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1. IntrodutionHigh gluon densities and saturation in high energy QCD have attrated muh interestin reent years. Experimental evidene has been disussed in onnetion with bothHERA and RHIC data, and with the advent of the LHC there will be interest insignals for high densities also in proton-proton ollisions. In this ontext inlusivejet prodution plays a entral role: whereas for moderate values of longitudinalmomenta, x1 and x2, the ross setions for inlusive jet prodution will be desribedby ollinear fatorization and leading twist parton densities, the forward region mayrequire substantial orretions. The LHC will allow, lose to the forward diretion ofone of the protons, a very asymmetri on�guration of jet or Drell-Yan prodution,for example x1 � x2. This leads, for not too high momenta of jets, to very smallvalues of x1, and may require multiple exhanges between the produed jet andproton '1' (Fig.1). In more physial terms, the produed jet may originate from aon�guration where the density of gluons from proton '1' is high.{ 1 {



Fig.1: forward jet in pp ollisionsIt is therefore important to provide, from the theoretial side, ross setion formulaewhih allow to inorporate multiple exhanges between the produed jet and theproton. Within the ollinear approximation, these orretions belong to higher twistand are suppressed by powers of the jet transverse momentum. However, at small x,resummation of powers of ln 1=x are expeted to partly ompensate suh a suppres-sion. It may therefore be more suitable to start within the BFKL approah. It is alsothis approah whih, in deep inelasti eletron-proton or eletron-nuleus sattering,provides the framework for the disussion of high gluon densities and saturation.In this paper we make an attempt to address, within the BFKL frameworkin momentum spae, for �nite N, the issue of multiple interation in inlusive jetprodution. As a theoretial framework we use the sattering of a virtual photon on anulear target onsisting of two (di�erent) nuleons (Fig.2): the energy disontinuityof this proess onsists of di�erent lasses of �nal states, and within these �nal stateswe �x one gluon whih generates the jet. In partiular, we searh for the jet vertexillustrated in Fig.1a-, where below the jet vertex we have to sum over all possibleuttings. It will turn out that the vertex is more ompliated than suggested byFig.1.The single inlusive jet ross setion, mostly in the large-N limit approximation,has been studied before in [1{6℄. Whereas the �rst study [1℄ had expliitly beenbased upon the AGK [7℄ utting rules (see also [8, 9℄ for a QCD analysis), it wasthen in [2℄ observed that the emission of the jet inside the triple Pomeron vertexmight lead to deviations from the AGK rules. Results of [2℄ have been supportedin [3, 4℄. In [5℄ a new investigation was reported, more detailed than [1℄ but stillbased upon assumptions, whih lead to the disovery of new ontributions to thee�etive prodution vertex. An improved and more aurate investigation was givenmore reently in [6℄. Whereas the alulations reported in [2{4℄ have been done inon�guration spae, the studies in [1,5,6℄ were done in momentum spae, and theirmethod is similar to the one used in this paper. Nevertheless, our results, whih -{ 2 {



in ontrast to [1, 5, 6℄ - are valid for an arbitrary number of olors, are in partialonit with those of [6℄.2. The strategyWe onsider deep inelasti sattering on a nuleus onsisting of two weakly boundnuleons (Fig.2).
1′

2′

1

2Fig.2: Sattering of a virtual photon on a weakly bound nuleusThe total ross setion is obtained from the elasti sattering amplitude, T�(pn)!�(pn):�tot�(pn)!�(pn) = 1S ImT�(pn)!�(pn): (2.1)where S denotes the total energy of the sattering proess. Before we onsider theinlusive ross setion we �nd it useful to reapitulate the omputation of the totalross setion. The kinematis is illustrated in Fig.3:

Fig 3: kinematis of the 3! 3 proess.the energy variables s1 = (q+p1)2, s2 = (q+p02)2,M2 = (q+p1�p01)2, S = (q+p1+p2)2are assumed to be muh larger than the momentum transfer variables t = (q � q0)2,t1 = (p1 � p01)2, t2 = (p2 � p02)2. We will distinguish between s1 and s2, but at theend we set s1 = s2 = s � M2 and t = 0. Throughout this paper we use Sudakovvariables with the lightlike referene vetors q0 and p, suh that s = 2p0q = 2pq,{ 3 {



S = 4pq = 2s, q = q0 � xp with x = 2pq=Q2 and M2 = xP s. Negleting the nuleonmasses we havep1 = p2 = p; p01 = p(1� xP ) + p1?; p02 = p(1 + xP ) + p2?: (2.2)Internal momenta are then written aski = �iq0 + �ip+ ki? (2.3)with k2i? = �k2i . The fat that the two nuleons are in a weakly oupled bound stateimplies that we will allow the two nuleons to have small losses of longitudinal andtransverse momenta, i.e. we will integrate over xP and p1? = �p2? = k?.2.1 The total ross setionFor the total ross setion we will be interested in the imaginary part of the amplitudeT�(pn)!�(pn)(s1; s2;M2; t1; t2; t), integrated over xP and p1? = �p2? = k?. Followingthe disussion in [7℄, this imaginary part onsists of the three ontributions illustratedin Fig.4. They are often referred to as 'di�rative ut' (Fig.4a), 'single ut' (Fig.4b),and 'double ut' (Fig.4).

Fig 4: di�erent energy uts:(a) di�rative ut, (b) single ut, () double ut.The total ross setion is obtained from the sum of these terms, where we have toobserve that, in Fig.4a, we have to add the on�guration where the nuleons 1 and 2are interhanged. Similarly, in Fig.4b the ut line an pass through nuleon 1 or 2,and for both on�gurations we also have to add their omplex onjugates. Finally,in Fig.4 we show two of the four on�gurations; the remaining ones are obtained byinterhanging nuleons 1 and 2.Let us analyse these ontributions in more detail. In all ases we enountersubamplitudes, A4(k1; �1;k2; �2;k3; �3;k4; �4) (Fig.5), whih di�er from eah otherby the way in whih the � integrals are done.Gluons 1,...4 are labelled from the left to the right. In Fig.4a, gluons 1 and 2will ouple to nuleon 1, and gluons 3 and 4 to nuleon 2; in Fig.41 gluons 1 and 4{ 4 {



are attahed to nuleon 1, and gluons 2 and 3 to nuleon 2. The variables �i (withP �i = 0) denote the � omponents of the gluons, whih are integrated, and whihan be interpreted as (dimensionless) energy variables of the subamplitudes. For themoment we will ignore the olor indies of the gluons.
Fig 5: a subamplitude of Fig.4To begin with Fig.4a, we introdue xP = �1 + �2 = ��3 � �4 and onsider, asintegration variables, xP , �1, and �3. With M2 = sxP , the disontinuity in Fig.4aindiates that, for the di�rative ut, we are integrating aross the disontinuity inxP . Obviously, M denotes the invariant mass of the proess: photon + (gluon 1 +gluon 2) ! photon + (gluon 3 + gluon 4).
Fig 6: integration ontoursThe remaining � variables, �1 and �3 are inside the ladders to the right and to theleft hand side of the energy ut, and the integration ontours are taken along thereal axis. In Fig.4b, it is the variable �1 in whih we take the disontinuity, and theontour goes around the right hand ut, whereas the other � variables (inludingxP ) run along the real axis. Here s�1 denotes the squared energy of the subproess:photon + gluon 1! photon + (gluon 2 + gluon 3 + gluon 4). Finally, in Fig.41 weintrodue � = �1 + �3 as the subenergy variable in whih the disontinuity is taken,and its integration goes around the right hand ut. At this stage, the subamplitudesof Figs.4a -  are di�erent from eah other.Provided that in all three ases the subamplitude A4, taken as a funtion of thethree independent � variables, falls o� suÆiently fast for large j�j, one an redrawthe ontour ontaining the disontinuity along the real axis (Fig.6b). Furthermore,{ 5 {



we need the amplitudes to be symmetri under permutations of the gluons. If allthese onditions are satis�ed, all three ases an be redued to one and the sameintegral, where all three �-integrations run along the real axis:N4(k1;k2;k3;k4) = Z d�1 Z d�2 Z d�3A4(k1; �1;k2; �2;k3; �3;k4; �4); (2.4)and the funtion N4 is symmetri under permutations of the gluons. Alternatively,N4 an be written as a triple disontinuity integral and is, therefore, a real-valuedfuntion. This is what is required for the AGK rules to be valid.Applying this disussion to Figs.4a-, it is then lear that all three di�erent uts,after integration over xP , will have the same expression for the subamplitude, N4,and they di�er from eah other only by the phases for the ladders below. This allows,to write the sum of all three terms in the simple form:2ImT = 2S�tot = S Z dxP Z d�(fkg) ImT�(pn)!�(pn) == Z d!2�ie!Y Z d!12�i Z d!22�i Z d�(fkg)(2�)6 2�iÆ(! � !1 � !2)N4�h�(!1)�(!2)� + �(!2)�(!1)�+2Im�(!1) (i�(!2) + (i�(!2))�) + 2Im�(!2) (i�(!1) + (i�(!1))�)+4Im�(!1Im�(!2)i
 �1;2(fkg); (2.5)where y = lnS, and k is the momentum transfer of nuleon 1 and we have onsideredthe kinematis orresponding to the measure d�(fkg) = d2k1d2k2d2k3d2k4Æ(2)(k1 +k2)Æ(2)(k3 + k4). The signature fators have the form�(!) = 1� e�i�!sin �! ; (2.6)and �1;2(fkg) ontains the two nuleon form fators and the deuteron wave funtion(inluding the integration over the �-variables). In the large-N limit, the subam-plitude N4 will ontain the produt of two Pomeron propagators, G2(k1; !1) andG2(k3; !2), whih ouple to nuleons 1 and 2, resp. Eq.(2.5) an also be written inthe more familiar form:2ImT = 2S�tot = S Z dxP Z d2k ImT�(pn)!�(pn) == Z d!2�ieY ! Z d!12�i Z d!22�i Z d�(fkg)(2�)6 2�iÆ(! � !1 � !2)N4�2Imh(�i)(i�(!1))(i�(!2))i
 �1;2(fkg); (2.7)
{ 6 {



in agreement with the AGK argument.In a pratial alulation of the total ross setion, we ompute the three di�erentut ontributions in Fig.4, term by term. In eah term we have to alulate produ-tion amplitudes on both sides of the utting line, evaluate the unitarity integrals,and then sum over the intermediate states. As a result, we should �nd that the sub-amplitudes in all three ases, in fat, are equal and symmetri under permutations:otherwise the assumptions stated above would prove to be inorret.As to the alulation of the prodution amplitudes, we an show that they alsoan be derived from disontinuities in their own energy variables. Beginning withFig.4a and onentrating on the phases, we have, on the lhs of the utting line, theprodution amplitude illustrated in Fig.7a:

