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Non-thermal �xed points: e�e
tive weak-
oupling for strongly 
orrelated systemsfar from equilibriumJ�urgen Berges1;2, Alexander Rothkopf3, and Jonas S
hmidt41Institute for Nu
lear Physi
s, Darmstadt University of Te
hnology, S
hlossgartenstr. 9, 64285 Darmstadt, Germany2Kavli Institute for Theoreti
al Physi
s, University of California Santa Barbara, Santa Barbara, CA 93106, USA3Department of Physi
s, University of Tokyo, Tokyo 113-0033, Japan and4DESY, Notkestrasse 85, 22603 Hamburg, Germany(Dated: Mar
h 3, 2008)Strongly 
orrelated systems far from equilibrium 
an exhibit s
aling solutions with a dynami
allygenerated weak 
oupling. We show this by investigating isolated systems des
ribed by relativisti
quantum �eld theories for initial 
onditions leading to nonequilibrium instabilities, su
h as paramet-ri
 resonan
e or spinodal de
omposition. The non-thermal �xed points prevent fast thermalizationif 
lassi
al-statisti
al 
u
tuations dominate over quantum 
u
tuations. We 
omment on the possiblesigni�
an
e of these results for the heating of the early universe after in
ation and the question offast thermalization in heavy-ion 
ollision experiments.PACS numbers: 11.10.Wx,98.80.Cq,25.75.-qINTRODUCTIONImportant phenomena in early universe 
osmology("Big Bang") and 
ollison experiments of heavy nu
lei("Little Bangs") involve quantum �elds far from equilib-rium. A prominent topi
al example 
on
erns the role ofnonequilibrium instabilities for the pro
ess of thermal-ization. The heating of the early universe after in
ationmay pro
eed via an instability su
h as parametri
 reso-nan
e [1, 2℄. Similarly, plasma instabilities may play animportant role in our understanding of observations atthe Relativisti
 Heavy Ion Collider [3℄. Instabilities alsoarise in many other areas, su
h as dynami
s of ultra-
oldquantum gases.Nonequilibrium instabilities lead to exponentialgrowth of �eld 
u
tuations on time s
ales mu
h shorterthan the asymptoti
 thermal equilibration time. Thoughtheir origin 
an be very di�erent, the subsequent evo-lution after an instability follows similar patterns: Af-ter a fast initial period of exponential growth the dy-nami
s slows down 
onsiderably. At this stage all pro-
esses be
ome of order unity and one is dealing with astrongly 
orrelated system that has to be treated non-perturbatively, even if the underlying mi
ros
opi
 theoryis weakly 
oupled. The subsequent evolution is 
hara
-terized by power-law behavior reminis
ent of turbulen
e.It has been argued that this behavior does not o

ur inthe non-perturbative regime and a perturbative analysisis employed with apparent su

ess [4, 5℄.In this Letter we show that far-from-equilibrium dy-nami
s in the non-perturbative regime 
an approa
h s
al-ing solutions with a dynami
ally generated weak 
ou-pling. As an example we 
onsider s
alar N -
omponentquantum �eld theory with quarti
 self-intera
tion fol-lowing a parametri
 resonan
e instability. In the non-perturbative regime we �nd new s
aling solutions withstrongly enhan
ed low-momentum 
u
tuations � p�4

