
*0
80
2.
27
02
*

Revised Version  DESY-08-016
ar

X
iv

:0
80

2.
27

02
v2

  [
he

p-
ph

] 
 4

 J
un

 2
00

8

Preprint typeset in JHEP style - HYPER VERSION DESY-08-016
In
lusive 1-jet Produ
tion Cross Se
tionat Small x in QCD: Multiple Intera
tions
J.Bartelsa, M.Salvadorea and G.P.Va

aba II Inst. f. Theor. Physik, Univ. of Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyE-mail: bartels�mail.desy.de, mi
hele.salvadore�gmail.
omb INFN - Sezione di Bologna, Dip. di Fisi
a,Via Irnerio 46, Bologna, Italy.E-mail: va

a�bo.infn.itAbstra
t: We study 
orre
tions due to two Pomeron ex
hanges to the in
lusive1-jet produ
tion 
ross se
tion in the Regge limit of perturbative QCD for a �nitenumber of 
olors. By 
onsidering deep inelasti
 s
attering on a weakly bound two-nu
leon system, we 
arefully follow the logi
 of the AGK 
utting rules and show, forthe single in
lusive 
ross se
tion, that, due to the reggeization of the gluon, modi-�
ations of the AGK 
utting rules appear. As our main result, we investigate and
al
ulate the jet produ
tion vertex in the presen
e of a two-Pomeron 
ut 
orre
tion.Compared to previous studies, we �nd a novel stru
ture of the jet vertex whi
h hasnot been 
onsidered before. We dis
uss a few impli
ations of this new pie
e.Keywords: BFKL, Regge Limit, in
lusive jet produ
tion.
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1. Introdu
tionHigh gluon densities and saturation in high energy QCD have attra
ted mu
h interestin re
ent years. Experimental eviden
e has been dis
ussed in 
onne
tion with bothHERA and RHIC data, and with the advent of the LHC there will be interest insignals for high densities also in proton-proton 
ollisions. In this 
ontext in
lusivejet produ
tion plays a 
entral role: whereas for moderate values of longitudinalmomenta, x1 and x2, the 
ross se
tions for in
lusive jet produ
tion will be des
ribedby 
ollinear fa
torization and leading twist parton densities, the forward region mayrequire substantial 
orre
tions. The LHC will allow, 
lose to the forward dire
tion ofone of the protons, a very asymmetri
 
on�guration of jet or Drell-Yan produ
tion,for example x1 � x2. This leads, for not too high momenta of jets, to very smallvalues of x1, and may require multiple ex
hanges between the produ
ed jet andproton '1' (Fig.1). In more physi
al terms, the produ
ed jet may originate from a
on�guration where the density of gluons from proton '1' is high.{ 1 {



Fig.1: forward jet in pp 
ollisionsIt is therefore important to provide, from the theoreti
al side, 
ross se
tion formulaewhi
h allow to in
orporate multiple ex
hanges between the produ
ed jet and theproton. Within the 
ollinear approximation, these 
orre
tions belong to higher twistand are suppressed by powers of the jet transverse momentum. However, at small x,resummation of powers of ln 1=x are expe
ted to partly 
ompensate su
h a suppres-sion. It may therefore be more suitable to start within the BFKL approa
h. It is alsothis approa
h whi
h, in deep inelasti
 ele
tron-proton or ele
tron-nu
leus s
attering,provides the framework for the dis
ussion of high gluon densities and saturation.In this paper we make an attempt to address, within the BFKL frameworkin momentum spa
e, for �nite N
, the issue of multiple intera
tion in in
lusive jetprodu
tion. As a theoreti
al framework we use the s
attering of a virtual photon on anu
lear target 
onsisting of two (di�erent) nu
leons (Fig.2): the energy dis
ontinuityof this pro
ess 
onsists of di�erent 
lasses of �nal states, and within these �nal stateswe �x one gluon whi
h generates the jet. In parti
ular, we sear
h for the jet vertexillustrated in Fig.1a-
, where below the jet vertex we have to sum over all possible
uttings. It will turn out that the vertex is more 
ompli
ated than suggested byFig.1.The single in
lusive jet 
ross se
tion, mostly in the large-N
 limit approximation,has been studied before in [1{6℄. Whereas the �rst study [1℄ had expli
itly beenbased upon the AGK [7℄ 
utting rules (see also [8, 9℄ for a QCD analysis), it wasthen in [2℄ observed that the emission of the jet inside the triple Pomeron vertexmight lead to deviations from the AGK rules. Results of [2℄ have been supportedin [3, 4℄. In [5℄ a new investigation was reported, more detailed than [1℄ but stillbased upon assumptions, whi
h lead to the dis
overy of new 
ontributions to thee�e
tive produ
tion vertex. An improved and more a

urate investigation was givenmore re
ently in [6℄. Whereas the 
al
ulations reported in [2{4℄ have been done in
on�guration spa
e, the studies in [1,5,6℄ were done in momentum spa
e, and theirmethod is similar to the one used in this paper. Nevertheless, our results, whi
h -{ 2 {



in 
ontrast to [1, 5, 6℄ - are valid for an arbitrary number of 
olors, are in partial
on
i
t with those of [6℄.2. The strategyWe 
onsider deep inelasti
 s
attering on a nu
leus 
onsisting of two weakly boundnu
leons (Fig.2).
1′

2′

1

2Fig.2: S
attering of a virtual photon on a weakly bound nu
leusThe total 
ross se
tion is obtained from the elasti
 s
attering amplitude, T
�(pn)!
�(pn):�tot
�(pn)!
�(pn) = 1S ImT
�(pn)!
�(pn): (2.1)where S denotes the total energy of the s
attering pro
ess. Before we 
onsider thein
lusive 
ross se
tion we �nd it useful to re
apitulate the 
omputation of the total
ross se
tion. The kinemati
s is illustrated in Fig.3:

Fig 3: kinemati
s of the 3! 3 pro
ess.the energy variables s1 = (q+p1)2, s2 = (q+p02)2,M2 = (q+p1�p01)2, S = (q+p1+p2)2are assumed to be mu
h larger than the momentum transfer variables t = (q � q0)2,t1 = (p1 � p01)2, t2 = (p2 � p02)2. We will distinguish between s1 and s2, but at theend we set s1 = s2 = s � M2 and t = 0. Throughout this paper we use Sudakovvariables with the lightlike referen
e ve
tors q0 and p, su
h that s = 2p0q = 2pq,{ 3 {



S = 4pq = 2s, q = q0 � xp with x = 2pq=Q2 and M2 = xP s. Negle
ting the nu
leonmasses we havep1 = p2 = p; p01 = p(1� xP ) + p1?; p02 = p(1 + xP ) + p2?: (2.2)Internal momenta are then written aski = �iq0 + �ip+ ki? (2.3)with k2i? = �k2i . The fa
t that the two nu
leons are in a weakly 
oupled bound stateimplies that we will allow the two nu
leons to have small losses of longitudinal andtransverse momenta, i.e. we will integrate over xP and p1? = �p2? = k?.2.1 The total 
ross se
tionFor the total 
ross se
tion we will be interested in the imaginary part of the amplitudeT
�(pn)!
�(pn)(s1; s2;M2; t1; t2; t), integrated over xP and p1? = �p2? = k?. Followingthe dis
ussion in [7℄, this imaginary part 
onsists of the three 
ontributions illustratedin Fig.4. They are often referred to as 'di�ra
tive 
ut' (Fig.4a), 'single 
ut' (Fig.4b),and 'double 
ut' (Fig.4
).

Fig 4: di�erent energy 
uts:(a) di�ra
tive 
ut, (b) single 
ut, (
) double 
ut.The total 
ross se
tion is obtained from the sum of these terms, where we have toobserve that, in Fig.4a, we have to add the 
on�guration where the nu
leons 1 and 2are inter
hanged. Similarly, in Fig.4b the 
ut line 
an pass through nu
leon 1 or 2,and for both 
on�gurations we also have to add their 
omplex 
onjugates. Finally,in Fig.4
 we show two of the four 
on�gurations; the remaining ones are obtained byinter
hanging nu
leons 1 and 2.Let us analyse these 
ontributions in more detail. In all 
ases we en
ountersubamplitudes, A4(k1; �1;k2; �2;k3; �3;k4; �4) (Fig.5), whi
h di�er from ea
h otherby the way in whi
h the � integrals are done.Gluons 1,...4 are labelled from the left to the right. In Fig.4a, gluons 1 and 2will 
ouple to nu
leon 1, and gluons 3 and 4 to nu
leon 2; in Fig.4
1 gluons 1 and 4{ 4 {



are atta
hed to nu
leon 1, and gluons 2 and 3 to nu
leon 2. The variables �i (withP �i = 0) denote the � 
omponents of the gluons, whi
h are integrated, and whi
h
an be interpreted as (dimensionless) energy variables of the subamplitudes. For themoment we will ignore the 
olor indi
es of the gluons.
Fig 5: a subamplitude of Fig.4To begin with Fig.4a, we introdu
e xP = �1 + �2 = ��3 � �4 and 
onsider, asintegration variables, xP , �1, and �3. With M2 = sxP , the dis
ontinuity in Fig.4aindi
ates that, for the di�ra
tive 
ut, we are integrating a
ross the dis
ontinuity inxP . Obviously, M denotes the invariant mass of the pro
ess: photon + (gluon 1 +gluon 2) ! photon + (gluon 3 + gluon 4).
Fig 6: integration 
ontoursThe remaining � variables, �1 and �3 are inside the ladders to the right and to theleft hand side of the energy 
ut, and the integration 
ontours are taken along thereal axis. In Fig.4b, it is the variable �1 in whi
h we take the dis
ontinuity, and the
ontour goes around the right hand 
ut, whereas the other � variables (in
ludingxP ) run along the real axis. Here s�1 denotes the squared energy of the subpro
ess:photon + gluon 1! photon + (gluon 2 + gluon 3 + gluon 4). Finally, in Fig.4
1 weintrodu
e � = �1 + �3 as the subenergy variable in whi
h the dis
ontinuity is taken,and its integration goes around the right hand 
ut. At this stage, the subamplitudesof Figs.4a - 
 are di�erent from ea
h other.Provided that in all three 
ases the subamplitude A4, taken as a fun
tion of thethree independent � variables, falls o� suÆ
iently fast for large j�j, one 
an redrawthe 
ontour 
ontaining the dis
ontinuity along the real axis (Fig.6b). Furthermore,{ 5 {



