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Abstract

We study cutoff effects at tree-level of perturbation theory for maximally
twisted mass Wilson, overlap and the recently proposed Creutz fermions.
We demonstrate that all three kinds of lattice fermions exhibit the expected
O(a?) scaling behaviour in the lattice spacing. In addition, the sizes of
these cutoff effects are comparable for the three kinds of lattice fermions
considered here. Furthermore, we analyze situations when twisted mass
fermions are not exactly at maximal twist and when overlap fermions are
studied in comparison to twisted mass fermions when the quark masses are
not matched.
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1 Introduction

This paper is an investigation of the scaling behaviour towards the continuum
limit for different kinds of lattice fermions at tree-level of perturbation theory. In
a previous conference contribution [I] we had only discussed the case of Wilson
twisted mass fermions [2] B]. See ref. [4] for a review on twisted mass lattice
QCD. Here we add overlap fermions [5]. See ref. [6] for a review on chirally
symmetric lattice actions and related topics. During the completion of this paper
a new kind of lattice fermion appeared in the literature, the so-called Creutz
fermions [7] and we decided to investigate also these lattice fermions, as well as
the fermions defined by a related action suggested by Borici [§]. We will in the
following generically refer to Creutz fermions having in mind both Creutz and
Borici formulations.

All of these three kinds of lattice fermions are expected to show an O(a?) scal-
ing behaviour in the lattice spacing. While for overlap fermions this is achieved
by an exact lattice chiral symmetry, for twisted mass fermions this is achieved by
a residual Ny = 2 flavoured continuum chiral symmetry which needs, however,
a tuning of the (untwisted) PCAC quark mass to zero. Creutz fermions exhibit
an exact Ny = 2 flavoured continuum chiral symmetry, but they break however a
number of discrete symmetries such as parity, charge conjugation and time reflec-
tion [9]. This could lead to a plethora of terms in the Symanzik effective action,
which would make approaching the continuum limit a rather difficult task.

Wilson twisted mass fermions are described by an ultra-local action with only
nearest neighbour interactions. Hence, they are comparably cheap to simulate.
Their major drawback is the explicit O(a?) isospin-breaking. Overlap fermions
have the great advantage of an exact lattice chiral symmetry [10]. However,
while still local in the field theoretical sense [11], they couple each lattice point
with all others and are an order of magnitude more expensive to simulate than
twisted mass fermions. Finally, Creutz fermions [7] are also described by an
ultra-local action, again with only nearest neighbour interactions. As has been
shown recently, they break however a number of discrete symmetries and isospin
symmetry [9].

Twisted mass and Creutz fermions are defined for Ny = 2 flavours of quarks.
These two quark flavours can either be taken as mass degenerate, or, some explicit
flavour breaking term has to be added. In contrast, overlap fermions can be used
for a single quark flavour.

The focus in this paper is to study the scaling behaviour with the lattice
spacing. In particular, we are interested in the relative size of the cutoff effects
comparing maximally twisted mass, overlap and Creutz lattice fermions.

In particular, we will consider the scaling behaviour of the meson correlation
function the pseudoscalar mass and decay constant as well as the nucleon mass.
It is important to remark here that, at tree-level of perturbation theory there is,
of course, nothing like a real meson or baryon. However, since we use the same



interpolating fields as in full QCD, we will take the freedom to use the notation
of mesons and baryons throughout this letter.

We will also address the question of the size of cutoff effects when twisted mass
fermions are not exactly tuned to maximal twist. In addition, we investigate
ratios of mesonic quantities built from twisted and overlap fermions when the
quark masses are unmatched.

While actual practical calculations with overlap and twisted mass fermions
are already rather advanced, the formulation of chiral invariant fermions following
Creutz is still very new.

In [I] we gave a first account of the size of cut-off effects at tree-level of
perturbation theory for twisted mass fermions. Here we extend the techniques
described in [I], following [12], to the case of overlap and Creutz fermions. A
more detailed account of our earlier calculations and a pedagogical introduction
to the techniques we have used, can be found in [I3].