Fig 7: onstrution of Fig.4a:(a) prodution amplitude; (b) energy disontinuity of the prodution amplitude; ()triple energy disontinuityIn the leading logarithmi approximation, it is proportional to its energy disontinu-ity, shown in Fig.6b. Symbolially:T = �(!1)disT: (2.8)The same argument applies to the rhs of the utting line in Fig.4a (with �(!1) !�(!2)�). Together, the single disontinuity from whih we have started an be ex-pressed in terms of the triple disontinuity (Fig.7). The analyti expression forthis ontribution, therefore, is the same as for the �rst term in (2.5), with N4 beingreplaed by the triple disontinuity illustrated in Fig.8:

{ 7 {



Fig 8: multiple energy disontinuityIn this triple disontinuity, all the � integrals are losed on the rhs, analogous toFig.6a. Beause of the assumptions for the large-� behavior, we an redraw theontours as in Fig.6b, and the triple disontinuity oinides with N4.For the next term, Fig.4b, the situation is similar, although a bit more ompli-ated. We illustrate the situation in Fig.9:

Fig 9: multiple energy disontinuityFig.9a illustrates the prodution amplitude we need to �nd. It has the phase stru-ture (�i)(i)(i�(!1)), and we an �nd it from its energy disontinuity, provided theamplitude above satis�es the assumptions stated before (good behavior for large �,and symmetry under the exhange of gluons). Following the AGK arguments, theenergy disontinuity onsists of the two parts shown in Figs.9b and . The �rst onehas the phase �(!1)+�(!1)�, whereas the seond one vanishes (after adding the anal-ogous ontribution with the the ut ladder on the rhs and the single exhange on thelhs). As a result, the prodution amplitude is proportional to its triple disontinuityin Fig.9d, and, returning to Fig.4b, we obtain the seond term of (2.5), with N4 beingreplaed by the triple disontinuity of Fig.8. But as we have already said, this tripledisontinuity equals N4.Finally the uts in Fig.41 and 2. In Fig.10a we illustrate the prodution am-plitude to the left of the disontinuity line in Fig.41. It ontains a further ut(Fig.10b), and it is proportional to this disontinuity.

{ 8 {



Fig 10: multiple energy disontinuityAs a funtion of �1, Fig.10b presents the right hand ut. An additional term (or-responding to Fig.42) where nuleon 1 and 2 at the lower end are interhanged,provides the left hand ut. When inserting these prodution amplitudes into Fig.41and 42 and performing the �1 integrals, we lose the ontour on the rhs and inludeFig.10b. As a result we �nd that the ontribution Fig.41 is proportional to thetriple disontinuity, and the phases an be read o� from (2.5).2.2 The single-gluon inlusive ross setionSo far all our disussion has been for the total ross setion. Turning to the singlegluon inlusive ross setion, we �nd it onvenient to assign the rapidity value y = 0to the virtual photon, and y = Y to the nuleons (i.e. in our �gures, we drawthe rapidity axis downwards, starting from y = 0 at the upper photon and endingwith Y at the target). The rapidity of the inlusive jet will be denoted by y1 with0 < y1 < Y , and its transverse momentum by p.For the alulation we follow the same proedure, i.e. we ompute the disonti-nuities in Fig.4. But in all the three energy uts in Figs.4a - , we now �x, in thesum over the intermediate states, for one gluon the values of rapidity and transversemomentum y1 and p, resp. This leads to the inlusive ross setion illustrated inFigs.11a - .
Fig 11: di�erent energy uts:(a) di�rative ut, (b) single ut, () double ut.The rosses mark the �xed �nal state gluon inside the unitarity sum. We then, again,have to ompute the prodution amplitudes on both sides of the utting line and sumover the intermediate states (keeping now the one �nal state gluon �xed). Sine,before doing the summation over the intermediate states, the prodution amplitudesare the same as for the total ross setion, we an proeed as outlined above, and wean make use of the results desribed before. In partiular, we have the same phasesfators.However, unlike the ase of the total ross setion desribed before, we an nolonger expet that the subamplitudes whih appear in the three di�erent uttingsare equal to eah other. On general grounds we have to expet that, when going{ 9 {



from a fully inlusive total ross setion to a slightly less inlusive quantity, we loosepart of the oherene and of the anellations. In our partiular ase, the equalityof the subamplitudes in Figs.11a -  will, in fat, be lost. Our alulations desribedbelow will on�rm this. Depending upon where, inside the grey blob the �xed gluonis produed, there exist some ontributions where the equality still exists (and theAGK rules are valid), and others where it is not the ase. The inlusive ross setionhas, therefore, to be written in the following form:d�dyd2p ==Z d!02�iey1 !0Z d!2�ie(Y�y1)!Z d!12�iZ d!22�iZ d�(fkg)(2�)6 2�iÆ(! � !1 � !2)�hN 4(1; 2j3; 4;p)�(!1)�(!2)� +N 4(3; 4j1; 2;p)�(!2)�(!1)� ++2Im�(!1) (N 4(1j2; 3; 4;p) i�(!2) + :: ) ++2Im�(!2) (N 4(1; 2; 3j4;p) i�(!1) + :: ) ++4N 4(1; 3j2; 4;p)Im�(!1)Im�(!2)i � �1;2(fkg); (2.9)where the argument struture of the N4 indiates where the utting line on-taining the produed jet enters the subamplitude: for example, in N 4(1; 2j3; 4;p),the line runs between gluon 3 and 4. We �nd that, in general, the amplitudes N 4are di�erent for di�erent positions of the utting line. Here and in the following wesuppress the dependene of the N 4 upon the variables !0, !, !1, and !2.Having given this general desription of how to ompute the total ross setionand the single jet inlusive ross setion we now turn to QCD alulations. We �rstreturn to the total ross setion, for whih we an make use of earlier results andreview the main results (a few more details will be given in the following setion).The disussion of the inlusive ase - whih represents the main result of this paper- will be presented in the following setion. We �rst need to address the questionof the large-� behavior of the subamplitudes in QCD. Here the gluon reggeizationplays an important role. If we ompute, in pQCD, the subamplitude illustrated inFig.8, whih, in total, is in olor singlet state there will be piees in whih, at thelower end, subsystems are in antisymmetri olor otet states:

{ 10 {



Fig 12: olor on�gurations of t-hannel gluons(a) general tensor struture; (b) two olor otet pairs; () one triplet of gluons in aolor otet stateWe expet that these piees belong to the reggeization of the gluon: they donot satisfy the naive Ward identies, i.e. they do not vanish when the transversemomentum, k?, of one of the gluons goes to zero. Conneted with the lak of theWard identities, we expet that also their high energy behavior does not satisfy therequirements listed above, i.e. the large-� behavior does not allow to redraw theontour as indiated in Fig.6. Consequently, when omputing the di�erent pieesillustrated in Fig.4, we will attempt to �rst isolate and remove the potentially dan-gerous reggeizing piees, and retain only those suh for whih Ward identities andlarge-� behavior are in aordane with what has been postulated before. This goalis ahieved by the deomposition desribed in [10℄ where, for the subamplitueds D4the reggeizing piees, DR4 , have been separated from the remaining part, DI4. Thelatter ones, in fat, satisfy the Ward identities and are fully symmetri under per-mutations of the outgoing gluons, whereas the former ones do not. Consequently weexpet (although this has not fully been proven yet) that also their large � behavioris 'good'.After these general remarks it is fairly straightforward to follow the proedureoutlined above and to obtain the di�erent ut ontributions in Fig.4. As an example,onsider Fig.4a. On the lhs of the disontinuity line we need the set of produtionamplitudes illustrated in Fig.7a. Restriting ourselves to the (generalized) leading-log approximation and to even signature in the lower t-hannel, they ontain onlysingle energy disontinuities (Fig.7b), from whih one easily reonstruts the fullprodution amplitudes (by simply multiplying by i�). Taking the square of theseprodution amplitudes, we see that the triple disontinuity is suÆient to obtain theenergy disontinity in Fig.4a (Fig.7). As seen in Fig.7, there is a 'last' interationbetween the two lower ladders: the sum of all diagrams above this last interation(inluding the last rung) oinides with the amplitude D4 analyzed in [10℄. Usingthe separation D4 = DR4 +DI4 whih has been desribed in detail, and retaining onlyDI4, we arrive at the QCD result for the subamplitude in Fig.4a, N4. It is importantto stress that this amplitude is ompletely symmetri under the exhange of anytwo gluons below. In an analogous way one omputes the other ut-ontributionsin Figs.4b and . When adding Figs4a, b, and  and making use of the symmetry(under permutations) of DI4: . we an ombine all ontributions Fig.4a -  in the wayoutlined above. The symmetry of the DI4 under permutation of the lower gluons,together with the ful�llment of the Ward identities an be viewed as strong hint thatalso the large-� behavior sati�es the requirements disussed before. This then allows,in partiular, to draw all three integration ontours of Fig.6 along the real axis: thisproperty is required by the AGK rules.{ 11 {



