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AbstratHigher-dimensional theories provide a promising framework for uni�ed extensionsof the supersymmetri standard model. Compati�ations to four dimensions oftenlead to U(1) symmetries beyond the standard model gauge group, whose breakingsale is lassially undetermined. Without supersymmetry breaking, this is alsothe ase for the size of the ompat dimensions. Fayet-Iliopoulos terms generially�x the sale M of gauge symmetry breaking. The interplay with supersymmetrybreaking an then stabilize the ompat dimensions at a size 1=M , muh smallerthan the inverse supersymmetry breaking sale 1=�. We illustrate this mehanismwith an SO(10) model in six dimensions, ompati�ed on an orbifold.
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1 IntrodutionHigher-dimensional theories provide a promising framework for uni�ed extensions of thesupersymmetri standard model [1℄. Interesting examples have been onstruted in �veand six dimensions ompati�ed on orbifolds [2{7℄, whih have many phenomenologiallyattrative features. During the past years it has beome lear how to embed theseorbifold GUTs into the heteroti string [8{10℄, separating the GUT sale from the stringsale on anisotropi orbifolds [11℄. A lass of ompati�ations yielding supersymmetristandard models in four dimensions (4D) have been suessfully onstruted [12{14℄.For a given orbifold ompati�ation of the heteroti string, one an onsider di�erentorbifold GUT limits where one or two of the ompat dimensions are larger than theother �ve or four, respetively [10℄. One then obtains an e�etive �ve-dimensional (5D)or six-dimensional (6D) GUT �eld theory as intermediate step between the full stringtheory and the supersymmetri standard model. We shall fous on 6D �eld theoriesompati�ed on T 2=Z2 with two Wilson lines. These models have four �xed pointswhere quantum orretions generially indue Fayet-Iliopoulos terms [15,16℄. In the aseof the heteroti string the magnitude of these loal terms is O(MGUT), whih suggeststhat they may lead to a stabilization of the ompat dimensions at R � 1=MGUT [16℄.Quantum orretions to the vauum energy density, the Casimir energy, play a ruialrole in the stabilization of ompat dimensions [17℄. Various aspets of the Casimirenergy for 6D orbifolds have already been studied in [18{20℄. Stabilization of the volumean be ahieved by means of massive bulk �elds, brane loalized kineti terms or bulkand brane osmologial terms [18℄. Alternatively, the interplay of one- and two-loopontributions to the Casimir energy an lead to a stabilization at the length sale ofhigher-dimensional ouplings [21℄. In addition, uxes and gaugino ondensates play animportant role [22, 23℄.In this paper we onsider orbifold GUTs, whih generially have two mass sales:M �MGUT, the expetation value of bulk �elds indued by loal Fayet-Iliopoulos terms,and ��MGUT, the sale of soft supersymmetry breaking mass terms. As we shall see,the interplay of `lassial' and one-loop ontributions to the vauum energy density anstabilize the extra dimensions at small radii, R � 1=MGUT � 1=� with bulk energydensity O(�2M2GUT). We shall illustrate this mehanism with an SO(10) model in sixdimensions [24℄ whih together with gaugino mediation [25, 26℄ is known to lead to asuessful phenomenology [27, 28℄.The paper is organized as follows. In Setion 2 we briey desribe the relevantfeatures of the 6D orbifold GUT model. The Casimir energies of salar �elds withdi�erent boundary onditions are disussed in Setion 3. These results are used inSetion 4 to evaluate the Casimir energy of the onsidered model. In Setion 5 thestabilization mehanism is desribed. Appendies A and B deal with the mode expansionon T 2=Z32 and the evaluation of Casimir sums, respetively.1