as 
ompared to a high-temperature distribution � p�1.They 
orrespond to non-thermal �xed points of thetime evolution equations for 
orrelation fun
tions on
e
lassi
al-statisti
al 
u
tuations dominate over quantum
u
tuations. At suÆ
iently high momenta we re
over theperturbative behavior � p�3=2 reported in the literature.We employ the two-parti
le irredu
ible (2PI) large-Nexpansion to next-to-leading order [6℄. The 2PI approx-imation s
hemes have been applied to a variety of farfrom equilibrium phenomena, in
luding parametri
 reso-nan
e [2℄ and ta
hyoni
 preheating [7℄. They are knownto des
ribe the late-time approa
h to thermal equilibrium
hara
terized by Bose-Einstein or Fermi-Dira
 distribu-tions, respe
tively [6, 8℄. The non-perturbative regime af-ter an instability is traditionally des
ribed using 
lassi
al-statisti
al �eld theory simulations, and we present a 
om-parison of quantum and 
lassi
al evolution.NONEQUILIBRIUM INSTABILITIESWe 
onsider a relativisti
 real s
alar N{
omponentquantum �eld �a (a = 1; : : : ; N) with �=(4!N) (�a�a)2intera
tion, where summation over repeated indi
es isimplied. The ma
ros
opi
 �eld of the quantum theoryis given by �a(x) = h�a(x)i, where the bra
kets des
ribethe tra
e for given initial density matrix. There are twoindependent two-point 
orrelation fun
tions, whi
h 
anbe asso
iated to the anti-
ommutator and the 
ommuta-tor of two �elds:Fab(x; y) = 12 hf�a(x);�b(y)gi � �a(x)�b(y) ;�ab(x; y) = h[�a(x);�b(y)℄i : (1)Here � is the spe
tral fun
tion, whi
h is related tothe retarded propagator GR(x; y) = �(x; y)�(x0 � y0).The statisti
al fun
tion F is proportional to "o

upa-tion number", whi
h may be taken as n(t;p) + 1=2 =

http://arXiv.org/abs/0803.0131v1


2[F (t; t0;p)�t�t0F (t; t0;p)℄1=2t=t0 for spatially homogeneoussystems [6℄.The nonequilibrium time evolution of F and � is de-s
ribed by 
oupled di�erential equations,��xÆa
 +M2a
(x)� �
b(x; y) = Z y0x0 ddz��a
(x; z)�
b(z; y);��xÆa
 +M2a
(x)�F
b(x; y) = Z y0tI ddz�Fa
(x; z)�
b(z; y)� Z x0tI ddz��a
(x; z)F
b(z; y);(2)and a similar equation for �a(x) [6℄. These evolutionequations would be exa
t for known e�e
tive mass termM2(�; F ), spe
tral (imaginary) part of the self-energy,��(�; F; �), and statisti
al (real) part, �F (�; F; �). HeretI des
ribes the initial time and we will 
onsider a pureinitial quantum state with spatially homogeneous �elds�a(t) = �(t)p6N=�Æa1 (3)for � � 1. All quantities will be given in units of theinitial �0 � �(t = 0). The initial two-point fun
tions aretaken to be diagonal with Fab = diagfFk; F?; : : : ; F?g �O(N0�0) and the initial spe
tral fun
tion is �xed by theequal-time 
ommutation relations.Dynami
s of parametri
 resonan
e in quantum �eldtheory has been studied in detail [2℄ using the 2PI 1=Nexpansion to NLO [6℄. Primary resonant ampli�
ationo

