be
ome large when m2� gets small.The general strategy to avoid these large 
ut-o� e�e
ts is to tune ��(�q) tozero, or at least to redu
e it to O(am2��2QCD) by adjusting the value of �
rit.One way to realise this is pre
isely to tune mPCAC = 0 as explained above. Inparti
ular it is suÆ
ient to impose the vanishing of the PCAC mass at �q =�q;min [14℄. An analysis �a la Symanzik of the 
orrelator in the numerator of eq.(3)shows that, if � is su
h that mPCAC vanishes at a given value of �q (provided4



�q < �QCD), then ��(�q) is suppressed in a suÆ
iently strong way, namely onegets (note that �� has mass dimension three)��(�q) = O(a�q�3QCD) + O(a�2q�2QCD) + O(a3�6QCD) ; (7)and thus (see eq. (4))��(�q)�q�2QCD = O(a�QCD) + O(a�q) + O(a�QCDa2�3QCD�q ) : (8)In this situation, the ratio ��(�q)=�q�2QCD remains small as long as �q & a2�3QCD.For ea
h value of �q in the region a2�3QCD . �q < �QCD � a�1 the value of �at whi
h mPCAC vanishes provides a legitimate estimate of �
rit and hen
e ofm
rit.Estimates of m
rit 
orresponding to di�erent values of �q di�er by O(a�q�QCD)from ea
h other. In parti
ular, working at �
rit(�q;min) leads to O(a2) 
uto� e�e
tswhi
h are at worst of the form a2(�q;min=�q)2 and thus perfe
tly tolerable as longas �q & �q;min > a2�3QCD. This result 
an be 
he
ked by expanding ��(�q) around�q;min in eq. (8) and using the expression of ��(�q;min) from eq. (7).1.3 Numeri
al pre
ision for tuning to maximal twistIt remains to be dis
ussed to what numeri
al pre
ision the 
ondition mPCAC =0 has to be ful�lled. This question is important if one wants to avoid thatnumeri
al un
ertainties jeopardize the tuning pro
edure. Suppose jamPCACj =a� 6= 0, where a� denotes a small deviation, due to numeri
al limitations, fromthe 
ondition of vanishing PCAC mass. As a rule of thumb the value of a� 
anbe taken as the maximum (in modulus) between the �nite statisti
s 
entral valueof amPCAC and its (estimated) standard deviation. It then follows by expanding�� = ��(�q; �) around � = 0��(�q; �) = ��(�q) + O ��2QCD��� O(a�q�3QCD) + O(a�2q�2QCD) + O(�2QCD�) : (9)Thus for the relative size of �� 
ompared to the a
tual value of the quark mass,one gets ��(�q; �)�q�2QCD = O(a�QCD) + O(a�q) + O( ��q ) : (10)A smooth approa
h to the 
ontinuum is, of 
ourse, guaranteed when j�=�qj is oforder a�QCD or smaller. In fa
t, from the form of the dimension �ve term in theSymanzik e�e
tive Lagrangian of the twisted mass latti
e QCD, it follows that,
lose to maximal twist, a�QCDj�=�qj is the expe
ted order of magnitude of the(unwanted) relative O(a) 
uto� e�e
ts stemming from violations of the 
onditionof vanishing PCAC mass. The requirement j�=�qj . a�QCD thus implies that5



the relative magnitude of these unwanted 
uto� e�e
ts satis�es the 
onstrainta�QCDj�=�qj . a2�2QCD, whi
h is 
onsistent with O(a) improvement.In pra
ti
e, sin
e we are interested in simulations performed at latti
e spa
ingsabout (or slightly below) 0.1 fm, where a�QCD � 0:1, a value of j�=�qj . 0:1 (andideally de
reasing with a) will represent an a

eptable level of pre
ision in thepro
edure of determining the 
riti
al mass. This 
ondition is not too restri
tiveas in a
tual simulations it is suÆ
ient that it holds at �q;min. We also remarkthat in order to 
he
k s
aling and perform a reliable 
ontinuum extrapolation,the value of �q;min should be kept roughly �xed in physi
al units as the latti
espa
ing is de
reased.Although these theoreti
al arguments show that we 
an work in 
onditionssu
h that we are e�e
tively left with only O(a2) latti
e artefa
ts, numeri
al 
om-putations are required to 
he
k the s
aling behaviour and determine the order ofmagnitude of the 
oeÆ
ient multiplying a2 terms for the observables of interest.In this paper, where data at only one value of a are analyzed, we 
annot evaluatethese 
oeÆ
ients. Nevertheless, for the observables we dis
uss here preliminaryresults from our 
ollaboration presented in ref. [15, 16℄ indi
ate that the residual
uto� e�e
ts are indeed small and 
onsistent with O(a) improvement.2 Computations in the 
harged meson se
torIn this paper we will be mainly using the twisted quark basis where the fermioni
a
tion takes the form (1). Even though there is no fundamental reason for this
hoi
e, employing the twisted quark basis makes immediately transparent the wayseveral 
omputational methods, whi
h have been invented for, or widely appliedto, untwisted Wilson fermions, 
arry over to the 
ase of maximally twisted Wilsonquarks. Of 
ourse, in su
h an unphysi
al basis, the two 
avour 
omponents ofthe fermion �eld � = (u; d)T appearing in the a
tion do not 
oin
ide with the
anoni
al quark �elds in the \physi
al" basis,  = (uphys; dphys)T , rather theformer are related to the latter by the axial rotation� = e�i
5�3!=2j!=�=2 , u = e�i
5�=4uphys ; d = ei
5�=4dphys ; (11)whi
h we write here in the 
ase of maximal twist, ! = �=2. Sin
e the axialtransformation above is 
avour diagonal, the names of the 
omponents (u,d) ofthe twisted basis �eld � are still appropriate to their 
avour 
ontent. In spiteof that, the 
orre
t interpretation of gauge invariant 
omposite bare operators inthe (�, ��) basis is obtained only on
e they are expressed in terms of the physi
albasis bare �elds ( , � ). Examples 
on
erning quark bilinear �elds 
an be foundin Appendix A.In this 
ontext it may be useful to remark that, sin
e parity and isospin areno longer exa
t symmetries (re
all however that I3, the third isospin 
omponent,6



is unbroken), a physi
al basis bare 
omposite operator with given formal par-ity and isospin properties 
an interpolate a hadron with opposite parity and/ordi�erent isospin. As a 
onsequen
e in the quantum-me
hani
al representationof the 
orrelators there will be 
ontributions 
ontaining matrix elements of aphysi
al basis 
omposite operator with given formal parity and isospin betweenthe va
uum and a state with opposite parity and/or di�erent isospin, as wellas between a neutral pion state (whi
h has the same latti
e quantum numbersas the va
uum) and a state with the same parity and isospin properties as the
onsidered operator. Su
h parity- and/or isospin-violating matrix elements areof 
ourse of order a. Their o

urren
e in the quantum-me
hani
al representationof 
orrelators is not in 
ontradi
tion with the O(a) improvement of the expe
-tation values of parity-even, or isospin-invariant, multilo
al operators [3℄. Forthese spe
i�
 
orrelators, indeed, an analysis �a la Symanzik shows that ea
h termof their quantum-me
hani
al representation 
an 
ontain only an even number ofO(a) fa
tors given by parity- and/or isospin-violating matrix elements 1.From the formulae in Appendix A, it is 
lear that at maximal twist, ! = �=2,the operator �d
5u is asso
iated to the �+ meson, in the sense that ( �d
5u)y 
reatesthe �+ state from the va
uum. The two-point �+ meson 
orrelator re
eives
ontributions only from (fermioni
ally) 
onne
ted diagrams, and after integrationover fermion �elds, it is given byC(t) = htr[Gu(0; t)
5Gd(t; 0)
5℄i ; (12)where h: : :i means average over the gauge ensemble, the tra
e tr[: : : ℄ is restri
tedto spin and 
olour indi
es only, and we denote by Gu(0; t) the propagator for au-quark from 0 to t, and 
orrespondingly by Gd the similar propagator for thed-quark. Here three-spa
e indi
es are understood as at this stage we need notspe
ify the spatial separation, or equivalently the three-momentum. We 
an usethe identity 2 Gd(y; z) = 
5Gu(z; y)+
5 to relate the 
onne
ted 
orrelator (12) topropagators from a 
ommon sour
e (at time x0 = 0) throughC(t) = htr[Gu(0; t)Gu(0; t)+℄i : (13)Thus only propagators for one 
avour at one sour
e point are needed for the
omputation of the 
harged meson 
orrelator. As we dis
uss later, it is moreeÆ
ient, however, to evaluate 
orrelation fun
tions from a wider set of sour
es.In the Table below we give the 
orresponden
e between bilinear operatorsof the form �d�u, where � is an hermitian 
ombination of Dira
 
-matri
es, andthe mesoni
 state that is asso
iated with ea
h of them (in the limit a ! 0, i.e.negle
ting O(a) 
ontamination from states of di�erent parity and isospin).1This result essentially follows from the property that, at maximal twist, the order a pie
eof the Symanzik e�e
tive Lagrangian, aL5, is odd under parity and the 
avour ex
hange u$ d.2Here (with a little abuse of notation) by + we mean 
omplex 
onjugation and transpositionwith respe
t to spin-
olour indi
es only, while y = (y; y0) and z = (z; z0) are the spa
etime
oordinates. 7



Meson Operator��, ��, X�1 �d
5u, �d
0u, �di
0
5u��, ��, a�1 �di
i
0u, �di
i
5u, �d
iub�1 �di
i
0
5ua�0 �duIn this Table, X�1 labels an isotriplet state with JP = 0+, for whi
h there is noexperimental 
andidate. We note that the asso
iated operator is in the 
ontinuuma 
omponent of a 
onserved 
urrent in the theory with two mass degeneratequarks.We evaluate the two-point (
onne
ted) 
orrelators for all the pairs of operatorsin the same line of the Table above. In view of the symmetries of the latti
e theoryat maximal twist [2, 3℄, su
h 
orrelators are in general non zero: e.g. the 
orrelatorobtained from the insertion of the �rst (or se
ond) operator in the se
ond line ofthe Table with the third operator in the same line is an O(a) quantity (in fa
t�� and a�1 
arry di�erent 
ontinuum quantum numbers). Sin
e we also use alo
al and extended (fuzzed) sour
e and sink in all 
ases we 
onsider, we will haveeither 6� 6 or 2� 2 matri
es of 
orrelators available.Therefore, we measure in general 
orrelation fun
tions of several di�erentpairs of operators (hO�O�i, with �; � = 1; : : :N) at sour
e and sink. We thenuse a fa
torizing �t expression where i = 1; : : :M states (with energy denoted byEi) are in
luded C��(t) = MXi=1 
i�
i�(e�Eit � e�Ei(T�t)) : (14)Here T is the latti
e temporal extent and the � sign is determined by the prop-erties of the 
hosen operators under time-re
e
tion. By simultaneously �ttingN �N 
orrelators with M states, we 
an optimally determine energies and 
ou-plings. From them we evaluate other quantities of interest, su
h as af� andamPCAC. We use 
onventional methods to determine the optimal t range, N - andM -values to be employed in the �ts. We take into a

ount statisti
al 
orrelationsamong observables [17℄ through 
orrelated �ts to establish that the �2 value isa

eptable. Our �nal �tted values are obtained from un
orrelated �ts, sin
e thatintrodu
es less bias [17℄, although the �2 values are smaller than those obtainedin
luding 
orrelations. We also 
he
ked that the �ts are stable when taking intoa

ount 
orrelations. For pseudos
alar mesons we use mainly M = 1 as well asN = 4 or 6, and sele
t the minimum value of t su
h that the e�e
tive masses (orenergies) from di�erent matrix elements agree.We 
on
lude by re
alling that, owing to re
e
tion invarian
e of the latti
ea
tion (the Eu
lidean analog of the Minkowski 
omplex-
onjugation, a symmetrythat is preserved by Wilson fermions, either 
hirally twisted or not, see ref. [3℄),all the 
orrelators that are expe
tation values of �elds with de�nite re
e
tion8



properties are either real or purely imaginary, depending on whether the whole�eld produ
t has even or odd re
e
tion-parity. In parti
ular, the expe
tationvalues of multilo
al �elds with negative spatial parity, whi
h are O(a) quantities,
ome out to be purely imaginary if one does not take 
are of inserting the i-fa
torsthat are needed to render the multilo
al �eld even (rather than odd) under there
e
tion.2.1 Quark propagators from sto
hasti
 sour
esAlthough it is feasible to use u-quark propagators from 12 
olour-spin sour
es(with ea
h sour
e being non-zero only for one 
olour-spin 
ombination) at onespa
e-time point to evaluate mesoni
 
orrelators, it is preferable to use the in-formation 
ontained in the gauge 
on�gurations more fully, espe
ially in the 
aseof su
h CPU-time expensive simulations as dynami
al quark simulations. OneeÆ
ient way to a
hieve this goal is to use sto
hasti
 sour
es. To keep the noise-to-signal ratio reasonable, it is mandatory to use time-sli
e sour
es rather than fullvolume sour
es. A great redu
tion of the noise-to-signal ratio over 
onventionalsto
hasti
 methods (see ref. [18℄ for a review) 
an be obtained [19, 20℄ by usingthe \one-end-tri
k" whi
h is des
ribed below. A similar method, 
alled randomwall, was used by MILC [21℄.The starting point of all sto
hasti
 methods for 
omputing quark propagatorsis the introdu
tion of random sour
es, �ri , where i = 1; : : : Vs spans the set of thesour
e degrees of freedom (
olour, spin, spa
e, time) and r = 1; : : :R labels thenoise samples generated for ea
h gauge 
on�guration. The 
orresponding averagesatis�es limR!1[��i �j℄R = Æij; limR!1[�i�j℄R = 0 ; (15)whi
h 
an be a
hieved by various di�erent noise 
hoi
es, su
h as �ri = (�1�i)=p2or gaussian (
omplex) noise.As a next step, we invert the latti
e Dira
 matrix M (for one given quark
avour) on ea
h sample of this sour
e,�rj =M�1jk �rk ; (16)so that averaging over r (R samples) gives[�r�i �rj ℄R = [�r�i M�1jk �rk℄R =M�1ji + noise ; (17)where j 
an be arbitrary and i belongs to the set of indi
es for whi
h the sour
eis non-vanishing, whi
h we assume to be of size Vs. The quantity (17) is anunbiased estimator of the quark propagator from i to j. Unfortunately, here thenoise is expe
ted to be as � pVs=pR whereas the signal is � 1 at best. Varian
eredu
tion is thus very ne
essary. Furthermore for a meson 
orrelator, the signalbehaves as exp(�mmesont) whi
h de
reases rapidly with in
reasing t.9