we need the amplitudes to be symmetri
 under permutations of the gluons. If allthese 
onditions are satis�ed, all three 
ases 
an be redu
ed to one and the sameintegral, where all three �-integrations run along the real axis:N4(k1;k2;k3;k4) = Z d�1 Z d�2 Z d�3A4(k1; �1;k2; �2;k3; �3;k4; �4); (2.4)and the fun
tion N4 is symmetri
 under permutations of the gluons. Alternatively,N4 
an be written as a triple dis
ontinuity integral and is, therefore, a real-valuedfun
tion. This is what is required for the AGK rules to be valid.Applying this dis
ussion to Figs.4a-
, it is then 
lear that all three di�erent 
uts,after integration over xP , will have the same expression for the subamplitude, N4,and they di�er from ea
h other only by the phases for the ladders below. This allows,to write the sum of all three terms in the simple form:2ImT = 2S�tot = S Z dxP Z d�(fkg) ImT
�(pn)!
�(pn) == Z d!2�ie!Y Z d!12�i Z d!22�i Z d�(fkg)(2�)6 2�iÆ(! � !1 � !2)N4�h�(!1)�(!2)� + �(!2)�(!1)�+2Im�(!1) (i�(!2) + (i�(!2))�) + 2Im�(!2) (i�(!1) + (i�(!1))�)+4Im�(!1Im�(!2)i
 �1;2(fkg); (2.5)where y = lnS, and k is the momentum transfer of nu
leon 1 and we have 
onsideredthe kinemati
s 
orresponding to the measure d�(fkg) = d2k1d2k2d2k3d2k4Æ(2)(k1 +k2)Æ(2)(k3 + k4). The signature fa
tors have the form�(!) = 1� e�i�!sin �! ; (2.6)and �1;2(fkg) 
ontains the two nu
leon form fa
tors and the deuteron wave fun
tion(in
luding the integration over the �-variables). In the large-N
 limit, the subam-plitude N4 will 
ontain the produ
t of two Pomeron propagators, G2(k1; !1) andG2(k3; !2), whi
h 
ouple to nu
leons 1 and 2, resp. Eq.(2.5) 
an also be written inthe more familiar form:2ImT = 2S�tot = S Z dxP Z d2k ImT
�(pn)!
�(pn) == Z d!2�ieY ! Z d!12�i Z d!22�i Z d�(fkg)(2�)6 2�iÆ(! � !1 � !2)N4�2Imh(�i)(i�(!1))(i�(!2))i
 �1;2(fkg); (2.7)
{ 6 {



in agreement with the AGK argument.In a pra
ti
al 
al
ulation of the total 
ross se
tion, we 
ompute the three di�erent
ut 
ontributions in Fig.4, term by term. In ea
h term we have to 
al
ulate produ
-tion amplitudes on both sides of the 
utting line, evaluate the unitarity integrals,and then sum over the intermediate states. As a result, we should �nd that the sub-amplitudes in all three 
ases, in fa
t, are equal and symmetri
 under permutations:otherwise the assumptions stated above would prove to be in
orre
t.As to the 
al
ulation of the produ
tion amplitudes, we 
an show that they also
an be derived from dis
ontinuities in their own energy variables. Beginning withFig.4a and 
on
entrating on the phases, we have, on the lhs of the 
utting line, theprodu
tion amplitude illustrated in Fig.7a:

Fig 7: 
onstru
tion of Fig.4a:(a) produ
tion amplitude; (b) energy dis
ontinuity of the produ
tion amplitude; (
)triple energy dis
ontinuityIn the leading logarithmi
 approximation, it is proportional to its energy dis
ontinu-ity, shown in Fig.6b. Symboli
ally:T = �(!1)dis
T: (2.8)The same argument applies to the rhs of the 
utting line in Fig.4a (with �(!1) !�(!2)�). Together, the single dis
ontinuity from whi
h we have started 
an be ex-pressed in terms of the triple dis
ontinuity (Fig.7
). The analyti
 expression forthis 
ontribution, therefore, is the same as for the �rst term in (2.5), with N4 beingrepla
ed by the triple dis
ontinuity illustrated in Fig.8:

{ 7 {



Fig 8: multiple energy dis
ontinuityIn this triple dis
ontinuity, all the � integrals are 
losed on the rhs, analogous toFig.6a. Be
ause of the assumptions for the large-� behavior, we 
an redraw the
ontours as in Fig.6b, and the triple dis
ontinuity 
oin
ides with N4.For the next term, Fig.4b, the situation is similar, although a bit more 
ompli-
ated. We illustrate the situation in Fig.9:

Fig 9: multiple energy dis
ontinuityFig.9a illustrates the produ
tion amplitude we need to �nd. It has the phase stru
-ture (�i)(i)(i�(!1)), and we 
an �nd it from its energy dis
ontinuity, provided theamplitude above satis�es the assumptions stated before (good behavior for large �,and symmetry under the ex
hange of gluons). Following the AGK arguments, theenergy dis
ontinuity 
onsists of the two parts shown in Figs.9b and 
. The �rst onehas the phase �(!1)+�(!1)�, whereas the se
ond one vanishes (after adding the anal-ogous 
ontribution with the the 
ut ladder on the rhs and the single ex
hange on thelhs). As a result, the produ
tion amplitude is proportional to its triple dis
ontinuityin Fig.9d, and, returning to Fig.4b, we obtain the se
ond term of (2.5), with N4 beingrepla
ed by the triple dis
ontinuity of Fig.8. But as we have already said, this tripledis
ontinuity equals N4.Finally the 
uts in Fig.4
1 and 
2. In Fig.10a we illustrate the produ
tion am-plitude to the left of the dis
ontinuity line in Fig.4
1. It 
ontains a further 
ut(Fig.10b), and it is proportional to this dis
ontinuity.

{ 8 {



Fig 10: multiple energy dis
ontinuityAs a fun
tion of �1, Fig.10b presents the right hand 
ut. An additional term (
or-responding to Fig.4
2) where nu
leon 1 and 2 at the lower end are inter
hanged,provides the left hand 
ut. When inserting these produ
tion amplitudes into Fig.4
1and 4
2 and performing the �1 integrals, we 
lose the 
ontour on the rhs and in
ludeFig.10b. As a result we �nd that the 
ontribution Fig.4
1 is proportional to thetriple dis
ontinuity, and the phases 
an be read o� from (2.5).2.2 The single-gluon in
lusive 
ross se
tionSo far all our dis
ussion has been for the total 
ross se
tion. Turning to the singlegluon in
lusive 
ross se
tion, we �nd it 
onvenient to assign the rapidity value y = 0to the virtual photon, and y = Y to the nu
leons (i.e. in our �gures, we drawthe rapidity axis downwards, starting from y = 0 at the upper photon and endingwith Y at the target). The rapidity of the in
lusive jet will be denoted by y1 with0 < y1 < Y , and its transverse momentum by p.For the 
al
ulation we follow the same pro
edure, i.e. we 
ompute the dis
onti-nuities in Fig.4. But in all the three energy 
uts in Figs.4a - 
, we now �x, in thesum over the intermediate states, for one gluon the values of rapidity and transversemomentum y1 and p, resp. This leads to the in
lusive 
ross se
tion illustrated inFigs.11a - 
.
Fig 11: di�erent energy 
uts:(a) di�ra
tive 
ut, (b) single 
ut, (
) double 
ut.The 
rosses mark the �xed �nal state gluon inside the unitarity sum. We then, again,have to 
ompute the produ
tion amplitudes on both sides of the 
utting line and sumover the intermediate states (keeping now the one �nal state gluon �xed). Sin
e,before doing the summation over the intermediate states, the produ
tion amplitudesare the same as for the total 
ross se
tion, we 
an pro
eed as outlined above, and we
an make use of the results des
ribed before. In parti
ular, we have the same phasesfa
tors.However, unlike the 
ase of the total 
ross se
tion des
ribed before, we 
an nolonger expe
t that the subamplitudes whi
h appear in the three di�erent 
uttingsare equal to ea
h other. On general grounds we have to expe
t that, when going{ 9 {



from a fully in
lusive total 
ross se
tion to a slightly less in
lusive quantity, we loosepart of the 
oheren
e and of the 
an
ellations. In our parti
ular 
ase, the equalityof the subamplitudes in Figs.11a - 
 will, in fa
t, be lost. Our 
al
ulations des
ribedbelow will 
on�rm this. Depending upon where, inside the grey blob the �xed gluonis produ
ed, there exist some 
ontributions where the equality still exists (and theAGK rules are valid), and others where it is not the 
ase. The in
lusive 
ross se
tionhas, therefore, to be written in the following form:d�dyd2p ==Z d!02�iey1 !0Z d!2�ie(Y�y1)!Z d!12�iZ d!22�iZ d�(fkg)(2�)6 2�iÆ(! � !1 � !2)�hN 
4(1; 2j3; 4;p)�(!1)�(!2)� +N 
4(3; 4j1; 2;p)�(!2)�(!1)� ++2Im�(!1) (N 
4(1j2; 3; 4;p) i�(!2) + 
:
: ) ++2Im�(!2) (N 
4(1; 2; 3j4;p) i�(!1) + 
:
: ) ++4N 
4(1; 3j2; 4;p)Im�(!1)Im�(!2)i � �1;2(fkg); (2.9)where the argument stru
ture of the N4 indi
ates where the 
utting line 
on-taining the produ
ed jet enters the subamplitude: for example, in N 
4(1; 2j3; 4;p),the line runs between gluon 3 and 4. We �nd that, in general, the amplitudes N 
4are di�erent for di�erent positions of the 
utting line. Here and in the following wesuppress the dependen
e of the N 
4 upon the variables !0, !, !1, and !2.Having given this general des
ription of how to 
ompute the total 
ross se
tionand the single jet in
lusive 
ross se
tion we now turn to QCD 
al
ulations. We �rstreturn to the total 
ross se
tion, for whi
h we 
an make use of earlier results andreview the main results (a few more details will be given in the following se
tion).The dis
ussion of the in
lusive 
ase - whi
h represents the main result of this paper- will be presented in the following se
tion. We �rst need to address the questionof the large-� behavior of the subamplitudes in QCD. Here the gluon reggeizationplays an important role. If we 
ompute, in pQCD, the subamplitude illustrated inFig.8, whi
h, in total, is in 
olor singlet state there will be pie
es in whi
h, at thelower end, subsystems are in antisymmetri
 
olor o
tet states:

