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Abstra
tHigher-dimensional theories provide a promising framework for uni�ed extensionsof the supersymmetri
 standard model. Compa
ti�
ations to four dimensions oftenlead to U(1) symmetries beyond the standard model gauge group, whose breakings
ale is 
lassi
ally undetermined. Without supersymmetry breaking, this is alsothe 
ase for the size of the 
ompa
t dimensions. Fayet-Iliopoulos terms generi
ally�x the s
ale M of gauge symmetry breaking. The interplay with supersymmetrybreaking 
an then stabilize the 
ompa
t dimensions at a size 1=M , mu
h smallerthan the inverse supersymmetry breaking s
ale 1=�. We illustrate this me
hanismwith an SO(10) model in six dimensions, 
ompa
ti�ed on an orbifold.
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1 Introdu
tionHigher-dimensional theories provide a promising framework for uni�ed extensions of thesupersymmetri
 standard model [1℄. Interesting examples have been 
onstru
ted in �veand six dimensions 
ompa
ti�ed on orbifolds [2{7℄, whi
h have many phenomenologi
allyattra
tive features. During the past years it has be
ome 
lear how to embed theseorbifold GUTs into the heteroti
 string [8{10℄, separating the GUT s
ale from the strings
ale on anisotropi
 orbifolds [11℄. A 
lass of 
ompa
ti�
ations yielding supersymmetri
standard models in four dimensions (4D) have been su

essfully 
onstru
ted [12{14℄.For a given orbifold 
ompa
ti�
ation of the heteroti
 string, one 
an 
onsider di�erentorbifold GUT limits where one or two of the 
ompa
t dimensions are larger than theother �ve or four, respe
tively [10℄. One then obtains an e�e
tive �ve-dimensional (5D)or six-dimensional (6D) GUT �eld theory as intermediate step between the full stringtheory and the supersymmetri
 standard model. We shall fo
us on 6D �eld theories
ompa
ti�ed on T 2=Z2 with two Wilson lines. These models have four �xed pointswhere quantum 
orre
tions generi
ally indu
e Fayet-Iliopoulos terms [15,16℄. In the 
aseof the heteroti
 string the magnitude of these lo
al terms is O(MGUT), whi
h suggeststhat they may lead to a stabilization of the 
ompa
t dimensions at R � 1=MGUT [16℄.Quantum 
orre
tions to the va
uum energy density, the Casimir energy, play a 
ru
ialrole in the stabilization of 
ompa
t dimensions [17℄. Various aspe
ts of the Casimirenergy for 6D orbifolds have already been studied in [18{20℄. Stabilization of the volume
an be a
hieved by means of massive bulk �elds, brane lo
alized kineti
 terms or bulkand brane 
osmologi
al terms [18℄. Alternatively, the interplay of one- and two-loop
ontributions to the Casimir energy 
an lead to a stabilization at the length s
ale ofhigher-dimensional 
ouplings [21℄. In addition, 
uxes and gaugino 
ondensates play animportant role [22, 23℄.In this paper we 
onsider orbifold GUTs, whi
h generi
ally have two mass s
ales:M �MGUT, the expe
tation value of bulk �elds indu
ed by lo
al Fayet-Iliopoulos terms,and ��MGUT, the s
ale of soft supersymmetry breaking mass terms. As we shall see,the interplay of `
lassi
al' and one-loop 
ontributions to the va
uum energy density 
anstabilize the extra dimensions at small radii, R � 1=MGUT � 1=� with bulk energydensity O(�2M2GUT). We shall illustrate this me
hanism with an SO(10) model in sixdimensions [24℄ whi
h together with gaugino mediation [25, 26℄ is known to lead to asu

essful phenomenology [27, 28℄.The paper is organized as follows. In Se
tion 2 we brie
y des
ribe the relevantfeatures of the 6D orbifold GUT model. The Casimir energies of s
alar �elds withdi�erent boundary 
onditions are dis
ussed in Se
tion 3. These results are used inSe
tion 4 to evaluate the Casimir energy of the 
onsidered model. In Se
tion 5 thestabilization me
hanism is des
ribed. Appendi
es A and B deal with the mode expansionon T 2=Z32 and the evaluation of Casimir sums, respe
tively.1



2 The ModelAs an example, we 
onsider a 6D N = 1 SO(10) gauge theory 
ompa
ti�ed on anorbifold T 2=Z32, 
orresponding to T 2=Z2 with two Wilson lines [24℄. The model has fourinequivalent �xed points (`branes') with the unbroken gauge groups SO(10), the Pati-Salam group Gps = SU(4)�SU(2)�SU(2), the extended Georgi-Glashow group Ggg =SU(5)� U(1)X and 
ipped SU(5), G
 = SU(5)0 � U(1)0, respe
tively. The interse
tionof these GUT groups yields the standard model group with an additional U(1) fa
tor,G0sm = SU(3)C � SU(2)L � U(1)Y � U(1)X , as unbroken gauge symmetry below the
ompa
ti�
ation s
ale. At the �xed points only 4D N = 1 supersymmetry remainsunbroken. Gauge and supersymmetry breaking are realized by assigning di�erent paritiesto the di�erent 
omponents of the 45-plet of SO(10), whi
h is a 6D N = 1 ve
tormultiplet 
ontaining 4D N = 1 ve
tor (V ) and 
hiral (�) multiplets (
f. Table 1).The model has three 16-plets of matter �elds, lo
alized at the Pati-Salam, the Georgi-Glashow, and the 
ipped SU(5) branes. Further, there are two 16-plets, � and �
 andtwo 10-plets, H5 and H6 of bulk matter �elds. Their mixing with the brane �elds yieldsthe 
hara
teristi
 