In the following setion we turn to the inlusive ross setion and ompute thedisontinuities shown in Figs.11a-. We repeat the same steps as those for the totalross setion, until we reah the analogue of D4. In partiular,we(1) start from the triple disontinuites,(2) repeat the deomposition into 'reggeizing'and 'irreduible' piees, �ltering outthose terms whih do not satisfy the Ward identities and, hene, threaten to havea bad large-�-behavior. This deomposition is di�erent from the one arried out in[10℄ for the total ross setion, and it represents the main ahievement of this paper.(3) The remaining terms (the analogue of DI4) have to omputed for eah termin Fig.11. We shall �nd that they satisfy the symmetry requirements and Wardidentitites, whih, however, are less restritive than in the ase of the total rosssetion.As a result, in the inlusive ase the di�erent subamplitudes in Figs.11a-, N 4 ,are no longer idential. Our �nal ross setion, therefore, will be written as in (2.9):it onsist of several piees whih annot be ombined in a simple way.3. The ut amplitudes N 4 in QCD3.1 Review of the total ross setionWe begin with a brief review of the amplitudes N4 whih enter the total ross setion.As we have stated above, we start from triple disontinuities and, in a seond step,deompose them into reggeizing piees (whih do not satisfy the Ward identitiesand have a 'bad large �' behavior), and a remainder with 'good properties'. In thenotation of [10℄, they are denoted by DR4 and DI4, resp. In the ontext of this shortreview, we also introdue a ompat notation that will be used throughout the paper.The triple disontiunuity, D4, is illustrated in Fig.13.

Fig.13: illustration of the triple disontinuityHere we have removed the ouplings to the nuleons at the lower end: for Fig.4a, weattah gluon 1 and 2 to nuleon 1 and gluon 3 and 4 to nuleon 2, for Fig.4 we attahgluon 1 and 4 to nuleon 1 and so on. However, provided the triple disontinuity{ 12 {



(Fig.8) is symmetri under the exhange of the lower gluons, all terms in Fig.4 areobtained from the same triple disontinuity, and the order in whih the gluons areattahed to the two nuleons does not matter. The summmation of all diagramsshown in Fig.13 is done in terms of integral equations. We introdue amplitudes D2(assoiated to the BFKL evolution [11{13℄) and D3 whih, together with D4, satisfya set of oupled integral equations (Fig.14).

Fig.14: integral equations for D2, D3, and D4.Writing these equation as evolution equations in rapidity y = ln s, we �nd:(�y �H2)D2 = Æ(y)D2;0 (3.1a)(�y �H3)D3 = Æ(y)D3;0 +K3D2 (3.1b)(�y �H4)D4 = Æ(y)D4;0++K4D2 + 123K 3 ��4D3 + 124K 3 �3�D3 + 234K 3 1��D3 + 134K 3 �2�D3 (3.1)with the boundary onditions Dn(y) = 0 for y < 0. The notation used in theseequations should be lari�ed by writing an expliit example:123K3 ��4D3 = == K3(1; 2; 3; 10; 20)
D3(10; 20; 4) ; (3.2)where the onvolution '
' denotes an integral in the transverse momentum spae andinludes propagators. In our notation, the onvolution ats on the primed variables.The two dots above D3 denote those gluon variables on whih K3 ats: D3 is afuntion of three gluon variables, and K3 ats just on those whih are marked by thedots. In our example, this are the gluons 1 and 2, while the third gluon, 4, remainsa spetator. { 13 {



We now list the operators Kn and Hn appearing in (3.1a-). The former [14,15℄are integral kernels whih desribe the transition from 2 to n reggeized gluons inthe t-hannel. The latter are the BKP hamiltonians [14{17℄, whih generalize theBFKL hamiltonianH2, and desribe the interation of a �xed number n of reggeizedgluons; we will denote their Green's funtion Gn. All these objets are integraloperators ating in the transverse momentum and olor spaes. The integral kernelsKn of Kn are:Kn(k1;k2; :::;kn;k01;k02) =gn(2�)3�k212:::n � k212:::n�1k022(k02 � kn)2 � k223:::nk021(k01 � k1)2 + k021 k022 k22:::n�1(k01 � k1)2(k02 � kn)2� ; (3.3)and the ation of Kn on a two point funtion �(k1;k2) is given byKn�(k1; :::;kn) = == Z d2k01d2k02k021 k022 Æ(2)(k1:::n � k012)Kn(k1; :::;kn;k01;k02)�(k01;k02) : (3.4)We have introdued the notation kijk::: = ki+kj+kk+ : : : for the sum of transversemomenta. The Lipatov kernel K2 is an be obtained from K3(k1; 0;k2), where thelast term in (3.3) vanishes. In the olor spae these integral operators are multipliedby olor tensors originating from the gluon verties:fa01a1b1f b1a2b2 :::f bn�1ana02Kn�a01a02 : (3.5)The virtual orretions are enoded in the gluon Regge trajetory funtion !,whose ation on a funtion � is multipliative in momentum spae:i! �(k1;k2) = �N2 !(ki)�(k1;k2) i = 1; 2 ; (3.6)with the funtion !(k) being 1!(k) = g2(2�)3 Z d2k0 k2k02(k � k0)2 : (3.7)The BKP hamiltonians Hn are de�ned asHn = nXi=1 i! + X1�i<j�n~ti � ~tj ijK2 ; (3.8)where we have introdued the SU(N) generators in the adjoint representation ~ti =t(t1aia0i ; :::; tN2�1aia0i ) with tbaia0i = ifaiba0i . The BKP Green's funtions Gn satisfy theequations (�y �Hn) Gn(y) = Æ(y) ; (3.9)1A regularization of the IR divergenes is understood.{ 14 {



with the formal solutions Gn(y) = �(y)eyHn : (3.10)The ation of H2 on a olor singlet funtion �a1a2 = Æa1a2� gives the BFKLhamiltonian: H2� a1a2 = Æa1a2� 1! + 2! �NK2�� : (3.11)When ating, in a olor otet state, on a funtion whih depends only on the sumof transverse momentum of the two gluons:  a1a2 = fa1a2b ~ b(k12), the hamitonianleads to the bootstrap equation:H2 a1a2 = �N2 !(k12) a1a2 : (3.12)Finally, the initial onditions Dn;0 are the lowest order impat fators for theoupling of n reggeized gluons to the external photon at rapidity y = 0. Theseouplings are given by a simple quark loop.Eq. (3.1a) is just the BFKL equation [11{13℄, starting from the initial onditionD2;0. Its solution, formally given byD2(y) = G2(y)D2;0 ; (3.13)an be solved expliitly, thanks to the invariane of the BFKL equation under M�obiustransformation [18, 19℄. It satis�es the Ward identity, i.e. it vanishes as one of thegluons arries zero momentum, and it is symmetri under the exhange of the twogluons. This property is ruial to have the possibility to obtain a dual desription,the dipole piture [20, 21℄, as has been disussed in [22℄.Green's funtions for a higher number n of reggeized gluons have been widelystudied: the ase n = 3 is assoiated to the Odderon exhange and is a ompletelyintegrable problem [23℄; the solutions have been found [24, 25℄ and physial ampli-tudes onstruted [26, 27℄. For n � 4 the kernels lead to an integrable problem onlyin the planar limit [23, 28{30℄ whereas even the estimate of non planar orretionsis an extremely diÆult problem [31,32℄. Let us note that the integrability found inthis framework is the �rst example of integrable strutures present in gauge theoriesand now suh symmetries are deeply investigated in the framework of the AdS/CFTorrespondene between N = 4 SYM theories and superstring sigma models.Let us ontinue to disuss the results for the ase disussed, wherein the numberof reggeizing gluons in the t-hannel may hange. For the amplitudes D3 and D4 itwill be neessary to isolate the reggeizing piees. Beginning with D3, the partiularform of D3;0 in eq. (3.1b) allows to write the solution in the following form:D3 = g2fa1a2a3�(12)3D2 � (13)2D2 + 1(23)D2 � == 12 + + ! : (3.14)
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Here we have introdued the notation (12)3D2 = D2(k12;k3). D3 is said to be \reggeized",in the sense that a real three gluon state never appears until the last step of the evo-lution, when the three gluon state is reahed through a loal splitting of one of thereggeized gluons. It is easy to see that D3, as a funtion of its three gluon momentaand olor labels, (i) does not satify the Ward identities (i.e. it does not vanish ask2 goes to zero); (ii) individual terms are not symmetri under permutations of thegluons.D4 is more involved, and it ontains both a reggeized part DR4 and an irreduibleone DI4, D4 = DR4 +DI4 : (3.15)This deomposition, from a diagrammati point of view, is nothing but a reorderingof the sum of diagrams in Fig.13. In the triple disontinuity illustrated in Fig.13.eah horizontal line (or vertex) denotes an on-shell gluon, and eah vertial wavy linea reggeized gluon. After the rearrangement we end up with the two terms of (3.15).The �rst term, DR4 , is illustrated in Fig.15:
Fig.15: illustration of DR4 .In detail, its struture is inferred from the initial ondition:D4;0 =� g2da1a2a3a4�(123)4D2;0 + 1(234)D2;0 � (14)(23)D2;0 �+� g2da1a2a4a3�(124)3D2;0 + 2(134)D2;0 � (12)(34)D2;0 � (13)(24)D2;0 � ; (3.16)and has the same form:DR4 =� g2da1a2a3a4�(123)4D2 + 1(234)D2 � (14)(23)D2 �+� g2da1a2a4a3�(124)3D2 + 2(134)D2 � (12)(34)D2 � (13)(24)D2 � ; (3.17)The remainder, DI4, is illustrated in Fig.16:
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Fig.16: illustration of DI4.It has the appealing form:DI4(y) = Z y0 dy0 G4(y � y0)V4D2(y0) : (3.18)where the e�etive 2-to-4 vertex, V4, when ating on the spae of 2-gluon gaugeinvariant funtions, has remarkable properties:(i) it is infrared safe,(ii) vanishes whenever one of the gluon momenta goes to 0: (Ward identities),(iii) is ompletely symmetri in the 4 gluons and(iv) is M�obius invariant.The expliit expression for V4, �rst obtained in [10℄, an be found in appendix A.2. Itis these 'good' properties whih support the expetation that the assumptions listedabove are, in fat, satis�ed. Finally we note that the vertex V4 in Fig.16 ontainsdisonneted (virtual) parts: they are analogous to the 'virtual' piees inside theBFKL kernel whih have their origin in the gluon trajetory funtion and do notontribute to s-hannel gluon prodution.So far we have given attention only to the irreduible piees, DI4, whih, be-ause of their 'good' properties, represent the building bloks of the two-ladder on-tributions. The reggeizing piees, DR4 , provide a di�erent lass of orretions toT�(pn)!�(pn). First we remind that these subamplitudes (Fig.12), when onsideredas funtion of the gluon momenta, do not satisfy Ward identities and symmetry prop-erties. However, as funtion of reggeon momenta (e.g., in a piee of the the seondterm in Fig.15, (12)(34)D2;0 , as funtion of k1 + k2), we again have the good properties(Ward identities). In this sense, the reggeizing piees DR4 an be viewed as higherorder orretions to D2. Their ontribution to T�(pn)!�(pn) is illustrated in Fig.17:{ 17 {



