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Abstra
tIn this paper, we explore the appealing possibility that the strong suppression of large-sizeQCD instantons { as evident from latti
e data { is due to a surviving 
onformal spa
e-timeinversion symmetry. This symmetry is both suggested from the striking invarian
e of high-quality latti
e data for the instanton size distribution under inversion of the instanton size� ! h�i2=� and from the known validity of spa
e-time inversion symmetry in the 
lassi
alinstanton se
tor. We proje
t the instanton 
al
ulus onto the four-dimensional surfa
e of a�ve-dimensional sphere via 
onformal stereographi
 mapping, before investigating 
onformalinversion. This proje
tion to a 
ompa
t, 
urved geometry is both to avoid the o

uren
e ofdivergen
es and to introdu
e the average instanton size h�i from the latti
e data as a newlength s
ale. The average instanton size is identi�ed with the radius b of this 5d-sphere anda
ts as the 
onformal inversion radius. For b = h�i, our 
orresponding results are almostperfe
tly symmetri
 under spa
e-time inversion and in good qualitative agreement with thelatti
e data. For �=b ! 0 we re
over the familiar results of instanton perturbation theory in
at 4d-spa
e. Moreover, we illustrate that a (weakly broken) 
onformal inversion symmetrywould have signi�
ant 
onsequen
es for QCD beyond instantons. As a further su

essful testfor inversion symmetry, we present striking impli
ations for another instanton dominatedlatti
e observable, the 
hirality-
ip ratio in the QCD va
uum.

http://arXiv.org/abs/0804.4573v1


1 Setting the StageInstantons [1{3℄ represent a basi
 non-perturbative aspe
t of Yang-Mills theories in general andQCD in parti
ular. One of the most relevant and intriguing quantities within the instanton 
al
u-lus is the instanton size distribution or instanton density. It has �rst been derived for small-sizedinstantons via the va
uum-to-va
uum tunneling amplitude at the one-loop-level of instanton per-turbation theory in a seminal paper by 't Hooft [2, 3℄. The instanton size distribution has alsobeen measured in various latti
e simulations [4{8℄. Spe
i�
ally, we shall use throughout thispaper the high-statisti
s data by the UKQCD 
ollaboration [6,7℄ (
f. Fig. 1 ). For instanton sizes� smaller than � 0:35 fm, a parameter-free agreement with instanton perturbation theory hasbeen found [7℄, but a dramati
 disagreement appears most rapidly for somewhat larger instantons(
f. Fig. 1 ). In instanton perturbation theory, the weight of larger instantons is growing indef-initely, 
ausing the familiar infrared divergen
ies of the instanton 
al
ulus. Instead, the latti
edata exhibit a sharp peak around h�i � 0:6 fm and thereafter, exhibit a strong suppression of largeinstantons as is also physi
ally expe
ted. Altogether, a satisfa
tory understanding of the rôle oflarger-size instantons in the QCD-va
uum is de�nitely still la
king. It is parti
ularly intriguingthat the breakdown of instanton perturbation theory happens so rapidly and dramati
ally aroundthe appearan
e of the new length s
ale h�i �= 0:6 fm, 
orresponding to the peak position in the

Figure 1: UKQCD latti
e data [6,7℄ (open symbols) for the instanton size distribution, displayedsu
h as to suggest a virtually perfe
t inversion symmetry under � ! h�i2=� with h�i � 0:6 fm(open and solid data symbols �t onto one universal, symmetri
 
urve). The solid line 
orrespondsto the parameter-free predi
tion of instanton perturbation theory [7℄ using the latti
e result�MSnf=0 = (238� 19) MeV from the ALPHA 
ollaboration [9℄.2



latti
e data. It is thus 
learly worthwhile, to ask what kind of underlying physi
s 
ould give riseto su
h a rapid and dramati
 
hange of behaviour of the instanton density.The purpose of this paper is to dis
uss and to substantiate an appealing, possible explanation,whi
h was �rst proposed by one of us [10℄. The 
entral idea is that a residual symmetry under
onformal inversion of spa
e-time, x� ! x 0� = h�i2x2 x�; (1)might be at the root of prote
ting instantons of be
oming too large.First of all, as apparent from Fig. 1, the latti
e data [6℄ appear to be invariant under an inversionof the instanton size �, �, � 0 = h�i2� : (2)The reason for displaying the latti
e data in Fig. 1 versus ln(�=h�i) was to make the virtuallyperfe
t symmetry under an inversion (2) of � self-evident in the latti
e data. Both the open datasymbols, referring to the original data points, and the solid ones, involving inverted argumentsa

ording to Eq. (2), �t beautifully onto one universal, symmetri
 
urve.On the theoreti
al side, the possibility of su
h an inversion symmetry is parti
ularly appealing,sin
e it may well be a \reli
t" from the known 
onformal invarian
e of the whole instanton se
torat the 
lassi
al level [11, 12℄.Let us brie
y re
all some essential fa
ts about the symmetry under spa
e-time inversion (1) atthe 
lassi
al instanton level and why it may be rewritten as an inversion (2) of the instanton size.Indeed (
f. Appendix A), under a spa
e-time inversion (1) the familiar expression for the ve
torpotential of an SU(2) instanton in regular gauge, with gauge 
oupling g, 't Hooft 
oeÆ
ients [2℄��a�� and size �, Aa (I)reg� (x; �) = 2g ��a��x��2 + x2 ; (3)
hanges into that of an anti -instanton in singular gauge of size � 0 � h�i2=� [11℄,Aa (I) reg� (x; �)! A0 a (I) reg� (x 0; �) = �x��x0�Aa (I) reg� (x; �) = Aa (I) sing� (x 0; h�i2� ): (4)Using the 
orresponding 
onformal transformation law for the �eld strength tensor under aninversion (1),Ga (I) reg�� (x; �)! G0a (I) reg�� (x 0; �) = �x��x0� �x��x0�G��(x; �) = Ga (I) sing�� (x 0; h�i2� ) (5)one readily derives for the Lagrange density [10℄L(I) (x; �)! L(I) 0 (x 0; �) = L(I) �x 0; h�i2� � (6)3



