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AbstratAfter a brief review of the BFKL approah to Regge proesses in QCD and insupersymmetri (SUSY) gauge theories we propose a strategy for alulating the next-to-next-to-leading order orretions to the BFKL kernel. They an be obtained interms of various ross-setions for Reggeized gluon interations. The orrespondingamplitudes an be alulated in the framework of the e�etive ation for high energysattering. In the ase of N = 4 SUSY it is also possible to use the Bern-Dixon-Smirnov(BDS) ansatz. For this purpose the analyti properties of the BDS amplitudes at highenergies are investigated, in order to verify their self-onsisteny. It is found that, forthe number of external partiles being larger than �ve, these amplitudes, beyond oneloop, are not in agreement with the BFKL approah whih predits the existene ofRegge uts in some physial hannels.1 IntrodutionThe elasti sattering amplitude in QCD at high energies for partiles with olor indiesA;B and heliities �A; �B in the leading logarithmi approximation (LLA) has theRegge form [1℄ A2!2 = 2 gÆ�A�A0T AA0 s1+!(t)t g T BB0 Æ�B�B0 ; t = �~q2: (1)The gluon Regge trajetory, j(t) = 1 + !(t), reads!(�~q2) = ��sN(2�)2 (2��)2� Z d2�2�k ~q2~k2(~q � k)2 � � a  ln ~q2�2 � 1�! ; (2)where we have introdued dimensional regularization with D = 4� 2 � and the renor-malization point � for the 't Hooft oupling onstanta = �sN2� �4�e��� : (3)1

http://arXiv.org/abs/0802.2065v5


Figure 1: Multi-Regge kinematisThe gluon trajetory is also known in the next-to-leading approximation in QCD [2℄and in SUSY gauge models [3℄.In LLA gluons are produed in the multi-Regge kinematis (see Fig. 1). In thiskinematis the gluon prodution amplitude in LLA has the fatorized formA2!2+n =�2 s g Æ�A�A0 T 1AA0 s!(�~q21)1 ~q21 gC�(q2; q1)e��(k1)T d121 s!(�~q22)2 ~q22 :::s!(�~q2n+1)n+1~q2n+1 g Æ�B�B0 T n+1BB0 ;(4)where s = (pA + pB)2 � sr = (kr + kr�1)2 � ~q2r ; kr = qr+1 � qr : (5)The matries T ab are the generators of the SU(N) gauge group in the adjoint repre-sentation and C�(q2; q1) are the e�etive Reggeon-Reggeon-gluon verties. In the asewhen the polarization vetor e�(k1) orresponds to a produed gluon with a de�niteheliity one an obtain [4℄C � C�(q2; q1) e��(k1) = p2 q�2q1k�1 ; (6)where the omplex notation q = qx + iqy for the two-dimensional transverse vetorshas been used.The elasti sattering amplitude with the vauum quantum numbers in the t-hannel an be alulated with the use of s-hannel unitarity [1℄. In this approahthe Pomeron appears as a omposite state of two Reggeized gluons. It is also onve-nient to use transverse oordinates in a omplex form together with their anoniallyonjugated momenta as�k = xk + iyk ; ��k = xk � iyk ; pk = i ���k ; p�k = i ����k : (7)In the oordinate representation the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equationfor the Pomeron wave funtion an then be written as follows [1℄E	(~�1; ~�2) = H12	(~�1; ~�2) ; � = ��sN2� min E ; (8)2



where � is the Pomeron interept. The BFKL Hamiltonian has the rather simplerepresentation [5℄H12 = ln jp1p2j2 + 1p1p�2 (ln j�12j2) p1p�2 + 1p�1p2 (ln j�12j2) p�1p2 � 4 (1) ; (9)with �12 = �1 � �2. The kineti energy is proportional to the sum of two gluon Reggetrajetories !(�jpj2i ) (i = 1; 2). The potential energy � ln j�12j2 is related to theprodut of two gluon prodution verties C�. This Hamiltonian is invariant under theM�obius transformation [6℄ �k ! a�k + b�k + d ; (10)where a; b;  and d are omplex numbers. The eigenvalues of the orresponding Casimiroperators are expressed in terms of the onformal weightsm = 12 + i� + n2 ; em = 12 + i� � n2 (11)for the unitary prinipal series representation of SL(2; C), with � being real and ninteger.The BFKL Hamiltonian an be iterated in the s{hannel to aount for the exhangeof an arbitrary number of Reggeized gluons. This iteration is desribed by the Bartels-Kwieinski-Praszalowiz (BKP) equation [7℄ for the n-gluon olorless omposite state.In the N !1 limit the Hamiltonian has the property of holomorphi separability [8℄in the form H = 12Xk Hk;k+1 = 12(h+ h�) ; [h; h�℄ = 0 : (12)The holomorphi Hamiltonian an be written ash =Xk hk;k+1 ; h12 = ln(p1p2) + 1p1 (ln�12) p1 + 1p2 (ln�12) p2 � 2 (1) ; (13)where  (x) = (ln�(x))0. Consequently, the wave funtion 	 ful�lls holomorphi fa-torization [8℄ and there exists the remarkable duality symmetry under the transforma-tion [9℄ pi ! �i;i+1 ! pi+1 : (14)Moreover, in the holomorphi and anti-holomorphi setors, there are integrals of mo-tion ommuting among themselves and with h [5, 10℄:qr = Xk1<k2<:::<kr �k1k2�k2k3 :::�krk1 pk1pk2 :::pkr ; [qr; h℄ = 0 : (15)The integrability of BFKL dynamis was demonstrated in [10℄ and it is related to thefat that h oinides with the loal Hamiltonian of the Heisenberg spin model [11℄.In the LLA the Pomeron interept is � = 4 �s� N ln 2 > 0 and the Froissart bound�t <  ln2 s for the total ross-setion �t � s� is violated [1℄.In the next-to-leading logarithmi approximation the integral kernel for the BFKLequation was onstruted in Refs. [3, 12℄. Due to its M�obius invariane, the solution ofthe BFKL equation an be lassi�ed by the anomalous dimension  = 12 + i� of twist-2operators and the onformal spin jnj, whih oinides with the number of transverseindies of the loal operators O�1:::�j .The eigenvalue of the BFKL kernel in the next-to-leading approximation has theform [12℄! = 4 â �2 (1) �  � + jnj2 ��  �1�  + jnj2 ��+ 4 â2�(n; ) ; â = g2 N16�2 : (16)3



In QCD, the next-to-leading ontribution �(n; ) is a non-analyti funtion of theonformal spin jnj beause it ontains some terms depending on the Kroneker symbolsÆn;0 and Æn;2. However, in N = 4 SUSY this dependene is anelled and we obtainthe following hermitially separable expression [3, 13℄�(n; ) = �(M) + �(M�)� �(M) + �(M�)2â=! ; M =  + jnj2 ; (17)�(M) = �0(M) + 12�(2) ; �0(z) = 14"	0�z + 12 ��	0�z2�#; (18)where �(M) = 3�(3) +  00(M)� 2�(M) + 2�0(M)� (1) �  (M)�; (19)and �(M) = 1Xk=0 �0(k + 1)k +M + 1Xk=0 (�1)kk +M � 0(k + 1) �  (k + 1)�  (1)k +M � : (20)Very importantly, all these ontributions have the property of maximal transendental-ity [13℄. The behaviour of the 4-point Green funtion orresponding to this NLO kernelin N = 4 SUSY was investigated in [14℄. The NLO onformal spins a�et azimuthalangle deorrelations in jet physis as it was originally suggested in [15℄.In a di�erent ontext, the one-loop anomalous dimension matrix for twist-2 op-erators in N = 4 SUSY an be easily alulated sine it is ompletely �xed by su-peronformal invariane. Its eigenvalue is proportional to  (1) �  (j � 1), whih isrelated to the integrability of the evolution equation for the quasi-partoni operatorsin this model [16℄. The integrability of N = 4 SUSY has also been established for otheroperators and in higher loops [17, 18℄.The maximal transendentality priniple suggested in Ref. [13℄ made it possible toextrat the universal anomalous dimension up to three loops in N = 4 SUSY [19, 20℄from the QCD results [21℄. This priniple was also helpful for �nding losed inte-gral equations for the usp anomalous dimension in this model [22, 23℄ based on theAdS/CFT orrespondene [24, 25, 26℄. In the framework of the asymptoti Betheansatz the maximal transendentality priniple helped to �x the anomalous dimensionat four loops [27℄. However, the obtained results ontradit the preditions stemmingfrom the BFKL equation [3, 13℄. The origin of this disrepany is related to the onsetof wrapping e�ets [27℄. In this framework it is, therefore, ruial to obtain more infor-mation from the BFKL side through the alulation of its higher order orretions tothe integral kernel. We would like to point out that the interept of the BFKL Pomeronat large 't Hooft oupling onstant in N = 4 SUSY was found in Refs. [20, 28℄.In the present paper we want to formulate a program to alulate the three looporretions to the BFKL kernel in the 't Hooft oupling. Our approah is based onthe use of the high energy e�etive ation developed in [29, 30℄ for the onstrutionof the various Reggeized gluon ouplings, and on the BDS ansatz [31℄ for satteringamplitudes in the N = 4 super Yang-Mills theory. We begin with a short review ofthe e�etive ation (setion 2) and then turn to an analysis of the BDS formula in theRegge limit for the amplitudes up to six external gluons (setion 3). An interpretationbased upon known results of the high energy limit of sattering amplitudes in QCD isgiven in setion 4. An outlook is presented in the onluding setion. Some details ofthe alulations are presented in several appendies.4



2 E�etive ation for Reggeized gluonsInitially alulations of sattering amplitudes in Regge kinematis were performed byan iterative method based on analytiity, unitarity and renormalizability of the the-ory [1℄. The s-hannel unitarity was inorporated partly in the form of bootstrapequations for the amplitudes generated by Reggeized gluons exhange. But later itturned out that for this purpose one an also use an e�etive �eld theory for Reggeizedgluons [29, 30℄.We shall write below the e�etive ation valid at high energies for interations ofpartiles inside eah luster having their rapidities y in a ertain intervaly = 12 ln �k + jkj�k � jkj ; jy � y0j < � ; � << ln s : (21)The orresponding gluon and quark �elds arev�(x) = �iT ava�(x) ;  (x) ; � (x) ; [T a; T b℄ = ifabT  : (22)In the ase of the supersymmetri models one an take into aount also the fermionand salar �elds with known Yang-Mills and Yukawa interations. Let us introduenow the �elds desribing the prodution and annihilation of Reggeized gluons [29℄:A�(x) = �iT aAa�(x) : (23)Under the global olor group rotations the �elds are transformed in the standard wayÆv�(x) = [v�(x); �℄; Æ (x) = �� (x); ÆA(x) = [A(x); �℄ ; (24)but under the loal gauge transformations with �(x)! 0 at x!1 we haveÆv�(x) = 1g [D�; �(x)℄; Æ (x) = ��(x) (x); ÆA�(x) = 0 : (25)In quasi-multi-Regge kinematis partiles are produed in groups (lusters) with�xed masses. These groups have signi�antly di�erent rapidities orresponding to themulti-Regge asymptotis. In this ase one obtains the following kinematial onstrainton the reggeon �elds ��A�(x) = 0 ; �� = n���� ; (26)n�� = Æ�0 � Æ�3 . For QCD the orresponding e�etive ation loal in the rapidity y hasthe form [29℄ S = Z d4x (L0 + Lind) ; (27)where L0 is the usual Yang-Mills LagrangianL0 = i � D̂ + 12Tr G2�� ; D� = �� + gv�; G�� = 1g [D�;D� ℄ (28)and the indued ontribution is given byLind = Tr (Lkind + LGRind) ; Lkind = ���Aa+��Aa� : (29)Here the Reggeon-gluon interation an be presented in terms of Wilson P -exponentsLGRind = �1g�+ P exp �g12 Z x+�1 v+(x0)d(x0)+! �2�A��1g�� P exp �g12 Z x��1 v�(x0)d(x0)+! �2�A+= �v+ � gv+ 1�+ v+ + g2v+ 1�+ v+ 1�+ v+ � :::� �2�A�+�v� � gv� 1�� v� + g2v� 1�� v� 1�� v� � :::� �2�A+ : (30)5