The `one-end-tri
k' allows [19, 20℄ a more favourable signal-to-noise ratio.Consider the produ
t �r�i �rj where the sto
hasti
 sour
e is now non-zero for all
olour-spin indi
es and all spa
e points at only one time, denoted by t0 (time-sli
esour
e). Then upon averaging over r one has[�r�i �rj ℄R = [ (M�1ik �rk)�M�1jm�rm ℄R =M�1�ik M�1jk + noise ; (18)where the sum over k in
ludes all sour
e 
omponents. This quantity is an unbiasedestimator for the produ
t of the quark propagatorsM�1jk M�1 +ki from the sour
e tosites i and j on ea
h gauge 
on�guration. Then 
ontra
ting with Æij and summingover spa
e at �xed time-sli
e t yields the full zero three-momentum (��-
hannel)
orrelator from t0 to t. The noise 
ounting is now more favourable. There are V 2snoise terms, whi
h yield a standard deviation of order Vs, but the signal itself isof order Vs. This is su
h big an advantage that it is suÆ
ient to employ just onesample of noise per gauge 
on�guration (R = 1). As we dis
uss below, the optimalway to 
hoose the time-sli
e (t0) at whi
h the sto
hasti
 sour
e is lo
ated, is to
hange it randomly as the gauge 
on�guration is 
hanged. It should be remarkedthat the `one-end-tri
k', as formulated above, only works for the 
ase of a zerothree-momentum interpolating �eld of the form �d
5u at the sour
e time (t0).A 
onvenient extension of the `one-end-tri
k', that allows meson-to-meson
orrelators with any Dira
 stru
ture at the sour
e to be evaluated, requires 
on-sideration of four (� = 1; 2; 3; 4) \linked" sour
es of the form�(�; t0)�;
;x;x0 = Æ��Æx0t0�
;x ;where � and 
 are Dira
 and 
olour indi
es respe
tively, while � is a non-vanishingnoise �eld. Su
h sour
es, whi
h are non-zero only on a given time-sli
e (t0) andwhen the Dira
 index value equals �, are 
alled \linked" be
ause they involve a
ommon noise �eld �. 3 One 
an 
he
k that by repla
ing � and �� in the l.h.s.of eq. (18) by two of these linked sour
es, say �(�; t0) and �(
; t0) �, and 
hoosingappropriately � and 
, it is possible to evaluate the two-point 
orrelators with a�eld of the form �d�u at the sour
e (x0 = t0) with any Dira
 matrix �. This veryuseful extension, whi
h we have thoroughly exploited in the present paper, 
omesat a moderate pri
e. One must in fa
t only perform four separate inversions (pergauge 
on�guration and per noise sample), one for ea
h of the four linked sour
es�(�; t0), � = 1; : : : 4.To further extend the one-end tri
k with linked sour
es to non-zero three-momentum or to spatially non-lo
al mesoni
 operators is 
ompletely straight-forward, at the 
ost of more inversions. One 
reates further linked sour
es F�(where F denotes a produ
t of links) with the desired spatial properties, and
omputes the quark propagators originating from them, �F =M�1F�. Combin-ing the latter with the quark propagator stemming from �, i.e. � =M�1�, yields3Note that \linked" sour
es are di�erent than \spin-diluted" sour
es [18, 22℄ sin
e theserequire di�erent random numbers for ea
h spin.10



the produ
t ���F , from whi
h, upon averaging over the noise, one 
an evaluatea set of 
orrelators with the meson �eld �d
5Fu inserted at the sour
e (and allpossible spatial stru
tures at the sink). Employing linked sour
es, as explainedabove, one 
an �nally evaluate 
orrelators with the meson �eld �d�Fu inserted atthe sour
e with any spatial stru
ture F and Dira
 matrix �, while retaining alladvantages of the one-end tri
k.In this work we use fuzzing, see Appendix D.2 and ref. [23℄, to 
reate spatiallynon-lo
al meson operators, sin
e this pro
edure is 
omputationally fast also atthe sink. The fuzzed meson sour
e is 
onstru
ted from a sum of straight pathsof length 6a, in the six spatial dire
tions, between quark and anti-quark. Thesestraight paths are produ
ts of fuzzed gauge links. Here for the fuzzed links weuse the iterative pro
edure de�ned in Appendix D.2 with �s = 0:25 and n = 5.In prin
iple one 
ould hope to extend the approa
h des
ribed above to bary-oni
 
orrelators (
hoosing � as a 
ubi
 root of 1) but the signal to noise ratio willbe less favourable (noise indu
ed standard deviation will be � V 3=2s versus signal� Vs). Unfortunately one �nds that this extension of the sto
hasti
 method tobaryons is not any improvement over using point-like sour
es. In general, the
hoi
e of the optimal sto
hasti
 methods needs to be investigated on a 
ase by
ase basis.2.2 On the way of 
hoosing the sour
e time-sli
eAs dis
ussed above, we invert on spatial-volume sto
hasti
 sour
es lo
ated attime t0, where 0 � t0 < T 
an be 
hosen di�erently for ea
h gauge 
on�guration.We have explored two ways of 
hanging the sour
e time-sli
e t0. One 
onsists inmoving t0 
y
li
ally through the latti
e. This means that we 
hoose n equallyspa
ed values for the sour
e time lo
ations, t(i)0 ; 0 � i < n. Then we invert onthe j-th gauge 
on�guration using sour
es that are non-vanishing only at thetime-sli
es t0 = t(j mod n)0 . Hen
e, we invert from the same time-sli
e only every n
on�gurations, i.e. after one 
y
le. Even though this method should de
orrelatethe measurement on two 
onse
utive gauge 
on�gurations better than when thetime-sli
es are kept �xed, it has the drawba
k that after a relatively short numberof 
on�gurations the same time-sli
e is used again. A
tually, at least for themesoni
 
orrelators studied in this paper, it turns out that two measurementsfrom the same time-sli
e, but 8 traje
tories apart, are mu
h more 
orrelated thantwo measurements from di�erent time-sli
es, but only two traje
tories apart.Furthermore the analysis with the � method of ref. [24℄ des
ribed in se
t. 4.1 andAppendix C be
omes ill-de�ned, be
ause translational invarian
e is broken. Thisinvarian
e 
an be re
overed, however, by averaging over 
y
les and using the �method on the 
y
le-averaged ensemble.The se
ond way of moving the time-sli
e we explored was to 
hoose the valueof t0 randomly for every gauge 
on�guration we inverted on. This method alsomaintains translational invarian
e properly for a large enough 
on�guration en-11



semble. It is therefore expe
ted to work better than the aforementioned 
y
li
alway. This will indeed turn out to be the 
ase, as we shall see below, where wedis
uss in more detail the e�e
ts of these two ways of generating sour
e time-sli
es.3 Computations in the neutral meson se
torLatti
e QCD with maximally twisted Wilson fermions enjoys the remarkableproperty that, even if the a
tion is not O(a) improved, all the physi
ally rel-evant observables are a�e
ted by 
uto� e�e
ts only at order a2 (and higher).Among these O(a2) 
uto� e�e
ts will be a violation of parity and (in part)isospin. Isospin and parity violations have several 
onsequen
es for meson spe
-tros
opy. For instan
e 1) neutral and 
harged mesons 
an have di�erent masses,2) quark-dis
onne
ted 
ontributions are needed for neutral isove
tor mesons and3) 
orrelators re
eive 
ontributions from states that in the 
ontinuum limit 
arrydi�erent parity and isospin quantum numbers [3℄. Here we dis
uss how we 
om-pute the 
orrelators for neutral mesons and, in parti
ular, the quark-dis
onne
ted(for brevity 
alled simply \dis
onne
ted" below) 
ontributions. We illustrate ourapproa
h in the relevant 
ase of the neutral pseudo-s
alar meson.The neutral pion 
an be 
reated by the operatorp2 � 
5�3 whi
h, at maximaltwist, in the twisted quark basis reads (i=p2)��� = (i=p2)(�uu+ �dd). When thisoperator is inserted at sour
e and sink, we will have to 
onsider the 
orrelatorsCtot(t) = h(�uu+ �dd)(t)(�uu+ �dd)(0)i=2 ; (19)where again three-spa
e indi
es are understood. The latter 
an be rewritten inthe form Ctot(t) = eC(t) + eD(t) ; (20)eC(t) = �htr[Gu(0; t)Gu(t; 0)℄ + tr[Gd(0; t)Gd(t; 0)℄i=2 ; (21)eD(t) = htr[Gu(0; 0) +Gd(0; 0)℄tr[(Gu(t; t) +Gd(t; t)℄i=2 ; (22)with the tra
e tr[: : : ℄ running only over spin and 
olour indi
es. As usual, we 
anrelate the 
onne
ted 
ontribution ( eC) to propagators from a 
ommon sour
e (attime x0 = 0) througheC(t) = �htr[
5Gu(0; t)
5Gd(0; t)+℄ + tr[
5Gd(0; t)
5Gu(0; t)+℄i=2 : (23)The dis
onne
ted 
ontribution 
an be expressed aseD(t) = htr[Gu(0; 0) +Gu(0; 0)+℄tr[Gu(t; t) +Gu(t; t)+℄i=2 : (24)Thus we see that to evaluate the 
orrelation (19) we need both u and d-quarksour
es for the 
onne
ted 
ontribution as well as an evaluation of the dis
onne
ted12




ontribution for u-quarks at both initial and �nal t-value. This is at varian
ewith the �+ 
orrelator whi
h 
an be evaluated from a u-quark sour
e alone andwhi
h has no dis
onne
ted 
ontribution. The evaluation of the dis
onne
ted loopsis detailed in Appendix B, in
luding dis
ussion of both the hopping-parametermethod for the redu
tion of the sto
hasti
 noise [25℄ and a new powerful methodof varian
e redu
tion appli
able in many 
ases.In the table below we give the 
orresponden
e between bilinear operators ofthe form �u�u� �d�d, where � is an hermitian 
ombination of 
-matri
es, and theneutral mesoni
 state that is asso
iated with ea
h of them in the limit a! 0 (i.e.ignoring O(a) 
ontaminations from states of di�erent parity and isospin).Meson Operator�0, �0, f0 ��i
0
5�3�, ���, ��
5�3��, �, a00 ��i
0
5�, ���3�, ��
5��0, �0, h1 ��
i�3�, ��i
i
0
5�, ��i
i
0�3�!, !, b01 ��
i�, ��i
i
0
5�3�, ��i
i
0�a01 ��i
i
5�3�f1 ��i
i
5�X01 ��
0�3�X00 ��
0�Here X01 (X00 ) labels an isotriplet (isosinglet) state with JPC = 0+�, forwhi
h no experimental 
andidate is known. We remark that these operators are
onserved isotriplet (isosinglet) 
urrents in the 
ontinuum theory with two massdegenerate quarks.As in the 
harged 
hannel, we evaluate the two-point 
orrelators where onlypairs of meson operators appearing in the same line of the Table above are in-serted. Sin
e we use a lo
al and extended (fuzzed) sour
e and sink in ea
h 
ase,we have either 6 � 6 or 2 � 2 matri
es of 
orrelators available. The 
onne
ted
orrelators are a
tually the same for 
ertain states of di�erent isospin (e.g. � or�). The same `one-end-tri
k' dis
ussed above, based on the use of sto
hasti
time-sli
e sour
es with random 
hoi
e of its position on ea
h gauge 
on�guration,
an be used for the 
onne
ted neutral 
orrelator.In more detail, we use four \linked" sour
es (�(�), see se
t. 2.1) and furtherfour fuzzed sour
es based on the same noise �eld (F�(�)) to 
ompute ordinaryand fuzzed u-quark propagators from one time-sli
e to all points. This set ofeight sour
es is just the same we used to evaluate 
orrelators of 
harged mesons.For neutral mesons, we inverted the latti
e Dira
 matrix of the d-quark on thesame (non-fuzzed) four sto
hasti
 sour
es (�(�)) as above and on the 
orrespond-ing four sto
hasti
 sour
es with the lowest possible three-momentum (2�=L, forsimpli
ity taken always in the x-dire
tion). In prin
iple mesoni
 operators withnon-zero anisotropi
 three-momentum have less symmetry then their 
ounter-parts with vanishing three-momentum, implying that more 
orrelators may take13



Run L3 � T a�q Ntraj N
fgB1a 243 � 48 0:0040 5000 2500B1b 0:0040 1341 670B1
 0:0040 3380 1690B2 0:0064 5192 2500B3a 0:0085 3753 1876B3b 0:0085 940 470B4 0:0100 5000 2500B5a;b 0:0150 2500 1250Table 1: Summary of all simulation points. We give the latti
e size L3 � T and the value ofthe twisted mass a�q . In the last two 
olumns we quote the number of equilibrated traje
toriesNtraj produ
ed and the number of 
on�gurations N
fg saved to disk and �nally stored withinILDG, see the review [27℄ for further links and referen
es. All runs listed in the Table havebeen performed at � = 3:9 and � = 0:160856.non-zero values. Here we do not evaluate these additional 
orrelators. We do take
are, however, to distinguish between the ve
tor meson 
orrelators with three-momentum parallel to spin and those with three-momentum perpendi
ular to it.As shown elsewhere [26℄, a study of the di�eren
e between these 
orrelators 
anshed some light on the mixing of � mesons with their de
ay produ
ts (��).4 Simulation algorithm and error analysisIn this se
tion we provide details on the algorithms we used to generate thegauge 
on�gurations and information on the methods employed for the estimateof statisti
al errors.In Table 1 we give the list of the key parameters 
hara
terising the simulationswe are going to use in this paper. All simulations B1 � B5 have been performedat a �xed value of the gauge 
oupling � = 3:9 and a �xed value of the hoppingparameter � = (8 + 2am0)�1 = 0:160856 on 243 � 48 latti
es. In addition to thevalues of a�q we provide in Table 1 the number of traje
tories, Ntraj, produ
edafter allowing for 1500 equilibration traje
tories, and the number of gauge 
on�g-urations, N
fg, that were saved on disk (one every se
ond traje
tory). For everyvalue of a�q we have rea
hed � 5000 equilibrated traje
tories.In 
ase we have several ensembles (as for instan
e for B1) or several repli
as (asfor instan
e for B5) for the same latti
e parameter set, we denote this by addingan extra subs
ript, a; b; :::. For our smallest value a�q = 0:004 we extended our14



statisti
 from about 5000 traje
tories (ensemble B1a) to � 10000 traje
tories (ifalso traje
tories from ensembles B1b and B1
 are 
ounted).The algorithmwe used is a HMC algorithm [28℄ with mass pre
onditioning [29,30℄ and multiple time s
ale integration, as des
ribed in detail in refs. [31, 32℄. Thealgorithm parameters we employed for the various runs 
an be found in Table 2,where we mostly follow the notation of ref. [31℄. The integration s
hemes we usedare the Sexton-Weingarten (SW) s
heme [33℄, the se
ond order minimal norms
heme (2MN) [34℄ and its position version (2MNp). We also list the number ofintegration steps Ni for time-s
ale i (for details see ref. [31℄). We re
all that N2represents the number of integration steps of the outermost (largest) time-s
ale.Thus the number of integration steps of the smallest (i.e. innermost) time-s
ale(the one referring to the gauge �eld integration) is given by N2 � N1 � N0. Thepre
onditioning mass is given by ~�1 = 2��1, with �1 typi
ally larger than �q bya fa
tor O(10).The se
ond order minimal norm integration s
heme on time-s
ale i isparametrised by one real number, �i. We also give the number, N 
sgi , of so-lutions of the Dira
 equation we save for the 
hronologi
al solver guess [35℄ withthe purpose of evaluating the two for
e terms (i = 1; 2) asso
iated to pseudo-fermion integration (i = 0 refers to the pure gauge for
e). The notation N 
sg1;2 = 0means that no 
hronologi
al solver guess was used there. Finally, we quote thea

eptan
e rate Pa

 observed in the simulation and the integrated auto
orrela-tion time �int(P ) of the plaquette expe
tation value. The traje
tory length wasset to � = 1=2 in all our runs and we always used NPF = 2 pseudo-fermion �elds.For details on the linear solvers we employed to invert the Dira
 matrix we referto ref. [36℄.To give guidan
e on the 
omputational 
ost of su
h simulations, we spe
ify theresour
e used at our lightest �q-value where the CG iterations for one traje
tory
ost about 115 T
op. The produ
tion of 5000 traje
tories amounted to about 17ra
k days on the BlueGene/L installation in J�uli
h, with our 
ode running withan eÆ
ien
y of about 18% for the B1 parameter set.4.1 Statisti
al error analysisA reliable estimate of the statisti
al errors on the measured quantities is extremelyimportant for many reasons. We dis
uss here only the points whi
h are of spe
ialrelevan
e in our analysis. If the basi
 systemati
 e�e
ts in the latti
e simulation,originating from the latti
e dis
retization, the �nite volume and the mass of thedynami
al quarks are to be addressed, the statisti
al a

ura
y on all the relevantquantities has to be understood very well. In fa
t, on the one hand, relevantbut tiny systemati
 e�e
ts 
an only be dete
ted with high statisti
al a

ura
y,on the other hand underestimated statisti
al errors 
an arti�
ially in
rease thesigni�
an
e of systemati
 e�e
ts. The PCAC quark mass, though not a physi
alquantity, plays here a spe
ial role, sin
e the pre
ision by whi
h it is set to zero15