2 The ModelAs an example, we onsider a 6D N = 1 SO(10) gauge theory ompati�ed on anorbifold T 2=Z32, orresponding to T 2=Z2 with two Wilson lines [24℄. The model has fourinequivalent �xed points (`branes') with the unbroken gauge groups SO(10), the Pati-Salam group Gps = SU(4)�SU(2)�SU(2), the extended Georgi-Glashow group Ggg =SU(5)� U(1)X and ipped SU(5), G = SU(5)0 � U(1)0, respetively. The intersetionof these GUT groups yields the standard model group with an additional U(1) fator,G0sm = SU(3)C � SU(2)L � U(1)Y � U(1)X , as unbroken gauge symmetry below theompati�ation sale. At the �xed points only 4D N = 1 supersymmetry remainsunbroken. Gauge and supersymmetry breaking are realized by assigning di�erent paritiesto the di�erent omponents of the 45-plet of SO(10), whih is a 6D N = 1 vetormultiplet ontaining 4D N = 1 vetor (V ) and hiral (�) multiplets (f. Table 1).The model has three 16-plets of matter �elds, loalized at the Pati-Salam, the Georgi-Glashow, and the ipped SU(5) branes. Further, there are two 16-plets, � and � andtwo 10-plets, H5 and H6 of bulk matter �elds. Their mixing with the brane �elds yieldsthe harateristi avor struture of the model [24, 28℄.The Higgs setor onsists of two 16-plets, � and �, and four 10-plets, H1; : : : ; H4,of bulk hypermultiplets. Eah hypermultiplet ontains two 4D N = 1 hiral multiplets,the �rst of whih we denote by the same symbol as the hypermultiplet. The Higgsmultiplets have even R-harge and the matter �elds have odd R-harge.The hyperpermultiplets H1 and H2 ontain the two Higgs doublets of the supersym-metri standard model as zero modes, whereas the zero modes of H3 and H4 are olortriplets (f. Table 2). The zero modes of the 16-plets are singlets and olor triplets,� : N ; D ; � : N; D : (1)The olor triplets D and D, together with the zero modes of H3 and H4, aquire massesthrough brane ouplings.Equal vauum expetation values of � and � form a at diretion of the lassialpotential,h�i = hN i = hNi = h�i : (2)Non-zero expetation values an be enfored by a brane superpotential term or by aFayet-Iliopoulos term loalized at the GG-brane where the U(1) fator ommutes withthe standard model gauge group.The expetation values (2) break SO(10)! SU(5), and therefore also the additionalU(1)X symmetry, as is lear from the deomposition16 ! 101 � �5�3 � 15 ; (3)16 ! 10�1 � 53 � 1�5 ; (4)2



V �G0sm Z2 Zgg2 Zps2 M2m;n Z2 Zgg2 Zps2(8; 1)0;0 + + + 4�m2R21 + n2R22� � � �(3; 2)�56 ;0 + + � 4�m2R21 + (n+1=2)2R22 � � � +(�3; 2)56 ;0 + + � 4�m2R21 + (n+1=2)2R22 � � � +(1; 3)0;0 + + + 4�m2R21 + n2R22� � � �(1; 1)0;0 + + + 4�m2R21 + n2R22� � � �(3; 2)16 ;4 + � � 4� (m+1=2)2R21 + (n+1=2)2R22 � � + +(�3; 1)�23 ;4 + � + 4� (m+1=2)2R21 + n2R22� � + �(1; 1)1;4 + � + 4� (m+1=2)2R21 + n2R22� � + �(�3; 2)�16 ;�4 + � � 4� (m+1=2)2R21 + (n+1=2)2R22 � � + +(3; 1)23 ;�4 + � + 4� (m+1=2)2R21 + n2R22� � + �(1; 1)�1;�4 + � + 4� (m+1=2)2R21 + n2R22� � + �(1; 1)0;0 + + + 4�m2R21 + n2R22� � � �Table 1: Deomposition of the 45-plet of SO(10) into multiplets of the extended standard model gaugegroup G0sm = SU(3)C � SU(2)L � U(1)Y � U(1)X and orresponding parity assignments. For lateronveniene we also give the Kaluza-Klein massesM2m;n.where 15 and 1�5 orrespond to N  and N , respetively. The deomposition of the 45vetor multiplet reads45! 240 � 10�4 � 104 � 10 : (5)The expetation values (2) generate for the 10- and 10-plets and the singlet in Eqs. (3)-(5) the bulk massM2 ' g26h�i2 ; (6)where g6 is the 6D gauge oupling. Hene, the �elds (3; 2) 16 ;4, (�3; 1)� 23 ;4, (1; 1)1;4, (1; 1)0;0and their omplex onjugates ontained in the vetor multiplet as well as the orrespond-ing �elds in � and � obtain bulk masses from the Higgs mehanism in addition to their3



SO(10) 10SM0 (1; 2)�12 ;�2 (1; 2)12 ;2 (�3; 1)13 ;�2 (3; 1)�13 ;2H H G GZps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2H1 + + + � � + � �H2 + � + + � � � +H3 � + � � + + + �H4 � � � + + � + +H5 � + � � + + + �H6 � � � + + � + +SO(10) 16SM0 (3; 2)16 ;�1 (1; 2)�12 ;3 (�3; 1)�23 ;�1 (�3; 1)13 ;3(1; 1)1;�1 (1; 1)0;�5Q L U ; E D; N Zps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2 Zps2 Zgg2� � � � + + � + +� + � + + � � � +Table 2: Deomposition and parity assignments for the bulk 16- and 10-plets of SO(10). The 16-plets�; � have the same parities as � and � and onjugate quantum numbers with respet to the extendedstandard model gauge group. Only �elds with all parities positive remain in the low energy theory.Kaluza-Klein masses. Sine the spontaneous breaking of SO(10) preserves 6D N = 1supersymmetry, one obtains an entire massive hypermultiplet for eah set of quantumnumbers.Supersymmetry breaking is naturally inorporated via gaugino mediation [27℄. Thenon-vanishing F -term of a brane �eld S generates mass terms for vetor- and hyper-multiplets. In the onsidered model, S is loalized at the SO(10) preserving brane,whih yields the same mass for all members of an SO(10) multiplet. For the 45 vetormultiplet and the 10 and 16 hypermultiplets of the Higgs setor one has
4



