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Abstra
tAfter a brief review of the BFKL approa
h to Regge pro
esses in QCD and insupersymmetri
 (SUSY) gauge theories we propose a strategy for 
al
ulating the next-to-next-to-leading order 
orre
tions to the BFKL kernel. They 
an be obtained interms of various 
ross-se
tions for Reggeized gluon intera
tions. The 
orrespondingamplitudes 
an be 
al
ulated in the framework of the e�e
tive a
tion for high energys
attering. In the 
ase of N = 4 SUSY it is also possible to use the Bern-Dixon-Smirnov(BDS) ansatz. For this purpose the analyti
 properties of the BDS amplitudes at highenergies are investigated, in order to verify their self-
onsisten
y. It is found that, forthe number of external parti
les being larger than �ve, these amplitudes, beyond oneloop, are not in agreement with the BFKL approa
h whi
h predi
ts the existen
e ofRegge 
uts in some physi
al 
hannels.1 Introdu
tionThe elasti
 s
attering amplitude in QCD at high energies for parti
les with 
olor indi
esA;B and heli
ities �A; �B in the leading logarithmi
 approximation (LLA) has theRegge form [1℄ A2!2 = 2 gÆ�A�A0T 
AA0 s1+!(t)t g T 
BB0 Æ�B�B0 ; t = �~q2: (1)The gluon Regge traje
tory, j(t) = 1 + !(t), reads!(�~q2) = ��sN
(2�)2 (2��)2� Z d2�2�k ~q2~k2(~q � k)2 � � a  ln ~q2�2 � 1�! ; (2)where we have introdu
ed dimensional regularization with D = 4� 2 � and the renor-malization point � for the 't Hooft 
oupling 
onstanta = �sN
2� �4�e�
�� : (3)1
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Figure 1: Multi-Regge kinemati
sThe gluon traje
tory is also known in the next-to-leading approximation in QCD [2℄and in SUSY gauge models [3℄.In LLA gluons are produ
ed in the multi-Regge kinemati
s (see Fig. 1). In thiskinemati
s the gluon produ
tion amplitude in LLA has the fa
torized formA2!2+n =�2 s g Æ�A�A0 T 
1AA0 s!(�~q21)1 ~q21 gC�(q2; q1)e��(k1)T d1
2
1 s!(�~q22)2 ~q22 :::s!(�~q2n+1)n+1~q2n+1 g Æ�B�B0 T 
n+1BB0 ;(4)where s = (pA + pB)2 � sr = (kr + kr�1)2 � ~q2r ; kr = qr+1 � qr : (5)The matri
es T ab
 are the generators of the SU(N
) gauge group in the adjoint repre-sentation and C�(q2; q1) are the e�e
tive Reggeon-Reggeon-gluon verti
es. In the 
asewhen the polarization ve
tor e�(k1) 
orresponds to a produ
ed gluon with a de�niteheli
ity one 
an obtain [4℄C � C�(q2; q1) e��(k1) = p2 q�2q1k�1 ; (6)where the 
omplex notation q = qx + iqy for the two-dimensional transverse ve
torshas been used.The elasti
 s
attering amplitude with the va
uum quantum numbers in the t-
hannel 
an be 
al
ulated with the use of s-
hannel unitarity [1℄. In this approa
hthe Pomeron appears as a 
omposite state of two Reggeized gluons. It is also 
onve-nient to use transverse 
oordinates in a 
omplex form together with their 
anoni
ally
onjugated momenta as�k = xk + iyk ; ��k = xk � iyk ; pk = i ���k ; p�k = i ����k : (7)In the 
oordinate representation the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equationfor the Pomeron wave fun
tion 
an then be written as follows [1℄E	(~�1; ~�2) = H12	(~�1; ~�2) ; � = ��sN
2� min E ; (8)2



where � is the Pomeron inter
ept. The BFKL Hamiltonian has the rather simplerepresentation [5℄H12 = ln jp1p2j2 + 1p1p�2 (ln j�12j2) p1p�2 + 1p�1p2 (ln j�12j2) p�1p2 � 4 (1) ; (9)with �12 = �1 � �2. The kineti
 energy is proportional to the sum of two gluon Reggetraje
tories !(�jpj2i ) (i = 1; 2). The potential energy � ln j�12j2 is related to theprodu
t of two gluon produ
tion verti
es C�. This Hamiltonian is invariant under theM�obius transformation [6℄ �k ! a�k + b
�k + d ; (10)where a; b; 
 and d are 
omplex numbers. The eigenvalues of the 
orresponding Casimiroperators are expressed in terms of the 
onformal weightsm = 12 + i� + n2 ; em = 12 + i� � n2 (11)for the unitary prin
ipal series representation of SL(2; C), with � being real and ninteger.The BFKL Hamiltonian 
an be iterated in the s{
hannel to a

ount for the ex
hangeof an arbitrary number of Reggeized gluons. This iteration is des
ribed by the Bartels-Kwie
inski-Praszalowi
z (BKP) equation [7℄ for the n-gluon 
olorless 
omposite state.In the N
 !1 limit the Hamiltonian has the property of holomorphi
 separability [8℄in the form H = 12Xk Hk;k+1 = 12(h+ h�) ; [h; h�℄ = 0 : (12)The holomorphi
 Hamiltonian 
an be written ash =Xk hk;k+1 ; h12 = ln(p1p2) + 1p1 (ln�12) p1 + 1p2 (ln�12) p2 � 2 (1) ; (13)where  (x) = (ln�(x))0. Consequently, the wave fun
tion 	 ful�lls holomorphi
 fa
-torization [8℄ and there exists the remarkable duality symmetry under the transforma-tion [9℄ pi ! �i;i+1 ! pi+1 : (14)Moreover, in the holomorphi
 and anti-holomorphi
 se
tors, there are integrals of mo-tion 
ommuting among themselves and with h [5, 10℄:qr = Xk1<k2<:::<kr �k1k2�k2k3 :::�krk1 pk1pk2 :::pkr ; [qr; h℄ = 0 : (15)The integrability of BFKL dynami
s was demonstrated in [10℄ and it is related to thefa
t that h 
oin
ides with the lo
al Hamiltonian of the Heisenberg spin model [11℄.In the LLA the Pomeron inter
ept is � = 4 �s� N
 ln 2 > 0 and the Froissart bound�t < 
 ln2 s for the total 
ross-se
tion �t � s� is violated [1℄.In the next-to-leading logarithmi
 approximation the integral kernel for the BFKLequation was 
onstru
ted in Refs. [3, 12℄. Due to its M�obius invarian
e, the solution ofthe BFKL equation 
an be 
lassi�ed by the anomalous dimension 
 = 12 + i� of twist-2operators and the 
onformal spin jnj, whi
h 
oin
ides with the number of transverseindi
es of the lo
al operators O�1:::�j .The eigenvalue of the BFKL kernel in the next-to-leading approximation has theform [12℄! = 4 â �2 (1) �  �
 + jnj2 ��  �1� 
 + jnj2 ��+ 4 â2�(n; 
) ; â = g2 N
16�2 : (16)3



In QCD, the next-to-leading 
ontribution �(n; 
) is a non-analyti
 fun
tion of the
onformal spin jnj be
ause it 
ontains some terms depending on the Krone
ker symbolsÆn;0 and Æn;2. However, in N = 4 SUSY this dependen
e is 
an
elled and we obtainthe following hermitially separable expression [3, 13℄�(n; 
) = �(M) + �(M�)� �(M) + �(M�)2â=! ; M = 
 + jnj2 ; (17)�(M) = �0(M) + 12�(2) ; �0(z) = 14"	0�z + 12 ��	0�z2�#; (18)where �(M) = 3�(3) +  00(M)� 2�(M) + 2�0(M)� (1) �  (M)�; (19)and �(M) = 1Xk=0 �0(k + 1)k +M + 1Xk=0 (�1)kk +M � 0(k + 1) �  (k + 1)�  (1)k +M � : (20)Very importantly, all these 
ontributions have the property of maximal trans
endental-ity [13℄. The behaviour of the 4-point Green fun
tion 
orresponding to this NLO kernelin N = 4 SUSY was investigated in [14℄. The NLO 
onformal spins a�e
t azimuthalangle de
orrelations in jet physi
s as it was originally suggested in [15℄.In a di�erent 
ontext, the one-loop anomalous dimension matrix for twist-2 op-erators in N = 4 SUSY 
an be easily 
al
ulated sin
e it is 
ompletely �xed by su-per
onformal invarian
e. Its eigenvalue is proportional to  (1) �  (j � 1), whi
h isrelated to the integrability of the evolution equation for the quasi-partoni
 operatorsin this model [16℄. The integrability of N = 4 SUSY has also been established for otheroperators and in higher loops [17, 18℄.The maximal trans
endentality prin
iple suggested in Ref. [13℄ made it possible toextra
t the universal anomalous dimension up to three loops in N = 4 SUSY [19, 20℄from the QCD results [21℄. This prin
iple was also helpful for �nding 
losed inte-gral equations for the 
usp anomalous dimension in this model [22, 23℄ based on theAdS/CFT 
orresponden
e [24, 25, 26℄. In the framework of the asymptoti
 Betheansatz the maximal trans
endentality prin
iple helped to �x the anomalous dimensionat four loops [27℄. However, the obtained results 
ontradi
t the predi
tions stemmingfrom the BFKL equation [3, 13℄. The origin of this dis
repan
y is related to the onsetof wrapping e�e
ts [27℄. In this framework it is, therefore, 
ru
ial to obtain more infor-mation from the BFKL side through the 
al
ulation of its higher order 
orre
tions tothe integral kernel. We would like to point out that the inter
ept of the BFKL Pomeronat large 't Hooft 
oupling 
onstant in N = 4 SUSY was found in Refs. [20, 28℄.In the present paper we want to formulate a program to 
al
ulate the three loop
orre
tions to the BFKL kernel in the 't Hooft 
oupling. Our approa
h is based onthe use of the high energy e�e
tive a
tion developed in [29, 30℄ for the 
onstru
tionof the various Reggeized gluon 
ouplings, and on the BDS ansatz [31℄ for s
atteringamplitudes in the N = 4 super Yang-Mills theory. We begin with a short review ofthe e�e
tive a
tion (se
tion 2) and then turn to an analysis of the BDS formula in theRegge limit for the amplitudes up to six external gluons (se
tion 3). An interpretationbased upon known results of the high energy limit of s
attering amplitudes in QCD isgiven in se
tion 4. An outlook is presented in the 
on
luding se
tion. Some details ofthe 
al
ulations are presented in several appendi
es.4



2 E�e
tive a
tion for Reggeized gluonsInitially 
al
ulations of s
attering amplitudes in Regge kinemati
s were performed byan iterative method based on analyti
ity, unitarity and renormalizability of the the-ory [1℄. The s-
hannel unitarity was in
orporated partly in the form of bootstrapequations for the amplitudes generated by Reggeized gluons ex
hange. But later itturned out that for this purpose one 
an also use an e�e
tive �eld theory for Reggeizedgluons [29, 30℄.We shall write below the e�e
tive a
tion valid at high energies for intera
tions ofparti
les inside ea
h 
luster having their rapidities y in a 
ertain intervaly = 12 ln �k + jkj�k � jkj ; jy � y0j < � ; � << ln s : (21)The 
orresponding gluon and quark �elds arev�(x) = �iT ava�(x) ;  (x) ; � (x) ; [T a; T b℄ = ifab
T 
 : (22)In the 
ase of the supersymmetri
 models one 
an take into a

ount also the fermionand s
alar �elds with known Yang-Mills and Yukawa intera
tions. Let us introdu
enow the �elds des
ribing the produ
tion and annihilation of Reggeized gluons [29℄:A�(x) = �iT aAa�(x) : (23)Under the global 
olor group rotations the �elds are transformed in the standard wayÆv�(x) = [v�(x); �℄; Æ (x) = �� (x); ÆA(x) = [A(x); �℄ ; (24)but under the lo
al gauge transformations with �(x)! 0 at x!1 we haveÆv�(x) = 1g [D�; �(x)℄; Æ (x) = ��(x) (x); ÆA�(x) = 0 : (25)In quasi-multi-Regge kinemati
s parti
les are produ
ed in groups (
lusters) with�xed masses. These groups have signi�
antly di�erent rapidities 
orresponding to themulti-Regge asymptoti
s. In this 
ase one obtains the following kinemati
al 
onstrainton the reggeon �elds ��A�(x) = 0 ; �� = n���� ; (26)n�� = Æ�0 � Æ�3 . For QCD the 
orresponding e�e
tive a
tion lo
al in the rapidity y hasthe form [29℄ S = Z d4x (L0 + Lind) ; (27)where L0 is the usual Yang-Mills LagrangianL0 = i � D̂ + 12Tr G2�� ; D� = �� + gv�; G�� = 1g [D�;D� ℄ (28)and the indu
ed 
ontribution is given byLind = Tr (Lkind + LGRind) ; Lkind = ���Aa+��Aa� : (29)Here the Reggeon-gluon intera
tion 
an be presented in terms of Wilson P -exponentsLGRind = �1g�+ P exp �g12 Z x+�1 v+(x0)d(x0)+! �2�A��1g�� P exp �g12 Z x��1 v�(x0)d(x0)+! �2�A+= �v+ � gv+ 1�+ v+ + g2v+ 1�+ v+ 1�+ v+ � :::� �2�A�+�v� � gv� 1�� v� + g2v� 1�� v� 1�� v� � :::� �2�A+ : (30)5