{ 10 {



Fig 12: 
olor 
on�gurations of t-
hannel gluons(a) general tensor stru
ture; (b) two 
olor o
tet pairs; (
) one triplet of gluons in a
olor o
tet stateWe expe
t that these pie
es belong to the reggeization of the gluon: they donot satisfy the naive Ward identies, i.e. they do not vanish when the transversemomentum, k?, of one of the gluons goes to zero. Conne
ted with the la
k of theWard identities, we expe
t that also their high energy behavior does not satisfy therequirements listed above, i.e. the large-� behavior does not allow to redraw the
ontour as indi
ated in Fig.6. Consequently, when 
omputing the di�erent pie
esillustrated in Fig.4, we will attempt to �rst isolate and remove the potentially dan-gerous reggeizing pie
es, and retain only those su
h for whi
h Ward identities andlarge-� behavior are in a

ordan
e with what has been postulated before. This goalis a
hieved by the de
omposition des
ribed in [10℄ where, for the subamplitueds D4the reggeizing pie
es, DR4 , have been separated from the remaining part, DI4. Thelatter ones, in fa
t, satisfy the Ward identities and are fully symmetri
 under per-mutations of the outgoing gluons, whereas the former ones do not. Consequently weexpe
t (although this has not fully been proven yet) that also their large � behavioris 'good'.After these general remarks it is fairly straightforward to follow the pro
edureoutlined above and to obtain the di�erent 
ut 
ontributions in Fig.4. As an example,
onsider Fig.4a. On the lhs of the dis
ontinuity line we need the set of produ
tionamplitudes illustrated in Fig.7a. Restri
ting ourselves to the (generalized) leading-log approximation and to even signature in the lower t-
hannel, they 
ontain onlysingle energy dis
ontinuities (Fig.7b), from whi
h one easily re
onstru
ts the fullprodu
tion amplitudes (by simply multiplying by i�). Taking the square of theseprodu
tion amplitudes, we see that the triple dis
ontinuity is suÆ
ient to obtain theenergy dis
ontinity in Fig.4a (Fig.7
). As seen in Fig.7
, there is a 'last' intera
tionbetween the two lower ladders: the sum of all diagrams above this last intera
tion(in
luding the last rung) 
oin
ides with the amplitude D4 analyzed in [10℄. Usingthe separation D4 = DR4 +DI4 whi
h has been des
ribed in detail, and retaining onlyDI4, we arrive at the QCD result for the subamplitude in Fig.4a, N4. It is importantto stress that this amplitude is 
ompletely symmetri
 under the ex
hange of anytwo gluons below. In an analogous way one 
omputes the other 
ut-
ontributionsin Figs.4b and 
. When adding Figs4a, b, and 
 and making use of the symmetry(under permutations) of DI4: . we 
an 
ombine all 
ontributions Fig.4a - 
 in the wayoutlined above. The symmetry of the DI4 under permutation of the lower gluons,together with the ful�llment of the Ward identities 
an be viewed as strong hint thatalso the large-� behavior sati�es the requirements dis
ussed before. This then allows,in parti
ular, to draw all three integration 
ontours of Fig.6 along the real axis: thisproperty is required by the AGK rules.{ 11 {



In the following se
tion we turn to the in
lusive 
ross se
tion and 
ompute thedis
ontinuities shown in Figs.11a-
. We repeat the same steps as those for the total
ross se
tion, until we rea
h the analogue of D4. In parti
ular,we(1) start from the triple dis
ontinuites,(2) repeat the de
omposition into 'reggeizing'and 'irredu
ible' pie
es, �ltering outthose terms whi
h do not satisfy the Ward identities and, hen
e, threaten to havea bad large-�-behavior. This de
omposition is di�erent from the one 
arried out in[10℄ for the total 
ross se
tion, and it represents the main a
hievement of this paper.(3) The remaining terms (the analogue of DI4) have to 
omputed for ea
h termin Fig.11. We shall �nd that they satisfy the symmetry requirements and Wardidentitites, whi
h, however, are less restri
tive than in the 
ase of the total 
rossse
tion.As a result, in the in
lusive 
ase the di�erent subamplitudes in Figs.11a-
, N 
4 ,are no longer identi
al. Our �nal 
ross se
tion, therefore, will be written as in (2.9):it 
onsist of several pie
es whi
h 
annot be 
ombined in a simple way.3. The 
ut amplitudes N 
4 in QCD3.1 Review of the total 
ross se
tionWe begin with a brief review of the amplitudes N4 whi
h enter the total 
ross se
tion.As we have stated above, we start from triple dis
ontinuities and, in a se
ond step,de
ompose them into reggeizing pie
es (whi
h do not satisfy the Ward identitiesand have a 'bad large �' behavior), and a remainder with 'good properties'. In thenotation of [10℄, they are denoted by DR4 and DI4, resp. In the 
ontext of this shortreview, we also introdu
e a 
ompa
t notation that will be used throughout the paper.The triple dis
ontiunuity, D4, is illustrated in Fig.13.

Fig.13: illustration of the triple dis
ontinuityHere we have removed the 
ouplings to the nu
leons at the lower end: for Fig.4a, weatta
h gluon 1 and 2 to nu
leon 1 and gluon 3 and 4 to nu
leon 2, for Fig.4
 we atta
hgluon 1 and 4 to nu
leon 1 and so on. However, provided the triple dis
ontinuity{ 12 {



(Fig.8) is symmetri
 under the ex
hange of the lower gluons, all terms in Fig.4 areobtained from the same triple dis
ontinuity, and the order in whi
h the gluons areatta
hed to the two nu
leons does not matter. The summmation of all diagramsshown in Fig.13 is done in terms of integral equations. We introdu
e amplitudes D2(asso
iated to the BFKL evolution [11{13℄) and D3 whi
h, together with D4, satisfya set of 
oupled integral equations (Fig.14).

Fig.14: integral equations for D2, D3, and D4.Writing these equation as evolution equations in rapidity y = ln s, we �nd:(�y �H2)D2 = Æ(y)D2;0 (3.1a)(�y �H3)D3 = Æ(y)D3;0 +K3D2 (3.1b)(�y �H4)D4 = Æ(y)D4;0++K4D2 + 123K 3 ��4D3 + 124K 3 �3�D3 + 234K 3 1��D3 + 134K 3 �2�D3 (3.1
)with the boundary 
onditions Dn(y) = 0 for y < 0. The notation used in theseequations should be 
lari�ed by writing an expli
it example:123K3 ��4D3 = == K3(1; 2; 3; 10; 20)
D3(10; 20; 4) ; (3.2)where the 
onvolution '
' denotes an integral in the transverse momentum spa
e andin
ludes propagators. In our notation, the 
onvolution a
ts on the primed variables.The two dots above D3 denote those gluon variables on whi
h K3 a
ts: D3 is afun
tion of three gluon variables, and K3 a
ts just on those whi
h are marked by thedots. In our example, this are the gluons 1 and 2, while the third gluon, 4, remainsa spe
tator. { 13 {



We now list the operators Kn and Hn appearing in (3.1a-
). The former [14,15℄are integral kernels whi
h des
ribe the transition from 2 to n reggeized gluons inthe t-
hannel. The latter are the BKP hamiltonians [14{17℄, whi
h generalize theBFKL hamiltonianH2, and des
ribe the intera
tion of a �xed number n of reggeizedgluons; we will denote their Green's fun
tion Gn. All these obje
ts are integraloperators a
ting in the transverse momentum and 
olor spa
es. The integral kernelsKn of Kn are:Kn(k1;k2; :::;kn;k01;k02) =gn(2�)3�k212:::n � k212:::n�1k022(k02 � kn)2 � k223:::nk021(k01 � k1)2 + k021 k022 k22:::n�1(k01 � k1)2(k02 � kn)2� ; (3.3)and the a
tion of Kn on a two point fun
tion �(k1;k2) is given byKn�(k1; :::;kn) = == Z d2k01d2k02k021 k022 Æ(2)(k1:::n � k012)Kn(k1; :::;kn;k01;k02)�(k01;k02) : (3.4)We have introdu
ed the notation kijk::: = ki+kj+kk+ : : : for the sum of transversemomenta. The Lipatov kernel K2 is 
an be obtained from K3(k1; 0;k2), where thelast term in (3.3) vanishes. In the 
olor spa
e these integral operators are multipliedby 
olor tensors originating from the gluon verti
es:fa01a1b1f b1a2b2 :::f bn�1ana02Kn�a01a02 : (3.5)The virtual 
orre
tions are en
oded in the gluon Regge traje
tory fun
tion !,whose a
tion on a fun
tion � is multipli
ative in momentum spa
e:i! �(k1;k2) = �N
2 !(ki)�(k1;k2) i = 1; 2 ; (3.6)with the fun
tion !(k) being 1!(k) = g2(2�)3 Z d2k0 k2k02(k � k0)2 : (3.7)The BKP hamiltonians Hn are de�ned asHn = nXi=1 i! + X1�i<j�n~ti � ~tj ijK2 ; (3.8)where we have introdu
ed the SU(N
) generators in the adjoint representation ~ti =t(t1aia0i ; :::; tN2
�1aia0i ) with tbaia0i = ifaiba0i . The BKP Green's fun
tions Gn satisfy theequations (�y �Hn) Gn(y) = Æ(y) ; (3.9)1A regularization of the IR divergen
es is understood.{ 14 {



with the formal solutions Gn(y) = �(y)eyHn : (3.10)The a
tion of H2 on a 
olor singlet fun
tion �a1a2 = Æa1a2� gives the BFKLhamiltonian: H2� a1a2 = Æa1a2� 1! + 2! �N
K2�� : (3.11)When a
ting, in a 
olor o
te
t state, on a fun
tion whi
h depends only on the sumof transverse momentum of the two gluons:  a1a2 = fa1a2b ~ b(k12), the hamitonianleads to the bootstrap equation:H2 a1a2 = �N
2 !(k12) a1a2 : (3.12)Finally, the initial 
onditions Dn;0 are the lowest order impa
t fa
tors for the
oupling of n reggeized gluons to the external photon at rapidity y = 0. These
ouplings are given by a simple quark loop.Eq. (3.1a) is just the BFKL equation [11{13℄, starting from the initial 
onditionD2;0. Its solution, formally given byD2(y) = G2(y)D2;0 ; (3.13)
an be solved expli
itly, thanks to the invarian
e of the BFKL equation under M�obiustransformation [18, 19℄. It satis�es the Ward identity, i.e. it vanishes as one of thegluons 
arries zero momentum, and it is symmetri
 under the ex
hange of the twogluons. This property is 
ru
ial to have the possibility to obtain a dual des
ription,the dipole pi
ture [20, 21℄, as has been dis
ussed in [22℄.Green's fun
tions for a higher number n of reggeized gluons have been widelystudied: the 
ase n = 3 is asso
iated to the Odderon ex
hange and is a 
ompletelyintegrable problem [23℄; the solutions have been found [24, 25℄ and physi
al ampli-tudes 
onstru
ted [26, 27℄. For n � 4 the kernels lead to an integrable problem onlyin the planar limit [23, 28{30℄ whereas even the estimate of non planar 
orre
tionsis an extremely diÆ
ult problem [31,32℄. Let us note that the integrability found inthis framework is the �rst example of integrable stru
tures present in gauge theoriesand now su
h symmetries are deeply investigated in the framework of the AdS/CFT
orresponden
e between N = 4 SYM theories and superstring sigma models.Let us 
ontinue to dis
uss the results for the 
ase dis
ussed, wherein the numberof reggeizing gluons in the t-
hannel may 
hange. For the amplitudes D3 and D4 itwill be ne
essary to isolate the reggeizing pie
es. Beginning with D3, the parti
ularform of D3;0 in eq. (3.1b) allows to write the solution in the following form:D3 = g2fa1a2a3�(12)3D2 � (13)2D2 + 1(23)D2 � == 12 + + ! : (3.14)
{ 15 {