2 Lattice propagators

In this section we provide the momentum space propagators for the different
kinds of lattice fermions we have considered. They are the building blocks for the
computation of the meson and nucleon correlation functions from which in turn
the masses and decay constants are extracted. To fix the notation our setup is a
hypercubic lattice of size L3 x T with spacing a.

Wilson twisted mass fermions

The expression for the Wilson twisted mass (Wtm) fermion propagator in the
twisted basis, at tree-level of perturbation theory (PT) and in momentum space
can be derived from the Wtm operator given for example in ref. [4], and it is
given by

_ —ippyuly + M(p) 11y — gy Y573

where

1 2 ap,,
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Pu = asm(apu), bu =~ s1n(7), M(p) = mo + B Z P, (2)
n

and where 1 and 1; are the identity matrices in Dirac and flavour space. The
structure in colour space has not been written since it is just an identity matrix
at tree level of PT. The parameters mg and p, represent the untwisted and
twisted quark masses, respectively. Maximal twist —in the case of tree-level of



perturbation theory— is achieved by setting my = 0. We then expect to have only
O(a?) lattice spacing effects in physical correlation functions [3].

Overlap fermions

The expression for the overlap propagator in momentum space at tree-level of
perturbation theory can be derived from the expression of the overlap operator
given for example in ref. [I0], and it is

5 —i(1 — %)F(p)_lpﬁu% + M(p)1
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where: ,
F(p) =145 >0} (4)
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and 1 is the identity matrix in Dirac space. Note that in the case of overlap
fermions we only discuss one flavour. Due to the existence of an exact lattice
chiral symmetry, we again expect an O(a?) scaling behaviour towards the contin-
uum limit, if the correlation functions are computed with the proper improved
operators (see for example ref. [14]).

Creutz fermions

The Creutz-Dirac operator can be found in different forms in ref. [7,[8,9]. We have
rescaled the Creutz-Dirac operator with a factor R that we leave unspecified for
the moment. As will be discussed below and in the appendix, this normalization
factor R is needed to obtain at tree-level the correct continuum limit for the
correlation functions we have studied. In the appendix we define all the relevant
functions and we show that the Creutz operator can be brought to the form

. N . a RE=
De(p) =i ), puu—ig ), BpTutmol, (6)
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where 4, and T, are linear combinations of gamma matrices defined in the ap-
pendix. We recall that Creutz fermions, as explicitly shown in the appendix,
depend in general on two paramenters R and C'. From our final expression of the
Creutz operator (), we can obtain the quark propagator for Creutz fermions. In
the continuum limit, the quark propagator can be written as

§Cont(p) - _Z Zﬂ pﬂ ,_)//J + mo 1 (7)
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which is not the continuum Dirac propagator unless the values of C' and R,
whose dependence is hidden in the matrices @ and 7,, are chosen properly.

From equation () it is also clear that in order to obtain the correct continuum
limit of the quark propagator, we have to impose that ¥ = @’ ~ is again a gamma,
matrix, which is equivalent to say that the following relation holds true

{(dT'Y)ua (@)} = Z Gpp Gov {Vps Yo} =2 Z Gpp Gpy = 2 Oy (8)
2y P

Taking into account the form of the matrix a defined in the appendix, v is a
gamma matrix if and only if the following two conditions hold

35 3
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Therefore, from this discussion, it can be concluded that the right continuum
limit of the quark propagator can be obtained only when C' = 3/4/10 and R = 2.

However, motivated by the first version of [7], we have decided to study
as well the case C' = 3/y/14. In this case we know that ¥ is not a gamma
matrix, since the condition given by equation (@) does not hold. R can be still
determined and must be R = 21/2 in order to satisfy equation (I0). As expected,
the analytical expression obtained for the quark propagator in this case does not
correspond to the continuum one.

But, as it will be shown in the next sections where we present our results,
the continuum limits for the pseudoscalar correlation function, mass and decay
constant turn out to be the correct ones for the two values of C' studied here.

