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AbstratWe study the stati phase struture of the ISS-KKLT model for moduli stabilisa-tion and uplifting to a zero osmologial onstant. Sine the supersymmetry breakingsetor and the moduli setor are only gravitationally oupled, we expet negligiblequantum e�ets of the modulus upon the ISS setor, and the other way around.Under this assumption, we show that the ISS �elds end up in the metastable vaua.The reason is not only that it is thermally favoured (seond order phase transition)ompared to the phase transition towards the supersymmetri vaua, but rather thatthe metastable vaua form before the supersymmetri ones. This nie feature is ex-lusively due to the presene of the KKLT setor. We also show that supergravitye�ets are negligible around the origin of the �eld spae. Finally, we turn to themodulus setor and show that there is no destabilisation e�et oming from the ISSsetor.
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1 IntrodutionIn the last years, quite a large attention has been given to the problem of modulistabilisation, espeially onerning the osmologial impliations they ould have [1℄.Following an earlier proposal [2℄, Kahru, Kallosh, Linde and Trivedi (KKLT, [3℄)have reently provided the �rst expliit model in whih all moduli are �xed. They doso by turning on uxes in a �rst step, whih �x the omplex moduli and the dilatonS, and introduing non-perturbative superpotentials [4℄ in a seond step in orderto stabilise the K�ahler moduli T . For a more detailed study of the phenomenologyarising from these models, see [5℄.Unfortunately, the resulting low energy potential for T has an anti-de Sitter va-uum whih needs to be uplifted. The strategy proposed in [3℄ was to introdue ananti-D3 brane far away from the visible setor in the sense of the ompat dimensionsso that the �ne-tuning of the osmologial onstant would be naturally explained bytheir urvature. However, suh a mehanism results in a non-linearly realised super-symmetry, and therefore the low energy theory an no longer be expressed in terms ofusual 4D supergravity. Latter attempts tried to realise the uplift by D-terms [6℄, i.e.using a fully supersymmetri setor, but this generially leads to a heavy gravitino1.Parallel works have onsidered an F -term uplifting [7℄. This relies on adding a newsetor in whih supersymmetry is spontaneously broken by some �eld �, F� 6= 0. If1Atually this is not the ase for the last two referenes of [6℄ beause the uplift there is mainly realisedby an F -term. 1



this setor and the KKLT setup are deoupled in suh a way that the K�ahler potentialand superpotentials add up, then the uplifting is trivially realised by relating theparameters of both setors. The last two years, a rather large sample of suh modelstogether with their diret phenomenology have been proposed [8, 9, 10℄.In this paper, we shall fous on the setup developped in [8℄, where the upliftingsetor was hosen to be the Intriligator, Seiberg and Shih model (ISS, [11℄). A non-exhaustive list of string realizations of it an be found in Ref. [12℄. This dual SQCDmodel is of partiular interest sine it realises a breaking of supersymmetry in loalminima in the squarks diretion. Elsewhere in the �eld spae, in the mesons diretion,there are supersymmetri vaua, and both loally stable points are separated bya potential barrier. This ensures a long life-time for the SUSY breaking vaua.Hene, one does not have to give up the idea of a global (supersymmetri) minimum.Now, from osmologial onsiderations, we are led to wonder whether we endedup living in the metastable vauum or not. And indeed, following the results ofRefs. [13, 14, 15, 16℄, we do. There, the authors showed that �nite temperatureorretions2 to the ISS setup favour the �elds to go in the metastable vaua ratherthan in the supersymmetri ones. In [14℄, it was assumed that the �elds start inthe supersymmetri phase. Instead, the authors of [15, 16℄ assumed the startingpoint to be the origin of the �eld spae, whih is a minimum at high temperature3.This is beause