avor stru
ture of the model [24, 28℄.The Higgs se
tor 
onsists of two 16-plets, � and �
, and four 10-plets, H1; : : : ; H4,of bulk hypermultiplets. Ea
h hypermultiplet 
ontains two 4D N = 1 
hiral multiplets,the �rst of whi
h we denote by the same symbol as the hypermultiplet. The Higgsmultiplets have even R-
harge and the matter �elds have odd R-
harge.The hyperpermultiplets H1 and H2 
ontain the two Higgs doublets of the supersym-metri
 standard model as zero modes, whereas the zero modes of H3 and H4 are 
olortriplets (
f. Table 2). The zero modes of the 16-plets are singlets and 
olor triplets,� : N 
; D
 ; �
 : N; D : (1)The 
olor triplets D
 and D, together with the zero modes of H3 and H4, aquire massesthrough brane 
ouplings.Equal va
uum expe
tation values of � and �
 form a 
at dire
tion of the 
lassi
alpotential,h�i = hN 
i = hNi = h�
i : (2)Non-zero expe
tation values 
an be enfor
ed by a brane superpotential term or by aFayet-Iliopoulos term lo
alized at the GG-brane where the U(1) fa
tor 
ommutes withthe standard model gauge group.The expe
tation values (2) break SO(10)! SU(5), and therefore also the additionalU(1)X symmetry, as is 
lear from the de
omposition16 ! 101 � �5�3 � 15 ; (3)16 ! 10�1 � 53 � 1�5 ; (4)2



V �G0sm Z2 Zgg2 Zps2 M2m;n Z2 Zgg2 Zps2(8; 1)0;0 + + + 4�m2R21 + n2R22� � � �(3; 2)�56 ;0 + + � 4�m2R21 + (n+1=2)2R22 � � � +(�3; 2)56 ;0 + + � 4�m2R21 + (n+1=2)2R22 � � � +(1; 3)0;0 + + + 4�m2R21 + n2R22� � � �(1; 1)0;0 + + + 4�m2R21 + n2R22� � � �(3; 2)16 ;4 + � � 4� (m+1=2)2R21 + (n+1=2)2R22 � � + +(�3; 1)�23 ;4 + � + 4� (m+1=2)2R21 + n2R22� � + �(1; 1)1;4 + � + 4� (m+1=2)2R21 + n2R22� � + �(�3; 2)�16 ;�4 + � � 4� (m+1=2)2R21 + (n+1=2)2R22 � � + +(3; 1)23 ;�4 + � + 4� (m+1=2)2R21 + n2R22� � + �(1; 1)�1;�4 + � + 4� (m+1=2)2R21 + n2R22� � + �(1; 1)0;0 + + + 4�m2R21 + n2R22� � � �Table 1: De
omposition of the 45-plet of SO(10) into multiplets of the extended standard model gaugegroup G0sm = SU(3)C � SU(2)L � U(1)Y � U(1)X and 
orresponding parity assignments. For later
onvenien
e we also give the Kaluza-Klein massesM2m;n.where 15 and 1�5 
orrespond to N 
 and N , respe
tively. The de
omposition of the 45ve
tor multiplet reads45! 240 � 10�4 � 104 � 10 : (5)The expe
tation values (2) generate for the 10- and 10-plets and the singlet in Eqs. (3)-(5) the bulk massM2 ' g26h�
i2 ; (6)where g6 is the 6D gauge 
oupling. Hen
e, the �elds (3; 2) 16 ;4, (�3; 1)� 23 ;4, (1; 1)1;4, (1; 1)0;0and their 
omplex 
onjugates 
ontained in the ve
tor multiplet as well as the 
orrespond-ing �elds in � and �
 obtain bulk masses from the Higgs me
hanism in addition to their3



SO(10) 10SM0 (1; 2)�12 ;�2 (1; 2)12 ;2 (�3; 1)13 ;�2 (3; 1)�13 ;2H
 H G
 GZps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2H1 + + + � � + � �H2 + � + + � � � +H3 � + � � + + + �H4 � � � + + � + +H5 � + � � + + + �H6 � � � + + � + +SO(10) 16SM0 (3; 2)16 ;�1 (1; 2)�12 ;3 (�3; 1)�23 ;�1 (�3; 1)13 ;3(1; 1)1;�1 (1; 1)0;�5Q L U 
; E
 D
; N 
Zps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2� � � � + + � + +� + � + + � � � +Table 2: De
omposition and parity assignments for the bulk 16- and 10-plets of SO(10). The 16-plets�
; �
 have the same parities as � and � and 
onjugate quantum numbers with respe
t to the extendedstandard model gauge group. Only �elds with all parities positive remain in the low energy theory.Kaluza-Klein masses. Sin
e the spontaneous breaking of SO(10) preserves 6D N = 1supersymmetry, one obtains an entire massive hypermultiplet for ea
h set of quantumnumbers.Supersymmetry breaking is naturally in
orporated via gaugino mediation [27℄. Thenon-vanishing F -term of a brane �eld S generates mass terms for ve
tor- and hyper-multiplets. In the 
onsidered model, S is lo
alized at the SO(10) preserving brane,whi
h yields the same mass for all members of an SO(10) multiplet. For the 45 ve
tormultiplet and the 10 and 16 hypermultiplets of the Higgs se
tor one has
4