One an formulate the Feynman rules diretly in momentum spae [30℄. For thispurpose it is needed to take into aount the gluon momentum onservation for induedverties k�0 + k�1 + :::+ k�r = 0 : (31)Some simple examples of indued Reggeon-gluon verties are��0+a0 = ~q2? Æa0 (n+)�0 ; ��0�1+a0a1 = ~q2? T a1a0 (n+)�1 1k+1 (n+)�0 ; (32)��0�1�2+a0a1a2 = ~q 2? (n+)�0(n+)�1(n+)�2  T aa2a0 T a1ak+1 k+2 + T aa2a1 T a0ak+0 k+2 ! : (33)In the general ase these verties fatorize in the form��0�1:::�r+a0a1:::ar = (�1)r~q 2? rYs=0(n+)�s 2Tr (T Ga0a1:::ar) ; (34)where T  are the olor generators in the fundamental representation. In more detail,Ga0a1:::ar an be written as [30℄Ga0a1:::ar = Xfi0;i1;:::;irg T ai0T ai1T ai2 :::T airk+i0(k+i0 + k+i1):::(k+i0 + k+i1 + :::+ k+ir�1) : (35)These verties satisfy the following reurrent relations (Ward identities) [29℄k+r ��0�1:::�r+a0a1 :::ar (k+0 ; :::; k+r )= �(n+)�r r�1Xi=0 ifaarai��0:::�r�1+a0:::ai�1aai+1 :::ar�1(k+0 ; :::; k+i�1; k+i + k+r ; k+i+1; :::; kr�1):(36)With the use of this e�etive theory one an alulate the tree amplitude for theprodution of a luster of three gluons, or a gluon and a pair of fermions or salarpartiles (in the ase of an extended supersymmetri model) in the ollision of twoReggeized gluons [30℄ (see also earlier alulations of this amplitude in [32℄). Thesquare of the amplitude for three partile prodution integrated over the momenta ofthese partiles is the main ingredient to onstrut the orresponding ontribution to theBFKL kernel in the next-to-next-to-leading approximation using the methods of [33℄.One an go to the heliity basis of produed gluons or fermions [34℄. In priniple it isalso possible to alulate the loop orretions to the above Reggeon-partile vertieswith the use of the e�etive ation, however, in the present paper, we will use for thispurpose the results for N = 4 SUSY amplitudes presented by Bern, Dixon and Smirnovin [31℄.3 BDS amplitudes in multi-Regge kinematisAs we have already remarked in the previous setion, to �nd the next-to-next-to-leading orretions to the BFKL kernel in N = 4 SUSY we need to alulate, apartfrom the amplitude for the transition of two Reggeized gluons to three partiles, alsothe three loop orretion to the gluon Regge trajetory, the two loop orretion to theReggeon-Reggeon-gluon vertex, and the one loop orretion to the amplitude for thetransition of two Reggeized gluons to two gluons or their superpartners. In this setionwe onsider, as a �rst step, the orretions to the Regge trajetory and orretions tothe Reggeon-Reggeon-gluon vertex (valid up to one loop) whih an be obtained from6



the multi-Regge asymptotis of the amplitude with the maximal heliity violation,alulated by Bern, Dixon and Smirnov (BDS) [31℄. We also investigate the six pointamplitudes 2! 4 and 3! 3 in multi-Regge kinematis, thus preparing the omparisonwith QCD alulations to be arried out in the following setion.The BDS formula determines the logarithm of the sattering amplitude (to bemore preise: after the Born amplitude has been removed). In our analysis of the BDSformula we will, thoughout our paper, restrit ourselves, in the logarithm of the ampli-tudes, to those terms whih are singular or onstant in �, i.e. we do not (yet) onsiderorretions of order � or �2 in the logarithm of the amplitude. As a onsequene, allresults for the sattering amplitude are orret up to relative orretions of the order�, i.e all results should be multiplied by a fator of the form (1 +O(�)). Details of ouranalysis of the BDS formula are outlined in several appendies.

Figure 2: Elasti sattering in the Regge asymptotisAording to Ref. [31℄, in the ase of maximal heliity violation the amplitude Anwith n legs in the large-N limit is fatorized in the produt of the tree result (inludingthe orresponding olor struture) and the simple salar quantity Mn. In the Reggelimit s � (�t) the expression for M4 having the singularities in s and t-hannels anbe simpli�ed as follows (see Fig.2 and Appendix A)1M2!2 = �(t) ��s�2 �!(t) �(t) � (1 +O(�)) ; (37)where �2 is the renormalization point,!(t) = �(a)4 ln �t�2 + Z a0 da0a0 �(a0)4� + �(a0)� ; (38)is the all-order gluon Regge trajetory, as obtained from the BDS formula [36, 37℄ (fora veri�ation by omparison with expliit alulations see disussions below), andln�(t) = ln �t�2 Z a0 da0a0 �(a0)8� + �(a0)2 �+ C(a)2 + (a)2 �2� Z a0 da0a0 ln aa0 �(a0)4�2 + �(a0)� + Æ(a0)� ; (39)1As we have said before, the fator (1 +O(�)) on the rhs is present in all our results for satteringamplitudes, and it will be omitted in the following. For example, for the alulation of the vertex funtion�, from the BDS formula, our neglet of order-� orretions in the logarithm has onsequenes: in order todetermine the vertex funtion beyond the one loop approximation, it is neessay to ompute, in the logarithm,also the higher order terms. However, suh a omputation is not the aim of this paper, and we will notgo beyond the one loop approximations for the logarithm of vertex funtions, ln �(t) or ln �(t2; t1; ln�) (seebelow). We will have to ome bak to this question when alulating the full higher order orretions to theBFKL equation. We thank V. Del Dua for disussions on this point.7



is the vertex for the oupling of the Reggeized gluon to the external partiles.The 't Hooft oupling is de�ned as in eq.(3):a = �N2� �4�e��� (40)and the small parameter � is related to the dimensional regularization 4! 4� 2�. Theusp anomalous dimension (a) is known to all loops [20, 35, 23℄(a) = 4a� 4�2 a2 + 22�4 a3 + ::: ; (41)and the funtions �(a), Æ(a) and C(a) read [31℄�(a) = ��3 a2 + (6 �5 + 5 �2 �3) a3 + ::: ;Æ(a) = � �4 a2 + ::: ;C(a) = ��222 a2 + ::: ; (42)where �(n) is the Riemann �-funtion�(n) = 1Xk=1k�n : (43)Written as in Eq. (37) we an see that the asymptoti behavior of the M2!2 BDSamplitude orresponds to the Regge ansatz with the gluon trajetory j = 1 + !(t)given by the perturbative expansion!(t) = �� ln �t�2 + 1�� a+ ��2 �ln �t�2 � 12��� �32 � a2+ ��112 �4 �ln �t�2 � 13��+ 6�5 + 5�2�33 � a3 + ::: : (44)The �rst two terms in this expansion are in agreement with the preditions in Refs. [1,3℄. Note that in Ref. [3℄, where the BFKL kernel at NLO was alulated in N = 4SUSY, initially the MS-sheme was used, and only later, in Ref. [13℄ the �nal result wasalso presented in the dimensional redution sheme (DRED). The NLO terms in theBDS expression for !(t) an be obtained from Ref. [3℄ by onverting it to the DREDsheme, where, apart from the �nite renormalization of the oupling onstant, oneshould also take into aount in the loop the additional number 2� of salar partiles (fordetails see Appendix A and the reent paper [38℄)2. The O(a3) term in !(t), extratedfrom the BDS amplitude [36℄), orresponds to the three-loop orretion to the gluonRegge trajetory needed when alulating the next-to-next-to-leading orretions tothe BFKL kernel in this model. Stritly speaking the Regge asymptotis of satteringamplitudes orresponds to a di�erent order of taking two limits �! 0 and s!1, butit is probable that they an be interhanged.It is noteworthy to point out that the expression for M2!2, derived in the Reggekinematis, in fat, is valid also outside the Regge limit. That is to say that, whenanalysing the BDS formula for the logarithm of the 2 ! 2 amplitude (see AppendixA), we do not make use of the high energy limit. In partiular, the amplitude an alsobe written in the dual formM2!2 = �(s) ��t�2�!(s) �(s) : (45)2 We thank A. V. Kotikov and E. M. Levin for helpful disussions regarding these rede�nitions.8



Figure 3: Prodution amplitude in the multi-Regge regimeAfter having desribed the elasti sattering amplitude we now fous on the BDSprodution amplitude (see Fig. 3). The analysis of lnM2!3, desribed in AppendixB shows that the amplitude (as before, up to the orretions (1 +O(�)): see also thefootnote on p.7) an be written in the fatorized formM2!3 = �(t1) ��s1�2 �!(t1) �(t2; t1; ln��) ��s2�2 �!(t2) �(t2) ; (46)with � � = (�s1)(�s2)(�s) : (47)Sine Eq. (46) is exat it is also valid in the multi-Regge kinematis� s� �s1;�s2 � �t1 � �t2 � �� ; (48)where all invariants s; s1; s2; t1 and t2 are negative. Due to the orret fatorizationproperties of this amplitude the Reggeon{partile{partile vertex �(t) in Eq. (46) isexatly the same as in the elasti amplitude in Eq. (39). The gluon Regge trajetory!(t) in Eq. (46) also oinides with the one disussed above. The new omponent isthe Reggeon-Reggeon-partile vertex. Its logarithm is given byln�(t2; t1; ln��) = �(a)16 ln2 ���2 � 12 Z a0 da0a0 ln aa0 �(a0)4�2 + �(a0)� + Æ(a0)��(a)16 ln2 �t1�t2 � (a)16 �2 � 12 �!(t1) + !(t2)� Z a0 da0a0 �(a0)4� + �(a0)�� ln ���2 : (49)It is now possible to analytially ontinue this 2! 3 prodution amplitude to thephysial region where the invariants s, s1 and s2 are positive (see Fig. 4a)M2!3 = �(t1) ��s1 � i��2 �!(t1) �(t2; t1; ln�� i�) ��s2 � i��2 �!(t2) �(t2) : (50)A similar ontinuation to another physial region an be performed in the asewhen s is positive but s1 and s2 are negative (see Fig. 4b):M2!3 = �(t1) ��s1�2 �!(t1) �(t2; t1; ln�+ i�) ��s2�2 �!(t2) �(t2) : (51)9



Figure 4: Physial hannels for the one partile prodution amplitude

Figure 5: Dispersion representation for M2!3, exhibiting its analyti strutureUsing a `dispersive' representation illustrated in Fig. 5 (in the following, we willrefer to this type of representation as `analyti' representation), it an be easily veri�edthat in all physial regions (inluding the rossing hannels with s; s1 < 0; s2 > 0 ands; s2 < 0; s1 > 0) the amplitude an be written as followsM2!3�(t1)�(t2) = ��s1�2 �!(t1)�!(t2) ��s��4 �!(t2) 1 + ��s2�2 �!(t2)�!(t1) ��s��4 �!(t1) 2(52)with the real oeÆients i1 = j�(t2; t1; ln��)j sin�(!(t1)� ��)sin�(!(t1)� !(t2)) ; (53)2 = j�(t2; t1; ln��)j sin�(!(t2)� ��)sin�(!(t2)� !(t1)) ; (54)where �� is the phase of �, i.e.�(t2; t1; ln�� i�) = j�(t2; t1; ln��)j ei��� : (55)In this dispersion-type representation for all physial hannels we use the on-mass shellonstraint for the produed gluon momentum� = ~k2? = (~q1 � ~q2)2 ; (56)where ~k? is its transverse omponent (k?pA = k?pB = 0). In this ase the amplitudeM2�3 does not have simultaneous singularities in the overlapping hannels (s1; s2), inan agreement with the ondition of the gluon stability (this will be disussed furtherin setion 4.2). 10



The fat that there exists a solution for the oeÆients 1 and 2 proves that thesattering amplitude, derived from the BDS formula, has the orret analyti struturein all physial regions. In partiular, it satis�es the Steinmann relations (a somewhatmore detailed disussion of analytiity properties will be presented in the following se-tion). We therefore onlude that the BDS amplitude for the prodution of one partilein multi-Regge kinematis has the orret multi-Regge form. This is enouraging, andwe proeed now to study the prodution of two partiles in multi-Regge kinematis,for whih we use the M2!4 BDS sattering amplitudes.