The a
tion is of 
ourse invariant, sin
e it is independent of the instanton size and the same forinstantons and anti-instantons.Z d4x 0 L(I) 0 (x 0; �) = Z d4xL(�I)�x; h�i2� � = Z d4x L(I) (x; �) = 8�2g2 = SE: (7)Obviously in Eqs. (4,5,6), the 
oordinate inversion (1) has the e�e
t of just inverting the in-stanton size, apart from I ! I 
onjugation and 
hanging the gauge from regular $ singular.An invarian
e under instanton size inversion for the size distribution is exa
tly the symmetryindi
ated by the latti
e data (
f. Fig. 1). The I ! I 
onjugation is of no 
on
ern, sin
e the sizedistribution as simulated on the latti
e, is a sum of both, instantons and anti-instantons.The invarian
e under s
ale transformations (dilatation) is well-known to be broken at the quantumlevel via regularisation/renormalisation. While unbroken s
ale invarian
e would (nonsensi
ally)make any value of h�i physi
ally equivalent, its breaking signalled by the non-vanishing tra
e ofthe energy-momentum tensor, ��� / �h0 j �s� Ga 2�� j 0i 6= 0, suggests h�i � h0 j �s� Ga 2�� j 0i�1=4.Let us also re
all [13, 14℄ in this 
ontext the spe
ial rôle of the spa
e-time inversion Ib at someradius b. It a
ts as a dis
rete 
onformal transformation that 
annot be expressed in in�nitesimalform. Hen
e it 
annot be among the 15 generators of the 
onformal group. Yet the dilatationD� and the spe
ial 
onformal transformations K�� 
an be expressed by two inversions Ia; Ib ofdi�erent inversion radii and a translation T
� (from the Poin
ar�e subgroup) by a 4-ve
tor 
� ,Db=a = Ib Ia; (8)K
�=a = IaT
�Ia: (9)A

ording to Eq. (8), non-trivial s
ale transformations require the spa
e-time inversion symmetryto hold for arbitrary inversion radii. If the inversion radius is instead asso
iated with a physi
als
ale, the average instanton size h�i � 0:6 fm, s
ale transformations Db=a naturally drop out dueto a = b = h�i in Eq. (8), while the inversion Ih�i may well survive as a symmetry.Being de�ned via the va
uum-to-va
uum tunneling amplitude at the quantum level [2, 15℄, thefull instanton size distribution represents a diÆ
ult 
hallenge with regard to the question of
onformal spa
e-time inversion symmetry. Hen
e, a rigorous proof of the apparent � ! h�i2=�symmetry is beyond the s
ope of this investigation. Rather, in this paper, our line of atta
kis restri
ted to a detailed study of the zero-mode part of the size distribution, whi
h we argue
onstitutes the \dominating" sour
e of the �-dependen
e. Sin
e the zero-modes are 
losely relatedto the 
lassi
al instanton, there is indeed hope that the inversion symmetry is (approximately)preserved. Se
t. 2 
ontains the layout and justi�
ation of this underlying strategy. In this 
ontext,it is most en
ouraging that the instanton size distribution of supersymmetri
 Yang-Mills theoriesis known to be entirely given in terms of zero-modes [16℄.Se
t. 3 is 
entral to our approa
h and also 
ontains our main respe
tive results: We �rst proje
tthe instanton 
al
ulus onto the four-dimensional surfa
e of a �ve-dimensional sphere via 
onformalstereographi
 mapping, before investigating 
onformal inversion. On the one hand, this proje
tionto a 
ompa
t, 
urved geometry avoids the o

uren
e of divergen
es under spa
e-time inversion.On the other hand, it serves to introdu
e the average instanton size h�i from the latti
e data as4



a 
ru
ial length s
ale through its identi�
ation with the radius b of this 5d-sphere, a
ting as the
onformal inversion radius.In Se
t. 4, we shall brie
y dis
uss some dire
t, alternative eviden
e for spa
e-time inversion fromthe latti
e data for a 
ompletely independent (latti
e) observable, the 
hirality-
ip ratio RNS inthe QCD va
uum [17,18℄.The validity of our proposed inversion symmetry would allow to a

ess the non-perturbativeregime of large-size instantons (yet with small � 0 = h�i2=�) in terms of instanton perturbationtheory for instantons with small � 0. It may well have important 
onsequen
es beyond instantonphysi
s for QCD in general. This intriguing possibility will be addressed towards the end, inSe
t. 5.2 Inversion Symmetry at the Quantum Level?Sin
e the 
onformal spa
e-time inversion symmetry 
onne
ts the physi
s at short and long dis-tan
es, it appears very interesting to investigate its possible validity beyond the 
lassi
al instantonlevel in more rigorous terms. This se
tion and the following one are devoted to this non-trivialtask.Let us start from the va
uum-to-va
uum transition amplitude at one-loop level [2, 15℄ whi
hdire
tly determines the leading expression for the instanton size distribution d (��r; �s(�r)),h0j0i(I) = Z Yi d
iJ (
)Q (
) e� 2��s = Z d4zd��5 d (��r; �s(�r)) (10)with the integrations on the left of Eq. (10) extending over all 
olle
tive 
oordinates 
i 2 
 =fU; z�; �g, i.e. the 
olour orientation matri
es U , the position z� and the size � of the instanton.As detailed by Bernard [15℄ and apparent in Eq. (10), the size distribution fa
tors into 
ontribu-tions from zero modes and non-zero modes as follows.The quantity J (
) is the 
olle
tive-
oordinate Ja
obian and thus originates from the various zeromodes  (i) as, J (
) =  Yi 1p2�! (det U)1=2 =  Yi 1p2�! k (i)k1=2 (11)due to the orthogonality of the zero modes with normalisationsU ij = 2 Z d4xTr � (i)� (x) (j)�(x)� = Z d4x (i)�a  (j)�a = Æij k (i)k2 where  (i)� �  (i)�a �a2 ;k (i)k2 = 2 Z d4xTr � (i)� (x) (i)�(x)� : (12)5