Here we have introdu
ed the notation (12)3D2 = D2(k12;k3). D3 is said to be \reggeized",in the sense that a real three gluon state never appears until the last step of the evo-lution, when the three gluon state is rea
hed through a lo
al splitting of one of thereggeized gluons. It is easy to see that D3, as a fun
tion of its three gluon momentaand 
olor labels, (i) does not satify the Ward identities (i.e. it does not vanish ask2 goes to zero); (ii) individual terms are not symmetri
 under permutations of thegluons.D4 is more involved, and it 
ontains both a reggeized part DR4 and an irredu
ibleone DI4, D4 = DR4 +DI4 : (3.15)This de
omposition, from a diagrammati
 point of view, is nothing but a reorderingof the sum of diagrams in Fig.13. In the triple dis
ontinuity illustrated in Fig.13.ea
h horizontal line (or vertex) denotes an on-shell gluon, and ea
h verti
al wavy linea reggeized gluon. After the rearrangement we end up with the two terms of (3.15).The �rst term, DR4 , is illustrated in Fig.15:
Fig.15: illustration of DR4 .In detail, its stru
ture is inferred from the initial 
ondition:D4;0 =� g2da1a2a3a4�(123)4D2;0 + 1(234)D2;0 � (14)(23)D2;0 �+� g2da1a2a4a3�(124)3D2;0 + 2(134)D2;0 � (12)(34)D2;0 � (13)(24)D2;0 � ; (3.16)and has the same form:DR4 =� g2da1a2a3a4�(123)4D2 + 1(234)D2 � (14)(23)D2 �+� g2da1a2a4a3�(124)3D2 + 2(134)D2 � (12)(34)D2 � (13)(24)D2 � ; (3.17)The remainder, DI4, is illustrated in Fig.16:

{ 16 {



Fig.16: illustration of DI4.It has the appealing form:DI4(y) = Z y0 dy0 G4(y � y0)V4D2(y0) : (3.18)where the e�e
tive 2-to-4 vertex, V4, when a
ting on the spa
e of 2-gluon gaugeinvariant fun
tions, has remarkable properties:(i) it is infrared safe,(ii) vanishes whenever one of the gluon momenta goes to 0: (Ward identities),(iii) is 
ompletely symmetri
 in the 4 gluons and(iv) is M�obius invariant.The expli
it expression for V4, �rst obtained in [10℄, 
an be found in appendix A.2. Itis these 'good' properties whi
h support the expe
tation that the assumptions listedabove are, in fa
t, satis�ed. Finally we note that the vertex V4 in Fig.16 
ontainsdis
onne
ted (virtual) parts: they are analogous to the 'virtual' pie
es inside theBFKL kernel whi
h have their origin in the gluon traje
tory fun
tion and do not
ontribute to s-
hannel gluon produ
tion.So far we have given attention only to the irredu
ible pie
es, DI4, whi
h, be-
ause of their 'good' properties, represent the building blo
ks of the two-ladder 
on-tributions. The reggeizing pie
es, DR4 , provide a di�erent 
lass of 
orre
tions toT
�(pn)!
�(pn). First we remind that these subamplitudes (Fig.12), when 
onsideredas fun
tion of the gluon momenta, do not satisfy Ward identities and symmetry prop-erties. However, as fun
tion of reggeon momenta (e.g., in a pie
e of the the se
ondterm in Fig.15, (12)(34)D2;0 , as fun
tion of k1 + k2), we again have the good properties(Ward identities). In this sense, the reggeizing pie
es DR4 
an be viewed as higherorder 
orre
tions to D2. Their 
ontribution to T
�(pn)!
�(pn) is illustrated in Fig.17:{ 17 {



Fig.17: illustration of DI4.They 
ontribute to the double 
ut, and they introdu
e higher order 
olor 
orrelatorsinside the two-nul
eon target. This way of 
lassifying 
orre
tions due to single,double, triple ... ladder ex
hanges 
an be viewed as a hierar
hy: when generalizingthe analysis of D4 to D6, the reggeizing pie
es of D6 
ontain 
ontributions with fourreggeizing gluons whi
h, in the s
attering of a photon on a nu
leus with three gluons,will provide a two-ladder 
orre
tion with higher 
orrelators inside the three nu
leontarget. The analysis of D6 has been started in [33℄.3.2 The single-jet in
lusive 
ross se
tion: integral equationsAfter these preparations we now turn to the main part of this paper, the 
al
ulationof the 1-jet in
lusive 
ross se
tion. Following the dis
ussion in se
tion 2, we again
onsider the triple dis
ontinuities of Fig.13, keeping in mind that, for the in
lusivejet 
ross se
tion, one s-
hannel gluon is kept �xed, both in rapidity and in trans-verse momentum. Depending upon the position of the s-
ut line (Fig.11) we are
onsidering, the gluon with �xed kinemati
s, in Fig.13, 
an belong to the left, the
entral, or the right hand 
ut: we will label these three possibilities by a subs
riptj = 1; 2; 3, resp. Furthermore, inside the three di�erent 
lasses of 
ontributions ofFig.14 the gluon 
an appear at di�erent pla
es, inside a transition kernel or inside arung 
onne
ting two t-
hannel gluons of a two-gluon, a three-gluon or of a four-gluonstate.Following [34℄, we de�ne the triple dis
ontinuities for single jet produ
tion, jZn,where j indi
ates the position of the s-
hannel 
ut to whi
h the jet belongs 2. Lateron, we will relate jZ4 to the subamplitudes N 
4 . They are fun
tions of:� the rapidity di�eren
es y1 between the external photon and the emitted jet andthe di�eren
e Y � y1 between the jet and the reggeized gluons;� the tranverse momentum p1 of the produ
ed jet;� the tranverse momenta ki of the reggeized gluons;� the photon virtuality and polarization, en
oded in the impa
t fa
tors.2Su
h a notation is suited for an easy generalization to the 
ase ofm-jet produ
tion: mj Zn. In [34℄a te
nique based on generating fun
tionals has been devised for the 
omputation of the evolutionequations for 
ouplings with an arbitrary number of jets produ
ed.{ 18 {



In the following we will omit to write these variables expli
itely, unless it is ne
essaryor we feel that their expli
it appearan
e would 
larify the meaning of the expressions.The summation of all diagrams will be organized in integral equations as follows.We 
on
entrate on the evolution below the jet, i.e. y > y1. For this evolution wede�ne, as initial 
onditions, iZn;0, the sum of all diagrams above the jet vertex(in
luding the vertex), su
h that the gluon generating the jet is inside the lowestkernel or rung. It is then easy to see that the equations for n = 2; 3; 4 read3:(�y �H2) Z2 = Æ(y � y1) Z2;0 ; (3.19a)(�y �H3) iZ3 = Æ(y � y1) iZ3;0 + 123K 3 ��Z2 ; i = 1; 2 (3.19b)(�y �H4) iZ4 = Æ(y � y1) iZ4;0 +K4 Z2 ++123K3 ��41Z3 + 124K3 �3�1Z3 + 234K3 1��2Z3 + 134K3 �2�2Z3 ; i = 1; 2; 3 (3.19
)They are similar to the equations for the in
lusive 
ouplings Dn � 0Zn in (3.1a-
),the only di�eren
e being the initial 
onditions.Let us look in more detail at the initial 
onditions iZn;0. As a new ingredientwe need to introdu
e the 
ut operators j =Kn: they are the 
ut 
ounterpart of (3.4)in whi
h the transverse momentum of the s-
hannel gluon ex
hanged between thereggeized gluons j and j +1 has been �xed to p; we still sum over its 
olor degree offreedom. Its expli
it a
tion is de�ned as
j =Kn�(p;k1; :::;kn) =

j + 1j

== Kn(k1; :::;kn;k1:::j + p;kj+1:::n � p)(k1:::j + p)2(kj+1:::n � p)2 �(k1:::j + p;kj+1:::n � p) ; (3.20)
and in the 
olor spa
e we have the same tensor as in (3.5). With these 
ut kernels,the initial 
onditions appearing in the evolution equations (3.19a-
) are given by the3Note that Z2 � 1Z2 sin
e there is only one possible 
ut.{ 19 {



following integral equations 4:Z2;0 = =K2D2 ; (3.21a)1Z3;0 = 12=K2 ��3D3 + 13=K2 �2�D3 + 1231 =K3 ��D2 ; (3.21b)2Z3;0 = 23=K2 1��D3 + 13=K2 �2�D3 + 1232 =K3 ��D2 ; (3.21
)1Z4;0 = 12=K2 ��34D4 + 13=K2 �2�4D4 + 14=K2 �23�D4 ++ 1231 =K3 ��4D3 + 1241 =K3 �3�D3 + 1341 =K3 �2�D3 + 12341 =K4 ��D2 ; (3.21d)2Z4;0 = 13=K2 �2�4D4 + 14=K2 �23�D4 + 23=K2 1��4D4 + 24=K2 1�3�D4 ++ 1232 =K3 ��4D3 + 1242 =K3 �3�D3 + 2341 =K3 1��D3 + 1341 =K3 �2�D3 + 12342 =K4 ��D2 ; (3.21e)3Z4;0 = 14=K2 �23�D4 + 24=K2 1�3�D4 + 34=K2 12��D4 ++ 2342 =K3 1��D3 + 1342 =K3 �2�D3 + 1242 =K3 �3�D3 + 12343 =K4 ��D2 : (3.21f)The notation is the same as in se
tion 3.1, ex
ept for the 
ut kernel j =Kn: herethe subs
ript on the lhs denotes the position of the s-
hannel gluon whi
h generatesthe jet. A pi
torial representation of one of the equations (3.21) will illustrate their
ontent: 1Z3;0 =X +X :The amplitude 1Z3;0 
ontains the 
ontributions from all the diagrams where the jetis produ
ed by the lowest s-
hannel gluon . Above, between the external photonand the jet, the in
lusive fun
tions D2 and D3 appear. We �nally note that the eqs.(3.19a-
) with the initial 
onditions (3.21a-f) are free from infrared divergen
es.3.3 The single-jet in
lusive 
ross se
tion: redu
tionAs the main step of our analysis we now perform the redu
tion whi
h, similar to the
ase of the total 
ross se
tion, separates the reggeizing pie
es with 'bad properties'from those whi
h satisfy Ward identities and symmetry requirements. However, on
ewe �x the momenta of the jet, we 
an no longer expe
t to �nd the same symmetry4Note that =K2 � 1 =K2. Here we have omitted to write expli
itely the a
tion in the 
olor spa
e ashas been shown in (3.5), but it should be understood that they are present.{ 20 {