There are two reasons to explain this behaviour. On one hand, in the cor-
relation function only the contribution from the pole survives in the sum over
the momenta. This implies that all the possible crossed terms of the momen-
tum which appear in the quark propagator, whose origin is the non-realization of
equation (@), are cancelled. Moreover the properly chosen value of R normalizes
the quark propagator in order to obtain the 'would-be’ correct continuum limit
in absence of crossed terms.

Borici fermions

The action suggested by Borici [§] is a slight modification of the Creutz-Dirac
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operator and reads
. N A
B(p) = ;wﬂp# —zggF”pi—i—mo 1, (11)

where I', are linear combinations of gamma matrices defined in the appendix.
The corresponding propagator can be written as

—i Y., Gulap)y, +mo 1
22, Gulap)* +mi

where the functions G, (ap), defined in the appendix, are trigonometric functions
of their argument.

§B (p) = (12)

3 Correlation functions

In this section we give the expressions for the pseudoscalar and proton corre-
lation functions at tree-level of perturbation theory. While we evaluated the
pseudoscalar correlation function for all lattice fermions considered in this work,
we use the proton correlation function only to demonstrate how the O(a) im-
provement works when the Wilson average or equivalently the mass average is
performed in case standard Wilson fermions are considered.

The interpolating fields describing the charged pions, 7+ and 7~ are

PE(z) = P(x) FiP%(x) (13)

where P?(z) = (z)y55 ¢ (x), with a = 1,2,3, is the pseudoscalar density and
7% are the standard Pauli matrices. The computation for Wilson twisted mass is
performed in the twisted basis, where the form of the local operator (I3]) stays
unchanged [2].

The quark propagator can be decomposed in terms of the gamma matrices as

S’(p) = SU(p)]l + Z Su(p)%L (14)

in the case of overlap and Creutz fermions, while for twisted mass fermions an
additional term proportional to 5 is present

S(p) = IL+ZS )Y + S5(p)7s (15)

With such a decomposition, the pseudoscalar correlation function can be written

ad]
N_.N,
)= 72 ZZZD PG, (5, 1) S (B 1), (16)
pa
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!The Wtm propagator has also a flavour structure. For the pseudoscalar correlation function
only a single flavour component is needed.



with o = U,1,2,3,4 or p = U, 1,2,3,4,5 depending on the kind of fermion
that is being considered. N, is the number of colours and N, is the number of
Dirac components. T" = aN, and Ny is the number of lattice points in the time
direction. The expression in eq. ([I6) can be evaluated as it stands, or, a time-
momentum representation of the quark propagator can be obtained for a lattice
with infinite time extension, by performing the integration over p, analytically,
see [13] for a discussion in case of twisted mass fermions. We have mostly used
the representation of eq. (I6), but checked for twisted mass fermions the results
also in the time-momentum representation. In the appendix we give the explicit
expression for the Wilson twisted mass quark propagator in the time-momentum
representation for a lattice with infinite time extent.
The local interpolating field describing the proton is given byﬁ

Po(r) = —V2€0 [df(x) 0_175Ub(,l')} Ug,e(T). (17)

The expression for the time dependence of the proton correlation function for
standard Wilson fermions is then

Cosl) = T Y (L a0 + L0} (18)

with the definitions

Lu(@.q,t) = Su(=(F+0.O){(Na+1) SulB.)Su(@.0)+

+ (Na+3) Y Su(F0Su(@ 1)} (19)
Lu@dt) = S+ D, 0{ (Na+3) Suli)Su(d. )+

T (Na+1) Y SuB0Su@ 0 ) (20)

Sy and S, are the components of the quark propagator for standard Wilson
fermions, which can be obtained from the expression of the quark propagator for
Wilson twisted mass fermions, given in the appendix in eq. (24]), just by setting
ttq = 0. These results have been cross-checked with a standard inverter on a cold
gauge configuration.

2The Greek (Latin) letters denote Dirac (colour) components and u, d denote the flavour
content. C' is the charge conjugation matrix and [] denotes spin trace.