The quantity Q (
) in Eq. (10) 
ontains the remaining determinants from Gaussian fun
tionalintegration taken over the non-zero mode parts as indi
ated by the primes.Q (
) � [det�1=2 M 0A(
) detMgh(
)℄A
l=A(I)[det�1=2M 0A det Mgh℄A
l=0 : (13)The resulting dimensionless size distribution d (��r; �s(�r)), as introdu
ed on the right of Eq. (10),is known [2, 3, 19℄ to take the following form for suÆ
iently small instanton sizes �,d (��r; �s(�r)) = �5 dn(I)d4z d� = C � 2��s(�r)�2N
 exp�� 2��s(�r)� (��r)b ; (14)with known, s
heme dependent 
onstant C, renormalisation 
onstant �r and exhibiting renormal-isation group invarian
e at1� loop level2� loop level � for b = � �0; �s(�r) = �1-loops (�r)�0 + (�1 � 4N
 �0) �s(�r)4� ; �s(�r) = �2-loops (�r): (15)in terms of the �rst two 
oeÆ
ients of the QCD �-fun
tion�0 = 113 N
 � 23nf ; �1 = 343 N2
 � �133 N
 � 1N
�nf : (16)The resulting � dependen
e at two-loop level is displayed in Fig. 1.We are now ready to present the strategy we are going to pursue.First of all, we know that the 
lassi
al instanton gauge �eld manifestly rea
ts to a spa
e-timeinversion with an instanton size inversion, � ! � 0 = h�i2=�. Se
ondly, zero modes are justderivatives of the 
lassi
al gauge �eld with respe
t to the 
olle
tive 
oordinates 
i (apart frompossible gauge transformations),  (i)� (x) � �A(I)� (x; 
)�
i : (17)Hen
e there are good reasons to hope that the size inversion symmetry is inherited by the entirezero mode 
ontribution to the instanton size distribution. This 
ru
ial part of the task will beexpli
itly studied further below. The result will formally not be restri
ted to small values of �.Thirdly, the instanton size distribution appears to be dominated by the zero mode (ZM) 
ontri-bution J(
) to exponential a

ura
y, sin
e 4N
 � N
=3 and sin
e from Eq. (14)d(��r; �s)1�loop / (�)�o = (�)4N
�N
3 = (�)4N
| {z }ZM part �5 J(
) � (�)� 13N
| {z }non-ZM part Q(
) : (18)In supersymmetri
 Yang-Mills theory, the zero mode part be
omes even more important1. In this
ase, the size-distribution d SUSY(��r; �s(�r)) is entirely determined by J(
), as was shown in [16℄,1We are grateful to Mikhail Shifman for pointing this out to one of us (F.S.).6



sin
e all non-zero mode 
ontributions 
an
el pre
isely to any order in perturbation theory, seealso [16, 20℄.Within the regime of instanton perturbation theory, the non-zero mode 
ontribution was �rstshown by 't Hooft [2℄ to yieldQ(
) / �4N
r � 1��r�N
3 SU(3)= �4N
r 1��r ; (19)Sin
e Q(
) be
omes infrared sensitive for large �, rigorous results about the e�e
ts of spa
e-timeinversion in Q(
) are beyond the s
ope of this paper. Hen
e, taking re
ourse to the argueddominan
e of the zero mode 
ontribution, we shall heuristi
ally 
arry along Q(
) / ��N
=3 = 1=�from Eq. (19) as a \
orre
tion" fa
tor for all values of �. This leads us to investigate the � !� 0 = h�i2=� symmetry for the following approximate form of the instanton size distributiond (��r; �s(�r)) / �5 J (�) �4N
r(�r�)N
=3 exp�� 2��s(�r)� ; (20)with the zero mode 
ontribution J(�) given via Eqs. (11, 12).Spe
ializing next to SU(3) instantons, we en
ounter four types of zero modes: one dilatationzero mode  (�)� (x), four translation zero modes  (z)� (x) and two types of 
olour zero modes2:three 
olour zero modes 
oming from the generators �1; �2; �3,  (a)� (x), and �nally four 
olourmodes 
oming from the remaining generators �4; :::; �7, denoted as  (�)� (x). All in all we have 12
olle
tive 
oordinates parameterising the instanton 
on�guration for an SU(3) gauge group. The
orresponding twelve zero modes are listed in Appendix B. Their normalisations [15℄ are given by1p2k (�)k = k (z)k = 1�p2k (a)k = 1�k (�)k =r2��s ; (21)yielding a total zero mode 
ontribution�5 J (
) = �5 k (�)k k (z)k4 k (a)k3 k (�)k4(2�)6= 124�6 �2��s�6 �12: (22)In order to study the behaviour of the zero mode part under 
onformal inversion, we have to applythe transformations of Eq. (72) and Eq.(73) in Appendix A to the normalisation integrals (12).But we en
ounter number of obvious de�
ien
ies from the start that require a basi
ally modi�edpro
edure.i) While the normalisation integrals of the inverted dilatation 
olour zero modes,  (�) 0� (x 0; �)and  (a) 0� (x 0; �), give a �nite result, the normalisations for the inverted translation zero2This is be
ause the generators �i, i = 1 : : : 7, of the gauge group SU(3) are grouped into di�erent multiplets(a triplet and two doublets) with respe
t to the SU(2) subgroup.7



