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AbstratIn this paper, we explore the appealing possibility that the strong suppression of large-sizeQCD instantons { as evident from lattie data { is due to a surviving onformal spae-timeinversion symmetry. This symmetry is both suggested from the striking invariane of high-quality lattie data for the instanton size distribution under inversion of the instanton size� ! h�i2=� and from the known validity of spae-time inversion symmetry in the lassialinstanton setor. We projet the instanton alulus onto the four-dimensional surfae of a�ve-dimensional sphere via onformal stereographi mapping, before investigating onformalinversion. This projetion to a ompat, urved geometry is both to avoid the ourene ofdivergenes and to introdue the average instanton size h�i from the lattie data as a newlength sale. The average instanton size is identi�ed with the radius b of this 5d-sphere andats as the onformal inversion radius. For b = h�i, our orresponding results are almostperfetly symmetri under spae-time inversion and in good qualitative agreement with thelattie data. For �=b ! 0 we reover the familiar results of instanton perturbation theory inat 4d-spae. Moreover, we illustrate that a (weakly broken) onformal inversion symmetrywould have signi�ant onsequenes for QCD beyond instantons. As a further suessful testfor inversion symmetry, we present striking impliations for another instanton dominatedlattie observable, the hirality-ip ratio in the QCD vauum.
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1 Setting the StageInstantons [1{3℄ represent a basi non-perturbative aspet of Yang-Mills theories in general andQCD in partiular. One of the most relevant and intriguing quantities within the instanton alu-lus is the instanton size distribution or instanton density. It has �rst been derived for small-sizedinstantons via the vauum-to-vauum tunneling amplitude at the one-loop-level of instanton per-turbation theory in a seminal paper by 't Hooft [2, 3℄. The instanton size distribution has alsobeen measured in various lattie simulations [4{8℄. Spei�ally, we shall use throughout thispaper the high-statistis data by the UKQCD ollaboration [6,7℄ (f. Fig. 1 ). For instanton sizes� smaller than � 0:35 fm, a parameter-free agreement with instanton perturbation theory hasbeen found [7℄, but a dramati disagreement appears most rapidly for somewhat larger instantons(f. Fig. 1 ). In instanton perturbation theory, the weight of larger instantons is growing indef-initely, ausing the familiar infrared divergenies of the instanton alulus. Instead, the lattiedata exhibit a sharp peak around h�i � 0:6 fm and thereafter, exhibit a strong suppression of largeinstantons as is also physially expeted. Altogether, a satisfatory understanding of the rôle oflarger-size instantons in the QCD-vauum is de�nitely still laking. It is partiularly intriguingthat the breakdown of instanton perturbation theory happens so rapidly and dramatially aroundthe appearane of the new length sale h�i �= 0:6 fm, orresponding to the peak position in the

Figure 1: UKQCD lattie data [6,7℄ (open symbols) for the instanton size distribution, displayedsuh as to suggest a virtually perfet inversion symmetry under � ! h�i2=� with h�i � 0:6 fm(open and solid data symbols �t onto one universal, symmetri urve). The solid line orrespondsto the parameter-free predition of instanton perturbation theory [7℄ using the lattie result�MSnf=0 = (238� 19) MeV from the ALPHA ollaboration [9℄.2



lattie data. It is thus learly worthwhile, to ask what kind of underlying physis ould give riseto suh a rapid and dramati hange of behaviour of the instanton density.The purpose of this paper is to disuss and to substantiate an appealing, possible explanation,whih was �rst proposed by one of us [10℄. The entral idea is that a residual symmetry underonformal inversion of spae-time, x� ! x 0� = h�i2x2 x�; (1)might be at the root of proteting instantons of beoming too large.First of all, as apparent from Fig. 1, the lattie data [6℄ appear to be invariant under an inversionof the instanton size �, �, � 0 = h�i2� : (2)The reason for displaying the lattie data in Fig. 1 versus ln(�=h�i) was to make the virtuallyperfet symmetry under an inversion (2) of � self-evident in the lattie data. Both the open datasymbols, referring to the original data points, and the solid ones, involving inverted argumentsaording to Eq. (2), �t beautifully onto one universal, symmetri urve.On the theoretial side, the possibility of suh an inversion symmetry is partiularly appealing,sine it may well be a \relit" from the known onformal invariane of the whole instanton setorat the lassial level [11, 12℄.Let us briey reall some essential fats about the symmetry under spae-time inversion (1) atthe lassial instanton level and why it may be rewritten as an inversion (2) of the instanton size.Indeed (f. Appendix A), under a spae-time inversion (1) the familiar expression for the vetorpotential of an SU(2) instanton in regular gauge, with gauge oupling g, 't Hooft oeÆients [2℄��a�� and size �, Aa (I)reg� (x; �) = 2g ��a��x��2 + x2 ; (3)hanges into that of an anti -instanton in singular gauge of size � 0 � h�i2=� [11℄,Aa (I) reg� (x; �)! A0 a (I) reg� (x 0; �) = �x��x0�Aa (I) reg� (x; �) = Aa (I) sing� (x 0; h�i2� ): (4)Using the orresponding onformal transformation law for the �eld strength tensor under aninversion (1),Ga (I) reg�� (x; �)! G0a (I) reg�� (x 0; �) = �x��x0� �x��x0�G��(x; �) = Ga (I) sing�� (x 0; h�i2� ) (5)one readily derives for the Lagrange density [10℄L(I) (x; �)! L(I) 0 (x 0; �) = L(I) �x 0; h�i2� � (6)3