One 
an formulate the Feynman rules dire
tly in momentum spa
e [30℄. For thispurpose it is needed to take into a

ount the gluon momentum 
onservation for indu
edverti
es k�0 + k�1 + :::+ k�r = 0 : (31)Some simple examples of indu
ed Reggeon-gluon verti
es are��0+a0
 = ~q2? Æa0
 (n+)�0 ; ��0�1+a0a1
 = ~q2? T 
a1a0 (n+)�1 1k+1 (n+)�0 ; (32)��0�1�2+a0a1a2
 = ~q 2? (n+)�0(n+)�1(n+)�2  T aa2a0 T 
a1ak+1 k+2 + T aa2a1 T 
a0ak+0 k+2 ! : (33)In the general 
ase these verti
es fa
torize in the form��0�1:::�r+a0a1:::ar
 = (�1)r~q 2? rYs=0(n+)�s 2Tr (T 
Ga0a1:::ar) ; (34)where T 
 are the 
olor generators in the fundamental representation. In more detail,Ga0a1:::ar 
an be written as [30℄Ga0a1:::ar = Xfi0;i1;:::;irg T ai0T ai1T ai2 :::T airk+i0(k+i0 + k+i1):::(k+i0 + k+i1 + :::+ k+ir�1) : (35)These verti
es satisfy the following re
urrent relations (Ward identities) [29℄k+r ��0�1:::�r+a0a1 :::ar
 (k+0 ; :::; k+r )= �(n+)�r r�1Xi=0 ifaarai��0:::�r�1+a0:::ai�1aai+1 :::ar�1
(k+0 ; :::; k+i�1; k+i + k+r ; k+i+1; :::; kr�1):(36)With the use of this e�e
tive theory one 
an 
al
ulate the tree amplitude for theprodu
tion of a 
luster of three gluons, or a gluon and a pair of fermions or s
alarparti
les (in the 
ase of an extended supersymmetri
 model) in the 
ollision of twoReggeized gluons [30℄ (see also earlier 
al
ulations of this amplitude in [32℄). Thesquare of the amplitude for three parti
le produ
tion integrated over the momenta ofthese parti
les is the main ingredient to 
onstru
t the 
orresponding 
ontribution to theBFKL kernel in the next-to-next-to-leading approximation using the methods of [33℄.One 
an go to the heli
ity basis of produ
ed gluons or fermions [34℄. In prin
iple it isalso possible to 
al
ulate the loop 
orre
tions to the above Reggeon-parti
le verti
eswith the use of the e�e
tive a
tion, however, in the present paper, we will use for thispurpose the results for N = 4 SUSY amplitudes presented by Bern, Dixon and Smirnovin [31℄.3 BDS amplitudes in multi-Regge kinemati
sAs we have already remarked in the previous se
tion, to �nd the next-to-next-to-leading 
orre
tions to the BFKL kernel in N = 4 SUSY we need to 
al
ulate, apartfrom the amplitude for the transition of two Reggeized gluons to three parti
les, alsothe three loop 
orre
tion to the gluon Regge traje
tory, the two loop 
orre
tion to theReggeon-Reggeon-gluon vertex, and the one loop 
orre
tion to the amplitude for thetransition of two Reggeized gluons to two gluons or their superpartners. In this se
tionwe 
onsider, as a �rst step, the 
orre
tions to the Regge traje
tory and 
orre
tions tothe Reggeon-Reggeon-gluon vertex (valid up to one loop) whi
h 
an be obtained from6



the multi-Regge asymptoti
s of the amplitude with the maximal heli
ity violation,
al
ulated by Bern, Dixon and Smirnov (BDS) [31℄. We also investigate the six pointamplitudes 2! 4 and 3! 3 in multi-Regge kinemati
s, thus preparing the 
omparisonwith QCD 
al
ulations to be 
arried out in the following se
tion.The BDS formula determines the logarithm of the s
attering amplitude (to bemore pre
ise: after the Born amplitude has been removed). In our analysis of the BDSformula we will, thoughout our paper, restri
t ourselves, in the logarithm of the ampli-tudes, to those terms whi
h are singular or 
onstant in �, i.e. we do not (yet) 
onsider
orre
tions of order � or �2 in the logarithm of the amplitude. As a 
onsequen
e, allresults for the s
attering amplitude are 
orre
t up to relative 
orre
tions of the order�, i.e all results should be multiplied by a fa
tor of the form (1 +O(�)). Details of ouranalysis of the BDS formula are outlined in several appendi
es.

Figure 2: Elasti
 s
attering in the Regge asymptoti
sA

ording to Ref. [31℄, in the 
ase of maximal heli
ity violation the amplitude Anwith n legs in the large-N
 limit is fa
torized in the produ
t of the tree result (in
ludingthe 
orresponding 
olor stru
ture) and the simple s
alar quantity Mn. In the Reggelimit s � (�t) the expression for M4 having the singularities in s and t-
hannels 
anbe simpli�ed as follows (see Fig.2 and Appendix A)1M2!2 = �(t) ��s�2 �!(t) �(t) � (1 +O(�)) ; (37)where �2 is the renormalization point,!(t) = �
(a)4 ln �t�2 + Z a0 da0a0 �
(a0)4� + �(a0)� ; (38)is the all-order gluon Regge traje
tory, as obtained from the BDS formula [36, 37℄ (fora veri�
ation by 
omparison with expli
it 
al
ulations see dis
ussions below), andln�(t) = ln �t�2 Z a0 da0a0 �
(a0)8� + �(a0)2 �+ C(a)2 + 
(a)2 �2� Z a0 da0a0 ln aa0 �
(a0)4�2 + �(a0)� + Æ(a0)� ; (39)1As we have said before, the fa
tor (1 +O(�)) on the rhs is present in all our results for s
atteringamplitudes, and it will be omitted in the following. For example, for the 
al
ulation of the vertex fun
tion�, from the BDS formula, our negle
t of order-� 
orre
tions in the logarithm has 
onsequen
es: in order todetermine the vertex fun
tion beyond the one loop approximation, it is ne
essay to 
ompute, in the logarithm,also the higher order terms. However, su
h a 
omputation is not the aim of this paper, and we will notgo beyond the one loop approximations for the logarithm of vertex fun
tions, ln �(t) or ln �(t2; t1; ln�) (seebelow). We will have to 
ome ba
k to this question when 
al
ulating the full higher order 
orre
tions to theBFKL equation. We thank V. Del Du
a for dis
ussions on this point.7



is the vertex for the 
oupling of the Reggeized gluon to the external parti
les.The 't Hooft 
oupling is de�ned as in eq.(3):a = �N
2� �4�e�
�� (40)and the small parameter � is related to the dimensional regularization 4! 4� 2�. The
usp anomalous dimension 
(a) is known to all loops [20, 35, 23℄
(a) = 4a� 4�2 a2 + 22�4 a3 + ::: ; (41)and the fun
tions �(a), Æ(a) and C(a) read [31℄�(a) = ��3 a2 + (6 �5 + 5 �2 �3) a3 + ::: ;Æ(a) = � �4 a2 + ::: ;C(a) = ��222 a2 + ::: ; (42)where �(n) is the Riemann �-fun
tion�(n) = 1Xk=1k�n : (43)Written as in Eq. (37) we 
an see that the asymptoti
 behavior of the M2!2 BDSamplitude 
orresponds to the Regge ansatz with the gluon traje
tory j = 1 + !(t)given by the perturbative expansion!(t) = �� ln �t�2 + 1�� a+ ��2 �ln �t�2 � 12��� �32 � a2+ ��112 �4 �ln �t�2 � 13��+ 6�5 + 5�2�33 � a3 + ::: : (44)The �rst two terms in this expansion are in agreement with the predi
tions in Refs. [1,3℄. Note that in Ref. [3℄, where the BFKL kernel at NLO was 
al
ulated in N = 4SUSY, initially the MS-s
heme was used, and only later, in Ref. [13℄ the �nal result wasalso presented in the dimensional redu
tion s
heme (DRED). The NLO terms in theBDS expression for !(t) 
an be obtained from Ref. [3℄ by 
onverting it to the DREDs
heme, where, apart from the �nite renormalization of the 
oupling 
onstant, oneshould also take into a

ount in the loop the additional number 2� of s
alar parti
les (fordetails see Appendix A and the re
ent paper [38℄)2. The O(a3) term in !(t), extra
tedfrom the BDS amplitude [36℄), 
orresponds to the three-loop 
orre
tion to the gluonRegge traje
tory needed when 
al
ulating the next-to-next-to-leading 
orre
tions tothe BFKL kernel in this model. Stri
tly speaking the Regge asymptoti
s of s
atteringamplitudes 
orresponds to a di�erent order of taking two limits �! 0 and s!1, butit is probable that they 
an be inter
hanged.It is noteworthy to point out that the expression for M2!2, derived in the Reggekinemati
s, in fa
t, is valid also outside the Regge limit. That is to say that, whenanalysing the BDS formula for the logarithm of the 2 ! 2 amplitude (see AppendixA), we do not make use of the high energy limit. In parti
ular, the amplitude 
an alsobe written in the dual formM2!2 = �(s) ��t�2�!(s) �(s) : (45)2 We thank A. V. Kotikov and E. M. Levin for helpful dis
ussions regarding these rede�nitions.8



Figure 3: Produ
tion amplitude in the multi-Regge regimeAfter having des
ribed the elasti
 s
attering amplitude we now fo
us on the BDSprodu
tion amplitude (see Fig. 3). The analysis of lnM2!3, des
ribed in AppendixB shows that the amplitude (as before, up to the 
orre
tions (1 +O(�)): see also thefootnote on p.7) 
an be written in the fa
torized formM2!3 = �(t1) ��s1�2 �!(t1) �(t2; t1; ln��) ��s2�2 �!(t2) �(t2) ; (46)with � � = (�s1)(�s2)(�s) : (47)Sin
e Eq. (46) is exa
t it is also valid in the multi-Regge kinemati
s� s� �s1;�s2 � �t1 � �t2 � �� ; (48)where all invariants s; s1; s2; t1 and t2 are negative. Due to the 
orre
t fa
torizationproperties of this amplitude the Reggeon{parti
le{parti
le vertex �(t) in Eq. (46) isexa
tly the same as in the elasti
 amplitude in Eq. (39). The gluon Regge traje
tory!(t) in Eq. (46) also 
oin
ides with the one dis
ussed above. The new 
omponent isthe Reggeon-Reggeon-parti
le vertex. Its logarithm is given byln�(t2; t1; ln��) = �
(a)16 ln2 ���2 � 12 Z a0 da0a0 ln aa0 �
(a0)4�2 + �(a0)� + Æ(a0)��
(a)16 ln2 �t1�t2 � 
(a)16 �2 � 12 �!(t1) + !(t2)� Z a0 da0a0 �
(a0)4� + �(a0)�� ln ���2 : (49)It is now possible to analyti
ally 
ontinue this 2! 3 produ
tion amplitude to thephysi
al region where the invariants s, s1 and s2 are positive (see Fig. 4a)M2!3 = �(t1) ��s1 � i��2 �!(t1) �(t2; t1; ln�� i�) ��s2 � i��2 �!(t2) �(t2) : (50)A similar 
ontinuation to another physi
al region 
an be performed in the 
asewhen s is positive but s1 and s2 are negative (see Fig. 4b):M2!3 = �(t1) ��s1�2 �!(t1) �(t2; t1; ln�+ i�) ��s2�2 �!(t2) �(t2) : (51)9



Figure 4: Physi
al 
hannels for the one parti
le produ
tion amplitude

Figure 5: Dispersion representation for M2!3, exhibiting its analyti
 stru
tureUsing a `dispersive' representation illustrated in Fig. 5 (in the following, we willrefer to this type of representation as `analyti
' representation), it 
an be easily veri�edthat in all physi
al regions (in
luding the 
rossing 
hannels with s; s1 < 0; s2 > 0 ands; s2 < 0; s1 > 0) the amplitude 
an be written as followsM2!3�(t1)�(t2) = ��s1�2 �!(t1)�!(t2) ��s��4 �!(t2) 
1 + ��s2�2 �!(t2)�!(t1) ��s��4 �!(t1) 
2(52)with the real 
oeÆ
ients 
i
1 = j�(t2; t1; ln��)j sin�(!(t1)� ��)sin�(!(t1)� !(t2)) ; (53)
2 = j�(t2; t1; ln��)j sin�(!(t2)� ��)sin�(!(t2)� !(t1)) ; (54)where �� is the phase of �, i.e.�(t2; t1; ln�� i�) = j�(t2; t1; ln��)j ei��� : (55)In this dispersion-type representation for all physi
al 
hannels we use the on-mass shell
onstraint for the produ
ed gluon momentum� = ~k2? = (~q1 � ~q2)2 ; (56)where ~k? is its transverse 
omponent (k?pA = k?pB = 0). In this 
ase the amplitudeM2�3 does not have simultaneous singularities in the overlapping 
hannels (s1; s2), inan agreement with the 
ondition of the gluon stability (this will be dis
ussed furtherin se
tion 4.2). 10



The fa
t that there exists a solution for the 
oeÆ
ients 
1 and 
2 proves that thes
attering amplitude, derived from the BDS formula, has the 
orre
t analyti
 stru
turein all physi
al regions. In parti
ular, it satis�es the Steinmann relations (a somewhatmore detailed dis
ussion of analyti
ity properties will be presented in the following se
-tion). We therefore 
on
lude that the BDS amplitude for the produ
tion of one parti
lein multi-Regge kinemati
s has the 
orre
t multi-Regge form. This is en
ouraging, andwe pro
eed now to study the produ
tion of two parti
les in multi-Regge kinemati
s,for whi
h we use the M2!4 BDS s
attering amplitudes.