modes  (z) 0� (x 0; �) and the inverted 
olour zero modes  (�) 0� (x 0; �) turn out to be divergent.Hen
e a suitable regularization pro
edure is obviously required before any further statements
an be made.ii) After appli
ation of a spa
e-time inversion transformation to the 
onvergent dilatation and
olour mode normalisation integrals, the � dependen
e is indeed modi�ed, yet the normali-sation integrals turn out not to be invariant under spa
e-time inversion. For example,k (a)(�)k ) k (a) 0(�)k =r4��s � 0 = k (a)(� 0)k 6= k (a)(�)k: (23)iii) From the latti
e data it is apparent that we �rst have to in
orporate the 
onspi
uousinstanton s
ale h�i into the framework, before we 
an hope for a satisfa
tory peak des
riptionof the instanton size distribution with a symmetry under �! h�i2=�. The simple monomialsin � from leading order of instanton perturbation theory (21) are 
ertainly inadequate.The next se
tion is devoted to an elegant resolution of these diÆ
ulties and requirements i)-iii).3 Implementing the Instanton S
ale h�iWe a
hieve the �niteness and invarian
e of all zero mode normalisation integrals under 
onformalspa
e-time inversion and the introdu
tion of the desired new s
ale h�i into the instanton 
al
ulusby proje
ting the 4-dimensional Eu
lidean spa
e onto the surfa
e of a sphere, embedded in 5-dimensional Eu
lidean spa
e [21, 22℄ via stereographi
 proje
tion3,x� ! ra = (r�; r5) ; (24)where r� = 2 h�i2 x�h�i2 + x2 ;r5 = h�i h�i2 � x2h�i2 + x2 ; (25)su
h that r2 = rara = r�r� + r25 = h�i2: (26)This mapping was done for the �rst time by Ja
kiw and Rebbi [11℄, where an O(5)-
ovariantinstanton 
al
ulus was developed. However, this was only possible by taking the radius of thespere to be equal to the size parameter � of the instanton. The 
ru
ial di�eren
e in our approa
hlies pre
isely in this radius: In our 
ase it meant to have a �xed, physi
al value. We identify the3From now on we will use Latin indi
es for the 5-dimensional spa
e whereas the Greek indi
es run as usualfrom 1 : : : 4. Hatted quantities were subje
t to a stereographi
 mapping, the prime denotes as before an inversionin Eu
lidean spa
e-time. 8
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Figure 2: Relation between inversion and stereographi
 proje
tion: The points P and Q de�ne the twodistan
es x and x 0, whi
h are related by the 
ondition of inversion, x2 x 0 2 = h�i4. As a 
onsequen
e,the proje
ted points P 0 and Q 0 di�er only in the sign of the 
oordinate r5. An inversion leads to anex
hange of the northern and southern hemisphere.radius of the sphere with the average size of an instanton: r2 = h�i2 � (0:6 fm)2. Of 
ourse, weshall also study the interesting limits h�i ! 0; 1 further below, in order to re
onne
t with theknown results of instanton perturbation theory.The sphere, being a 
ompa
t and 
urved manifold, will at the same time serve as regulator forthe divergent normalisation integrals. The stereographi
 proje
tion is a 
onformal transformationitself, 
orresponding to a s
ale fa
tor�sp(x; h�i) = (h�i2 + x2)24h�i4 : (27)The relation between the 4-dimensional Eu
lidean volume element and the area element on thehypersphere turns out to be quite remarkable:dA = 1�sp (x; h�i)2d4x= 16 h�i8(h�i2 + x2)4d4x: (28)We �nd that { apart from a multipli
ative 
onstant { the 
onformal fa
tor ��2sp (x; �) just equalsthe Lagrange density of an instanton in 4-dimensional 
at spa
e,L(I) = 2��s 6 �4(�2 + x2)4 ; (29)9



if the radius of the sphere 
orresponds to the instanton size �. This somewhat surprising relationis due to the fun
tional form of the instanton �eld and suggests that the 5-dimensional sphere isa natural environment for studying symmetry properties of instanton physi
s that are eventuallyhidden in Eu
lidean spa
e.The proje
tion of the instanton 
al
ulus onto the sphere is a straight forward appli
ation of therules of Eq.(72) and Eq.(73). The only di�eren
e being that here we go from four spa
e-time
oordinates to �ve spa
e-time 
oordinates plus one 
onstraint, whi
h requires some 
are wheninverse transformations are involved (see Appendix A).Let us also note that the entire set of the four translation zero modes in ba
kground gauge, hasthe form of the �eld strength tensor [15℄, (z�)� (x) = F��(x): (30)Nevertheless we are interested in the lengths of the four individual translational zero modes, ea
hrepresenting a ve
tor �eld. Thus only one spa
e-time index of the 
olle
tivity of translation zeromodes is a�e
ted by a 
onformal inversion (
f. Appendix A), (z� ) 0� (x 0) =p�inv(x)I �� (x) (z�)� (x); � = 1 : : : 4: (31)This puts the behaviour of normalisation integrals under inversion4 for all types of zero modes onthe same footing, and is in a

ordan
e with the 
omputation in [15℄, where the total 
ontributionin Eq.(22) is the produ
t of the indiviual twelve zero modes.Sin
e the stereographi
 proje
tion and the inversion are both 
onformal transformations, it is notsurprising that the 
onformal fa
tor �sp(x; h�i) transforms under inversion as�sp(x 0; h�i) = �sp(x; h�i)�inv(x; h�i) : (32)Due to Eq. (32), the area element (28) on the 5-dimensional sphere transforms under 
onformalinversion in Eu
lidean spa
e asdA 0 = d4x 0�2sp(x 0; h�i) = d4x�2inv(x; h�i) �2sp(x 0; h�i) = 1�sp (x; h�i)2d4x = dA (33)and is thus invariant.Let us stress that this result holds sin
e a

ording to our approa
h, the radius of the 5-dimensionalsphere was identi�ed with the radius of inversion5, i.e. the average instanton size h�i.We lift the zero modes, whi
h we have 
omputed in Eu
lidean spa
e �rst, by means of stereo-graphi
 proje
tion to the sphere. For the normalisation integrals of the zero modes proje
ted onthe sphere we have to evaluate the following expression applying Eq.(79),kb (�) k2 = 2 Z dA Tr h b a(r)b a(r)i= 2 Z d4x ��1sp (x; h�i) Tr [ �(x) �(x)℄ ; (34)4This applies a
tually to all 
onformal transformations, notably to stereographi
 proje
tions.5Relations for di�erent radii of sphere and inversion 
an be found in [23℄.10



and 
ompare now Eq. (34) to the normalisation integral of the inverted zero modes b 0 proje
tedonto a sphere with radius h�i. We �nd readilykb 0 (�) k2 = 2 Z dA 0 Tr h b 0a(r0) b a 0 (r0)i = 2 Z dA Tr h b a(r)b a(r)i = kb (�) k2 (35)due to dA 0 = dA from Eq. (33) and with the help of Eqs. (79, 32),Tr h b 0a(r0)b a 0 (r0)i = �sp(x 0; h�i) Tr � 0� (x 0) � 0 (x 0)� = �sp(x 0; h�i) �inv(x; h�i) Tr [ �(x) �(x)℄= �sp(x; h�i) Tr [ �(x) �(x)℄ = Tr h b a(r) b a(r)i : (36)Sin
e the radius of the sphere and the radius of inversion are equal, we �nd that all normalisationintegrals of the zero modes are invariant under 
onformal inversion. This en
ouraging fa
t is a
entral result of our approa
h. It notably implies a parti
ular form of the resulting � dependen
eof the zero mode 
ontribution, whi
h will be examined next. Another important impli
ation isthat the troublesome translation and 
olour zero modes,  (z)(x) and  (�)(x), now retain �nitenormalisation integrals under spa
e-time inversion.Next, let us turn to the 
ru
ial question: Does the invarian
e (35) of the total zero mode 
ontri-bution bJ(�) = 1(2�)6k b (�)k � kb (z)k4 � k b (a)k3 � kb (�)k4 (37)under spa
e-time inversion re
e
t in an instanton size distribution (20) [with �r � 1=h�i ℄ that is(approximately) invariant under inversion of the instanton size?To this end, we evaluate �rst the various types of zero mode norms individually, introdu
ing thedimensionless variable, � = �h�i ; (38)su
h that �! � 0 = h�i2� , �! 1� , ln(�)! � ln(�): (39)We �nd the following results on the sphere:Dilatation zero mode:kb (�)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (�)� (x) � (�)(x)� = 1��s Z d4x 48h�i4(h�i2 + x2)2 �2x2(�2 + x2)4= 16��s ��12�2 (1 + �2) ln (�)(�2 � 1)5 + (�4 + 10�2 + 1)(�2 � 1)4 � = 1�4 k b (�)( 1�)k2 (40)The fun
tional form of this normalisation integral is preserved up to a s
aling fa
tor for �. There-fore we �nd that � kb (�)(�)k = 1� k b (�)( 1�)k (41)is symmetri
 under inversion of �, 1=�, while k b (�)(�)k is not.11