Figure 6: Prodution of two partilesWe have �rst heked that the planar BDS amplitude for two partile produtionhaving singularities only at positive values of the invariants s; s1; s2; s3; t1; t2; t3 hasthe orret multi-Regge form in the multi-Regge kinematis in the region where allinvariants s; s1; s2; s3; t1; t2; t3 are negative (see Fig. 6 and Appendix C)M2!4�(t1)�(t3) = ��s1�2 �!(t1) �(t2; t1; ln��12) ��s2�2 �!(t2) �(t3; t2; ln��23)��s3�2 �!(t3)(57)and the quantities � �12 = (�s1)(�s2)�s012 ; ��23 = (�s2)(�s3)�s123 : (58)are �xed together with ti. The invariants s012 and s123 are the squared masses of theorresponding three partiles in their enter-of-mass system.In a similar way to what we did in the 2! 3 ase, the BDS 2 ! 4 amplitude anbe analytially ontinued to several physial hannels, eah of them orresponding todi�erent signs of the invariants s; s012; s123; s1; s2; s3. To begin with, in the region (seeFig. 7a) s; s012; s123; s1; s2; s3 > 0 (59)the amplitude has the formM2!4�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�) ��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) ; (60)where we an replae �12 and �23 by their values on the mass shell�12 ! s1s2s012 = ~k12? ; �23 ! s2s3s123 = ~k22? : (61)11



Figure 7: Physial hannels for two partile produtionHere k1 = q1 � q2 and k2 = q2 � q1 are the momenta of the produed partiles (seeFig. 7).In the physial region, represented in Fig. 7b, wheres; s012; s3 > 0 ; s1; s2; s123 < 0; (62)one an obtain, for the multi-Regge asymptotis of the BDS amplitude, the followingexpressionM2!4�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 + i�) ��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) : (63)In a similar way, in the region (see Fig. 7)s; s123; s1 > 0 ; s3; s2; s012 < 0 (64)we haveM2!4�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�) ��s2�2 �!(t2) �(t3; t2; ln�23 + i�)��s3�2 �!(t3) : (65)We an now attempt to writeM2!4 in all physial regions in terms of the followingdispersion ansatz (represented in Fig. 8)M2!4�(t1)�(t3) = ��s1�2 �!(t1)�!(t2) ��s012�12�4 �!(t2)�!(t3) ��s�12�23�6 �!(t3) d112



Figure 8: Analyti representation of the amplitude M2!4+ ��s3�2 �!(t3)�!(t2) ��s123�23�4 �!(t2)�!(t1) ��s�12�23�6 �!(t1) d2+ ��s2�2 �!(t2)�!(t1) ��s012�12�4 �!(t1)�!(t3) ��s�12�23�6 �!(t3) d3+ ��s2�2 �!(t2)�!(t3) ��s123�23�4 �!(t3)�!(t1) ��s�12�23�6 �!(t1) d4+ ��s3�2 �!(t3)�!(t2) ��s1�2 �!(t1)�!(t2) ��s�12�23�6 �!(t2) d5 (66)with the real oeÆients di=1;2;3;4;5. Here�12 = (~q1 � ~q2)2 ; �23 = (~q2 � ~q3)2 : (67)By omparing the above `dispersive' representation with the previous expressionsfor the BDS amplitude in the three physial regions Figs 7a,b, it is possible to extratthe oeÆients. They read d1 = 1(�12) 1(�23) ;d2 = 2(�12) 2(�23) ;d3 + d4 = 2(�12) 1(�23) ;d5 = 1(�12) 2(�23) ; (68)where, in fat, 1(�) and 2(�) were de�ned in Eqs. (53), (54):1(�12) = j�12j sin�(!(t1)� ��12)sin�(!(t1)� !(t2)) ; (69)2(�12) = j�12j sin�(!(t2)� ��12)sin�(!(t2)� !(t1)) ; (70)1(�23) = j�23j sin�(!(t2)� ��23)sin�(!(t2)� !(t3)) ; (71)2(�23) = j�23j sin�(!(t3)� ��23)sin�(!(t3)� !(t2)) ; (72)13



with (f.(49)) �12 = �(t2; t1; ln��12) ; �23 = �(t3; t2; ln��23) : (73)We note that for the oeÆients d3 and d4 only their sum an be determined fromthe three physial regions previously disussed. However, an attempt to �x separatelythese two oeÆients from the multi-Regge asymptotis in the physial region (see Fig.7d) s; s2 > 0 ; s1; s3; s012; s123 < 0leads to a disaster: the orresponding equations do not have any solution. The reasonfor this is that the BDS amplitude in this region does not have the orret Reggefatorization (see the disussion in setion 4). Aording to Appendix C its asymptotishere isM2!4�(t1)�(t3) =C ��s1�2 �!(t1) �(t2; t1; ln�12 � i�)��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) ;(74)where the oeÆient C is given byC = exp "K(a)4 i�  ln ~q21~q23(~k1 + ~k2)2�2 � 1�!# : (75)The fat that, for this region, we �nd no solution for the oeÆients di indiates that,in this region, the BDS amplitude does not have the orret analyti struture. Insetion 4 we will show, by omparing with expliit alulations of the high energy limitof sattering amplitudes, that in the BDS formula a piee is missing. This piee belongsto a Regge ut singularity, whih - apart from the one-loop approximation - does not�t into the simple exponentiation of the BDS ansatz. In Appendix C we write downthe amplitude M2!4 also in the quasi-multi-Regge kinematis, where the variable s2is �xed.

Figure 9: Three partile transitionTo ontinue our analysis of the BDS six point amplitude we now disuss the asymp-totis ofM3!3 (see Fig. 9). Aording to Appendix D in the multi-Regge region whereall invariants s; s1; s3; s13; s02; s2 � t02 are large and negative, its asymptotis is similarto the orresponding asymptotis of the M2!4 amplitude, i.e.M3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln��12)��s2�2 �!(t2) �(t3; t2; ln��23)��s3�2 �!(t3) : (76)14



This BDS amplitude an be now analytially ontinued to the physial region where

Figure 10: Physial regions for the amplitude M3!3the invariants s; s1; s3; s12; s02; t02 are positive (see Fig. 10a). The resulting amplitudean be written asM3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�)��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) ; (77)Similarly, the analyti ontinuation to the region where s1; s12; t02 < 0 and s; s3; s02 > 0(see Fig. 10b) is of the formM3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 + i�)��s2�2 �!(t2) �(t3; t2; ln�23 � i�)��s3�2 �!(t3) : (78)Finally, the ontinuation to the region where s3; s02; t02 < 0 and s; s1; s12 > 0 (see Fig.10) readsM3!3�(t1)�(t3) =��s1�2 �!(t1) �(t2; t1; ln�12 � i�)��s2�2 �!(t2) �(t3; t2; ln�23 + i�)��s3�2 �!(t3) : (79)As it was done in the M2!4 ase one an write the dispersion relation for M3!3valid in these physial regions, whih inludes �ve ontributions, shown in Fig. 11,and alulate the real oeÆients e1; e2; e3 + e4; e5. But one again, we �nd that it15



Figure 11: Analyti representation of the amplitude M3!3is impossible to �x separately the oeÆients e3 and e4 from the BDS amplitude,alulated in the physial region where s1; s3; s13; s02 < 0 and s; t02 > 0 (see Fig. 10d)M3!3�(t1)�(t3) =C 0 ��s1�2 �!(t1) �(t2; t1; ln�12 + i�)��s2�2 �!(t2) �(t2; t1; ln�23 + i�)��s3�2 �!(t3) ;(80)where the phase fator C 0 isC 0 = exp "K(a)4 (�i�) ln (~q1 � ~q2)2 (~q2 � ~q3)2(~q1 + ~q3 � ~q2)2 ~q22 # : (81)The reason for this drawbak is the same as before: the absene of a orret Reggefatorization for the BDS amplitude. In the next setion, using the BFKL approah,we shall disuss the reason for this problem. Namely, the BDS amplitude does notontain the Mandelstam ut ontributions plotted in Fig. 12.4 Regge uts and breakdown of fatorization4.1 Regge pole modelsThe results of the previous setion an best be understood if we onfront them withthe known high energy behavior of QCD sattering amplitudes in the Regge limit. Inthe LLA, the high energy behavior of the QCD sattering amplitudes is the same asin the supersymmetri ase. We proeed in three steps: we �rst review the �ndingsfor models ontaining only Regge poles. We then summarize the results obtained ingauge theories, and �nally ompare with the sattering amplitude derived from theBDS formula. 16



A key element in analyzing the high energy limit are the Steinmann relations [39℄whih forbid the existene of simultaneous energy disontinuities in overlapping han-nels. As an illustrative example of the Steinmann relations, onsider the 2 ! 3 am-plitude shown in Fig. 5: obviously, the produed partile in the entral region anform resonane states with partile A0 or with partile B0, but not simultaneously withboth of them. As a result, in the physial region the sattering amplitude annot havesimultaneous disontinuities in the energy variables s1 and s2. The way in whih thisrestrition is implemented into sattering amplitudes is that, in the double Regge limit,the signatured amplitude an be written as a sum of two piees, one of them with utsin the s1 and in the s hannels, the other one in the s2 and in the s hannels. In general,there are ut singularities both in the right and left half energy planes, and one hasto form signatured ombinations. Deompositions of this kind have �rst been derivedfrom simple models whih ontain only Regge poles (massive salar '3 theory [40℄ orthe dual Veneziano 6 point amplitude, B6 [41℄), and from studies of dispersion relationsand generalized Froissart-Gribov partial wave representations [42℄. For 2! 4 or 3! 3amplitudes, we have �ve independent terms, and for sattering proesses with highernumber of legs the number of terms grows rapidly.For models whih ontain only Regge poles the general struture of the signatured2! 3 amplitude is:A2!3�A(t1)�B(t2) ="��s1�2 ��(t1)��(t2)+ �1�2 � s1�2��(t1)��(t2)# "��s�2 ��(t2)+ �2 � s�2��(t2)# ~V1(t1; t2; �)+ "��s2�2 ��(t2)��(t1)+ �1�2 � s2�2��(t2)��(t1)# "��s�2 ��(t1)+ �1 � s�2��(t1)# ~V2(t1; t2; �):(82)Here �(ti) denotes the trajetory funtion of the Regge pole in the ti exhange hannel,�1 (�2) are the signatures of the t1 (t2) hannels, and as usual, (�s)� = (jsj)� e�i��.In this representation, the energy singularities are expliit, i.e. all phase fators areontained in the energy fators, and the funtions �(t), Vi are real valued funtions.With the abreviations �i = �(ti); �ij = �(ti)� �(tj) (83)and with the signature fators�i = e�i��i + �i; �ij = e�i��ij + �i�j (84)we an rewrite the expression for A2!3:A2!3�A(t1)�B(t2) = � js1j�2 ��12 � jsj�2��2 �12 �2 V1(t1; t2; �)sin��12+ � js2j�2 ��21 � jsj�2��1 �21 �1 V2(t1; t2; �)sin��21 ; (85)where the vertex funtion Vi is proportional to ~Vi. The generalization to the signatured2 ! 4 amplitude (onsisting of �ve di�erent piees) is illustrated in Fig. 8, and fromEq. (66) one easily obtains the analogue of (85) [41℄:A2!4�A(t1)�B(t3) =� js1j�2 ��12 � js012j�2 ��23 � jsj�2��3 �12�23�3V1(t1; t2; �12)V1(t2; t3; �23)sin��12 sin��2317