urs for the dominant transverse modes in the mo-mentum range 0 � p2 � �20=2. This is followed by anon-linear regime, where F? � O(N1=3��2=3). Here o
-
upied low-momentum modes a
t as sour
es for a se
-ondary stage of enhan
ed ampli�
ation in a broad highermomentum range. The exponential growth stops whenF? � Fk � O(N0 ��1) and the dynami
s slows down
onsiderably. At this non-perturbative stage all pro
essesare of order unity and the system is strongly 
orrelated.Fig. 1 shows F?(t; t;p) for times t = 10, t = 40 in thenon-linear regime, and t = 90 in the non-perturbativeregime. The solid line shows the result for the quan-tum evolution for � = 0:01 and N = 4. For 
ompari-son, the dashed line gives the same quantity as obtainedfrom simulations of the 
orresponding 
lassi
al-statisti
al�eld theory on a latti
e with same initial 
onditions fol-lowing Ref. [9℄. The pre
ision of agreement between the
urves is remarkable. Quantum 
u
tuations are expe
tedto be suppressed if the 
lassi
ality 
ondition F 2 � �2 isful�lled [9℄. However, with �2 being of order unity thequantum 
orre
tions turn out to be extremely small evenfor F 2 � 1. We emphasize that this is not a generi
 prop-erty of the NLO approximation [6, 9℄, but a 
onsequen
eof the instability dynami
s and � � 1. In turn, 
ontri-butions beyond NLO seem to play an inferior role evenfor the non-perturbative regime.
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FIG. 1: Two-point fun
tion F?(t; t;p) as a fun
tion of mo-mentum jpj for three di�erent times. Quantum (solid) and
lassi
al (dashed) evolution agree well even where F?(p)� 1.NON-THERMAL FIXED POINTSFixed points are time and spa
e translation invariantsolutions of the evolution equations (2), whi
h require��a
(p)F
b(p)� �Fa
(p)�
b(p) � �J (3)ab (p) + J (4)ab (p)� =�!= 0 : (4)Thermal equilibrium solves (4) using the 
u
tuation-dissipation relation F (eq)ab (p) = [nT (p0) + 1=2℄�(eq)ab (p)and 
orrespondingly for self-energies [6℄. We show (4) hasnon-thermal approximate solutions if 
lassi
al-statisti
al
u
tuations dominate over quantum 
u
tuations.Firstly, we analyti
ally determine �xed point solu-tions with Fab(p) = f(p)=� Æab, �ab(p) = �(p)Æab and� = 
onst 6= 0. Se
ondly, these non-trivial solutions areshown to des
ribe well the slow dynami
s in the non-perturbative regime. At NLO of the 2PI 1=N expansionin the 
lassi
al-statisti
al �eld theory limit we haveJ (3)aa (p;�) = � �23(2�)4 Z d4k d4q Æ4(p� q � k)[�e�(k) + �e�(q) + �e�(p)℄ [�(k)f(q)f(p)+f(k)�(q)f(p)� f(k)f(q)�(p)℄ ; (5)where we summed over 
omponents a. Here�e�(p) = 1j1 + �R(p)j2 (6)with the resummed "one-loop" retarded self-energy�R(p) = 13(2�)4 Z d4q f(q)GR(p� q) : (7)Diagrammati
ally, J (3) 
ontains 
ontributions des
ribedby the "one-loop" graph in Fig. 2. In 
ontrast to per-turbative Feynman diagrams, here lines 
orrespond to
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FIG. 2: NLO 
ontributions to the �xed point equation (4).self-
onsistently dressed propagators F or � [6℄. The fulldot denotes the e�e
tive vertex (6), whi
h is graphi
allydisplayed in the lower graph of Fig. 2. It iteratively gen-erates the in�nite series of resummed "
hain" diagrams
ontributing at NLO in the 1=N expansion. Similarly,J (4)aa (p;�) = 118(2�)8 Z d4k d4q d4r Æ4(p+ k � q � r)�e�(p+ k)n[f(p)�(k) + �(p)f(k)℄f(q)f(r)�f(p)f(k)[f(q)�(r) + �(q)f(r)℄o(1��(p+ k;�)) (8)
orresponds to the "two-loop" graph in Fig. 4 with�(p;�) = 4�2Re[GR(p)=(1 + �R(p))℄.In the non-perturbative regime, where the dynami
sis slow, one 
an extra
t quantities su
h as �e�(p) alsodire
tly from the nonequilibrium quantum evolution byFourier transformation with respe
t to relative 
oordi-nates. The result is shown in Fig. 3 for t = 240 as afun
tion of three-momentum p for di�erent values of thefrequen
y ! � p0, with parameters as in Fig. 1. Formomenta larger than order unity �e�(p) tends to one.One observes that this holds if either p or ! is not small.Therefore, in this range the dynami
s is well approxi-mated by the one- and two-loop expressions as displayedin Fig. 2 without the e�e
tive vertex. Most strikingly, forsmall four-momentum the in�nite series ofO(1) 
ontribu-tions add up to a substantially redu
ed e�e
tive 
oupling.The latter is still slowly 
hanging in time and is shownto approa
h a power-law behavior in the following.For s
aling solutions the 
orrelators behave under si-multaneous s
aling p! sp and �! s� as [13℄:F (p) = s2+� F (sp) ;�(p) = s2 �(sp) ; (9)�e�(p) = s
 �e�(sp) :Similarly, we have GR(p) = s2GR(sp) and it follows that�R(p) = s��R(sp). Taking sp � 1 one 
on
ludes for� > 0 that �R(p) � 1 for p ! 0. A

