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Non-thermal �xed points: e�etive weak-oupling for strongly orrelated systemsfar from equilibriumJ�urgen Berges1;2, Alexander Rothkopf3, and Jonas Shmidt41Institute for Nulear Physis, Darmstadt University of Tehnology, Shlossgartenstr. 9, 64285 Darmstadt, Germany2Kavli Institute for Theoretial Physis, University of California Santa Barbara, Santa Barbara, CA 93106, USA3Department of Physis, University of Tokyo, Tokyo 113-0033, Japan and4DESY, Notkestrasse 85, 22603 Hamburg, Germany(Dated: Marh 3, 2008)Strongly orrelated systems far from equilibrium an exhibit saling solutions with a dynamiallygenerated weak oupling. We show this by investigating isolated systems desribed by relativistiquantum �eld theories for initial onditions leading to nonequilibrium instabilities, suh as paramet-ri resonane or spinodal deomposition. The non-thermal �xed points prevent fast thermalizationif lassial-statistial utuations dominate over quantum utuations. We omment on the possiblesigni�ane of these results for the heating of the early universe after ination and the question offast thermalization in heavy-ion ollision experiments.PACS numbers: 11.10.Wx,98.80.Cq,25.75.-qINTRODUCTIONImportant phenomena in early universe osmology("Big Bang") and ollison experiments of heavy nulei("Little Bangs") involve quantum �elds far from equilib-rium. A prominent topial example onerns the role ofnonequilibrium instabilities for the proess of thermal-ization. The heating of the early universe after inationmay proeed via an instability suh as parametri reso-nane [1, 2℄. Similarly, plasma instabilities may play animportant role in our understanding of observations atthe Relativisti Heavy Ion Collider [3℄. Instabilities alsoarise in many other areas, suh as dynamis of ultra-oldquantum gases.Nonequilibrium instabilities lead to exponentialgrowth of �eld utuations on time sales muh shorterthan the asymptoti thermal equilibration time. Thoughtheir origin an be very di�erent, the subsequent evo-lution after an instability follows similar patterns: Af-ter a fast initial period of exponential growth the dy-namis slows down onsiderably. At this stage all pro-esses beome of order unity and one is dealing with astrongly orrelated system that has to be treated non-perturbatively, even if the underlying mirosopi theoryis weakly oupled. The subsequent evolution is hara-terized by power-law behavior reminisent of turbulene.It has been argued that this behavior does not our inthe non-perturbative regime and a perturbative analysisis employed with apparent suess [4, 5℄.In this Letter we show that far-from-equilibrium dy-namis in the non-perturbative regime an approah sal-ing solutions with a dynamially generated weak ou-pling. As an example we onsider salar N -omponentquantum �eld theory with quarti self-interation fol-lowing a parametri resonane instability. In the non-perturbative regime we �nd new saling solutions withstrongly enhaned low-momentum utuations � p�4

as ompared to a high-temperature distribution � p�1.They orrespond to non-thermal �xed points of thetime evolution equations for orrelation funtions onelassial-statistial utuations dominate over quantumutuations. At suÆiently high momenta we reover theperturbative behavior � p�3=2 reported in the literature.We employ the two-partile irreduible (2PI) large-Nexpansion to next-to-leading order [6℄. The 2PI approx-imation shemes have been applied to a variety of farfrom equilibrium phenomena, inluding parametri reso-nane [2℄ and tahyoni preheating [7℄. They are knownto desribe the late-time approah to thermal equilibriumharaterized by Bose-Einstein or Fermi-Dira distribu-tions, respetively [6, 8℄. The non-perturbative regime af-ter an instability is traditionally desribed using lassial-statistial �eld theory simulations, and we present a om-parison of quantum and lassial evolution.NONEQUILIBRIUM INSTABILITIESWe onsider a relativisti real salar N{omponentquantum �eld �a (a = 1; : : : ; N) with �=(4!N) (�a�a)2interation, where summation over repeated indies isimplied. The marosopi �eld of the quantum theoryis given by �a(x) = h�a(x)i, where the brakets desribethe trae for given initial density matrix. There are twoindependent two-point orrelation funtions, whih anbe assoiated to the anti-ommutator and the ommuta-tor of two �elds:Fab(x; y) = 12 hf�a(x);�b(y)gi � �a(x)�b(y) ;�ab(x; y) = h[�a(x);�b(y)℄i : (1)Here � is the spetral funtion, whih is related tothe retarded propagator GR(x; y) = �(x; y)�(x0 � y0).The statistial funtion F is proportional to "oupa-tion number", whih may be taken as n(t;p) + 1=2 =