�S = Z d4xd2y Æ2(y)�Z d2� 12�3STr[W �W�℄ + h:
:+ Z d4�� ��4SyS �Hy1H1 +Hy2H2� + �0�4SyS �Hy3H3 +Hy4H4�+�00�4SyS ��y� + �
y�
��� : (7)Here W �(V ), H1; : : : ; H4 and �;�
 are the 4D N = 1 multiplets 
ontained in the 6DN = 1 multiplets, whi
h have positive parity at y = 0; � is the UV 
uto� of the model,whi
h is mu
h larger than the inverse size of the 
ompa
t dimensions, �� 1=pV . Forthe zero modes, the 
orresponding gaugino and s
alar masses are given bymg = ��2V ; m2H1;2 = � ��2�2V ; m2H3;4 = ��0�2�2V ; m2� = ��00�2�2V ; (8)where V = (2�)2R1R2 is the volume of the 
ompa
t dimensions, and � = FS=�. Notethat the gaugino mass is stronger volume suppressed than the s
alar masses.3 The Casimir EnergyThe zero-point energies of bulk �elds depend on size and shape of the 
ompa
t dimen-sions. Their sum, the Casimir energy, is a quantum 
ontribution to the total energydensity whose minimum determines the size of the 
ompa
t dimensions in the lowestenergy state, the va
uum. As long as supersymmetry is unbroken, the Casimir energyvanishes sin
e bosoni
 and fermioni
 
ontributions 
ompensate ea
h other. In the fol-lowing we shall evaluate the Casimir energy for the di�erent boundary 
onditions whi
ho

ur in T 2=Z32 orbifold 
ompa
ti�
ations.3.1 Bulk, Brane and Kaluza-Klein MassesConsider a real s
alar �eld in 6D with bulk mass M and brane mass m. As dis
ussedin the previous se
tion, in gaugino mediation m is due to supersymmetry breaking on abrane whereas M is generated by the Higgs me
hanism in 6D. From the a
tionS = 12 Z d4xd2y�(x; y)���2x � �2y +M2 + �2�2 Æ2(y)��(x; y) (9)and the mode de
omposition�(x; y) =Xi �i(x)�i(y) ; Z d2y�i(y)�j(y) = Æij ; (10)
5



one obtainsS = 12 Z d4x"Xi �i(x) ���2x +M2i +M2��i(x) + �2�2 Xij �i(x)Cij�j(x)# ; (11)where Mi are the Kaluza-Klein masses andCij = �i(0)�j(0) : (12)On the orbifold T 2=Z32, one has for all modes (
f. Appendix A),�i(0) =r 2V = 1p2�2R1R2 ; (13)ex
ept for the zero mode, where �0(y) = 1=pV .The one-loop 
ontribution to the va
uum energy density depends on the Kaluza-Kleinmass matrix MKK, the universal mass M and the brane mass matrix C,V (1) = 12 ln det���2x +M2KK +M2 + �2�2C� : (14)For small supersymmetry breaking, �2 � M2i + M2, the e�e
tive potential 
an beexpanded in powers of the small o�-diagonal terms of the mass matrix,V (1) = 12Xi ln���2x +M2i +M2 + �2�2Cii�+ 12 ��2�2�2Xi 6=j 1(��2x +M2i +M2)Cij 1(��2x +M2j +M2)Cji +O(�6) : (15)In the following we shall only keep the diagonal terms of C, whi
h 
ontribute to V (1) atleading order in �2.The Casimir energy of gauge �elds and gauginos 
an be dire
tly obtained from theCasimir energy of a real s
alar �eld. After appropriate gauge �xing this essentiallyamounts to 
ounting the physi
al degrees of freedom (
f. [18℄). Thus, it is enough toperform the va
uum energy 
al
ulation for a real s
alar �eld.3.2 Casimir Energy of a S
alar FieldThe geometry of the orbifold T 2=Z2 
ontains as free parameters the radii R1 and R2of the torus. The Casimir energy of a s
alar �eld on the orbifold is then given by thequantum 
orre
tions to the 
orresponding e�e
tive potential. At one-loop order, this is
6



obtained by summing over the 
ontinuous and dis
rete spe
trum 
orresponding to thefour 
at and two 
ompa
t dimensions,VM = 12 hXim;n Z d4kE(2�)4 log �k2E +M2m;n +M2� ; (16)with [P℄m;n shorthand for the double sum andM2m;n denoting the Kaluza-Klein masses;the mass M now stands for bulk and brane mass terms.The Kaluza-Klein masses M2m;n depend on the possible boundary 
onditions onT 2=Z2 and 
an be read o� from the mode expansion listed in Table 1. Generi
allythey 
an be written asM2m;n = 4 �(m+ �)2R21 + (n + �)2R22 �= 4R22 �e2(m+ �)2 + (n+ �)2� ; (17)where (�; �) = (0; 0); (0; 1=2); (1=2; 0); (1=2; 1=2) and e2 = R22=R21. For simpli
ity, werestri
t our dis
ussion to `re
tangular tori'. The general 
ase will be dis
ussed elsewhere[29℄. Clearly, the 
ontributions for the di�erent boundary 
onditions satisfy the relations,V 0;0M (R1; R2) = V 0;0M (R2; R1) ; V 1=2;1=2M (R1; R2) = V 1=2;1=2M (R2; R1) ;V 0;1=2M (R1; R2) = V 1=2;0M (R2; R1) : (18)The expression (16) for the Casimir energy is divergent. Following [18,30℄, we extra
ta �nite pie
e using zeta fun
tion regularization,V = �d�(s)ds ����s=0 ; (19)where�(s) = 12 hXim;n �2sr Z d4kE(2�)4 �k2E + 4R22 �e2(m + �)2 + (n+ �)2�+M2��s : (20)Note that, as in dimensional regularization, a mass s
ale �r is introdu
ed. The momen-tum integration 
an now be 
arried out and one obtains�(s) = 12 1(2�)4�2�(s� 2)�(s) hXim;n �2sr � 4R22 �e2(m + �)2 + (n+ �)2�+M2�2�s= 42�s32�2R4�2s2 �2sr(s� 2)(s� 1) hXim;n��e2(m+ �)2 + (n + �)2�+ R224 M2�2�s :(21)7