the origin of the �eld spae ontains the highest number of lightdegrees of freedom and hene maximises the entropy. We shall adopt the sameattitude. In these various studies, it was found that the supersymmetri vaua format a higher temperature than the metastable ones, but the origin is always a loalminimum in the mesons diretion. Therefore, the phase transition is �rst ordertowards the supersymmetri vaua. This is thermally disfavoured in omparisonwith the seond order phase transition that ours towards the non-supersymmetrivaua, even though the latter happens at a lower temperature.In this paper, we omplete the study done in [16℄. We work out the ompletephase struture of the ISS-KKLT model. As will beome lear in the text, the ISS�elds do end up in the non-supersymmetri vaua, and the modulus, on the otherhand, is not destabilised by thermal e�ets, as suggested in [18℄. We will show thatin our ase, the presene of the modulus setor modi�es the thermally orreted ISSpiture in suh a way that the metastable vaua form �rst, and they remain the truevaua of the theory during a ertain time. Later on, the supersymmetri vaua form,but the �elds have long gone in the SUSY breaking ones. Not until an even lowertemperature are the two vaua degenerated. From that moment on, the �elds antunnel down from the metastable vaua to the supersymmetri vaua.Another feature that was pointed point out in [16℄ is that the origin of the ISS�eld spae may no longer be a minimum at high temperature when this setor isoupled to the KKLT setor. This is due to supergravity, and ould have a non-trivial e�et on the phase transition. We study in great detail this point and �ndthat as expeted, this displaement is very small.However, let us emphasize that this study is still at the toy model level. We willnot at all address osmologial problems suh as the gravitino overprodution that2For a review on �nite temperature �eld theory, see [17℄.3We will develop these points in the following Setions.2



usually happens when the supersymmetry breaking setor is in thermal equilibrium.Even though the present paper obviously aims at a more realisti appliation, weleave these investigations for future work.The paper is organised as follows. Setion 2 reviews the zero temperature ISS-KKLT setup in order for the paper to be self-ontained. We introdue the main toolsof �nite temperature e�etive potential in Setion 3. In Setion 4, the relevant tem-peratures and phase transition of the ISS setor are derived assuming the rigid limit(zeroth order in supergravity expansion). In subsetion 4.1, we ompute the ritialtemperature of the seond order phase transition towards the would-be metastablevaua. We give an insight of how the supersymmetri minima form in subsetion 4.2.We eventually ompute the degeneray temperature between the non-supersymmetriand the supersymmetri vaua in subsetion 4.3. The rigid limit assumption of Se-tion 4 is veri�ed by working out the supergravity orretions around the origin inSetion 5. Setion 6 deals with the modulus setor. We show that the temperatureorretions oming from the thermalised ISS setor do not destabilise the modulus.Finally, we onlude in Setion 7 and draw the future diretions that seem relevantto us.2 ISS-KKLT modelLet us start by realling the KKLT onstrution for moduli stabilisation in the frame-work of type IIB string theory. In [3℄, the authors used non trivial bakground uxes,i.e. non-zero vauum expetation values for ertain �eld strengths in the internal di-retions, in order to stabilise all omplex struture moduli as well as the dilaton.However, the K�ahler modulus T , whih desribes the utuations of the overall in-ternal volume, annot be stabilised in this manner. Non-perturbative e�ets suhas gaugino ondensation on D7 branes are used to generate an A�ek-Dine-Seiberg[4℄ superpotential at an intermediate sale � � MP . At low energy, the proedureresults in the following setupK1 = �3 ln �T + T � ; W1 = W0 + ae�bT ; (2.1)where the onstant W0 is remnant of the stabilisation of all other moduli at thePlank sale.The model exhibits a supersymmetri minimum DTW1 = �TW1 +KTW1 = 0 atT = T0, implyingW0 = � ae�bT0 (1 + b �T0 + T 0�3 ) < 0 ; (2.2)hVKKLTi = heK1 hKTTDTW1DTW 1 � 3 jW1j2ii = � a2b2e�b(T0+T 0)3 �T0 + T 0� < 0 ;where KTT = �K�1�TT is the inverse metri for the K�ahler potential K1.As mentionned in the Introdution, the energy an be uplifted to a positive valueby adding a setor in whih supersymmetry is spontaneously broken. In [8℄, the3