ording to (6) theinfrared s
aling behavior of the e�e
tive vertex in this
ase is des
ribed by (9) with the exponent
 = �2� : (10)
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FIG. 3: The e�e
tive vertex at t = 240 as a fun
tion of spatialmomentum p for di�erent frequen
ies ! � p0.Using this s
aling behavior we �nd J (3)aa (p;�) =s0 J (3)aa (sp; s�) and J (4)aa (p; 0) = s� J (4)aa (sp; 0) su
h thatJ (4)aa (p; 0) dominates the infrared dynami
s. The �eld-dependent part J (4)aa (p;�)� J (4)aa (p; 0) s
ales as J (3)aa (p;�)sin
e �(p;�) = s���(sp; s�) in this regime.A

ordingly, for the infrared we 
onsider solutions ofR d3pJ (4)aa (p0;p; 0) = 0. The integration over spatial mo-mentum allows us to solve this equation using generalizedZakharov transformations [10℄. In this way the problemis redu
ed to simple algebrai
 
onditions for the expo-nents. E.g., to map the se
ond term in the integrandsum of (8) onto the �rst we employ the transformationk0 ! p20=k0, q0 ! q0p0=k0, r0 ! r0p0=k0 as well asp! kp0=k0, k! pp0=k0, q! qp0=k0, r! rp0=k0, andsimilar for the third and fourth term. Using the s
alingproperties (9) the integrand vanishes if � = (4� 
)=3 or� = (5 � 
)=3. With (10) this yields two non-thermal�xed point solutions for the infrared s
aling behavior:� = 4 ; � = 5 : (11)We do not list 
lassi
al thermal solutions (� = 1,0), whi
h appear as a 
onsequen
e of the 
u
tuation-dissipation relation dis
ussed above. We emphasize that(11) 
annot be obtained from a perturbative 2$ 2 s
at-tering analysis [4, 10℄, whi
h we re
over for vanishing 
.The size of the one-loop retarded self-energy (7) dis-tinguishes the low-momentum from a high-momentumregime. The latter is de�ned by �R(p) � 1 andin this range the e�e
tive vertex s
ales trivially (
 =0) a

ording to (6) with �e� (p) ' 1. Therefore,at high momenta J (3)aa (p;�) = s2� J (3)aa (sp; s�) andJ (4)aa (p; 0) = s3� J (4)aa (sp; 0) su
h that J (3)aa (p;�) domi-nates over J (4)aa (p; 0) for � > 0. The �eld-dependent partJ (4)aa (p;�)�J (4)aa (p; 0) s
ales in the same way as J (4)aa (p; 0)sin
e here �(p;�) = s0�(sp; s�). A similar analysis as
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FIG. 4: O

upation number as a fun
tion of momentum fordi�erent times. The solid line 
orresponds to t = 8000, alongwith �ts � jpj�4 for low and � jpj�3=2 for higher momenta.above yields for R d3pJ (3)aa (!;p;�) = 0 in this regime� = 3=2 : (12)Consequently, simulation results may be �tted by pertur-bative estimates down to rather low momenta [4℄.It remains to show that the nonequilibrium evolutionapproa
hes non-thermal �xed points. For this we fol-low the 
lassi
al-statisti
al evolution numeri
ally to latetimes. Fig. 4 gives the o

upation number n(t;p) as afun
tion of three-momentum at di�erent times. We em-ploy N = 4 and a weak 
oupling � = 10�5 in order tokeep quantum 
orre
tions small. The latest time shownis represented by the solid line. For a region of momentaabove jpj & 1 the evolution is very well approximated bya power-law behavior n(t;p) � jpj�3=2 in agreement with(12). As time pro
eeds this region grows towards highermomenta, whi
h is indi
ated by the arrow in Fig. 4.Going to smaller momenta one �rst observes a transi-tion region as expe
ted from the above dis
ussion. Theinfrared behavior is 
onsistent with a power-law that iswell approximated by � = 4. The evolution in this re-gion is very slow, as 
an be inferred from 
omparing tothe t = 3000 line, and getting an even better possibleagreement between numeri
s and analyti
s would be very
ostly in 
omputational time. From the 
urrent data the� = 5 solution indi
ated in (11) is 
learly unfavored.S
aling solutions govern the nonequilibrium dynam-i
s only if 
lassi
al-statisti
al 
u
tuations dominate [14℄.For initial 
onditions leading to instabilities the statis-ti
al 
u
tuations grow large. In this 
ase the systemapproa
hes non-thermal �xed points exhibiting 
riti
alslowing down. Non-thermal �xed points are unstablewith respe
t to quantum 
orre
tions, whi
h eventuallylead to thermalization. The quantum evolution is dia-grammati
ally des
ribed by same topologies as displayedin Fig. 2 at NLO. However, pairs of propagators f(p)f(q)