The ation is of ourse invariant, sine it is independent of the instanton size and the same forinstantons and anti-instantons.Z d4x 0 L(I) 0 (x 0; �) = Z d4xL(�I)�x; h�i2� � = Z d4x L(I) (x; �) = 8�2g2 = SE: (7)Obviously in Eqs. (4,5,6), the oordinate inversion (1) has the e�et of just inverting the in-stanton size, apart from I ! I onjugation and hanging the gauge from regular $ singular.An invariane under instanton size inversion for the size distribution is exatly the symmetryindiated by the lattie data (f. Fig. 1). The I ! I onjugation is of no onern, sine the sizedistribution as simulated on the lattie, is a sum of both, instantons and anti-instantons.The invariane under sale transformations (dilatation) is well-known to be broken at the quantumlevel via regularisation/renormalisation. While unbroken sale invariane would (nonsensially)make any value of h�i physially equivalent, its breaking signalled by the non-vanishing trae ofthe energy-momentum tensor, ��� / �h0 j �s� Ga 2�� j 0i 6= 0, suggests h�i � h0 j �s� Ga 2�� j 0i�1=4.Let us also reall [13, 14℄ in this ontext the speial rôle of the spae-time inversion Ib at someradius b. It ats as a disrete onformal transformation that annot be expressed in in�nitesimalform. Hene it annot be among the 15 generators of the onformal group. Yet the dilatationD� and the speial onformal transformations K�� an be expressed by two inversions Ia; Ib ofdi�erent inversion radii and a translation T� (from the Poinar�e subgroup) by a 4-vetor � ,Db=a = Ib Ia; (8)K�=a = IaT�Ia: (9)Aording to Eq. (8), non-trivial sale transformations require the spae-time inversion symmetryto hold for arbitrary inversion radii. If the inversion radius is instead assoiated with a physialsale, the average instanton size h�i � 0:6 fm, sale transformations Db=a naturally drop out dueto a = b = h�i in Eq. (8), while the inversion Ih�i may well survive as a symmetry.Being de�ned via the vauum-to-vauum tunneling amplitude at the quantum level [2, 15℄, thefull instanton size distribution represents a diÆult hallenge with regard to the question ofonformal spae-time inversion symmetry. Hene, a rigorous proof of the apparent � ! h�i2=�symmetry is beyond the sope of this investigation. Rather, in this paper, our line of attakis restrited to a detailed study of the zero-mode part of the size distribution, whih we argueonstitutes the \dominating" soure of the �-dependene. Sine the zero-modes are losely relatedto the lassial instanton, there is indeed hope that the inversion symmetry is (approximately)preserved. Set. 2 ontains the layout and justi�ation of this underlying strategy. In this ontext,it is most enouraging that the instanton size distribution of supersymmetri Yang-Mills theoriesis known to be entirely given in terms of zero-modes [16℄.Set. 3 is entral to our approah and also ontains our main respetive results: We �rst projetthe instanton alulus onto the four-dimensional surfae of a �ve-dimensional sphere via onformalstereographi mapping, before investigating onformal inversion. On the one hand, this projetionto a ompat, urved geometry avoids the ourene of divergenes under spae-time inversion.On the other hand, it serves to introdue the average instanton size h�i from the lattie data as4



a ruial length sale through its identi�ation with the radius b of this 5d-sphere, ating as theonformal inversion radius.In Set. 4, we shall briey disuss some diret, alternative evidene for spae-time inversion fromthe lattie data for a ompletely independent (lattie) observable, the hirality-ip ratio RNS inthe QCD vauum [17,18℄.The validity of our proposed inversion symmetry would allow to aess the non-perturbativeregime of large-size instantons (yet with small � 0 = h�i2=�) in terms of instanton perturbationtheory for instantons with small � 0. It may well have important onsequenes beyond instantonphysis for QCD in general. This intriguing possibility will be addressed towards the end, inSet. 5.2 Inversion Symmetry at the Quantum Level?Sine the onformal spae-time inversion symmetry onnets the physis at short and long dis-tanes, it appears very interesting to investigate its possible validity beyond the lassial instantonlevel in more rigorous terms. This setion and the following one are devoted to this non-trivialtask.Let us start from the vauum-to-vauum transition amplitude at one-loop level [2, 15℄ whihdiretly determines the leading expression for the instanton size distribution d (��r; �s(�r)),h0j0i(I) = Z Yi diJ ()Q () e� 2��s = Z d4zd��5 d (��r; �s(�r)) (10)with the integrations on the left of Eq. (10) extending over all olletive oordinates i 2  =fU; z�; �g, i.e. the olour orientation matries U , the position z� and the size � of the instanton.As detailed by Bernard [15℄ and apparent in Eq. (10), the size distribution fators into ontribu-tions from zero modes and non-zero modes as follows.The quantity J () is the olletive-oordinate Jaobian and thus originates from the various zeromodes  (i) as, J () =  Yi 1p2�! (det U)1=2 =  Yi 1p2�! k (i)k1=2 (11)due to the orthogonality of the zero modes with normalisationsU ij = 2 Z d4xTr � (i)� (x) (j)�(x)� = Z d4x (i)�a  (j)�a = Æij k (i)k2 where  (i)� �  (i)�a �a2 ;k (i)k2 = 2 Z d4xTr � (i)� (x) (i)�(x)� : (12)5