uplifting setor was hosen to be the ISS model [11℄K2 = Tr j'j2 + Tr je'j2 + Tr j�j2 ; W2 = h Tr (e'�')� h�2 Tr� : (2.3)This is the magneti dual of a SUSY-QCD theory with gauge group SU(N). Whenthe number of avours satis�es Nf 6 3N=2, the eletri theory is asymptotiallyfree whereas its dual, with gauge group SU(Nf �N), is infrared free.The magneti �elds under onsideration are the gauge singlets � = ��ij�, whihwe all mesons beause they are in one-to-one orrespondene with the eletrimesons. The quarks ' = �'ia�, and the anti-quarks e' = (e'ai ) are in the funda-mental and antifundamental representations of SU(N). In the rigid supersymmetrylimit, the theory (2.3) has a global symmetry G = SU(Nf )L � SU(Nf )R � U(1)B �U(1)0 � U(1)R whih is expliitly broken to SU(Nf ) � U(1)B � U(1)R by the massparameter �.We denote by N the magneti number of olours N = Nf � N, whih satis�esNf > 3N . The indies run as i; j = 1; : : : ; Nf and a = 1; : : : ; N . For onveniene, wewill omit the avour and olour indies from here on and will just keep in mind that� is an Nf �Nf matrix, whereas ' and e'T are Nf �N matries.The setup (2.3) has supersymmetry breaking solutions' = e'T = ��1IN0 � ; � = 0 (2.4)generated by non-vanishing F -terms for the mesons F� = h �e''� �21INf �. Notiethat the supersymmetry breaking does not a�et the gauge setor sine it is drivenby gauge singlets. The orresponding vauum energy isVmin = ��h2�4�� (Nf �N) : (2.5)Far away from the origin in the mesons diretion, after integrating out the quarks,gaugino ondensation produes a non-perturbative superpotential [4℄Wdyn = N  hNf det ��Nf�3Nm ! ; (2.6)whih gives rise to supersymmetri vauahh�i = �m�2N=(Nf�N)1INf : (2.7)In the above expressions, �m is the dynamial sale of the magneti theory, and� � �=�m is a small parameter. The existene of these vaua renders the non-supersymmetri ones (2.4) metastable. Both regions of the ISS �eld spae are sep-arated by a potential barrier. The lifetime of the metastable vaua an be madearbitrarily large by tuning � very small, or equivalently, �m very large for � �xed.We now ouple both setors in the following wayK = K1 �T; T � + K2 ��i; ���j� ; W = W1 (T ) + W2 ��i� ; (2.8)4



where �i denote olletively the ISS �elds '; e';�.As explained in [8℄, suh a deoupling between the two setors an be ahievedby onsidering systems of D3 and D7 branes. The gauge setor SU(N) arises froma stak of N D3 branes. Therefore the ISS gauge oupling, the dynamial sale �mand the mass parameter � depend on the dilaton, whih was already stabilised athigher energies. The mesons are interpreted as the positions of Nf D7 branes, thisensures the deoupling in the K�ahler potential (2.8). The (anti-)quarks, on the otherhand, are seen as open strings in the D3-D7 setor. Thus, their kineti terms maynot be anonial, but modifying the K�ahler potential does not a�et the main pitureof the model sine they are not diretly related to the supersymmetry breaking, andhene to the uplifting mehanism.The supergravity orretions are negligible around the metastable vaua, as theyare higher order terms in powers of the ISS �elds � �2=M2P . There, the salarpotential is well approximated byV ��i; ���i; T; T � ' 1�T + T �3 VISS ��i; ���i� + VKKLT �T; T � ; (2.9)where VISS is the global supersymmetri (as opposed to supergravity) salar poten-tial for the ISS setor. However, when omputing the ritial temperature, we willonsider the expansion (2.9) to be valid at the origin of the �eld spae as well. Wethen expliitly verify it in Setion 5.The �ne-tuning of the osmologial onstant to zero is given byhV i = 0 =) ��h2�4�� (Nf �N) ' 3 jW0j2 ; (2.10)and illustrated in Figure 1.