�S = Z d4xd2y Æ2(y)�Z d2� 12�3STr[W �W�℄ + h::+ Z d4�� ��4SyS �Hy1H1 +Hy2H2� + �0�4SyS �Hy3H3 +Hy4H4�+�00�4SyS ��y� + �y���� : (7)Here W �(V ), H1; : : : ; H4 and �;� are the 4D N = 1 multiplets ontained in the 6DN = 1 multiplets, whih have positive parity at y = 0; � is the UV uto� of the model,whih is muh larger than the inverse size of the ompat dimensions, �� 1=pV . Forthe zero modes, the orresponding gaugino and salar masses are given bymg = ��2V ; m2H1;2 = � ��2�2V ; m2H3;4 = ��0�2�2V ; m2� = ��00�2�2V ; (8)where V = (2�)2R1R2 is the volume of the ompat dimensions, and � = FS=�. Notethat the gaugino mass is stronger volume suppressed than the salar masses.3 The Casimir EnergyThe zero-point energies of bulk �elds depend on size and shape of the ompat dimen-sions. Their sum, the Casimir energy, is a quantum ontribution to the total energydensity whose minimum determines the size of the ompat dimensions in the lowestenergy state, the vauum. As long as supersymmetry is unbroken, the Casimir energyvanishes sine bosoni and fermioni ontributions ompensate eah other. In the fol-lowing we shall evaluate the Casimir energy for the di�erent boundary onditions whihour in T 2=Z32 orbifold ompati�ations.3.1 Bulk, Brane and Kaluza-Klein MassesConsider a real salar �eld in 6D with bulk mass M and brane mass m. As disussedin the previous setion, in gaugino mediation m is due to supersymmetry breaking on abrane whereas M is generated by the Higgs mehanism in 6D. From the ationS = 12 Z d4xd2y�(x; y)���2x � �2y +M2 + �2�2 Æ2(y)��(x; y) (9)and the mode deomposition�(x; y) =Xi �i(x)�i(y) ; Z d2y�i(y)�j(y) = Æij ; (10)
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one obtainsS = 12 Z d4x"Xi �i(x) ���2x +M2i +M2��i(x) + �2�2 Xij �i(x)Cij�j(x)# ; (11)where Mi are the Kaluza-Klein masses andCij = �i(0)�j(0) : (12)On the orbifold T 2=Z32, one has for all modes (f. Appendix A),�i(0) =r 2V = 1p2�2R1R2 ; (13)exept for the zero mode, where �0(y) = 1=pV .The one-loop ontribution to the vauum energy density depends on the Kaluza-Kleinmass matrix MKK, the universal mass M and the brane mass matrix C,V (1) = 12 ln det���2x +M2KK +M2 + �2�2C� : (14)For small supersymmetry breaking, �2 � M2i + M2, the e�etive potential an beexpanded in powers of the small o�-diagonal terms of the mass matrix,V (1) = 12Xi ln���2x +M2i +M2 + �2�2Cii�+ 12 ��2�2�2Xi 6=j 1(��2x +M2i +M2)Cij 1(��2x +M2j +M2)Cji +O(�6) : (15)In the following we shall only keep the diagonal terms of C, whih ontribute to V (1) atleading order in �2.The Casimir energy of gauge �elds and gauginos an be diretly obtained from theCasimir energy of a real salar �eld. After appropriate gauge �xing this essentiallyamounts to ounting the physial degrees of freedom (f. [18℄). Thus, it is enough toperform the vauum energy alulation for a real salar �eld.3.2 Casimir Energy of a Salar FieldThe geometry of the orbifold T 2=Z2 ontains as free parameters the radii R1 and R2of the torus. The Casimir energy of a salar �eld on the orbifold is then given by thequantum orretions to the orresponding e�etive potential. At one-loop order, this is
6



obtained by summing over the ontinuous and disrete spetrum orresponding to thefour at and two ompat dimensions,VM = 12 hXim;n Z d4kE(2�)4 log �k2E +M2m;n +M2� ; (16)with [P℄m;n shorthand for the double sum andM2m;n denoting the Kaluza-Klein masses;the mass M now stands for bulk and brane mass terms.The Kaluza-Klein masses M2m;n depend on the possible boundary onditions onT 2=Z2 and an be read o� from the mode expansion listed in Table 1. Generiallythey an be written asM2m;n = 4 �(m+ �)2R21 + (n + �)2R22 �= 4R22 �e2(m+ �)2 + (n+ �)2� ; (17)where (�; �) = (0; 0); (0; 1=2); (1=2; 0); (1=2; 1=2) and e2 = R22=R21. For simpliity, werestrit our disussion to `retangular tori'. The general ase will be disussed elsewhere[29℄. Clearly, the ontributions for the di�erent boundary onditions satisfy the relations,V 0;0M (R1; R2) = V 0;0M (R2; R1) ; V 1=2;1=2M (R1; R2) = V 1=2;1=2M (R2; R1) ;V 0;1=2M (R1; R2) = V 1=2;0M (R2; R1) : (18)The expression (16) for the Casimir energy is divergent. Following [18,30℄, we extrata �nite piee using zeta funtion regularization,V = �d�(s)ds ����s=0 ; (19)where�(s) = 12 hXim;n �2sr Z d4kE(2�)4 �k2E + 4R22 �e2(m + �)2 + (n+ �)2�+M2��s : (20)Note that, as in dimensional regularization, a mass sale �r is introdued. The momen-tum integration an now be arried out and one obtains�(s) = 12 1(2�)4�2�(s� 2)�(s) hXim;n �2sr � 4R22 �e2(m + �)2 + (n+ �)2�+M2�2�s= 42�s32�2R4�2s2 �2sr(s� 2)(s� 1) hXim;n��e2(m+ �)2 + (n + �)2�+ R224 M2�2�s :(21)7