properties as in the 
ase of the total 
ross se
tion. For example, in Fig.11a (thedi�ra
tive 
ut), N 
4 should be symmetri
 in gluon pair 1 and 2, and in the pair 3 and4, but not in 1 and 3 et
., in Fig.11b we expe
t symmetry in the triplet (123), and inFig.11
 N 
4 is expe
ted to be symmetri
 in the pairs (13) and (24). In other words,we expe
t full symmetry on ea
h side of the 
utting line but not a
ross the 
uttingline. Nevertheless, we still will �nd some left-right symmetry: when summing overall di�erent 
uttings in (2.9), as for Fig.4 in (2.5), we also inter
hange the laddersatta
hed to nu
leon 1 and 2, assuming even signature in the t 
hannel. This signatureproperty will show up also in the in
lusive 
ross se
tion.Following the strategy developed in [10℄ for the total 
ross se
tion, we beginwith a 
areful analysis of the initial 
onditions, whi
h serves as a guideline for thereggeization pattern. As a result, the amplitudes jZn will be written as a sum of areggeized part (a linear 
ombination of solutions with < n reggeized gluons) and airredu
ible part whi
h satis�es Ward identities and symmetry properties:iZn = iZRn + iZIn (3.22)2 Reggeized gluons:The simplest 
ase of two gluons (eq. (3.19a)) is trivial: there is only one gluon onea
h side of the 
utting line, and no redu
tion is ne
essary. The solution to theintegral equation is the evolution of the initial 
ondition by means of the BFKLGreen's fun
tion G2: Za1a22 = �G2(y � y1)=K2(p1)D2(y1)�a1a2 : (3.23)More expli
itely, sin
e D2 is a 
olor singlet, Da1a22 = Æa1a2D2, we 
an use the wellknown relation fa01a1bf ba2a01 = �N
Æa1a2 and fa
torize the 
olor tensor from (3.23):Z a1a22 = Æa1a2Z2Z2 = �N
G2(y � y1)=K2(p1)D2(y1) ; (3.24)where the operators are now those a
ting just in the transverse momentum spa
e.3 Reggeized gluons:The 
ase of three gluons, iZ3;0, is already already more involved. Namely the presen
eof the jet breaks the 
oheren
e in the initial 
onditions, whi
h, in the fully in
lusive
ase, leads to the 
omplete redu
tion of D3 in terms of D2's. In the present 
ase thisis no longer true. Imposing the 
ondition that, after subtra
tion of the reggeizingterm iZR3 , the irredu
ible pie
e iZI3 has to satisfy Ward identities, we �nd, after some
al
ulations, that we have to form even and odd 
ombinationsiZ�3 (p1) = 12�iZ3(p1)� iZ3(�p1)� (3.25)
{ 21 {



Keeping in mind that, in order to arrive at the in
lusive 
ross se
tion, all transversemomenta (ex
ept for p1) will be integrated, we have 
omplete azimuthal symmetry,and the negative signature 
ombination does not 
ontribute. We note, however, thatthe appearan
e of even and odd 
ombinations, from a signature point of view, is quitenatural: in Fig.11a, the jet momentum p1 is equal to the momentum transfer a
rossthe left lower Pomeron (
owing upwards) and a
ross the right Pomeron (
owingdownwards). When inter
hanging the nu
leons below, we thus reverse the dire
tionof the jet momentum. Therefore, the two 
ombinations in (3.25) belong to even andodd symmetry under inter
hange of the lower Pomerons. This distin
tion will be
omerelevant, for example, for 2-jet in
lusive 
ross se
tions where azimuthal 
orrelations
ome into play. In the following we will always refer to the even 
ombination. Weuse the average symbol:hiZni(p1) = 12�iZn(p1) + iZn(�p1)�: (3.26)These signatured 
ombinations satisfy the same set of eqs. (3.19a-
), with all thefun
tions being repla
ed by their symmetrized 
ounterpart. This in
ludes also theinitial 
onditions (3.21a-f).Let us now pro
eed with the de
omposition into reggeized and irredu
ible pie
es:hiZni = hiZniR + hiZniI ; (3.27)the latter de�ning new e�e
tive produ
tion verti
es whi
h should satisfy Ward iden-tities. Imposing this 
ondition, we �nd that the reggeized part has the same form asthe one appearing in the in
lusive 
oupling D3 (see (3.14)):h1Z3iR = g2fa1a2a3� (12)3hZ2i � (13)2hZ2i+ 1(23)hZ2i� == 12 + + ! (3.28)
h2Z3iR = g2fa1a2a3� (12)3hZ2i � 2(13)hZ2i+ 1(23)hZ2i� == 12 + + ! : (3.29)

Here hZ2i is obtained from (3.24) and (3.26):hZ2i = �N
 G2 =�2 D2 : (3.30){ 22 {



=�2 is simply the symmetrized version of =K2 in the jet transverse momentum,=�2 = h =K2i = 12�=K2(p1) + =K2(�p1)� : (3.31)On the rhs of (3.28), (3.29) the 
rosses mark the positions of the jet. In the �rst twoterms of (3.28) and in the last two terms of (3.29), one of the reggeized gluons is 
ut.As an example, Fig.18 illustrates the inner stru
ture of the �rst term:
Fig.18: dis
ontinuity inside a 
ut gluonOn the rhs of (3.28), the sum of the �rst two terms is symmetri
 under the ex
hangeof gluon 2 and 3 (momenta and 
olor), the third one is antisymmetri
. An analogousremark applies to (3.29).The remaining irredu
ible part 
ontains new e�e
tive produ
tion verti
es i=�3:h1Z3iI = �N
fa1a2a3G3 1=�3 D2 = ; (3.32a)

h2Z3iI = �N
fa1a2a3G3 2=�3 D2 = ; (3.32b)where the the 
ross marks the position of the produ
ed gluon inside the e�e
tiveprodu
tion verti
es i=�3. The detailed analyti
 expression of the vertex is presentedin Appendix A.3, eqs.(A.13), (A.14a), (A.14b). It is important to point out that thei=�3 (i = 1; 2), when a
ting on a gauge invariant impa
t fa
tor � with �(kj = 0) = 0(j = 1; 2), satisfy the required Ward identities:�i=�3��(kj = 0) = 0; j = 1; 2; 3 ; (3.33)Moreover, due to the symmetry properties of i=�31231=�3 = � 1321=�3 ;1232=�3 = � 2132=�3 ; (3.34)and of the 
olor tensor fa1a2a3 = �fa1a3a2 = �fa2a1a3 , the amplitudes hiZ3iI aresymmetri
 under the ex
hange of the two reggeized gluons on the same side of the
ut (both 
olor and momentum). { 23 {



4 Reggeized gluons:For four reggeized gluons, hiZ4i, it is again the initial 
onditions whi
h suggest thereggeization pattern. Following the analysis of the total 
ross se
tion, it is 
onvenientto separate the reggeizing part into two pie
es,hiZ4iR = hiZ4iR1 + hiZ4iR2 : (3.35)The R1 
omponent is the same for any position of the s-
hannel 
ut, i = 1; 2; 3, andit 
oin
ides with the expression obtained in [10℄ for the reggeized part of the in
lusive
oupling D4, hiZ4iR1 = �g2da1a2a3a4�(123)4hZ2i + 1(234)hZ2i � (14)(23)hZ2i �+� g2da1a2a4a3�(124)3hZ2i + (134)2hZ2i � (12)(34)hZ2i � (13)(24)hZ2i � (3.36)
Here we have introdu
ed another 
ompa
t notation, e.g. (123)4hZ2i = hZ2i(k123;k4) and(12)(34)hZ2i = hZ2i(k12;k34). For the 
ase i = 2 (where the 
ut runs between reggeon 2and 3) we illustrate this equation as follows.

h2Z4iR1 = + ++ + + + : (3.37)
The interpretation is analogous to the dis
ussion after (3.31). In the �rst diagramin the �rst line the 
ut runs between the reggeons. All diagrams on the se
ond line
ontain a 
ut reggeon; if we open any of these diagrams we �nd stru
tures like thoseof Fig.18. The se
ond and third diagrams of the �rst line have both reggeons 
ut.The R2 
omponent is di�erent for ea
h 
ut and is expressed in term of the vertex{ 24 {



=�3 de�ned in (A.13),h1Z4iR2 = gN
da1a2a3a4�1(23)4G3 � 14(23)G3 �=�3 D2 ++gN
da1a2a4a3�1(24)3G3 � 13(24)G3 �=�3 D2 + (3.38a)+gN
da1a3a4a2�1(34)2G3 � 12(34)G3 �=�3 D2= ;
h2Z4iR2 = gN
da1a2a3a4�1(23)4G3 + 2(14)3G3 � (12)43G3 � 21(34)G3 �=�3 D2 + (3.38b)+gN
da1a2a4a3�1(24)3G3 + 2(13)4G3 � (12)34G3 � 12(34)G3 �=�3 D2=
h3Z4iR2 = gN
da1a2a3a4�1(23)4G3 � (23)14G3 �=�3 D2 ++gN
da2a1a3a4�2(13)4G3 � (13)24G3 �=�3 D2 + (3.38
)+gN
da3a1a2a4�3(12)4G3 � (12)34G3 �=�3 D2(in the last equations, the diagrams are analogous to those of the �rst equation,eq.(3.38
)). Let us note that eqs. (3.38a) and (3.38
) 
an be easily written interms of 1=�3 and 2=�3 making use of the relations (A.14a), (A.14b) and then one mayre
ognize a form with a sum of three terms h1Z3iI and h2Z3iI respe
tively, with agluon splitting at rapidity Y .The irredu
ible part of hiZ4i 
onsists of four pie
es:hiZ4i = hiZ4iI1 + hiZ4iI2 + hiZ4iI3 + hiZ4iI4 : (3.39)In the �rst term the jet emission is above the e�e
tive vertex V4, inside the BFKLladder. Here all values of i lead to the same expression, i.e. the 
ontribution is{ 25 {