Run Int. N0;1;2 ~�1 �0;1;2 N 
sg1;2 Pa

 �int(P )B1a;b 2MNp 2; 3; 6 0:018 0:19; 0:20; 0:21 0; 0 0:85 47(15)B1
 SW 2; 3; 6 0:018 � 0; 0 0:90 43(15)B2 2MNp 2; 3; 6 0:025 0:19; 0:20; 0:21 0; 0 0:90 23(7)B3a;b 2MN 2; 3; 5 0:020 0:19; 0:20; 0:21 7; 1 0:90 13(3)B4 2MNp 2; 3; 6 0:035 0:19; 0:20; 0:21 0; 0 0:90 15(4)B5a;b SW 2; 2; 6 0:050 � 0; 0 0:90 30(8)Table 2: HMC algorithm parameters. For all ensembles we spe
ify the integration s
heme, thenumber of time steps on ea
h time s
ale N0;1;2, the pre
ondition mass ~�1 = 2��1, the �-valuesfor the 2MN integration s
heme, the number of saved solutions N
sg for the 
hronologi
al solverguess, the a

eptan
e rate Pa

 observed in the run and the integrated auto
orrelation time ofthe plaquette �int(P ). The traje
tory length was set to � = 1=2 for all runs and we used alwaysNPF = 2 pseudo-fermion �elds.is related to the a

ura
y (see se
ts. 1.2{1.3) by whi
h we 
an expe
t to be atmaximal twist. Se
ondly, small statisti
al errors in low-energy hadroni
 quantitiesis an expe
ted virtue of the twisted mass formulation, where a sharp infra-red
ut-o� ensures a stable MC evolution of the latti
e system. Of 
ourse we haveto make sure that an apparently small statisti
al error does not 
ome as a resultof large unnoti
ed auto
orrelations in the MC history. So auto
orrelations in themeasured quantities must be a

urately analysed. Finally, a detailed analysis ofthe statisti
al errors delivers as a by-produ
t the integrated auto
orrelation time�int of the studied observable, from whi
h the eÆ
ien
y of the employed algorithmas a fun
tion of the simulation parameters 
an be quanti�ed (see se
t. 4.2).Given the importan
e of getting a reliable estimate of statisti
al errors, resultshave been 
ross-
he
ked using di�erent approa
hes. As for the estimate of auto-
orrelation times two di�erent kinds of analyses have been performed: one basedon a standard data-blo
king (or binning) pro
edure and another one relying onthe so-
alled �-method [37, 24℄. In order to keep self-
ontained this paper we dis-
uss these methods in some detail in Appendix C. Sin
e there are arguments [24℄supporting the superiority of the �-method over data-blo
king, the former willbe our method of 
hoi
e in the evaluation of �int and the error on it, for severalobservables. In parti
ular the �-method has been used to estimate the statisti
alerror on the plaquette and mPCAC, whi
h turn out to have large auto
orrelationtimes. For all the other observables having signi�
antly smaller auto
orrelationtimes data-blo
king and �-method typi
ally give quite similar error estimates.Cross-
orrelations among di�erent observables are properly taken into a

ountin our error analysis by using standard ja
kknife or bootstrap [38℄ or performing16



�ts based on a de�nition of �2 that involves the inverse 
ovarian
e matrix (seeeq. (42) and the dis
ussion of Method A in se
t. 7.1).4.2 Auto
orrelation timesFor a primary observable O, i.e. one that 
an be viewed as a linear 
ombination ofexpe
tation values of multi-lo
al operators, the integrated auto
orrelation timeis in prin
iple given by �int(O) = 12 + 1Xn=1 �O(n)�O(0) ; (25)where �O(n) is the auto
orrelation fun
tion of the observable O (see eq. (69)).The auto
orrelation times for the plaquette and fermioni
 quantities, like amPS,afPS and amPCAC, were determined using the �-method as des
ribed in ref. [24℄(see also Appendix C). This method allows the determination of �int also fornon-primary quantities, as the aforementioned fermioni
 observables. The valuesfor the plaquette integrated auto
orrelation time are 
olle
ted in Table 2, thosefor amPS, afPS and amPCAC in Table 3. All quoted values are given in units oftraje
tories of length 1/2.In the 
ase of the ensemble B1a we employed the two ways of moving thesto
hasti
 sour
e through the latti
e des
ribed in se
t. 2.2. As 
an be seen inTable 3, indeed the random way performs better. This is espe
ially signi�
antfor amPCAC, for whi
h we observe the longest auto
orrelation time among thefermioni
 quantities. For amPS and afPS the di�eren
e between the two methodsis not signi�
ant. The somewhat larger auto
orrelation time of B
y
2 , in parti
ularfor mPS and fPS, stems presumably from the fa
t that the time sli
e sour
es were
hosen 
loser to ea
h other than at the other ensembles.Table 4 gives details on the 
omputational methods employed to extra
t thevarious fermioni
 quantities. In the 
ase where the random way of moving thesour
e is used, the value of tp reported there represents the number of traje
tories(of length 1/2) between two 
onse
utively measured gauge 
on�gurations. Wealso give in this Table the value of �2/d.o.f. obtained when the 
harged pion
orrelators (for Eu
lidean time separations in the range 10 � t=a � 23) are �ttedusing the Ansatz (14).Looking at the three fermioni
 observables reported in Table 3, we observethat the integrated auto
orrelation times of amPCAC are signi�
antly larger thanthose of amPS and afPS. We attribute the large value of the auto
orrelationtime of amPCAC to the pe
uliar phase stru
ture of twisted mass latti
e QCD withWilson type quarks as dis
ussed in ref. [7℄. The simulated values of �q are not ina region where the phase transition o

urs. However, the system may still feel thepresen
e of this phase transition. The situation is similar for the plaquette value,as also dis
ussed in ref. [7℄, and indeed the integrated auto
orrelation times forthe plaquette and amPCAC are rather similar.17
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Figure 1: The Monte Carlo history of the ratio of 
orrelators de�ning the PCAC quark massestimator des
ribed in the text on the 
on�gurations of the ensemble B1. The 
on�gurationnumber 
orresponds to the number of traje
tories divided by two.We show the Monte Carlo (MC) history of an estimator of amPCAC, seeeq. (32), for our lightest quark mass (a�q = 0:0040) in �g. 1. More pre-
isely, we plot for ea
h gauge 
on�guration the axial-pseudos
alar 
orrelator att=a = 10 (where the pion ground state is dominant) multiplied by the fa
tor0:5amPS=CPP(10), where the average over all gauge 
on�gurations is used inCPP(10) 4. The plot in �g. 1 shows long-ranged 
u
tuations in MC time. Theauto
orrelation fun
tion in eq. (69) from this data set is reported in �g. 2.From it an integrated auto
orrelation equal to 32(9) traje
tories is obtained,in agreement with the result quoted in Table. 3 (third line).Con
erning the neutral pseudos
alar meson, a study of the 
orresponding 
or-relators indi
ates that the auto
orrelations are de�nitely shorter than 100 (length1/2) traje
tories. Thus our error estimates, 
oming from a bootstrap analysis onblo
ked data with blo
ks made of measurements taken from 80 traje
tories, areexpe
ted to be reliable.4Note that the average of this quantity over all gauges is not our best estimator of amPCAC,sin
e it does not exploit the possibility of averaging over t (the Eu
lidean time separation).18
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Figure 2: The auto
orrelation fun
tion (see eq. (69)) from the data presented in �g. 1. Theverti
al line shows the window W from eq. (70) used to evaluate the integrated auto
orrelationfun
tion.Within the relatively large errors of our estimates of the auto
orrelation times,it is a
tually not possible to �nd a signi�
ant dependen
e on the value of thetwisted mass a�q for any of the fermioni
 quantities dis
ussed here.5 The s
ale from the stati
 potentialA 
onvenient way to set the s
ale in latti
e simulations is through measurementsof the stati
 potential and the asso
iated hadroni
 s
ale r0 [39℄. Although we will�nally not use r0 to set the s
ale in our dynami
al simulations, we will use it fora s
aling analysis towards the 
ontinuum limit and its reliable determination istherefore important for us. The s
ale r0 is de�ned via the for
e between stati
quarks at intermediate distan
e r20F (r0) = 1:65 ; (26)where numeri
al 
al
ulations are most reliable and hen
e are expe
ted to leadto very a

urate results. We measure the stati
 quark-antiquark potential by19



Run �int(amPS) �int(afPS) �int(amPCAC)B
y
1a 7(1) 13(4) 60(24)Brnd1a 6:6(1:1) 8(1) 20(5)Brnd1a;b;
 5:9(7) 7(1) 23(5)B
y
2 17(4) 33(8) 43(14)B
y
3 10(2) 11(2) 66(27)B
y
4 7(2) 14(4) 54(23)B
y
5a;b 20(6) 14(3) 105(51)Table 3: Estimated integrated auto
orrelation times for amPS, afPS and amPCAC. The labels
y
 and rnd refer to the 
y
li
 and random 
hoi
e of the sour
e, see text. All integratedauto
orrelation times are given in units of traje
tories of length 1=2. The fa
t that for theensemble B
y
5 we �nd a rather large auto
orrelation time with, however, a large error weattribute to the usage of 2 repli
a in the analysis.determining expe
tation values of Wilson loops of size r � t on our ensembles of
on�gurations. Unfortunately, the relative errors of the Wilson loop expe
tationvalues in
rease exponentially with the temporal extension t. To redu
e thesestatisti
al 
u
tuations one 
an employ improved stati
 a
tions amounting to usemodi�ed temporal links for building Wilson loops 5. However, it is also importantto enhan
e the overlap with the physi
al ground state of the stati
 system andthis 
an be a
hieved by invoking iterative spatial smearing te
hniques togetherwith a variational method to extra
t the ground state. The 
omputational detailsfor 
al
ulating the stati
 potential are given in Appendix D while in the followingwe want to 
on
entrate on analysis details and physi
al results.5.1 Analysis details and resultsIn order to extra
t the physi
al s
ale through eq. (26) we need an interpolation ofthe potential and 
orrespondingly of the for
e between the quarks for arbitrarydistan
es r. This interpolation is a
hieved by �tting the form of V (r) with theansatz 6 V (r) = V0 + �r + �r : (27)We employ a two step pro
edure to perform the interpolation. First we extra
tthe values of the potential V (r) for ea
h r separately using standard variationalte
hniques. In a se
ond step we �t dire
tly the potential ansatz in eq. (27) to5See ref. [40℄ for a �rst use of this idea.6Note that we do not use tree level improved distan
es.20



Run method tp timesli
es �2=d:o:f:B1a 
y
li
 8 0; 12; 24; 36 0:12=39B1a;b;
 random 10 - 2:50=39B2 
y
li
 16 0; 6; 12; 18; 24; 30; 36; 42 1:15=39B3 
y
li
 8 0; 12; 24; 36 2:38=39B4 
y
li
 8 0; 12; 24; 36 1:85=39B5a;b 
y
li
 8 0; 12; 24; 36 0:99=39Table 4: Measurement methods for fermioni
 quantities. The sour
e timesli
es are either
hosen in a 
y
li
 way or randomly. For the 
y
li
 way, tp denotes the number of traje
toriesbetween two 
on�gurations for whi
h the same time-sli
e was used. For the random way, itspe
i�es the number of traje
tories between two measured 
on�gurations. In the 
y
li
 
asewe also spe
ify the time-sli
es where the sour
e was lo
ated. Finally, the �t range we 
hoseto determine afPS and amPS was always 10-23 and the 
orresponding values of �2=d:o:f: for a2� 2 fa
torising �t (see eq. (14)) are quoted in the last 
olumn.the Wilson loop 
orrelators taking into a

ount all spatial and temporal 
ross-
orrelations in the data. These two steps are now des
ribed in more detail (seealso [41℄).We use �ve spatial smearing levels SnU; n = 8; 16; 24; 32; 40; and hen
e weend up measuring a 5 � 5 
orrelation matrix C(r; t) of spatially smeared andtemporally improved Wilson loops (see Appendix D). The variational methodresults in a linear 
ombination of the string operators, whi
h proje
ts suÆ
ientlywell to the ground state of the string, i.e. has the e�e
t of eliminating the 
losestex
ited string states. This is done by solving the generalised eigenvalue problemC(r; t1)vi = �i(r; t0; t1)C(r; t0)vi; �1 � : : : � �5 ; (28)with t0 = 3a and t1 = 4a and proje
ting the 
orrelation matrix to the eigenspa
e
orresponding to the largest eigenvalue, i.e. the ground state,�C(r; t) = (v1; C(r; t)v1) : (29)Based on e�e
tive masses and on a �2-test whi
h takes the temporal 
ross-
orrelations between �C(r; t) and �C(r; t0) into a