The quantity Q () in Eq. (10) ontains the remaining determinants from Gaussian funtionalintegration taken over the non-zero mode parts as indiated by the primes.Q () � [det�1=2 M 0A() detMgh()℄Al=A(I)[det�1=2M 0A det Mgh℄Al=0 : (13)The resulting dimensionless size distribution d (��r; �s(�r)), as introdued on the right of Eq. (10),is known [2, 3, 19℄ to take the following form for suÆiently small instanton sizes �,d (��r; �s(�r)) = �5 dn(I)d4z d� = C � 2��s(�r)�2N exp�� 2��s(�r)� (��r)b ; (14)with known, sheme dependent onstant C, renormalisation onstant �r and exhibiting renormal-isation group invariane at1� loop level2� loop level � for b = � �0; �s(�r) = �1-loops (�r)�0 + (�1 � 4N �0) �s(�r)4� ; �s(�r) = �2-loops (�r): (15)in terms of the �rst two oeÆients of the QCD �-funtion�0 = 113 N � 23nf ; �1 = 343 N2 � �133 N � 1N�nf : (16)The resulting � dependene at two-loop level is displayed in Fig. 1.We are now ready to present the strategy we are going to pursue.First of all, we know that the lassial instanton gauge �eld manifestly reats to a spae-timeinversion with an instanton size inversion, � ! � 0 = h�i2=�. Seondly, zero modes are justderivatives of the lassial gauge �eld with respet to the olletive oordinates i (apart frompossible gauge transformations),  (i)� (x) � �A(I)� (x; )�i : (17)Hene there are good reasons to hope that the size inversion symmetry is inherited by the entirezero mode ontribution to the instanton size distribution. This ruial part of the task will beexpliitly studied further below. The result will formally not be restrited to small values of �.Thirdly, the instanton size distribution appears to be dominated by the zero mode (ZM) ontri-bution J() to exponential auray, sine 4N � N=3 and sine from Eq. (14)d(��r; �s)1�loop / (�)�o = (�)4N�N3 = (�)4N| {z }ZM part �5 J() � (�)� 13N| {z }non-ZM part Q() : (18)In supersymmetri Yang-Mills theory, the zero mode part beomes even more important1. In thisase, the size-distribution d SUSY(��r; �s(�r)) is entirely determined by J(), as was shown in [16℄,1We are grateful to Mikhail Shifman for pointing this out to one of us (F.S.).6



sine all non-zero mode ontributions anel preisely to any order in perturbation theory, seealso [16, 20℄.Within the regime of instanton perturbation theory, the non-zero mode ontribution was �rstshown by 't Hooft [2℄ to yieldQ() / �4Nr � 1��r�N3 SU(3)= �4Nr 1��r ; (19)Sine Q() beomes infrared sensitive for large �, rigorous results about the e�ets of spae-timeinversion in Q() are beyond the sope of this paper. Hene, taking reourse to the argueddominane of the zero mode ontribution, we shall heuristially arry along Q() / ��N=3 = 1=�from Eq. (19) as a \orretion" fator for all values of �. This leads us to investigate the � !� 0 = h�i2=� symmetry for the following approximate form of the instanton size distributiond (��r; �s(�r)) / �5 J (�) �4Nr(�r�)N=3 exp�� 2��s(�r)� ; (20)with the zero mode ontribution J(�) given via Eqs. (11, 12).Speializing next to SU(3) instantons, we enounter four types of zero modes: one dilatationzero mode  (�)� (x), four translation zero modes  (z)� (x) and two types of olour zero modes2:three olour zero modes oming from the generators �1; �2; �3,  (a)� (x), and �nally four olourmodes oming from the remaining generators �4; :::; �7, denoted as  (�)� (x). All in all we have 12olletive oordinates parameterising the instanton on�guration for an SU(3) gauge group. Theorresponding twelve zero modes are listed in Appendix B. Their normalisations [15℄ are given by1p2k (�)k = k (z)k = 1�p2k (a)k = 1�k (�)k =r2��s ; (21)yielding a total zero mode ontribution�5 J () = �5 k (�)k k (z)k4 k (a)k3 k (�)k4(2�)6= 124�6 �2��s�6 �12: (22)In order to study the behaviour of the zero mode part under onformal inversion, we have to applythe transformations of Eq. (72) and Eq.(73) in Appendix A to the normalisation integrals (12).But we enounter number of obvious de�ienies from the start that require a basially modi�edproedure.i) While the normalisation integrals of the inverted dilatation olour zero modes,  (�) 0� (x 0; �)and  (a) 0� (x 0; �), give a �nite result, the normalisations for the inverted translation zero2This is beause the generators �i, i = 1 : : : 7, of the gauge group SU(3) are grouped into di�erent multiplets(a triplet and two doublets) with respet to the SU(2) subgroup.7



modes  (z) 0� (x 0; �) and the inverted olour zero modes  (�) 0� (x 0; �) turn out to be divergent.Hene a suitable regularization proedure is obviously required before any further statementsan be made.ii) After appliation of a spae-time inversion transformation to the onvergent dilatation andolour mode normalisation integrals, the � dependene is indeed modi�ed, yet the normali-sation integrals turn out not to be invariant under spae-time inversion. For example,k (a)(�)k ) k (a) 0(�)k =r4��s � 0 = k (a)(� 0)k 6= k (a)(�)k: (23)iii) From the lattie data it is apparent that we �rst have to inorporate the onspiuousinstanton sale h�i into the framework, before we an hope for a satisfatory peak desriptionof the instanton size distribution with a symmetry under �! h�i2=�. The simple monomialsin � from leading order of instanton perturbation theory (21) are ertainly inadequate.The next setion is devoted to an elegant resolution of these diÆulties and requirements i)-iii).3 Implementing the Instanton Sale h�iWe ahieve the �niteness and invariane of all zero mode normalisation integrals under onformalspae-time inversion and the introdution of the desired new sale h�i into the instanton alulusby projeting the 4-dimensional Eulidean spae onto the surfae of a sphere, embedded in 5-dimensional Eulidean spae [21, 22℄ via stereographi projetion3,x� ! ra = (r�; r5) ; (24)where r� = 2 h�i2 x�h�i2 + x2 ;r5 = h�i h�i2 � x2h�i2 + x2 ; (25)suh that r2 = rara = r�r� + r25 = h�i2: (26)This mapping was done for the �rst time by Jakiw and Rebbi [11℄, where an O(5)-ovariantinstanton alulus was developed. However, this was only possible by taking the radius of thespere to be equal to the size parameter � of the instanton. The ruial di�erene in our approahlies preisely in this radius: In our ase it meant to have a �xed, physial value. We identify the3From now on we will use Latin indies for the 5-dimensional spae whereas the Greek indies run as usualfrom 1 : : : 4. Hatted quantities were subjet to a stereographi mapping, the prime denotes as before an inversionin Eulidean spae-time. 8
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Figure 2: Relation between inversion and stereographi projetion: The points P and Q de�ne the twodistanes x and x 0, whih are related by the ondition of inversion, x2 x 0 2 = h�i4. As a onsequene,the projeted points P 0 and Q 0 di�er only in the sign of the oordinate r5. An inversion leads to anexhange of the northern and southern hemisphere.radius of the sphere with the average size of an instanton: r2 = h�i2 � (0:6 fm)2. Of ourse, weshall also study the interesting limits h�i ! 0; 1 further below, in order to reonnet with theknown results of instanton perturbation theory.The sphere, being a ompat and urved manifold, will at the same time serve as regulator forthe divergent normalisation integrals. The stereographi projetion is a onformal transformationitself, orresponding to a sale fator�sp(x; h�i) = (h�i2 + x2)24h�i4 : (27)The relation between the 4-dimensional Eulidean volume element and the area element on thehypersphere turns out to be quite remarkable:dA = 1�sp (x; h�i)2d4x= 16 h�i8(h�i2 + x2)4d4x: (28)We �nd that { apart from a multipliative onstant { the onformal fator ��2sp (x; �) just equalsthe Lagrange density of an instanton in 4-dimensional at spae,L(I) = 2��s 6 �4(�2 + x2)4 ; (29)9