The boundary 
onditions of �elds on the orbifold T 2=Z32 are 
hara
terized by threeparities. For positive (negative) parity the �eld is nonzero (zero) at the 
orresponding�xed point. For the Casimir energy only those 
hiral and ve
tor multiplets are relevantwhi
h are nonzero at the �xed point where supersymmetry is broken. Hen
e one parity,
hosen to be the �rst one, has to be positive. Inspe
tion of the mode expansion in Ap-pendix A shows that for the �elds �+��, 
orresponding to (�; �) = (1=2; 0); (1=2; 1=2),one has to perform the sumhXim;n = 1Xm=0 1Xn=�1 ; (22)whereas the boundary 
onditions �++�, with (�; �) = (0; 0); (0; 1=2), requires the sumhXim;n = "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1# : (23)The two summations (22) and (23) are 
arried out in Appendix B. The result 
an beexpressed in the following form, whi
h is suitable for numeri
al analysis,V ��M (R1; R2) = M6R1R2768� �1112 � log�M�r��� Æ�0Æ�0 M464�2 �34 � log�M�r��� 18�4M3R2R21 1Xp=1 
os(2�p�)p3 K3(�pMR1)� 2�4 1R42 1Xp=1 
os(2�p�)p5=2 1Xm=0 12Æ�0Æm0 �R2R1q(m+ �)2 + M2R214 �5=2K5=2 �2� p R2R1q(m + �)2 + M2R214 � : (24)We have 
he
ked numeri
ally that this expression satis�es the symmetry relations (18).As a good approximation, where the symmetries are manifest, one 
an derive [29℄V ��M (R1; R2) = M6R1R2768� �1112 � log�M�r��� Æ�0Æ�0 M464�2 �34 � log�M�r��� 18�4M3R2R21 1Xp=1 
os(2�p�)p3 K3(�pMR1)� 18�4M3R1R22 1Xp=1 
os(2�p�)p3 K3(�pMR2) : (25)
8



Figure 1: The four di�erent 
ontributions to the Casimir energy in units of the supersymmetri
 massM . From top left to bottom right we have V 0;0M , V 1=2;0M , V 0;1=2M and V 1=2;1=2M as de�ned in the text.The term / Æ�0Æ�0, whi
h is independent of R1 and R2, is pre
isely the 
ontribution ofthe `zero' mode in (21), with � = � = m = n = 0.The dependen
e of the �rst two terms in (24) on the regularization s
ale �r is aremnant of the subtra
tion of divergent bulk and brane 
osmologi
al terms, as in dimen-sional regularization [20℄. The 
orresponding 
ontributions to the anomalous dimensionsof the 6D and 4D 
osmologi
al terms read
6 = �r ���r�6 = �M6R1R2768� ; 
4 = �r ���r�4 = M464� : (26)The presen
e of these terms demonstrates that the renormalization of the divergentenergy density (24) requires 
ounter terms for the bulk and brane 
osmologi
al terms.In general, the Casimir energy is a sum of the four possible terms,VM = AV 0;0M +BV 0;1=2M + CV 1=2;0M +DV 1=2;1=2M ; (27)9



where the 
oeÆ
ients A,...,D depend on the �eld 
ontent of the model and we haveassumed equal masses for simpli
ity. The four fun
tions V 0;0M ,...,V 1=2;1=2M are shown inFigure 1. For small R1;2, V 0;0M is attra
tive and V 1=2;1=2M is repulsive, whereas the othertwo have mixed behavior.In supersymmetri
 theories there is a 
an
ellation between bosoni
 and fermioni

ontributions, and the expression (27) for the Casimir energy is repla
ed byV = a �V 0;0M 0 � V 0;0M �+ b�V 0;1=2M 0 � V 0;1=2M �+
�V 1=2;0M 0 � V 1=2;0M � + d�V 1=2;1=2M 0 � V 1=2;1=2M � ; (28)where M 0 = pM2 +m2, with supersymmetri
 mass M and supersymmetry breakingmassm; the 
oeÆ
ients a,...,d again depend on the �eld 
ontent of the model. Comparedto the non-supersymmetri
 