4 Scaling tests on correlation functions, masses
and decay constants

In this section we give some results from a scaling analysis in the lattice spacing.
At tree-level a dimensionless quantity can be only a function of mZL, a/L and am,
where m here indicates generically the quark mass. To perform the continuum
limit one can fix mL to a certain value and the remaining dependence of the
dimensionless quantity will be then in a/L. The continuum limit is then obtained
sending N = L/a to infinity. In the following we will set a = 1 and the 1/N
and 1/N? dependence of the dimensionless quantities under investigation will
correspond to O(a) and O(a?) scaling violations. We remind that if not infinity
the time extent T" will be always set to be proportianal to L.

In particular, we consider the correlation function C' at a fixed physical time
t/N, the pseudoscalar decay constant fps and the pseudoscalar and proton masses
M. This leads us to consider the dimensionless quantities N*C'(¢/N), NM and
N fps.

We will start our discussion with an explicit demonstration of O(a) improve-
ment for standard Wilson fermions from the Wilson and mass averaging proce-
dures. We then turn over to the comparison of the size of scaling violations from
all three lattice fermions considered here. In particular, we will compare the
meson correlation function as well as the corresponding meson mass and meson
decay constant.

4.1 Wilson average and mass average for standard Wilson
fermions

In Ref. [3] it has been demonstrated that when averaging physical observables
computed with standard Wilson actions, i.e. setting p, = 0 in eq. (1), having
opposite signs of the quark mass mg (MA) or opposite signs of the Wilson pa-
rameter r (WA), these quantities are O(a) improvedd. Since WA and MA at
tree-level are equivalent, we will in the following only discuss the MA. As the
physical observable we consider the proton mass as it can be obtained as the
effective mass from the correlation function in eq. (I8]) using timeslices at ¢t = 4N
and t = 4N + 1. For the computation we fix [Nmgy| = 0.8. In the left graph of
fig. [ the behaviour of the proton mass NMp as a function of % is given when
two standard Wilson regularizations, differing only in the sign of the quark mass,
are used.

The behaviour of the proton mass in fig. [[] is linear in 1/N showing the
expected O(a) scaling violations of standard Wilson fermions. The proton mass
reaches, in both cases, its continuum value of NMp = 3|Nmy|, as expected in

3The MA is actually done taking into account the chirality of the correlation function under
investigation [3]. This is practically irrelevant for our study.



the absence of interaction. However, the slopes with which the continuum value
is reached i.e. the coefficients of the O(a) cutoff effects differ in sign. The right
graph of fig. [[lshows the continuum approach of the proton mass when the proton
mass is averaged over positive and negative values of the quark mass Nmyg. In
this case, the proton mass is plotted against 1/N? and the linearity in 1/N? nicely
shows the O(a)-improvement when the MA is applied.
In order to be more quantitative, we have used the following fitting functions
to describe the analytically computed values of the proton mass:
y1:a0+a1%+a2$, y2:b0+b1%+b2%. (21)
Here y; (y2) is the physical observable under consideration and its value in the
continuum limit is given by the coefficient ay (by). We use two functional forms,
the first formula of equation (2I) for a leading + behaviour (standard Wilson
fermions) and the second formula for O(a)-improved quantities.

The two lines in the left graph of fig. [ originate from a fit to equation (2I]) and
correspond to the proton mass obtained from the same Wilson actions differing
only in the sign of the quark mass. From the plot it is clear that in both cases
the value of the proton mass in the continuum limit is the same and the expected
one at tree-level of PT.

From the fit, the corresponding coefficients a; turn out to be the same in
magnitude but have opposite signs for positive and negative quark masses. Thus,
performing the (MA), it is to be expected that the O(a) effects cancel and the
scaling behaviour changes from a % to a # behaviour. This can indeed be seen
in the right graph of fig. [l Inspecting the fit coefficients a, and by, we find
as = by =~ 0.5. Therefore, the magnitude of the leading order cutoff effects does
not only change from an O(a) to an O(a?) behaviour but also the O(a?) effects do
not increase when performing the Wilson average with respect to the standard
case.