Colour zero modes for �a; a = 1; 2; 3:kb (a)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (a)� (x) � (a)(x)� = 1��s Z d4x 48h�i4(h�i2 + x2)2 �4x2(�2 + x2)4= 16��s h�i2�2 ��12�2 (1 + �2) ln(�)(�2 � 1)5 + (�4 + 10�2 + 1)(�2 � 1)4 � = k b (a)( 1�)k2 (42)The 
olour zero modes are exa
tly symmetri
 under �, 1=�. Moreover, as in 
at 4-dimensionalspa
e, Eq. (21), they satisfy k b (a)(�)k = � kb (�)(�)k (43)Colour zero modes for ��; � = 4 : : : 7:kb (�)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (�)� (x) � (�)(x)� = 1��s Z d4x 16h�i4(h�i2 + x2)2 1(�2 + x2)3= 8��s h�i2�2 �4�2 (2 + �2) ln(�)(�2 � 1)4 � (1 + 5�2)(�2 � 1)3 � (44)For these 
olour zero modes, the fun
tional form of the normalisation integral 
hanges under aninversion of the instanton size and thus it is not symmetri
.Translation zero modes:kb (z)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (z)� (x) � (z)(x)� = 1��s Z d4x 48h�i4(h�i2 + x2)2 �4(�2 + x2)4= 8��s �12�4 (�2 + 3) ln(�)(�2 � 1)5 � (17�4 + 8�2 � 1)(�2 � 1)4 � = k b (z)( 1�)p�invk2 (45)The fun
tional form of this normalisation integral 
hanges under an inversion of �, thus this zeromode is not symmetri
 under the desired transformation.In Figs. 3 - 6, the normalisation integrals of the four di�erent types of zero modes are displayedversus ln (�). It is apparent at �rst sight that ex
ept for the 
olour zero modes  (a) shown in Fig. 4,the individual normalisation integrals are not manifestly symmetri
 fun
tions under instantonsize inversion �! 1=� i.e. ln (�)$ � ln (�). Yet we re
all that �k b (�)(�)k is symmetri
 as well.However, after evaluating the total zero mode 
ontribution �5 bJ(�) in Eq. (37), along with thenon-zero mode 
orre
tion fa
tor 1=� via Eq. (20), we �nd the following, very promising resultsdepi
ted in Fig. 7:� Unlike 
onventional instanton perturbation theory, larger sized instantons are strongly sup-pressed in qualitative a

ordan
e with the latti
e data (
f. Fig. 1) and general expe
tations.12



0

5

10

15

20

25

30

-4 -2 0 2 4

PSfragrepla
ements
ln (�)

kb  (�) k
Figure 3: Dilatation zero mode 0

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2 3 4

PSfragrepla
ements
ln (�)kb  (a) kÆ h�i

Figure 4: Colour zero modes �a
0

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2 3 4

PSfragrepla
ements
ln (�)kb  (�) kÆ h�i
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Figure 6: Translation zero modes� Despite the fa
t that some zero mode norms are asymmetri
 under �$ 1=�, the total zeromode 
ontribution �5 bJ(�) times the 1=� non-zero mode 
orre
tion leads nonetheless to aninstanton size distribution (20) that appears strikingly symmetri
 under this instanton sizeinversion after a slight res
aling �! 1:19�; (46)� Fig. 7 (right) illustrates impressively that the size distribution on the sphere and the inverteddistribution are almost indistinguishable over fourteen orders of magnitude!� The slight res
aling fa
tor (46) ofO(1) might well �nd an explanation as a s
heme-dependen
ee�e
t within renormalisation-group 
onsiderations as in Se
t. 5Let us dis
uss next some important analyti
al properties and limits of the total zero mode part�5 bJ(�).h�i7. Sin
e the latter depends only on �, the following two interesting interpretations ofthe limit �! 0 are identi
al with respe
t to our results:�! 0 : � The radius h�i of the sphere tends to in�nity for �xed instanton size �.The instanton size � tends to zero for �xed radius h�i of the sphere.Limit of small instantons on the sphere:�! 0 , h�i ! 1; � �xed , �! 0; h�i �xed to its physi
al value (47)13
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Figure 7: (Left): Total zero mode 
ontribution �5 bJ(�)Æh�i7 times 1=� on the sphere, as rele-vant for the instanton size distribution d(��r; �s) in Eq. (20). As abs
issa, we use ln (�=1:19) =ln (�=(1:19 h�i)) to make small deviations from a perfe
t size inversion symmetry for �=1:19 $1:19=� self-evident. Line1 and Line2 display the results versus �=1:19 and 1:19=�, respe
tively.(Right): Same plot, but using a logarithmi
 ordinate, to demonstrate the high degree of inversionsymmetry over fourteen orders of magnitude, with Line1 and Line2 being visually indistinguish-able!For h�i ! 1; � �xed, we re
over the same values for the zero mode normalisations as in 
atEu
lidean spa
e (
f. Eq. (22)), apart from an additional fa
tor of 2 for every zero mode normali-sation. It 
omes from the 
onformal fa
tor of the stereographi
 proje
tion:b a b a = 4 h�i4(h�i2 + x2)2 � � h�i!1= 4 � � (48)The zero mode part �5 bJ(�) rises as O (�12) for small instantons in perfe
t agreement with instan-ton perturbation theory in 
at Eu
lidean spa
e (22). As it should be in this regime of 
onventionalinstanton perturbation theory, any dependen
e of the size distribution on the new instanton s
aleh�i drops out in this limit.Limit of large instantons on the sphere:�!1 , h�i ! 0; � �xed , �!1; h�i �xed to its physi
al value (49)We �nd that �5 bJ(�) de
reases like O (1=�12), i.e. it de
reases with the the same power as in theprevious 
ase, 
orresponding to asymptoti
 instanton size inversion symmetry!Limit for � = 1: This 
orresponds to the 
ase of h�i = �, whi
h was 
onsidered in Refs. [11,24℄.The expansion of �5 bJ(�) about � = 1 reprodu
es these well-known results, as expe
ted.14