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TFigure 1: The KKLT potential (purple, dashed) and the uplifted ISS-KKLT potential(green, plain). The vev T ' T0 is not modi�ed by the uplifting mehanism.On the other hand, the gravitino mass ism23=2 = heK jW j2i ' jW0j2�T0 + T 0�3 ' a2b2e�b(T0+T 0)9 �T0 + T 0� ; (2.11)5



where (2.2) together with the ondition bT0 � 1 were used in the last equality4.Here and in the following numerial results, we �x a = h = 1 and b = 0:3. Wealso set Nf = 7 and N = 2. Asking for a TeV range gravitino mass and imposing(2.10), the parameters are found to beT0 ' 110 ; jW0j ' �10�14 � 10�13� M3P ; � ' 1 � 5 � 10�7MP : (2.12)When needed, we will also take a oupling onstant g = 0:1. Sine the ISS gaugesetor lives on D3 branes, one should have g (MP ) � 4�=ReS and run this valuedown to a sale of order �. However, the dilaton vev strongly depends on the UVompletion of the model. Though we believe this point to be ruial, it goes farbeyond the aim of the present work. We also onsider the sale �m ' 1011MP . Letus reall that this sale is a Landau pole, whih is not physial, and it is therefore notsurprising to have �m higher than the Plank sale. The previous value orrespondsto g (MP ) = 0:5 whih means that the theory is perturbative at the Plank sale.Before oming to the spei�ities of our model, let us introdue the �nite tem-perature formalism.3 Finite temperature e�etive potentialThe general one-loop e�etive potential inluding �nite temperature e�ets an besplit into di�erent ontributions [19℄Ve�(�i; T ) = V0(�i; T ) + V 01 (�i; T ) + V �1 (�i; T ) ; (3.1)where V0 = eK nKTTDTWDTW +Ki�jDiWD�jW � 3 jW j2o (3.2)is the tree-level supergravity potential, and Ki�j is the inverse metri for the K�ahlerpotential K2.The potential V 01 is the usual one-loop temperature independent Coleman-Weinberge�etive potential [20℄, and V �1 is the �nite temperature ontributionV �1 = �42�2 (XB nB Z 10 dx x2 ln�1� e�px2+M2B=�2��XF nF Z 10 dx x2 ln�1 + e�px2+M2F =�2�) : (3.3)Here nB (nF ) are the bosoni (fermioni) degrees of freedom, and MB (MF ) are thebosoni (fermioni) �eld-dependent mass eigenvalues. One an immediately see that�nite temperature orretions break supersymmetry.The potential (3.3) may be expanded at high temperature, �2 �M2B ;M2F ,V �1 ' ��2�490 �nB + 78nF� + �224 � 3TrM2v +TrM2f +TrM2s �+ : : : ; (3.4)4As usual, we assume that the uplift of the modulus potential does not substantially modify its vev.This an be easily veri�ed graphially (Figure 1). 6



where Mx are the mass matries for vetors, fermions, and salars, expressed interms of the �elds. The trae TrM2f is summed over Weyl fermions.In general, one should use the following supergravity formul� for the mass ma-tries in the presene of a non-anonial K�ahler potential [21℄TrM2f = heG hKABKCD (rAGC +GAGC) �rBGD +GBGD�� 2ii ; (3.5)and TrM2s = 2 hKAB �2V0��A� ��B i : (3.6)In the above expressions, �A represent the salar �elds in thermal equilibrium. Theterm �2 entering (3.5) takes into aount the mixed Goldstino-gravitino ontribution[21℄. The funtionG = K+ln jW j2 is the supergravity K�ahler invariant potential, andwe also introdued GA = �G=��A and rAGB = GAB��CABGC , with the onnetion�CAB = KCD�AKBD : (3.7)However, as briey mentionned in the Introdution, we will be onerned withthese general results in Setion 5 when we expliitly alulate how supergravity to-gether with temperature e�ets displae the minimum from the origin in the mesonsdiretion, and in Setion 6 when we study the destabilisation of the modulus. Sineboth T and � are singlets under SU(N), the gauge bosons ontribution will not berelevant when omputing the derivatives of the e�etive potential (3.4). This is whywe did not write TrM2v here above.At the origin, we keep the ISS setor at the rigid level. When omputing the �nitetemperature orretions there, we shall use the results of global