ount, we 
hoose a plateau regionfrom tmin to tmax. Too small t values distort the results due to 
ontamination ofex
ited states, while too large values introdu
e noise. Examples of e�e
tive massplateaus and the 
hosen �t ranges are provided in �gure 3 for the Wilson loop
orrelators of the �ve ensembles B1;:::;5 at quark-antiquark separation r=a = 4.The results of our �ts are 
olle
ted in Tables 5{9 where we list the plateauregions (�t range), the values of the extra
ted potential, V (r), and the �2 per21
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Figure 3: E�e
tive masses for the ground state energy of the Wilson loop at quark-antiquarkseparation r=a = 4, for ensembles B1 to B5.degree of freedom. The un
ertainties in the extra
ted values of V (r) are 
al
ulatedusing a non-parametri
 bootstrap method [38℄.This �rst step allows to determine for ea
h r the value of the potential V (r).A straightforward strategy to evaluate the s
ale r0=a is then to �t the numbers22



r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3308(10) 1.095 8 10 0.3974(15) 0.096 7 9 0.4577(26) 2.487 7 9 0.5126(31) 1.60Table 5: Fit parameters for the Wilson loop 
orrelators for run B1.r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3319(07) 1.565 8 10 0.3994(09) 3.276 7 9 0.4589(12) 0.167 7 9 0.5129(21) 0.13Table 6: Fit parameters for the Wilson loop 
orrelators for run B2.so obtained with the ansatz (27). However, one 
an diminish the errors on the �tparameters by exploiting the fa
t that data at di�erent values of r are 
orrelated.Therefore, in a se
ond step we use the ground state proje
ted 
orrelator �C(r; t)to estimate the 
ovarian
e matrixCov(r; t; r0; t0) � h �C(r; t) �C(r0; t0)i � h �C(r; t)ih �C(r0; t0)ifrom the bootstrap samples of �C(r; t) and use Cov(r; t; r0; t0) to 
onstru
t the �2fun
tion (see the dis
ussion in se
t. 7.1). The r and t dependen
e of �C(r; t) is�tted with the formula (see eq. (27))�C(r; t) � Z(r) exp [�tV (r)℄ = Z(r) exp [�t (V0 + �=r + �r)℄ : (30)For the temporal �t interval we use the �t ranges tmin(r) to tmax(r) determinedin the �rst step. The �t range in r is 
hosen so as to in
lude only a few values ofr 
losest to r0 in order to minimise both the statisti
al error and the systemati
error 
oming from the 
hoi
e of the interpolation formula. On
e the best �tparameters (V0, � and �) in eq. (30) are found, the value of r0=a is obtainedstraightforwardly by 
omputing the stati
 for
e from the derivative w.r.t. r ofeq. (27) and imposing the 
ondition (26) that de�nes r0.A 
ompilation of the results of our �ts is provided in Table 10 where we givethe number of measurements Nmeas and the �2 per degree of freedom, in additionto the results for r0=a. The �nal error on r0=a is estimated through ja
kknifeand bootstrap pro
edures using binning to take residual auto
orrelations intoa

ount. In Table 10 we give the errors from the ja
kknife pro
edure using abinning fa
tor equal to 4. 23



r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3321(08) 0.755 8 10 0.4002(11) 4.396 7 9 0.4617(17) 0.407 7 9 0.5177(22) 0.02Table 7: Fit parameters for the Wilson loop 
orrelators for run B3.r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3335(06) 1.405 8 10 0.4013(12) 0.416 7 9 0.4616(15) 0.377 7 9 0.5177(25) 0.98Table 8: Fit parameters for the Wilson loop 
orrelators for run B4.5.2 Dis
ussionThere are several sour
es of systemati
 e�e
ts whi
h 
an distort a pre
ise anda

urate determination of the s
ale r0=a. Here we would like to dis
uss a few
he
ks that we have performed in order to asses these systemati
 e�e
ts andsome pro
edures to minimise their in
uen
e.Ex
ited statesFirst of all there are 
ontaminations of the ground state energy of the Wilsonloops from ex
ited states. We expe
t that these should be eliminated by ourvariational 
al
ulation of the ground state and our 
hoi
e of the �t range in t,and we have 
arefully 
he
ked the stability of the results under variation of the�t parameters (see �gure 4). In parti
ular we have 
he
ked that we 
an resolvethe �rst ex
ited state and that the ground state energy remains stable under thispro
edure. Moreover we have also 
he
ked the stability of the ground state undera trun
ation of the variational operator basis. We would also like to point outthat the �t ranges in t were not 
hosen independently for ea
h value of �q and r,rather we 
hose them after taking a global view of the e�e
tive mass data for allvalues of �q at given �xed r (see �g. 3 for the 
ase r = 4a). This pro
edure makessense sin
e the �q-dependen
e of the Wilson loop 
orrelators is expe
ted to berather weak (see below) and is parti
ularly useful in 
ases where the 
hoi
e ofthe �t range for the e�e
tive masses 
annot be determined unambiguously giventhe available statisti
s. Finally we note that 
ontaminations from ex
ited statestend to in
rease the potential energies and the e�e
t will be more pronoun
ed forthe larger Wilson loops. As a 
onsequen
e, residual 
ontributions from ex
itedstates will tend to de
rease the value of r0=a.24



r=a tmin tmax aV (r) �2=d.o.f.4 9 11 0.3373(07) 1.015 8 10 0.4062(08) 3.216 7 9 0.4692(14) 1.247 7 9 0.5272(22) 2.28Table 9: Fit parameters for the Wilson loop 
orrelators for run B5.Run Nmeas d.o.f. �2=d.o.f. r0=aB1 625 5 1.44 5.196(28)B2 695 5 1.80 5.216(27)B3 598 5 2.58 5.130(28)B4 602 5 0.57 5.143(25)B5 645 5 1.92 5.038(24)Table 10: Results of the �ts for the s
ale r0=a from the stati
 potential. The �t range wasalways r=a = 4� 7. The number of measurements, Nmeas, and �2/d.o.f. are also reported.Interpolation errorThe interpolation of the potential (or the for
e) as a fun
tion of r is not unique.Here we would like to emphasise that we use eq. (27) only lo
ally as a simpleinterpolation ansatz without atta
hing to it any spe
ial physi
al meaning. Asa 
he
k of this interpolation ansatz, one 
an use separately the matri
es of
orrelators 
omputed for r=a = 4 � 6 and for 5 � 7 to obtain two di�erentdeterminations of r0=a. Their di�eren
e then provides an estimate of the error
oming from the interpolation pro
edure. It turns out that our 
hoi
e of the �trange r=a = 4� 7 
overs this spread typi
ally within 1{2 standard deviations ofour �nal result (see �gure 4).CorrelationsWe have already pointed out that it is important to take both the spatialand temporal 
ross-
orrelations of the Wilson loop operators into a

ountwhen �tting them to the ansatz (30). Our �nite statisti
s limits ourselvesto short �t ranges in order to obtain a stable 
ovarian
e matrix, and this isone of the motivations for the rather narrow �t ranges in t in Tables 5{9.In order to assess the e�e
t arising from Wilson loop auto
orrelations, weform bins of the data of various sizes, though this redu
es the amount ofdata available for estimating the 
ovarian
e matrix even further. In fa
t,it turns out that the �ts be
ome unreliable beyond bin size 4 and beforethe binning error be
omes stable. As a 
onsequen
e we 
annot ex
lude thatthe errors on r0=a are somewhat underestimated due to residual auto
orrelations.25



Mass dependen
eOur results for (r0=a) are plotted in �gure 4. We note that the a�q dependen
eappears to be rather weak, and hen
e we expe
t the data for the (purely gluoni
)observable r0=a(a�q) to be well des
ribed by polynomials of low order in a�q. InTable 11 we 
olle
t the results obtained by �tting our data at di�erent values ofa�q (see Table 10) to few simple fun
tional forms, namely(I) : r0=a+ 
2(a�q)2 ;(II) : r0=a+ 
1(a�q) ;(III) : r0=a+ 
1(a�q) + 
2(a�q)2 :The ansatz (I) is inspired by the fa
t that with maximally twisted (unlike the
ase of untwisted) Wilson quarks the latti
e fermioni
 determinant of the Nf = 2theory depends only quadrati
ally on the bare quark mass. A weaker depen-den
e on the bare quark mass 
an only appear via the e�e
ts of spontaneous
hiral symmetry breaking on the stati
 quark potential and would a
tually be adependen
e 7 on ja�qj. This is the motivation for the �t ansatz (II), if it 
an beassumed that a�q is suÆ
iently small to make the (a�q)2-dependen
e negligible,and (III), if the (a�q)2-dependen
e is instead statisti
ally signi�
ant.The �t based on the ansatz (I) des
ribes our data rather well, as shown in�gure 4, suggesting that possible e�e
ts of spontaneous 
hiral symmetry breakingin the stati
 potential at distan
es around 0:5 fm are negligible within our statis-ti
al errors. This interpretation is supported also by the other two �ts: even if a�q-dependen
e of the type (II) 
annot be ruled out 
ompletely, we observe thatnot only the �2=d:o:f: of the �t (I) 
ompared to (II) is better, but also the best-�tvalues of 
2 from �ts (I) and (III) are more 
onsistent between themselves (andless 
onsistent with zero) than the best-�t values of 
1 
oming from �ts (II) and(III). We would like to note that these �ndings are 
orroborated by analogous�ts of the a�q dependen
e of the stati
 potential at �xed values of r=a, i.e. insituations where no interpolation in r=a is involved.r0=a 
1 � 10�2 
2 � 10�4 �t range �2=d:o:f:5.22(2) { -0.08(2) B1 �B5 0.855.22(3) { -0.09(4) B1 �B4 1.265.28(3) -0.16(3) { B1 �B5 1.105.26(5) -0.12(6) { B1 �B4 1.375.22(8) -0.01(18) -0.08(9) B1 �B5 1.28Table 11: Results of the �ts of the a�q dependen
e of r0=a a

ording to the ansatz (I), (II)and (III) in the text.We 
on
lude that the mass dependen
e is well des
ribed by the ansatz(I) and remark that an almost identi
al 
entral value for r0=a at the 
hiral7We are indebted to R. Sommer for very useful dis
ussions on this point.26



0 0.0001 0.0002

(a µ
q
)
2

4.9

5.0

5.1

5.2

5.3

r 0 / 
a

B
1
-B

5

Figure 4: Mass dependen
e of r0=a. The shaded area shows the error band of the quadrati
 �t(full line) to the data (
ir
les). The additional plus symbols are further determinations of r0=a
orresponding to di�erent values of the �t parameters to the ansatz (30). The spread providesan indi
ation of the systemati
 error due to interpolation (see text) in r0=a.point is obtained from the ansatz (III), whi
h also allows for a linear termin a�q. The ansatz (II) gives a 
entral value for r0=a at the 
hiral pointlying two standard deviations above that from the ansatz (I). Finally we notethat, if the ansatz (I) for the �q-dependen
e of r0=a is used, the relative sta-tisti
al a

ura
y of our determination of r0=a in the 
hiral limit is better than 1%.6 Some sele
ted resultsIn this se
tion we present results for quantities related to the pseudos
alar (PS)
hannel. This in
ludes, apart from 
harged and neutral PS masses and de
ay
onstants, also the renormalization 
onstant ZV, whi
h is spe
i�
ally relevant tomaximally twisted mass QCD.
27



6.1 Charged and neutral pseudos
alar massesCharged pseudos
alar meson massTo extra
t the 
harged PS mass mPS we 
onsider the 
orrelation fun
tionsdis
ussed in se
t. 2.1. We refer to this se
tion and se
t. 4.1 for a detailed dis
us-sion of how the 
orrelation fun
tions are evaluated and the errors are estimated.The results for the 
harged PS masses 
an be found in Table 12.In order to make the e�e
t of the longest runs at � = 0:004 visible, we quotethe results for run B1a and the 
omplete run B1 separately. While for B1a we have1811 measurements made in the 
y
li
 way explained in se
t. 4.2, there are 895measurements for B1 performed moving the sour
e time-sli
e randomly throughthe latti
e. Even though in the latter 
ase we have fewer measurements, they aremore de
orrelated be
ause the single measurements are more separated in MonteCarlo time and be
ause the distan
e of the position of the sour
es in Eu
lideantime for two 
onse
utive measurements is on average larger. It is reassuring tosee that results and errors are 
onsistent between the two sets of data withinerrors. From this 
omparison it is also 
lear that moving the sour
e time-sli
erandomly through the latti
e is the most 
onvenient of the two methods.In �g. 5 we show examples for e�e
tive masses in the PS 
hannel at ourlightest quark mass, extra
ted from the PS 
orrelation fun
tion (with insertionof the �d
5u operator) only. We plot the data for the three di�erent 
hoi
es of theinterpolating operators, namely lo
al-lo
al, lo
al-fuzzed, and fuzzed-fuzzed. One
an see in �g. 5 that the three di�erent operators give 
ompatible results fromt=a � 10 on. Hen
e we are 
on�dent that the ground state energy dominates fort=a > 9 and we 
hose the �t range a

ordingly.We also attempted to determine the energy of the �rst ex
ited state of the PSmeson from a 2-state �t to the 6�6 matrix of 
orrelators. Even though we wereunable to determine the �rst ex
ited level in a reliable way from an un
onstrained�t, �xing it to the theoreti
al value (3 times the ground state mass), as expe
tedin the 
ontinuum limit, does allow an a

eptable �t.This result is quite interesting, as with maximally twisted Wilson quarks oneexpe
ts on general grounds also an O(a2) 
ontamination from the �0(0)��(0) two-pion state. Su
h a 
ontamination be
omes negligible, if 
ompared to the expe
tedthree-pion state one in the 
ontinuum limit (taken at �xed quark mass). It shouldalso be observed that when the pion mass is de
reased, the two-pion 
ontributionremains negligible with respe
t to the three-pion one until a2�2QCD � e�mPSt.For the range of mPS and t values relevant for our data we �nd that two-pion
ontamination e�e
ts 
an hardly be dete
ted despite our (small) statisti
al errors(see �g. 5).Neutral pseudos
alar meson massAs dis
ussed in se
t. 3, the neutral PS meson 
an be 
reated by interpo-lating �elds that at maximal twist and in the twisted basis are of the form28
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Figure 5: E�e
tive mass for the pseudos
alar 
hannel from B1 latti
e data. The e�e
tivemasses obtained using 3 di�erent interpolating operators as des
ribed in the text are shown.Run a�q amPS afPS amPCAC ZV(�q)B1a 0:0040 0:13587(68) 0:06531(40) �0:00001(27) 0:6114(85)B1 0:0040 0:13623(65) 0:06459(37) +0:00017(17) 0:6136(19)B2 0:0064 0:16937(36) 0:07051(35) �0:00009(17) 0:6096(21)B3 0:0085 0:19403(50) 0:07420(24) �0:00037(20) 0:6115(22)B4 0:0100 0:21004(52) 0:07591(40) �0:00097(26) 0:6209(25)B5 0:0150 0:25864(70) 0:08307(34) �0:00145(42) 0:6165(22)Table 12: Results for masses and de
ay 
onstants in the 
harged pseudos
alar 
hannel, PCACquark mass and ZV. The results for the �rst three quantities 
ome from a �t to a 4�4 submatrixwith operators �d
5u and i �d
0
5u, while for ZV we used the full 6 � 6 matrix. Note that thedi�eren
e between the �rst two rows is just the length of the simulation. The time range of the�t was always 10� 23 and the �2=d:o:f: was always smaller than one.��� and ��
0
5�. We evaluate the 
orrelator (both quark-
onne
ted and quark-dis
onne
ted pie
es) with ea
h of these operators at sour
e and sink (also withlo
al and fuzzed variants, thus giving a 4� 4 matrix of 
orrelators) as des
ribed29