if the radius of the sphere orresponds to the instanton size �. This somewhat surprising relationis due to the funtional form of the instanton �eld and suggests that the 5-dimensional sphere isa natural environment for studying symmetry properties of instanton physis that are eventuallyhidden in Eulidean spae.The projetion of the instanton alulus onto the sphere is a straight forward appliation of therules of Eq.(72) and Eq.(73). The only di�erene being that here we go from four spae-timeoordinates to �ve spae-time oordinates plus one onstraint, whih requires some are wheninverse transformations are involved (see Appendix A).Let us also note that the entire set of the four translation zero modes in bakground gauge, hasthe form of the �eld strength tensor [15℄, (z�)� (x) = F��(x): (30)Nevertheless we are interested in the lengths of the four individual translational zero modes, eahrepresenting a vetor �eld. Thus only one spae-time index of the olletivity of translation zeromodes is a�eted by a onformal inversion (f. Appendix A), (z� ) 0� (x 0) =p�inv(x)I �� (x) (z�)� (x); � = 1 : : : 4: (31)This puts the behaviour of normalisation integrals under inversion4 for all types of zero modes onthe same footing, and is in aordane with the omputation in [15℄, where the total ontributionin Eq.(22) is the produt of the indiviual twelve zero modes.Sine the stereographi projetion and the inversion are both onformal transformations, it is notsurprising that the onformal fator �sp(x; h�i) transforms under inversion as�sp(x 0; h�i) = �sp(x; h�i)�inv(x; h�i) : (32)Due to Eq. (32), the area element (28) on the 5-dimensional sphere transforms under onformalinversion in Eulidean spae asdA 0 = d4x 0�2sp(x 0; h�i) = d4x�2inv(x; h�i) �2sp(x 0; h�i) = 1�sp (x; h�i)2d4x = dA (33)and is thus invariant.Let us stress that this result holds sine aording to our approah, the radius of the 5-dimensionalsphere was identi�ed with the radius of inversion5, i.e. the average instanton size h�i.We lift the zero modes, whih we have omputed in Eulidean spae �rst, by means of stereo-graphi projetion to the sphere. For the normalisation integrals of the zero modes projeted onthe sphere we have to evaluate the following expression applying Eq.(79),kb (�) k2 = 2 Z dA Tr h b a(r)b a(r)i= 2 Z d4x ��1sp (x; h�i) Tr [ �(x) �(x)℄ ; (34)4This applies atually to all onformal transformations, notably to stereographi projetions.5Relations for di�erent radii of sphere and inversion an be found in [23℄.10



and ompare now Eq. (34) to the normalisation integral of the inverted zero modes b 0 projetedonto a sphere with radius h�i. We �nd readilykb 0 (�) k2 = 2 Z dA 0 Tr h b 0a(r0) b a 0 (r0)i = 2 Z dA Tr h b a(r)b a(r)i = kb (�) k2 (35)due to dA 0 = dA from Eq. (33) and with the help of Eqs. (79, 32),Tr h b 0a(r0)b a 0 (r0)i = �sp(x 0; h�i) Tr � 0� (x 0) � 0 (x 0)� = �sp(x 0; h�i) �inv(x; h�i) Tr [ �(x) �(x)℄= �sp(x; h�i) Tr [ �(x) �(x)℄ = Tr h b a(r) b a(r)i : (36)Sine the radius of the sphere and the radius of inversion are equal, we �nd that all normalisationintegrals of the zero modes are invariant under onformal inversion. This enouraging fat is aentral result of our approah. It notably implies a partiular form of the resulting � dependeneof the zero mode ontribution, whih will be examined next. Another important impliation isthat the troublesome translation and olour zero modes,  (z)(x) and  (�)(x), now retain �nitenormalisation integrals under spae-time inversion.Next, let us turn to the ruial question: Does the invariane (35) of the total zero mode ontri-bution bJ(�) = 1(2�)6k b (�)k � kb (z)k4 � k b (a)k3 � kb (�)k4 (37)under spae-time inversion reet in an instanton size distribution (20) [with �r � 1=h�i ℄ that is(approximately) invariant under inversion of the instanton size?To this end, we evaluate �rst the various types of zero mode norms individually, introduing thedimensionless variable, � = �h�i ; (38)suh that �! � 0 = h�i2� , �! 1� , ln(�)! � ln(�): (39)We �nd the following results on the sphere:Dilatation zero mode:kb (�)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (�)� (x) � (�)(x)� = 1��s Z d4x 48h�i4(h�i2 + x2)2 �2x2(�2 + x2)4= 16��s ��12�2 (1 + �2) ln (�)(�2 � 1)5 + (�4 + 10�2 + 1)(�2 � 1)4 � = 1�4 k b (�)( 1�)k2 (40)The funtional form of this normalisation integral is preserved up to a saling fator for �. There-fore we �nd that � kb (�)(�)k = 1� k b (�)( 1�)k (41)is symmetri under inversion of �, 1=�, while k b (�)(�)k is not.11