Figure 6: Produ
tion of two parti
lesWe have �rst 
he
ked that the planar BDS amplitude for two parti
le produ
tionhaving singularities only at positive values of the invariants s; s1; s2; s3; t1; t2; t3 hasthe 
orre
t multi-Regge form in the multi-Regge kinemati
s in the region where allinvariants s; s1; s2; s3; t1; t2; t3 are negative (see Fig. 6 and Appendix C)M2!4�(t1)�(t3) = ��s1�2 �!(t1) �(t2; t1; ln��12) ��s2�2 �!(t2) �(t3; t2; ln��23)��s3�2 �!(t3)(57)and the quantities � �12 = (�s1)(�s2)�s012 ; ��23 = (�s2)(�s3)�s123 : (58)are �xed together with ti. The invariants s012 and s123 are the squared masses of the
orresponding three parti
les in their 
enter-of-mass system.In a similar way to what we did in the 2! 3 
ase, the BDS 2 ! 4 amplitude 
anbe analyti
ally 
ontinued to several physi
al 
hannels, ea
h of them 
orresponding todi�erent signs of the invariants s; s012; s123; s1; s2; s3. To begin with, in the region (seeFig. 7a) s; s012; s123; s1; s2; s3 > 0 (59)the amplitude has the formM2!4�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�) ��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) ; (60)where we 
an repla
e �12 and �23 by their values on the mass shell�12 ! s1s2s012 = ~k12? ; �23 ! s2s3s123 = ~k22? : (61)11



Figure 7: Physi
al 
hannels for two parti
le produ
tionHere k1 = q1 � q2 and k2 = q2 � q1 are the momenta of the produ
ed parti
les (seeFig. 7).In the physi
al region, represented in Fig. 7b, wheres; s012; s3 > 0 ; s1; s2; s123 < 0; (62)one 
an obtain, for the multi-Regge asymptoti
s of the BDS amplitude, the followingexpressionM2!4�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 + i�) ��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) : (63)In a similar way, in the region (see Fig. 7
)s; s123; s1 > 0 ; s3; s2; s012 < 0 (64)we haveM2!4�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�) ��s2�2 �!(t2) �(t3; t2; ln�23 + i�)��s3�2 �!(t3) : (65)We 
an now attempt to writeM2!4 in all physi
al regions in terms of the followingdispersion ansatz (represented in Fig. 8)M2!4�(t1)�(t3) = ��s1�2 �!(t1)�!(t2) ��s012�12�4 �!(t2)�!(t3) ��s�12�23�6 �!(t3) d112



Figure 8: Analyti
 representation of the amplitude M2!4+ ��s3�2 �!(t3)�!(t2) ��s123�23�4 �!(t2)�!(t1) ��s�12�23�6 �!(t1) d2+ ��s2�2 �!(t2)�!(t1) ��s012�12�4 �!(t1)�!(t3) ��s�12�23�6 �!(t3) d3+ ��s2�2 �!(t2)�!(t3) ��s123�23�4 �!(t3)�!(t1) ��s�12�23�6 �!(t1) d4+ ��s3�2 �!(t3)�!(t2) ��s1�2 �!(t1)�!(t2) ��s�12�23�6 �!(t2) d5 (66)with the real 
oeÆ
ients di=1;2;3;4;5. Here�12 = (~q1 � ~q2)2 ; �23 = (~q2 � ~q3)2 : (67)By 
omparing the above `dispersive' representation with the previous expressionsfor the BDS amplitude in the three physi
al regions Figs 7a,b,
 it is possible to extra
tthe 
oeÆ
ients. They read d1 = 
1(�12) 
1(�23) ;d2 = 
2(�12) 
2(�23) ;d3 + d4 = 
2(�12) 
1(�23) ;d5 = 
1(�12) 
2(�23) ; (68)where, in fa
t, 
1(�) and 
2(�) were de�ned in Eqs. (53), (54):
1(�12) = j�12j sin�(!(t1)� ��12)sin�(!(t1)� !(t2)) ; (69)
2(�12) = j�12j sin�(!(t2)� ��12)sin�(!(t2)� !(t1)) ; (70)
1(�23) = j�23j sin�(!(t2)� ��23)sin�(!(t2)� !(t3)) ; (71)
2(�23) = j�23j sin�(!(t3)� ��23)sin�(!(t3)� !(t2)) ; (72)13



with (
f.(49)) �12 = �(t2; t1; ln��12) ; �23 = �(t3; t2; ln��23) : (73)We note that for the 
oeÆ
ients d3 and d4 only their sum 
an be determined fromthe three physi
al regions previously dis
ussed. However, an attempt to �x separatelythese two 
oeÆ
ients from the multi-Regge asymptoti
s in the physi
al region (see Fig.7d) s; s2 > 0 ; s1; s3; s012; s123 < 0leads to a disaster: the 
orresponding equations do not have any solution. The reasonfor this is that the BDS amplitude in this region does not have the 
orre
t Reggefa
torization (see the dis
ussion in se
tion 4). A

ording to Appendix C its asymptoti
shere isM2!4�(t1)�(t3) =C ��s1�2 �!(t1) �(t2; t1; ln�12 � i�)��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) ;(74)where the 
oeÆ
ient C is given byC = exp "
K(a)4 i�  ln ~q21~q23(~k1 + ~k2)2�2 � 1�!# : (75)The fa
t that, for this region, we �nd no solution for the 
oeÆ
ients di indi
ates that,in this region, the BDS amplitude does not have the 
orre
t analyti
 stru
ture. Inse
tion 4 we will show, by 
omparing with expli
it 
al
ulations of the high energy limitof s
attering amplitudes, that in the BDS formula a pie
e is missing. This pie
e belongsto a Regge 
ut singularity, whi
h - apart from the one-loop approximation - does not�t into the simple exponentiation of the BDS ansatz. In Appendix C we write downthe amplitude M2!4 also in the quasi-multi-Regge kinemati
s, where the variable s2is �xed.

Figure 9: Three parti
le transitionTo 
ontinue our analysis of the BDS six point amplitude we now dis
uss the asymp-toti
s ofM3!3 (see Fig. 9). A

ording to Appendix D in the multi-Regge region whereall invariants s; s1; s3; s13; s02; s2 � t02 are large and negative, its asymptoti
s is similarto the 
orresponding asymptoti
s of the M2!4 amplitude, i.e.M3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln��12)��s2�2 �!(t2) �(t3; t2; ln��23)��s3�2 �!(t3) : (76)14



This BDS amplitude 
an be now analyti
ally 
ontinued to the physi
al region where

Figure 10: Physi
al regions for the amplitude M3!3the invariants s; s1; s3; s12; s02; t02 are positive (see Fig. 10a). The resulting amplitude
an be written asM3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�)��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) ; (77)Similarly, the analyti
 
ontinuation to the region where s1; s12; t02 < 0 and s; s3; s02 > 0(see Fig. 10b) is of the formM3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 + i�)��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) : (78)Finally, the 
ontinuation to the region where s3; s02; t02 < 0 and s; s1; s12 > 0 (see Fig.10
) readsM3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�)��s2�2 �!(t2) �(t3; t2; ln�23 + i�)��s3�2 �!(t3) : (79)As it was done in the M2!4 
ase one 
an write the dispersion relation for M3!3valid in these physi
al regions, whi
h in
ludes �ve 
ontributions, shown in Fig. 11,and 
al
ulate the real 
oeÆ
ients e1; e2; e3 + e4; e5. But on
e again, we �nd that it15



Figure 11: Analyti
 representation of the amplitude M3!3is impossible to �x separately the 
oeÆ
ients e3 and e4 from the BDS amplitude,
al
ulated in the physi
al region where s1; s3; s13; s02 < 0 and s; t02 > 0 (see Fig. 10d)M3!3�(t1)�(t3) =C 0 ��s1�2 �!(t1) �(t2; t1; ln�12 + i�)��s2�2 �!(t2) �(t2; t1; ln�23 + i�)��s3�2 �!(t3) ;(80)where the phase fa
tor C 0 isC 0 = exp "
K(a)4 (�i�) ln (~q1 � ~q2)2 (~q2 � ~q3)2(~q1 + ~q3 � ~q2)2 ~q22 # : (81)The reason for this drawba
k is the same as before: the absen
e of a 
orre
t Reggefa
torization for the BDS amplitude. In the next se
tion, using the BFKL approa
h,we shall dis
uss the reason for this problem. Namely, the BDS amplitude does not
ontain the Mandelstam 
ut 
ontributions plotted in Fig. 12.4 Regge 
uts and breakdown of fa
torization4.1 Regge pole modelsThe results of the previous se
tion 
an best be understood if we 
onfront them withthe known high energy behavior of QCD s
attering amplitudes in the Regge limit. Inthe LLA, the high energy behavior of the QCD s
attering amplitudes is the same asin the supersymmetri
 
ase. We pro
eed in three steps: we �rst review the �ndingsfor models 
ontaining only Regge poles. We then summarize the results obtained ingauge theories, and �nally 
ompare with the s
attering amplitude derived from theBDS formula. 16



A key element in analyzing the high energy limit are the Steinmann relations [39℄whi
h forbid the existen
e of simultaneous energy dis
ontinuities in overlapping 
han-nels. As an illustrative example of the Steinmann relations, 
onsider the 2 ! 3 am-plitude shown in Fig. 5: obviously, the produ
ed parti
le in the 
entral region 
anform resonan
e states with parti
le A0 or with parti
le B0, but not simultaneously withboth of them. As a result, in the physi
al region the s
attering amplitude 
annot havesimultaneous dis
ontinuities in the energy variables s1 and s2. The way in whi
h thisrestri
tion is implemented into s
attering amplitudes is that, in the double Regge limit,the signatured amplitude 
an be written as a sum of two pie
es, one of them with 
utsin the s1 and in the s 
hannels, the other one in the s2 and in the s 
hannels. In general,there are 
ut singularities both in the right and left half energy planes, and one hasto form signatured 
ombinations. De
ompositions of this kind have �rst been derivedfrom simple models whi
h 
ontain only Regge poles (massive s
alar '3 theory [40℄ orthe dual Veneziano 6 point amplitude, B6 [41℄), and from studies of dispersion relationsand generalized Froissart-Gribov partial wave representations [42℄. For 2! 4 or 3! 3amplitudes, we have �ve independent terms, and for s
attering pro
esses with highernumber of legs the number of terms grows rapidly.For models whi
h 
ontain only Regge poles the general stru
ture of the signatured2! 3 amplitude is:A2!3�A(t1)�B(t2) ="��s1�2 ��(t1)��(t2)+ �1�2 � s1�2��(t1)��(t2)# "��s�2 ��(t2)+ �2 � s�2��(t2)# ~V1(t1; t2; �)+ "��s2�2 ��(t2)��(t1)+ �1�2 � s2�2��(t2)��(t1)# "��s�2 ��(t1)+ �1 � s�2��(t1)# ~V2(t1; t2; �):(82)Here �(ti) denotes the traje
tory fun
tion of the Regge pole in the ti ex
hange 
hannel,�1 (�2) are the signatures of the t1 (t2) 
hannels, and as usual, (�s)� = (jsj)� e�i��.In this representation, the energy singularities are expli
it, i.e. all phase fa
tors are
ontained in the energy fa
tors, and the fun
tions �(t), Vi are real valued fun
tions.With the abreviations �i = �(ti); �ij = �(ti)� �(tj) (83)and with the signature fa
tors�i = e�i��i + �i; �ij = e�i��ij + �i�j (84)we 
an rewrite the expression for A2!3:A2!3�A(t1)�B(t2) = � js1j�2 ��12 � jsj�2��2 �12 �2 V1(t1; t2; �)sin��12+ � js2j�2 ��21 � jsj�2��1 �21 �1 V2(t1; t2; �)sin��21 ; (85)where the vertex fun
tion Vi is proportional to ~Vi. The generalization to the signatured2 ! 4 amplitude (
onsisting of �ve di�erent pie
es) is illustrated in Fig. 8, and fromEq. (66) one easily obtains the analogue of (85) [41℄:A2!4�A(t1)�B(t3) =� js1j�2 ��12 � js012j�2 ��23 � jsj�2��3 �12�23�3V1(t1; t2; �12)V1(t2; t3; �23)sin��12 sin��2317