One interesting observation is the mass dependence of the coefficients a; and
by of eqs. (ZI)) for the pion and proton masses. We observe that in the case of
standard Wilson fermions, the coefficient a;/ag, which determines the relative
size of the O(a) cutoff effects, vanishes in the chiral limit proportionally to Nmy.
For Wtm fermions at maximal twist the coefficient b; /by, which determines the
relative size of the O(a?) cutoff effects, vanishes in the chiral limit, proportionally
to (Npq)?.

4.2 Comparing maximally twisted mass, overlap and
Creutz fermions

One interesting question is the relative size of cutoff effects when comparing max-
imally twisted mass, overlap and Creutz fermions. We have therefore performed
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Figure 1: In the left graph, the cutoff effects and the continuum limit of the proton mass
obtained from two standard Wilson actions differing only in the sign of the quark mass, |[Nmy| =

0.8 are shown. The lattices are 4 < N < 20. The lines are fits according to eq. ().

In the

right graph, the average of the proton masses obtained from the same two standard Wilson
regularizations with quark masses Nmg = £0.8 (MA) has been calculated. The solid line

represents a fit to eq. (2I)).

‘ N M H a ‘ b ¢
MTM 1| —0.0104167 0.000292154
OVERLAP 1 0.0208333 0.000783943
BORICI 1| —0.0494786 0.00558893
CREUTZ - V10 || 1 | —0.00781168 | —0.010171
CREUTZ - V14 || 1 | —0.0488288 0.00287405

Table 1: Table of fit coefficients for the pseudo scalar mass using N Mpg = a + b% + cﬁ.

a scaling analysis for the correlation functions themselves at a fixed physical dis-
tance, the pseudoscalar mass and the pseudoscalar decay constant. Since all the
quantities under investigation are O(a)-improved, we show them all as a function
of 1/N2.

Let us start with the pseudoscalar mass in fig. Pl As expected, we indeed find
a nice linear behaviour of the mass as a function of 1/N%. However, we observe
that the different kind of lattice fermions we have studied show quite distinct
lattice artefacts at O(a?). This can also be seen in fig. Bl where we exhibit the
dependence of the correlation function and the pseudoscalar decay constant as a
function of 1/N2.

In order to see the cutoff effects in a quantitative way, the coefficients of the fit
and the corresponding fit function for the three lattice quantities here considered,
obtained from the different regularizations are presented in Table [I, Table 2] and
Table [3] respectively.

From the results obtained here, no clear picture of a particularly good or bad
fermion discretization emerges. While we find that indeed all three kind of lattice
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Figure 2: The cutoff effects and the continuum limit of the pseudo scalar mass is shown. We
compare overlap, maximally twisted mass and Creutz fermions at fixed quark mass, Nm = 0.5,

Ny, =0.5 and Nmg = 0.5, respectively. The lattices are 4 < N < 64.
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Figure 3: In the left graph, the cutoff effects and the continuum limit of the pseudo scalar cor-
relation function is shown. We compare overlap, maximally twisted mass and Creutz fermions
at fixed quark mass, Nm = 0.5, Ny, = 0.5 and Nmy = 0.5, respectively. The lattices are
4 < N < 64. In the right graph, the pseudo scalar decay constants obtained from the same
lattice fermions as in the left graph are shown.

| Nfes | a | b | c
MTM 3.4641 0.0541266 | —0.000815548
OVERLAP 3.4641 0.108253 0.00554908
BORICI 3.4641 | —0.0676637 | —0.00486739
CREUTZ - V10 || 3.4641 0.293217 —0.0770494
CREUTZ - /14 || 3.4641 | —0.00790885 | —0.0367598

Table 2: Table of fit coefficients for the pseudo scalar decay constant using N fps = a + bﬁ +