supersymmetry3TrM2v = 6 hD�i D� i i ;TrM2f = hF ijFij i + 4 hD�i D� i i ; (3.8)TrM2s = 2 hF ijFij i + 2 hD�i D� i i ;where, as usual, Fij = �2W=��i��j and D�i = �D�=��i. Here again, �i representthe salar �elds assoiated with ', e' and �. One should be aware that the traesabove run over the avour and olour indies as well. The index � labels the adjointrepresentation of SU(N).Let us now turn to the main part of this paper, namely the phase struture ofthe model (2.8) one �nite temperature orretions are inluded.4 Critial temperature and phase transitionsin the ISS setorWhen the Universe ools down, the ISS �elds end up in the non-supersymmetrivaua, as studied in [13, 14, 15, 16℄. In this setion, we show that the piture isnot drastially modi�ed when we add the modulus setor. However, this shemeis valid only if we onsider the KKLT setor to be lassial, whih means that we7



assume the modulus to be already lying in its minimum T = T0 and we neglet itsquantum orretions to the ISS setor. In turn, Setion 6 deals with the eventualityof a modulus destabilisation by temperature.Finite temperature e�ets are to restore all symmetries. At suÆiently hightemperature, all the �elds sit at the origin of the ISS �eld spae. As we shall see,when the temperature lowers, the potential starts to exhibit a tahyoni diretiontowards the non-supersymmetri vaua, whih form �rst. At a lower temperature,the would-be supersymmetri vaua form, but the origin remains a loal minimumin the mesons diretion (saddle point). Therefore, the origin and these new minimaare separated by a barrier.4.1 Critial temperatureIn what follows, we fous on the behaviour of the potential at the origin of the �eldspae. The symmetry restoration due to �nite temperature appears when the tahy-oni tree level masses are ompensated by the thermal masses (seond derivativesof the potential (3.3)) at the origin. This is also a good reason to keep the lowestorder in supergravity around the origin. Indeed, even though the orretions to thepotential are negligible, supergravity e�ets ould have a non-trivial impat on itsderivatives and one typially has to take them into aount. However, in the ase ofthe ritial temperature, and motivated by the results of [16℄, even if the exat loa-tion of the origin may vary with temperature and supergravity, the moment when theurvature of the potential at the origin beomes negative should not be drastiallya�eted by supergravity e�ets. This, obviously, assumes that the origin is indeed aminimum at high temperature, as we will show in Setion 5.We use the high temperature expansion (3.4) beause the tree level masses areof order h2�2= �T0 + T 0�3, see for instane (2.12). We follow the standard proedure[19℄ but there is no need to shift the �elds here sine we work at the origin of the�eld spae.The traes (3.8) expressed in terms of the �elds are easily alulated from thesuperpotential (2.3). We �nd3TrM2v = 3g2N2 � 1N Tr j'j2 +Tr je'j2�T0 + T 0�3 ; (4.1)TrM2f = 2�h2Nf + g2N2 � 1N � Tr j'j2 +Tr je'j2�T0 + T 0�3 + 2h2N Tr j�j2�T0 + T 0�3 ;TrM2s = �4h2Nf + g2N2 � 1N � Tr j'j2 +Tr je'j2�T0 + T 0�3 + 4h2N Tr j�j2�T0 + T 0�3 ;where g is the oupling onstant. It follows that the potential (3.4) readsV �1 = �24 �T0 + T 0�3 ��h2Nf + g2N2 � 1N �hTr j'j2 +Tr je'j2i+ h2NTr j�j2� ;(4.2)where we dropped the onstant term / �4 in (3.4) sine it is not relevant for theomputation of the ritial temperature. 8