ase (27), the behavior at small R1;2 is inverted. For bulkve
tor- and hypermultiplets only the 4D N = 1 ve
tor and 
hiral multiplets are relevant,whi
h 
ouple to the brane where supersymmetry is broken.The qualitative behavior of Figure 1 is easily understood by evaluating expli
itly theCasimir energy (25) at small radii R1; R2 � 1=M . Expanding the Bessel fun
tion K3for small arguments and performing the summations over p, one obtainsV 0;0M (R1; R2) = � 1945� R2R51 �1� 2116M2R21 + : : :� + R1 $ R2 ; (29)V 0;1=2M (R1; R2) = � 1945� R2R51 �1� 2116M2R21 + : : :�+ 3130240� R1R52 �1� 147124M2R22 + : : :� ; (30)V 1=2;0M (R1; R2) = 3130240� R2R51 �1� 147124M2R21 + : : :�� 1945� R1R52 �1� 2116M2R22 + : : :� ; (31)V 1=2;1=2M (R1; R2) = 3130240� R2R51 �1� 147124M2R21 + : : :� + R1 $ R2 : (32)From these equations one immediately reads o� the behavior of V �;�M at small radii. ForR1;2 ! 0, with R1=R2 �xed, one obtains the behavior of the Casimir energy for 5Dorbifolds. For supersymmetri
 models, the mass independent terms 
an
el, and withM 02 �M2 = m2 the se
ond terms in the expansion yield the inverted behavior at smallR1;2.
10



4 Casimir Energy of the Orbifold ModelGiven the results of the previous se
tion we 
an now easily evaluate the Casimir energyof the orbifold GUT model des
ribed in Se
tion 2. At the branes, only 4D N = 1supersymmetry is preserved. A multiplet 
ontributes to the Casimir energy if its bosoni
and fermioni
 degrees of freedom have di�erent masses. This only happens if its �rstZ2 parity is positive so that it 
an 
ouple to the singlet S at the SO(10) brane, whosenon-vanishing F -term breaks 4D N = 1 supersymmetry spontaneously. Hen
e, from the6D N = 1 ve
tor multiplet only V 
ontributes (
f. Table 1). Also for the hypermultipletsonly one 4D N = 1 
hiral multiplet is relevant. The 
orresponding 
hiral multiplets withpositive Z2 parity are listed in Table 2.4.1 Contribution from the Ve
tor MultipletThe expe
tation values (2) break SO(10) spontaneously to SU(5). This generates themassM for the 21 ve
tor multiplets of the 
oset SO(10)=SU(5)1. Sin
e the Higgs me
h-anism preserves 6D N = 2 supersymmetry, also 21 hypermultiplets be
ome massive. Inaddition all gauginos a
quire a supersymmetry breaking mass mg.From Tables 1 and 2 and from the mode de
omposition we 
an now read o� the totalCasimir energy of the massive ve
tor multiplet on T 2=Z32,Vg = 24�V 0;0 � V 0;0mg � + 24�V 0;1=2 � V 0;1=2mg � + 2 �V 0;0M � V 0;0M 0 �+16�V 1=2;0M � V 1=2;0M 0 � + 24�V 1=2;1=2M � V 1=2;1=2M 0 � ; (33)where M 0 = pM2 +m2g. Using the expansion (29) and mg = �=(�2V ) one �nds atsmall radii,Vg = � 148� �2�4V 2 �R2R31 + : : :� ; (34)where the dots denote terms of relative order O(MiR1;2), with Mi = mg;M;M 0, whi
hhave been negle
ted.4.2 Contributions from HypermultipletsThe 
ontribution of hypermultiplets to the Casimir energy again depends on the sym-metry breaking, i.e., the 
hoi
e of parities. Consider the 10-plets H1;2 whi
h 
ontain theHiggs doublets as zero mode. From Table 2 one reads o�,VH = 8 �V 0;0mH � V 0;0�+ 8 �V 0;1=2mH � V 0;1=2�+12 �V 1=2;0mH � V 1=2;0�+ 12 �V 1=2;1=2mH � V 1=2;1=2� ; (35)1We shall ignore the O(1) fa
tors for the masses of di�erent SU(5) representations as they will notbe important in the following dis
ussion. 11



Figure 2: The di�erent 
ontributions to the Casimir energy from the bulk ve
tor multiplet and thehypermultiplets of the Higgs se
tor (see text). From top left to bottom right we have the 
ontributionsfrom the ve
tor multiplet, the 10-plets H1;2, the 10-plets H3;4, and the 16-plets �;�
.
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whi
h, together with (29) and m2H = ���2=(�2V ), yieldsVH = � 1720� ��2�2V ��5R2R31 + 52R1R32 + : : :� : (36)For the 10-plets H3;4 the 
hoi
e of parities is di�erent, leading to 
olor triplets as zeromodes. The 
orresponding Casimir energy is given byV 0H = 12 �V 0;0mH � V 0;0�+ 12 �V 0;1=2mH � V 0;1=2�+8 �V 1=2;0mH � V 1=2;0�+ 8 �V 1=2;1=2mH � V 1=2;1=2� : (37)Here we have negle
ted the supersymmetri
 brane masses (
f. [24℄) whi
h 
an
el in thebehavior at small R1;2,V 0H = � 1720� �0�2�2V �10R2R31 + 52R1R32 + : : :� : (38)In the same way one obtains for the 16-plets,V� = 2 �V 0;0M 0 � V 0;0M �+ 16�V 0;1=2M 0 � V 0;1=2M �+ 24�V 1=2;1=2M 0 � V 1=2;1=2M �+8 �V 1=2;0m� � V 1=2;0�+ 14 �V 0;0m� � V 0;0� ; (39)with M 0 =pM2 +m2�, whi
h yields for small radiiV� = � 1720� �00�2�2V �4R2R31 � 11R1R32 + : : :� : (40)The four 
ontributions to the Casimir energy, Vg, VH , V 0H and V� are displayed inFigure 2. Note that features at larger radii, like the pro�le in the R2-dire
tion for V�,
an be lost in the simpli�ed expression where we keep only the leading term in �2. Thebehavior at small radii however is un
hanged and obvious from the analyti
 expressionsgiven above. Note that only V 0H is repulsive in all dire
tions at small radii.To leading order in 1=�, the Casimir energy is determined by the 
ontribution fromhypermultiplets sin
e the gaugino mass is stronger volume suppressed than the s
alarmasses. Depending on signs and magnitude of �, �0 and �00, the resulting behaviorat small radii 
an be attra
tive or repulsive. As an example, we shall assume in thefollowing �0 < 0; j�0j � j�j; j�00j whi
h yields a repulsive behavior at small radii.5 Stabilization of the Compa
t DimensionsIn the previous se
tion we have 
al
ulated quantum 
orre
tions to the e�e
tive potentialat small radii and we have seen that, depending on the supersymmetry breaking param-eters, the behavior 
an be attra
tive or repulsive. In the latter 
ase a bulk 
osmologi
al13