run a�q Nmeas am0PS;
onn am0PS af 0PS=ZAB1 0:0040 888 0:212(3) 0:109(7) 0:089(3)B3 0:0085 249 0:259(3) 0:169(11) 0:106(4)Table 13: Neutral pseudo s
alar meson masses and de
ay 
onstants at � = 3:9 measured fromevery 10 traje
tories at �q = 0:004 and every 20 at �q = 0:0085, as indi
ated; am0PS;
onn is themass extra
ted from the quark-
onne
ted 
orrelators only.above and in Appendix B. We �t this 
orrelator matrix to one or more states inthe usual way. Based on our study of auto
orrelations (see se
t. (4)), we 
omputestatisti
al errors by a bootstrap analysis on blo
ked data where ea
h blo
k in-
ludes measurements taken on 
on�gurations 
orresponding to a segment of MChistory 80 traje
tories long.Our results for the neutral PS meson are shown in Table 13. Compared toref. [1℄, we have in
reased statisti
s at �q = 0:004 and we have employed the morere�ned �tting pro
edure explained above. In parti
ular we used 4� 4 matrix of
orrelators rather than a 2 � 2 matrix. We also in
lude results at a se
ond �qvalue, �q = 0:0085. In order to show the 
ontribution of the quark-dis
onne
ted
omponent to the neutral PS meson mass determination, we show appropriateratios in �g. 6.We have also evaluated the energies of neutral PS mesons with momentum2�=L (re
all L=a = 24), obtaining (by use of the 
ontinuum dispersion relationE2 = (2�=L)2 +m2) mass values 
onsistent with those shown in Table 13.The non-zero momentum results have the advantage that no va
uum subtra
-tion is needed for the neutral PS meson 
orrelator and this provides a 
ross
he
kof the approa
h we employed. For example, at �q = 0:004 we obtain an energyof 0.309(27) whi
h 
orrespond to a mass 0.164+47�60 in latti
e units.Pseudos
alar meson mass splitting and related topi
sCon
erning the PS meson mass, it is well known that with maximally twistedWilson fermions, even in the theory with Nf = 2 degenerate quarks we 
onsiderhere, there is di�eren
e of order a2 (at �xed quark mass) between the neutraland the 
harged PS meson mass. Moreover the latter is very mildly a�e
ted by
uto� e�e
ts, on
e maximal twist is implemented in the optimal way of se
t. 1.1,as it follows from the formula m2PS � m2PSj
ont = O(a2�q) + O(a4) proved inrefs. [13, 14, 42℄. Finally a latti
e 
hiral perturbation theory analysis (see e.g.refs. [43, 13, 44℄) shows that in the small �q region the di�eren
e between thesquared neutral and 
harged PS masses tends to an O(a2) quantityr20((m0PS)2 � (mPS)2) ' 
(a=r0)2 ; (31)whi
h 
an be related to one 
oeÆ
ient (usually 
alled 
2) of the 
hiral e�e
tiveLagrangian of (twisted and untwisted) Wilson fermion latti
e QCD. From ourresults we estimate 
 = �5:0(1:2) and 
 = �6:7(2:8) respe
tively at �q = 0:00430
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Figure 6: Ratios of 
orrelators of neutral to 
harged pseudos
alar (PS) mesons. The 
on-ne
ted 
omponent of the neutral meson 
orrelator is shown, as well as the total, whi
h in
ludesthe dis
onne
ted 
ontribution. The dotted 
urve illustrates the behaviour of the ratio of the
orrelator as obtained from our �tted values of the 
harged and neutral PS masses.and �q = 0:0085. These determinations are 
onsistent within errors, as expe
ted.Moreover, unlike in the 
ase of latti
e formulations with di�erent gluoni
 a
-tions [45℄, the sign of 
 is now in agreement with the �rst order phase transitions
enario [46, 44, 47℄, as predi
ted by latti
e 
hiral perturbation theory.Some results for the 
oupling of the neutral PS meson �eld to the divergen
eof the neutral axial 
urrent are also given in Table 13. The values of f 0PS arefound to be quite 
lose to those obtained for the 
harged PS meson (see fPS inTable (12)), if the estimate ZA = 0:76(2) [48, 49℄ is employed. The di�eren
esbetween the 
entral values are 
ompatible with zero within 1 to 1:5 standarddeviations of f 0PS (whi
h is the least pre
ise result of the two).This good 
onsisten
y between the two 
hannels is in striking 
ontrast withthe large 
uto� e�e
t present in m0PS, whi
h we observe as a large di�eren
e(about 50 MeV at a�q = 0:0040 and a�q = 0:0085) between its value and that ofits 
harged 
ounterpart, mPS. Theoreti
al arguments providing an explanationfor the reasons why a large latti
e artifa
t a�e
ts only m0PS were presented inref. [42℄ and will be further dis
ussed in a forth
oming publi
ation [50℄.31



6.2 PCAC massAs dis
ussed in se
t. (1.1), we attempt to tune the value of mPCAC (see eq. (3))to zero at our minimal �q value, namely at a�q = 0:004. A de�nition of mPCACequivalent to eq. (3) for time separations so large that the lowest PS meson statedominates, is given bymPCAC = mPS2 h0jAa0jPSih0jP ajPSi ; a = 1; 2 : (32)These two matrix elements 
an be dire
tly determined from a �t to the 4 � 4matrix involving the interpolating operators �d
5u and i �d
0
5u (or from the �t tothe full 6� 6 matrix, see se
t. 2). The results we obtain when a 4� 4 matrix isused are summarised in Table 12 and shown as a horizontal line in �g. 7. It isimportant to noti
e that the 
ondition dis
ussed around eq. (10) is ful�lled forall our simulation points, and in parti
ular for a�q = 0:004.In �g. 7, we also illustrate the time dependen
e of the lo
al determinationof the PCAC quark mass through eq. (3). We see that the values of mPCACdetermined using eq. (3) in this way and eq. (32) agree very well between them-selves, in the t-region where the ground state pseudos
alar meson dominates, asexpe
ted.Compared to ref. [1℄ we now have a result for amPCAC available for the largestatisti
s run B1. It is reassuring that there is full 
onsisten
y between the 5000traje
tory run and the run extended up to 10000 traje
tories. This makes us
on�dent that our error estimate is realisti
. Our results for amPCAC as a fun
tionof the bare quark mass a�q are illustrated in �g. 8, where results from the fullensemble, B1, and those from the smaller ensemble, B1a, are separately shown.6.3 Pseudos
alar de
ay 
onstant and ZVUsing the exa
t latti
e (twisted basis) PCVC relation 8h��� ~V a� (x)O(0)i = �2�q�3abhP b(x)O(0)i a = 1; 2 ; (33)where ��� is the latti
e ba
kward derivative, O a lo
al latti
e operator and ~V a� (x)the 1-point-split ve
tor 
urrent~V a� (x) = 14 [�(x)�aU�(x)(
� � r)�(x+ �̂) +�(x+ �̂)�aU y�(x)(
� + r)��(x)� ; (34)we 
an also 
ompute (in the 
harged meson 
hannel) the pseudos
alar mesonde
ay 
onstant with no need of any renormalization 
onstant (see [2, 51, 4℄) from8We re
all that at maximal twist the twisted basis ve
tor 
urrent V a� 
orresponds to theaxial 
urrent �3baA0b� (a; b = 1; 2) in the physi
al quark basis.32
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Figure 7: PCAC quark masses versus time separation (from eq. 3) for three values of the massparameter, �q = 0:004, �q = 0:0064 and �q = 0:0085. The lines represent the 
entral values ofthe PCAC quark mass from a �t to a 4� 4 matrix of observables for a t-range 10-23.the formula fPS = 2�qm2PS jh0jP ajPSij a = 1; 2 : (35)Based on the exa
t relation (33) and noting that��� ~V a� (x) = ZVe��V a� (x) + O(a2) ; (36)where V a� is the naive 
urrent de�ned in eq. (47) and e�� the symmetri
 latti
ederivative, we 
an determine the (s
ale-independent) renormalization 
onstantZV through (a; b = 1; 2 and x0 6= 0)ZV(a�q) = �2�qPx �3abhP b(x)P b(0)iPx e�0hV a0 (x)P b(0)i and ZV = lim�q!0ZV(a�q) (37)with only O(a2) 
uto� e�e
ts. The results for afPS extra
ted using eq. (35) are
olle
ted in Table 12 and will be dis
ussed further in the next se
tion.In the same Table we quote the results for the determination of ZV thatis based on �tting the large time behaviour of eq. (37) where the pion state33
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Figure 8: The PCAC quark mass amPCAC as a fun
tion of a�qdominates�2�qPx �3abhP b(x)P b(0)iPx e�0hV a0 (x)P b(0)i x0 large! 2�q�3abh
jP bj�b(0)imPSh
jV aj�b(0)i : (38)In pra
ti
e the relevant matrix elements are extra
ted from a fa
torising �t (seeeq. (14)) to a (4� 4) matrix of 
orrelators, with entries given by the expe
tationvalues of Px P 1(x)P 1(0) and Px V 20 (x)P 1(0) with lo
al-lo
al and lo
al-fuzzedoperators.The a�q dependen
e of ZV is everywhere very weak (see �g. 9), whi
h makesthe extrapolation to the 
hiral point easy and almost irrelevant, and leads to arather pre
ise result: ZV = 0:615(5). The quoted error is a 
onservative estimateof the total un
ertainty on ZV, inferred from the data in the last 
olumn ofTable 12 and their statisti
al errors.Another determination of ZV(a�q) is obtained by evaluating the ratios of 
or-relators in the r.h.s. of eq. (37) for a number of time separations (x0=a � 10) andtaking the average over them. This alternative method to evaluate ZV has beenpresented in ref. [48℄. Applying it, for instan
e, to the available (� 900) 
orrela-tors 
omputed on the whole ensemble B1 yields the result ZV(a�q = 0:0040) =34
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Figure 9: Extrapolation of ZV to zero quark mass at � = 3:9. The data are 
onsistent withinerrors with the 
onstant behaviour shown in the �gure.0:6101(2). Both approa
hes, the one dis
ussed in some detail above and the oneof ref. [48℄, provide pre
ise determinations for ZV and the virtues of both methodswill be further dis
ussed in ref. [49℄.7 Chiral Perturbation Theory analysis of fPSand mPSIn this se
tion we present the details of the 
omparison of our data with ChiralPerturbation Theory (�PT) predi
tions. The main results have been already pub-lished in ref. [1℄. Here we provide further information about our �tting pro
edureand error analysis. The main goal of this se
tion is to explain the �tting pro
e-dure and error determination using 
hiral perturbation theory. We will thereforeonly use the ensembles B1-B5, i.e. the ensembles that have already been dis
ussedin ref. [1℄. For this limited set of data at only one value of the latti
e spa
ing ofa = 0:087fm, we are not sensitive to higher order e�e
ts of 
hiral perturbationtheory. We will therefore restri
t ourselves to a 1-loop analysis of the data onMPS35



and fPS. Nevertheless, we use the 2-loop 
hiral perturbation theory expressionsand vary parameters of the 
orresponding formulae to see the possible e�e
ts,if the 2-loop order would be important to des
ribe our data. In parti
ular, this2-loop investigation 
on�rms that the here 
hosen dataset is indeed not sensitiveto higher loop 
orre
tions.Some preliminary results at larger volumes (L=a = 32) and �ner latti
e spa
-ing (� = 4:05) have been already presented [15, 16℄. However, the present work isfo
used on the details of the analysis of the data points presented in ref. [1℄. Thestudy of the volume and s
aling dependen
e will be presented elsewhere. Noti
e,however, that, w.r.t. ref. [1℄ we have a larger statisti
s at the smallest quark mass.Our raw data for amPS and afPS are determined as des
ribed in se
t. 4.1.Results are reported in Table 12. As said above, there is no need to 
omputeany renormalisation 
onstant in order to make 
onta
t with the 
orrespondingphysi
al quantities.In our �PT based analysis we have to take into a

ount �nite size 
orre
tionsbe
ause on our latti
es at the lowest and next-to-lowest �q-values they turn outto a�e
t amPS and, espe
ially, afPS in a signi�
ant way.We have used 
ontinuum �PT to des
ribe 
onsistently the dependen
e of thedata both on the �nite spatial size (L) and on the bare quark mass (�q). Thismight look inappropriate in view of the existen
e of a large additive O(a2) artifa
tin the neutral pion mass squared 9. However this is not so, be
ause theoreti
alanalyses 
arried out in the framework of latti
e �PT [13℄ and Symanzik expan-sion (
omplemented with soft pion theorems in the 
ontinuum theory) [14, 42℄show that, if maximal twist is implemented as dis
ussed in se
t. 7.2, the 
hargedpion squared mass di�ers from its 
ontinuum 
ounterpart only by O(a2�) andO(a4) terms, while the 
harged pion de
ay 
onstant is a�e
ted by (
hirally non-enhan
ed) dis
retization errors of order a2. Moreover the Symanzik expansionanalysis is appli
able for all spatial volumes L3, provided L is large enough tojustify the use of soft pion theorems in the 
ontinuum theory at the quark massof interest. This entails that also the L-dependen
e of the 
harged pion squaredmass and de
ay 
onstant is expe
ted to be essentially 
ontinuum-like. These ex-pe
tations are also supported by preliminary and still partial results we obtainat di�erent latti
e resolutions and di�erent physi
al volumes [15, 16℄. Last butnot least, the 
ontinuum �PT formulae appear to des
ribe well our data, as weare going to show below.We �t the appropriate (Nf = 2) next-to-leading-order (NLO) �PT formu-9Theoreti
al arguments have been presented [42℄ suggesting that this latti
e artifa
t is anex
eptional, though important, 
ase, be
ause it is related to the large value of a 
ontinuum ma-trix element appearing in the Symanzik expansion of the �0-mass and does not stem from large
oeÆ
ients multiplying the dimension �ve and six terms of the Symanzik e�e
tive Lagrangian.
36



lae [52, 53℄ m2PS(L) = 2B0�q �1 + 12�~g1(�)�2 �1 + � log(2B0�q=�23)� ; (39)fPS(L) = F [1� 2�~g1(�)℄ �1� 2� log(2B0�q=�24)� ; (40)to our raw data for mPS and fPS simultaneously. Here 10� = 2B0�q=(4�F )2 ; � =p2B0�qL2 : (41)The �nite size 
orre
tion fun
tion ~g1(�) was �rst 
omputed by Gasser andLeutwyler in ref. [52℄ and is also dis
ussed in ref. [53℄ from whi
h we take ournotation (ex
ept that our normalisation of f� is 130.7 MeV). In eqs. (39) and (40)next-to-next-to-leading order (NNLO) �PT 
orre
tions are assumed to be neg-ligible (this assumption is 
riti
ally dis
ussed in se
t. 7.1). The formulae abovedepend on four unknown parameters, B0, F , �3 and �4, whi
h will be determinedby �tting to our data.7.1 Statisti
al errorsIn order to estimate the errors on the �t parameters it is important to a

ountfor both auto
orrelation and 
ross-
orrelation of the data. We have exploited twodi�erent methods to do so.Method AThe �rst method (see also [10℄) 
onsists in 
omputing the full 
ovarian
e matrixof our data for afPS and (amPS)2 and in
lude it in the 
omputation of �2�2 =Xi;j (yi � Fi)V �1i;j (yj � Fj) ; (42)where V is the 
ovarian
e matrix 11Vi;j = 
ov(yi; yj) = 
ov((yi � Fi)(yj � Fj)) ; (43)normalised so that the diagonal elements 
oin
ide with the squared standarderror, and we have expressed the �PT ansatz, eqs. (39) and (40), in the formyi = Fi(~x; ~�) : (44)10We stress that � de�ned here should not be 
onfused with the 
ontinuum matrix element�� introdu
ed in eq. (5).11As we have data from independent simulations (ensembles B1 to B5), in the present 
asethe 
ovarian
e matrix will be blo
k-diagonal with �ve blo
ks.37