Colour zero modes for �a; a = 1; 2; 3:kb (a)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (a)� (x) � (a)(x)� = 1��s Z d4x 48h�i4(h�i2 + x2)2 �4x2(�2 + x2)4= 16��s h�i2�2 ��12�2 (1 + �2) ln(�)(�2 � 1)5 + (�4 + 10�2 + 1)(�2 � 1)4 � = k b (a)( 1�)k2 (42)The olour zero modes are exatly symmetri under �, 1=�. Moreover, as in at 4-dimensionalspae, Eq. (21), they satisfy k b (a)(�)k = � kb (�)(�)k (43)Colour zero modes for ��; � = 4 : : : 7:kb (�)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (�)� (x) � (�)(x)� = 1��s Z d4x 16h�i4(h�i2 + x2)2 1(�2 + x2)3= 8��s h�i2�2 �4�2 (2 + �2) ln(�)(�2 � 1)4 � (1 + 5�2)(�2 � 1)3 � (44)For these olour zero modes, the funtional form of the normalisation integral hanges under aninversion of the instanton size and thus it is not symmetri.Translation zero modes:kb (z)(�)k2 = 2 Z d4x��1sp (x; h�i) Tr � (z)� (x) � (z)(x)� = 1��s Z d4x 48h�i4(h�i2 + x2)2 �4(�2 + x2)4= 8��s �12�4 (�2 + 3) ln(�)(�2 � 1)5 � (17�4 + 8�2 � 1)(�2 � 1)4 � = k b (z)( 1�)p�invk2 (45)The funtional form of this normalisation integral hanges under an inversion of �, thus this zeromode is not symmetri under the desired transformation.In Figs. 3 - 6, the normalisation integrals of the four di�erent types of zero modes are displayedversus ln (�). It is apparent at �rst sight that exept for the olour zero modes  (a) shown in Fig. 4,the individual normalisation integrals are not manifestly symmetri funtions under instantonsize inversion �! 1=� i.e. ln (�)$ � ln (�). Yet we reall that �k b (�)(�)k is symmetri as well.However, after evaluating the total zero mode ontribution �5 bJ(�) in Eq. (37), along with thenon-zero mode orretion fator 1=� via Eq. (20), we �nd the following, very promising resultsdepited in Fig. 7:� Unlike onventional instanton perturbation theory, larger sized instantons are strongly sup-pressed in qualitative aordane with the lattie data (f. Fig. 1) and general expetations.12



0

5

10

15

20

25

30

-4 -2 0 2 4

PSfragreplaements
ln (�)

kb  (�) k
Figure 3: Dilatation zero mode 0

1

2

3

4

5

6

7

8

-4 -3 -2 -1 0 1 2 3 4

PSfragreplaements
ln (�)kb  (a) kÆ h�i

Figure 4: Colour zero modes �a
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Figure 5: Colour zero modes �� 0
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Figure 6: Translation zero modes� Despite the fat that some zero mode norms are asymmetri under �$ 1=�, the total zeromode ontribution �5 bJ(�) times the 1=� non-zero mode orretion leads nonetheless to aninstanton size distribution (20) that appears strikingly symmetri under this instanton sizeinversion after a slight resaling �! 1:19�; (46)� Fig. 7 (right) illustrates impressively that the size distribution on the sphere and the inverteddistribution are almost indistinguishable over fourteen orders of magnitude!� The slight resaling fator (46) ofO(1) might well �nd an explanation as a sheme-dependenee�et within renormalisation-group onsiderations as in Set. 5Let us disuss next some important analytial properties and limits of the total zero mode part�5 bJ(�).h�i7. Sine the latter depends only on �, the following two interesting interpretations ofthe limit �! 0 are idential with respet to our results:�! 0 : � The radius h�i of the sphere tends to in�nity for �xed instanton size �.The instanton size � tends to zero for �xed radius h�i of the sphere.Limit of small instantons on the sphere:�! 0 , h�i ! 1; � �xed , �! 0; h�i �xed to its physial value (47)13
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Figure 7: (Left): Total zero mode ontribution �5 bJ(�)Æh�i7 times 1=� on the sphere, as rele-vant for the instanton size distribution d(��r; �s) in Eq. (20). As absissa, we use ln (�=1:19) =ln (�=(1:19 h�i)) to make small deviations from a perfet size inversion symmetry for �=1:19 $1:19=� self-evident. Line1 and Line2 display the results versus �=1:19 and 1:19=�, respetively.(Right): Same plot, but using a logarithmi ordinate, to demonstrate the high degree of inversionsymmetry over fourteen orders of magnitude, with Line1 and Line2 being visually indistinguish-able!For h�i ! 1; � �xed, we reover the same values for the zero mode normalisations as in atEulidean spae (f. Eq. (22)), apart from an additional fator of 2 for every zero mode normali-sation. It omes from the onformal fator of the stereographi projetion:b a b a = 4 h�i4(h�i2 + x2)2 � � h�i!1= 4 � � (48)The zero mode part �5 bJ(�) rises as O (�12) for small instantons in perfet agreement with instan-ton perturbation theory in at Eulidean spae (22). As it should be in this regime of onventionalinstanton perturbation theory, any dependene of the size distribution on the new instanton saleh�i drops out in this limit.Limit of large instantons on the sphere:�!1 , h�i ! 0; � �xed , �!1; h�i �xed to its physial value (49)We �nd that �5 bJ(�) dereases like O (1=�12), i.e. it dereases with the the same power as in theprevious ase, orresponding to asymptoti instanton size inversion symmetry!Limit for � = 1: This orresponds to the ase of h�i = �, whih was onsidered in Refs. [11,24℄.The expansion of �5 bJ(�) about � = 1 reprodues these well-known results, as expeted.14