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2[F (t; t0;p)�t�t0F (t; t0;p)℄1=2t=t0 for spatially homogeneoussystems [6℄.The nonequilibrium time evolution of F and � is de-sribed by oupled di�erential equations,��xÆa +M2a(x)� �b(x; y) = Z y0x0 ddz��a(x; z)�b(z; y);��xÆa +M2a(x)�Fb(x; y) = Z y0tI ddz�Fa(x; z)�b(z; y)� Z x0tI ddz��a(x; z)Fb(z; y);(2)and a similar equation for �a(x) [6℄. These evolutionequations would be exat for known e�etive mass termM2(�; F ), spetral (imaginary) part of the self-energy,��(�; F; �), and statistial (real) part, �F (�; F; �). HeretI desribes the initial time and we will onsider a pureinitial quantum state with spatially homogeneous �elds�a(t) = �(t)p6N=�Æa1 (3)for � � 1. All quantities will be given in units of theinitial �0 � �(t = 0). The initial two-point funtions aretaken to be diagonal with Fab = diagfFk; F?; : : : ; F?g �O(N0�0) and the initial spetral funtion is �xed by theequal-time ommutation relations.Dynamis of parametri resonane in quantum �eldtheory has been studied in detail [2℄ using the 2PI 1=Nexpansion to NLO [6℄. Primary resonant ampli�ationours for the dominant transverse modes in the mo-mentum range 0 � p2 � �20=2. This is followed by anon-linear regime, where F? � O(N1=3��2=3). Here o-upied low-momentum modes at as soures for a se-ondary stage of enhaned ampli�ation in a broad highermomentum range. The exponential growth stops whenF? � Fk � O(N0 ��1) and the dynamis slows downonsiderably. At this non-perturbative stage all proessesare of order unity and the system is strongly orrelated.Fig. 1 shows F?(t; t;p) for times t = 10, t = 40 in thenon-linear regime, and t = 90 in the non-perturbativeregime. The solid line shows the result for the quan-tum evolution for � = 0:01 and N = 4. For ompari-son, the dashed line gives the same quantity as obtainedfrom simulations of the orresponding lassial-statistial�eld theory on a lattie with same initial onditions fol-lowing Ref. [9℄. The preision of agreement between theurves is remarkable. Quantum utuations are expetedto be suppressed if the lassiality ondition F 2 � �2 isful�lled [9℄. However, with �2 being of order unity thequantum orretions turn out to be extremely small evenfor F 2 � 1. We emphasize that this is not a generi prop-erty of the NLO approximation [6, 9℄, but a onsequeneof the instability dynamis and � � 1. In turn, ontri-butions beyond NLO seem to play an inferior role evenfor the non-perturbative regime.
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FIG. 1: Two-point funtion F?(t; t;p) as a funtion of mo-mentum jpj for three di�erent times. Quantum (solid) andlassial (dashed) evolution agree well even where F?(p)� 1.NON-THERMAL FIXED POINTSFixed points are time and spae translation invariantsolutions of the evolution equations (2), whih require��a(p)Fb(p)� �Fa(p)�b(p) � �J (3)ab (p) + J (4)ab (p)� =�!= 0 : (4)Thermal equilibrium solves (4) using the utuation-dissipation relation F (eq)ab (p) = [nT (p0) + 1=2℄�(eq)ab (p)and orrespondingly for self-energies [6℄. We show (4) hasnon-thermal approximate solutions if lassial-statistialutuations dominate over quantum utuations.Firstly, we analytially determine �xed point solu-tions with Fab(p) = f(p)=� Æab, �ab(p) = �(p)Æab and� = onst 6= 0. Seondly, these non-trivial solutions areshown to desribe well the slow dynamis in the non-perturbative regime. At NLO of the 2PI 1=N expansionin the lassial-statistial �eld theory limit we haveJ (3)aa (p;�) = � �23(2�)4 Z d4k d4q Æ4(p� q � k)[�e�(k) + �e�(q) + �e�(p)℄ [�(k)f(q)f(p)+f(k)�(q)f(p)� f(k)f(q)�(p)℄ ; (5)where we summed over omponents a. Here�e�(p) = 1j1 + �R(p)j2 (6)with the resummed "one-loop" retarded self-energy�R(p) = 13(2�)4 Z d4q f(q)GR(p� q) : (7)Diagrammatially, J (3) ontains ontributions desribedby the "one-loop" graph in Fig. 2. In ontrast to per-turbative Feynman diagrams, here lines orrespond to