The boundary onditions of �elds on the orbifold T 2=Z32 are haraterized by threeparities. For positive (negative) parity the �eld is nonzero (zero) at the orresponding�xed point. For the Casimir energy only those hiral and vetor multiplets are relevantwhih are nonzero at the �xed point where supersymmetry is broken. Hene one parity,hosen to be the �rst one, has to be positive. Inspetion of the mode expansion in Ap-pendix A shows that for the �elds �+��, orresponding to (�; �) = (1=2; 0); (1=2; 1=2),one has to perform the sumhXim;n = 1Xm=0 1Xn=�1 ; (22)whereas the boundary onditions �++�, with (�; �) = (0; 0); (0; 1=2), requires the sumhXim;n = "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1# : (23)The two summations (22) and (23) are arried out in Appendix B. The result an beexpressed in the following form, whih is suitable for numerial analysis,V ��M (R1; R2) = M6R1R2768� �1112 � log�M�r��� Æ�0Æ�0 M464�2 �34 � log�M�r��� 18�4M3R2R21 1Xp=1 os(2�p�)p3 K3(�pMR1)� 2�4 1R42 1Xp=1 os(2�p�)p5=2 1Xm=0 12Æ�0Æm0 �R2R1q(m+ �)2 + M2R214 �5=2K5=2 �2� p R2R1q(m + �)2 + M2R214 � : (24)We have heked numerially that this expression satis�es the symmetry relations (18).As a good approximation, where the symmetries are manifest, one an derive [29℄V ��M (R1; R2) = M6R1R2768� �1112 � log�M�r��� Æ�0Æ�0 M464�2 �34 � log�M�r��� 18�4M3R2R21 1Xp=1 os(2�p�)p3 K3(�pMR1)� 18�4M3R1R22 1Xp=1 os(2�p�)p3 K3(�pMR2) : (25)
8



Figure 1: The four di�erent ontributions to the Casimir energy in units of the supersymmetri massM . From top left to bottom right we have V 0;0M , V 1=2;0M , V 0;1=2M and V 1=2;1=2M as de�ned in the text.The term / Æ�0Æ�0, whih is independent of R1 and R2, is preisely the ontribution ofthe `zero' mode in (21), with � = � = m = n = 0.The dependene of the �rst two terms in (24) on the regularization sale �r is aremnant of the subtration of divergent bulk and brane osmologial terms, as in dimen-sional regularization [20℄. The orresponding ontributions to the anomalous dimensionsof the 6D and 4D osmologial terms read6 = �r ���r�6 = �M6R1R2768� ; 4 = �r ���r�4 = M464� : (26)The presene of these terms demonstrates that the renormalization of the divergentenergy density (24) requires ounter terms for the bulk and brane osmologial terms.In general, the Casimir energy is a sum of the four possible terms,VM = AV 0;0M +BV 0;1=2M + CV 1=2;0M +DV 1=2;1=2M ; (27)9



where the oeÆients A,...,D depend on the �eld ontent of the model and we haveassumed equal masses for simpliity. The four funtions V 0;0M ,...,V 1=2;1=2M are shown inFigure 1. For small R1;2, V 0;0M is attrative and V 1=2;1=2M is repulsive, whereas the othertwo have mixed behavior.In supersymmetri theories there is a anellation between bosoni and fermioniontributions, and the expression (27) for the Casimir energy is replaed byV = a �V 0;0M 0 � V 0;0M �+ b�V 0;1=2M 0 � V 0;1=2M �+�V 1=2;0M 0 � V 1=2;0M � + d�V 1=2;1=2M 0 � V 1=2;1=2M � ; (28)where M 0 = pM2 +m2, with supersymmetri mass M and supersymmetry breakingmassm; the oeÆients a,...,d again depend on the �eld ontent of the model. Comparedto the non-supersymmetri ase (27), the behavior at small R1;2 is inverted. For bulkvetor- and hypermultiplets only the 4D N = 1 vetor and hiral multiplets are relevant,whih ouple to the brane where supersymmetry is broken.The qualitative behavior of Figure 1 is easily understood by evaluating expliitly theCasimir energy (25) at small radii R1; R2 � 1=M . Expanding the Bessel funtion K3for small arguments and performing the summations over p, one obtainsV 0;0M (R1; R2) = � 1945� R2R51 �1� 2116M2R21 + : : :� + R1 $ R2 ; (29)V 0;1=2M (R1; R2) = � 1945� R2R51 �1� 2116M2R21 + : : :�+ 3130240� R1R52 �1� 147124M2R22 + : : :� ; (30)V 1=2;0M (R1; R2) = 3130240� R2R51 �1� 147124M2R21 + : : :�� 1945� R1R52 �1� 2116M2R22 + : : :� ; (31)V 1=2;1=2M (R1; R2) = 3130240� R2R51 �1� 147124M2R21 + : : :� + R1 $ R2 : (32)From these equations one immediately reads o� the behavior of V �;�M at small radii. ForR1;2 ! 0, with R1=R2 �xed, one obtains the behavior of the Casimir energy for 5Dorbifolds. For supersymmetri models, the mass independent terms anel, and withM 02 �M2 = m2 the seond terms in the expansion yield the inverted behavior at smallR1;2.