Fig.17: illustration of DI4.They ontribute to the double ut, and they introdue higher order olor orrelatorsinside the two-nuleon target. This way of lassifying orretions due to single,double, triple ... ladder exhanges an be viewed as a hierarhy: when generalizingthe analysis of D4 to D6, the reggeizing piees of D6 ontain ontributions with fourreggeizing gluons whih, in the sattering of a photon on a nuleus with three gluons,will provide a two-ladder orretion with higher orrelators inside the three nuleontarget. The analysis of D6 has been started in [33℄.3.2 The single-jet inlusive ross setion: integral equationsAfter these preparations we now turn to the main part of this paper, the alulationof the 1-jet inlusive ross setion. Following the disussion in setion 2, we againonsider the triple disontinuities of Fig.13, keeping in mind that, for the inlusivejet ross setion, one s-hannel gluon is kept �xed, both in rapidity and in trans-verse momentum. Depending upon the position of the s-ut line (Fig.11) we areonsidering, the gluon with �xed kinematis, in Fig.13, an belong to the left, theentral, or the right hand ut: we will label these three possibilities by a subsriptj = 1; 2; 3, resp. Furthermore, inside the three di�erent lasses of ontributions ofFig.14 the gluon an appear at di�erent plaes, inside a transition kernel or inside arung onneting two t-hannel gluons of a two-gluon, a three-gluon or of a four-gluonstate.Following [34℄, we de�ne the triple disontinuities for single jet prodution, jZn,where j indiates the position of the s-hannel ut to whih the jet belongs 2. Lateron, we will relate jZ4 to the subamplitudes N 4 . They are funtions of:� the rapidity di�erenes y1 between the external photon and the emitted jet andthe di�erene Y � y1 between the jet and the reggeized gluons;� the tranverse momentum p1 of the produed jet;� the tranverse momenta ki of the reggeized gluons;� the photon virtuality and polarization, enoded in the impat fators.2Suh a notation is suited for an easy generalization to the ase ofm-jet prodution: mj Zn. In [34℄a tenique based on generating funtionals has been devised for the omputation of the evolutionequations for ouplings with an arbitrary number of jets produed.{ 18 {



In the following we will omit to write these variables expliitely, unless it is neessaryor we feel that their expliit appearane would larify the meaning of the expressions.The summation of all diagrams will be organized in integral equations as follows.We onentrate on the evolution below the jet, i.e. y > y1. For this evolution wede�ne, as initial onditions, iZn;0, the sum of all diagrams above the jet vertex(inluding the vertex), suh that the gluon generating the jet is inside the lowestkernel or rung. It is then easy to see that the equations for n = 2; 3; 4 read3:(�y �H2) Z2 = Æ(y � y1) Z2;0 ; (3.19a)(�y �H3) iZ3 = Æ(y � y1) iZ3;0 + 123K 3 ��Z2 ; i = 1; 2 (3.19b)(�y �H4) iZ4 = Æ(y � y1) iZ4;0 +K4 Z2 ++123K3 ��41Z3 + 124K3 �3�1Z3 + 234K3 1��2Z3 + 134K3 �2�2Z3 ; i = 1; 2; 3 (3.19)They are similar to the equations for the inlusive ouplings Dn � 0Zn in (3.1a-),the only di�erene being the initial onditions.Let us look in more detail at the initial onditions iZn;0. As a new ingredientwe need to introdue the ut operators j =Kn: they are the ut ounterpart of (3.4)in whih the transverse momentum of the s-hannel gluon exhanged between thereggeized gluons j and j +1 has been �xed to p; we still sum over its olor degree offreedom. Its expliit ation is de�ned as
j =Kn�(p;k1; :::;kn) =

j + 1j

== Kn(k1; :::;kn;k1:::j + p;kj+1:::n � p)(k1:::j + p)2(kj+1:::n � p)2 �(k1:::j + p;kj+1:::n � p) ; (3.20)
and in the olor spae we have the same tensor as in (3.5). With these ut kernels,the initial onditions appearing in the evolution equations (3.19a-) are given by the3Note that Z2 � 1Z2 sine there is only one possible ut.{ 19 {



following integral equations 4:Z2;0 = =K2D2 ; (3.21a)1Z3;0 = 12=K2 ��3D3 + 13=K2 �2�D3 + 1231 =K3 ��D2 ; (3.21b)2Z3;0 = 23=K2 1��D3 + 13=K2 �2�D3 + 1232 =K3 ��D2 ; (3.21)1Z4;0 = 12=K2 ��34D4 + 13=K2 �2�4D4 + 14=K2 �23�D4 ++ 1231 =K3 ��4D3 + 1241 =K3 �3�D3 + 1341 =K3 �2�D3 + 12341 =K4 ��D2 ; (3.21d)2Z4;0 = 13=K2 �2�4D4 + 14=K2 �23�D4 + 23=K2 1��4D4 + 24=K2 1�3�D4 ++ 1232 =K3 ��4D3 + 1242 =K3 �3�D3 + 2341 =K3 1��D3 + 1341 =K3 �2�D3 + 12342 =K4 ��D2 ; (3.21e)3Z4;0 = 14=K2 �23�D4 + 24=K2 1�3�D4 + 34=K2 12��D4 ++ 2342 =K3 1��D3 + 1342 =K3 �2�D3 + 1242 =K3 �3�D3 + 12343 =K4 ��D2 : (3.21f)The notation is the same as in setion 3.1, exept for the ut kernel j =Kn: herethe subsript on the lhs denotes the position of the s-hannel gluon whih generatesthe jet. A pitorial representation of one of the equations (3.21) will illustrate theirontent: 1Z3;0 =X +X :The amplitude 1Z3;0 ontains the ontributions from all the diagrams where the jetis produed by the lowest s-hannel gluon . Above, between the external photonand the jet, the inlusive funtions D2 and D3 appear. We �nally note that the eqs.(3.19a-) with the initial onditions (3.21a-f) are free from infrared divergenes.3.3 The single-jet inlusive ross setion: redutionAs the main step of our analysis we now perform the redution whih, similar to thease of the total ross setion, separates the reggeizing piees with 'bad properties'from those whih satisfy Ward identities and symmetry requirements. However, onewe �x the momenta of the jet, we an no longer expet to �nd the same symmetry4Note that =K2 � 1 =K2. Here we have omitted to write expliitely the ation in the olor spae ashas been shown in (3.5), but it should be understood that they are present.{ 20 {