+� js3j�2 ��32 � js123j�2 ��21 � jsj�2��1 �32�21�1V2(t1; t2; �12)V2(t2; t3; �23)sin��32 sin��21+� js2j�2 ��21 � js012j�2 ��13 � jsj�2��3 �21�13�3 sin��1sin��2 V2(t1; t2; �12)V1(t2; t3; �23)sin��21 sin��13+� js2j�2 ��23 � js123j�2 ��31 � jsj�2��1 �23�31�1 sin��3sin��2 V2(t1; t2; �12)V1(t2; t3; �23)sin��23 sin��31+� js3j�2 ��32 � js1j�2 ��12 � jsj�2��2 �32�12�2V1(t1; t2; �12)V2(t2; t3; �23)sin��32 sin��12 : (86)The analogue for the 3 ! 3 proess again onsists of �ve piees whih are shown inFig. 11.From the disussions of these Regge pole models it has also been reognized thatthe analyti deomposition into a sum of terms in (85) and (86) is onsistent with afatorizing form. For the 2! 3 ase we an write:A2!3�A(t1)�B(t2) = � js1j�2 ��1 �1 V�1�2(t1; t2; �) � js2j�2 ��2 �2: (87)Here the important point to be stressed is that the new prodution vertex funtionV�1�2 ontains phases (in ontrast to the real-valued funtions Vi in (85)), and it hasut singularities in the �-plane. Similarly for the 2! 4 ase we haveA2!4�A(t1)�B(t3) = �1 � js1j�2 ��1 V�1�2(t1; t2; �12) �2 � js2j�2 ��2 V�2�3(t2; t3; �23) �3 � js3j�2 ��3 (88)with the prodution vertex funtion from (87). As a result, for this lass of Regge-polemodels the prodution amplitudes, in the multi-Regge limit, an be written either in the`analyti' form (sum of terms with simple analyti properties and real-valued vertexfuntions Vi) or in the `fatorized' form (with the prodution verties V ontainingphases and singularities in �).Let us omment on the planar approximation. Planar amplitudes have right handut singularities only, and in the physial region where all energies are positive, theirphases follow from the signatured amplitudes in (85) or (86) by simply dropping all'twisted' terms ontaining fators �i. One an easily verify that, in the physial regionwhere all energies are positive, these planar amplitudes an also be written in the fa-torized form (87) and (88) (with vertex funtions V (t1; t2; �12) being slightly di�erentfrom the signatured ones, V�1�2(t1; t2; �12)). When analytially ontinuing into the un-physial region, where all energy variables are negative and well separated from theirthreshold singularities, all phases inside the prodution vertex V (t1; t2; �12) disappear,the vertex funtion turns into a real-valued funtion, and the fatorized form remainsvalid. However, in the physial region where s; s2 > 0 and s1; s3; s012; s123 < 0 thefatorized form is not valid, and the struture of the amplitude is more ompliated.4.2 High energy behavior in Yang Mills theoriesLet us now turn to QCD. Throughout this setion we will restrit ourselves to satteringamplitudes with odd signature in all t-hannels. Compared to the Regge pole modelsdisussed in the previous subsetion, the situation is slightly more ompliated sinealso Regge ut piees appear in some of the t-hannels. In the LLA the real part of the2 ! n sattering amplitude is well known to have the fatorized form of Eq. (4), andit is in agreement with our previous result in (87) and (88). However, when turning tothe imaginary parts (i.e. to the energy disontinuities) of the prodution amplitudes,a new piee appears whih destroys the simple fatorization property. The best way18



of understanding the appearane of this new piee is the use of s-hannel unitarity inthe physial region where all energies are positive.Starting from the analyti representation of the sattering amplitude A2!n, it ispossible to determine, in QCD, the partial waves from energy disontinuities and uni-tarity equations [43, 44℄. As the simplest example, let us onsider, in the LLA, the2 ! 3 amplitude, onsisting of the two terms illustrated in Fig. 5. Antiipating that,in the 2! 3 proess, there are only Regge pole ontributions, we start from the ansatzA2!3�(t1)�(t2) = 2st1t2 h � js1j�2 �!12 � jsj�2�!2 �12 �2 V1(t1; t2; �)sin�!12+ � js2j�2 �!21 � jsj�2�!1 �21 �1 V2(t1; t2; �)sin�!21 i (89)with (f.(56)) � = (~q1 � ~q2)2 (90)and �(t1) = gÆ�A�A0 ;�(t2) = gÆ�B�B0 : (91)Here we used �i(ti) = 1 + !(ti) and!i = !(ti); !ij = !(ti)� !(tj); (92)and the signature fators an be written in following form:�i = e�i�!i + 1; �ij = e�i�!ij + 1: (93)Taking the disontinuity in s1, only the �rst term in (89) ontributes. Making use of theunitarity equation and invoking, for the ladder diagrams in the t1 hannel, the BFKLbootstrap ondition we �nd the partial wave V1 in the LLA. For a de�nite heliity V1has the form V1 = g�C(q2; q1)�12(!1 � !2)� a2(ln ��2 � 1� )� (94)with C(q2; q1) being the prodution vertex from (6). Similarly, the disontinuity in s2leads to V2 = g�C(q2; q1)�12(!2 � !1)� a2 (ln ��2 � 1� )� : (95)A omment may be in plae on the term ln� in V1 and V2: it indiates that, in ontrastto massive �eld theories where the Vi's are analyti funtions near � = 0, in masslesstheories this is no longer the ase. Therefore, when omputing the disontinuity in s1 ors2 of A2!3, there is, at �rst sight, an unertainty in handling the ut in �. It turns outthat the orret presription for omputing the disontinuity in s1 or s2 in the physialregion, is keeping � = (~q1� ~q2)2 �xed. This an be derived either from a diret analyisof Feynman diagrams where the Steinmann relations diss1diss2A2!3 = 0 are ful�lledexpliitly. Alternatively, one an onsider the massless Yang Mills theory as the zeromass limit of a nonabelian Higgs model where the gauge bosons are massive: beforethe zero mass limit is taken, the vertex funtions are analyti near � = 0 and thereis no ambiguity in omputing the energy disontinuities. As a result, in the physialregion the singularities of in � of V1 and V2 are not related to singularities in s1 ors2. We also mention that, in the next-to-leading approximation, the funtions V1 andV2 ontain an additional dependene on ln�, whih, again, does not ontradit theSteinmann relations [33℄. 19



Inserting these expressions into Eq. (89), using (93), and restriting ourselves tothe planar approximation, we �nd for the real part (apart from the olor fator):A2!3�(t1)�(t2) = 2st1t2 (js1j)!1 gC(q2; q1) (js2j)!2 (96)in agreement with (4). In partiular, the infrared singular piees in V1 and V2 anel.As a further test, one ould also ompute, from the orresponding unitarity equation,the single disontinuity in s: here both partial waves V1 and V2 ontribute, and theresult is in agreement with (94) and (95)3.For the 2 ! 4 amplitude we start from an ansatz whih is slightly more generalthan (86). In order to aount for the Regge ut in the t2 hannel, we introdue, inthe t2-hannel, the Sommerfeld-Watson integral R d!02=2�i:A2!4�(t1)�(t3) = 2st1t2t3 Z d!022�ih � js1j�2 �!1�!02 � js012j�2 �!02�!3 � jsj�2�!3 �120�203�3 W1(t1; t2; t3; �12; �23;!02)sin�!120 sin�!203+� js3j�2 �!3�!02 � js123j�2 �!02�!1 � jsj�2�!1 �320�201�1 W2(t1; t2; t3; �12; �23;!02)sin�!320 sin�!201+� js2j�2 �!02�!1 � js012j�2 �!1�!3 � jsj�2�!3 �201�13�3 W3(t1; t2; t3; �12; �23; �123;!02)sin�!201 sin�!13+� js2j�2 �!02�!3 � js123j�2 �!3�!1 � jsj�2�!1 �203�31�1 W4(t1; t2; t3; �12; �23; �123;!02)sin�!203 sin�!31+� js3j�2 �!3�!02 � js1j�2 �!1�!02 � jsj�2�!2 �320�120�20 W5(t1; t2; t3; �12; �23;!02)sin�!320 sin�!120 i: (97)with the partial wave funtions, denoted by Wi=1;2;3;4;5 and to be determined from sin-gle energy disontinuity equations. The partial wave funtionsW3 andW4 also dependupon the additional variable �123 = (~k1 + ~k2)2. We have the �ve single disontinuitiesin s1, s2, s3, s012, and s123 whih allow to �nd the partial waves Wi=1;2;3;4;5. In leadinglog auray the results are the following:W1 = V1(t1; t2; �12) 1!02 � !2V1(t2; t3; �23); (98)W2 = V2(t1; t2; �12) 1!02 � !2V2(t2; t3; �23); (99)W3 = sin�!1sin�!2V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)� sin�(!02 � !1) (Vut � Vp) ; (100)W4 = sin�!3sin�!2V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)� sin�(!02 � !3) (Vut � Vp) ; (101)W5 = V1(t1; t2; �12) 1!02 � !2V2(t2; t3; �23): (102)The three amplitudes W1, W2 and W5 are produts of the prodution verties Vi in(94) and (95), found in the 2 ! 3 ase, whereas the amplitudes W3 and W4 ontain,3We emphasize that the same results are obtained if one starts from the double disontinuities in s ands1: using unitarity onditions and making use of generalized bootstrap onditions, one again arrives at (94).This is a ruial test of the selfonsisteny of this `unitarity-based approah'.20



in addition to the produts of prodution verties Vi, the extra piees, Vut � Vp whihwill be de�ned in the following. The term Vut ontains Regge uts and annot bewritten as a simple produt of verties for the two produed gluons. It takes the formof BFKL-like ladder diagrams in the olor otet hannel, and it is illustrated in Fig.12 (left �gure):Vut = t2N2 g4 Z d2kd2k0(2�)6 q21(k + k1)2C(k; k + k1)� G(8A)(k; q2 � k; k0; q2 � k0;!02)C(k0 � k2; k0) q23(k0 � k2)2 : (103)Here C denotes the e�etive Reggeon-Reggeon-gluon vertex given in (6), and G(8A) isthe BFKL Green's funtion in the olor otet hannel, satisfying the integral equation!02G(8A)(k; q � k; k0; q � k0;!02) =(2�)3Æ(2)(k � k0)k2(q � k)2 + 1k2(q � k)2 �K 
G(8A)� (k; q � k; k0; q � k0); (104)where K denotes the BFKL kernel in the olor otet hannel, ontaining both realemission and the gluon trajetory. In lowest order in the oupling, and for equalheliities of the two produed gluons, Vut equals:V (0)ut = g2C(q2; q1)C(q3; q2)2!02 �!1 + !3 + a�ln �123�2 � 1��� : (105)The term Vut not only violates the simple fatorization of Regge pole models, butalso, when omputed beyond the one loop approximation, will be shown to disagreewith the BDS formula. Finally, the subtration term Vp removes the Regge pole pieeinside Vut, and it is of the form:Vp = g2C(q2; q1)C(q3; q2)4!2 �!1 + !2 + a�ln �12�2 � 1��� 1!02 � !2� �!2 + !3 + a�ln �23�2 � 1��� : (106)Before we ompare with the BDS formula, let us remark on a few features of theseleading order QCD results (for details, see Appendix E). From now on, we speializeon the planar approximation, i.e. in the signature fators in eq.(93) we only retain thephases. Inserting the results of (98) - (102) into the full amplitude (97) we an derivethe results for di�erent kinemati regions.Beginning with the physial region where all energies are positive, one �nds thatthe sum of the Regge pole terms an be written in the simple fatorizing form (88). Inpartiular, the Regge ut piees ontained in W3 and W4 anel ompletely, and thereal part of the sattering amplitude oinides with (4).Next, in the unphysial region where all energies are negative and all phases disap-pear, again, the Regge pole ontributions an be written in a simple fatorizing form,and the ut piees in W3 and W4 anel.Finally, we go into the physial region where s; s2 > 0 and s1; s3; s012; s123 < 0.Nonzero phases appear only in s and in s2. After some algebra we obtain:A2!4�(t1)�(t3) = 2st1t2t3 g2C(q2; q1)C(q3; q2)(js1j)!1(js3j)!3 �21