+� js3j�2 ��32 � js123j�2 ��21 � jsj�2��1 �32�21�1V2(t1; t2; �12)V2(t2; t3; �23)sin��32 sin��21+� js2j�2 ��21 � js012j�2 ��13 � jsj�2��3 �21�13�3 sin��1sin��2 V2(t1; t2; �12)V1(t2; t3; �23)sin��21 sin��13+� js2j�2 ��23 � js123j�2 ��31 � jsj�2��1 �23�31�1 sin��3sin��2 V2(t1; t2; �12)V1(t2; t3; �23)sin��23 sin��31+� js3j�2 ��32 � js1j�2 ��12 � jsj�2��2 �32�12�2V1(t1; t2; �12)V2(t2; t3; �23)sin��32 sin��12 : (86)The analogue for the 3 ! 3 pro
ess again 
onsists of �ve pie
es whi
h are shown inFig. 11.From the dis
ussions of these Regge pole models it has also been re
ognized thatthe analyti
 de
omposition into a sum of terms in (85) and (86) is 
onsistent with afa
torizing form. For the 2! 3 
ase we 
an write:A2!3�A(t1)�B(t2) = � js1j�2 ��1 �1 V�1�2(t1; t2; �) � js2j�2 ��2 �2: (87)Here the important point to be stressed is that the new produ
tion vertex fun
tionV�1�2 
ontains phases (in 
ontrast to the real-valued fun
tions Vi in (85)), and it has
ut singularities in the �-plane. Similarly for the 2! 4 
ase we haveA2!4�A(t1)�B(t3) = �1 � js1j�2 ��1 V�1�2(t1; t2; �12) �2 � js2j�2 ��2 V�2�3(t2; t3; �23) �3 � js3j�2 ��3 (88)with the produ
tion vertex fun
tion from (87). As a result, for this 
lass of Regge-polemodels the produ
tion amplitudes, in the multi-Regge limit, 
an be written either in the`analyti
' form (sum of terms with simple analyti
 properties and real-valued vertexfun
tions Vi) or in the `fa
torized' form (with the produ
tion verti
es V 
ontainingphases and singularities in �).Let us 
omment on the planar approximation. Planar amplitudes have right hand
ut singularities only, and in the physi
al region where all energies are positive, theirphases follow from the signatured amplitudes in (85) or (86) by simply dropping all'twisted' terms 
ontaining fa
tors �i. One 
an easily verify that, in the physi
al regionwhere all energies are positive, these planar amplitudes 
an also be written in the fa
-torized form (87) and (88) (with vertex fun
tions V (t1; t2; �12) being slightly di�erentfrom the signatured ones, V�1�2(t1; t2; �12)). When analyti
ally 
ontinuing into the un-physi
al region, where all energy variables are negative and well separated from theirthreshold singularities, all phases inside the produ
tion vertex V (t1; t2; �12) disappear,the vertex fun
tion turns into a real-valued fun
tion, and the fa
torized form remainsvalid. However, in the physi
al region where s; s2 > 0 and s1; s3; s012; s123 < 0 thefa
torized form is not valid, and the stru
ture of the amplitude is more 
ompli
ated.4.2 High energy behavior in Yang Mills theoriesLet us now turn to QCD. Throughout this se
tion we will restri
t ourselves to s
atteringamplitudes with odd signature in all t-
hannels. Compared to the Regge pole modelsdis
ussed in the previous subse
tion, the situation is slightly more 
ompli
ated sin
ealso Regge 
ut pie
es appear in some of the t-
hannels. In the LLA the real part of the2 ! n s
attering amplitude is well known to have the fa
torized form of Eq. (4), andit is in agreement with our previous result in (87) and (88). However, when turning tothe imaginary parts (i.e. to the energy dis
ontinuities) of the produ
tion amplitudes,a new pie
e appears whi
h destroys the simple fa
torization property. The best way18



of understanding the appearan
e of this new pie
e is the use of s-
hannel unitarity inthe physi
al region where all energies are positive.Starting from the analyti
 representation of the s
attering amplitude A2!n, it ispossible to determine, in QCD, the partial waves from energy dis
ontinuities and uni-tarity equations [43, 44℄. As the simplest example, let us 
onsider, in the LLA, the2 ! 3 amplitude, 
onsisting of the two terms illustrated in Fig. 5. Anti
ipating that,in the 2! 3 pro
ess, there are only Regge pole 
ontributions, we start from the ansatzA2!3�(t1)�(t2) = 2st1t2 h � js1j�2 �!12 � jsj�2�!2 �12 �2 V1(t1; t2; �)sin�!12+ � js2j�2 �!21 � jsj�2�!1 �21 �1 V2(t1; t2; �)sin�!21 i (89)with (
f.(56)) � = (~q1 � ~q2)2 (90)and �(t1) = gÆ�A�A0 ;�(t2) = gÆ�B�B0 : (91)Here we used �i(ti) = 1 + !(ti) and!i = !(ti); !ij = !(ti)� !(tj); (92)and the signature fa
tors 
an be written in following form:�i = e�i�!i + 1; �ij = e�i�!ij + 1: (93)Taking the dis
ontinuity in s1, only the �rst term in (89) 
ontributes. Making use of theunitarity equation and invoking, for the ladder diagrams in the t1 
hannel, the BFKLbootstrap 
ondition we �nd the partial wave V1 in the LLA. For a de�nite heli
ity V1has the form V1 = g�C(q2; q1)�12(!1 � !2)� a2(ln ��2 � 1� )� (94)with C(q2; q1) being the produ
tion vertex from (6). Similarly, the dis
ontinuity in s2leads to V2 = g�C(q2; q1)�12(!2 � !1)� a2 (ln ��2 � 1� )� : (95)A 
omment may be in pla
e on the term ln� in V1 and V2: it indi
ates that, in 
ontrastto massive �eld theories where the Vi's are analyti
 fun
tions near � = 0, in masslesstheories this is no longer the 
ase. Therefore, when 
omputing the dis
ontinuity in s1 ors2 of A2!3, there is, at �rst sight, an un
ertainty in handling the 
ut in �. It turns outthat the 
orre
t pres
ription for 
omputing the dis
ontinuity in s1 or s2 in the physi
alregion, is keeping � = (~q1� ~q2)2 �xed. This 
an be derived either from a dire
t analyisof Feynman diagrams where the Steinmann relations dis
s1dis
s2A2!3 = 0 are ful�lledexpli
itly. Alternatively, one 
an 
onsider the massless Yang Mills theory as the zeromass limit of a nonabelian Higgs model where the gauge bosons are massive: beforethe zero mass limit is taken, the vertex fun
tions are analyti
 near � = 0 and thereis no ambiguity in 
omputing the energy dis
ontinuities. As a result, in the physi
alregion the singularities of in � of V1 and V2 are not related to singularities in s1 ors2. We also mention that, in the next-to-leading approximation, the fun
tions V1 andV2 
ontain an additional dependen
e on ln�, whi
h, again, does not 
ontradi
t theSteinmann relations [33℄. 19



Inserting these expressions into Eq. (89), using (93), and restri
ting ourselves tothe planar approximation, we �nd for the real part (apart from the 
olor fa
tor):A2!3�(t1)�(t2) = 2st1t2 (js1j)!1 gC(q2; q1) (js2j)!2 (96)in agreement with (4). In parti
ular, the infrared singular pie
es in V1 and V2 
an
el.As a further test, one 
ould also 
ompute, from the 
orresponding unitarity equation,the single dis
ontinuity in s: here both partial waves V1 and V2 
ontribute, and theresult is in agreement with (94) and (95)3.For the 2 ! 4 amplitude we start from an ansatz whi
h is slightly more generalthan (86). In order to a

ount for the Regge 
ut in the t2 
hannel, we introdu
e, inthe t2-
hannel, the Sommerfeld-Watson integral R d!02=2�i:A2!4�(t1)�(t3) = 2st1t2t3 Z d!022�ih � js1j�2 �!1�!02 � js012j�2 �!02�!3 � jsj�2�!3 �120�203�3 W1(t1; t2; t3; �12; �23;!02)sin�!120 sin�!203+� js3j�2 �!3�!02 � js123j�2 �!02�!1 � jsj�2�!1 �320�201�1 W2(t1; t2; t3; �12; �23;!02)sin�!320 sin�!201+� js2j�2 �!02�!1 � js012j�2 �!1�!3 � jsj�2�!3 �201�13�3 W3(t1; t2; t3; �12; �23; �123;!02)sin�!201 sin�!13+� js2j�2 �!02�!3 � js123j�2 �!3�!1 � jsj�2�!1 �203�31�1 W4(t1; t2; t3; �12; �23; �123;!02)sin�!203 sin�!31+� js3j�2 �!3�!02 � js1j�2 �!1�!02 � jsj�2�!2 �320�120�20 W5(t1; t2; t3; �12; �23;!02)sin�!320 sin�!120 i: (97)with the partial wave fun
tions, denoted by Wi=1;2;3;4;5 and to be determined from sin-gle energy dis
ontinuity equations. The partial wave fun
tionsW3 andW4 also dependupon the additional variable �123 = (~k1 + ~k2)2. We have the �ve single dis
ontinuitiesin s1, s2, s3, s012, and s123 whi
h allow to �nd the partial waves Wi=1;2;3;4;5. In leadinglog a

ura
y the results are the following:W1 = V1(t1; t2; �12) 1!02 � !2V1(t2; t3; �23); (98)W2 = V2(t1; t2; �12) 1!02 � !2V2(t2; t3; �23); (99)W3 = sin�!1sin�!2V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)� sin�(!02 � !1) (V
ut � Vp) ; (100)W4 = sin�!3sin�!2V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)� sin�(!02 � !3) (V
ut � Vp) ; (101)W5 = V1(t1; t2; �12) 1!02 � !2V2(t2; t3; �23): (102)The three amplitudes W1, W2 and W5 are produ
ts of the produ
tion verti
es Vi in(94) and (95), found in the 2 ! 3 
ase, whereas the amplitudes W3 and W4 
ontain,3We emphasize that the same results are obtained if one starts from the double dis
ontinuities in s ands1: using unitarity 
onditions and making use of generalized bootstrap 
onditions, one again arrives at (94).This is a 
ru
ial test of the self
onsisten
y of this `unitarity-based approa
h'.20



in addition to the produ
ts of produ
tion verti
es Vi, the extra pie
es, V
ut � Vp whi
hwill be de�ned in the following. The term V
ut 
ontains Regge 
uts and 
annot bewritten as a simple produ
t of verti
es for the two produ
ed gluons. It takes the formof BFKL-like ladder diagrams in the 
olor o
tet 
hannel, and it is illustrated in Fig.12 (left �gure):V
ut = t2N
2 g4 Z d2kd2k0(2�)6 q21(k + k1)2C(k; k + k1)� G(8A)(k; q2 � k; k0; q2 � k0;!02)C(k0 � k2; k0) q23(k0 � k2)2 : (103)Here C denotes the e�e
tive Reggeon-Reggeon-gluon vertex given in (6), and G(8A) isthe BFKL Green's fun
tion in the 
olor o
tet 
hannel, satisfying the integral equation!02G(8A)(k; q � k; k0; q � k0;!02) =(2�)3Æ(2)(k � k0)k2(q � k)2 + 1k2(q � k)2 �K 
G(8A)� (k; q � k; k0; q � k0); (104)where K denotes the BFKL kernel in the 
olor o
tet 
hannel, 
ontaining both realemission and the gluon traje
tory. In lowest order in the 
oupling, and for equalheli
ities of the two produ
ed gluons, V
ut equals:V (0)
ut = g2C(q2; q1)C(q3; q2)2!02 �!1 + !3 + a�ln �123�2 � 1��� : (105)The term V
ut not only violates the simple fa
torization of Regge pole models, butalso, when 
omputed beyond the one loop approximation, will be shown to disagreewith the BDS formula. Finally, the subtra
tion term Vp removes the Regge pole pie
einside V
ut, and it is of the form:Vp = g2C(q2; q1)C(q3; q2)4!2 �!1 + !2 + a�ln �12�2 � 1��� 1!02 � !2� �!2 + !3 + a�ln �23�2 � 1��� : (106)Before we 
ompare with the BDS formula, let us remark on a few features of theseleading order QCD results (for details, see Appendix E). From now on, we spe
ializeon the planar approximation, i.e. in the signature fa
tors in eq.(93) we only retain thephases. Inserting the results of (98) - (102) into the full amplitude (97) we 
an derivethe results for di�erent kinemati
 regions.Beginning with the physi
al region where all energies are positive, one �nds thatthe sum of the Regge pole terms 
an be written in the simple fa
torizing form (88). Inparti
ular, the Regge 
ut pie
es 
ontained in W3 and W4 
an
el 
ompletely, and thereal part of the s
attering amplitude 
oin
ides with (4).Next, in the unphysi
al region where all energies are negative and all phases disap-pear, again, the Regge pole 
ontributions 
an be written in a simple fa
torizing form,and the 
ut pie
es in W3 and W4 
an
el.Finally, we go into the physi
al region where s; s2 > 0 and s1; s3; s012; s123 < 0.Nonzero phases appear only in s and in s2. After some algebra we obtain:A2!4�(t1)�(t3) = 2st1t2t3 g2C(q2; q1)C(q3; q2)(js1j)!1(js3j)!3 �21