10



4 Casimir Energy of the Orbifold ModelGiven the results of the previous setion we an now easily evaluate the Casimir energyof the orbifold GUT model desribed in Setion 2. At the branes, only 4D N = 1supersymmetry is preserved. A multiplet ontributes to the Casimir energy if its bosoniand fermioni degrees of freedom have di�erent masses. This only happens if its �rstZ2 parity is positive so that it an ouple to the singlet S at the SO(10) brane, whosenon-vanishing F -term breaks 4D N = 1 supersymmetry spontaneously. Hene, from the6D N = 1 vetor multiplet only V ontributes (f. Table 1). Also for the hypermultipletsonly one 4D N = 1 hiral multiplet is relevant. The orresponding hiral multiplets withpositive Z2 parity are listed in Table 2.4.1 Contribution from the Vetor MultipletThe expetation values (2) break SO(10) spontaneously to SU(5). This generates themassM for the 21 vetor multiplets of the oset SO(10)=SU(5)1. Sine the Higgs meh-anism preserves 6D N = 2 supersymmetry, also 21 hypermultiplets beome massive. Inaddition all gauginos aquire a supersymmetry breaking mass mg.From Tables 1 and 2 and from the mode deomposition we an now read o� the totalCasimir energy of the massive vetor multiplet on T 2=Z32,Vg = 24�V 0;0 � V 0;0mg � + 24�V 0;1=2 � V 0;1=2mg � + 2 �V 0;0M � V 0;0M 0 �+16�V 1=2;0M � V 1=2;0M 0 � + 24�V 1=2;1=2M � V 1=2;1=2M 0 � ; (33)where M 0 = pM2 +m2g. Using the expansion (29) and mg = �=(�2V ) one �nds atsmall radii,Vg = � 148� �2�4V 2 �R2R31 + : : :� ; (34)where the dots denote terms of relative order O(MiR1;2), with Mi = mg;M;M 0, whihhave been negleted.4.2 Contributions from HypermultipletsThe ontribution of hypermultiplets to the Casimir energy again depends on the sym-metry breaking, i.e., the hoie of parities. Consider the 10-plets H1;2 whih ontain theHiggs doublets as zero mode. From Table 2 one reads o�,VH = 8 �V 0;0mH � V 0;0�+ 8 �V 0;1=2mH � V 0;1=2�+12 �V 1=2;0mH � V 1=2;0�+ 12 �V 1=2;1=2mH � V 1=2;1=2� ; (35)1We shall ignore the O(1) fators for the masses of di�erent SU(5) representations as they will notbe important in the following disussion. 11



Figure 2: The di�erent ontributions to the Casimir energy from the bulk vetor multiplet and thehypermultiplets of the Higgs setor (see text). From top left to bottom right we have the ontributionsfrom the vetor multiplet, the 10-plets H1;2, the 10-plets H3;4, and the 16-plets �;�.
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whih, together with (29) and m2H = ���2=(�2V ), yieldsVH = � 1720� ��2�2V ��5R2R31 + 52R1R32 + : : :� : (36)For the 10-plets H3;4 the hoie of parities is di�erent, leading to olor triplets as zeromodes. The orresponding Casimir energy is given byV 0H = 12 �V 0;0mH � V 0;0�+ 12 �V 0;1=2mH � V 0;1=2�+8 �V 1=2;0mH � V 1=2;0�+ 8 �V 1=2;1=2mH � V 1=2;1=2� : (37)Here we have negleted the supersymmetri brane masses (f. [24℄) whih anel in thebehavior at small R1;2,V 0H = � 1720� �0�2�2V �10R2R31 + 52R1R32 + : : :� : (38)In the same way one obtains for the 16-plets,V� = 2 �V 0;0M 0 � V 0;0M �+ 16�V 0;1=2M 0 � V 0;1=2M �+ 24�V 1=2;1=2M 0 � V 1=2;1=2M �+8 �V 1=2;0m� � V 1=2;0�+ 14 �V 0;0m� � V 0;0� ; (39)with M 0 =pM2 +m2�, whih yields for small radiiV� = � 1720� �00�2�2V �4R2R31 � 11R1R32 + : : :� : (40)The four ontributions to the Casimir energy, Vg, VH , V 0H and V� are displayed inFigure 2. Note that features at larger radii, like the pro�le in the R2-diretion for V�,an be lost in the simpli�ed expression where we keep only the leading term in �2. Thebehavior at small radii however is unhanged and obvious from the analyti expressionsgiven above. Note that only V 0H is repulsive in all diretions at small radii.To leading order in 1=�, the Casimir energy is determined by the ontribution fromhypermultiplets sine the gaugino mass is stronger volume suppressed than the salarmasses. Depending on signs and magnitude of �, �0 and �00, the resulting behaviorat small radii an be attrative or repulsive. As an example, we shall assume in thefollowing �0 < 0; j�0j � j�j; j�00j whih yields a repulsive behavior at small radii.5 Stabilization of the Compat DimensionsIn the previous setion we have alulated quantum orretions to the e�etive potentialat small radii and we have seen that, depending on the supersymmetry breaking param-eters, the behavior an be attrative or repulsive. In the latter ase a bulk osmologial13