Figure 12: BFKL ontributions to the amplitudes M2!4 and M3!3e�i�!2(js2j)!2h1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1��� i�2i� 2st1t2t3 Z d!022�i (e�i�js2j)!02Vut:(107)In the last term, Vut, it is possible to fator out the gluon trajetory (details arepresented in [47℄):Z d!022�i (e�i�js2j)!02Vut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02Vut;redued;(108)where in the one loop approximation (105)g2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02Vut;redued= g2C(q2; q1)C(q3; q2)2 "a ln �123�2q21q23 + 1�!+O(a2 ln s2)# ; (109)and the two loop and higher order terms of Vut;redued are infrared �nite [47℄.Inserting (108) into (107) we see that all terms on the rhs of (107) are proportionalto the ommon phase fator e�i�!2 :A2!4�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3(js2j)!2g2C(q2; q1)C(q3; q2)e�i�!2 ��1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02Vut;redued� ; (110)and the oeÆient in the square brakets is infrared �nite. This shows that, in LLA,the imaginary part of A2!4 is infrared singular, but the singularities are assembled inthe phase fator e�i�!2 . This observation will be important when omparing with theBDS formula. 22



A ompletely analogous disussion applies to the ase 3 ! 3 (Figs. 9, 11) in themulti-Regge region (a more detailed disussion is given in Appendix E). Again, thesattering amplitude onsists of �ve terms, and two of them ontain the Regge utpiee: Z d!022�i (e�i�js2j)!02Uutwith Uut = t2N2 g4 Z d2kd2k0(2�)6 q21(k � q1)2C(q2 � k; q1 � k)� G(8A)(k; q2 � k; k0; q2 � k0;!02)C(k0 � k2; k0) q23(k0 � k2)2 : (111)In lowest order (and for equal heliities of the produed gluns) this Regge ut pieeequals: U (0)ut = g2C(q2; q1)C(q3; q2)2!02 a ln �12�23(~q1 + ~q3 � ~q2)2q22 : (112)Proeeding in the same way as for the 2 ! 4 amplitude, on derives results for thesattering amplitude in the di�erent kinemati regions. In the region where all energiesare positive, we �nd the same fatorization as for simple Regge pole models, i.e. theRegge ut piees anel. In the region s; s2 > 0, s1; s3; s13; s02 < 0 the Regge ut pieeappears. First we rewrite it in the same form as in (108):Z d!022�i (e�i�js2j)!02Uut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02Uut;redued(113)with the infrared �nite one loop approximationg2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02Uut;redued= g2C(q2; q1)C(q3; q2)2 �a�ln �12�23(~q1 + ~q3 � ~q2)2q22�+O(a2 ln s2)� : (114)As in the ase of the 2! 4 amplitude, the higher order orretions (denoted by O(a2))are infrared �nite. With this result, the 3 ! 3 amplitude an be written in the form(f.(110)): A3!3�(t1)�(t3) = 2st1t2t3 (js1j)!1(js2j)!2(js3j)!3g2C(q2; q1)C(q3; q2)��1 + i�2 �!1 + a�ln �12�2 � 1��+ !3 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02Uut;redued� : (115)Note that, in ontrast to the 2 ! 4 ase, there is no ommon infrared singular phasefator, e�i�!2 , and the square braket term on the rhs of (115) is infrared �nite. Thisshows that the infrared struture of A3!3 is quite di�erent from A2!4.
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4.3 Comparison with the BDS formulaLet us now return to the BDS amplitude disussed in the setion 3, take the leadinglogarithmi approximation and ompare with the results disussed in the previoussubsetion. In the leading logarithmi approximation we retain, in the exponent ln Mn,only the lowest order (in powers of a) of the oeÆients of the energy logarithms, andthe lowest order of the real and imaginary parts of logarithms of the vertex funtions,ln �. In the ase of the 2 ! 2 sattering proess the oeÆient of ln s is given bythe gluon trajetory funtion (eq.(38)), and the leading order oeÆient is the termproportional to a. The logarithm of the vertex funtion is given in (39); the lowestorder term is of order a, and sine t is negative, there is no imaginary part. Therefore,in the leading logarithmi approximation we put ln� equal to zero (note that M4multiplies the Born approximation whih ontains a reggeon-partile-partile vertex ofthe order g).Turning to the ase 2 ! 3 in the physial region, we use (46) and (49) (see alsoAppendix B). The new element, the logarithm of the prodution vertex, starts withterms of the order a, and the real part an be negleted (i.e. the absolute value of�(t2; t1; �) an be put equal to unity). But, depending upon the kinemati region,terms with ln(��) may lead to imaginary parts of order a whih have to be kept. Inthe region where all energies are positive the relevant terms of order a are (see (55):�� = 12(!(t1) + !(t2)) + a2 �ln ��2 � 1�� : (116)In order to ompare with the QCD results we use (52), (53), and (54). In (52) weapproximate the fators �!(t1) ! 1 et, and for the real oeÆients 1 and 2 weobtain:1 = 12 �!(t1)� !(t2)� a(ln ��2 � 1� )�!(t1)� !(t2) ; 2 = 12 �!(t2)� !(t1)� a(ln ��2 � 1� )�!(t2)� !(t1) (117)whih agrees with the leading log result in (89), (94), and (95) . In the unphysial regionwhere all energies are negative we have no imaginay parts and again �nd ompleteagreement with the results of the previous subsetion.In the ase of 2 ! 4 we begin with the physial region where all energies arepositive. Using eqs.(66) - (68) and applying the same arguments as for the 2! 3 ase,we �nd M2!4�(t1)�(t3) = (e�i� js1j�2 )!1 (1(�12) + 2(�12)) (e�i� js2j�2 )!2(1(�23) + 2(�23)) (e�i� js3j�2 )!3 ; (118)quite in agreement with the LLA of the Regge pole part in (E.3). Sine, in the QCDalulation for this kinemati region, the Regge ut piees anel, there is no onitbetween the BDS formula and the leading logarithmi approximation obtained by diretalulations.Let us now turn to the region s; s2 > 0, s1 ; s012 ; s123 ; s3 < 0 where, in the QCDalulations, the imaginary part ontains the fatorization breaking term Vut (orre-sponding to a BFKL ladder with the otet quantum numbers in the t-hannel). Inthe BDS amplitude (74) we have, ompared to the physial region with only positiveenergies, the additional phase fator C in (75). In the leading log approximation whihwe have desribed before we �nd (from (74), (75), or from (C.11)):M2!4�(t1)�(t3) = � js1j�2 �!1 � js3j�2 �!3 �e�i� js2j�2 �!2 �24



h1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1���+i�a ln q21q23(k1 + k2)2�2 � 1�!)i: (119)In the imaginary part of the square brakets the � poles anel. Comparing this resultwith (110) and (105) we see that the BDS formula reprodues the lowest order term ofthe Regge ut ontribution, Vut;redued, but not the higher order terms (whih are stillpart of the leading logarithmi approximation). We therefore onlude that, beyondthe one loop approximation, the BDS formula does not agree with the leading logresults listed in the previous subsetion.Let us remark on the order O(�) orretions in the BDS formula. As explainedat the beginning of setion 3, our analysis of the BDS formula (whih applies to thelogarithm of the sattering amplitude) does not inlude terms whih vanish as �! 0.Nevertheless, the omparison of (110) and (119) shows that suh orretions annotreprodue the �nite (in �) terms whih are missing in the BDS formula. The key pointis that, in the BDS formula, the leading log approximation for the imaginary part oflnM2!4 ontains terms of the order 1=� only inside !2. Comparing (110) with (119)one sees that the infrared divergent phase fator for the ut ontribution in (110) isthe same as in the BDS formula. Therefore, when going from lnM2!4 to M2!4 it isinorret to expand this infrared singular piee e�i�a=�, and it beomes lear that termsof order � in the logarithm of the sattering amplitude annot produe onstant (in �)terms in the sattering amplitude. As a result, our onlusion onerning the validityof the BDS formula is not a�eted by the order O(�) orretions in the BDS formulafor the logarithm of the sattering amplitude.For the 3! 3 amplitude the omparison between the BDS amplitude and the highenergy behavior in Yang Mills theories leads to the same onlusion, although somedetails are di�erent. For the kinemati region where all energies are positive the BDSformula agrees with the leading log alulations, and we diretly turn to the regions; s2 > 0, s1; s3; s13; s02 < 0. The ruial element is the phase C 0 in (81) whih, inontrast to C in (75), is infrared �nite. Colleting, in (80), (81), or in (D.89), withinLLA, all imaginary parts in lnM3!3 we note that all terms of the form a=� anel, andwe arrive at: M3!3�(t1)�(t3) = � js1j�2 �!1 � js3j�2 �!3 � js2j�2 �!2 �h1 + i�2 �!1 + a�ln �12�2 � 1��+ !3 + a�ln �23�2 � 1���� i�a�ln �12�23(~q1 + ~q3 � ~q2)2q22� i:(120)The square braket expression is infrared �nite. Comparison with (115) shows thatthe BDS formula orretly reprodues the one loop approximation to Uut;redued, butnot the higher order loops. Again, terms of order � in lnM3!3 annot reprodue those�nite (in �) terms whih are missing in M .Disrepanies in the BDS �nite piees for six gluon amplitudes, starting at twoloops, were also hinted in [49℄ where the equivalene between Wilson loops and MHVamplitudes was assumed. In a partiular kinemati on�guration, and for a very largenumber of external gluons at strong 't Hooft oupling, the �nite piees of the BDSansatz failed when ompared to the results of [50℄.
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5 ConlusionsIn this paper we have assembled the ingredients needed for the three loop orretions(NNLO) to the BFKL kernel in N = 4 SYM theory at large N. Following earlieralulations we an obtain the kernel from unitarity sums, i.e. by omputing squaresof prodution amplitudes, keeping in mind that at large N the ontributing diagramsbelong to the ylinder topology. Figure 13 illustrates the prodution verties whihenter the three loop alulation.