Here we denote by yi the primary measured quantities (in this se
tion: y1 =(amPSjB1)2, y2 = afPSjB1 , y3 = (amPSjB2)2, : : : ), by ~x the independent (error-free) variables (in this se
tion: only x = a�q) and by ~� the parameters to bedetermined by the �t (here: �1 = 2aB0, �2 = aF , �3;4 = log(a2�23;4)). The erroron the parameters are thus given by(���)2 = (r��F TV �1r��F )�1 : (45)The auto
orrelations of (amPS)2 and afPS have been estimated both by data-blo
king and by means of the �-method, as dis
ussed in se
t. 4.1. Both ap-proa
hes indi
ate (see Table 3) that by 
ombining data into blo
ks of 32 mea-surements ea
h (this 
orresponds always to more than 60 MC traje
tories) theresulting blo
ked data are safely un
orrelated. These blo
ked data are thus usedto evaluate the 
ovarian
e matrix, the �2 and the errors on the �t parameters asdis
ussed above (eqs. 42{45). In this way the possible e�e
t of 
ross-
orrelationsamong the observables is in
luded in the 
ovarian
e matrix and therefore properlya

ounted for in the �t pro
edure.In some of the 
he
ks that we are going to present below it will not alwaysbe possible to redu
e the �PT formulae to the form of eq. (44). This happensin parti
ular in the following 
ases: when 
omputing dire
tly afPS as a fun
-tion of amPS, when in
luding the e�e
ts due to a non-vanishing amPCAC, whenin
luding higher orders in Finite Size E�e
ts (FSE) 
al
ulations, as 
omputedin [53℄, or when we will eventually study the s
aling dependen
e for di�erentlatti
e spa
ings a. In all these 
ases the �PT formulae 
an be expressed in themore general form Gi(~y; ~x; ~�) = 0 and the errors are given by the formula [54℄:(���)2 = (r��GT (ryGVryGT )�1r��G)�1. These errors are obtained as prop-agation from the known errors on ~x, therefore they do not depend on how goodthe �t is. The quality of the �t is expressed as usual by the quantity �2=d:o:f:.To provide a further 
he
k of possible e�e
ts of 
ross-
orrelation, the �ts werealso performed by dividing the data set into two subgroups ea
h of half the size.The data for amPS were taken from one subgroup of gauge 
on�gurations andthose for afPS from the other, ensuring in this way absen
e of 
ross-
orrelation.Errors s
ale as p2, i.e. as expe
ted from halving the statisti
, whi
h indi
atesa negligible e�e
t of 
ross-
orrelations in the full data set. Stability was also
he
ked against di�erent 
hoi
es of subgroups. This result is 
on�rmed by theobservation that if we suppress the o�-diagonal terms in the 
ovarian
e matrix,our error bars are a�e
ted only at the per
ent level.Method BMethod A is standard, and of 
ourse unbiased if for all observables the data aredistributed in a Gaussian way (whi
h we 
he
ked expli
itly to be the 
ase toa good approximation) and if the fun
tions F (or G) have a suÆ
iently linearbehaviour around the relevant values of their arguments. An even safer estimateof the �nal errors 
an be obtained with the bootstrap method [38, 55℄.38



Method A Method B2aB0 5.04(7) 5.04(7)aF 0.0522(7) 0.0522(7)log(a2�23) -1.90(11) -1.91(10)log(a2�24) -1.00(4) -1.00(4)�2=d:o:f: 1.0/4 0.9/4Q 0.91 0.92Table 14: Comparison of �t results from methods A and B.To apply the bootstrap analysis method to our data set we pro
eed as follows.In order to a

ount for auto
orrelations we �rst form bins of 32 gauge 
on�gura-tions for ea
h value of �q. Out of the blo
ked data we generate 1000 bootstrapsamples. The size of ea
h sample is 
hosen as large as the full (blo
ked) data set.From the 1000 bootstrap samples we obtained 1000 observations for 2aB0, aF ,log(a2�23;4), and �l3;4 � log(�23;4=m2�), respe
tively. Error estimates are then 
om-puted as pres
ribed by the bootstrap method, i.e. by the standard deviation overthe (equally weighted) 1000 samples. In
identally we remark that this pro
eduretakes the 
ross 
orrelation between am2PS and afPS 
orre
tly into a

ount. In the1000 �ts we performed we have hen
e always used only the diagonal elementsof the 
ovarian
e matrix (�xed to their 
entral values, i.e. to the square of thestatisti
al errors on am2PS and afPS, see Table 12) as weights to evaluate the �2formula (42). In this spe
i�
 appli
ation of the bootstrap method the errorbarson the basi
 quantities am2PS and afPS are still needed, sin
e the observables ofinterest, the low energy 
onstants (LEC), are de�ned through minimization ofthe �2 of the simultaneous �t to the �PT formulae eqs. (39){(40). Note that tosafely employ the bootstrap method data need not have a Gaussian distribution,nor do the 
onstraints, de�ned by the �PT formulae, need to be linear. Thebootstrap method may be
ome expensive if single �ts are signi�
antly 
omputertime demanding.Both methods A and B give 
onsistent results, as shown in Table 14. In thispaper we use the same setup as in ref. [1℄, but we employ a somewhat largerstatisti
s. The results are 
onsistent. In addition to the error estimates we quotethe value of �2 and the merit �gure of the �t de�ned viaQ = 1� P (�2=2; d:o:f:=2) ;where P is the in
omplete Gamma fun
tion [56℄.7.2 Dis
ussion of systemati
 errorsThe error bars quoted in Table 14 are only statisti
al. As we also stressed inref. [1℄, a number of systemati
 e�e
ts are expe
ted. Here we present some39



in
luding a�q = 0:015 mq =q(ZAmPCAC)2 + �2q2aB0 5.06(5) 5.05(6)aF 0.0508(5) 0.0521(7)log(a2�23) -1.93(6) -1.87(11)log(a2�24) -0.89(2) -0.99(4)�2=d:o:f: 10.3/6 0.55/4Q 0.11 0.97Table 15: Comparison of �t results from di�erent setups, as explained in the text.
he
ks we performed in order to estimate the a
tual magnitude of these systemati
e�e
ts.As a �rst, simple 
he
k on the possible impa
t of negle
ted NNLO termson the results presented in Table 14, we have also in
luded the heaviest point(the one at a�q = 0:0150) in the standard �t to the formulae (39){(40). In this
ase the results are still 
ompatible with those in Table 14 within 1.7 standarddeviations, but the �2=d:o:f: of the �t jumps from 0:24 to 1:7. This in
rease of�2=d:o:f: is mainly due to the point at afPS at a�q = 0:0150, as we noted alreadyin ref. [1℄. The results of the �t are displayed in the se
ond 
olumn of Table 15.This suggests that only the �rst four quark mass points should be used when
omparing our data for afPS and amPS with NLO �PT, as was done in ref. [1℄.It is also very interesting to see how mu
h the tiny deviations from maximaltwist 
orresponding to the (statisti
ally 
ompatible with zero) measured 
entralvalues of mPCAC a�e
t our results for the low energy 
onstants dis
ussed in thisse
tion. To address this question we introdu
e the de�nition of bare quark mass,mq = q(ZAmPCAC)2 + �2q, whi
h holds for generi
 twist angle up to negle
tedO(amPCAC) and O(a2) terms. Moreover, in order to take into a

ount the axial-�3transformation properties of the 
urrent entering the formal de�nition of fPS, atthe same level of a

ura
y, the value of afPS should be 
orre
ted into afPSmq=�q.We remark that this is obtained automati
ally if fPS is evaluated from eq. (35)with �q repla
ed by mq { this 
an be related to the invarian
e of the operatorP 1;2, a matrix element of whi
h appears on the r.h.s. of eq. (35), under axial-�3rotations. The results of this analysis, where we set ZA = 0:76(2), as found at� = 3:9 in ref. [48℄, are shown in the last 
olumn of Table 15. It is reassuring tosee that, thanks to the good pre
ision we 
ould rea
h in setting mPCAC to zero,the low energy 
onstants of interest here are left essentially una�e
ted by thiskind of 
orre
tion.We now 
onsider the �nite size 
orre
tions. In ref. [1℄ we estimated themwith the help of the formulae of ref. [52℄. A ni
e feature of these formulae is thatthey introdu
e no new parameter. However, they are only the �rst term of anexpansion. Hen
e, the question is: how large is the residual un
ertainty in FSE40



a�q lo [52℄ lo [53℄ nlo [53℄ nnlo [53℄0.0040 0.64 % 0.42 % 0.50 % 0.21 %0.0064 0.29 % 0.16 % 0.21 % 0.10 %0.0085 0.16 % 0.08 % 0.12 % 0.06 %0.0100 0.11 % 0.05 % 0.08 % 0.04 %Table 16: Per
ent Finite Size deviation (mPS(L)�mPS(1))=mPS(1) predi
ted by �PT forour data points. Note that nlo and nnlo in
lude only the last order and not the previous one(s).A

ording to ref. [57℄, 
omparing nlo and nnlo (not lo and nlo) gives a reliable indi
ation aboutthe 
onvergen
e of the expansion.due to this trun
ation? To go beyond the �rst term in the framework of ref. [52℄is diÆ
ult. For the pseudo s
alar mass the FSE 
orre
tions at two loops in �PThave been 
omputed in ref. [53℄. However, one 
an do better using the kind of�PT expansion suggested in ref. [57℄, for whi
h results are also given in ref. [53℄.With the help of the results from ref. [53℄ we 
an assess the stability of thepredi
tion both by 
omparing the two approa
hes and by studying the 
onver-gen
e of the expansion of refs. [57, 53℄. One should also noti
e that higher ordersdo introdu
e new parameters. Sin
e it is not realisti
 to �t them, we will insteadlook at the stability of the predi
tion while 
hanging those parameters in a \rea-sonable" range. The \reasonable" range is suggested in ref. [53℄ and is based onphenomenologi
al grounds.To avoid 
onfusion, we remark that the results of ref. [52℄ are given as anexpansion in powers of 1=F0, while ref. [53℄ uses an expansion in 1=F�. This isthe only reason why the �rst term of ref. [53℄ does not 
oin
ide with ref. [52℄.In Tables 16 and 17 we show the per
ent deviation obtained using the formulaefrom refs. [52℄ and [53℄ at di�erent orders. Note that the new low energy 
onstants(LECs) that at higher orders of �PT are relevant for FSE are �xed to their 
entralvalues estimated in ref. [53℄. See the 
omment below about their impa
t. Todistinguish the expansion of the FSE e�e
ts from the usual �PT expansion wewill use a lower 
ase notation (lo, nlo, nnlo) to denote the former one. The twoexpansions are of 
ourse related, but sin
e the FSE also depend on the latti
esize L, there is no reason to trun
ate the 
hiral expansion for FSE at the sameorder as the usual �PT expansion. Here, for instan
e, we will use the NLO �PTformulae, but we will 
ompare FSE at lo, nlo and nnlo.The 
onvergen
e of the FSE expansion is expe
ted to be good for all ourdata points sin
e the smallest value of mPSL is larger than 3. We re
all that,a

ording to ref. [57℄, the 
omparison of lo and nlo is not a good indi
ator ofthe 
onvergen
e of the expansion. This should be rather 
he
ked by 
omparingnlo and nnlo. A

ording to all our estimates only the FSE at the lightest point(a�q = 0:004) are relevant, while those at larger quark masses are always smallerthan statisti
al errors. For instan
e, the deviations in mPS are barely largerthan its statisti
al errors (whi
h amount to about 0:5%). In order to 
he
k the41



a�q lo [52℄ lo [53℄ nlo [53℄0.0040 -2.57 % -1.68 % -0.76 %0.0064 -1.15 % -0.63 % -0.30 %0.0085 -0.64 % -0.32 % -0.16 %0.0100 -0.44 % -0.21 % -0.11 %Table 17: Same as in Table 16, but for (fPS(L)� fPS(1))=fPS(1).dependen
e of the predi
ted FSE 
orre
tions on the LECs entering only at nlo, we
hanged randomly the value of the latter within the \reasonable" range suggestedin ref. [53℄. We saw that nlo and nnlo FSE 
orre
tions are a�e
ted only at thelevel of about 20% (lo 
orre
tions are obviously una�e
ted) by su
h 
hanges.Up to this point we have only 
onsidered the �PT at NLO (however 
orre
-tions as high as nnlo are in
luded in FSE 
al
ulations) impli
itly assuming thatNNLO 
ontributions are negligible. This is reasonable, sin
e �PT formulae withonly NLO 
orre
tions yield a very good �t of the data at the lightest four quarkmasses, in spite of the fa
t that the expansion parameter, � = 2B0�q=(4�F )2,is not always very small. It is thus important to assess how mu
h NNLO termswould a�e
t our results.The NNLO 
orre
tions relevant for mPS and fPS have been 
al
ulated inref. [58℄. Here we use an expression whi
h is easier to 
ompare with latti
e data,namely the one of refs. [59, 60℄ whi
h readsm2PS =M2(1 + � logM2�23 + 172 �2 �logM2�2M �2 + 4�2kM +O(�3)) ;fPS = F (1� 2� logM2�24 � 5�2 �logM2�2F �2 + 4�2kF +O(�3)) ; (46)where � = 2B0�q=(4�F )2 as before, M2 = 2B0�q andlog �2MM2 = 151 �28 log �21M2 + 32 log �22M2 � 9 log �23M2 + 49� ;log �2FM2 = 130 �14 log �21M2 + 16 log �22M2 + 6 log �23M2 � 6 log �24M2 + 23� :It is not realisti
 to attempt a �t of all the 
oeÆ
ients involved in the fullNNLO expressions at least with the limited set of data used here. Rather we�x the parameters �1, �2, kF and kM to the values suggested in ref. [53℄. Sin
eno estimate for kM;F is available, we take kM;F = 0. Redoing the �t in these
onditions we 
an 
he
k how mu
h NNLO terms 
hange the results of Table 14.The new �t results are shown in the se
ond 
olumn of Table 18. In order to42