properties as in the ase of the total ross setion. For example, in Fig.11a (thedi�rative ut), N 4 should be symmetri in gluon pair 1 and 2, and in the pair 3 and4, but not in 1 and 3 et., in Fig.11b we expet symmetry in the triplet (123), and inFig.11 N 4 is expeted to be symmetri in the pairs (13) and (24). In other words,we expet full symmetry on eah side of the utting line but not aross the uttingline. Nevertheless, we still will �nd some left-right symmetry: when summing overall di�erent uttings in (2.9), as for Fig.4 in (2.5), we also interhange the laddersattahed to nuleon 1 and 2, assuming even signature in the t hannel. This signatureproperty will show up also in the inlusive ross setion.Following the strategy developed in [10℄ for the total ross setion, we beginwith a areful analysis of the initial onditions, whih serves as a guideline for thereggeization pattern. As a result, the amplitudes jZn will be written as a sum of areggeized part (a linear ombination of solutions with < n reggeized gluons) and airreduible part whih satis�es Ward identities and symmetry properties:iZn = iZRn + iZIn (3.22)2 Reggeized gluons:The simplest ase of two gluons (eq. (3.19a)) is trivial: there is only one gluon oneah side of the utting line, and no redution is neessary. The solution to theintegral equation is the evolution of the initial ondition by means of the BFKLGreen's funtion G2: Za1a22 = �G2(y � y1)=K2(p1)D2(y1)�a1a2 : (3.23)More expliitely, sine D2 is a olor singlet, Da1a22 = Æa1a2D2, we an use the wellknown relation fa01a1bf ba2a01 = �NÆa1a2 and fatorize the olor tensor from (3.23):Z a1a22 = Æa1a2Z2Z2 = �NG2(y � y1)=K2(p1)D2(y1) ; (3.24)where the operators are now those ating just in the transverse momentum spae.3 Reggeized gluons:The ase of three gluons, iZ3;0, is already already more involved. Namely the preseneof the jet breaks the oherene in the initial onditions, whih, in the fully inlusivease, leads to the omplete redution of D3 in terms of D2's. In the present ase thisis no longer true. Imposing the ondition that, after subtration of the reggeizingterm iZR3 , the irreduible piee iZI3 has to satisfy Ward identities, we �nd, after somealulations, that we have to form even and odd ombinationsiZ�3 (p1) = 12�iZ3(p1)� iZ3(�p1)� (3.25)
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Keeping in mind that, in order to arrive at the inlusive ross setion, all transversemomenta (exept for p1) will be integrated, we have omplete azimuthal symmetry,and the negative signature ombination does not ontribute. We note, however, thatthe appearane of even and odd ombinations, from a signature point of view, is quitenatural: in Fig.11a, the jet momentum p1 is equal to the momentum transfer arossthe left lower Pomeron (owing upwards) and aross the right Pomeron (owingdownwards). When interhanging the nuleons below, we thus reverse the diretionof the jet momentum. Therefore, the two ombinations in (3.25) belong to even andodd symmetry under interhange of the lower Pomerons. This distintion will beomerelevant, for example, for 2-jet inlusive ross setions where azimuthal orrelationsome into play. In the following we will always refer to the even ombination. Weuse the average symbol:hiZni(p1) = 12�iZn(p1) + iZn(�p1)�: (3.26)These signatured ombinations satisfy the same set of eqs. (3.19a-), with all thefuntions being replaed by their symmetrized ounterpart. This inludes also theinitial onditions (3.21a-f).Let us now proeed with the deomposition into reggeized and irreduible piees:hiZni = hiZniR + hiZniI ; (3.27)the latter de�ning new e�etive prodution verties whih should satisfy Ward iden-tities. Imposing this ondition, we �nd that the reggeized part has the same form asthe one appearing in the inlusive oupling D3 (see (3.14)):h1Z3iR = g2fa1a2a3� (12)3hZ2i � (13)2hZ2i+ 1(23)hZ2i� == 12 + + ! (3.28)
h2Z3iR = g2fa1a2a3� (12)3hZ2i � 2(13)hZ2i+ 1(23)hZ2i� == 12 + + ! : (3.29)

Here hZ2i is obtained from (3.24) and (3.26):hZ2i = �N G2 =�2 D2 : (3.30){ 22 {



=�2 is simply the symmetrized version of =K2 in the jet transverse momentum,=�2 = h =K2i = 12�=K2(p1) + =K2(�p1)� : (3.31)On the rhs of (3.28), (3.29) the rosses mark the positions of the jet. In the �rst twoterms of (3.28) and in the last two terms of (3.29), one of the reggeized gluons is ut.As an example, Fig.18 illustrates the inner struture of the �rst term:
Fig.18: disontinuity inside a ut gluonOn the rhs of (3.28), the sum of the �rst two terms is symmetri under the exhangeof gluon 2 and 3 (momenta and olor), the third one is antisymmetri. An analogousremark applies to (3.29).The remaining irreduible part ontains new e�etive prodution verties i=�3:h1Z3iI = �Nfa1a2a3G3 1=�3 D2 = ; (3.32a)

h2Z3iI = �Nfa1a2a3G3 2=�3 D2 = ; (3.32b)where the the ross marks the position of the produed gluon inside the e�etiveprodution verties i=�3. The detailed analyti expression of the vertex is presentedin Appendix A.3, eqs.(A.13), (A.14a), (A.14b). It is important to point out that thei=�3 (i = 1; 2), when ating on a gauge invariant impat fator � with �(kj = 0) = 0(j = 1; 2), satisfy the required Ward identities:�i=�3��(kj = 0) = 0; j = 1; 2; 3 ; (3.33)Moreover, due to the symmetry properties of i=�31231=�3 = � 1321=�3 ;1232=�3 = � 2132=�3 ; (3.34)and of the olor tensor fa1a2a3 = �fa1a3a2 = �fa2a1a3 , the amplitudes hiZ3iI aresymmetri under the exhange of the two reggeized gluons on the same side of theut (both olor and momentum). { 23 {



4 Reggeized gluons:For four reggeized gluons, hiZ4i, it is again the initial onditions whih suggest thereggeization pattern. Following the analysis of the total ross setion, it is onvenientto separate the reggeizing part into two piees,hiZ4iR = hiZ4iR1 + hiZ4iR2 : (3.35)The R1 omponent is the same for any position of the s-hannel ut, i = 1; 2; 3, andit oinides with the expression obtained in [10℄ for the reggeized part of the inlusiveoupling D4, hiZ4iR1 = �g2da1a2a3a4�(123)4hZ2i + 1(234)hZ2i � (14)(23)hZ2i �+� g2da1a2a4a3�(124)3hZ2i + (134)2hZ2i � (12)(34)hZ2i � (13)(24)hZ2i � (3.36)
Here we have introdued another ompat notation, e.g. (123)4hZ2i = hZ2i(k123;k4) and(12)(34)hZ2i = hZ2i(k12;k34). For the ase i = 2 (where the ut runs between reggeon 2and 3) we illustrate this equation as follows.

h2Z4iR1 = + ++ + + + : (3.37)
The interpretation is analogous to the disussion after (3.31). In the �rst diagramin the �rst line the ut runs between the reggeons. All diagrams on the seond lineontain a ut reggeon; if we open any of these diagrams we �nd strutures like thoseof Fig.18. The seond and third diagrams of the �rst line have both reggeons ut.The R2 omponent is di�erent for eah ut and is expressed in term of the vertex{ 24 {



=�3 de�ned in (A.13),h1Z4iR2 = gNda1a2a3a4�1(23)4G3 � 14(23)G3 �=�3 D2 ++gNda1a2a4a3�1(24)3G3 � 13(24)G3 �=�3 D2 + (3.38a)+gNda1a3a4a2�1(34)2G3 � 12(34)G3 �=�3 D2= ;
h2Z4iR2 = gNda1a2a3a4�1(23)4G3 + 2(14)3G3 � (12)43G3 � 21(34)G3 �=�3 D2 + (3.38b)+gNda1a2a4a3�1(24)3G3 + 2(13)4G3 � (12)34G3 � 12(34)G3 �=�3 D2=
h3Z4iR2 = gNda1a2a3a4�1(23)4G3 � (23)14G3 �=�3 D2 ++gNda2a1a3a4�2(13)4G3 � (13)24G3 �=�3 D2 + (3.38)+gNda3a1a2a4�3(12)4G3 � (12)34G3 �=�3 D2(in the last equations, the diagrams are analogous to those of the �rst equation,eq.(3.38)). Let us note that eqs. (3.38a) and (3.38) an be easily written interms of 1=�3 and 2=�3 making use of the relations (A.14a), (A.14b) and then one mayreognize a form with a sum of three terms h1Z3iI and h2Z3iI respetively, with agluon splitting at rapidity Y .The irreduible part of hiZ4i onsists of four piees:hiZ4i = hiZ4iI1 + hiZ4iI2 + hiZ4iI3 + hiZ4iI4 : (3.39)In the �rst term the jet emission is above the e�etive vertex V4, inside the BFKLladder. Here all values of i lead to the same expression, i.e. the ontribution is{ 25 {