Figure 13: Diagrams ontributing to the BFKL kernel in NNLLAElements in the �rst two lines are known, whereas the building bloks in the thirdline are new: they an be (and partly have been) omputed from the e�etive ationsummarized in setion 2.For most of the ases, also the BDS formula an be used. The NNLO gluon traje-tory funtion follows from the 2 ! 2 sattering amplitude (�rst olumn); details aredesribed in Appendix A. For the 2 ! 3 ase (seond olumn), the two loop approxi-26



mation to the gluon prodution vertex an be read o� from the analysis presented insetion 3 (.f. Eq. (49)). In this ase one should take into aount the �-orretionsto the BDS amplitude. In olumn 3, we should take into aount the the Reggeon +Reggeon ! 2 gluon vertex in the one loop approximation for �xed invariant massesof produed gluons. Based upon the analysis arried out in setions 3 and 4 we trustthat the BDS formula for the maximal heliity violating ase an be used (with �-orretions). For the non-maximal violating ases in olumn 3 one an use the resultsof [51℄. Finally, in olumn 4 we enounter the Born vertex: Reggeon + Reggeon ! 3gluons for the �xed invariant mass of the gluons. This vertex has been obtained in [30℄by means of the e�etive ation (see also Ref. [32℄).We have shown that the BDS amplitudeM2!3 in the multi-Regge kinematis satis-�es the dispersive representation, whih is valid in all physial regions and is ompatiblewith the Steinmann relations and gluon reggeization. For the ase of the gluon transi-tions 2! 4 and 3! 3, in the multi-Regge kinematis and in the physial region wheres; s2 > 0 and s1; s3 < 0, the Regge fatorization of the BDS amplitude is badly violated.In the one loop aproximation the BDS result in this region oinides with the diretQCD alulations, but in higher loops we have shown that these amplitudes shouldontain the Mandelstam Regge ut in the t2-hannel. It was demonstrated, that thisut is absent in the BDS expression and annot be reprodued by the O(�)-orretionsto this expression.A remark is in plae on the Regge-ut ontribution illustrated in Fig. 12 and dis-ussed in setion 4. In addition to the orretions to the prodution vertex funtionswhih are illustrated in Fig. 13, we still have to take into aount those orretionsto the prodution amplitude in the multi-Regge limit whih do not fall into the lassof loop orretions to the prodution verties: in NLO these are just the Regge-utontributions to the imaginary part in the 2 ! 4 and the 3 ! 3 ases whih we havedisussed in the previous setion. The diagrams ontributing to the BFKL Pomeronin the large N limit belong to the ylinder topology: two examples are illustrated inFig. 14, and, to begin with, we onsider the disontinuity due to the 4-partile interme-diate state. In the left �gure, on both sides of the disontinuity ut, we have the 3! 3prodution amplitudes ontinued into the physial region of a 2 ! 4 proess (.f. rhsof Fig. 12), and in the right hand �gure we reognize a on�guration where the 2! 4amplitude has to be evaluated in a region with negative energies. As disussed before,in the latter ase the non-fatorizing piees of the 2 ! 4 prodution amplitude donot anel. If these ontributions would survive in the total ross setion, the NNLOBFKL Pomeron would reeive a four-reggeon ut ontribution, and the simple ladderstruture would be lost. There are, however, reasons to expet that, in the large Nlimit, the sum of these ontributions might anel in the total ross setion. Namely,in addition to the ontribution of the 4-partile intermediate state, we also need otheruts, whih, for example, run aross one of the ladders or along one of the reggeizedgluons above or below the ylinder. These di�erent uts provide similar ontributions,but they ome with di�erent signs. It is likely that, similar to the AFS anellation ofRegge uts in planar amplitudes, the four reggeon ut ontributions anel in the sum.We will study this in the subsequent part of our investigation.Aknowledgements: We wish to thank V. S. Fadin, M. Strassler, and C. I. Tanfor very helpful disussions. Part of this work has been done while one of us (ASV)has been visiting the II. Institut f. Theoretishe Physik, University Hamburg. Thehospitality is gratefully aknowledged. One of us (LNL) wishes to thank the IssaNewton Institute for the invitation to partiipate in the program \String Fields, Inte-grability and Strings". LNL is supported by the RFBR grants 06-02-72041-MNTI-a,27



Figure 14: Cylinder-type topologies in the unitarity sums for the total ross setion: theintermediate states (disontinuity uts) are obtained by sliing the ylinders in all possibleways aross the intermediate momenta pA0 and pB007-02-00902-a, andRSGSS-5788.2006.2.Note to be added: After our paper had been submitted, another study appearedwhih, in some parts, parallels our investigation [52℄. Like ours, it studies severaldi�erent Regge limits of the BDS amplitudes. In the unphysial region (negative ener-gies), the results on the energy dependene are fully onsistent with ours. In ontrastto our paper, however, in [52℄ the ontinuation into physial regions has not been in-vestigated, and the onit with QCD alulations was not found. Reently anotherpaper of these authors [57℄ has appeared. We ompletely disagree with the statementin their setion 4.3, saying that the Steinmann relations for the BDS amplitudeM5 areviolated. In our view, the authors ompute the disontinuity of the BDS amplitude(4.16) in an inorret way: for example, the disontinuity in s1 in the physial regionsshould be de�ned at �xed � (this follows already from a simple one loop alulationin QCD where, in physial regions, the presene of simultaneous singularities in theoverlapping hannels s1 and s2 would ontradit the gluon stability). We also �ndtheir setion 4.6 very onfusing. First, ontrary to their statement, in our paper thedispersive representation was not used to prove the absene of the Regge fatorizationof the BDS amplitudes M2!4 and M3!3 in the physial region with s; s2 > 0 ands1; s3 < 0. We simply analytially ontinued the BDS formula to this region and om-pared with the QCD results. Suh a ontinuation is absent in the paper [57℄. Seond,the O(�) terms in the BDS formula do not a�et any of our onlusions (this is ex-plained in some detail in our setion 4.2). Next, the disussion around (4.29) is verymisleading: the 'unwanted piee' in (4.29) has been derived, via the orret analytiontinuation, from BDS, it ertainly has the orret infrared properties. Comparisonwith high energy QCD alulations shows agreement with the infrared divergent piee,and the disagreement beyond one loop omes in when expanding, in (4.29), the �niteterm of lnM6. Finally, it was shown in our Appendies C and D that the �nite parts28



of the fators C and C 0 appear just from the analyti ontinuations of the dilogarithmfuntions Li2, and they depend upon the onformal invariant ross ratios � and �0.So what do the authors ritiize?Reently, the paper [53℄ appeared where the authors alulated the three-loop Reggetrajetory and three loop oeÆient funtions. Further, the breakdown of the BDSansatz for the 6-point amplitude in two loops was found by diret alulations [54℄ inagreement with the preditions from the Wilson-loop alulations [55℄.Seond note to be added: Reently a new paper on the high energy behaviorof the BDS formula appeared [58℄. We do not agree with the main result of the mostreent version 3 of this work, stating that in the multi-Regge kinematis the speialfuntions appearing in the BDS ansatz are not important. To be more preise, theauthors argue that the two limits: energy s2 ! 1 and � ! 0 do not ommute. A-ording to appendix C, in the region s; s2 > 0, s345; s456 < 0 the sequene of limits:lim�!0 lims2!1 F implies that the speial funtions do not ontribute, whereas theopposite order lims2!1 lim�!0 F leads to our result with the speial funtions beingimportant. We disagree with this `non-ommutativity', sine the �rst part of the ar-gument is based on a simple arithmeti mistake. Namely, starting from eq.(C.16), themultipliation of the fator (�P 2)�� with (1� ~�)�� in Eq. (C.22), in the limit s2 !1,gives the �nite expression (p4? + p5?)�2�, in agreement with Eq. (B.11). In this waythe dependene on s2 anels out, both sequenes of limits lead to the same answer(ontrary to what is stated after Eq. (C.25)), and our result has been on�rmed: inthe BDS formula, the speial funtions are important in the multiregge kinematis,and their presene implies that the multiregge fatorization is violated.A The 2! 2 amplitudeLet us write the BDS amplitude for the general ase of n legs (see [31℄):lnMn = 1Xl=1 al �f (l)(�) �Î(1)n (l�) + F (1)n (0)�+ C(l) +E(l)n (�)� ; (A.1)where E(1)n (�) an be negleted for �! 0, the values of the onstants areC(1) = 0; (A.2)C(2) = ��22=2; (A.3)f (l)(�) = f (l)0 + �f (1)1 + �2f (l)2 ; (A.4)f (l)0 = 14(l)K ; (A.5)f1 = �a�3=2 + a2(2�5 + 5�2�3=3); (A.6)K is the usp anomalous dimension [56℄,Î(1)n (�) = � 12�2 nXi=1 �2�si;i+1!� ; (A.7)and the �nite remainders F (1)n are expressed in terms of logarithms and dilogarithms.For the elasti sattering amplitude ase we haveÎ(1)4 (�) = � 2�2 + 1� ln (�s)(�t)�4 � 12 �ln2 �s�2 + ln2 �t�2 � ; (A.8)29



F (1)4 = �12 ln2 �s�t + 4�2 : (A.9)ThereforeÎ(1)4 (�) + F (1)4 = � 2�2 + ln(�t)1� + ln(�s)�1� � ln �t�2�+ 4�2 : (A.10)As a result we obtain for M4 Regge-type behaviour, as already disussed in the mainpart of our paper, with the gluon Regge trajetory given by!(t) = a �1� � ln �t�2 �+ a2 ���2 � 12� � ln �t�2 �� �32 �+ ::: : (A.11)Note that this result at two loops is in agreement with the diret alulations [2, 3℄based on the BFKL approah [1℄. Indeed, in Ref. [3℄ the following expression for thegluon Regge trajetory was obtained in the MS-sheme (using the same notations):!MS(t) = a �1� � ln �t�2 �+ a2 ��16 � �2�� 12� � ln �t�2�+ 29 � �32 � : (A.12)The ontribution of the salar loop to this trajetory is proportional to the ontributionof the fermion loop [3℄!sMS(t) = ns4nq 11� � !qMS(t) = ns a224 � 1�2 � ln �t�2 � 83 �1� + 2 ln �t�2 �� 529 � ; (A.13)where ns is the number of salar �elds transforming aording to the adjoint represen-tation of the gauge group. For the transition from the MS-sheme to the dimensionalredution (DRED) sheme, whih respets N = 4 supersymmetry, one should �rstinrease the number of salar �elds ns ! 6 + 2� ; (A.14)beause, in the pure gluoni ontribution, �n = �2� for the gluon �elds was takeninto aount after performing the dimensional regularization 4 ! 4 � 2�. This givesthe additional ontribution to !MS(t)�!MS(t) = a212 �1� � 83� : (A.15)After that the subsequent �nite renormalization of the oupling onstant needed forthe transition between the MS and DRED shemesa! a� 16a2 (A.16)leads to the above result for the trajetory!MS(t)! !(t) = a �1� � ln �t�2�+ a2 ���2 � 12� � ln �t�2 �� �32 � : (A.17)Conerning the residues �(t) of the Regge pole, they have been alulated in theone-loop approximation in QCD [33℄. In supersymmetri models the heliity non-onserving ontribution of eah of the olliding gluons is anelled, in aordane withthe BDS ansatz. 30