4 Conformal Inversion and the Chirality-
ip RatioIt is 
learly desirable to have another independent and preferably dire
t test of 
onformal inversionsymmetry besides the instanton size distribution (
f. Fig. 1). In this se
tion we shall brie
yin
lude an interesting su
h possibility from ongoing work [25℄.If instantons are the dominant sour
e of non-perturbative intera
tions in the QCD va
uum, thenone should be able to observe that light quarks (zero modes) 
ip their 
hirality ea
h time they
ross the �eld of an instanton. Therefore, in Refs. [17, 18℄, the following 
hirality-
ip ratio RNSwas introdu
ed as fun
tion of Eu
lidean time t,RNS(t) � ANS
ip(t)ANSnon-
ip(t) = ��(t)� �Æ(t)��(t) + �Æ(t) ; (50)in terms of the 
avour non-singlet (NS) pseudo-s
alar and s
alar two-point 
orrelators,��(t) = h0 j J�(t) Jy�(0) j 0i; J�(x) = u(x)i
5d(x);�Æ(t) = h0 j JÆ(t) JyÆ (0) j 0i; JÆ(x) = u(x) d(x): (51)Noti
e that the ratio RNS(t) must vanish as t ! 0 (no 
hirality 
ips), and must approa
h 1 ast!1 (in�nitely many 
hirality 
ips).These 
hara
teristi
 predi
tions for the 
hirality-
ip ratio have been 
he
ked on the latti
e inRef. [18℄ (within the quen
hed approximation). The results displayed in Fig. 8, indeed provideimpressive eviden
e for instanton dominan
e, as was dis
ussed in detail in Ref. [18℄.After these prerequisites, let us turn next to the important question whether these latti
e data forRNS, might show eviden
e for 
onformal spa
e-time inversion symmetry at work? We expe
t thefollowing general time inversion law for a s
alar observable [26℄ with 
onformal s
aling dimension �RNS (t) = � thti�2� RNS�hti2t � : (52)� 
an be immediately �xed from the two general requirements that RNS(t) approa
hes a non-vanishing 
onstant (= 1 ) for large t, while { within an instanton framework { it vanishes / t6for t ! 0, due to the known behaviour of (the square of) the non-zeromode propagator in thedenominator of the 
hirality-
ip ratio (50). We then immediately infer from the ansatz (52),� = 3: (53)In Fig. 8, the predi
tion ( t=hti )6 RNS (hti2=t) from 
onformal inversion (52) with � = 3, andinvoking the latti
e data at large t values (t >� hti � 0:45 fm), is overlaid on the latti
e data forsmall t <� hti.Apparently, the agreement is virtually perfe
t and thus supports strongly the validity of 
onformalspa
e-time inversion. Note that this is not only an independent test using dire
tly latti
e data,but also it probes for the �rst time 
onformal inversion properties in the fermioni
 se
tor.15



Figure 8: Alternative test of 
onformal (spa
e-) time inversion symmetry for t! hti2=t, a

ordingto Eqs. (50, 52) for the 
hirality-
ip 
orrelator RNS(t), using dire
tly (quen
hed) latti
e data fromRef. [18℄. The abs
issa denotes Eu
lidean time in fermi. The agreement of the dire
t and overlaiddata provides strong eviden
e that 
onformal (spa
e-)time inversion holds also in the fermioni
se
tor.5 Impli
ations beyond InstantonsIn this se
tion, we shall argue that the advo
ated �! h�i2=� inversion symmetry of the instantonsize distribution will a�e
t the form of �s, and thus has impli
ations for QCD in general.With the size distribution being a (latti
e) observable, it must be renormalisation-group invariant.Indeed, for the perturbative expression Eq. (14), one �nds at the two-loop level, with �s(�r) =�2-loops (�r),exp�� 2��s(�r)� (��r)�0+�1 �s(�r)4� = exp � 2��s(1�)! �1 +O(�2s(�r) ln(��r)2� ;� 2��s(�r)�2N
 (��r)�4N
 �0 �s(�r)4� =  2��s(1�)!2N
 �1 +O(�2s(�r) ln(��r)2� : (54)Hen
e, at two-loop level, the perturbative instanton size distribution (14) may be rewritten in
16



manifestly renormalisation group invariant form,d (��r; �s(�r)) = d�1; �s(1�)� = C 2��s(1�)!2N
 exp � 2��s(1�)! = �5 dn(I)d4z d� (55)with all � dependen
e now residing in the running 
oupling �s(1�). Next, we follow Ref. [7℄ andde�ne a (non-perturbative) \instanton s
heme" for the running 
oupling,�Is(1�) = �MSs (sI� ) � �s (sI� ); (56)by the requirement that the perturbative expression (14) of the density, involving the two s
heme-independent �-fun
tion 
oeÆ
ients �0; �1, remains valid for all values of �Is. Surprisingly, the formof �MSs ( sI� ), impli
itly de�ned by this pres
ription and dire
tly extra
ted from a 
omparison withthe UKQCD data [6,7℄ for the instanton size distribution (
f. Fig. 1), showed a (
on�ning) Cornellform �s � 34 � �2 + : : : for �>�h�i with string tension p� � 472 MeV, while beautifully agreeingwith the 3-loop perturbative form of �MSs for �<�h�i. In addition, the resulting s
ale fa
tor [7℄,sI = �MS=�I � 1:18 = O(1), puts the "instanton s
heme" very 
lose to the MS s
heme in theperturbative regime!After these relevant prerequisites, let us 
ombine the requirements of renormalisation-group invari-an
e (55) and 
onformal spa
e-time invarian
e of the instanton size distribution d (��r; �s(�r)),d�1; �Is(1�)� = �h�i� �2� d�1; �Is( �h�i2 )� : (57)In the present more general 
ontext, and in analogy to Eq. (52) of the pre
eeding se
tion 4, wehave allowed for a (small) non-vanishing 
onformal s
aling dimension � that may balan
e theremaining un
ertainty 
on
erning the infrared behaviour of the non-zero mode part Q(
) (
f.Eq. (19)). With the form (55) in the "instanton s
heme", Eq. (57) implies the relation, 2��Is(1�)!2N
 exp(� 2��Is(1�)) = �h�i� �2�  2��Is( �h�i2 )!2N
 exp(� 2��Is( �h�i2 )); (58)the solution of whi
h relates the running 
oupling �s in the asymptoti
ally free (�<�h�i) and
on�ning regimes (�>�h�i)!The solution for �Is(1=�) in terms of �Is(�=h�i2) takes a simple and intriguing form,��Is � 1�� N
 = �W  � ��Is( �h�i2 )N
 exp"� ��Is( �h�i2 )N
#�h�i� � �N
! ; (59)involving the Lambert W fun
tion [27℄,W (x) eW (x) = x; with two real bran
hes W0(x) and W�1(x) for � 1=e � x < 0; (60)satisfying W0(�1=e) = W�1(�1=e) = �1: (61)17