We ompare the salar thermal masses in (4.2) to the tree level masses at theorigin. The latter are �h2�2= �T0 + T 0�3 or �h2�� 2= �T0 + T 0�3 for the squarks and0 for the mesons, as easily seen from the superpotential (2.3) and from the expansion(2.9). The thermal mass matrix is diagonal and positive de�nite, while the lassialmass matrix is anti-diagonal. We ask for the determinant of the whole squared massmatrix to be zero at the ritial temperature �. This means that all the eigenvaluesare positive above the ritial temperature, while below �, tahyoni diretionsappear in the potential towards the would-be metastable vaua. From (4.2), we get�2 = 4 ���2��Nf + g2h2 N2�1N ; (4.3)whih is in agreement with the ritial temperature derived in [16℄ in the rigid limit.As omputed there, this is only slightly modi�ed by supergravity orretions.The ritial temperature (4.3) is of order �2 and the tree-level masses are oforder h�2= �T0 + T 0�3, with T0 � 110. Therefore, the use of the high temperatureexpansion (3.4) is a posteriori justi�ed.For the values of the parameters given in (2.12), i.e. for a gravitino massm3=2 = 1TeV, we �nd that � ' 4 � 10�7MP . Notie that the ritial temperature does notdepend on the modulus, as one ould have expeted from the expansion (2.9). Thisis a ruial point sine it is the reason why the would-be metastable vaua form �rst,as we show now.4.2 Formation of the supersymmetri vauaHaving omputed the ritial temperature does not yet ensure that the ISS �eldsatually go in the metastable vaua. In this setion, we turn to the mesons diretionand work out the temperature �susy at whih the SUSY preserving vaua appear. Inpartiular, we want to know if they are already formed when � = � . In order toahieve this, we ask for the mesons to be away from the origin and integrate out theheavy quarks. The low energy theory is then pure Yang-Mills, it is strongly oupledin the IR and gaugino ondensation [4℄ produes the non-perturbative term (2.6)whih gives rise to the supersymmetri vauaWNP = NA (det�)1=N ; (4.4)with A = h����+3m and � = Nf=N .At zero temperature, the vaua are b�0 = �A�1h�2�1=(��1) 1INf and the quarksmasses are m'; e' = hb�0= �T0 + T 0�3=2.We deompose the mesons into a lassial bakground b� and a quantum �eld �as follows � = b�1INf + � : (4.5)Expanding the total superpotential hTr (e'�')�h�2Tr�+WNP aording to the
9



above deomposition, we getW = �NAb���1 � h�2Nf� b�+ �Ab���1 � h�2�Tr�+ hb�Tr (e'')+ hTr (e'�') + 12 Ab���2((Tr�)2N � Tr�2) : (4.6)Keeping the quadrati order in � is suÆient beause, following the standard proe-dure [19℄, we express the masses in terms of the lassial �eld b� and hene higherpowers in � are not relevant. Notie also that the quarks ' and e' should not bepresent in W sine they have been integrated out. This point will beome lear aswe advane in the omputation.At this stage, we would like to emphasize that working out the whole �nite tem-perature orreted potential in the ontext of supergravity drives a lot of tehnialompliations. For the sake of larity, in order to sketh the mehanism that hap-pens around the SUSY vaua, we will again onsider the rigid limit. We believe thatsupergravity orretions do not strongly modify the following results.If the quarks are integrated out, it means that the temperatures we onsider are�� hb�0= �T0 + T 0�3=2. On the other hand, using (3.8), we �nd that the masses ofthe mesons are TrM2f +TrM2s = 3 �N2f � 2� + �2� A2b�2��4�T0 + T 0�3 ; (4.7)whih is in agreement with [15℄. The high temperature expansion (3.4) is thus legit-imate and one �nds that the e�etive potential isV �1 = �C�4 + �N2f � 2� + �2�8 A2b�2��4�2�T0 + T 0�3 : (4.8)From this expression, we see that the thermal ontribution to the mesoni massmatrix, namely the seond derivative of (4.8) with respet to b�, is diagonal andpositive de�nite. Therefore there is no way that this ontribution an lead to adestrution of the SUSY vaua and hene to a \ritial" temperature. In otherwords, the masses are already positive at zero temperature and thus the origin andthe supersymmetri vaua are separated by a barrier. When temperature e�ets areinluded, only a �rst order phase transition an happen.Moreover, the ontribution (4.8) is muh smaller than that of the tree-level massesm� � Ab���2= �T0 + T 0�3=2 by assumption5. Even if we used a high temperature ex-pansion, reall that the thermal mass is proportional to the quarti self-oupling ofthe mesons. Sine it arises from non-perturbative e�ets, it is unnaturally small.Even though the squarks have been integrated out at tree level, their e�et in theloops may be important. However, due to their large masses, the high temperature5Sine T0 ' 110, the assumption �� hb�= �T0 + T 0�3=2 implies that � is even smaller than hb�.10