Figure 12: BFKL 
ontributions to the amplitudes M2!4 and M3!3e�i�!2(js2j)!2h1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1��� i�2i� 2st1t2t3 Z d!022�i (e�i�js2j)!02V
ut:(107)In the last term, V
ut, it is possible to fa
tor out the gluon traje
tory (details arepresented in [47℄):Z d!022�i (e�i�js2j)!02V
ut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02V
ut;redu
ed;(108)where in the one loop approximation (105)g2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02V
ut;redu
ed= g2C(q2; q1)C(q3; q2)2 "a ln �123�2q21q23 + 1�!+O(a2 ln s2)# ; (109)and the two loop and higher order terms of V
ut;redu
ed are infrared �nite [47℄.Inserting (108) into (107) we see that all terms on the rhs of (107) are proportionalto the 
ommon phase fa
tor e�i�!2 :A2!4�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3(js2j)!2g2C(q2; q1)C(q3; q2)e�i�!2 ��1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02V
ut;redu
ed� ; (110)and the 
oeÆ
ient in the square bra
kets is infrared �nite. This shows that, in LLA,the imaginary part of A2!4 is infrared singular, but the singularities are assembled inthe phase fa
tor e�i�!2 . This observation will be important when 
omparing with theBDS formula. 22



A 
ompletely analogous dis
ussion applies to the 
ase 3 ! 3 (Figs. 9, 11) in themulti-Regge region (a more detailed dis
ussion is given in Appendix E). Again, thes
attering amplitude 
onsists of �ve terms, and two of them 
ontain the Regge 
utpie
e: Z d!022�i (e�i�js2j)!02U
utwith U
ut = t2N
2 g4 Z d2kd2k0(2�)6 q21(k � q1)2C(q2 � k; q1 � k)� G(8A)(k; q2 � k; k0; q2 � k0;!02)C(k0 � k2; k0) q23(k0 � k2)2 : (111)In lowest order (and for equal heli
ities of the produ
ed gluns) this Regge 
ut pie
eequals: U (0)
ut = g2C(q2; q1)C(q3; q2)2!02 a ln �12�23(~q1 + ~q3 � ~q2)2q22 : (112)Pro
eeding in the same way as for the 2 ! 4 amplitude, on derives results for thes
attering amplitude in the di�erent kinemati
 regions. In the region where all energiesare positive, we �nd the same fa
torization as for simple Regge pole models, i.e. theRegge 
ut pie
es 
an
el. In the region s; s2 > 0, s1; s3; s13; s02 < 0 the Regge 
ut pie
eappears. First we rewrite it in the same form as in (108):Z d!022�i (e�i�js2j)!02U
ut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02U
ut;redu
ed(113)with the infrared �nite one loop approximationg2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02U
ut;redu
ed= g2C(q2; q1)C(q3; q2)2 �a�ln �12�23(~q1 + ~q3 � ~q2)2q22�+O(a2 ln s2)� : (114)As in the 
ase of the 2! 4 amplitude, the higher order 
orre
tions (denoted by O(a2))are infrared �nite. With this result, the 3 ! 3 amplitude 
an be written in the form(
f.(110)): A3!3�(t1)�(t3) = 2st1t2t3 (js1j)!1(js2j)!2(js3j)!3g2C(q2; q1)C(q3; q2)��1 + i�2 �!1 + a�ln �12�2 � 1��+ !3 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02U
ut;redu
ed� : (115)Note that, in 
ontrast to the 2 ! 4 
ase, there is no 
ommon infrared singular phasefa
tor, e�i�!2 , and the square bra
ket term on the rhs of (115) is infrared �nite. Thisshows that the infrared stru
ture of A3!3 is quite di�erent from A2!4.
23



4.3 Comparison with the BDS formulaLet us now return to the BDS amplitude dis
ussed in the se
tion 3, take the leadinglogarithmi
 approximation and 
ompare with the results dis
ussed in the previoussubse
tion. In the leading logarithmi
 approximation we retain, in the exponent ln Mn,only the lowest order (in powers of a) of the 
oeÆ
ients of the energy logarithms, andthe lowest order of the real and imaginary parts of logarithms of the vertex fun
tions,ln �. In the 
ase of the 2 ! 2 s
attering pro
ess the 
oeÆ
ient of ln s is given bythe gluon traje
tory fun
tion (eq.(38)), and the leading order 
oeÆ
ient is the termproportional to a. The logarithm of the vertex fun
tion is given in (39); the lowestorder term is of order a, and sin
e t is negative, there is no imaginary part. Therefore,in the leading logarithmi
 approximation we put ln� equal to zero (note that M4multiplies the Born approximation whi
h 
ontains a reggeon-parti
le-parti
le vertex ofthe order g).Turning to the 
ase 2 ! 3 in the physi
al region, we use (46) and (49) (see alsoAppendix B). The new element, the logarithm of the produ
tion vertex, starts withterms of the order a, and the real part 
an be negle
ted (i.e. the absolute value of�(t2; t1; �) 
an be put equal to unity). But, depending upon the kinemati
 region,terms with ln(��) may lead to imaginary parts of order a whi
h have to be kept. Inthe region where all energies are positive the relevant terms of order a are (see (55):�� = 12(!(t1) + !(t2)) + a2 �ln ��2 � 1�� : (116)In order to 
ompare with the QCD results we use (52), (53), and (54). In (52) weapproximate the fa
tors �!(t1) ! 1 et
, and for the real 
oeÆ
ients 
1 and 
2 weobtain:
1 = 12 �!(t1)� !(t2)� a(ln ��2 � 1� )�!(t1)� !(t2) ; 
2 = 12 �!(t2)� !(t1)� a(ln ��2 � 1� )�!(t2)� !(t1) (117)whi
h agrees with the leading log result in (89), (94), and (95) . In the unphysi
al regionwhere all energies are negative we have no imaginay parts and again �nd 
ompleteagreement with the results of the previous subse
tion.In the 
ase of 2 ! 4 we begin with the physi
al region where all energies arepositive. Using eqs.(66) - (68) and applying the same arguments as for the 2! 3 
ase,we �nd M2!4�(t1)�(t3) = (e�i� js1j�2 )!1 (
1(�12) + 
2(�12)) (e�i� js2j�2 )!2(
1(�23) + 
2(�23)) (e�i� js3j�2 )!3 ; (118)quite in agreement with the LLA of the Regge pole part in (E.3). Sin
e, in the QCD
al
ulation for this kinemati
 region, the Regge 
ut pie
es 
an
el, there is no 
on
i
tbetween the BDS formula and the leading logarithmi
 approximation obtained by dire
t
al
ulations.Let us now turn to the region s; s2 > 0, s1 ; s012 ; s123 ; s3 < 0 where, in the QCD
al
ulations, the imaginary part 
ontains the fa
torization breaking term V
ut (
orre-sponding to a BFKL ladder with the o
tet quantum numbers in the t-
hannel). Inthe BDS amplitude (74) we have, 
ompared to the physi
al region with only positiveenergies, the additional phase fa
tor C in (75). In the leading log approximation whi
hwe have des
ribed before we �nd (from (74), (75), or from (C.11)):M2!4�(t1)�(t3) = � js1j�2 �!1 � js3j�2 �!3 �e�i� js2j�2 �!2 �24



h1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1���+i�a ln q21q23(k1 + k2)2�2 � 1�!)i: (119)In the imaginary part of the square bra
kets the � poles 
an
el. Comparing this resultwith (110) and (105) we see that the BDS formula reprodu
es the lowest order term ofthe Regge 
ut 
ontribution, V
ut;redu
ed, but not the higher order terms (whi
h are stillpart of the leading logarithmi
 approximation). We therefore 
on
lude that, beyondthe one loop approximation, the BDS formula does not agree with the leading logresults listed in the previous subse
tion.Let us remark on the order O(�) 
orre
tions in the BDS formula. As explainedat the beginning of se
tion 3, our analysis of the BDS formula (whi
h applies to thelogarithm of the s
attering amplitude) does not in
lude terms whi
h vanish as �! 0.Nevertheless, the 
omparison of (110) and (119) shows that su
h 
orre
tions 
annotreprodu
e the �nite (in �) terms whi
h are missing in the BDS formula. The key pointis that, in the BDS formula, the leading log approximation for the imaginary part oflnM2!4 
ontains terms of the order 1=� only inside !2. Comparing (110) with (119)one sees that the infrared divergent phase fa
tor for the 
ut 
ontribution in (110) isthe same as in the BDS formula. Therefore, when going from lnM2!4 to M2!4 it isin
orre
t to expand this infrared singular pie
e e�i�a=�, and it be
omes 
lear that termsof order � in the logarithm of the s
attering amplitude 
annot produ
e 
onstant (in �)terms in the s
attering amplitude. As a result, our 
on
lusion 
on
erning the validityof the BDS formula is not a�e
ted by the order O(�) 
orre
tions in the BDS formulafor the logarithm of the s
attering amplitude.For the 3! 3 amplitude the 
omparison between the BDS amplitude and the highenergy behavior in Yang Mills theories leads to the same 
on
lusion, although somedetails are di�erent. For the kinemati
 region where all energies are positive the BDSformula agrees with the leading log 
al
ulations, and we dire
tly turn to the regions; s2 > 0, s1; s3; s13; s02 < 0. The 
ru
ial element is the phase C 0 in (81) whi
h, in
ontrast to C in (75), is infrared �nite. Colle
ting, in (80), (81), or in (D.89), withinLLA, all imaginary parts in lnM3!3 we note that all terms of the form a=� 
an
el, andwe arrive at: M3!3�(t1)�(t3) = � js1j�2 �!1 � js3j�2 �!3 � js2j�2 �!2 �h1 + i�2 �!1 + a�ln �12�2 � 1��+ !3 + a�ln �23�2 � 1���� i�a�ln �12�23(~q1 + ~q3 � ~q2)2q22� i:(120)The square bra
ket expression is infrared �nite. Comparison with (115) shows thatthe BDS formula 
orre
tly reprodu
es the one loop approximation to U
ut;redu
ed, butnot the higher order loops. Again, terms of order � in lnM3!3 
annot reprodu
e those�nite (in �) terms whi
h are missing in M .Dis
repan
ies in the BDS �nite pie
es for six gluon amplitudes, starting at twoloops, were also hinted in [49℄ where the equivalen
e between Wilson loops and MHVamplitudes was assumed. In a parti
ular kinemati
 
on�guration, and for a very largenumber of external gluons at strong 't Hooft 
oupling, the �nite pie
es of the BDSansatz failed when 
ompared to the results of [50℄.
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5 Con
lusionsIn this paper we have assembled the ingredients needed for the three loop 
orre
tions(NNLO) to the BFKL kernel in N = 4 SYM theory at large N
. Following earlier
al
ulations we 
an obtain the kernel from unitarity sums, i.e. by 
omputing squaresof produ
tion amplitudes, keeping in mind that at large N
 the 
ontributing diagramsbelong to the 
ylinder topology. Figure 13 illustrates the produ
tion verti
es whi
henter the three loop 
al
ulation.