independent of the position of the 
ut,hiZ4iI1 = Z yy1dy0 G4(y � y0) V4 hZ2i(y0) = 〈X〉 : (3.40)The appearan
e of the same vertex V4 below the emission of the jet is a remarkableresult of our analysis: within our approa
h it is absolutely not trivial, sin
e a priorione might expe
t the emission of the jet to break the reggeization pattern leading toV4. Let us stress that the 2 ! 4 vertex is fully symmetri
 under the ex
hange ofany pair of gluons, and it satis�es the Ward identities in all four gluon lines. Thisproperty implies that also the �rst and the se
ond term in eq.(3.39) satisfy the Wardidentities, and they have the required symmetry features on both sides of the 
ut.The se
ond term 
an be illustrated by the following �gure:hiZ4iI2 =X .:The jet is emitted below the 2! 4 vertex, inside the four gluon state, and the labeli singles out the parti
ipating rungs. For example, for i = 1 the possible rungs arebetween gluon 1 and 2, between 1 and 3, or between 1 and 4. Above the emissionwe have the same stru
ture, DI4, as the total 
ross se
tion. In parti
ular, it 
ontains,again, the 2! 4 e�e
tive vertex V4 of [10℄. Writing as usualD4 = DR4 +DI4DI4 = Z y1y0 dy0 G4(y1; y0) V4 D2(y0) ; (3.41)we have h1Z4iI2 = G4 � 12=�2 + 13=�2 + 14=�2� DI4 ; (3.42a)h2Z4iI2 = G4 � 13=�2 + 14=�2 + 23=�2 + 24=�2� DI4 ; (3.42b)h3Z4iI2 = G4 � 14=�2 + 24=�2 + 34=�2� DI4 ; (3.42
)The third group of terms 
ontains new e�e
tive produ
tion verti
es i=V4:h2Z4iI3 = G4 2 =V4 D2 = ; (3.43)
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with analogous expressions for h1Z4iI3 and h3Z4iI3. The produ
ed jet is inside the2! 4 transition vertex, and the new produ
tion verti
es are 
onveniently expressedin terms of new 
ut operators i=�4 de�ned in Appendix A.3, eq.(A.15):1 =V4 = Æa1a2Æa3a4 12341=�4 + Æa1a3Æa2a4 13241=�4 + Æa1a4Æa2a3 14231=�4 ; (3.44a)2 =V4 = Æa1a2Æa3a4 12342A=�4 + Æa1a3Æa2a4 12342B=�4 + Æa1a4Æa2a3 12432B=�4 ; (3.44b)3 =V4 = Æa1a2Æa3a4 12343=�4 + Æa1a3Æa2a4 13243=�4 + Æa2a3Æa1a4 23143=�4 : (3.44
)One 
an show that the operators i=�4 satify Ward identities. This then also holds forthe verti
es (3.44a-
). Moreover, due to the symmetry properties of i=�4,12341=�4 = 12431=�4 ;12342A=�4 = 12432A=�4 = 21342A=�4 = 21432A=�4 ;12342B=�4 = 21432B=�4 ; (3.45)12343=�4 = 21343=�4 ;i =V4 are symmetri
 under the ex
hange of any two gluons (
olor and momentum) onea
h side of the s-
hannel 
ut.The fourth group of terms part is novel and has no 
ounterpart in the total 
rossse
tion. Then transition from two gluons to four gluons now pro
eeds in two steps,and the produ
ed jet is inside the 2! 3 vertex. For the 
ut line on the lhs (i = 1),it has the formh1Z4iI4 = N
 Z yy1dy0 G4(y � y0) 1W4 G3(y0 � y1) =�3 D2(y1) = : (3.46)For the 
ut on the rhs (i = 3) we have an analogous expression, whereas the 
entral
ut (i = 2) re
eives two 
ontributions:h2Z4iI4 = N
 Z yy1dy0 G4(y� y0) 2W4 G3(y0� y1) =�3 D2(y1) = + :(3.47){ 27 {



The 2! 3 vertex with the jet is the same as introdu
ed before and given in appedixin eq. (A.13). eq.(3.32). Below this vertex, a t-
hannel state of three reggeizedgluons appears whi
h, after BKP evolution, through new e�e
tive verti
es iW4, turnsinto four reggeized gluons. These new 3 ! 4 transition verti
es are 
onvenientlyexpressed in terms of the integral (un
ut) operators i�4 whi
h are listed in AppendixA.3 (eqs.(A.16)):1W4 = Æa1a2Æa3a4 12341�4 + Æa1a3Æa2a4 13241�4 + Æa1a4Æa2a3 14231�4 ; (3.48a)2W4 = Æa1a2Æa3a4 12342A�4 + Æa1a3Æa2a4 12342B�4 + Æa1a4Æa2a3 12432B�4 ; (3.48b)3W4 = Æa1a2Æa3a4 12343�4 + Æa1a3Æa2a4 13243�4 + Æa2a3Æa1a4 23143�4 : (3.48
)The i�4 have the same symmetry properties (3.45) as their 
ut 
ounterparts. There-fore, also the e�e
tive verti
es 1W4 are symmetri
 under the ex
hange of gluons onea
h side of the 
ut. Furthermore, they 
an be shown to satisfy Ward identities.Again one may note that for the 
ut on the lhs (i = 1) or on the rhs (i = 3) it istrivial to rewrite h1Z4iI4, h3Z4iI4 in terms of 1W4 and 1=�3, 3W4 and 2=�3, respe
tively.Let us summarize our results for hiZ4i in eqs.((3.19
)). For ea
h position of the
utting line - denoted by 1 = 1; 2; 3 - we have reggeizing and irredu
ible pie
es. Theirredu
ible pie
es, for the 
ase i = 1 and i = 2, are 
olle
ted in Figs.19 and 20, resp.:
Fig.19: the four pie
es of the single jet in
lusive 
ross se
tion.(a) and (b): produ
tion above and below the 2! 4 transition,(
) and (d): produ
tion inside the 2! 4 transition.

Fig.20: the same as Fig.19, for the 
ut i = 2.They satisfy the Ward identities, and they are invariant under permutations of thegluons on both sides of the 
ut. They 
ome in four di�erent 
lasses of 
ontributions.{ 28 {



If the jet is produ
ed above or below the 2 ! 4 transition vertex (groups 1 and2, Figs.19 a and b), the 
ontributions are identi
al for all 
uts (i.e. independentof i). The 2 ! 4 vertex is the same as in the total 
ross se
tion. As a result,these 
ontributions 
an be added in the same way, as in the 
ase of the total 
rossse
tion, In parti
ular, Group 2 will 
an
el, due to the AKG 
ounting rules [9℄. Ifthe jet is produ
ed inside the 2 ! 4 transition (groups 3 and 4, Figs.19
 and d),the 
uts i = 1; 2; 3 di�er from ea
h other, and the verti
es are new. In parti
ular,there is a novel 
ontribution (Fig.19d) whi
h 
ontains a t-
hannel state 
onsisting of3 reggeized gluons.Finally, let us 
omment on the reggeizing pie
es whi
h do not satisfy Wardidentities and symmetry requirements. Here we have found two groups whi
h areillustrated in eqs.(3.37) and (3.38a)-(3.38
). As we have dis
ussed at the end ofse
tion 3.1, these 
ontributions introdu
e higher order 
orrelators inside the target.We illustrate them in Fig.21:
Fig.21: in
lusive jet produ
tion with higher order 
olor 
orrelaters inside thetwo-nu
leon target.A more detailed dis
ussion will be given elsewhere, and for the rest of this paper wewill restri
t our dis
ussion to the irredu
ible pie
es whi
h 
onstitute the two Pomeron
ontribution to the in
lusive 
ross se
tion.4. The 1-jet in
lusive 
ross se
tionIn the previous se
tion we have des
ribed the 
omputation of the triple dis
onti-nuities of the amplitudes, with one gluon being �xed in transverse momentum p1and rapidity y1. Due to this gluon, the de
omposition into reggeized and irredu
iblepie
es has turned out to be quite di�erent from the total 
ross se
tion.Let us now make use of these triple dis
ontinuites and return to the in
lusive
ross se
tion in eq.(2.9). Beginning with the term N 
4(1; 2j3; 4; y1;p1), we use Fig.20and atta
h nu
leon 1 to lines 1 and 2 and nu
leon 2 to lines 3 and 4. Similarly, these
ond term N 
4(3; 4j1; 2; y1;p1) is obtained by inter
hanging nu
leons 1 and 2. Inthe last term, N 
4(1; 3j2; 4; y1;p1), we 
onne
t nu
leon 1 with the gluon lines 1 and 4.Be
ause of the symmetry under the ex
hange of gluons on both sides of the 
ut, wedo not need to distinguish between N 
4(1; 3j2; 4; y1;p1) and N 
4(1; 4j2; 3; y1;p1). Forthe third and fourth lines on the rhs of eq.(2.9), we use Fig.19. Again, the symmetry{ 29 {



on the rhs of the 
utting line allows to identify, for example, N 
4(1; 2; 3j4; y1;p1) andN 
4(1; 3; 2j4; y1;p1).For ea
h of these terms, we have the four groups 
orresponding to the Figs.19a-dor Figs.20a-d. As we have said before, for the �rst two groups the di�erent 
utsi = 1; 2; 3 lead to the same result. Hen
e we 
an, in eq.(2.9), simply sum over thephase fa
tors. This leads, in the 
ase of the �rst group (Fig.19a and 20a) to theusual AGK 
ounting: 2 - 8 + 4 = -2. In the se
ond group (Figs.19b and 20b) we�nd 
omplete 
an
ellation [9℄: 2 - 6 + 4 = 05. In 
ontrast to this, for the remaining
ontributions to the in
lusive 
ross se
tion there is no simple way of summing thedi�erent 
uts, and the in
lusive 
ross se
tion remains of the form given in eq.(2.9).For the �rst group (two groups (Figs.19
 and 20
) we illustrate the integrand of eq.(2.9) in the following equation:h�1��2X + �2��1X +
+2 Im�10BBBB�(i�2)�X + 
:
:1CCCCA + 2 Im�20BBBB�i�1X + 
:
:1CCCCA

+4Im�1Im�2X i
(4.1)

In this expression above in the �rst line, whi
h 
orresponds to the 'di�ra
tive 
ut',one has to insert all the 
ontributions 
onstru
ted with the e�e
tive vertex 2 =V4 givenin eq. (3.44b), inserted in eq. (3.43). The two 
ontributions with 
omplex 
onjugatephase fa
tors are asso
iated to the two possible ways of 
oupling to the two nu
leonsin the deuteron. The 'single absorptive 
ut' 
ontribution in the se
ond line of eq.(4.1), is given by the sum of 4 terms, two asso
iated with the jet produ
ed alongthe 
ut whi
h goes to one nu
leon and the other two when the 
ut goes throughthe se
ond nu
leon. The two 
ases are 
onstru
ted similarly to the previous oneemploying the verti
es 1=V4 and 3=V4 given respe
tively in eqs. (3.44a) and (3.44
).The third line) in eq. (4.1) is asso
iated to the 'double 
ut' 
ontribution, and it is5Here we make use of the fa
t that the 
oupling of the two gluon pairs to the two nu
leons alsosati�es the symmetry properties: invarian
e under the inter
hange of the two nu
leons, and - forea
h nu
leon separately - symmetry under inter
hange of the two gluons.{ 30 {



built again from 2 =V4. The 
oupling to the nu
leons sele
ts the stru
ture equivalent toN 
4(1; 3j2; 4) = N 
4(2; 3j1; 4) and is asso
iated to a purely real phase. Be
ause of thesymmetry of N 
4 under permutations on both sides of the 
utting line we do not needto in
lude another term with nu
leons 1 and 2 inter
hanged. Let us note that in ourapproximation we shall 
hoose purely imaginary BFKL pomeron phases, �1;2 = i.The �nal group (Figs.19d and 20d) is illustrated in the following equation:h�1��20BBBBBBB�X +X 1CCCCCCCA+ 
:
:
+2 Im�10BBBBBBB�(i�2)�X + 
:
:1CCCCCCCA + 2 Im�20BBBBBBB�i�1X + 
:
:1CCCCCCCA+