B The 2! 3 amplitudeFor the 2! 3 prodution amplitude we have (see Fig.3)Î(1)5 (�) = � 52�2 + 12� ln (�s)(�s1)(�s2)(�t1)(�t2)�10� 14 �ln2 �s�2 + ln2 �s1�2 + ln2 �s2�2 + ln2 �t1�2 + ln2 �t2�2 � ; (B.1)F (1)5 = �14 ln �s�s1 ln �t2�s2 � 14 ln �t2�t1 ln �s2�s1 � 14 ln �s2�s ln �s1�t1� 14 ln �s1�t2 ln �t1�s � 14 ln �t1�s2 ln �s�t2 + 154 �2 : (B.2)Thus the total ontribution in multi-Regge kinematis isI(1)5 (�) + F (1)5 = � 52�2+ ln �s1�2 �1� � ln �t1�2 �+ ln �s2�2 �1� � ln �t2�2 �+ 12� ln (�t1)(�t2)�4� 14 ln2 ���2 + 12 ln ���2 �ln (�t1)(�t2)�4 � 1��� 14 ln2 �t1�t2 + 154 �2 : (B.3)In this way we obtain the Regge fatorization of the prodution amplitudes, disussed inthe main text. Let us note that, formally, this result is exat and the amplitude an bewritten in this fatorized form in all �ve hannels obtained by the yli transmutationof the invariants s; t1; s1; s2; t2.In the one-loop approximation in QCD the Reggeon-Reggeon-gluon vertex ontains,apart from the Born struture proportional to the vetor C(q2; q1), also the ontributionproportional to the gauge-invariant vetor pAs1 � pBs2 [33℄. In the supersymmetri theoriesthis ontribution is anelled, in agreement with the BDS ansatz.One an alulate also the prodution amplitude in the quasi-elasti kinematis,where s � s1 � s2 � t1; t2; k2?. The amplitude here has the usual Regge fatorization.C The 2! 4 amplitudeIn the ase of the 2! 4 transition we have (see Fig. 6)Î(1)6 (�) = � 3�2 + 12� ln (�s)(�s1)(�s2)(�s3)(�t1)(�t3)�12� 14 �ln2 �s�2 + ln2 �s1�2 + ln2 �s2�2 + ln2 �s3�2 + ln2 �t1�2 + ln2 �t3�2 � ;(C.1)F (1)6 = �12 ln �s�s012 ln �t3�s012 � 12 ln �t3�t2 ln �s3�t2 � 12 ln �s3�s123 ln �s2�s123� 12 ln �s2�s012 ln �s1�s012 � 12 ln �s1�t2 ln �t1�t2 � 12 ln �t1�s123 ln �s�s123� 12Li2 �1� ss2s012s123�� 12Li2 �1� t3s1t2s012�� 12Li2 �1� t1s3t2s123�+ 14 �ln �t2�s012�2 + 14 �ln �t2�s123�2 + 14 �ln �s123�s012�2 + 92 �2 ; (C.2)31



where the dilogarithm funtion is de�ned asLi2(z) = � Z z0 dtt ln(1� t) : (C.3)In multi-Regge kinematis it is natural to introdue the independent variabless1; s2; s3 ; ��12 = (�s1)(�s2)(�s012) ; ��23 = (�s2)(�s3)(�s123) ; � = (�s)(�s2)(�s012)(�s123) : (C.4)Note that the variable � is unity in the region where all above invariants are negative,but � = exp(�2�i) in the physial region where s; s2 > 0; s012; s123 < 0. In themulti-Regge kinematis we obtain the following general result:I(1)6 (�) + F (1)6 = � 3�2 � 14 ln2 �� 12 ln��ln (�t1)(�t3)(�s2)�2 � 1��� 12 Li2(1� �)+ ln �s1�2 �1� � ln �t1�2 �+ ln �s2�2 �1� � ln �t2�2 �+ ln �s3�2 �1� � ln �t3�2 ��14 �ln2 ��12�2 + ln2 ��23�2 �+ 12 ln ��12�2 �ln (�t1)(�t2)�4 � 1��+ 12� ln (�t1)(�t3)�4+12 ln ��23�2 �ln (�t2)(�t3)�4 � 1��� 14 �ln2 �t1�t2 + ln2 �t3�t2�+ 72�2 : (C.5)At �rst sight the arguments of the dilogarithm funtions in the multi-Regge kine-matis are either 0 or 1, and we an use the relationsLi2(0) = 0 ; Li2(1) = �2 : (C.6)However, in the physial region s; s2 > 0, s1; s3; s012; s123 < 0 it is needed to beautious: we should analytially ontinue the expressionf(�) = Li2(1� �) ; � = ss2s012s123 (C.7)from the region � � 1 to the region � � e�2�i along a unit irle. In multi-Reggekinematis we have s2 � s012s123s � �~k1 + ~k2�2 (C.8)and s2(1� �)��1 = �~k1 + ~k2�2 : (C.9)Therefore 1� � > 0, and after the analyti ontinuation we obtainf(�) = � Z 1��0 dtt ln(1� t) + 2�i Z 1��1 dtt � 2�i ln(1� �) (C.10)with ln(1��) being real valued. We obtain the following result in the physial regions; s2 > 0, s1; s3; s012; s123 < 0:I(1)6 (�) + F (1)6 = � 3�2 + �i0B�ln (�t1)(�t3)�~k1 + ~k2�2 �2 � 1�1CA+ ln �s1�2 �1� � ln �t1�2 �+ ln �s2�2 �1� � ln �t2�2 �+ ln �s3�2 �1� � ln �t3�2 �� 14 �ln2 ��12�2 + ln2 ��23�2 �+12 ln ��12�2 �ln �t1�2 + ln �t2�2 � 1��+ 12 ln ��23�2 �ln �t2�2 + ln �t3�2 � 1���14 �ln2 �t1�t2 + ln2 �t3�t2�+ 12� ln (�t1)(�t3)�4 + 72�2 : (C.11)32



It is possible to derive, from the BDS amplitude, an expression for M2!4 in theone-loop approximation for the quasi-multi-Regge kinematis, where s >> s1; s3 >>s2 � t1; t2; t3. In this ase it is onvenient to introdue Sudakov variables for themomenta of the two produed partileskr = �rpA + �rpB + k?r ; (k?r )2 = �~k2r ; (C.12)where1� �1 � �2 � �2s ; 1� �1 � �2 � �2s ; s�r�r = ~k2r � ~q21 � ~q22 � ~q23 � �2 : (C.13)We an express various invariants in terms of these variabless2 � s(�1 + �2)(�1 + �2)� (~k1 + ~k2)2 ; (C.14)s1 � �1s ; s3 � �2s ; s012 � (�1 + �2)s ; s123 � (�1 + �2)s : (C.15)The expression for the funtion f(�) = I(1)6 (�) + F (1)6 (for � = 1) in the quasi-multi-Regge kinematis an be obtained by adding an aditional termf(�)! f(�) + �f ; (C.16)where�f = �12 ln s�12�23s1s2s3 ln st1t3s012s123�2 + 12 ln s012�12s1s2 ln t3s1s2st2s2012s123+12 ln s123�23s3s2 ln t1s3s2st2s012s2123 � 14 ln2 s�12�23s1s2s3 � 12 ln2 s012�12s1s2 � 12 ln2 s123�23s3s2�12 ln s�12�23s1s2s3 ln s012s123�12�23s1s3s22 � 12 ln s012�12s1s2 ln s123�23s3s2 + �2�12Li2 �1� ss2s012s123�� 12Li2 �1� t3s1t2s012�� 12Li2 �1� t1s3t2s123� : (C.17)Here the signs �1 are implied to be in front of all invariants si; ti. Note that the ex-pression for �f in the quasi-multi-Regge kinematis does not ontain large logarithms,beause the arguments of all logarithms and dilogarithm funtions are of the order ofunity. It is proportional to the logarithm of the amplitude for the transition of twoReggeized gluons into two partiles with the same heliity. Similar to the ase of M4and M5 the expression for M2!4 in the quasi-multi-Regge kinematis oinides withthe exat BDS amplitude. The transition of two reggeons to partiles with oppositeheliity in the one-loop approximation an be found in Ref. [51℄. These transitionamplitudes are needed for the alulation of the next-to-next-to leading orretions tothe BFKL equation.D The 3! 3 amplitudeHere we onsider the BDS amplitudeM6 in the hannel orresponding to the transition3! 3 with the following invariants (see Fig. 9):s = (pA + k1 + pB)2 ; s1 = (pA + k1)2 ; s3 = (pB0 + k2)2 ; (D.1)s13 = (k1 + pB)2 ; s02 = (pA0 + k2)2 ; t02 = (pA0 + k2 � pA)2 ; (D.2)t1 = (pA0 � pA)2 ; t3 = (pB0 � pB)2 ; t2 = (pA0 � pA � k1)2 : (D.3)33



The funtions Î(1)6 (�) and F (1)6 in this ase are given by [31℄:Î(1)6 (�) = � 3�2 + 12� ln (�s1)(�s13)(�s3)(�s02)(�t1)(�t3)�12�14 �ln2 �s1�2 + ln2 �s13�2 + ln2 �s3�2 + ln2 �s02�2 + ln2 �t1�2 + ln2 �t3�2 � ; (D.4)F (1)6 = �12 ln �s1�s ln �s13�s � 12 ln �s13�t02 ln �t3�t02 � 12 ln �t3�t2 ln �s3�t2� 12 ln �s3�s ln �s02�s � 12 ln �s02�t02 ln �t1�t02 � 12 ln �t1�t2 ln �s1�t2� 12Li2 �1� s1s3st2 �� 12Li2 �1� s13s02t02s �� 12Li2 �1� t1t3t02t2�+ 14 �ln �t02�s �2 + 14 �ln �t02�t2�2 + 14 �ln �t2�s �2 + 92 �2 : (D.5)In multi-Regge kinematis� s� �s1;�s3;�t02 � �t1;�t2;�t3 > 0 (D.6)it is helpful to use the de�nitions� �12 = (�s1)(�t02)�s02 ; ��23 = (�s3)(�t02)�s13 ; �0 = (�s13)(�s02)(�t02)(�s) ; (D.7)whih allows us to simplify the above expressionsI(1)6 (�) + F (1)6 = � 3�2 � 12 ln2 �0 � 12 ln�0 ln (��12)(��23)(�t02)(�t2) � 12 Li2(1� �0)+ ln �s1�2 �1� � ln �t1�2 �+ ln �t02�2 �1� � ln �t2�2 �+ ln �s3�2 �1� � ln �t3�2 ��14 �ln2 ��12�2 + ln2 ��23�2 �+ 12 ln ��12�2 �ln (�t1)(�t2)�4 � 1��+ 12� ln (�t1)(�t3)�4+12 ln ��23�2 �ln (�t2)(�t3)�4 � 1��� 14 �ln2 �t1�t2 + ln2 �t3�t2�+ 72�2 : (D.8)In the physial region, where s; t02 > 0 and s1; s3; s02; s13 < 0, one has �0 = exp(2�i),i.e. we have to ontinue in �0 along the unit irle. The relation� t02(1� �0) � (~q1 + ~q3 � ~q2)2 (D.9)implies that, after ontinuation, 1� �0 < 0. Therefore, Li2 beomesf(�0) = � Z 1��00 dtt ln(1� t)� 2�i Z 1��01 dtt � 2�2 � 2�i ln j1� �0j ; (D.10)whih allows to obtain the extra phase fator C 0 violating the Regge fatorization inthis physial region.E High energy sattering amplitudes in theleading logarithmi approximationIn this appendix we briey summarize results for the high energy 2 ! 3, 2 ! 4,and 3 ! 3 sattering amplitudes in Yang-Mills theories in the leading logarithmiapproximation. 34