Figure 13: Diagrams 
ontributing to the BFKL kernel in NNLLAElements in the �rst two lines are known, whereas the building blo
ks in the thirdline are new: they 
an be (and partly have been) 
omputed from the e�e
tive a
tionsummarized in se
tion 2.For most of the 
ases, also the BDS formula 
an be used. The NNLO gluon traje
-tory fun
tion follows from the 2 ! 2 s
attering amplitude (�rst 
olumn); details aredes
ribed in Appendix A. For the 2 ! 3 
ase (se
ond 
olumn), the two loop approxi-26



mation to the gluon produ
tion vertex 
an be read o� from the analysis presented inse
tion 3 (
.f. Eq. (49)). In this 
ase one should take into a

ount the �-
orre
tionsto the BDS amplitude. In 
olumn 3, we should take into a

ount the the Reggeon +Reggeon ! 2 gluon vertex in the one loop approximation for �xed invariant massesof produ
ed gluons. Based upon the analysis 
arried out in se
tions 3 and 4 we trustthat the BDS formula for the maximal heli
ity violating 
ase 
an be used (with �-
orre
tions). For the non-maximal violating 
ases in 
olumn 3 one 
an use the resultsof [51℄. Finally, in 
olumn 4 we en
ounter the Born vertex: Reggeon + Reggeon ! 3gluons for the �xed invariant mass of the gluons. This vertex has been obtained in [30℄by means of the e�e
tive a
tion (see also Ref. [32℄).We have shown that the BDS amplitudeM2!3 in the multi-Regge kinemati
s satis-�es the dispersive representation, whi
h is valid in all physi
al regions and is 
ompatiblewith the Steinmann relations and gluon reggeization. For the 
ase of the gluon transi-tions 2! 4 and 3! 3, in the multi-Regge kinemati
s and in the physi
al region wheres; s2 > 0 and s1; s3 < 0, the Regge fa
torization of the BDS amplitude is badly violated.In the one loop aproximation the BDS result in this region 
oin
ides with the dire
tQCD 
al
ulations, but in higher loops we have shown that these amplitudes should
ontain the Mandelstam Regge 
ut in the t2-
hannel. It was demonstrated, that this
ut is absent in the BDS expression and 
annot be reprodu
ed by the O(�)-
orre
tionsto this expression.A remark is in pla
e on the Regge-
ut 
ontribution illustrated in Fig. 12 and dis-
ussed in se
tion 4. In addition to the 
orre
tions to the produ
tion vertex fun
tionswhi
h are illustrated in Fig. 13, we still have to take into a

ount those 
orre
tionsto the produ
tion amplitude in the multi-Regge limit whi
h do not fall into the 
lassof loop 
orre
tions to the produ
tion verti
es: in NLO these are just the Regge-
ut
ontributions to the imaginary part in the 2 ! 4 and the 3 ! 3 
ases whi
h we havedis
ussed in the previous se
tion. The diagrams 
ontributing to the BFKL Pomeronin the large N
 limit belong to the 
ylinder topology: two examples are illustrated inFig. 14, and, to begin with, we 
onsider the dis
ontinuity due to the 4-parti
le interme-diate state. In the left �gure, on both sides of the dis
ontinuity 
ut, we have the 3! 3produ
tion amplitudes 
ontinued into the physi
al region of a 2 ! 4 pro
ess (
.f. rhsof Fig. 12), and in the right hand �gure we re
ognize a 
on�guration where the 2! 4amplitude has to be evaluated in a region with negative energies. As dis
ussed before,in the latter 
ase the non-fa
torizing pie
es of the 2 ! 4 produ
tion amplitude donot 
an
el. If these 
ontributions would survive in the total 
ross se
tion, the NNLOBFKL Pomeron would re
eive a four-reggeon 
ut 
ontribution, and the simple ladderstru
ture would be lost. There are, however, reasons to expe
t that, in the large N
limit, the sum of these 
ontributions might 
an
el in the total 
ross se
tion. Namely,in addition to the 
ontribution of the 4-parti
le intermediate state, we also need other
uts, whi
h, for example, run a
ross one of the ladders or along one of the reggeizedgluons above or below the 
ylinder. These di�erent 
uts provide similar 
ontributions,but they 
ome with di�erent signs. It is likely that, similar to the AFS 
an
ellation ofRegge 
uts in planar amplitudes, the four reggeon 
ut 
ontributions 
an
el in the sum.We will study this in the subsequent part of our investigation.A
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Figure 14: Cylinder-type topologies in the unitarity sums for the total 
ross se
tion: theintermediate states (dis
ontinuity 
uts) are obtained by sli
ing the 
ylinders in all possibleways a
ross the intermediate momenta pA0 and pB007-02-00902-a, andRSGSS-5788.2006.2.Note to be added: After our paper had been submitted, another study appearedwhi
h, in some parts, parallels our investigation [52℄. Like ours, it studies severaldi�erent Regge limits of the BDS amplitudes. In the unphysi
al region (negative ener-gies), the results on the energy dependen
e are fully 
onsistent with ours. In 
ontrastto our paper, however, in [52℄ the 
ontinuation into physi
al regions has not been in-vestigated, and the 
on
i
t with QCD 
al
ulations was not found. Re
ently anotherpaper of these authors [57℄ has appeared. We 
ompletely disagree with the statementin their se
tion 4.3, saying that the Steinmann relations for the BDS amplitudeM5 areviolated. In our view, the authors 
ompute the dis
ontinuity of the BDS amplitude(4.16) in an in
orre
t way: for example, the dis
ontinuity in s1 in the physi
al regionsshould be de�ned at �xed � (this follows already from a simple one loop 
al
ulationin QCD where, in physi
al regions, the presen
e of simultaneous singularities in theoverlapping 
hannels s1 and s2 would 
ontradi
t the gluon stability). We also �ndtheir se
tion 4.6 very 
onfusing. First, 
ontrary to their statement, in our paper thedispersive representation was not used to prove the absen
e of the Regge fa
torizationof the BDS amplitudes M2!4 and M3!3 in the physi
al region with s; s2 > 0 ands1; s3 < 0. We simply analyti
ally 
ontinued the BDS formula to this region and 
om-pared with the QCD results. Su
h a 
ontinuation is absent in the paper [57℄. Se
ond,the O(�) terms in the BDS formula do not a�e
t any of our 
on
lusions (this is ex-plained in some detail in our se
tion 4.2). Next, the dis
ussion around (4.29) is verymisleading: the 'unwanted pie
e' in (4.29) has been derived, via the 
orre
t analyti

ontinuation, from BDS, it 
ertainly has the 
orre
t infrared properties. Comparisonwith high energy QCD 
al
ulations shows agreement with the infrared divergent pie
e,and the disagreement beyond one loop 
omes in when expanding, in (4.29), the �niteterm of lnM6. Finally, it was shown in our Appendi
es C and D that the �nite parts28



of the fa
tors C and C 0 appear just from the analyti
 
ontinuations of the dilogarithmfun
tions Li2, and they depend upon the 
onformal invariant 
ross ratios � and �0.So what do the authors 
riti
ize?Re
ently, the paper [53℄ appeared where the authors 
al
ulated the three-loop Reggetraje
tory and three loop 
oeÆ
ient fun
tions. Further, the breakdown of the BDSansatz for the 6-point amplitude in two loops was found by dire
t 
al
ulations [54℄ inagreement with the predi
tions from the Wilson-loop 
al
ulations [55℄.Se
ond note to be added: Re
ently a new paper on the high energy behaviorof the BDS formula appeared [58℄. We do not agree with the main result of the mostre
ent version 3 of this work, stating that in the multi-Regge kinemati
s the spe
ialfun
tions appearing in the BDS ansatz are not important. To be more pre
ise, theauthors argue that the two limits: energy s2 ! 1 and � ! 0 do not 
ommute. A
-
ording to appendix C, in the region s; s2 > 0, s345; s456 < 0 the sequen
e of limits:lim�!0 lims2!1 F implies that the spe
ial fun
tions do not 
ontribute, whereas theopposite order lims2!1 lim�!0 F leads to our result with the spe
ial fun
tions beingimportant. We disagree with this `non-
ommutativity', sin
e the �rst part of the ar-gument is based on a simple arithmeti
 mistake. Namely, starting from eq.(C.16), themultipli
ation of the fa
tor (�P 2)�� with (1� ~�)�� in Eq. (C.22), in the limit s2 !1,gives the �nite expression (p4? + p5?)�2�, in agreement with Eq. (B.11). In this waythe dependen
e on s2 
an
els out, both sequen
es of limits lead to the same answer(
ontrary to what is stated after Eq. (C.25)), and our result has been 
on�rmed: inthe BDS formula, the spe
ial fun
tions are important in the multiregge kinemati
s,and their presen
e implies that the multiregge fa
torization is violated.A The 2! 2 amplitudeLet us write the BDS amplitude for the general 
ase of n legs (see [31℄):lnMn = 1Xl=1 al �f (l)(�) �Î(1)n (l�) + F (1)n (0)�+ C(l) +E(l)n (�)� ; (A.1)where E(1)n (�) 
an be negle
ted for �! 0, the values of the 
onstants areC(1) = 0; (A.2)C(2) = ��22=2; (A.3)f (l)(�) = f (l)0 + �f (1)1 + �2f (l)2 ; (A.4)f (l)0 = 14
(l)K ; (A.5)f1 = �a�3=2 + a2(2�5 + 5�2�3=3); (A.6)
K is the 
usp anomalous dimension [56℄,Î(1)n (�) = � 12�2 nXi=1 �2�si;i+1!� ; (A.7)and the �nite remainders F (1)n are expressed in terms of logarithms and dilogarithms.For the elasti
 s
attering amplitude 
ase we haveÎ(1)4 (�) = � 2�2 + 1� ln (�s)(�t)�4 � 12 �ln2 �s�2 + ln2 �t�2 � ; (A.8)29



F (1)4 = �12 ln2 �s�t + 4�2 : (A.9)ThereforeÎ(1)4 (�) + F (1)4 = � 2�2 + ln(�t)1� + ln(�s)�1� � ln �t�2�+ 4�2 : (A.10)As a result we obtain for M4 Regge-type behaviour, as already dis
ussed in the mainpart of our paper, with the gluon Regge traje
tory given by!(t) = a �1� � ln �t�2 �+ a2 ���2 � 12� � ln �t�2 �� �32 �+ ::: : (A.11)Note that this result at two loops is in agreement with the dire
t 
al
ulations [2, 3℄based on the BFKL approa
h [1℄. Indeed, in Ref. [3℄ the following expression for thegluon Regge traje
tory was obtained in the MS-s
heme (using the same notations):!MS(t) = a �1� � ln �t�2 �+ a2 ��16 � �2�� 12� � ln �t�2�+ 29 � �32 � : (A.12)The 
ontribution of the s
alar loop to this traje
tory is proportional to the 
ontributionof the fermion loop [3℄!sMS(t) = ns4nq 11� � !qMS(t) = ns a224 � 1�2 � ln �t�2 � 83 �1� + 2 ln �t�2 �� 529 � ; (A.13)where ns is the number of s
alar �elds transforming a

ording to the adjoint represen-tation of the gauge group. For the transition from the MS-s
heme to the dimensionalredu
tion (DRED) s
heme, whi
h respe
ts N = 4 supersymmetry, one should �rstin
rease the number of s
alar �elds ns ! 6 + 2� ; (A.14)be
ause, in the pure gluoni
 
ontribution, �n = �2� for the gluon �elds was takeninto a

ount after performing the dimensional regularization 4 ! 4 � 2�. This givesthe additional 
ontribution to !MS(t)�!MS(t) = a212 �1� � 83� : (A.15)After that the subsequent �nite renormalization of the 
oupling 
onstant needed forthe transition between the MS and DRED s
hemesa! a� 16a2 (A.16)leads to the above result for the traje
tory!MS(t)! !(t) = a �1� � ln �t�2�+ a2 ���2 � 12� � ln �t�2 �� �32 � : (A.17)Con
erning the residues �(t) of the Regge pole, they have been 
al
ulated in theone-loop approximation in QCD [33℄. In supersymmetri
 models the heli
ity non-
onserving 
ontribution of ea
h of the 
olliding gluons is 
an
elled, in a