Note that for x! 0� : � W0(x) � x� x2 +O(x3)! 0; (prin
ipal bran
h )W�1(x) � ln(�x)� ln(� ln(�x)) : : :! �1: (62)The solution (59) exhibits a number of remarkable features to whi
h we turn next.First of all, let us insert the leading, asymptoti
ally free expression of the running 
oupling forlarge � > h�i, �Is( �h�i2 ) � 2��0 1log( �h�i2 �I ) + : : : ; (63)into the r.h.s of the inversion-symmetry solution (59). With the assignment [10℄� = N
6 SU(3)= 12 ; (64)of the 
onformal s
aling dimension (57) and the asymptoti
s (62) of W0(x) for x ! 0�, we �ndon
e more a Cornell form of the running 
oupling for large ��Is(1�)N
� � 611 1[h�i�I ℄11=6 ln� �h�i2�I � � �h�i�2 � 1 + o �h�i� �2! ; (65)signalling 
on�nement. In Ref. [7℄, numeri
al agreement with a Cornell form for �Is was observedafter solving Eq. (55) for �Is(1=�) in terms of the UKQCD latti
e data [6,7℄ for �5 dn(I)d4z d� . Here, weobtained the same result in analyti
al form, only from 
onformal inversion symmetry (59) andthe known short-distan
e behaviour of �s.The non-vanishing 
onformal s
aling dimension (64) implies a slight deviation from the simplestassumption (19) of a uniform 
orre
tion to the � dependen
e via the non-zero mode fa
tor Q(
)in the size distribution. At short distan
es (small �), the inversion law (57) together with � fromEq. (64), 
orresponds to the perturbative 
orre
tion Q � (�r �)�N
=3 as in Eq. (19). However, atlong distan
es (large �), the �-dependen
e arises only from the 
al
ulable zero-mode part J(
),like in supersymmetri
 Yang-Mills theory [16℄.Moreover, we note that with the above s
aling dimension (64), � / N
, the solution (59) onlydepends on the 't Hooft 
oupling [28℄, g2s N
 / �sN
, su
h that it remains un
hanged in the largeN
 limit.For � = h�i, Eq. (59) may be solved for it's only unknown ��Is(1=h�i)N
 , along with the mat
hing
ondition u � �W0(�u e�u) = �W�1(�u e�u); where u = ��Is � 1h�i� N
 : (66)One �nds the unique solution (due to Eq. (61)),�Is � 1h�i� N
� = �MSs � sIh�i� N
� = 1; (67)18



that indeed mat
hes the peak position of the instanton size distribution (55), i.e. dd�Is d(1; �Is) = 0,as fun
tion of �Is(1�).Last not least, one may write down an oversimpli�ed but exa
t 
losed solution of Eq. (59),�Is(1�) = 2 ��0 (1� � �h�i�2)ln( h�i� ) ; � � 1h�i ; (68)whi
h follows upon requiring in addition to Eq. (59) the inversion symmetry,� �h�i2� �Is � �h�i2� = �1�� �s�1�� : (69)Despite it's simplisti
 form, Eq. (68) has no Landau pole for �! h�i, exhibits the 
orre
t asymp-toti
 freedom behaviour for �) 0, as well as a Cornell form (65) for large �. The peak normaliza-tion 
ondition (67) only holds approximately, �Is(1=h�i)N
=� = 12=11 � 1, but 
an be satis�edwith a slightly more 
omplex limiting pro
ess. Amazingly, this (1-loop) form (68) of �s existsalready in the literature [29℄, but originated from an entirely di�erent reasoning. It appearedas the appropriate (1-loop) running 
oupling without a Landau pole in a renormalisation-groupimproved variant of Shirkov's \analyti
 perturbation theory" [30℄.6 Con
lusionsIn the present investigation, we have studied the appealing possibility that the strong suppressionof large-size QCD instantons { as evident from latti
e data { is due to a surviving 
onformal spa
e-time inversion symmetry.We started from the known fa
t that the 
lassi
al instanton se
tor is 
onformally invariant andnotably also invariant under 
onformal spa
e-time inversion x� ! x 0� = b2x2 x�. Sin
e the lattera
ts non-in�nitesimally like a dis
rete symmetry transformation, it is not a generator of the
onformal group. Yet all 
onformal generators 
an be 
omposed of an even number of inversionsand generators of the Poin
ar�e subgroup. This inversion symmetry is both suggested from thestriking invarian
e of high-quality latti
e data for the instanton size distribution under inversionof the instanton size �! h�i2=� (
f. Fig. 1) and from the known validity of spa
e-time inversionsymmetry in the 
lassi
al instanton se
tor.Our theoreti
al line of atta
k in this paper was restri
ted to a detailed study of the zero-mode partof the instanton size distribution, whi
h we have argued to 
onstitute the "dominating" sour
e ofthe �-dependen
e. In this 
ontext, it is most en
ouraging that the instanton size distribution ofsupersymmetri
 Yang-Mills theories is known to be entirely given in terms of zero-modes [16℄.A main theoreti
al step 
onsisted in performing a 
onformal stereographi
 proje
tion of the in-stanton 
al
ulus in 
at Eu
lidean spa
e to the 4-dimensional surfa
e of a 5-dimensional sphere.This way, we have a
hieved several bene�ts at on
e.19