+4Im�1Im�20BBBBBBB�X +X 1CCCCCCCAi :(4.2)These terms are novel and quite pe
uliar sin
e they are 
hara
terized by the emissionof a jet inside the e�e
tive verti
es =�3 and i=�3 whi
h allow, in the t-
hannel, thetransition from 2 to 3 reggeized gluons. After rapidity evolution a se
ond splitting,des
ribed by the verti
es iW4 is taking pla
e. In this e�e
tive 3! 4 transition thereis always one gluon whi
h a
ts as a spe
tator. Finally, the resulting t-
hannel fourgluon state, after a BKP evolution, is 
oupled to the deuteron form fa
tor.The 'di�ra
tive 
ontributions' in the �rst line are 
onstru
ted using the e�e
tivevertex =�3, given in eq. (A.13) of appendix A.3, whi
h 
ontains 
ontributions fromthe jet emitted in the two possible positions. The subsequent 3 ! 4 transition isdes
ribed by the e�e
tive vertex 2W4, given in eq. (3.48b). One is therefore led to useeq.(3.47), whi
h has to be integrated with the four reggeon Green's fun
tions and thedeuteron form fa
tor. The 'single absorptive 
ut' 
ontributions in the se
ond line ofeq. (4.2) are expressed in terms of the e�e
tive verti
es 1=�3 and 2=�3 (or also using =�3as in eq. (3.46)) de�ned in eq. (A.14) of appendix A.3. They 
ontain 
ontributions{ 31 {



from the jet emitted only on the left or on the right of the e�e
tive 2 ! 3 vertex.These two 
ases are asso
iated to two 
orresponding 3 ! 4 splittings des
ribed bythe e�e
tive verti
es 1W4 and 3W4, listed in eqs. (3.48a) and (3.48
), respe
tively.Finally the 'double 
ut 
ontribution' in the third line of eq. (4.2)) is, again,
onstru
ted in the same way as the di�ra
tive 
ase, with the produ
ed gluon insidethe e�e
tive 2 ! 3 vertex being either on the left or on the right hand side. Whatdistinguishes this 
ase from the di�ra
tive one is the 
oupling to the deuteron formfa
tors.We 
omplete this se
tion with the large-N
 limit whi
h somewhat simpli�es ourresults. As the main feature, the four-gluon evolution above the two nu
leons turnsinto two non-intera
ting BFKL Pomerons, one for ea
h nu
leon. We illustrate thisin Fig.22:

Fig.22: the large-N
 approximation (a) produ
tion above the 2! 4 transition, (b)produ
tion inside the 2! 4 transition, (
) produ
tion in the 2! 3 transition.In the �rst 
ontribution, shown in Fig.22a (whi
h 
orresponds to Fig.19a and Fig.20a),these two Pomerons 
ouple dire
tly to the 2! 4 vertex, sele
ting the 
olor stru
tureÆa1a2Æa3a4 . This is the triple Pomeron vertex, whi
h also appears in the nonlinearBalitsky Kov
hegov (BK) evolution equation [35℄. In the se
ond 
ontributions illus-trated in Fig.22b (
orresponding to Figs.19
 and 20
), the two Pomerons 
ouple tothe new produ
tion vertex i=V4 listed in eqs.(3.44a) - (3.44
), and the di�erent 
utpositions lead to di�erent expressions for the vertex. For ea
h i, only one of the
olor stru
tures 
ontributes to the large-N
 limit. We expe
t that the rather lengthyexpressions for the verti
es that we have obtained may simplify, if we make use ofthe Moebius representation of the BFKL Pomerons. This will be dis
ussed in a sub-sequent paper. Finally the new 
ontribution in Fig.22
 (
orresponding to Figs.19dand 20d): here the two Pomerons arrive at the e�e
tive 3 ! 4 verti
es, iW4, listedin eqs.(3.48a) - (3.48
). Again, ea
h 
ut pi
ks one 
olor stru
ture, dismissing theother ones as subleading. In parti
ular, there is no N
 supression of this novel pie
ewith the 3 gluon 
ontribution. Again, simp
i�
ations of the kernels will be dis
ussed{ 32 {



elsewhere. Note that the jet produ
tion from one of the two ladders below the 2! 4vertex 
an
els be
ause of the AGK rules.5. Con
lusionsIn this paper we have investigated, within the BFKL framework of pQCD, the single-jet in
lusive 
ross se
tion in the s
attering of a virtual photon on a weakly 
ouplednu
leus (deuteron). We have identi�ed the two-Pomeron ex
hange between the jetand the nu
leus, and we have derived an analyti
 expression for the jet vertex.Invoking Regge fa
torization, the same vertex 
an also be used in pp 
ollisions wherethe jet, in rapidity, is 
lose to one of the protons, but has a large rapidity separationfrom the other proton. Our analysis has been done in momentum spa
e, and westress that the results are valid for �nite N
.On the theoreti
al side, our analyis shows several new features. First, the jetvertex 
ontains a new stru
ture not seen before, namely a three gluon t-
hannelstate whi
h, in a total 
ross se
tion, would violate signature 
onservation and, hen
e,never appears. This 
ontribution to the jet produ
tion vertex is not suppressed inthe limit N
 !1, and there are no extra powers in g2 whi
h are not 
ompensatedby fa
tors ln 1=x. This latter statement simply follows from the fa
t that all ourresults are derived from produ
tion amplitudes whi
h are all of the same order:g2� g2� g2�Pk(g2y)k� g4 (where the last fa
tor g4 belongs to the 
oupling to thenu
leons), and all subsequent steps amount to a re-ordering6This last term the last term seems to be missing in previous studies, in parti
ularin both [2℄ and [6℄, and we feel that it is very important to 
larify this dis
repan
y.Whereas, at the moment, we feel unable to 
omment on [2℄, we do see a possiblereason why [6℄ does not �nd this pie
e. At �rst sight, [6℄ follows a strategy verysimilar to ours. It starts from dis
ontinuities, 
omputed in momentum spa
e, and itthen separates reggeizing pie
es from nonreggeizing ones. In 
ontrast to our strategy,however, this separation is done in the same way as for the total 
ross se
tion, i.e.before �xing the momenta of the jet. In our approa
h, however, we do the separationof reggeizing and irredu
ible pie
es only after �xing the momenta of the jets. Asit turns out, the results for the in
lusive 
ross se
tion do depend on the order ofthese steps. Conne
ted with these new 
ontributions are new produ
tion verti
esand transition verti
es of reggeized gluons, whi
h represent building blo
ks of QCDreggeon �eld theory.In order to 
larify the 
onne
tion of our result with those of, e.g., [2{4℄ it willbe useful to �rst translate our results into 
on�guaration spa
e, making use of the6In parti
ular, the 
ontributions in Fig.22
 are of the same order as those of Fig.22a: the 3! 4gluon vertex is of the order g3 (
f. eq.(A.16a)), i.e. in the transition from 3 to 4 gluons one gluonremains a 'spe
tator'. { 33 {



Moebius representation [39℄, and also taking the large-N
 limit. We plan to do thisin a forth
oming workReturning to the further interpretation of our analysis, they also shows that, forthe two-Pomeron ex
hange in the in
lusive 
ross se
tion formula, the AGK 
ountingrules have to be used with 
are: if the jet is produ
ed inside the 2 ! 3 or the2! 4 transition vertex, the relative weights of the di�erent 
uttings a
ross the twoPomeron ex
hange di�er from the AGK 
ounting derived for the total 
ross se
tion.This supports the �ndings of [2, 6℄. On the other hand, the 
an
ellation of theres
attering 
orre
tions a
ross the jet vertex remains valid and has been 
on�rmedby our analysis.Another result is the appearan
e of the reggeizing pie
es. In the in
lusive 
rossse
tion formula, reggeizing pie
es belong to single BFKL ladder. They appear in the
oupling to the nu
leus and introdu
e higher order 
orrelators between the nu
leons.As to pra
ti
al appli
ations, the most interesting aspe
t, at present, is the sear
hfor saturation. For the total 
� nu
leus 
ross se
tion, the high energy behavior(small-x limit), in the large-N
 approximation, is des
ribed by the nonlinear Balitsky-Kov
hegov (BK) evolution equation, and solutions to this equation have been inves-tigated in some detail. In order to derive the BK equation in momentum spa
e oneinvestigates the s
attering of a virtual photon on nu
lear targets 
onsisting of 2, 3,...nu
leons and separates reggeizing and nonreggeizing 
ontributions. For the 
ase of 2nu
leons, the 
orresponding QCD diagrams have been analyzed before (and summa-rized in this paper), and the validity of the BK equation is intimately 
onne
ted withthe dominan
e of the 'fan-like' stru
ture of the QCD ladder diagrams. In parti
ular,there is no dire
t 
oupling of two Pomerons to the photon impa
t fa
tor, and thesplitting of a single Pomeron into two Pomerons goes via the 2 ! 4 gluon vertexwhi
h, in the large-N
 limit, 
oin
ides with the integral kernel of the BK equation.As the main intention of the present paper was the generalization of this analysis,from the total 
ross se
tion to the single in
lusive 
ross se
tion, we 
an, again, lookat the stru
ture the leading QCD-diagrams, illustrated in Fig.22. The �rst term,Fig.22a, suggests that, below the 2 ! 4, we see the beginning of the same fan-likestru
ture as in the total 
ross se
tion. That is, when generalizing our analysis tothe s
attering on a nu
leus 
onsisting of 3 or more nu
leons, we expe
t to see thefan stru
ture whi
h sums up to the familiar nonlinear BK-equation. The se
ond andthe third terms (Fig.22b and 
), however, do not �t into this pattern: the evolutionbelow the jet vertex starts with double Pomeron ex
hange, and in the last term thenew three gluon state introdu
es a new Pomeron 
omponent whi
h survives in thelarge-N
 limit. One might interpret it as a nonlo
al (in rapidity) 
ontribution to thee�e
tive 2! 4 transition vertex.A 
omment on kt fa
torization might be in pla
e. The stru
ture of our large-N

ross se
tion 
an be read o� from Fig.22. All three 
ontribtions to the in
lusive
ross se
tion have in 
ommon that, in transverse momentum, they fa
torize into{ 34 {