1
Cm.
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(NCHN=0 [ & [ b [ ¢ |

MTM 0.109894 | 0.00457891 | —3.33302- 10"
OVERLAP 0.109894 | 0.0045789 0.000181822
BORICI 0.109894 | 0.00114427 | —0.00135812

CREUTZ - v/10 || 0.109894 | 0.0194625 | —0.00286602
CREUTZ - v14 || 0.109894 | 0.00486428 | —0.002942

Table 3: Table of fit coefficient for the pseudo scalar correlation function using N3C' =
a+byz + cx-

fermions show the expected O(a)-improvement, the (relative) size of the O(a?)
effects depends pretty much on the observable considered. If at all, one could say
that maximally twisted mass fermions show uniformly small O(a?) cutoff effects.
On the other hand, it is somewhat amazing that Creutz fermions which break
a number of important discrete symmetries do not suffer from very large O(a?)
cutoff effects. From our scaling analysis it is not possible to exclude a certain
type of lattice fermion. Only scaling tests for the interacting theory will reveal
the size of actual scaling violations of the observable considered.

5 Effects from non-optimal tuning

This section is devoted to the question of effects when tuning is performed non-
optimally. In particular, we study the cutoff effects when there is an O(a) error
in tuning to maximal twist. As a second example, we consider the case when the
quark masses of two lattice fermion formulations are not exactly matched. This
case is relevant for so-called mixed action simulations.

5.1 Out of maximal twist

Here we want to study a situation when we allow an O(a) error in setting the
untwisted quark mass to zero. In order to realize this situation at tree-level of
perturbation theory we ‘force’ these effects by simply fixing the twisted mass to
be the physical quark mass and the untwisted mass is set to be proportional to
%, as Nyqg = a and Nmg = & « O(a) where « is kept fixed and 3 is a measure
parametrizing the amount of violation of the maximal twist setup. The twist
angle w and the bare polar mass M can be obtained as a function of v and [ as

B IR ST 1 LR

Therefore, even if the condition of maximal twist can only be obtained up to O(a)
cutoff effects, which is generally the case in practical numerical simulations, the
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Figure 4: Left graph: Behaviour of the pion mass as a function of #, for lattices with size
4 < N < 64. The twisted quark mass is set to N, = 1.0 and the untwisted quark mass is zero
up to O(a) cutoff effects i.e. Nmo = & with g =0.0,1.0,2.0,10.0. Right graph: a zoom of the
graph on the left with an additional fit for the analytical data corresponding to 8 = 10.0 which
considers only large lattices 40 < N < 64.

observables, which are only functions of the polar mass, are still automatically
O(a) improved.

Moreover, equation (22 also shows how the size of the leading discretization
effects depends on the ratio between the untwisted and twisted quark masses.
This ratio in turn determines the value of the lattice spacing at which the
asymptotic % scaling sets in. Only when this ratio is small enough and hence
the lattice does not need to be chosen too large a reliable continuum limit using
reasonably sized lattices can be performed. The left graph of fig. 4l demonstrates

that the asymptotic scaling sets in for lattices with 4 < N < 64 when 0 < g <2

However, for g 2 10 the continuum limit is not reliable anymore if IV is chosen
to be too small. This can be seen in the right graph of fig. @l Using only small
values of N leads to an inconsistent continuum limit value. Therefore, larger
lattices are needed in order to obtain the correct continuum behaviour as can be
also seen in the right graph of fig. @ Here we have added a fit of the data for a
value of 8 = 10.0 taking only large lattices into account, i.e. using only values of
N > 40. In this case, indeed the right continuum value is obtained. Of course,
for practical simulations, using only lattices with N > 40 appears to be rather
unrealistic so to chose a correct ratio g becomes important.

5.2 Unmatched quark masses

In this section we want to study the continuum limit and the size of the cutoff
effects of lattice quantities constructed from ratios of physical observables com-
puted on the lattice from two different regularizations i.e. here Wilson twisted
mass fermions at maximal twist and overlap fermions. In particular, we want to
study the situation when both quark masses are not exactly fixed to the same

12
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Figure 5: The cutoff effects and continuum limit of the ratio of the pseudoscalar mass
computed for maximally twisted mass and overlap fermions. In both graphs Ny, = 0.5,
Nm =0.5-0.4/N? and t/N = 4. The left graph shows the full range of lattice sizes considered
while the right graph represents a zoom.

value but differ up to O(a?) effects.