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FIG. 2: NLO ontributions to the �xed point equation (4).self-onsistently dressed propagators F or � [6℄. The fulldot denotes the e�etive vertex (6), whih is graphiallydisplayed in the lower graph of Fig. 2. It iteratively gen-erates the in�nite series of resummed "hain" diagramsontributing at NLO in the 1=N expansion. Similarly,J (4)aa (p;�) = 118(2�)8 Z d4k d4q d4r Æ4(p+ k � q � r)�e�(p+ k)n[f(p)�(k) + �(p)f(k)℄f(q)f(r)�f(p)f(k)[f(q)�(r) + �(q)f(r)℄o(1��(p+ k;�)) (8)orresponds to the "two-loop" graph in Fig. 4 with�(p;�) = 4�2Re[GR(p)=(1 + �R(p))℄.In the non-perturbative regime, where the dynamisis slow, one an extrat quantities suh as �e�(p) alsodiretly from the nonequilibrium quantum evolution byFourier transformation with respet to relative oordi-nates. The result is shown in Fig. 3 for t = 240 as afuntion of three-momentum p for di�erent values of thefrequeny ! � p0, with parameters as in Fig. 1. Formomenta larger than order unity �e�(p) tends to one.One observes that this holds if either p or ! is not small.Therefore, in this range the dynamis is well approxi-mated by the one- and two-loop expressions as displayedin Fig. 2 without the e�etive vertex. Most strikingly, forsmall four-momentum the in�nite series ofO(1) ontribu-tions add up to a substantially redued e�etive oupling.The latter is still slowly hanging in time and is shownto approah a power-law behavior in the following.For saling solutions the orrelators behave under si-multaneous saling p! sp and �! s� as [13℄:F (p) = s2+� F (sp) ;�(p) = s2 �(sp) ; (9)�e�(p) = s �e�(sp) :Similarly, we have GR(p) = s2GR(sp) and it follows that�R(p) = s��R(sp). Taking sp � 1 one onludes for� > 0 that �R(p) � 1 for p ! 0. Aording to (6) theinfrared saling behavior of the e�etive vertex in thisase is desribed by (9) with the exponent = �2� : (10)
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FIG. 3: The e�etive vertex at t = 240 as a funtion of spatialmomentum p for di�erent frequenies ! � p0.Using this saling behavior we �nd J (3)aa (p;�) =s0 J (3)aa (sp; s�) and J (4)aa (p; 0) = s� J (4)aa (sp; 0) suh thatJ (4)aa (p; 0) dominates the infrared dynamis. The �eld-dependent part J (4)aa (p;�)� J (4)aa (p; 0) sales as J (3)aa (p;�)sine �(p;�) = s���(sp; s�) in this regime.Aordingly, for the infrared we onsider solutions ofR d3pJ (4)aa (p0;p; 0) = 0. The integration over spatial mo-mentum allows us to solve this equation using generalizedZakharov transformations [10℄. In this way the problemis redued to simple algebrai onditions for the expo-nents. E.g., to map the seond term in the integrandsum of (8) onto the �rst we employ the transformationk0 ! p20=k0, q0 ! q0p0=k0, r0 ! r0p0=k0 as well asp! kp0=k0, k! pp0=k0, q! qp0=k0, r! rp0=k0, andsimilar for the third and fourth term. Using the salingproperties (9) the integrand vanishes if � = (4� )=3 or� = (5 � )=3. With (10) this yields two non-thermal�xed point solutions for the infrared saling behavior:� = 4 ; � = 5 : (11)We do not list lassial thermal solutions (� = 1,0), whih appear as a onsequene of the utuation-dissipation relation disussed above. We emphasize that(11) annot be obtained from a perturbative 2$ 2 sat-tering analysis [4, 10℄, whih we reover for vanishing .The size of the one-loop retarded self-energy (7) dis-tinguishes the low-momentum from a high-momentumregime. The latter is de�ned by �R(p) � 1 andin this range the e�etive vertex sales trivially ( =0) aording to (6) with �e� (p) ' 1. Therefore,at high momenta J (3)aa (p;�) = s2� J (3)aa (sp; s�) andJ (4)aa (p; 0) = s3� J (4)aa (sp; 0) suh that J (3)aa (p;�) domi-nates over J (4)aa (p; 0) for � > 0. The �eld-dependent partJ (4)aa (p;�)�J (4)aa (p; 0) sales in the same way as J (4)aa (p; 0)sine here �(p;�) = s0�(sp; s�). A similar analysis as