term an lead to stabilization of the ompat dimensions [18℄. As we shall show in thissetion, stabilization an also follow from the interplay of the Higgs mehanism in 6D,whih generates bulk mass terms, and supersymmetry breaking on the brane.Consider the mass M generated by spontaneous symmetry breaking as disussed inSetion 2 (f. (6)),M2 ' g26h�i2 = g24V h�i2 ; (41)where g6 has dimension length and g4 = g6=pV is dimensionless. For simpliity, weshall assume that M is small ompared to the Kaluza-Klein masses and approximatelyonstant.In orbifold ompati�ations of the heteroti string expetation values h�i an beindued by loalized Fayet-Iliopoulos terms. Vanishing of the D-terms then impliesV h�i2 = C�2 ; (42)where C � 1 is a loop fator and � is the string sale or, more generally, the UV uto�of the model. For instane, in the 6D model of [16℄ one �nds for the loalized anomalousU(1)'s, C�2 � gM2P=(384�2).Supersymmetry breaking by a brane �eld S, with � = FS=� , leads to a `lassial'vauum energy density,V (0) = ��00 Z d2y Z d4� 1�4 Æ2(y)hSyS(�y� + �y�)i ' ��00 �2�2 h�i2= ��00 �2CV ; (43)with V = (2�)2R1R2. For �00 > 0, V (0) is attrative at large radii. Note that this super-symmetry breaking mass term does not lead to a negative mass squared for � and �sine these �elds are assumed to be stabilized by muh larger supersymmetry preservingmasses at the minimum. We assume that no tahyoni mass terms are generated for�elds whose expetation values are not �xed by the D{term potential.The lassial energy density V (0) together with the Casimir energy V (1) = V 0H yieldsthe total energy density,Vtot(R1; R2) = V (0)(R1; R2) + V (1)(R1; R2)= � 1288�3 �2�0�2 � 1R41 + 14R42�� �004�2 �2CR1R2 : (44)The e�etive potential is attrative at large radii and, for �0 < 0, i.e. m2H3;4 > 0, repulsiveat small radii. One easily veri�es that the e�etive potential Vtot has a stable minimumat Rmin1 = p2Rmin2 ; Rmin2 = 21=412p�r��0�00 1M : (45)14



Figure 3: Casimir energy of the 10-plets H3 and H4 together with the lassial energy density from thesupersymmetry breaking brane.Here M is the mass given by Eq. (41) at the minimum, and we have assumed g4(Vmin) '1=p2, as it is the ase for standard model gauge interations. As Figure 3 illustrates,the total energy density Vtot is very at for large radii.In orbifold ompati�ations of the heteroti string one typially has M �MGUT. Itis very remarkable that the interplay of gauge and supersymmetry breaking has lead to astabilization at Rmin � 1=MGUT, independent of the sale � of supersymmetry breaking.The reason is that both, the lassial vauum energy density as well as the one-loopCasimir energy are proportional to �2 whih therefore does not a�et the position of theminimum. Another interesting impliation of the potential is that for ��MGUT,�Vtot(Rmin) = Vtot(1)� Vtot(Rmin) � �2M2GUT � M4GUT : (46)Note that the energy density Vtot is negative at the minimum. It has to be tuned tozero by means of a brane osmologial onstant. In a full supergravity treatment ofstabilization also the interations of the supersymmetry breaking brane �eld with theradion �elds have to be taken into aount.The fat that the energy density di�erene Vtot(1) � Vtot(Rmin) is muh smallerthan M4GUT has important osmologial onsequenes. In the thermal phase of the earlyuniverse, the volume of the ompat dimensions and, orrespondingly, the value of 4Doupling onstants begins to hange already at temperatures T � p�MGUT � MGUT(f. [31℄).