ordan
e withthe BDS ansatz. 30



B The 2! 3 amplitudeFor the 2! 3 produ
tion amplitude we have (see Fig.3)Î(1)5 (�) = � 52�2 + 12� ln (�s)(�s1)(�s2)(�t1)(�t2)�10� 14 �ln2 �s�2 + ln2 �s1�2 + ln2 �s2�2 + ln2 �t1�2 + ln2 �t2�2 � ; (B.1)F (1)5 = �14 ln �s�s1 ln �t2�s2 � 14 ln �t2�t1 ln �s2�s1 � 14 ln �s2�s ln �s1�t1� 14 ln �s1�t2 ln �t1�s � 14 ln �t1�s2 ln �s�t2 + 154 �2 : (B.2)Thus the total 
ontribution in multi-Regge kinemati
s isI(1)5 (�) + F (1)5 = � 52�2+ ln �s1�2 �1� � ln �t1�2 �+ ln �s2�2 �1� � ln �t2�2 �+ 12� ln (�t1)(�t2)�4� 14 ln2 ���2 + 12 ln ���2 �ln (�t1)(�t2)�4 � 1��� 14 ln2 �t1�t2 + 154 �2 : (B.3)In this way we obtain the Regge fa
torization of the produ
tion amplitudes, dis
ussed inthe main text. Let us note that, formally, this result is exa
t and the amplitude 
an bewritten in this fa
torized form in all �ve 
hannels obtained by the 
y
li
 transmutationof the invariants s; t1; s1; s2; t2.In the one-loop approximation in QCD the Reggeon-Reggeon-gluon vertex 
ontains,apart from the Born stru
ture proportional to the ve
tor C(q2; q1), also the 
ontributionproportional to the gauge-invariant ve
tor pAs1 � pBs2 [33℄. In the supersymmetri
 theoriesthis 
ontribution is 
an
elled, in agreement with the BDS ansatz.One 
an 
al
ulate also the produ
tion amplitude in the quasi-elasti
 kinemati
s,where s � s1 � s2 � t1; t2; k2?. The amplitude here has the usual Regge fa
torization.C The 2! 4 amplitudeIn the 
ase of the 2! 4 transition we have (see Fig. 6)Î(1)6 (�) = � 3�2 + 12� ln (�s)(�s1)(�s2)(�s3)(�t1)(�t3)�12� 14 �ln2 �s�2 + ln2 �s1�2 + ln2 �s2�2 + ln2 �s3�2 + ln2 �t1�2 + ln2 �t3�2 � ;(C.1)F (1)6 = �12 ln �s�s012 ln �t3�s012 � 12 ln �t3�t2 ln �s3�t2 � 12 ln �s3�s123 ln �s2�s123� 12 ln �s2�s012 ln �s1�s012 � 12 ln �s1�t2 ln �t1�t2 � 12 ln �t1�s123 ln �s�s123� 12Li2 �1� ss2s012s123�� 12Li2 �1� t3s1t2s012�� 12Li2 �1� t1s3t2s123�+ 14 �ln �t2�s012�2 + 14 �ln �t2�s123�2 + 14 �ln �s123�s012�2 + 92 �2 ; (C.2)31



where the dilogarithm fun
tion is de�ned asLi2(z) = � Z z0 dtt ln(1� t) : (C.3)In multi-Regge kinemati
s it is natural to introdu
e the independent variabless1; s2; s3 ; ��12 = (�s1)(�s2)(�s012) ; ��23 = (�s2)(�s3)(�s123) ; � = (�s)(�s2)(�s012)(�s123) : (C.4)Note that the variable � is unity in the region where all above invariants are negative,but � = exp(�2�i) in the physi
al region where s; s2 > 0; s012; s123 < 0. In themulti-Regge kinemati
s we obtain the following general result:I(1)6 (�) + F (1)6 = � 3�2 � 14 ln2 �� 12 ln��ln (�t1)(�t3)(�s2)�2 � 1��� 12 Li2(1� �)+ ln �s1�2 �1� � ln �t1�2 �+ ln �s2�2 �1� � ln �t2�2 �+ ln �s3�2 �1� � ln �t3�2 ��14 �ln2 ��12�2 + ln2 ��23�2 �+ 12 ln ��12�2 �ln (�t1)(�t2)�4 � 1��+ 12� ln (�t1)(�t3)�4+12 ln ��23�2 �ln (�t2)(�t3)�4 � 1��� 14 �ln2 �t1�t2 + ln2 �t3�t2�+ 72�2 : (C.5)At �rst sight the arguments of the dilogarithm fun
tions in the multi-Regge kine-mati
s are either 0 or 1, and we 
an use the relationsLi2(0) = 0 ; Li2(1) = �2 : (C.6)However, in the physi
al region s; s2 > 0, s1; s3; s012; s123 < 0 it is needed to be
autious: we should analyti
ally 
ontinue the expressionf(�) = Li2(1� �) ; � = ss2s012s123 (C.7)from the region � � 1 to the region � � e�2�i along a unit 
ir
le. In multi-Reggekinemati
s we have s2 � s012s123s � �~k1 + ~k2�2 (C.8)and s2(1� �)��1 = �~k1 + ~k2�2 : (C.9)Therefore 1� � > 0, and after the analyti
 
ontinuation we obtainf(�) = � Z 1��0 dtt ln(1� t) + 2�i Z 1��1 dtt � 2�i ln(1� �) (C.10)with ln(1��) being real valued. We obtain the following result in the physi
al regions; s2 > 0, s1; s3; s012; s123 < 0:I(1)6 (�) + F (1)6 = � 3�2 + �i0B�ln (�t1)(�t3)�~k1 + ~k2�2 �2 � 1�1CA+ ln �s1�2 �1� � ln �t1�2 �+ ln �s2�2 �1� � ln �t2�2 �+ ln �s3�2 �1� � ln �t3�2 �� 14 �ln2 ��12�2 + ln2 ��23�2 �+12 ln ��12�2 �ln �t1�2 + ln �t2�2 � 1��+ 12 ln ��23�2 �ln �t2�2 + ln �t3�2 � 1���14 �ln2 �t1�t2 + ln2 �t3�t2�+ 12� ln (�t1)(�t3)�4 + 72�2 : (C.11)32



It is possible to derive, from the BDS amplitude, an expression for M2!4 in theone-loop approximation for the quasi-multi-Regge kinemati
s, where s >> s1; s3 >>s2 � t1; t2; t3. In this 
ase it is 
onvenient to introdu
e Sudakov variables for themomenta of the two produ
ed parti
leskr = �rpA + �rpB + k?r ; (k?r )2 = �~k2r ; (C.12)where1� �1 � �2 � �2s ; 1� �1 � �2 � �2s ; s�r�r = ~k2r � ~q21 � ~q22 � ~q23 � �2 : (C.13)We 
an express various invariants in terms of these variabless2 � s(�1 + �2)(�1 + �2)� (~k1 + ~k2)2 ; (C.14)s1 � �1s ; s3 � �2s ; s012 � (�1 + �2)s ; s123 � (�1 + �2)s : (C.15)The expression for the fun
tion f(�) = I(1)6 (�) + F (1)6 (for � = 1) in the quasi-multi-Regge kinemati
s 
an be obtained by adding an aditional termf(�)! f(�) + �f ; (C.16)where�f = �12 ln s�12�23s1s2s3 ln st1t3s012s123�2 + 12 ln s012�12s1s2 ln t3s1s2st2s2012s123+12 ln s123�23s3s2 ln t1s3s2st2s012s2123 � 14 ln2 s�12�23s1s2s3 � 12 ln2 s012�12s1s2 � 12 ln2 s123�23s3s2�12 ln s�12�23s1s2s3 ln s012s123�12�23s1s3s22 � 12 ln s012�12s1s2 ln s123�23s3s2 + �2�12Li2 �1� ss2s012s123�� 12Li2 �1� t3s1t2s012�� 12Li2 �1� t1s3t2s123� : (C.17)Here the signs �1 are implied to be in front of all invariants si; ti. Note that the ex-pression for �f in the quasi-multi-Regge kinemati
s does not 
ontain large logarithms,be
ause the arguments of all logarithms and dilogarithm fun
tions are of the order ofunity. It is proportional to the logarithm of the amplitude for the transition of twoReggeized gluons into two parti
les with the same heli
ity. Similar to the 
ase of M4and M5 the expression for M2!4 in the quasi-multi-Regge kinemati
s 
oin
ides withthe exa
t BDS amplitude. The transition of two reggeons to parti
les with oppositeheli
ity in the one-loop approximation 
an be found in Ref. [51℄. These transitionamplitudes are needed for the 
al
ulation of the next-to-next-to leading 
orre
tions tothe BFKL equation.D The 3! 3 amplitudeHere we 
onsider the BDS amplitudeM6 in the 
hannel 
orresponding to the transition3! 3 with the following invariants (see Fig. 9):s = (pA + k1 + pB)2 ; s1 = (pA + k1)2 ; s3 = (pB0 + k2)2 ; (D.1)s13 = (k1 + pB)2 ; s02 = (pA0 + k2)2 ; t02 = (pA0 + k2 � pA)2 ; (D.2)t1 = (pA0 � pA)2 ; t3 = (pB0 � pB)2 ; t2 = (pA0 � pA � k1)2 : (D.3)33



The fun
tions Î(1)6 (�) and F (1)6 in this 
ase are given by [31℄:Î(1)6 (�) = � 3�2 + 12� ln (�s1)(�s13)(�s3)(�s02)(�t1)(�t3)�12�14 �ln2 �s1�2 + ln2 �s13�2 + ln2 �s3�2 + ln2 �s02�2 + ln2 �t1�2 + ln2 �t3�2 � ; (D.4)F (1)6 = �12 ln �s1�s ln �s13�s � 12 ln �s13�t02 ln �t3�t02 � 12 ln �t3�t2 ln �s3�t2� 12 ln �s3�s ln �s02�s � 12 ln �s02�t02 ln �t1�t02 � 12 ln �t1�t2 ln �s1�t2� 12Li2 �1� s1s3st2 �� 12Li2 �1� s13s02t02s �� 12Li2 �1� t1t3t02t2�+ 14 �ln �t02�s �2 + 14 �ln �t02�t2�2 + 14 �ln �t2�s �2 + 92 �2 : (D.5)In multi-Regge kinemati
s� s� �s1;�s3;�t02 � �t1;�t2;�t3 > 0 (D.6)it is helpful to use the de�nitions� �12 = (�s1)(�t02)�s02 ; ��23 = (�s3)(�t02)�s13 ; �0 = (�s13)(�s02)(�t02)(�s) ; (D.7)whi
h allows us to simplify the above expressionsI(1)6 (�) + F (1)6 = � 3�2 � 12 ln2 �0 � 12 ln�0 ln (��12)(��23)(�t02)(�t2) � 12 Li2(1� �0)+ ln �s1�2 �1� � ln �t1�2 �+ ln �t02�2 �1� � ln �t2�2 �+ ln �s3�2 �1� � ln �t3�2 ��14 �ln2 ��12�2 + ln2 ��23�2 �+ 12 ln ��12�2 �ln (�t1)(�t2)�4 � 1��+ 12� ln (�t1)(�t3)�4+12 ln ��23�2 �ln (�t2)(�t3)�4 � 1��� 14 �ln2 �t1�t2 + ln2 �t3�t2�+ 72�2 : (D.8)In the physi
al region, where s; t02 > 0 and s1; s3; s02; s13 < 0, one has �0 = exp(2�i),i.e. we have to 
ontinue in �0 along the unit 
ir
le. The relation� t02(1� �0) � (~q1 + ~q3 � ~q2)2 (D.9)implies that, after 
ontinuation, 1� �0 < 0. Therefore, Li2 be
omesf(�0) = � Z 1��00 dtt ln(1� t)� 2�i Z 1��01 dtt � 2�2 � 2�i ln j1� �0j ; (D.10)whi
h allows to obtain the extra phase fa
tor C 0 violating the Regge fa
torization inthis physi
al region.E High energy s
attering amplitudes in theleading logarithmi
 approximationIn this appendix we brie
y summarize results for the high energy 2 ! 3, 2 ! 4,and 3 ! 3 s
attering amplitudes in Yang-Mills theories in the leading logarithmi
approximation. 34