4 Conformal Inversion and the Chirality-ip RatioIt is learly desirable to have another independent and preferably diret test of onformal inversionsymmetry besides the instanton size distribution (f. Fig. 1). In this setion we shall brieyinlude an interesting suh possibility from ongoing work [25℄.If instantons are the dominant soure of non-perturbative interations in the QCD vauum, thenone should be able to observe that light quarks (zero modes) ip their hirality eah time theyross the �eld of an instanton. Therefore, in Refs. [17, 18℄, the following hirality-ip ratio RNSwas introdued as funtion of Eulidean time t,RNS(t) � ANSip(t)ANSnon-ip(t) = ��(t)� �Æ(t)��(t) + �Æ(t) ; (50)in terms of the avour non-singlet (NS) pseudo-salar and salar two-point orrelators,��(t) = h0 j J�(t) Jy�(0) j 0i; J�(x) = u(x)i5d(x);�Æ(t) = h0 j JÆ(t) JyÆ (0) j 0i; JÆ(x) = u(x) d(x): (51)Notie that the ratio RNS(t) must vanish as t ! 0 (no hirality ips), and must approah 1 ast!1 (in�nitely many hirality ips).These harateristi preditions for the hirality-ip ratio have been heked on the lattie inRef. [18℄ (within the quenhed approximation). The results displayed in Fig. 8, indeed provideimpressive evidene for instanton dominane, as was disussed in detail in Ref. [18℄.After these prerequisites, let us turn next to the important question whether these lattie data forRNS, might show evidene for onformal spae-time inversion symmetry at work? We expet thefollowing general time inversion law for a salar observable [26℄ with onformal saling dimension �RNS (t) = � thti�2� RNS�hti2t � : (52)� an be immediately �xed from the two general requirements that RNS(t) approahes a non-vanishing onstant (= 1 ) for large t, while { within an instanton framework { it vanishes / t6for t ! 0, due to the known behaviour of (the square of) the non-zeromode propagator in thedenominator of the hirality-ip ratio (50). We then immediately infer from the ansatz (52),� = 3: (53)In Fig. 8, the predition ( t=hti )6 RNS (hti2=t) from onformal inversion (52) with � = 3, andinvoking the lattie data at large t values (t >� hti � 0:45 fm), is overlaid on the lattie data forsmall t <� hti.Apparently, the agreement is virtually perfet and thus supports strongly the validity of onformalspae-time inversion. Note that this is not only an independent test using diretly lattie data,but also it probes for the �rst time onformal inversion properties in the fermioni setor.15



Figure 8: Alternative test of onformal (spae-) time inversion symmetry for t! hti2=t, aordingto Eqs. (50, 52) for the hirality-ip orrelator RNS(t), using diretly (quenhed) lattie data fromRef. [18℄. The absissa denotes Eulidean time in fermi. The agreement of the diret and overlaiddata provides strong evidene that onformal (spae-)time inversion holds also in the fermionisetor.5 Impliations beyond InstantonsIn this setion, we shall argue that the advoated �! h�i2=� inversion symmetry of the instantonsize distribution will a�et the form of �s, and thus has impliations for QCD in general.With the size distribution being a (lattie) observable, it must be renormalisation-group invariant.Indeed, for the perturbative expression Eq. (14), one �nds at the two-loop level, with �s(�r) =�2-loops (�r),exp�� 2��s(�r)� (��r)�0+�1 �s(�r)4� = exp � 2��s(1�)! �1 +O(�2s(�r) ln(��r)2� ;� 2��s(�r)�2N (��r)�4N �0 �s(�r)4� =  2��s(1�)!2N �1 +O(�2s(�r) ln(��r)2� : (54)Hene, at two-loop level, the perturbative instanton size distribution (14) may be rewritten in
16



manifestly renormalisation group invariant form,d (��r; �s(�r)) = d�1; �s(1�)� = C 2��s(1�)!2N exp � 2��s(1�)! = �5 dn(I)d4z d� (55)with all � dependene now residing in the running oupling �s(1�). Next, we follow Ref. [7℄ andde�ne a (non-perturbative) \instanton sheme" for the running oupling,�Is(1�) = �MSs (sI� ) � �s (sI� ); (56)by the requirement that the perturbative expression (14) of the density, involving the two sheme-independent �-funtion oeÆients �0; �1, remains valid for all values of �Is. Surprisingly, the formof �MSs ( sI� ), impliitly de�ned by this presription and diretly extrated from a omparison withthe UKQCD data [6,7℄ for the instanton size distribution (f. Fig. 1), showed a (on�ning) Cornellform �s � 34 � �2 + : : : for �>�h�i with string tension p� � 472 MeV, while beautifully agreeingwith the 3-loop perturbative form of �MSs for �<�h�i. In addition, the resulting sale fator [7℄,sI = �MS=�I � 1:18 = O(1), puts the "instanton sheme" very lose to the MS sheme in theperturbative regime!After these relevant prerequisites, let us ombine the requirements of renormalisation-group invari-ane (55) and onformal spae-time invariane of the instanton size distribution d (��r; �s(�r)),d�1; �Is(1�)� = �h�i� �2� d�1; �Is( �h�i2 )� : (57)In the present more general ontext, and in analogy to Eq. (52) of the preeeding setion 4, wehave allowed for a (small) non-vanishing onformal saling dimension � that may balane theremaining unertainty onerning the infrared behaviour of the non-zero mode part Q() (f.Eq. (19)). With the form (55) in the "instanton sheme", Eq. (57) implies the relation, 2��Is(1�)!2N exp(� 2��Is(1�)) = �h�i� �2�  2��Is( �h�i2 )!2N exp(� 2��Is( �h�i2 )); (58)the solution of whih relates the running oupling �s in the asymptotially free (�<�h�i) andon�ning regimes (�>�h�i)!The solution for �Is(1=�) in terms of �Is(�=h�i2) takes a simple and intriguing form,��Is � 1�� N = �W  � ��Is( �h�i2 )N exp"� ��Is( �h�i2 )N#�h�i� � �N! ; (59)involving the Lambert W funtion [27℄,W (x) eW (x) = x; with two real branhes W0(x) and W�1(x) for � 1=e � x < 0; (60)satisfying W0(�1=e) = W�1(�1=e) = �1: (61)17