term 
an lead to stabilization of the 
ompa
t dimensions [18℄. As we shall show in thisse
tion, stabilization 
an also follow from the interplay of the Higgs me
hanism in 6D,whi
h generates bulk mass terms, and supersymmetry breaking on the brane.Consider the mass M generated by spontaneous symmetry breaking as dis
ussed inSe
tion 2 (
f. (6)),M2 ' g26h�
i2 = g24V h�
i2 ; (41)where g6 has dimension length and g4 = g6=pV is dimensionless. For simpli
ity, weshall assume that M is small 
ompared to the Kaluza-Klein masses and approximately
onstant.In orbifold 
ompa
ti�
ations of the heteroti
 string expe
tation values h�i 
an beindu
ed by lo
alized Fayet-Iliopoulos terms. Vanishing of the D-terms then impliesV h�
i2 = C�2 ; (42)where C � 1 is a loop fa
tor and � is the string s
ale or, more generally, the UV 
uto�of the model. For instan
e, in the 6D model of [16℄ one �nds for the lo
alized anomalousU(1)'s, C�2 � gM2P=(384�2).Supersymmetry breaking by a brane �eld S, with � = FS=� , leads to a `
lassi
al'va
uum energy density,V (0) = ��00 Z d2y Z d4� 1�4 Æ2(y)hSyS(�y� + �
y�
)i ' ��00 �2�2 h�
i2= ��00 �2CV ; (43)with V = (2�)2R1R2. For �00 > 0, V (0) is attra
tive at large radii. Note that this super-symmetry breaking mass term does not lead to a negative mass squared for � and �
sin
e these �elds are assumed to be stabilized by mu
h larger supersymmetry preservingmasses at the minimum. We assume that no ta
hyoni
 mass terms are generated for�elds whose expe
tation values are not �xed by the D{term potential.The 
lassi
al energy density V (0) together with the Casimir energy V (1) = V 0H yieldsthe total energy density,Vtot(R1; R2) = V (0)(R1; R2) + V (1)(R1; R2)= � 1288�3 �2�0�2 � 1R41 + 14R42�� �004�2 �2CR1R2 : (44)The e�e
tive potential is attra
tive at large radii and, for �0 < 0, i.e. m2H3;4 > 0, repulsiveat small radii. One easily veri�es that the e�e
tive potential Vtot has a stable minimumat Rmin1 = p2Rmin2 ; Rmin2 = 21=412p�r��0�00 1M : (45)14



Figure 3: Casimir energy of the 10-plets H3 and H4 together with the 
lassi
al energy density from thesupersymmetry breaking brane.Here M is the mass given by Eq. (41) at the minimum, and we have assumed g4(Vmin) '1=p2, as it is the 
ase for standard model gauge intera
tions. As Figure 3 illustrates,the total energy density Vtot is very 
at for large radii.In orbifold 
ompa
ti�
ations of the heteroti
 string one typi
ally has M �MGUT. Itis very remarkable that the interplay of gauge and supersymmetry breaking has lead to astabilization at Rmin � 1=MGUT, independent of the s
ale � of supersymmetry breaking.The reason is that both, the 
lassi
al va
uum energy density as well as the one-loopCasimir energy are proportional to �2 whi
h therefore does not a�e
t the position of theminimum. Another interesting impli
ation of the potential is that for ��MGUT,�Vtot(Rmin) = Vtot(1)� Vtot(Rmin) � �2M2GUT � M4GUT : (46)Note that the energy density Vtot is negative at the minimum. It has to be tuned tozero by means of a brane 
osmologi
al 
onstant. In a full supergravity treatment ofstabilization also the intera
tions of the supersymmetry breaking brane �eld with theradion �elds have to be taken into a

ount.The fa
t that the energy density di�eren
e Vtot(1) � Vtot(Rmin) is mu
h smallerthan M4GUT has important 
osmologi
al 
onsequen
es. In the thermal phase of the earlyuniverse, the volume of the 
ompa
t dimensions and, 
orrespondingly, the value of 4D
oupling 
onstants begins to 
hange already at temperatures T � p�MGUT � MGUT(
f. [31℄).
15