The reason for studying such setup is that in real simulations using a mixed
but O(a)-improved action both masses can be fixed to the same value only up to
O(a?)effects. In order to realize non-matched quark masses, we fix the twisted
quark mass exactly at Ny, = 0.5 and allow for an O(a?) error in setting the

overlap quark mass,
Nm = 0.5 —v/N>. (23)

We will vary the parameter v from v = 0 to v = 4.0.

Similar to the case of twisted mass at a non-optimally tuned value of the
bare quark mass, the leading O(a?) cutoff effects can become very large when the
quark masses are substantially mis-matched. This might even induce the danger
of not achieving the right continuum limit when only too small lattice sizes are
used.

This is exemplified in fig. Bl In the left graph we show the scaling behaviour
in 1/N? for various values of the parameter v for the full range of the lattice
sizes. If v is small, we observe 1/N? scaling violations. Only in the case v = 4, do
the 1/N* corrections become relevant. More quantitatively a linear fit in 1/N?
including all the data points starting fron N = 4 is reliable for v < 1. While for
v ~ 4 we can include, in a linear fit in 1/N?, only the data points starting from
N =12.

Fig.Bldemonstrates that not only the slope of the ratio of pseudoscalar masses
versus 1/N? increases as we make the value of v larger, but also that the O(a?)
effects become significant as can be seen from the curvature in the plot for v = 4.
Moreover, for v = 4, the continuum limit fit is not reliable anymore if too small
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lattices are considered, which can be seen in the right graph of fig. Bl Thus, if
the matching is not performed with a good enough precision, large lattices have
to be used to avoid higher order cutoff effects and perform a reliable continuum
limit.

6 Conclusions

In this paper we have performed a scaling test in the lattice spacing towards the
continuum limit for three kinds of lattice fermions. Our setup has been tree-level
of pertubation theory. The lattice fermions considered here were Wilson twisted
mass, overlap and Creutz and Borici fermions. We looked at the pseudoscalar
correlation function at a fixed time and the corresponding pseudoscalar mass and
decay constant.

As a first step, we have verified automatic O(a) improvement for Wilson
twisted mass fermions and showed, with the example of the proton mass, the
mechanisms of mass average.

The relative comparison of all three kinds of lattice fermions we have consid-
ered did not result in a clear picture in the sense that one lattice fermion shows
consistently smaller or bigger O(a?) lattice artefacts than the other. Rather we
found that the sizes of O(a?) lattice artefacts depend on the observable consid-
ered with perhaps the exception of maximally twisted mass fermions which shows
a rather uniform behaviour with small O(a?) effects. Therefore, we expect that
also in practical simulations the O(a?) lattice artefacts can turn out to be quite
different depending on the physical observable considered.

Finally, we studied the situation when parameters are tuned non-optimally.
We considered twisted mass fermions when an O(a) error was allowed in the
tuning to maximal twist. In addition, we looked at ratios of physical quantities
built from overlap and twisted mass fermions. In this case we allowed an O(a?)
error in the matching of the quark masses. Our conclusion of these studies is that
when the corresponding O(a?) error is too large, the continuum limit becomes
not reliable if the lattice spacing is not small enough.
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Appendix

In this appendix we summarize some of the formula and definitions which have
been used in this work.

Wilson twisted mass fermions

For Wilson twisted mass fermions we give the analytic expression for the time-
momentum representation of the quark propagator on a lattice with infinite time
extent. Details of the computations can be found in ref. [13].