For the 2 ! 3 
ase most of the results have already been listed in se
tion 4.2. Weonly quote, for the physi
al region where all energies are positive, the fa
torized form:A2!3�(t1)�(t2) = 2st1t2 �(e�i�js1j)!1 (e�i��12)�!2V1(t1; t2; �12)� (e�i��12)�!1V2(t1; t2; �12)sin�(!1 � !2) (e�i�js2j)!2 :(E.1)Here the traje
tory fun
tions !i and the produ
tion verti
es V1, V2 have been 
om-puted in LLA and NLO, whereas the phases and sin fa
tors are part of the analyti
representation, and do not need to be expanded in powers of g2. However, sin
e in thispaper we restri
t ourselves to the LLA, we 
an put (e�i��12)�!1 � 1. For the real partwe �nd the result (96) whi
h 
oin
ides with (4).For the 2! 4 amplitude we start from the ansatz (97):A2!4�(t1)�(t3) = 2st1t2t3 Z d!022�ih � js1j�2 �!1�!02 � js012j�2 �!02�!3 � jsj�2�!3 �120�203�3 W1(t1; t2; t3; �12; �23;!02)sin�!120 sin�!203+� js3j�2 �!3�!02 � js123j�2 �!02�!1 � jsj�2�!1 �320�201�1 W2(t1; t2; t3; �12; �23;!02)sin�!320 sin�!201+� js2j�2 �!02�!1 � js012j�2 �!1�!3 � jsj�2�!3 �201�13�3 W3(t1; t2; t3; �12; �23; �123;!02)sin�!201 sin�!13+� js2j�2 �!02�!3 � js123j�2 �!3�!1 � jsj�2�!1 �203�31�1 W4(t1; t2; t3; �12; �23; �123;!02)sin�!203 sin�!31+� js3j�2 �!3�!02 � js1j�2 �!1�!02 � jsj�2�!2 �320�120�20 W5(t1; t2; t3; �12; �23;!02)sin�!320 sin�!120 i: (E.2)The partial wave fun
tions Wi=1;2;3;4;5 have been listed in se
tion 4.2. They havebeen obtained from the �ve single energy dis
ontinuity equations, and use has beenmade of the BFKL bootstrap equations in the 
olor o
tet 
hannel.Inserting these partial waves into the ansatz (97) or (E.2), we 
an study the fullamplitude in the di�erent kinemati
 regions. From now on we will spe
ialize on theplanar approximation, i.e. in the signature fa
tors in eq.(93) we only retain the phases.Beginning with the physi
al region where all energies are positive, we �rst 
olle
tthe Regge pole terms in all �ve partial waves Wi. Their sum 
an be written in thesimple fa
torizing form: A2!4;pole�(t1)�(t3) = 2st1t2t3 �(e�i�js1j)!2 (e�i��12)�!2V1(t1; t2; �12)� (e�i��12)�!1V2(t1; t2; �12)sin�!12 (e�i�js2j)!2 �(e�i��23)�!3V1(t2; t3; �32)� (e�i��23)�!2V2(t2; t3; �32)sin�!23 (e�i�js3j)!3 : (E.3)In order to arrive at this result, we have 
ombined, in (100) and (101), the Regge pole
ontributions of W3 and W4 (together with the signature fa
tors), and we have usedthe identity: sin�!23sin�!13 � sin�!1sin�!2 + sin�!21sin�!31 � sin�!3sin�!2 = 1: (E.4)35



The produ
tion verti
es are the same as in the 2! 3 
ase, (E.1). As in the 2! 3 
ase,in the leading order approximation we put, in (E.3), (e�i��)�! � 1. For the real partthe terms proportional to ln(�=�2) � 1� in the produ
tion verti
es V1 and V2 
an
el,and we are ba
k to the fa
torizing form in (4). As to the addititional Regge 
ut pie
es
ontained in W3 and W4, they 
an
el 
ompletely:A2!4;
ut�(t1)�(t3) =�2st1t2t3 � (js1j)!1 Z d!022�i (e�i�js2j)!02 � 1sin�!13 + 1sin�!31� (V
ut � Vp) (js3j)!3 (E.5)= 0:It is instru
tive to study the 
an
ellation of the imaginary part of this Regge 
ut pie
ein more detail: from the representation (97) whi
h shows the energy phase fa
torsexpli
itly it is straightforward to 
ompute the single dis
ontinuities in s2, s012, s123,and in s. When summing these single dis
ontinuities (i.e. when 
omputing the fullimaginary part), we �nd 
omplete 
an
ellation of the Regge 
ut pie
e. This 
an
ellationof Regge 
ut 
ontributions in the planar amplitude is nothing else but the Mandelstamme
hanism [45℄ of the 
an
ellation of the Amati-Fubini-Stanghellini Regge 
ut [46℄in planar diagrams.The unphysi
al region where all energies are negative 
an be obtained from (E.3)and (E.5) by simply putting the phase fa
tors equal to unity: the fa
torizing form ofthe Regge pole 
ontributions is preserved, and the 
ut pie
es in W3 and W4 
an
el.Most interesting is the physi
al region where s; s2 > 0 and s1; s3; s012; s123 < 0.Nonzero phases appear only in s and in s2. After some algebra we rewrite (E.2) in thefollowing form: A2!4�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3 � (E.6)e�i�!2(js2j)!2 �� V1sin�!12 + e�i�!12 V2sin�!21��e�i�!32 V1sin�!23 + V1sin�!32��e�i�!31 sin�!1 sin�!23sin�!2 sin�!13 + e�i�!13 sin�!3 sin�!21sin�!2 sin�!31 � e�i�(!12+!32� V2V1sin�!21 sin�!23 �� 2st1t2t3 (js1j)!1(js3j)!3 Z d!022�i (e�i�js2j)!02  e�i�!31sin�!13 + e�i�!13sin�!31! (V
ut � Vp)) :It is important to study the infrared singularities of the phases of this expression. Firstwe note that the prefa
tor e�i�!2 
ontains, in lowest order in a, the 1=� singularity ofthe gluon traje
tory (44). All other phase fa
tors 
ontain di�eren
es of traje
toryfun
tions and are �nite as � ! 0. Expanding the square bra
kets in powers of a wearrive at (107): A2!4�(t1)�(t3) = 2st1t2t3 g2C(q2; q1)C(q3; q2)(js1j)!1(js3j)!3 �e�i�!2(js2j)!2 �1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1�����2i� 2st1t2t3 Z d!022�i (e�i�js2j)!02V
ut:(E.7)36



Following the steps des
ribed in se
tion 4.2 we fa
tor out the gluon traje
tory (detailsare presented in [47℄):Z d!022�i (e�i�js2j)!02V
ut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02V
ut;redu
ed:(E.8)Insertion into (E.7) leads:A2!4�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3(js2j)!2g2C(q2; q1)C(q3; q2)e�i�!2 ��1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02V
ut;redu
ed� (E.9)The one loop approximation of the Regge 
ut 
ontribution, (105), is infrared singular:g2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02V
ut;redu
ed= g2C(q2; q1)C(q3; q2)2 "a ln �123�2q21q22 + 1�!+ :::# ; (E.10)whereas the two loop and higher order terms of V
ut;redu
ed 
an been shown to beinfrared �nite [47℄. As a 
onsequen
e, in (E.9) the 
oeÆ
ient in the square bra
kets isinfrared �nite, and the singularities are 
olle
ted in the overall phase fa
tor e�i�!2 .For 
ompleteness we also list those energy dis
ontinuities whi
h do not vanish inthis kinemati
 region, the dis
ontinuity in the total energy s and the dis
ontinuity ins2. We again start from the analyti
 representation (E.2). After some algebra (whi
hin
ludes approximating phase fa
tors by unity) we �nd4:dis
s A2!4;
ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 V
ut (js3j)!3 : (E.11)In a similar way we 
ompute the dis
ontinuity in s2:dis
s A2!4;
ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 ~V
ut (js3j)!3 ; (E.12)where, instead of (103),~V
ut = t2N
8 g4 Z d2kd2k0(2�)6 [C(q2; q1)� q21(k + q1)2C(k + q2; k + q1)℄� G(8A)(k + q2;�k; k0 + q2;�k0;!02)� [C(q3; q2)� C(k0 + q3; k0 + q2) q23(k0 + q3)2 ℄: (E.13)In lowest order we have:~V (0)
ut = g2C(q2; q1)C(q3; q2)2!02 a ln �123�2�12�23 + 1�! : (E.14)4We use the de�nition dis
 f(s) = 12i (f(s+ i�)� f(s� i�)).37



A 
ompletely analogous dis
ussion applies to the 
ase 3 ! 3 (Figs. 9, 11) in themulti-Regge region (for a detailed dis
ussion of the `analyti
' representation see [44℄).Our ansatz is:A3!3�(t1)�(t3) = 2st1t2t3 Z d!022�ih � js1j�2 �!1�!02 � js02j�2 �!02�!3 � jsj�2�!3 �120�203�3 U1(t1; t2; t3; �12; �23;!02)sin�!120 sin�!203+� js3j�2 �!3�!02 � js2j�2 �!02�!1 � jsj�2�!1 �320�201�1 U2(t1; t2; t3; �12; �23;!02)sin�!320 sin�!201+� js02j�2 �!02�!3 � js13j�2 �!02�!1 � jsj�2�!1+!3�!02 �201�203�(1+3)20 U3(t1; t2; t3; �12; �23; �123;!02)sin�!201 sin�!203 sin�(!1 + !3 � !20)+� js02j�2 �!(t1) � js13j�2 �!(t3) � js2j�2 �!02�!1�!3 �3�1�20(1+3) U4(t1; t2; t3; �12; �23; �123;!02)sin�(!20 � !1 � !3)+� js3j�2 �!3�!02 � js1j�2 �!1�!02 � jsj�2�!02 �320�120�20 U5(t1; t2; t3; �12; �23;!02)sin�!320 sin�!120 i; (E.15)where �i(j+k) = e�i�(!i�(!j+!k)) + 1; �(i+j)k) = e�i�((!i+!j)�!k) + 1: (E.16)The pie
es labelled by 1,2,5 are `normal' and 
ontain only Regge poles. They 
oin
idewith those of the 2! 4 amplitude:Ui =Wi ; i = 1; 2; 5; (E.17)and they �t into the fa
torization pattern, The terms 3 and 4 have the extra Regge
ut pie
e shown in Fig. 12 (right �gure), whi
h is des
ribed in terms of the 
olor o
tetBFKL equation. In analogy with (100), (101) one �nds:U3 = sin�!1 sin�!3sin�!02 V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)+ sin�!201 sin�!203 (U
ut � Up) ; (E.18)U4 = 1sin�!02V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)+ (U
ut � Up) : (E.19)The 
ut pie
e has been given in (103), (105)):U
ut = t2N
8 g4 Z d2kd2k0(2�)6 q21(k � q1)2C(q2 � k; q1 � k)� G(8A)(k; q2 � k; k0; q2 � k0;!02)C(k0 � k2; k0) q23(k0 � k2)2 ; (E.20)with the lowest order approximationU (0)
ut = g2C(q2; q1)C(q3; q2)2!02 a ln �12�23(~q1 + ~q3 � ~q2)2q22 : (E.21)It 
ontains Regge 
ut singularitities, and breaks the fa
torization. Note that, in 
on-trast to the 2! 4 
ase, the one loop approximation of the Regge 
ut term, has no 1=�pole, i.e. it is infrared �nite. 38



In analogy with the 2 ! 4 
ase, these Regge 
ut pie
es does not show up in thephysi
al region where all energies are positive. It is, again, only in the other physi
alregion s; s2 > 0, s1; s3; s13; s02 < 0 where these pie
es be
ome visible. Pro
eeding inthe same fashion as before (E.6) we �nd for this region:A3!3�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3 �(js2j)!2he�i�!2 � V1sin�!12 + e�i�!12 V2sin�!21��e�i�!32 V1sin�!23 + V1sin�!32��2i V1V2sin�!2 i+ 2ist1t2t3 (js1j)!1(js3j)!3 Z d!022�i (e�i�js2j)!02U
ut:(E.22)The last term 
an be written asZ d!`22�i (e�i�js2j)!02U
ut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02U
ut;redu
ed:(E.23)It is important to note that the one loop approximation, U (0)
ut,g2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02U
ut;redu
ed= g2C(q2; q1)C(q3; q2)2 �a�ln �12�23(~q1 + ~q3 � ~q2)2q22�+ :::� ; (E.24)as well as the higher order terms are infrared �nite. We therefore write A3!3 in thefollowing form:A3!3�(t1)�(t3) = 2st1t2t3 (js1j)!1(js2j)!2(js3j)!3g2C(q2; q1)C(q3; q2)��1 + i�2 �!1 + a�ln �12�2 � 1��+ !3 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02U
ut;redu
ed� : (E.25)On the rhs, the square bra
ket term is infrared �nite. This shows that the infraredstru
ture of A3!3 is quite di�erent from A2!4.We 
on
lude this se
tion by listing the dis
ontinuities in the energies s and s2:dis
s A3!3;
ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 U
ut (js3j)!3 : (E.26)In a similar way we 
ompute the dis
ontinuity in s2:dis
s A3!3;
ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 ~U
ut (js3j)!3 ; (E.27)where ~U is obtained from U in the same way as ~V was obtained from V .In order to 
ompare these results with the BDS formula, we divide the s
atteringamplitudes by their Born approximation. For example, we obtain M2!3 by dividingA2!3 by the Born approximation2st1t2 g2Æ�A�A0Æ�B�B0 gC(q2; q1)and M2!4 by dividing A2!4 by2st1t2t3 g2Æ�A�A0 Æ�B�B0 g2C(q2; q1)C(q3; q2):39
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