6 Con
lusionsWe have 
al
ulated the one-loop Casimir energy for bulk �elds on the orbifold T 2=Z32.As expe
ted, depending on the boundary 
onditions, the behavior at small radii 
an beattra
tive or repulsive. For the 
onsidered supersymmetri
 model, the Casimir energyis proportional to the s
ale of supersymmetry breaking. The relative strength of the
ouplings of the di�erent bulk �elds to the supersymmetry breaking brane �eld thendetermines whether the behavior of the total energy density is repulsive or attra
tive atsmall radii.Quantum 
orre
tions also modify the behavior at large radii. In orbifold 
ompa
ti�-
ations with U(1) gauge fa
tors, generi
ally Fayet-Iliopoulos terms are generated lo
allyat the orbifold �xed points. This leads to a breaking of these U(1) gauge symmetriesby the Higgs me
hanism. Sin
e the symmetry breaking is indu
ed by lo
al terms, thegenerated masses s
ale like M � 1=pV with the volume of the 
ompa
t dimensions.The 
oupling of the bulk Higgs �eld to the supersymmetry breaking brane �eld givesrise to a 
lassi
al 
ontribution to the total energy density whi
h s
ales like 1=V with thevolume. Depending on the sign of the 
oupling, the behavior of the energy density atlarge radii 
an be attra
tive or repulsive. An attra
tive behavior at large radii, togetherwith a repulsive behavior due to the Casimir energy at small radii, 
an stabilize the
ompa
t dimensions. Sin
e the supersymmetry breaking s
ale fa
torizes, the va
uumsize of the 
ompa
t dimensions is determined by the remaining mass s
ale, the massM generated by the Higgs me
hanism, Rmin � 1=M � 1=MGUT. At the minimum theenergy density Vtot is negative and has to be tuned to zero by adding a brane 
osmologi
alterm.The 
hara
teristi
 feature of the des
ribed stabilization me
hanism is a potential wellmu
h smaller than the GUT s
ale, �Vtot(Rmin) � �2M2GUT � M4GUT. Clearly, this hasimportant 
osmologi
al 
onsequen
es, both for the thermal phase of the early universeas well as a possible earlier in
ationary phase.A
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A Mode Expansion on T 2=Z32The orbifold T 2=Z32 has four �xed points whi
h we denote by yO = (0; 0), yPS =(�R1=2; 0), yGG = (0; �R2=2) and y
 = (�R1=2; �R2=2) (
f. [32℄). The possible boundary
onditions of fun
tions on this orbifold are 
hara
terized by three parities, (a; b = +;�),��ab(yO � y) = ���ab(yO + y) ;�a�b(yPS � y) = ��a�b(yPS + y) ;�ab�(yGG � y) = ��ab�(yGG + y) : (47)It is straightforward to de�ne an orthonormal basis on the torus. The mode expansionof fun
tions with the boundary 
onditions (47) then reads expli
itly,�+++(x; y) = 1p2�2R1R22Æn;0Æm;0 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n)+++ (x)� 
os�2my1R1 + 2ny2R2 � ; (48a)�++�(x; y) = 1p2�2R1R2 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n+1)++� (x)� 
os�2my1R1 + (2n+ 1)y2R2 � ; (48b)�+�+(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n)+�+ (x)� 
os�(2m+ 1)y1R1 + (2n)y2R2 � ; (48
)�+��(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n+1)+�� (x)� 
os�(2m+ 1)y1R1 + (2n+ 1)y2R2 � ; (48d)��++(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n+1)�++ (x)� sin�(2m+ 1)y1R1 + (2n + 1)y2R2 � ; (48e)��+�(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n)�+� (x)� sin�(2m+ 1)y1R1 + 2ny2R2 � ; (48f)
17



���+(x; y) = 1p2�2R1R2 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n+1)++� (x)� sin�2my1R1 + (2n+ 1)y2R2 � ; (48g)����(x; y) = 1p2�2R1R2 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n)��� (x)� sin�2my1R1 + (2n)y2R2 � : (48h)B Evaluation of Casimir SumsOur evaluation of the Casimir double sums requires two single sums whi
h we shall now
onsider. The �rst sum readseF (s; a; 
) � 1Xm=0 1[(m + a)2 + 
2℄s : (49)This is a series of the generalized Epstein-Hurwitz zeta type. The result 
an be foundin [30℄ and is given byeF (s; a; 
) = 
�2s�(s) 1Xm=0 (�1)m�(m+ s)m! 
�2m�H(�2m; a) +p��(s� 12)2�(s) 
1�2s+ 2�s�(s)
1=2�s 1Xp=1 ps�1=2 
os(2�pa)Ks�1=2(2�p
) ; (50)where �H(s; a) is the Hurwitz zeta-fun
tion. Note that this is not a 
onvergent se-ries but an asymptoti
 one. In the following it will be important that �H(�2m; 0) =�H(�2n; 1=2) = 0 for m 2 N and n 2 N0. In our 
ase, the �rst sum in eF (s; a; 
) thusredu
es to a single term. For a = 1=2 the sum vanishes, and for a = 0 only the �rstterm 
ontributes; with �H(0; 0) = 1=2 one obtains 
�2s=2.The se
ond, related sum is given byF (s; a; 
) � 1Xm=�1 1[(m + a)2 + 
2℄s : (51)Using the two identities (m 2 N)�H(�2m; a) = ��H(�2m; 1� a) ; (52)F (s; a; 
) = eF (s; a; 
) + eF (s; 1� a; 
) ; (53)
18