NNLO as in [53℄ Æ�1 = �33% Æ�2 = �5% kM = �1 kF = �12aB0 4.80(6) -0.66% -0.20% 3.2% 0.07%3.44% 0.26% -2.5% -0.12%aF 0.0536(6) 0.60% 0.16% -0.19% 1.9%-1.7% -0.19% 0.21% -2.1%log(a2�23) -2.13(12) -9.6% -1.2% -29% -1.3%-5.9% 0.87% 26% 1.5%log(a2�24) -1.00(5) -4.6% -0.50% 1.3% 24%-0.35% 0.34% -1.3% -26%�2=d:o:f: 0.085 1.7 1.1 0.48 1.40.15 0.82 1.8 0.73Table 18: Fit results, in
luding NNLO �PT. The se
ond 
olumn shows the results obtainedwith the 
hoi
e of �1;2 suggested in [53℄ and kM;F = 0. The other 
olumns give the per
ent
orre
tion due to 
hanging the 
orresponding parameter in the indi
ated range. For ea
h line,the upper (lower) number 
orresponds to the higher (smaller) boundary value of the interval.further estimate to whi
h extent these numbers are sensitive to a 
hange in theparameters whi
h were held �xed, we de
ided to 
hange them one by one withinthe range proposed in refs. [53, 57℄, and perform a new �t for ea
h one of thesevalues. As for kM and kF , it is diÆ
ult to tell what is a reasonable range, sin
e,as we said, no estimate is available for them. On general grounds the values ofkM;F are expe
ted to be of O(1) and somewhat arbitrarily we assume a variabilityrange kM;F = �1. This 
hoi
e is also justi�ed by the fa
t that larger variationsqui
kly lead to very bad �2. The results of this elaborated pro
edure are shownin 
olumns 3 to 6 of Table 18. Most e�e
ts are not signi�
ant if 
ompared tostatisti
al errors, as they are never larger than a few standard deviations. Itshould be noted, however, that �3 appears to be rather sensitive to kM andsimilarly �4 to kF . These LECs 
an deviate by about 25% when setting kM;F to+1 or to �1. We mention that 
hanges of the LECs similar to those reported inTable 18 are also obtained if the NNLO terms in eq. (46) are repla
ed by simplepolynomial terms, like �M;F �2 (with no logarithms), and the free parameters �M;Fare set to their best �t values.7.3 CommentsIn summary the dis
ussion developed in this se
tion shows that at least thesystemati
 errors 
oming from the unknown NNLO terms involving kM;F may besigni�
antly larger than the statisti
al ones, mostly be
ause the adopted range ofvalues was, to some degree, arbitrarily 
hosen. However, as already said above,using only the datasets B1-B5 a reliable estimate of systemati
 un
ertainties onB, F , �3 and �4 from the NNLO 
orre
tions is not possible. A better assessmentabout the magnitude of NNLO e�e
ts will be attempted elsewhere [61℄ using43



ETMC data at di�erent latti
e spa
ings.Although FSE to our simulation data turn out to be less than a few per
ent,we have made a spe
ial e�ort to 
ompute them quite a

urately, be
ause theirimpa
t on LECs 
annot be negle
ted, as their magnitude is 
omparable to thesize of our statisti
al errors. The 
omputation of FSE made in ref. [53℄ representsa 
onsiderable improvement on the 
lassi
al estimate of ref. [52℄, as un
ertaintieson the extra LECs entering the former 
omputation at high orders have littleimpa
t on the results. A
tually, the validity of the predi
tions of FSE from �PT
an be 
he
ked by performing simulations on latti
es of in
reasing size in physi
alunits. Preliminary results have been presented in ref. [15℄.8 SummaryIn this paper we have illustrated and dis
ussed a number of details 
on
erningunquen
hed simulations of Nf = 2 mass degenerate Wilson quarks at maximaltwist. We have explained in se
t. 1 our 
riterion on how to tune the theory tomaximal twist. In parti
ular, we provided theoreti
al arguments for our 
hoi
e ofmPCAC=�q � 0:1 and showed that an error �mPCAC=�q � 0:1 is appropriate forthis purpose. Useful formulae for quark bilinears and their physi
al interpretationin di�erent quark bases (twisted and physi
al) are 
olle
ted in Appendix A.We have then dis
ussed in se
t. 2 the methods we have used to 
ompute
harged meson 
orrelators emphasizing the e�e
tiveness of employing (fuzzed)sto
hasti
 time-sli
e sour
es in the so-
alled \one-end tri
k". We have demon-strated that this method 
omplemented by a random 
hoi
e of the sour
e lo
ationleads to a signi�
ant noise redu
tion, at least for two-point 
orrelators in the me-son se
tor.The 
omputation of neutral mesons and, in parti
ular, quark-dis
onne
ted
ontributions has been des
ribed in se
t. 3 and in the 
orresponding Appendix B.We have spelled out the reasons for using sto
hasti
 volume sour
es whi
h 
anbe employed in 
ombination with eÆ
ient varian
e redu
tion methods. All thesete
hni
al improvements have allowed us to 
ompute quark-dis
onne
ted 
ontribu-tions on our sets of unquen
hed gauge 
on�gurations to an a

eptable a

ura
y.In se
t. 4 we have illustrated the main features of the MC algorithms used inour simulations showing that the resulting auto
orrelation times are small enoughto allow for a trustworthy error analysis of physi
al observables. We also explainhow our error analysis of the data was performed owing to the use of �- andbinning-methods.The for
e parameter r0 
an serve as an important physi
al quantity to 
he
kthe s
aling behaviour towards the 
ontinuum limit. We have provided in se
t. 5a 
omprehensive dis
ussion of the methods we have used to extra
t r0 on our
on�gurations. It turns out that with the present data an a

ura
y of betterthan 1% 
an be rea
hed for r0 in the 
hiral limit. It is also found that r0 has a44



mild quark mass dependen
e whi
h is 
onsistent with being quadrati
 in �q.Various results for the 
harged and neutral pseudos
alar masses, the untwistedPCAC quark mass and the renormalization 
onstant ZV are 
olle
ted in se
t. 6.In parti
ular, we show \e�e
tive mass" plots demonstrating the stability of theEu
lidean time plateaux, whi
h enables us to extra
t pre
ise results for mesoni
quantities.Finally, we have detailed in se
t. 7 how our �PT analysis of the data onmPS and fPS has been 
arried out, explaining how we get errors on the �ttedlow energy 
onstants of the e�e
tive 
hiral Lagrangian, B0, F , �3 and �4. Inaddition, we have analyzed the e�e
ts of higher orders in �PT on the stability of�t parameters and dis
ussed the �nite size e�e
ts.We 
onsider the present paper as a te
hni
al referen
e work of our 
ollabo-ration. The methods des
ribed here have been and will be extensively used inour ongoing future resear
h on latti
e QCD employing maximally twisted Wilsonfermions.A
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Appendi
esA Quark bilinear operators in the twisted basisWe give in this appendix the expression of a number of bare quark bilinear oper-ators that are relevant for the topi
s of this paper. The operators are expressedin terms of i) simple 
omposite �elds (re
all 
5 = 
0
1
2
3 and ��� = i=2[
�; 
�℄)in the twisted quark basis, where the fermioni
 a
tion takes the form (1),S0(x) = ��(x)�(x); P �(x) = ��(x)
5 ��2 �(x);A��(x) = ��(x)
�
5 ��2 �(x); V �� (x) = ��(x)
� ��2 �(x);T ���(x) = ��(x)��� �a2 �(x); T 0��(x) = ��(x)����(x) : (47)and ii) the twist angle !, where tan! = �q=(m0�m
rit) and am
rit is determinedas dis
ussed in se
tion 1.1. The expressions we get areA0�� = (
os(!)A�� + �3�� sin(!)V �� (� = 1; 2);A3� (� = 3); (48)V 0�� = (
os(!)V �� + �3�� sin(!)A�� (� = 1; 2);V 3� (� = 3); (49)P 0� = (
os(!)P 3 + i12 sin(!)S0 (� = 3);P� (� = 1; 2); (50)S 00 = 
os(!)S0 + 2i sin(!)P 3 ; (51)T 0��� = (T ��� (� = 1; 2);
os(!)T 3�� � i12����� sin(!)T 0�� (� = 3) : (52)These expressions follow from the relation between twisted basis (�) and physi
albasis ( ) quark �elds, whi
h (see eq.(1) and ref. [3℄) reads� = e�i
5�3!=2 ; �� = � e�i
5�3!=2 ; (53)and the (obvious) de�nitions of the bare primed operators in terms of physi
albasis quark �elds (� = 1; 2; 3)A0�� = � (x)
�
5 ��2  (x); V 0�� = � (x)
� ��2  (x);P 0� = � (x)
5 ��2  (x); T 0���(x) = � (x)��� �a2  (x);S 00 = � (x) (x) : (54)46



All these bare operators renormalize multipli
atively, with the ex
eptions of P 03and S 00, whi
h undergo an additive mixing with the identity (
ubi
ally divergentfor P 03, quadrati
ally divergent and vanishing as �q ! 0 for S 00). For the ex-pression of renormalization 
onstants as fun
tions of ! and the renormalization
onstants of standard Wilson quark bilinears and further details, see ref. [3℄. Itshould be remarked that substantial simpli�
ations o

ur for ! = ��=2 (max-imal twist) in almost all formulae above. Moreover at maximal twist also theformulae for renormalization 
onstants [3℄ get mu
h simpler than at generi
 !.B Evaluation of dis
onne
ted loopsThe quark-dis
onne
ted (simply \dis
onne
ted" in the following for brevity) 
om-ponents of 
orrelators are intrinsi
ally noisier than the 
onne
ted 
omponents, soit is essential to evaluate them as a

urately as possible. For this purpose weneed to 
ompute the dis
onne
ted loops at every t value and for as many gauge
on�gurations as possible. This 
an be a
hieved by using the sto
hasti
 sour
emethods as we now dis
uss. The goal of the approa
h is to have an error aris-ing from the sto
hasti
 nature of the method whi
h is smaller than the intrinsi
variability asso
iated with varying t and gauge 
on�guration. If this is a
hieved,then the sto
hasti
 error is negligible in the sense that any further improvementin the signal 
an only be obtained if more gauge 
on�gurations are employed.As dis
ussed in se
t. 2.1, the basi
 idea is to use sto
hasti
 sour
es (�) having ingeneral support on the whole latti
e and solve the linear system for the quantities� =M�1� ; (55)where M is the latti
e Dira
 matrix for a given 
avour. The equation above isthe same as eq. (16), with the omission of the noise sample label r (to lightennotation). Note also that in this appendix the normalization of M is taken su
hthat, if Dlatt denotes the two-
avour Dira
 matrix in eq. (1), thenMu = 2�tr[aDlatt(1 + �3)=2℄ = A +H ; A = 1 + 2�a�qi
5 ; (56)with H the usual Wilson �rst-neighbour hopping matrix. It follows thatX[��X�℄R =XXM�1 + noise (57)where the symbol [:::℄R refers (as in se
t. 2.1) to the average over R samplesof the sto
hasti
 sour
e, the symbol P denotes the sum over 
olour, spin andspa
e-time indi
es and X 
an be (almost) any stru
ture we wish to evaluate, like
-matrix, gauge links, Fourier fa
tor, 
os(kx), et
... It should be observed that inevaluating the dis
onne
ted 
ontributions to the neutral meson 
orrelators ea
hone of the two quark loops arising from Wi
k 
ontra
tions must be averaged over47




ompletely independent samples of sto
hasti
 sour
es for the purpose of avoidingunwanted biases. Moreover, for ea
h quark loop diagram, the sum in eq. (57)is restri
ted to one single time-sli
e, while still ranging over all 
olor, spin andspa
e indi
es.A method we employed to redu
e the varian
e of the sto
hasti
 noise with-out mu
h additional 
omputational e�ort is the hopping-parameter method [25℄.This relies on the observations that the �rst four terms in the hopping parameterexpansion of PXM�1 
an be easily evaluated exa
tly on ea
h gauge 
on�gu-ration and that repla
ing their sto
hasti
 estimates with the exa
t values sig-ni�
antly redu
es the varian
e. In fa
t, writing Mu (see eq. (56)) in the formMu = (1 +HB)A, where B = 1=A, one easily obtains the identity1=Mu = B �BHB +B(HB)2 � B(HB)3 + (1=Mu)(HB)4 ; (58)whi
h 
an be used to giveXX=Mu = X�X(B � BHB +B(HB)2 � B(HB)3 + (1=Mu)(HB)4)	 :(59)The last term in eq. (59) 
an be evaluated sto
hasti
ally be
auseX(1=Mu)(HB)4 = limR!1[��(HB)4X�℄R (60)Sin
e Hy = 
5H
5 and 
5 
ommutes with B, the last formula 
an be rewrittenin the form X(1=Mu)(HB)4 = limR!1[(
5(ByH)4
5�)�X�℄R : (61)Thus four extra multipli
ations of the sour
e � by ByH are needed. This isa negligible overhead 
ompared to the inversion needed to obtain �. The �rstfour terms in eq. (59) do not involve 1=Mu and 
an be, as said above, evaluatedstraightforwardly for any 
hoi
e of X. For a lo
al operator X, the only non-zero
ontributions are from the �rst term if X is proportional to 1 or 
5 and the thirdterm if X is proportional to 
5. For a non-lo
al operator X whose length ofspatial path is more than four latti
e hops (as used in this paper), the �rst fourterms are all zero.This varian
e redu
tion method redu
es the standard error of the sto
hasti
samples by a fa
tor of 1.5 or more in our 
ase. This is valuable (it saves a fa
tor2-3 in 
omputational time), but for twisted mass QCD a mu
h more powerfulmethod is also available, although it applies only to the 
ase �X(1=Mu� 1=Md).This last method 
an be, and has been indeed, used in many important appli
a-tions, essentially all those where one has to evaluate 
orrelators with insertionsof neutral meson operators of the form (in the twisted basis) ����3�, with anyDira
 matrix � and the 
avour matrix �3. Interpolating �elds of this type o

ure.g. in the two-point 
orrelators for �0, f0 and �0 mesons (a
tually only one of the48



possible operators for �0), as one 
an see from the table for the (twisted basis)neutral meson operators reported in se
t. 3.The powerful method alluded above relies on 
ombining the identities(Md �Mu) = �4i�a�q
5 (62)and (1=Md)(Md �Mu)(1=Mu) = 1=Mu � 1=Md (63)to get 1=Mu � 1=Md = �4i�a�q(1=Md)
5(1=Mu) : (64)The latter relation already serves as a method of varian
e redu
tion be
ausethe expli
it (small, in our simulations) fa
tor of a�q redu
es the magnitude ofthe 
u
tuations. On top of that, an even more important point is that ther.h.s. of eq. (64) 
an be evaluated very e�e
tively with the help of the \one-end-tri
k" [19, 20℄ and no further inversions. In fa
t, sin
e M yu = 
5Md
5, onehas XX(1=Mu � 1=Md) = �4i�a�qXX
5(1=Mu)y(1=Mu) ; (65)whi
h 
an be evaluated with noise/signal ratio of O(1) viaXX(1=Mu � 1=Md) = �4i�a�qX[��X
5�℄R + noise ; (66)where (we re
all) � = (1=Mu)� and �� = ��(1=Mu)y. Apart from the expli
it sumdenoted byP, the r.h.s. of this formula 
ontains an impli
it sum over the spa
e-time indi
es of the sto
hasti
 sour
e � in � and ��, whi
h 
ontributes to redu
e thevarian
e as it re
eives 
ontributions from the whole latti
e (spa
e-time) volume.To give an idea of the e�e
tiveness of the method based on eq. (66) we 
onsider,as an example, the spe
ial 
ase X = i
5, where one obtainsX i
5(1=Mu � 1=Md) = 4�a�qX[���℄R + noise : (67)At � = 3:9 and �q = 0:004 (ensemble B1) the method based on eq. (67) yieldsan error whi
h turns out to be 6 times smaller than what would be obtainedwith a 
onventional sto
hasti
 volume sour
e. From the measured sto
hasti

ontribution to the signal, as well as the observed total 
u
tuation, one 
anextra
t the intrinsi
 variation stemming from the statisti
al 
u
tuations of thegauge �eld. The goal of the sto
hasti
 method is to have errors arising from thesto
hasti
 method whi
h are negligible 
ompared to the intrinsi
 (gauge) noise.This we a
hieve, �nding that the sto
hasti
 
ontribution to the total error hasa standard deviation whi
h is 2/3 of the standard deviation arising from theintrinsi
 variation of the signal. In the example, above we employed 24 sto
hasti
sour
es (with no 
omponents set to zero), resulting in a 
ost of 24 inversions,per gauge 
on�guration. Note that a similar number of inversions is needed to
ompute the (quark-
onne
ted) 
harged meson 
orrelators.49