independent of the position of the ut,hiZ4iI1 = Z yy1dy0 G4(y � y0) V4 hZ2i(y0) = 〈X〉 : (3.40)The appearane of the same vertex V4 below the emission of the jet is a remarkableresult of our analysis: within our approah it is absolutely not trivial, sine a priorione might expet the emission of the jet to break the reggeization pattern leading toV4. Let us stress that the 2 ! 4 vertex is fully symmetri under the exhange ofany pair of gluons, and it satis�es the Ward identities in all four gluon lines. Thisproperty implies that also the �rst and the seond term in eq.(3.39) satisfy the Wardidentities, and they have the required symmetry features on both sides of the ut.The seond term an be illustrated by the following �gure:hiZ4iI2 =X .:The jet is emitted below the 2! 4 vertex, inside the four gluon state, and the labeli singles out the partiipating rungs. For example, for i = 1 the possible rungs arebetween gluon 1 and 2, between 1 and 3, or between 1 and 4. Above the emissionwe have the same struture, DI4, as the total ross setion. In partiular, it ontains,again, the 2! 4 e�etive vertex V4 of [10℄. Writing as usualD4 = DR4 +DI4DI4 = Z y1y0 dy0 G4(y1; y0) V4 D2(y0) ; (3.41)we have h1Z4iI2 = G4 � 12=�2 + 13=�2 + 14=�2� DI4 ; (3.42a)h2Z4iI2 = G4 � 13=�2 + 14=�2 + 23=�2 + 24=�2� DI4 ; (3.42b)h3Z4iI2 = G4 � 14=�2 + 24=�2 + 34=�2� DI4 ; (3.42)The third group of terms ontains new e�etive prodution verties i=V4:h2Z4iI3 = G4 2 =V4 D2 = ; (3.43)
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with analogous expressions for h1Z4iI3 and h3Z4iI3. The produed jet is inside the2! 4 transition vertex, and the new prodution verties are onveniently expressedin terms of new ut operators i=�4 de�ned in Appendix A.3, eq.(A.15):1 =V4 = Æa1a2Æa3a4 12341=�4 + Æa1a3Æa2a4 13241=�4 + Æa1a4Æa2a3 14231=�4 ; (3.44a)2 =V4 = Æa1a2Æa3a4 12342A=�4 + Æa1a3Æa2a4 12342B=�4 + Æa1a4Æa2a3 12432B=�4 ; (3.44b)3 =V4 = Æa1a2Æa3a4 12343=�4 + Æa1a3Æa2a4 13243=�4 + Æa2a3Æa1a4 23143=�4 : (3.44)One an show that the operators i=�4 satify Ward identities. This then also holds forthe verties (3.44a-). Moreover, due to the symmetry properties of i=�4,12341=�4 = 12431=�4 ;12342A=�4 = 12432A=�4 = 21342A=�4 = 21432A=�4 ;12342B=�4 = 21432B=�4 ; (3.45)12343=�4 = 21343=�4 ;i =V4 are symmetri under the exhange of any two gluons (olor and momentum) oneah side of the s-hannel ut.The fourth group of terms part is novel and has no ounterpart in the total rosssetion. Then transition from two gluons to four gluons now proeeds in two steps,and the produed jet is inside the 2! 3 vertex. For the ut line on the lhs (i = 1),it has the formh1Z4iI4 = N Z yy1dy0 G4(y � y0) 1W4 G3(y0 � y1) =�3 D2(y1) = : (3.46)For the ut on the rhs (i = 3) we have an analogous expression, whereas the entralut (i = 2) reeives two ontributions:h2Z4iI4 = N Z yy1dy0 G4(y� y0) 2W4 G3(y0� y1) =�3 D2(y1) = + :(3.47){ 27 {



The 2! 3 vertex with the jet is the same as introdued before and given in appedixin eq. (A.13). eq.(3.32). Below this vertex, a t-hannel state of three reggeizedgluons appears whih, after BKP evolution, through new e�etive verties iW4, turnsinto four reggeized gluons. These new 3 ! 4 transition verties are onvenientlyexpressed in terms of the integral (unut) operators i�4 whih are listed in AppendixA.3 (eqs.(A.16)):1W4 = Æa1a2Æa3a4 12341�4 + Æa1a3Æa2a4 13241�4 + Æa1a4Æa2a3 14231�4 ; (3.48a)2W4 = Æa1a2Æa3a4 12342A�4 + Æa1a3Æa2a4 12342B�4 + Æa1a4Æa2a3 12432B�4 ; (3.48b)3W4 = Æa1a2Æa3a4 12343�4 + Æa1a3Æa2a4 13243�4 + Æa2a3Æa1a4 23143�4 : (3.48)The i�4 have the same symmetry properties (3.45) as their ut ounterparts. There-fore, also the e�etive verties 1W4 are symmetri under the exhange of gluons oneah side of the ut. Furthermore, they an be shown to satisfy Ward identities.Again one may note that for the ut on the lhs (i = 1) or on the rhs (i = 3) it istrivial to rewrite h1Z4iI4, h3Z4iI4 in terms of 1W4 and 1=�3, 3W4 and 2=�3, respetively.Let us summarize our results for hiZ4i in eqs.((3.19)). For eah position of theutting line - denoted by 1 = 1; 2; 3 - we have reggeizing and irreduible piees. Theirreduible piees, for the ase i = 1 and i = 2, are olleted in Figs.19 and 20, resp.:
Fig.19: the four piees of the single jet inlusive ross setion.(a) and (b): prodution above and below the 2! 4 transition,() and (d): prodution inside the 2! 4 transition.

Fig.20: the same as Fig.19, for the ut i = 2.They satisfy the Ward identities, and they are invariant under permutations of thegluons on both sides of the ut. They ome in four di�erent lasses of ontributions.{ 28 {



If the jet is produed above or below the 2 ! 4 transition vertex (groups 1 and2, Figs.19 a and b), the ontributions are idential for all uts (i.e. independentof i). The 2 ! 4 vertex is the same as in the total ross setion. As a result,these ontributions an be added in the same way, as in the ase of the total rosssetion, In partiular, Group 2 will anel, due to the AKG ounting rules [9℄. Ifthe jet is produed inside the 2 ! 4 transition (groups 3 and 4, Figs.19 and d),the uts i = 1; 2; 3 di�er from eah other, and the verties are new. In partiular,there is a novel ontribution (Fig.19d) whih ontains a t-hannel state onsisting of3 reggeized gluons.Finally, let us omment on the reggeizing piees whih do not satisfy Wardidentities and symmetry requirements. Here we have found two groups whih areillustrated in eqs.(3.37) and (3.38a)-(3.38). As we have disussed at the end ofsetion 3.1, these ontributions introdue higher order orrelators inside the target.We illustrate them in Fig.21:
Fig.21: inlusive jet prodution with higher order olor orrelaters inside thetwo-nuleon target.A more detailed disussion will be given elsewhere, and for the rest of this paper wewill restrit our disussion to the irreduible piees whih onstitute the two Pomeronontribution to the inlusive ross setion.4. The 1-jet inlusive ross setionIn the previous setion we have desribed the omputation of the triple disonti-nuities of the amplitudes, with one gluon being �xed in transverse momentum p1and rapidity y1. Due to this gluon, the deomposition into reggeized and irreduiblepiees has turned out to be quite di�erent from the total ross setion.Let us now make use of these triple disontinuites and return to the inlusiveross setion in eq.(2.9). Beginning with the term N 4(1; 2j3; 4; y1;p1), we use Fig.20and attah nuleon 1 to lines 1 and 2 and nuleon 2 to lines 3 and 4. Similarly, theseond term N 4(3; 4j1; 2; y1;p1) is obtained by interhanging nuleons 1 and 2. Inthe last term, N 4(1; 3j2; 4; y1;p1), we onnet nuleon 1 with the gluon lines 1 and 4.Beause of the symmetry under the exhange of gluons on both sides of the ut, wedo not need to distinguish between N 4(1; 3j2; 4; y1;p1) and N 4(1; 4j2; 3; y1;p1). Forthe third and fourth lines on the rhs of eq.(2.9), we use Fig.19. Again, the symmetry{ 29 {



on the rhs of the utting line allows to identify, for example, N 4(1; 2; 3j4; y1;p1) andN 4(1; 3; 2j4; y1;p1).For eah of these terms, we have the four groups orresponding to the Figs.19a-dor Figs.20a-d. As we have said before, for the �rst two groups the di�erent utsi = 1; 2; 3 lead to the same result. Hene we an, in eq.(2.9), simply sum over thephase fators. This leads, in the ase of the �rst group (Fig.19a and 20a) to theusual AGK ounting: 2 - 8 + 4 = -2. In the seond group (Figs.19b and 20b) we�nd omplete anellation [9℄: 2 - 6 + 4 = 05. In ontrast to this, for the remainingontributions to the inlusive ross setion there is no simple way of summing thedi�erent uts, and the inlusive ross setion remains of the form given in eq.(2.9).For the �rst group (two groups (Figs.19 and 20) we illustrate the integrand of eq.(2.9) in the following equation:h�1��2X + �2��1X +
+2 Im�10BBBB�(i�2)�X + ::1CCCCA + 2 Im�20BBBB�i�1X + ::1CCCCA

+4Im�1Im�2X i
(4.1)

In this expression above in the �rst line, whih orresponds to the 'di�rative ut',one has to insert all the ontributions onstruted with the e�etive vertex 2 =V4 givenin eq. (3.44b), inserted in eq. (3.43). The two ontributions with omplex onjugatephase fators are assoiated to the two possible ways of oupling to the two nuleonsin the deuteron. The 'single absorptive ut' ontribution in the seond line of eq.(4.1), is given by the sum of 4 terms, two assoiated with the jet produed alongthe ut whih goes to one nuleon and the other two when the ut goes throughthe seond nuleon. The two ases are onstruted similarly to the previous oneemploying the verties 1=V4 and 3=V4 given respetively in eqs. (3.44a) and (3.44).The third line) in eq. (4.1) is assoiated to the 'double ut' ontribution, and it is5Here we make use of the fat that the oupling of the two gluon pairs to the two nuleons alsosati�es the symmetry properties: invariane under the interhange of the two nuleons, and - foreah nuleon separately - symmetry under interhange of the two gluons.{ 30 {



built again from 2 =V4. The oupling to the nuleons selets the struture equivalent toN 4(1; 3j2; 4) = N 4(2; 3j1; 4) and is assoiated to a purely real phase. Beause of thesymmetry of N 4 under permutations on both sides of the utting line we do not needto inlude another term with nuleons 1 and 2 interhanged. Let us note that in ourapproximation we shall hoose purely imaginary BFKL pomeron phases, �1;2 = i.The �nal group (Figs.19d and 20d) is illustrated in the following equation:h�1��20BBBBBBB�X +X 1CCCCCCCA+ ::
+2 Im�10BBBBBBB�(i�2)�X + ::1CCCCCCCA + 2 Im�20BBBBBBB�i�1X + ::1CCCCCCCA+