one easily obtains, in agreement with [18℄,F (s; a; 
) = p��(s) j
j1�2s "� �s� 12�+ 4 1Xp=1 
os(2�pa)(� p j
j)s� 12Ks� 12 (2� p j
j)# : (54)These two sums provide the basis for our evaluation of the Casimir sums.B.1 Casimir Sum (I) on T2=Z32We �rst 
onsider the summationhXim;n = 1Xm=0 1Xn=�1 : (55)In this 
ase the Casimir energy (
f. (21)) is obtained from1Xm=0 1Xn=�1 �e2(m+ �)2 + (n+ �)2 + �2��s ; (56)where we have shifted s ! s + 2 and de�ned �2 = R224 M2. Using the expression forF (s; a; 
), we 
an perform the sum over n,1Xm=0 1Xn=�1 �e2(m+ �)2 + (n + �)2 + �2��s= p��(s� 12)�(s) 1Xm=0(e2(m+ �)2 + �2)1=2�s+ 4p��(s) +1Xp=1 
os(2�p�) 1Xm=0(� p)s�12 �pe2(m+ �)2 + �2� 12�sKs� 12 (2� ppe2(m + �)2 + �2)� f1(s) + f2(s) : (57)Let us 
onsider f1(s) �rst. The sum over m 
an be performed with the help of eF (s; a; 
),f1(s) =p��(s� 12)�(s) 1Xm=0(e2(m + �)2 + �2)1=2�s=p��(s� 1=2)�(s) �1�2s�H(0; �) + �2(s� 1) �2�2se+ 2�s�(s)e�s�1�s 1Xp=1 ps�1 
os(2�p�)Ks�1(2�p ��e �) : (58)
19



Re
alling the shift in s, we 
an now write �(s) (21) as�(s) = 132�2 � 4R22��s �2s+4rs(s+ 1)�p��(s� 1=2)�(s) �1�2s�H(0; �) + �2(s� 1) �2�2se+ 2�s�(s)e�s�1�s 1Xp=1 ps�1 
os(2�p�)Ks�1(2�p ��e �)+ 4p��(s) +1Xp=1 
os(2�p�) 1Xm=0(� p)s�12 �pe2(m+ �)2 + �2� 12�sKs� 12 (2� ppe2(m+ �)2 + �2)� : (59)Now we have to di�erentiate with respe
t to s and set s = �2. Sin
e �(�2) = 1, thederivative has only to a
t on �(s) if the 
orresponding term is inversely proportional to�(s). Performing the di�erentiation, usingdds 1�(s) ����s=�2 = ��0(s)�(s)2 ����s=�2 = 2 ; (60)and Ka(z) = K�a(z), and substituting again e = R2=R1 and �2 = R2M=2, we �nallyobtain for the Casimir energy,V �;�(I)M = M5R2120� �H(0; �) + M6R1R2768� �1112 � log�M�r��� 18�4M3R2R21 1Xp=1 
os(2�p�)p3 K3(�pMR1)� 2�4 1R42 1Xp=1 
os(2�p�)p5=2 1Xm=0�R2R1q(m + �)2 + M2R214 � 52K5=2 �2� p R2R1q(m + �)2 +M2R21=4� : (61)The se
ond term 
orresponds to a �nite part of the 6D 
osmologi
al 
onstant. Thedependen
e on the regularization s
ale �r shows that an in�nite 
ontribution has beensubtra
ted.B.2 Casimir Sum (II) on T2=Z32The se
ond relevant summation ishXim;n = "Æm;0 1Xn=0+ 1Xm=1 1Xn=�1# : (62)
20



For the 
orresponding boundary 
onditions one has � = 0. The Casimir sum 
an thenbe written as"Æm;0 1Xn=0+ 1Xm=1 1Xn=�1# �e2m2 + (n + �)2 + �2��s= "Æm;0 1Xn=0+ 1Xm=0 1Xn=�1� Æm;0 1Xn=�1# �e2m2 + (n+ �)2 + �2��s ; (63)where we again shifted s ! s + 2 and set R224 M2 = �2. The double sum is the sum (I)whi
h we have already evaluated. Using�1Xn=�1 �(n + �)2 + �2��s = 1Xn=0 �(n+ 1� �)2 + �2��s : (64)one easily �nds for the remaining pie
e2f3(s) = � 1Xn=0 �(n+ 1� �)2 + �2��s= ���2s�H(0; 1� �)�p��(s� 12)2�(s) �1�2s� 2�s�(s)�1=2�s 1Xp=1 ps�1=2 
os(2�p(1� �))Ks�1=2(2�p�) : (65)Di�erentiating the 
orresponding 
ontribution to �(s), setting s = �2, and substituting� = R2M=2 yields the Casimir energy,V 0;�(II)M = V 0;�(I)M+ M464�2 �32 � 2 log�M�r�� �H(0; 1� �)� 1240�M5R2� 1�4 1R42 1Xp=1 
os(2�p(1� �))p5=2 �MR22 �5=2K5=2 (�pMR2) : (66)The �rst of the additional terms does not depend on the radii. It represents a �nite
ontribution to the brane 
osmologi
al term. The dependen
e on the regularizations
ale �r again shows that a divergent 
ontribution has been subtra
ted.
2 Note that �H(0; 1) = �1=2, and �H (�2m; 1) = 0 for m 2 N.21
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