Note that for x! 0� : � W0(x) � x� x2 +O(x3)! 0; (prinipal branh )W�1(x) � ln(�x)� ln(� ln(�x)) : : :! �1: (62)The solution (59) exhibits a number of remarkable features to whih we turn next.First of all, let us insert the leading, asymptotially free expression of the running oupling forlarge � > h�i, �Is( �h�i2 ) � 2��0 1log( �h�i2 �I ) + : : : ; (63)into the r.h.s of the inversion-symmetry solution (59). With the assignment [10℄� = N6 SU(3)= 12 ; (64)of the onformal saling dimension (57) and the asymptotis (62) of W0(x) for x ! 0�, we �ndone more a Cornell form of the running oupling for large ��Is(1�)N� � 611 1[h�i�I ℄11=6 ln� �h�i2�I � � �h�i�2 � 1 + o �h�i� �2! ; (65)signalling on�nement. In Ref. [7℄, numerial agreement with a Cornell form for �Is was observedafter solving Eq. (55) for �Is(1=�) in terms of the UKQCD lattie data [6,7℄ for �5 dn(I)d4z d� . Here, weobtained the same result in analytial form, only from onformal inversion symmetry (59) andthe known short-distane behaviour of �s.The non-vanishing onformal saling dimension (64) implies a slight deviation from the simplestassumption (19) of a uniform orretion to the � dependene via the non-zero mode fator Q()in the size distribution. At short distanes (small �), the inversion law (57) together with � fromEq. (64), orresponds to the perturbative orretion Q � (�r �)�N=3 as in Eq. (19). However, atlong distanes (large �), the �-dependene arises only from the alulable zero-mode part J(),like in supersymmetri Yang-Mills theory [16℄.Moreover, we note that with the above saling dimension (64), � / N, the solution (59) onlydepends on the 't Hooft oupling [28℄, g2s N / �sN, suh that it remains unhanged in the largeN limit.For � = h�i, Eq. (59) may be solved for it's only unknown ��Is(1=h�i)N , along with the mathingondition u � �W0(�u e�u) = �W�1(�u e�u); where u = ��Is � 1h�i� N : (66)One �nds the unique solution (due to Eq. (61)),�Is � 1h�i� N� = �MSs � sIh�i� N� = 1; (67)18



that indeed mathes the peak position of the instanton size distribution (55), i.e. dd�Is d(1; �Is) = 0,as funtion of �Is(1�).Last not least, one may write down an oversimpli�ed but exat losed solution of Eq. (59),�Is(1�) = 2 ��0 (1� � �h�i�2)ln( h�i� ) ; � � 1h�i ; (68)whih follows upon requiring in addition to Eq. (59) the inversion symmetry,� �h�i2� �Is � �h�i2� = �1�� �s�1�� : (69)Despite it's simplisti form, Eq. (68) has no Landau pole for �! h�i, exhibits the orret asymp-toti freedom behaviour for �) 0, as well as a Cornell form (65) for large �. The peak normaliza-tion ondition (67) only holds approximately, �Is(1=h�i)N=� = 12=11 � 1, but an be satis�edwith a slightly more omplex limiting proess. Amazingly, this (1-loop) form (68) of �s existsalready in the literature [29℄, but originated from an entirely di�erent reasoning. It appearedas the appropriate (1-loop) running oupling without a Landau pole in a renormalisation-groupimproved variant of Shirkov's \analyti perturbation theory" [30℄.6 ConlusionsIn the present investigation, we have studied the appealing possibility that the strong suppressionof large-size QCD instantons { as evident from lattie data { is due to a surviving onformal spae-time inversion symmetry.We started from the known fat that the lassial instanton setor is onformally invariant andnotably also invariant under onformal spae-time inversion x� ! x 0� = b2x2 x�. Sine the latterats non-in�nitesimally like a disrete symmetry transformation, it is not a generator of theonformal group. Yet all onformal generators an be omposed of an even number of inversionsand generators of the Poinar�e subgroup. This inversion symmetry is both suggested from thestriking invariane of high-quality lattie data for the instanton size distribution under inversionof the instanton size �! h�i2=� (f. Fig. 1) and from the known validity of spae-time inversionsymmetry in the lassial instanton setor.Our theoretial line of attak in this paper was restrited to a detailed study of the zero-mode partof the instanton size distribution, whih we have argued to onstitute the "dominating" soure ofthe �-dependene. In this ontext, it is most enouraging that the instanton size distribution ofsupersymmetri Yang-Mills theories is known to be entirely given in terms of zero-modes [16℄.A main theoretial step onsisted in performing a onformal stereographi projetion of the in-stanton alulus in at Eulidean spae to the 4-dimensional surfae of a 5-dimensional sphere.This way, we have ahieved several bene�ts at one.19