The propagator readﬂ,

. 1 . .
S(pt) = 2—81{sgn(t) sinh By, 1y — iakC(p)1; + [(1 — cosh Ey) + aM ()] 11
1

—iauq*y57'3}e*E1|5‘ + 0t g =11y
a2 (1 + aM(p))

(24)
Withﬁ ; ,
_ a -2 _ 0
M(p) = mqg + 3 ; ; K(®) = ; YiDis (25)
@K2(P) + M) + a2y
2 (14 aM(p)) ’
& = |1+ aM(p)|sinh E). (27)

cosh By =1+ (26)

Creutz fermions

Our starting point for the analysis of the Creutz action is the operator given
by
Do(p) =i Y (sulap) +culap)) 7+ mo 1 (28)
I

where 1 is the identity matrix in Dirac space and the momentum has already
been reexpressed in terms of the pole as

4y = (7+pu- (29)

4This expresion is valid for all the possible values of the discrete Euclidean time ¢, even if
it is negative or zero. This generalization has been done by using the properties of the Fourier
transform under change of sign of the argument.

Ssgn(t) is the sign of t, and we have denoted sgn(0) = 0. It is just a convention in order to
give one general expression for the propagator for all possible values of ¢.
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Starting from a reciprocal lattice labelled here by g, the poles of the Creutz-Dirac
operator are localized at (¢, q, ¢, ¢) and (—q, —¢, —q, —q), where ¢ is related to the
parameter C' by the equation C' = cos(q). In the following, we consider only the
former pole. In addition, we also define the parameter S = sin(g).

The relevant trigonometric functions for Creutz fermions are defined by

1 39

su(ap) = zselap) , sa(ap) = 5 =s4(ap) (30)
ulap) = pculap) , Ealap) = Seslap) 31

with the functions s and ¢ given by

s1(ap) = [p1 + pa — D3 — P4l (32)

so(ap) = [p1 — pa — P3 + Pa] (33)

s3(ap) = [p1 — P2 + 133 — Pa] (34)

34(%’0) = [ P1— P2 — —134] (35)
a ~

C1 (ap) D) [p1 +p2 pi] (36)
a4y o o

@W@———g[?—pg—p?+ﬁ} (37)
a ..

cww=—§H Ps + b3 — i) (38)
a

ci(ap) = =5 [Pt + P + Py +pi] (39)

With the expression of eq. (28) we obtain the corresponding propagator with
standard manipulations as

o =i, (Sulap) + aulap)) i+ mo

SC( ) 2
RS (5u(ap) + aulap)) " +m?

In order to understand the continuum limit of the Creutz-Dirac operator and the
role of the factor R, we will use in the following the notation of Borici in [§], with

a scalar product (v,2) = >, Ty
We thus write eq. (28) as

De(p) =i (v,a3(ap) + bé(ap)) +mo 1 =i (a’ v, 5(ap) +a ' bé(ap)) +me 1 (41)

where

(40)

_ r .. . . . N 9 9 A
5(ap) = — (Br, P2, D3, a)” Elap) = ) 002500 (42)
and the matrices @ and b
1 1 —1 —1
B 1 1 —1 —1 1
a— —
R 1 —1 1 —1
38 35 35 _ 3§
C C C C
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As a next step, we define

a'lb, y=aly, T=ay=aaly (43)

o
from which we obtain the final form of the Creutz-Dirac operator
. . .a £ T
De(p) =i ) Puiu—iz ) Bplu+mol. (44)
1 p
This is the expression given in eq. (@).
Borici fermions

Here we give the definitions we have used for Borici fermions. The I" matrices
multiplying the Wilson term are defined by

Tu= Y 0w, (45)

with the definition
1 -1 -1 -1
1 -1 1 -1 -1

-1 -1 -1 1

We incidentally note that >° v, =—>_ T.
The trigonometric functions appearing in the Borici propagator are given by

Gr(ap) = pr = 7 [ + 53 — B3 — ] (47)
Galap) = P — 7 [-9 + 53 — 7 — 7] (48)
Galap) = ps — 7 [-B} = 53 + 3 — 7] (49)
Galap) = pu— 7 [=03 — 3 — 03 + 7] (50)
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