+4Im�1Im�20BBBBBBB�X +X 1CCCCCCCAi :(4.2)These terms are novel and quite peuliar sine they are haraterized by the emissionof a jet inside the e�etive verties =�3 and i=�3 whih allow, in the t-hannel, thetransition from 2 to 3 reggeized gluons. After rapidity evolution a seond splitting,desribed by the verties iW4 is taking plae. In this e�etive 3! 4 transition thereis always one gluon whih ats as a spetator. Finally, the resulting t-hannel fourgluon state, after a BKP evolution, is oupled to the deuteron form fator.The 'di�rative ontributions' in the �rst line are onstruted using the e�etivevertex =�3, given in eq. (A.13) of appendix A.3, whih ontains ontributions fromthe jet emitted in the two possible positions. The subsequent 3 ! 4 transition isdesribed by the e�etive vertex 2W4, given in eq. (3.48b). One is therefore led to useeq.(3.47), whih has to be integrated with the four reggeon Green's funtions and thedeuteron form fator. The 'single absorptive ut' ontributions in the seond line ofeq. (4.2) are expressed in terms of the e�etive verties 1=�3 and 2=�3 (or also using =�3as in eq. (3.46)) de�ned in eq. (A.14) of appendix A.3. They ontain ontributions{ 31 {



from the jet emitted only on the left or on the right of the e�etive 2 ! 3 vertex.These two ases are assoiated to two orresponding 3 ! 4 splittings desribed bythe e�etive verties 1W4 and 3W4, listed in eqs. (3.48a) and (3.48), respetively.Finally the 'double ut ontribution' in the third line of eq. (4.2)) is, again,onstruted in the same way as the di�rative ase, with the produed gluon insidethe e�etive 2 ! 3 vertex being either on the left or on the right hand side. Whatdistinguishes this ase from the di�rative one is the oupling to the deuteron formfators.We omplete this setion with the large-N limit whih somewhat simpli�es ourresults. As the main feature, the four-gluon evolution above the two nuleons turnsinto two non-interating BFKL Pomerons, one for eah nuleon. We illustrate thisin Fig.22:

Fig.22: the large-N approximation (a) prodution above the 2! 4 transition, (b)prodution inside the 2! 4 transition, () prodution in the 2! 3 transition.In the �rst ontribution, shown in Fig.22a (whih orresponds to Fig.19a and Fig.20a),these two Pomerons ouple diretly to the 2! 4 vertex, seleting the olor strutureÆa1a2Æa3a4 . This is the triple Pomeron vertex, whih also appears in the nonlinearBalitsky Kovhegov (BK) evolution equation [35℄. In the seond ontributions illus-trated in Fig.22b (orresponding to Figs.19 and 20), the two Pomerons ouple tothe new prodution vertex i=V4 listed in eqs.(3.44a) - (3.44), and the di�erent utpositions lead to di�erent expressions for the vertex. For eah i, only one of theolor strutures ontributes to the large-N limit. We expet that the rather lengthyexpressions for the verties that we have obtained may simplify, if we make use ofthe Moebius representation of the BFKL Pomerons. This will be disussed in a sub-sequent paper. Finally the new ontribution in Fig.22 (orresponding to Figs.19dand 20d): here the two Pomerons arrive at the e�etive 3 ! 4 verties, iW4, listedin eqs.(3.48a) - (3.48). Again, eah ut piks one olor struture, dismissing theother ones as subleading. In partiular, there is no N supression of this novel pieewith the 3 gluon ontribution. Again, simpi�ations of the kernels will be disussed{ 32 {



elsewhere. Note that the jet prodution from one of the two ladders below the 2! 4vertex anels beause of the AGK rules.5. ConlusionsIn this paper we have investigated, within the BFKL framework of pQCD, the single-jet inlusive ross setion in the sattering of a virtual photon on a weakly ouplednuleus (deuteron). We have identi�ed the two-Pomeron exhange between the jetand the nuleus, and we have derived an analyti expression for the jet vertex.Invoking Regge fatorization, the same vertex an also be used in pp ollisions wherethe jet, in rapidity, is lose to one of the protons, but has a large rapidity separationfrom the other proton. Our analysis has been done in momentum spae, and westress that the results are valid for �nite N.On the theoretial side, our analyis shows several new features. First, the jetvertex ontains a new struture not seen before, namely a three gluon t-hannelstate whih, in a total ross setion, would violate signature onservation and, hene,never appears. This ontribution to the jet prodution vertex is not suppressed inthe limit N !1, and there are no extra powers in g2 whih are not ompensatedby fators ln 1=x. This latter statement simply follows from the fat that all ourresults are derived from prodution amplitudes whih are all of the same order:g2� g2� g2�Pk(g2y)k� g4 (where the last fator g4 belongs to the oupling to thenuleons), and all subsequent steps amount to a re-ordering6This last term the last term seems to be missing in previous studies, in partiularin both [2℄ and [6℄, and we feel that it is very important to larify this disrepany.Whereas, at the moment, we feel unable to omment on [2℄, we do see a possiblereason why [6℄ does not �nd this piee. At �rst sight, [6℄ follows a strategy verysimilar to ours. It starts from disontinuities, omputed in momentum spae, and itthen separates reggeizing piees from nonreggeizing ones. In ontrast to our strategy,however, this separation is done in the same way as for the total ross setion, i.e.before �xing the momenta of the jet. In our approah, however, we do the separationof reggeizing and irreduible piees only after �xing the momenta of the jets. Asit turns out, the results for the inlusive ross setion do depend on the order ofthese steps. Conneted with these new ontributions are new prodution vertiesand transition verties of reggeized gluons, whih represent building bloks of QCDreggeon �eld theory.In order to larify the onnetion of our result with those of, e.g., [2{4℄ it willbe useful to �rst translate our results into on�guaration spae, making use of the6In partiular, the ontributions in Fig.22 are of the same order as those of Fig.22a: the 3! 4gluon vertex is of the order g3 (f. eq.(A.16a)), i.e. in the transition from 3 to 4 gluons one gluonremains a 'spetator'. { 33 {



Moebius representation [39℄, and also taking the large-N limit. We plan to do thisin a forthoming workReturning to the further interpretation of our analysis, they also shows that, forthe two-Pomeron exhange in the inlusive ross setion formula, the AGK ountingrules have to be used with are: if the jet is produed inside the 2 ! 3 or the2! 4 transition vertex, the relative weights of the di�erent uttings aross the twoPomeron exhange di�er from the AGK ounting derived for the total ross setion.This supports the �ndings of [2, 6℄. On the other hand, the anellation of theresattering orretions aross the jet vertex remains valid and has been on�rmedby our analysis.Another result is the appearane of the reggeizing piees. In the inlusive rosssetion formula, reggeizing piees belong to single BFKL ladder. They appear in theoupling to the nuleus and introdue higher order orrelators between the nuleons.As to pratial appliations, the most interesting aspet, at present, is the searhfor saturation. For the total � nuleus ross setion, the high energy behavior(small-x limit), in the large-N approximation, is desribed by the nonlinear Balitsky-Kovhegov (BK) evolution equation, and solutions to this equation have been inves-tigated in some detail. In order to derive the BK equation in momentum spae oneinvestigates the sattering of a virtual photon on nulear targets onsisting of 2, 3,...nuleons and separates reggeizing and nonreggeizing ontributions. For the ase of 2nuleons, the orresponding QCD diagrams have been analyzed before (and summa-rized in this paper), and the validity of the BK equation is intimately onneted withthe dominane of the 'fan-like' struture of the QCD ladder diagrams. In partiular,there is no diret oupling of two Pomerons to the photon impat fator, and thesplitting of a single Pomeron into two Pomerons goes via the 2 ! 4 gluon vertexwhih, in the large-N limit, oinides with the integral kernel of the BK equation.As the main intention of the present paper was the generalization of this analysis,from the total ross setion to the single inlusive ross setion, we an, again, lookat the struture the leading QCD-diagrams, illustrated in Fig.22. The �rst term,Fig.22a, suggests that, below the 2 ! 4, we see the beginning of the same fan-likestruture as in the total ross setion. That is, when generalizing our analysis tothe sattering on a nuleus onsisting of 3 or more nuleons, we expet to see thefan struture whih sums up to the familiar nonlinear BK-equation. The seond andthe third terms (Fig.22b and ), however, do not �t into this pattern: the evolutionbelow the jet vertex starts with double Pomeron exhange, and in the last term thenew three gluon state introdues a new Pomeron omponent whih survives in thelarge-N limit. One might interpret it as a nonloal (in rapidity) ontribution to thee�etive 2! 4 transition vertex.A omment on kt fatorization might be in plae. The struture of our large-Nross setion an be read o� from Fig.22. All three ontribtions to the inlusiveross setion have in ommon that, in transverse momentum, they fatorize into{ 34 {