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6 ConlusionsWe have alulated the one-loop Casimir energy for bulk �elds on the orbifold T 2=Z32.As expeted, depending on the boundary onditions, the behavior at small radii an beattrative or repulsive. For the onsidered supersymmetri model, the Casimir energyis proportional to the sale of supersymmetry breaking. The relative strength of theouplings of the di�erent bulk �elds to the supersymmetry breaking brane �eld thendetermines whether the behavior of the total energy density is repulsive or attrative atsmall radii.Quantum orretions also modify the behavior at large radii. In orbifold ompati�-ations with U(1) gauge fators, generially Fayet-Iliopoulos terms are generated loallyat the orbifold �xed points. This leads to a breaking of these U(1) gauge symmetriesby the Higgs mehanism. Sine the symmetry breaking is indued by loal terms, thegenerated masses sale like M � 1=pV with the volume of the ompat dimensions.The oupling of the bulk Higgs �eld to the supersymmetry breaking brane �eld givesrise to a lassial ontribution to the total energy density whih sales like 1=V with thevolume. Depending on the sign of the oupling, the behavior of the energy density atlarge radii an be attrative or repulsive. An attrative behavior at large radii, togetherwith a repulsive behavior due to the Casimir energy at small radii, an stabilize theompat dimensions. Sine the supersymmetry breaking sale fatorizes, the vauumsize of the ompat dimensions is determined by the remaining mass sale, the massM generated by the Higgs mehanism, Rmin � 1=M � 1=MGUT. At the minimum theenergy density Vtot is negative and has to be tuned to zero by adding a brane osmologialterm.The harateristi feature of the desribed stabilization mehanism is a potential wellmuh smaller than the GUT sale, �Vtot(Rmin) � �2M2GUT � M4GUT. Clearly, this hasimportant osmologial onsequenes, both for the thermal phase of the early universeas well as a possible earlier inationary phase.AknowledgmentsWe would like to thank L. Covi, K. Fredenhagen, G. von Gersdor�, A. Hebeker,J. M�oller, S. Parameswaran, M. Peloso, E. Poppitz, M. Ratz and J. Shmidt for helpfuldisussions. This work has been supported by the SFB-Transregio 27 \Neutrinos andBeyond" and by the DFG luster of exellene \Origin and Struture of the Universe".
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A Mode Expansion on T 2=Z32The orbifold T 2=Z32 has four �xed points whih we denote by yO = (0; 0), yPS =(�R1=2; 0), yGG = (0; �R2=2) and y = (�R1=2; �R2=2) (f. [32℄). The possible boundaryonditions of funtions on this orbifold are haraterized by three parities, (a; b = +;�),��ab(yO � y) = ���ab(yO + y) ;�a�b(yPS � y) = ��a�b(yPS + y) ;�ab�(yGG � y) = ��ab�(yGG + y) : (47)It is straightforward to de�ne an orthonormal basis on the torus. The mode expansionof funtions with the boundary onditions (47) then reads expliitly,�+++(x; y) = 1p2�2R1R22Æn;0Æm;0 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n)+++ (x)� os�2my1R1 + 2ny2R2 � ; (48a)�++�(x; y) = 1p2�2R1R2 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n+1)++� (x)� os�2my1R1 + (2n+ 1)y2R2 � ; (48b)�+�+(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n)+�+ (x)� os�(2m+ 1)y1R1 + (2n)y2R2 � ; (48)�+��(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n+1)+�� (x)� os�(2m+ 1)y1R1 + (2n+ 1)y2R2 � ; (48d)��++(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n+1)�++ (x)� sin�(2m+ 1)y1R1 + (2n + 1)y2R2 � ; (48e)��+�(x; y) = 1p2�2R1R2 " 1Xm=0 1Xn=�1#�(2m+1;2n)�+� (x)� sin�(2m+ 1)y1R1 + 2ny2R2 � ; (48f)