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FIG. 4: Oupation number as a funtion of momentum fordi�erent times. The solid line orresponds to t = 8000, alongwith �ts � jpj�4 for low and � jpj�3=2 for higher momenta.above yields for R d3pJ (3)aa (!;p;�) = 0 in this regime� = 3=2 : (12)Consequently, simulation results may be �tted by pertur-bative estimates down to rather low momenta [4℄.It remains to show that the nonequilibrium evolutionapproahes non-thermal �xed points. For this we fol-low the lassial-statistial evolution numerially to latetimes. Fig. 4 gives the oupation number n(t;p) as afuntion of three-momentum at di�erent times. We em-ploy N = 4 and a weak oupling � = 10�5 in order tokeep quantum orretions small. The latest time shownis represented by the solid line. For a region of momentaabove jpj & 1 the evolution is very well approximated bya power-law behavior n(t;p) � jpj�3=2 in agreement with(12). As time proeeds this region grows towards highermomenta, whih is indiated by the arrow in Fig. 4.Going to smaller momenta one �rst observes a transi-tion region as expeted from the above disussion. Theinfrared behavior is onsistent with a power-law that iswell approximated by � = 4. The evolution in this re-gion is very slow, as an be inferred from omparing tothe t = 3000 line, and getting an even better possibleagreement between numeris and analytis would be veryostly in omputational time. From the urrent data the� = 5 solution indiated in (11) is learly unfavored.Saling solutions govern the nonequilibrium dynam-is only if lassial-statistial utuations dominate [14℄.For initial onditions leading to instabilities the statis-tial utuations grow large. In this ase the systemapproahes non-thermal �xed points exhibiting ritialslowing down. Non-thermal �xed points are unstablewith respet to quantum orretions, whih eventuallylead to thermalization. The quantum evolution is dia-grammatially desribed by same topologies as displayedin Fig. 2 at NLO. However, pairs of propagators f(p)f(q)

in lassial equations (5) or (8) an be assoiated tof(p)f(q)+(�2=4)�(p)�(q) in the quantum theory [6℄. Theoupling does not drop out and no universal saling so-lutions appear if quantum orretions dominate.Non-thermal �xed points an exessively delay ther-malization. In the ontext of early universe reheatinga most onservative limit requires thermal equilibriumat a temperature of order 10 MeV before Big Bang Nu-leosynthesis. Even this might already rule out somevery weakly oupled inaton models [4℄, however, morerealisti models have to be onsidered inluding quan-tum orretions. In the ontext of heavy-ion ollisions,QCD plasma instabilities an lead to a regime with qual-itatively similar saling behavior [5℄. Classial simula-tions indiate possible fast isotropization due to instabil-ities in about 1-2 fm/ for low momenta of less than 1-2GeV [12℄. However, subsequent saling behavior leads tolarge isotropization times for higher momentum modesin this ase, whih seems inompatible with experimental�ndings. So far, the role of quantum orretions for thelower oupied high-momentum modes were not takeninto aount. The question of whether it is possible to�nd also an e�etive weak oupling in QCD, whih mayfailitate an analyti quantum desription, is exiting.We are indebted to Szabols Bors�anyi for many disus-sions and omputational help.[1℄ J. H. Trashen and R. H. Brandenberger, Phys. Rev.D 42 (1990) 2491. L. Kofman, A. D. Linde andA. A. Starobinsky, Phys. Rev. Lett. 73 (1994) 3195.[2℄ J. Berges and J. Serreau, Phys. Rev. Lett. 91 (2003)111601.[3℄ P. Arnold et al, Phys. Rev. Lett. 94 (2005) 072302.[4℄ R. Miha and I. I. Tkahev, Phys. Rev. Lett. 90 (2003)121301, ibid. Phys. Rev. D 70 (2004) 043538.[5℄ P. Arnold and G. D. Moore, Phys. Rev. D 73 (2006)025013.[6℄ J. Berges, Nul. Phys. A 699 (2002) 847. G. Aarts et al,Phys. Rev. D 66 (2002) 045008.[7℄ A. Arrizabalaga, J. Smit and A. Tranberg, JHEP 0410(2004) 017.[8℄ J. Berges, S. Borsanyi and J. Serreau, Nul. Phys. B 660(2003) 51.[9℄ G. Aarts, J. Berges, Phys. Rev. Lett. 88 (2002) 041603.[10℄ V. Zakharov, V. Lvov, and G. Falkovih, KolmogorovSpetra of Turbulene (Springer-Verlag, 1992).[11℄ G. Aarts, G. F. Bonini and C. Wetterih, Phys. Rev. D63 (2001) 025012.[12℄ J. Berges, S. She�er and D. Sexty, Phys. Rev. D inpress, arXiv:0712.3514 [hep-ph℄.[13℄ Symmetries allow a non-trivial dynamial exponent zwith F (p0;p) = s2+� F (szp0; sp) et. Our solutions areonsistent with z = 1 and we employ this. Keeping z ex-pliity the �xed point solutions (11) below read � = 3z+1and � = 4z+1 whih redue to the given values for z = 1.[14℄ Other approximate �xed points may also be present [11℄.
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