a prodution vertex and gluon amplitudes above and below the vertex. In detail,however, there are some di�erenes ompared to the usual fatorization pattern. Inthe �rst term, Fig.22a, we still have the usual kt-fatorization: momentum dependentamplitudes (unintegrated gluon densitities) from above and below, onvoluted (intransverse momentum) with the gluon emission vertex. In Fig.22b, we still have,above the gluon emission, a single unintegrated gluon density, whereas from below wenow have two gluon amplitudes, and this leads to a threefold transverse momentumintegration. In Fig.22, the emission vertex has a single gluon density from above, athree gluon amplitude from below. Figs.22b and  thus introdue gluon orrelationfuntions of four and three gluons, resp. It is the three-gluon orrelator whih seemsto be absent in previous studies. In order to understand the further rapidity evolutionof Figs.22 b and  it will be neessary to study the sattering of a photon on a threenuleon state.Finally, one might wonder how our result would generalize in the analysis of theequations desribing the orretions to inlusive two-jet prodution ross setions.This ase has been onsidered in the framework of the olor dipole-CGC piture [40℄.Clearly we expet the pattern of gluon reggeization to be broken further, leadingpossibly to new terms with even higher order gluon orrelators. This is a hallenginganalysis whih we hope to address in the future.Aknowledgements: We thank Mikhail Braun for lively and very helpful disus-sions. We gratefully aknowledge the support of the Galileo Galilei Institute inFlorene where part of this work has been done.A. AppendiesA.1 Color identitiesThe struture of the SU(N) algebra is determined by the struture onstant fab�xing the ommutation relations [ta; tb℄ = ifabt, with the generators ta normalizedsuh that tr(tatb) = Æab=2. From the generators is possible to get the strutureonstants via fa1a2a3 = �2i(tr(ta1ta2ta3)� tr(ta3ta2ta2)) ; (A.1)and de�ning the symmetri struture onstant da1a2a3 through the antiommutatorsof the generators, fta1 ; ta2g = 1N Æa1a2 + da1a2a3ta3 ; (A.2)we have da1a2a3 = 2(tr(ta1ta2ta3) + tr(ta3ta2ta2)) : (A.3){ 35 {



It turns out to be useful to de�ne as well tensors fa1:::an and da1:::an for n > 3:fa1a2:::an = �i�tr(ta1ta2 : : : tan)� tr(tan : : : ta2ta1)� ; (A.4a)da1a2:::an = tr(ta1ta2 : : : tan) + tr(tan : : : ta2ta1) : (A.4b)Both f and d tensors are evidently invariant under yli permutation, and more-over fa1a2a3 is antisymmetri under the transposition of two indies, while da1a2a3 issymmetri. fa1a2a3 = �fa2a1a3 (A.5a)da1a2a3 = da2a1a3 (A.5b)A very useful relation is the Fierz identity,(ta)i1i2(ta)j1j2 = 12Æi1j1Æi2j2 � 12N Æi1i2Æj1j2 : (A.6)Other essential relations are the Jaobi identity,fa1a2bf ba3a4 � fa1a3bf ba2a4 + fa1a4bf ba2a3 = 0 ; (A.7)the deomposition of da1a2a3a4 in terms of rank three tensors,da1a2a3a4 = 14(da1a2bdba3a4 � fa1a2bf ba3a4) + 12N Æa1a2Æa3a4 ; (A.8)and some ontrations of various tensorsf b1a1b2f b2a2b1 = �NÆa1a2 ; (A.9a)f b1a1b2f b2a2b3f b3a3b1 = �N2 fa1a2a3 ; (A.9b)db1a1b2f b2a2b3f b3a3b1 = �N2 da1a2a3 ; (A.9)f b1a1b2f b2a2b3f b3a3b4f b4a4b1 = N da1a2a3a4 ++12(Æa1a2Æa3a4 + Æa1a3Æa2a4 + Æa1a4Æa2a3) ; (A.9d)da1a2b1b2f b1a3f a4b2 = �N2 da1a2a3a4 � 14Æa1a2Æa3a4 ; (A.9e)da1b1a3b2f b1a2f a4b2 = 14Æa1a2Æa3a4 + 14Æa1a4Æa2a3 : (A.9f)A.2 The 2-to-4 e�etive vertex V4The integral operators i�n are given in terms of the infrared safe G funtion (�rstintrodued in [10℄ in the forward diretion and later generalized and investigatedin [36, 37℄). Its ation on a two gluon funtion � is given byG�2 = K3�+ gN� 2!(1�)3� + 2!1(�3)� � (12)! �3� � (23)! 1��� : (A.10)
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This objet is nothing but a regularized version of the two-to-three operator K3,being the trajetories in (A.10) the preise subtration terms neessary to get rid ofthe divergenes. Note that when the transverse momentum k2 of the entral leg isput to zero, G redues to the singlet version of the BFKL operator H; we indiatek2 = 0 putting a small irle Æ in its position:Æa1a21Æ2G � = �Ng 12H2� ; (A.11)with � a two gluon olor neutral funtion. The vertex V4 introdued in (3.18) is thende�ned by V4 = Æa1a2Æa3a4 1234V + Æa1a3Æa2a4 1324V + Æa1a4Æa2a3 1423V ; (A.12)where the operator V , whih is M�obius invariant [36, 38℄, is de�ned as1234V � = g2�1(23)4G + 1(24)3G + 2(13)4G + 2(14)3G + (12)Æ(34)G +�(12)34G � (12)43G � 12(34)G � 21(34)G � ��� :A.3 De�nitions of the operators i=�n and i�nThe e�etive verties i=�3 desribing the transition 2-to-3 reggeized gluons with asso-iated jet prodution are onveniently expressed in term of an auxiliary operator =�3de�ned as =�3� = 12�g (13)2h =K2i � 132h1 =K3i � 213h2 =K3i� ���� g2 13h =K2i(��)2� : (A.13)In terms of =�3 we have 1=�3� = 12�123=�3 � 132=�3� ; (A.14a)2=�3� = 12�123=�3 � 213=�3� : (A.14b)In the ase of the transitions 2-to-4 there are four di�erent verties, one eah for{ 37 {



the uts 1 and 3 and two for the ut 2. They are

1=�4� = 14� 2134h2 =K4i+ 2314h2 =K4i+ g 1(23)4h1 =K3i � g (12)34h1 =K3i � g 23(14)h2 =K3i� ���++g4 134h1 =K3i(��)2� + g4 132h1 =K3i(��)4� + (3$ 4) + (A.15a)+14�g2(12)(34)h =K2i + g2(134)2h =K2i � g 12(34)h1 =K3i � g 21(34)h2 =K3i+ g 1(34)2h1 =K3i � g (34)12h2 =K3i� ���+�g24 1(34)h =K2i(��)2� � g24 12h =K2i(��)(34)� ;2A=�4� = 14� 1234h2 =K4i+ 1324h2 =K4i � g (23)14h1 =K3i � g 14(23)h2 =K3i+ g2(13)(24)h =K2i � ���++g4 234h1 =K3i1(��)� + g4 123h2 =K3i(��)4�+ (1$ 2) + (3$ 4) + (1$ 2; 3$ 4) + (A.15b)+g4� 3(12)4h2 =K3i � (12)34h1 =K3i� ���� g24 (123)4h =K2i ���� g24 (12)3h =K2i(��)4� + (3$ 4) ++g4� 1(34)2h1 =K3i � 12(34)h2 =K3i� ���� g24 1(234)h =K2i ���� g24 2(34)h =K2i1(��)� + (1$ 2) ++g22 (12)(34)h =K2i ��� ;
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2B=�4� = 14� 1234h2 =K4i+ 1324h2 =K4i+ g 1(34)2h1 =K3i+ g 3(12)4h2 =K3i � g 13(24)h1 =K3i � g (13)24h2 =K3i+�g (13)24h1 =K3i � g 13(24)h2 =K3i+ g2(13)(24)h =K2i � ���++g4 234h1 =K3i1(��)� + g4 123h2 =K3i(��)4� � g24 13h =K2i(��)(24)�+ (1$ 2; 3$ 4) + (A.15)+g4� 3(12)4h2 =K3i � (12)34h1 =K3i� ���� g24 (123)4h =K2i ���� g24 (12)3h =K2i(��)4� + (3$ 4) ++g4� 1(34)2h1 =K3i � 12(34)h2 =K3i� ���� g24 1(234)h =K2i ���� g24 2(34)h =K2i1(��)� + (1$ 2) ++g22 (12)(34)h =K2i ��� ;3=�4� = 14� 1243h2 =K4i+ 1423h2 =K4i+ g 1(23)4h2 =K3i � g 12(34)h2 =K3i � g (14)23h1 =K3i� ���++ g4 124h2 =K3i3(��)� + g4 324h2 =K3i1(��)� + (1$ 2) + (A.15d)+14�g2(12)(34)h =K2i + g23(124)h =K2i � g (12)34h2 =K3i � g (12)43h1 =K3i+ g 3(12)4h2 =K3i � g 34(12)h1 =K3i� ���+�g24 (12)4h =K2i3(��)� � g24 34h =K2i(12)(��)� :The integral operators i�n are given in terms of the infrared safe G funtionde�ned in (A.10). Analougusly to (A.15), there are two di�erent operators for theentral ut:1�4� = 14�+ 234G 1��� � 432G 1��� + 134G �2�� � 134G ��2� + 132G �4�� � 132G ��4� � (3$ 4)�++ g4�� 2Æ(34)G 1��� + (34)Æ2G 1��� � 1Æ(34)G �2�� + 1Æ(34)G ��2� � 1Æ2G �(34)�� + 1Æ2G ��(34)� � ;(A.16a)2A�4� = 14�123G ��4� + 234G 1��� + 124G �3�� + 134G �2�� � 132G ��4� � 234G 1��� ++(1$ 2) + (3$ 4) + (1$ 2; 3$ 4)�++g4�1Æ2G ��(34)� � 2Æ(34)G 1��� � 1Æ(34)G �2�� � (1$ 2)�+ (A.16b)+g4�� 3Æ4G (12)��� � (12)Æ3G ��4� � (12)Æ4G �3�� + (3$ 4)� ;
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