We thus �nd that this varian
e redu
tion method, where appli
able, is verypowerful and e�e
tively redu
es the sto
hasti
 noise in the neutral meson 
orre-lators, making it smaller than the intrinsi
 noise 
oming from the 
u
tuations ofthe gauge �eld.C �-method and data-blo
kingIn this appendix, we dis
uss the �-method and the data-blo
king pro
edure wehave used to estimate the statisti
al errors of our physi
al observables.C.1 �-methodIn this se
tion, for 
ompleteness, we just re
all the basis of the �-method in-trodu
ed in [24℄. In the 
ase of a primary sto
hasti
 variable with \true value"A (the symbol A will also be used to denote the observable itself), a suitableestimator of the error on the ensemble average �a, i.e. its standard deviation ��a,is given by 12 �2�a = 1N WXn=�W ��a(n) ; (68)where N is the number of measurements, 2W + 1� N is the number of 
onse
-utive measurements used in the estimation (measurement \window") and��a(n) = 1N � jnj N�jnjXi=1 (ai � �a)(ai+jnj � �a) : (69)Here ��a(n) represents the straightforward estimator of the auto
orrelation fun
-tion �A(n) = h(ai � A)(ai+jnj � A)i (the index i in ai labels the individual mea-surements, while h: : : i denotes the theoreti
al expe
tation value).The integrated auto
orrelation time is 
onventionally de�ned for primaryquantities as in eq. (25) and estimated by (see eq. (68))�int(�a) = 12��a(0) WXn=�W ��a(n) � N�2�a2��2a ; (70)Note that ��a(0) � ��2a, see eq. (69), is an estimate of the a priori varian
e of A.The �-method 
an also be applied to the analysis of se
ondary observables,F = f(A), where f denotes a non-linear fun
tion of several primary observables,A � fA1; A2; : : :g. A typi
al example is the 
ase where A is given by the values oftwo-point hadron 
orrelators at di�erent time separations, with di�erent smear-ing levels, et
., while F is a suitable estimator of the hadron mass; of 
ourse, the12For a dis
ussion of these issues, see [65℄ and referen
es therein.50



details of the fun
tion F = f(A) depend on the spe
i�
 
hoi
e of the estimator,e.g. on the form of the �t ansatz for the 
orrelators and the range of time sep-arations employed in the �t. The main point here is that the deviation of anygiven �nite-statisti
s estimate of F , �F � f(�a), from the true value f(A) 
an beapproximated, in the limit of large statisti
s, by retaining the �rst term of theTaylor expansion of f(�a) around f(A), i.e. by writingf(�a)� f(A) 'X� �f(A)�A� (�a� � A�) ; (71)where � is the index labeling the primary quantities, A�, upon whi
h f depends.This remark suggests to de�ne a new quantity, Af , whi
h is a simple linear 
om-bination of primary quantities, and the 
orresponding �nite-statisti
s estimate,�af , via the formulaAf �X� �f(A)�A� A� ; �af �X� �f(A)�A� �a� ; (72)where �a� is the ensemble average of the primary sto
hasti
 variable a� (with\true value" A�, as above). The varian
e of �F = f(�a) will be given by�2�F � h(f(�a)� f(A))2i ' h(�af � Af )2i ; (73)where the trun
ation of the Taylor series produ
es a relative bias O(N�1)whi
h 
an be negle
ted if the number of measurements N is suÆ
iently large.A further bias of the same order of magnitude arises from the repla
ement�f(A)�A� ! �f(A)�A� ���A=�a in eq. (72), whi
h is done in pra
ti
e to evaluate the �rstderivatives of f with respe
t to the A�'s. At this point �2�F is estimated by theformula that is obtained from eq. (68) by repla
ing ��a(n) with��af (n) = 1N � jnj N�jnjXi=1 (aif � �af)(ai+jnjf � �af ) : (74)C.2 Binning methodIn the 
ase where a data-blo
king (also 
alled binning) pro
edure is insteadadopted to a

ount for auto
orrelations, the bin-size B plays a role similar tothat of the window W in the �-method. The integrated auto
orrelation time 
anthus be estimated, for suÆ
iently large values of B, by�int( �F ) ' �2�F (B)2�2�F (1) ; (75)where � �F (B) denotes the ja
kknife estimate of the error on �F (the mean value ofF ) that is obtained upon binning the measurements into blo
ks of size B.51



C.3 Error on the error: �-method vs data-blo
kingThe estimator of eq. (68) allows to rea
h the optimal 
ompromise between therelative statisti
al error on ���a raising with pW , i.e. Æstat(���a)=���a � pW=N ,and the relative systemati
 error (bias) de
reasing exponentially with W , i.e.Æsyst(���a) � 1=2 exp (�W=�), where � is the 
hara
teristi
 time of slowest expo-nential mode of �(n) (exponential auto
orrelation time). An \optimal" value,Wopt, to be used as upper and lower bound for the sum in eq. (68) 
an be ob-tained, e.g. by gradually in
reasing W and inspe
ting \by eye" the onset of aplateau for ���a as a fun
tion of W , or requiring minimisation of the total errorÆtot = Æstat + Æsyst [24℄. Any valid 
riterion to trun
ate the sum ne
essarily 
orre-sponds to values ofWopt for whi
h the trun
ation errors be
ome 
omparable withthe statisti
al noise level on ���a. This 
hoi
e 
orresponds to an un
ertainty on theerror on ���a de
reasing like � O(N�1=2). For 
omparison we re
all that the erroron ���a upon use of the binning method would de
rease only like � O(N�1=3) [24℄.In this 
ase in fa
t the optimal 
hoi
e 
orresponds to �nd a 
ompromise betweenthe relative statisti
al error on ���a (i.e. Æstat(���a)=���a � pB=2N) whi
h in
reaseswith pB, and the relative systemati
 error (bias) (i.e. Æsyst(���a) � �=2B) whi
hde
reases with B�1.C.4 Further remarksIn our error analysis 
arried out using the �-method, we de
ided to 
omparedi�erent 
riteria for the windowing pro
edure in order to test in this respe
t therobustness of our estimates. One method is given by the algorithm proposedin [24℄ whi
h is 
lose to optimal. A se
ond 
riterion, whi
h is slightly more
onservative, 
onsists in stopping the pro
edure as soon as ��(n) be
omes negativedue to statisti
al 
u
tuations. In the 15 analysed 
ases (5 simulation points times3 quantities), no systemati
 trend 
ould be dete
ted, with the two methods givingin most of the 
ases similar results. In the 
ases where we 
y
li
ally vary thetime the wall sour
e over the latti
e (see se
t. 2.1) in order to restore translationinvarian
e in the MC time, as required by the �-method, we average beforehand
orrelators over sour
e 
y
les 13. We re
all that the time-sli
e sequen
es used forthe di�erent ensembles and the value of n = tp are spe
i�ed in Table 4.As already mentioned, the results of the �-method have been 
he
ked againstbinning pro
edures. For observables that are non-linear fun
tions of the primaryquantities, the error estimates were obtained by 
ombining the binning pro
edurewith either bootstrap-sampling (with bin sizes B = 4; 8; 16; 32 in traje
tory units)or standard ja
kknife. In the latter 
ase the optimal bin size Bopt was determinedby requiring stabilization of the estimate of the error (with Bopt=�int � 10 orlarger).13We generi
ally �nd 
orrelations between 
onse
utive measurements taken on well separatedtime-sli
es (e.g. by �t = 12a) to be negligible.52



Di�erent methods give in general 
omparable results. In the 
ase of the bin-ning+bootstrap pro
edure stabilization of the error is however not always evidentat the maximal bin size (32 in traje
tory units). In parti
ular the PCAC quarkmass turns out to be a�e
ted by signi�
ant auto
orrelations (see se
t. 4.2) andthe binning pro
edure seems not to be able to give reliable estimates of the error.In this 
ase indeed the results lie systemati
ally below the estimates from the�-method. This 
an be understood re
alling that the �-method leads to a morefavourable dependen
e upon the number of measurements in the error attributedto the auto
orrelation time than the binning method.In view of these �ndings we have de
ided to use the �-method for the es-timates of the errors on the plaquette and amPCAC. Also the error estimatesfor fermioni
 quantities (other than amPCAC) quoted in se
t. 6 
ome from thismethod. However, similar results are obtained if a binning based pro
edure isemployed.D Details of the stati
 potential 
al
ulationIn this appendix we provide some details on the way we 
ompute the stati
quark-antiquark potential from our dynami
al gauge 
on�gurations.D.1 Improved stati
 a
tionAn improvement on the signal-to-noise ratio in the measurements of the Wilsonloop 
an be obtained by employing suitably smeared temporal links. This 
anbe viewed as a 
onvenient modi�
ation (or improvement) of the a
tion for stati
quarks [66, 67℄ as long as gauge invarian
e, 
ubi
 and parity symmetries as wellas the lo
al 
onservation of the stati
 quark number and the stati
 quark spinsymmetry are preserved. Under these 
onditions it is still guaranteed that thestati
 quark a
tion is free from O(a) 
uto� e�e
ts [68℄. The statisti
al improve-ment alluded above 
omes from a redu
tion of the noise-to-signal ratio essentiallystemming from the fa
t that the modi�ed stati
 quark a
tion obtained via theuse of smeared temporal links indu
es a self-energy mass term with a signi�
antlyredu
ed 
oeÆ
ient in front of the a�1 term [67℄. For our measurements we usethe so-
alled HYP-improved stati
 quark a
tion, whi
h is obtained by repla
ingthe temporal links U4(~x; x0) in the Wilson loop by HYP-smeared links [69℄U4(~x; x0)! V HYP4 (~x; x0) : (76)The HYP-smearing requires the spe
i�
ation of three parameters ~� = (�1; �2; �3)and, following ref. [67℄, we 
hoose ~� = (1:0; 1:0; 0:5) throughout our 
al
ulation.
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D.2 Spatial smearingThe smoothing of the spatial links has the e�e
t of redu
ing ex
ited-state 
on-tamination in the 
orrelation fun
tions of the Wilson loops in the potential mea-surements. The operators whi
h we measured in the simulations are 
onstru
tedusing the spatial APE smearing of ref. [70℄. The smoothing pro
edure we use
onsists in repla
ing every spatial link Uj(x); j = 1; 2; 3 by itself plus a sum of itsneighbouring spatial staples and then proje
ting ba
k to the nearest element inthe SU(3) group, i.e. we writeS1Uj(x) � PSU(3)nUj(x) + �sXk 6=j (Uk(x)Uj(x + k̂)U yk(x+ ĵ) (77)+U yk(x� k̂)Uj(x� k̂)Uk(x� k̂ + ĵ))o :Here, PSU(3)Q denotes the unique proje
tion onto the SU(3) group element W ,whi
h maximises ReTr(WQy) for any 3�3 matrixQ. The smeared and SU(3) pro-je
ted link S1Uj(x) retains all the symmetry properties of the original link Uj(x)under gauge transformations, 
harge 
onjugation, re
e
tions and permutations ofthe 
oordinate axes. The whole set of spatially smeared links, fS1Uj(x); x�L4g,forms the spatially smeared gauge �eld 
on�guration. An operator O whi
h ismeasured on a n-times iteratively smeared gauge �eld 
on�guration is 
alledan operator at smearing level Sn, indi
ated by the symbol SnO. From ourexperien
e a good 
hoi
e is to use M = 5 di�erent smearing levels Sn, withn = 8; 16; 24; 32; 40, and in all 
ases a smearing parameter �s = 0:25.D.3 Stati
 quark-antiquark pair 
orrelatorsThe matrix of stati
 quark-antiquark pair 
orrelation fun
tions, ea
h of whi
hfrom a te
hni
al viewpoint 
orresponds to a spatially smeared and temporallyimproved Wilson loop, is 
onstru
ted in the following way. At �xed x0 we �rstform smeared string (i.e. quark-antiquark pair) operators along the three spatialaxes, 
onne
ting ~x with ~x+ rî, given bySnVi(~x; ~x+ rî; x0) =SnUi(~x; x0)SnUi(~x+ âi; x0) : : :SnUi(~x+ (r � a)̂i; x0); i = 1; 2; 3 ; (78)and improved temporal links at �xed ~x, 
onne
ting x0 with x0 + t, given byV4(x0; x0 + t; ~x) = V HYP4 (~x; x0)V HYP4 (~x; x0 + a) : : : V HYP4 (~x; x0 + (t� a)) : (79)
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The smeared Wilson loop 14 is then obtained by 
omputingWlm(r; t) =X~x;x0 3Xi=1 TrSlVi(~x; ~x+ rî; x0)V4(x0; x0 + t; ~x + rî)SmV yi (~x; ~x+ rî; x0 + t)V y4 (x0; x0 + t; ~x) : (80)Finally we de�ne the matrix of stati
 quark-antiquark pair 
orrelators a

ordingto the formula Clm(r; t) = hWlm(r; t)i = Cml(r; t) ; (81)where the average is over the 
on�gurations of the ensemble. Sin
e we have
hosen to employ M = 5 di�erent string operators (as dis
ussed above) and weare 
on
erned with 
orrelators where two su
h operators are inserted, we end upwith a 5� 5 matrix of stati
 quark-antiquark pair 
orrelators.Referen
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