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���+(x; y) = 1p2�2R1R2 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n+1)++� (x)� sin�2my1R1 + (2n+ 1)y2R2 � ; (48g)����(x; y) = 1p2�2R1R2 "Æ0;m 1Xn=0+ 1Xm=1 1Xn=�1#�(2m;2n)��� (x)� sin�2my1R1 + (2n)y2R2 � : (48h)B Evaluation of Casimir SumsOur evaluation of the Casimir double sums requires two single sums whih we shall nowonsider. The �rst sum readseF (s; a; ) � 1Xm=0 1[(m + a)2 + 2℄s : (49)This is a series of the generalized Epstein-Hurwitz zeta type. The result an be foundin [30℄ and is given byeF (s; a; ) = �2s�(s) 1Xm=0 (�1)m�(m+ s)m! �2m�H(�2m; a) +p��(s� 12)2�(s) 1�2s+ 2�s�(s)1=2�s 1Xp=1 ps�1=2 os(2�pa)Ks�1=2(2�p) ; (50)where �H(s; a) is the Hurwitz zeta-funtion. Note that this is not a onvergent se-ries but an asymptoti one. In the following it will be important that �H(�2m; 0) =�H(�2n; 1=2) = 0 for m 2 N and n 2 N0. In our ase, the �rst sum in eF (s; a; ) thusredues to a single term. For a = 1=2 the sum vanishes, and for a = 0 only the �rstterm ontributes; with �H(0; 0) = 1=2 one obtains �2s=2.The seond, related sum is given byF (s; a; ) � 1Xm=�1 1[(m + a)2 + 2℄s : (51)Using the two identities (m 2 N)�H(�2m; a) = ��H(�2m; 1� a) ; (52)F (s; a; ) = eF (s; a; ) + eF (s; 1� a; ) ; (53)
18



one easily obtains, in agreement with [18℄,F (s; a; ) = p��(s) jj1�2s "� �s� 12�+ 4 1Xp=1 os(2�pa)(� p jj)s� 12Ks� 12 (2� p jj)# : (54)These two sums provide the basis for our evaluation of the Casimir sums.B.1 Casimir Sum (I) on T2=Z32We �rst onsider the summationhXim;n = 1Xm=0 1Xn=�1 : (55)In this ase the Casimir energy (f. (21)) is obtained from1Xm=0 1Xn=�1 �e2(m+ �)2 + (n+ �)2 + �2��s ; (56)where we have shifted s ! s + 2 and de�ned �2 = R224 M2. Using the expression forF (s; a; ), we an perform the sum over n,1Xm=0 1Xn=�1 �e2(m+ �)2 + (n + �)2 + �2��s= p��(s� 12)�(s) 1Xm=0(e2(m+ �)2 + �2)1=2�s+ 4p��(s) +1Xp=1 os(2�p�) 1Xm=0(� p)s�12 �pe2(m+ �)2 + �2� 12�sKs� 12 (2� ppe2(m + �)2 + �2)� f1(s) + f2(s) : (57)Let us onsider f1(s) �rst. The sum over m an be performed with the help of eF (s; a; ),f1(s) =p��(s� 12)�(s) 1Xm=0(e2(m + �)2 + �2)1=2�s=p��(s� 1=2)�(s) �1�2s�H(0; �) + �2(s� 1) �2�2se+ 2�s�(s)e�s�1�s 1Xp=1 ps�1 os(2�p�)Ks�1(2�p ��e �) : (58)
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Realling the shift in s, we an now write �(s) (21) as�(s) = 132�2 � 4R22��s �2s+4rs(s+ 1)�p��(s� 1=2)�(s) �1�2s�H(0; �) + �2(s� 1) �2�2se+ 2�s�(s)e�s�1�s 1Xp=1 ps�1 os(2�p�)Ks�1(2�p ��e �)+ 4p��(s) +1Xp=1 os(2�p�) 1Xm=0(� p)s�12 �pe2(m+ �)2 + �2� 12�sKs� 12 (2� ppe2(m+ �)2 + �2)� : (59)Now we have to di�erentiate with respet to s and set s = �2. Sine �(�2) = 1, thederivative has only to at on �(s) if the orresponding term is inversely proportional to�(s). Performing the di�erentiation, usingdds 1�(s) ����s=�2 = ��0(s)�(s)2 ����s=�2 = 2 ; (60)and Ka(z) = K�a(z), and substituting again e = R2=R1 and �2 = R2M=2, we �nallyobtain for the Casimir energy,V �;�(I)M = M5R2120� �H(0; �) + M6R1R2768� �1112 � log�M�r��� 18�4M3R2R21 1Xp=1 os(2�p�)p3 K3(�pMR1)� 2�4 1R42 1Xp=1 os(2�p�)p5=2 1Xm=0�R2R1q(m + �)2 + M2R214 � 52K5=2 �2� p R2R1q(m + �)2 +M2R21=4� : (61)The seond term orresponds to a �nite part of the 6D osmologial onstant. Thedependene on the regularization sale �r shows that an in�nite ontribution has beensubtrated.B.2 Casimir Sum (II) on T2=Z32The seond relevant summation ishXim;n = "Æm;0 1Xn=0+ 1Xm=1 1Xn=�1# : (62)
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For the orresponding boundary onditions one has � = 0. The Casimir sum an thenbe written as"Æm;0 1Xn=0+ 1Xm=1 1Xn=�1# �e2m2 + (n + �)2 + �2��s= "Æm;0 1Xn=0+ 1Xm=0 1Xn=�1� Æm;0 1Xn=�1# �e2m2 + (n+ �)2 + �2��s ; (63)where we again shifted s ! s + 2 and set R224 M2 = �2. The double sum is the sum (I)whih we have already evaluated. Using�1Xn=�1 �(n + �)2 + �2��s = 1Xn=0 �(n+ 1� �)2 + �2��s : (64)one easily �nds for the remaining piee2f3(s) = � 1Xn=0 �(n+ 1� �)2 + �2��s= ���2s�H(0; 1� �)�p��(s� 12)2�(s) �1�2s� 2�s�(s)�1=2�s 1Xp=1 ps�1=2 os(2�p(1� �))Ks�1=2(2�p�) : (65)Di�erentiating the orresponding ontribution to �(s), setting s = �2, and substituting� = R2M=2 yields the Casimir energy,V 0;�(II)M = V 0;�(I)M+ M464�2 �32 � 2 log�M�r�� �H(0; 1� �)� 1240�M5R2� 1�4 1R42 1Xp=1 os(2�p(1� �))p5=2 �MR22 �5=2K5=2 (�pMR2) : (66)The �rst of the additional terms does not depend on the radii. It represents a �niteontribution to the brane osmologial term. The dependene on the regularizationsale �r again shows that a divergent ontribution has been subtrated.
2 Note that �H(0; 1) = �1=2, and �H (�2m; 1) = 0 for m 2 N.21
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