in 
lassi
al equations (5) or (8) 
an be asso
iated tof(p)f(q)+(�2=4)�(p)�(q) in the quantum theory [6℄. The
oupling does not drop out and no universal s
aling so-lutions appear if quantum 
orre
tions dominate.Non-thermal �xed points 
an ex
essively delay ther-malization. In the 
ontext of early universe reheatinga most 
onservative limit requires thermal equilibriumat a temperature of order 10 MeV before Big Bang Nu-
leosynthesis. Even this might already rule out somevery weakly 
oupled in
aton models [4℄, however, morerealisti
 models have to be 
onsidered in
luding quan-tum 
orre
tions. In the 
ontext of heavy-ion 
ollisions,QCD plasma instabilities 
an lead to a regime with qual-itatively similar s
aling behavior [5℄. Classi
al simula-tions indi
ate possible fast isotropization due to instabil-ities in about 1-2 fm/
 for low momenta of less than 1-2GeV [12℄. However, subsequent s
aling behavior leads tolarge isotropization times for higher momentum modesin this 
ase, whi
h seems in
ompatible with experimental�ndings. So far, the role of quantum 
orre
tions for thelower o

upied high-momentum modes were not takeninto a

ount. The question of whether it is possible to�nd also an e�e
tive weak 
oupling in QCD, whi
h mayfa
ilitate an analyti
 quantum des
ription, is ex
iting.We are indebted to Szabol
s Bors�anyi for many dis
us-sions and 
omputational help.[1℄ J. H. Tras
hen and R. H. Brandenberger, Phys. Rev.D 42 (1990) 2491. L. Kofman, A. D. Linde andA. A. Starobinsky, Phys. Rev. Lett. 73 (1994) 3195.[2℄ J. Berges and J. Serreau, Phys. Rev. Lett. 91 (2003)111601.[3℄ P. Arnold et al, Phys. Rev. Lett. 94 (2005) 072302.[4℄ R. Mi
ha and I. I. Tka
hev, Phys. Rev. Lett. 90 (2003)121301, ibid. Phys. Rev. D 70 (2004) 043538.[5℄ P. Arnold and G. D. Moore, Phys. Rev. D 73 (2006)025013.[6℄ J. Berges, Nu
l. Phys. A 699 (2002) 847. G. Aarts et al,Phys. Rev. D 66 (2002) 045008.[7℄ A. Arrizabalaga, J. Smit and A. Tranberg, JHEP 0410(2004) 017.[8℄ J. Berges, S. Borsanyi and J. Serreau, Nu
l. Phys. B 660(2003) 51.[9℄ G. Aarts, J. Berges, Phys. Rev. Lett. 88 (2002) 041603.[10℄ V. Zakharov, V. Lvov, and G. Falkovi
h, KolmogorovSpe
tra of Turbulen
e (Springer-Verlag, 1992).[11℄ G. Aarts, G. F. Bonini and C. Wetteri
h, Phys. Rev. D63 (2001) 025012.[12℄ J. Berges, S. S
he�er and D. Sexty, Phys. Rev. D inpress, arXiv:0712.3514 [hep-ph℄.[13℄ Symmetries allow a non-trivial dynami
al exponent zwith F (p0;p) = s2+� F (szp0; sp) et
. Our solutions are
onsistent with z = 1 and we employ this. Keeping z ex-pli
ity the �xed point solutions (11) below read � = 3z+1and � = 4z+1 whi
h redu
e to the given values for z = 1.[14℄ Other approximate �xed points may also be present [11℄.
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