� All zero-mode normalisation integrals on the sphere remained �nite under spae-time inver-sion, sine the sphere represents a ompat, urved geometry.� The identi�ation of the sphere radius b � h�i provided a natural way of introduing theruial physial sale h�i into the instanton alulus. It ats as the onformal inversionradius.� On the sphere surfae, the normalization integrals all turned out to be invariant underspae-time inversion due to a "fortunate ooperation" of the sale fators assoiated withboth the onformal stereographi projetion and spae-time inversion.� While the zero-mode normalizations k b (a)k; a = 1; 2; 3 (olour) and �=h�i kb (�)k (dilatation)are indeed manifestly symmetri under �! h�i2=�, the remaining zero-mode norms are not.However the produt of all of them, as entering the instanton size distribution, is symmetrito an impressively high degree. Altogether, the resulting shape due to the produt of zero-modes is in good qualitative agreement with the lattie data (f. Fig. 1, Fig. 7), stronglysuppressing large-size instantons!� The present formulation on the sphere allowed to study various limits of theoretial interest,whih underligned the onsisteny of the present approah: notably, the limit �=h�i ! 0may either be viewed as a "at-spae" limit (sphere radius h�i ! 1) with instanton size� kept �xed, or as the small instanton limit (�! 0) with the sphere radius h�i kept �xed.Irrespetively, for �=h�i ! 0, we reover the familiar results of instanton perturbation theoryin at 4-dimensional Eulidean spae.As important, independent and diret further support for onformal inversion symmetry at work,we presented the striking evidene from a lattie simulation of the hirality-ip ratio RNS in theQCD vauum as funtion of Eulidean time [17, 18℄.Finally, we explored some striking onsequenes of onformal spae-time inversion symmetrybeyond instantons, i.e. for QCD in general. It implied a general relation between the runningoupling at short and long distanes. From the familiar input of asymptoti freedom at shortdistanes, we found a Cornell form �Is(1=�) / � �2 at long distane, signalling on�nement.AknowledgementsOne of us (D.K.) is grateful to Gerard 't Hooft for a very helpful ommuniation. F. S. wishesto thank Mikhail Shifman for interesting disussions and suggestions and Tom DeGrand formaking his lattie data available. D.K. is grateful for the hospitality extended to her at DESY,where this paper was ompleted. Moreover, she aknowledges �nanial support by the FWFProjet P20017. We are grateful to Bryan Zald��var Montero (Havana/Cuba) for investigatingsome related questions during his six months visit at DESY with a fellowship of the High EnergyPhysis Latinamerian-European Network (HELEN).20



Appendix A: Conformal TransformationsIn this paper we onsider ative onformal transformations [26, 31, 32℄ throughout,g��(x) �x��x0� �x��x0� = �(x) g��(x 0) = g 0��(x 0); (70)where �(x) is alled onformal or sale fator.The onformal inversion, x� ! x 0� = b2x2x�; (71)is the relevant transformation for our approah. b is alled the radius of inversion. The salefator is given as �(x)inv = x4=b4. The transformation law for a ovariant vetor �eld under anative transformation is given byA 0�(x 0) = �x��x0�A�(x) =p�(x)I �� (x)A�(x); (72)whereas the orresponding ontravariant vetor �eld has to transform as [31℄,A0�(x 0) = �(x)�x0��x� A�(x) =p�(x)I��(x)A�(x); (73)where the sale fator �(x) appears when pulling up the index with the metri tensor6. Thetensor [14℄ I �� (x) = 1p�(x) �x��x 0� : (74)satis�es in Eulidean spae-time I��(x)I��(x) = Æ��: (75)For a onformal spae-time inversion it is given byI inv�� (x) = Æ�� � 2 x�x�x2 : (76)Furthermore the length of a vetor is not invariant under onformal transformations, in fat it isstrethed by the sale fator, A0�(x 0)A 0�(x 0) = �(x)A�(x)A�(x): (77)The generalisation to seond order tensors is straight forward. The volume element hangesaording to d4x 0 = d4x�2(x) : (78)6In the ase of a passive transformation this fator would not be inluded.21



Transformation rules for stereographi projetionbAa = �(x)sp �ra�x�A�(x);bAa = � ��ra � 1h�i2 ra(r � �)� (x�)A�(x);bAa(r) bAa(r) = �(x)sp A�(x)A�(x);ra bAa(r) = 0: (79)
The stereographi projetion is done in suh a way that this onstraint omes naturally with thetransformation rules to ensure that the projeted vetor �elds indeed stay on the sphere.Appendix B: Zero modes for SU(3)For ompleteness, we list here the twelve SU(3) zero modes as derived by Bernard [15℄ and usedin this paper.An SU(3) instanton is obtained by embedding the SU(2) instanton into the "upper-left-handorner" of the fundamental representation of SU(3). Thus, in singular gauge, an SU(3) instantontakes the form A(I)� (x) = 1p��s ��a��x�x2 (�2 + x2) �a2 ; (80)where �a are the �rst three Gell-Mann matries and ��a�� are the 't Hooft oeÆients [2℄ for SU(2).Latin indies a and b run from 1 to 3 and Greek indies � and � are spae-time indies runningfrom 1 to 4.The zero modes are in bakground gauge with respet to the lassial instanton �eld,Dl� (i)� = �� (i)� � ip4��s �A(I)� ;  (i)� � = 0: (81)Dilatation zero mode:  (�)� (x) = 2p��s � ��a�� x�(x2 + �2)2 �a2 (82)Colour zero modes for generators �a; a = 1; 2; 3: (a)� (x) = 12p��s �2(x2 + �2)2�2x��a � i ��b��x� [�b; �a℄�: (83)Colour zero modes for generators ��; � = 4; 5; 6; 7: (�)� = 12p��s �2(x2)1=2(x2 + �2)3=2 �x��� � i ��b�� x� [�b; ��℄� (84)Here �� denote the four Gell-Mann matries �4 : : : �7.22



Translation zero modes: (z�)� (x) = �A(I)� (x� z)�z� ���z=0 +Dl� (A(I)� (x))= ���A(I)� (x) + ��A(I)� (x) + ip4��s[A(I)� (x); A(I)� (x)℄= � 4p��s �2(�2 + x2)2 �x�x�x2 � 14Æ��� ��a�� �a2 � (�$ �)= F��(x): (85)
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