� All zero-mode normalisation integrals on the sphere remained �nite under spa
e-time inver-sion, sin
e the sphere represents a 
ompa
t, 
urved geometry.� The identi�
ation of the sphere radius b � h�i provided a natural way of introdu
ing the
ru
ial physi
al s
ale h�i into the instanton 
al
ulus. It a
ts as the 
onformal inversionradius.� On the sphere surfa
e, the normalization integrals all turned out to be invariant underspa
e-time inversion due to a "fortunate 
ooperation" of the s
ale fa
tors asso
iated withboth the 
onformal stereographi
 proje
tion and spa
e-time inversion.� While the zero-mode normalizations k b (a)k; a = 1; 2; 3 (
olour) and �=h�i kb (�)k (dilatation)are indeed manifestly symmetri
 under �! h�i2=�, the remaining zero-mode norms are not.However the produ
t of all of them, as entering the instanton size distribution, is symmetri
to an impressively high degree. Altogether, the resulting shape due to the produ
t of zero-modes is in good qualitative agreement with the latti
e data (
f. Fig. 1, Fig. 7), stronglysuppressing large-size instantons!� The present formulation on the sphere allowed to study various limits of theoreti
al interest,whi
h underligned the 
onsisten
y of the present approa
h: notably, the limit �=h�i ! 0may either be viewed as a "
at-spa
e" limit (sphere radius h�i ! 1) with instanton size� kept �xed, or as the small instanton limit (�! 0) with the sphere radius h�i kept �xed.Irrespe
tively, for �=h�i ! 0, we re
over the familiar results of instanton perturbation theoryin 
at 4-dimensional Eu
lidean spa
e.As important, independent and dire
t further support for 
onformal inversion symmetry at work,we presented the striking eviden
e from a latti
e simulation of the 
hirality-
ip ratio RNS in theQCD va
uum as fun
tion of Eu
lidean time [17, 18℄.Finally, we explored some striking 
onsequen
es of 
onformal spa
e-time inversion symmetrybeyond instantons, i.e. for QCD in general. It implied a general relation between the running
oupling at short and long distan
es. From the familiar input of asymptoti
 freedom at shortdistan
es, we found a Cornell form �Is(1=�) / � �2 at long distan
e, signalling 
on�nement.A
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Appendix A: Conformal TransformationsIn this paper we 
onsider a
tive 
onformal transformations [26, 31, 32℄ throughout,g��(x) �x��x0� �x��x0� = �(x) g��(x 0) = g 0��(x 0); (70)where �(x) is 
alled 
onformal or s
ale fa
tor.The 
onformal inversion, x� ! x 0� = b2x2x�; (71)is the relevant transformation for our approa
h. b is 
alled the radius of inversion. The s
alefa
tor is given as �(x)inv = x4=b4. The transformation law for a 
ovariant ve
tor �eld under ana
tive transformation is given byA 0�(x 0) = �x��x0�A�(x) =p�(x)I �� (x)A�(x); (72)whereas the 
orresponding 
ontravariant ve
tor �eld has to transform as [31℄,A0�(x 0) = �(x)�x0��x� A�(x) =p�(x)I��(x)A�(x); (73)where the s
ale fa
tor �(x) appears when pulling up the index with the metri
 tensor6. Thetensor [14℄ I �� (x) = 1p�(x) �x��x 0� : (74)satis�es in Eu
lidean spa
e-time I��(x)I��(x) = Æ��: (75)For a 
onformal spa
e-time inversion it is given byI inv�� (x) = Æ�� � 2 x�x�x2 : (76)Furthermore the length of a ve
tor is not invariant under 
onformal transformations, in fa
t it isstret
hed by the s
ale fa
tor, A0�(x 0)A 0�(x 0) = �(x)A�(x)A�(x): (77)The generalisation to se
ond order tensors is straight forward. The volume element 
hangesa

ording to d4x 0 = d4x�2(x) : (78)6In the 
ase of a passive transformation this fa
tor would not be in
luded.21



Transformation rules for stereographi
 proje
tionbAa = �(x)sp �ra�x�A�(x);bAa = � ��ra � 1h�i2 ra(r � �)� (x�)A�(x);bAa(r) bAa(r) = �(x)sp A�(x)A�(x);ra bAa(r) = 0: (79)
The stereographi
 proje
tion is done in su
h a way that this 
onstraint 
omes naturally with thetransformation rules to ensure that the proje
ted ve
tor �elds indeed stay on the sphere.Appendix B: Zero modes for SU(3)For 
ompleteness, we list here the twelve SU(3) zero modes as derived by Bernard [15℄ and usedin this paper.An SU(3) instanton is obtained by embedding the SU(2) instanton into the "upper-left-hand
orner" of the fundamental representation of SU(3). Thus, in singular gauge, an SU(3) instantontakes the form A(I)� (x) = 1p��s ��a��x�x2 (�2 + x2) �a2 ; (80)where �a are the �rst three Gell-Mann matri
es and ��a�� are the 't Hooft 
oeÆ
ients [2℄ for SU(2).Latin indi
es a and b run from 1 to 3 and Greek indi
es � and � are spa
e-time indi
es runningfrom 1 to 4.The zero modes are in ba
kground gauge with respe
t to the 
lassi
al instanton �eld,D
l� (i)� = �� (i)� � ip4��s �A(I)� ;  (i)� � = 0: (81)Dilatation zero mode:  (�)� (x) = 2p��s � ��a�� x�(x2 + �2)2 �a2 (82)Colour zero modes for generators �a; a = 1; 2; 3: (a)� (x) = 12p��s �2(x2 + �2)2�2x��a � i ��b��x� [�b; �a℄�: (83)Colour zero modes for generators ��; � = 4; 5; 6; 7: (�)� = 12p��s �2(x2)1=2(x2 + �2)3=2 �x��� � i ��b�� x� [�b; ��℄� (84)Here �� denote the four Gell-Mann matri
es �4 : : : �7.22



Translation zero modes: (z�)� (x) = �A(I)� (x� z)�z� ���z=0 +D
l� (A(I)� (x))= ���A(I)� (x) + ��A(I)� (x) + ip4��s[A(I)� (x); A(I)� (x)℄= � 4p��s �2(�2 + x2)2 �x�x�x2 � 14Æ��� ��a�� �a2 � (�$ �)= F��(x): (85)
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