a produ
tion vertex and gluon amplitudes above and below the vertex. In detail,however, there are some di�eren
es 
ompared to the usual fa
torization pattern. Inthe �rst term, Fig.22a, we still have the usual kt-fa
torization: momentum dependentamplitudes (unintegrated gluon densitities) from above and below, 
onvoluted (intransverse momentum) with the gluon emission vertex. In Fig.22b, we still have,above the gluon emission, a single unintegrated gluon density, whereas from below wenow have two gluon amplitudes, and this leads to a threefold transverse momentumintegration. In Fig.22
, the emission vertex has a single gluon density from above, athree gluon amplitude from below. Figs.22b and 
 thus introdu
e gluon 
orrelationfun
tions of four and three gluons, resp. It is the three-gluon 
orrelator whi
h seemsto be absent in previous studies. In order to understand the further rapidity evolutionof Figs.22 b and 
 it will be ne
essary to study the s
attering of a photon on a threenu
leon state.Finally, one might wonder how our result would generalize in the analysis of theequations des
ribing the 
orre
tions to in
lusive two-jet produ
tion 
ross se
tions.This 
ase has been 
onsidered in the framework of the 
olor dipole-CGC pi
ture [40℄.Clearly we expe
t the pattern of gluon reggeization to be broken further, leadingpossibly to new terms with even higher order gluon 
orrelators. This is a 
hallenginganalysis whi
h we hope to address in the future.A
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e where part of this work has been done.A. Appendi
esA.1 Color identitiesThe stru
ture of the SU(N
) algebra is determined by the stru
ture 
onstant fab
�xing the 
ommutation relations [ta; tb℄ = ifab
t
, with the generators ta normalizedsu
h that tr(tatb) = Æab=2. From the generators is possible to get the stru
ture
onstants via fa1a2a3 = �2i(tr(ta1ta2ta3)� tr(ta3ta2ta2)) ; (A.1)and de�ning the symmetri
 stru
ture 
onstant da1a2a3 through the anti
ommutatorsof the generators, fta1 ; ta2g = 1N
 Æa1a2 + da1a2a3ta3 ; (A.2)we have da1a2a3 = 2(tr(ta1ta2ta3) + tr(ta3ta2ta2)) : (A.3){ 35 {



It turns out to be useful to de�ne as well tensors fa1:::an and da1:::an for n > 3:fa1a2:::an = �i�tr(ta1ta2 : : : tan)� tr(tan : : : ta2ta1)� ; (A.4a)da1a2:::an = tr(ta1ta2 : : : tan) + tr(tan : : : ta2ta1) : (A.4b)Both f and d tensors are evidently invariant under 
y
li
 permutation, and more-over fa1a2a3 is antisymmetri
 under the transposition of two indi
es, while da1a2a3 issymmetri
. fa1a2a3 = �fa2a1a3 (A.5a)da1a2a3 = da2a1a3 (A.5b)A very useful relation is the Fierz identity,(ta)i1i2(ta)j1j2 = 12Æi1j1Æi2j2 � 12N
 Æi1i2Æj1j2 : (A.6)Other essential relations are the Ja
obi identity,fa1a2bf ba3a4 � fa1a3bf ba2a4 + fa1a4bf ba2a3 = 0 ; (A.7)the de
omposition of da1a2a3a4 in terms of rank three tensors,da1a2a3a4 = 14(da1a2bdba3a4 � fa1a2bf ba3a4) + 12N
 Æa1a2Æa3a4 ; (A.8)and some 
ontra
tions of various tensorsf b1a1b2f b2a2b1 = �N
Æa1a2 ; (A.9a)f b1a1b2f b2a2b3f b3a3b1 = �N
2 fa1a2a3 ; (A.9b)db1a1b2f b2a2b3f b3a3b1 = �N
2 da1a2a3 ; (A.9
)f b1a1b2f b2a2b3f b3a3b4f b4a4b1 = N
 da1a2a3a4 ++12(Æa1a2Æa3a4 + Æa1a3Æa2a4 + Æa1a4Æa2a3) ; (A.9d)da1a2b1b2f b1a3
f 
a4b2 = �N
2 da1a2a3a4 � 14Æa1a2Æa3a4 ; (A.9e)da1b1a3b2f b1a2
f 
a4b2 = 14Æa1a2Æa3a4 + 14Æa1a4Æa2a3 : (A.9f)A.2 The 2-to-4 e�e
tive vertex V4The integral operators i�n are given in terms of the infrared safe G fun
tion (�rstintrodu
ed in [10℄ in the forward dire
tion and later generalized and investigatedin [36, 37℄). Its a
tion on a two gluon fun
tion � is given byG�2 = K3�+ gN
� 2!(1�)3� + 2!1(�3)� � (12)! �3� � (23)! 1��� : (A.10)
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This obje
t is nothing but a regularized version of the two-to-three operator K3,being the traje
tories in (A.10) the pre
ise subtra
tion terms ne
essary to get rid ofthe divergen
es. Note that when the transverse momentum k2 of the 
entral leg isput to zero, G redu
es to the singlet version of the BFKL operator H; we indi
atek2 = 0 putting a small 
ir
le Æ in its position:Æa1a21Æ2G � = �N
g 12H2� ; (A.11)with � a two gluon 
olor neutral fun
tion. The vertex V4 introdu
ed in (3.18) is thende�ned by V4 = Æa1a2Æa3a4 1234V + Æa1a3Æa2a4 1324V + Æa1a4Æa2a3 1423V ; (A.12)where the operator V , whi
h is M�obius invariant [36, 38℄, is de�ned as1234V � = g2�1(23)4G + 1(24)3G + 2(13)4G + 2(14)3G + (12)Æ(34)G +�(12)34G � (12)43G � 12(34)G � 21(34)G � ��� :A.3 De�nitions of the operators i=�n and i�nThe e�e
tive verti
es i=�3 des
ribing the transition 2-to-3 reggeized gluons with asso-
iated jet produ
tion are 
onveniently expressed in term of an auxiliary operator =�3de�ned as =�3� = 12�g (13)2h =K2i � 132h1 =K3i � 213h2 =K3i� ���� g2 13h =K2i(��)2� : (A.13)In terms of =�3 we have 1=�3� = 12�123=�3 � 132=�3� ; (A.14a)2=�3� = 12�123=�3 � 213=�3� : (A.14b)In the 
ase of the transitions 2-to-4 there are four di�erent verti
es, one ea
h for{ 37 {



the 
uts 1 and 3 and two for the 
ut 2. They are

1=�4� = 14� 2134h2 =K4i+ 2314h2 =K4i+ g 1(23)4h1 =K3i � g (12)34h1 =K3i � g 23(14)h2 =K3i� ���++g4 134h1 =K3i(��)2� + g4 132h1 =K3i(��)4� + (3$ 4) + (A.15a)+14�g2(12)(34)h =K2i + g2(134)2h =K2i � g 12(34)h1 =K3i � g 21(34)h2 =K3i+ g 1(34)2h1 =K3i � g (34)12h2 =K3i� ���+�g24 1(34)h =K2i(��)2� � g24 12h =K2i(��)(34)� ;2A=�4� = 14� 1234h2 =K4i+ 1324h2 =K4i � g (23)14h1 =K3i � g 14(23)h2 =K3i+ g2(13)(24)h =K2i � ���++g4 234h1 =K3i1(��)� + g4 123h2 =K3i(��)4�+ (1$ 2) + (3$ 4) + (1$ 2; 3$ 4) + (A.15b)+g4� 3(12)4h2 =K3i � (12)34h1 =K3i� ���� g24 (123)4h =K2i ���� g24 (12)3h =K2i(��)4� + (3$ 4) ++g4� 1(34)2h1 =K3i � 12(34)h2 =K3i� ���� g24 1(234)h =K2i ���� g24 2(34)h =K2i1(��)� + (1$ 2) ++g22 (12)(34)h =K2i ��� ;
{ 38 {



2B=�4� = 14� 1234h2 =K4i+ 1324h2 =K4i+ g 1(34)2h1 =K3i+ g 3(12)4h2 =K3i � g 13(24)h1 =K3i � g (13)24h2 =K3i+�g (13)24h1 =K3i � g 13(24)h2 =K3i+ g2(13)(24)h =K2i � ���++g4 234h1 =K3i1(��)� + g4 123h2 =K3i(��)4� � g24 13h =K2i(��)(24)�+ (1$ 2; 3$ 4) + (A.15
)+g4� 3(12)4h2 =K3i � (12)34h1 =K3i� ���� g24 (123)4h =K2i ���� g24 (12)3h =K2i(��)4� + (3$ 4) ++g4� 1(34)2h1 =K3i � 12(34)h2 =K3i� ���� g24 1(234)h =K2i ���� g24 2(34)h =K2i1(��)� + (1$ 2) ++g22 (12)(34)h =K2i ��� ;3=�4� = 14� 1243h2 =K4i+ 1423h2 =K4i+ g 1(23)4h2 =K3i � g 12(34)h2 =K3i � g (14)23h1 =K3i� ���++ g4 124h2 =K3i3(��)� + g4 324h2 =K3i1(��)� + (1$ 2) + (A.15d)+14�g2(12)(34)h =K2i + g23(124)h =K2i � g (12)34h2 =K3i � g (12)43h1 =K3i+ g 3(12)4h2 =K3i � g 34(12)h1 =K3i� ���+�g24 (12)4h =K2i3(��)� � g24 34h =K2i(12)(��)� :The integral operators i�n are given in terms of the infrared safe G fun
tionde�ned in (A.10). Analougusly to (A.15), there are two di�erent operators for the
entral 
ut:1�4� = 14�+ 234G 1��� � 432G 1��� + 134G �2�� � 134G ��2� + 132G �4�� � 132G ��4� � (3$ 4)�++ g4�� 2Æ(34)G 1��� + (34)Æ2G 1��� � 1Æ(34)G �2�� + 1Æ(34)G ��2� � 1Æ2G �(34)�� + 1Æ2G ��(34)� � ;(A.16a)2A�4� = 14�123G ��4� + 234G 1��� + 124G �3�� + 134G �2�� � 132G ��4� � 234G 1��� ++(1$ 2) + (3$ 4) + (1$ 2; 3$ 4)�++g4�1Æ2G ��(34)� � 2Æ(34)G 1��� � 1Æ(34)G �2�� � (1$ 2)�+ (A.16b)+g4�� 3Æ4G (12)��� � (12)Æ3G ��4� � (12)Æ4G �3�� + (3$ 4)� ;
{ 39 {



2B�4� = 14�� 213G ��4� � 134G 2��� + 214G �3�� + 234G �1�� � 231G ��4� � 314G 2��� + (A.16
)+g2Æ(13)G ��4� + g(13)Æ4G 2��� � g2Æ4G �(13)�� + (1$ 2; 3$ 4)� ;3�4� = 14�123G ��4� � 321G ��4� + 124G �3�� � 124G 3��� + 324G �1�� � 324G 1��� + (1$ 2)� + (A.16d)+g4�� (12)Æ3G ��4� + 3Æ(12)G ��4� � (12)Æ4G �3�� + (12)Æ4G 3��� � 3Æ4G �(12)�� + 3Æ4G (12)��� � :The Ward identities ful�lled by all these operators (
ut and un
ut) 
an be veri�eddire
tly from these expressions. Moreover, thanks to the properties of the fun
tionG [36℄, these operators de�ne M�obius (
onformal) invariant obje
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