For the 2 ! 3 ase most of the results have already been listed in setion 4.2. Weonly quote, for the physial region where all energies are positive, the fatorized form:A2!3�(t1)�(t2) = 2st1t2 �(e�i�js1j)!1 (e�i��12)�!2V1(t1; t2; �12)� (e�i��12)�!1V2(t1; t2; �12)sin�(!1 � !2) (e�i�js2j)!2 :(E.1)Here the trajetory funtions !i and the prodution verties V1, V2 have been om-puted in LLA and NLO, whereas the phases and sin fators are part of the analytirepresentation, and do not need to be expanded in powers of g2. However, sine in thispaper we restrit ourselves to the LLA, we an put (e�i��12)�!1 � 1. For the real partwe �nd the result (96) whih oinides with (4).For the 2! 4 amplitude we start from the ansatz (97):A2!4�(t1)�(t3) = 2st1t2t3 Z d!022�ih � js1j�2 �!1�!02 � js012j�2 �!02�!3 � jsj�2�!3 �120�203�3 W1(t1; t2; t3; �12; �23;!02)sin�!120 sin�!203+� js3j�2 �!3�!02 � js123j�2 �!02�!1 � jsj�2�!1 �320�201�1 W2(t1; t2; t3; �12; �23;!02)sin�!320 sin�!201+� js2j�2 �!02�!1 � js012j�2 �!1�!3 � jsj�2�!3 �201�13�3 W3(t1; t2; t3; �12; �23; �123;!02)sin�!201 sin�!13+� js2j�2 �!02�!3 � js123j�2 �!3�!1 � jsj�2�!1 �203�31�1 W4(t1; t2; t3; �12; �23; �123;!02)sin�!203 sin�!31+� js3j�2 �!3�!02 � js1j�2 �!1�!02 � jsj�2�!2 �320�120�20 W5(t1; t2; t3; �12; �23;!02)sin�!320 sin�!120 i: (E.2)The partial wave funtions Wi=1;2;3;4;5 have been listed in setion 4.2. They havebeen obtained from the �ve single energy disontinuity equations, and use has beenmade of the BFKL bootstrap equations in the olor otet hannel.Inserting these partial waves into the ansatz (97) or (E.2), we an study the fullamplitude in the di�erent kinemati regions. From now on we will speialize on theplanar approximation, i.e. in the signature fators in eq.(93) we only retain the phases.Beginning with the physial region where all energies are positive, we �rst olletthe Regge pole terms in all �ve partial waves Wi. Their sum an be written in thesimple fatorizing form: A2!4;pole�(t1)�(t3) = 2st1t2t3 �(e�i�js1j)!2 (e�i��12)�!2V1(t1; t2; �12)� (e�i��12)�!1V2(t1; t2; �12)sin�!12 (e�i�js2j)!2 �(e�i��23)�!3V1(t2; t3; �32)� (e�i��23)�!2V2(t2; t3; �32)sin�!23 (e�i�js3j)!3 : (E.3)In order to arrive at this result, we have ombined, in (100) and (101), the Regge poleontributions of W3 and W4 (together with the signature fators), and we have usedthe identity: sin�!23sin�!13 � sin�!1sin�!2 + sin�!21sin�!31 � sin�!3sin�!2 = 1: (E.4)35



The prodution verties are the same as in the 2! 3 ase, (E.1). As in the 2! 3 ase,in the leading order approximation we put, in (E.3), (e�i��)�! � 1. For the real partthe terms proportional to ln(�=�2) � 1� in the prodution verties V1 and V2 anel,and we are bak to the fatorizing form in (4). As to the addititional Regge ut pieesontained in W3 and W4, they anel ompletely:A2!4;ut�(t1)�(t3) =�2st1t2t3 � (js1j)!1 Z d!022�i (e�i�js2j)!02 � 1sin�!13 + 1sin�!31� (Vut � Vp) (js3j)!3 (E.5)= 0:It is instrutive to study the anellation of the imaginary part of this Regge ut pieein more detail: from the representation (97) whih shows the energy phase fatorsexpliitly it is straightforward to ompute the single disontinuities in s2, s012, s123,and in s. When summing these single disontinuities (i.e. when omputing the fullimaginary part), we �nd omplete anellation of the Regge ut piee. This anellationof Regge ut ontributions in the planar amplitude is nothing else but the Mandelstammehanism [45℄ of the anellation of the Amati-Fubini-Stanghellini Regge ut [46℄in planar diagrams.The unphysial region where all energies are negative an be obtained from (E.3)and (E.5) by simply putting the phase fators equal to unity: the fatorizing form ofthe Regge pole ontributions is preserved, and the ut piees in W3 and W4 anel.Most interesting is the physial region where s; s2 > 0 and s1; s3; s012; s123 < 0.Nonzero phases appear only in s and in s2. After some algebra we rewrite (E.2) in thefollowing form: A2!4�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3 � (E.6)e�i�!2(js2j)!2 �� V1sin�!12 + e�i�!12 V2sin�!21��e�i�!32 V1sin�!23 + V1sin�!32��e�i�!31 sin�!1 sin�!23sin�!2 sin�!13 + e�i�!13 sin�!3 sin�!21sin�!2 sin�!31 � e�i�(!12+!32� V2V1sin�!21 sin�!23 �� 2st1t2t3 (js1j)!1(js3j)!3 Z d!022�i (e�i�js2j)!02  e�i�!31sin�!13 + e�i�!13sin�!31! (Vut � Vp)) :It is important to study the infrared singularities of the phases of this expression. Firstwe note that the prefator e�i�!2 ontains, in lowest order in a, the 1=� singularity ofthe gluon trajetory (44). All other phase fators ontain di�erenes of trajetoryfuntions and are �nite as � ! 0. Expanding the square brakets in powers of a wearrive at (107): A2!4�(t1)�(t3) = 2st1t2t3 g2C(q2; q1)C(q3; q2)(js1j)!1(js3j)!3 �e�i�!2(js2j)!2 �1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1�����2i� 2st1t2t3 Z d!022�i (e�i�js2j)!02Vut:(E.7)36



Following the steps desribed in setion 4.2 we fator out the gluon trajetory (detailsare presented in [47℄):Z d!022�i (e�i�js2j)!02Vut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02Vut;redued:(E.8)Insertion into (E.7) leads:A2!4�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3(js2j)!2g2C(q2; q1)C(q3; q2)e�i�!2 ��1 + i�2 �!1 + !2 + a�ln �12�2 � 1��+ !3 + !2 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02Vut;redued� (E.9)The one loop approximation of the Regge ut ontribution, (105), is infrared singular:g2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02Vut;redued= g2C(q2; q1)C(q3; q2)2 "a ln �123�2q21q22 + 1�!+ :::# ; (E.10)whereas the two loop and higher order terms of Vut;redued an been shown to beinfrared �nite [47℄. As a onsequene, in (E.9) the oeÆient in the square brakets isinfrared �nite, and the singularities are olleted in the overall phase fator e�i�!2 .For ompleteness we also list those energy disontinuities whih do not vanish inthis kinemati region, the disontinuity in the total energy s and the disontinuity ins2. We again start from the analyti representation (E.2). After some algebra (whihinludes approximating phase fators by unity) we �nd4:diss A2!4;ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 Vut (js3j)!3 : (E.11)In a similar way we ompute the disontinuity in s2:diss A2!4;ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 ~Vut (js3j)!3 ; (E.12)where, instead of (103),~Vut = t2N8 g4 Z d2kd2k0(2�)6 [C(q2; q1)� q21(k + q1)2C(k + q2; k + q1)℄� G(8A)(k + q2;�k; k0 + q2;�k0;!02)� [C(q3; q2)� C(k0 + q3; k0 + q2) q23(k0 + q3)2 ℄: (E.13)In lowest order we have:~V (0)ut = g2C(q2; q1)C(q3; q2)2!02 a ln �123�2�12�23 + 1�! : (E.14)4We use the de�nition dis f(s) = 12i (f(s+ i�)� f(s� i�)).37



A ompletely analogous disussion applies to the ase 3 ! 3 (Figs. 9, 11) in themulti-Regge region (for a detailed disussion of the `analyti' representation see [44℄).Our ansatz is:A3!3�(t1)�(t3) = 2st1t2t3 Z d!022�ih � js1j�2 �!1�!02 � js02j�2 �!02�!3 � jsj�2�!3 �120�203�3 U1(t1; t2; t3; �12; �23;!02)sin�!120 sin�!203+� js3j�2 �!3�!02 � js2j�2 �!02�!1 � jsj�2�!1 �320�201�1 U2(t1; t2; t3; �12; �23;!02)sin�!320 sin�!201+� js02j�2 �!02�!3 � js13j�2 �!02�!1 � jsj�2�!1+!3�!02 �201�203�(1+3)20 U3(t1; t2; t3; �12; �23; �123;!02)sin�!201 sin�!203 sin�(!1 + !3 � !20)+� js02j�2 �!(t1) � js13j�2 �!(t3) � js2j�2 �!02�!1�!3 �3�1�20(1+3) U4(t1; t2; t3; �12; �23; �123;!02)sin�(!20 � !1 � !3)+� js3j�2 �!3�!02 � js1j�2 �!1�!02 � jsj�2�!02 �320�120�20 U5(t1; t2; t3; �12; �23;!02)sin�!320 sin�!120 i; (E.15)where �i(j+k) = e�i�(!i�(!j+!k)) + 1; �(i+j)k) = e�i�((!i+!j)�!k) + 1: (E.16)The piees labelled by 1,2,5 are `normal' and ontain only Regge poles. They oinidewith those of the 2! 4 amplitude:Ui =Wi ; i = 1; 2; 5; (E.17)and they �t into the fatorization pattern, The terms 3 and 4 have the extra Reggeut piee shown in Fig. 12 (right �gure), whih is desribed in terms of the olor otetBFKL equation. In analogy with (100), (101) one �nds:U3 = sin�!1 sin�!3sin�!02 V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)+ sin�!201 sin�!203 (Uut � Up) ; (E.18)U4 = 1sin�!02V2(t1; t2; �12) 1!02 � !2V1(t2; t3; �23)+ (Uut � Up) : (E.19)The ut piee has been given in (103), (105)):Uut = t2N8 g4 Z d2kd2k0(2�)6 q21(k � q1)2C(q2 � k; q1 � k)� G(8A)(k; q2 � k; k0; q2 � k0;!02)C(k0 � k2; k0) q23(k0 � k2)2 ; (E.20)with the lowest order approximationU (0)ut = g2C(q2; q1)C(q3; q2)2!02 a ln �12�23(~q1 + ~q3 � ~q2)2q22 : (E.21)It ontains Regge ut singularitities, and breaks the fatorization. Note that, in on-trast to the 2! 4 ase, the one loop approximation of the Regge ut term, has no 1=�pole, i.e. it is infrared �nite. 38



In analogy with the 2 ! 4 ase, these Regge ut piees does not show up in thephysial region where all energies are positive. It is, again, only in the other physialregion s; s2 > 0, s1; s3; s13; s02 < 0 where these piees beome visible. Proeeding inthe same fashion as before (E.6) we �nd for this region:A3!3�(t1)�(t3) = 2st1t2t3 (js1j)!1(js3j)!3 �(js2j)!2he�i�!2 � V1sin�!12 + e�i�!12 V2sin�!21��e�i�!32 V1sin�!23 + V1sin�!32��2i V1V2sin�!2 i+ 2ist1t2t3 (js1j)!1(js3j)!3 Z d!022�i (e�i�js2j)!02Uut:(E.22)The last term an be written asZ d!`22�i (e�i�js2j)!02Uut = g2C(q2; q1)C(q3; q2)(e�i�js2j)!2 Z d!022�i (e�i�js2j)!02Uut;redued:(E.23)It is important to note that the one loop approximation, U (0)ut,g2C(q2; q1)C(q3; q2) Z d!022�i (e�i�js2j)!02Uut;redued= g2C(q2; q1)C(q3; q2)2 �a�ln �12�23(~q1 + ~q3 � ~q2)2q22�+ :::� ; (E.24)as well as the higher order terms are infrared �nite. We therefore write A3!3 in thefollowing form:A3!3�(t1)�(t3) = 2st1t2t3 (js1j)!1(js2j)!2(js3j)!3g2C(q2; q1)C(q3; q2)��1 + i�2 �!1 + a�ln �12�2 � 1��+ !3 + a�ln �23�2 � 1����2i� Z d!022�i (e�i�js2j)!02Uut;redued� : (E.25)On the rhs, the square braket term is infrared �nite. This shows that the infraredstruture of A3!3 is quite di�erent from A2!4.We onlude this setion by listing the disontinuities in the energies s and s2:diss A3!3;ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 Uut (js3j)!3 : (E.26)In a similar way we ompute the disontinuity in s2:diss A3!3;ut�(t1)�(t3) � ��st1t2t3 (js1j)!1 Z d!022�i (js2j)!02 ~Uut (js3j)!3 ; (E.27)where ~U is obtained from U in the same way as ~V was obtained from V .In order to ompare these results with the BDS formula, we divide the satteringamplitudes by their Born approximation. For example, we obtain M2!3 by dividingA2!3 by the Born approximation2st1t2 g2Æ�A�A0Æ�B�B0 gC(q2; q1)and M2!4 by dividing A2!4 by2st1t2t3 g2Æ�A�A0 Æ�B�B0 g2C(q2; q1)C(q3; q2):39
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