expansion an not be used. From (3.3), we derive a low temperature expansionV �1 = � �5=22�3=2 (XB nBM3=2B e�MB=� + XF nFM3=2F e�MF =�) ; (4.9)with MB; F � �.At the leading order, the squarks mass matrix is almost diagonal and its eigen-values are h2b�2= �T0 + T 0�3. Reall this setor is supersymmetri, so the fermioniand bosoni degrees of freedom give the same ontribution. Using (4.9), we �ndV �1 = � 3NNf�3=2  hb��T0 + T 0�3=2!3=2 �5=2 exp (� hb�� �T0 + T 0�3=2) : (4.10)This onsists of a negative ontribution whih, together with the tree level potentialdedued from (4.6) and with the e�etive potential (4.8), gives the total potential.One then has to onsider the system�Vtot=�b� = 0 = �2Vtot=�b�2 :Solving it brings us to knowing the temperature �susy and the orresponding vevb�(�susy). However, it turns out to be very hard to solve and we approximate b� = b�0at all temperatures. We onentrate on the seond equation of the expression aboveand �nd �susy = hb�0B �T0 + T 0�3=2 ; (4.11)with B = � ln24�N2f � 2� + �2� �3=2h4NN2f A2b�2��60 �T0 + T 0�335 > 0 :For B � 1, we ful�ll the onsisteny ondition that the squarks are integrated outat tree level.Numerial resultsAs we already explained at the end of Setion 2, the dynamial sale �m of the theoryrelies on the UV ompletion of our model. Sine it is not the objet of this work, wehoose to onsider the ase of a half-unit gauge oupling at the Plank sale. Then�m = MP e�2�=(3N�Nf )g2(MP ) is approximately 1011MP . Reall that Nf > 3N sothat the argument of the exponential is positive.For this value and the rest of the parameters given by (2.12), we �nd the followingresults b�0 ' 1 � 10�3 ; m'; e' ' 4 � 10�7 ; m� ' 3 � 10�13 (4.12)for the vev of the mesons and for the tree level masses, andB ' 15 ; �susy ' 3 � 10�811



for the temperature. All these results, exept for B, are expressed in units of MP .Notie that B is larger than one.The main onlusion is that the SUSY vaua form at a temperature whih issmaller than the ritial temperature (4.3). Obviously, this result depends on thehoie of �m and we emphasize, again, that a loser study of the UV physis of ourmodel is required. However, we �nd numerially that the onstant B is negative for�m smaller than 104 whih orresponds to a gauge oupling of 0:9 at the Planksale. Therefore it seems that the more the theory is perturbative at high energy,the more onsistent the piture is. Varying �m in this range yields104 6 �m 6 1015 =) 1:5 � 10�8 6 m'; e' 6 7:4 � 10�6 : (4.13)Hene, even for very high values of �m, the upper bound under whih one anintegrate out the squarks is only slightly above the ritial temperature (4.3), andthe orresponding SUSY temperature is 3 � 10�7MP . � .It is lear that the major ause of suh an e�et is the expliit dependene of theSUSY temperature on the modulus. This pushes the tree level squarks masses tovery low values ompared to the original ISS senario.Another result that we were able to derive numerially is that already onethe squarks are integrated out, their ontribution (4.10) is very small omparedto the tree-level one (4.6). This means that whenever one an onsider the non-perturbatively generated superpotential (4.4), then the vaua are already there. Assuh, the SUSY temperature (4.11) does not really make sense, and we are moreenline to rely on the evaluation of the squarks masses m'; e' as in (4.13). Also, sinethese are tree level masses, they do not depend on b�(�) and thus are not biased byour approximations.The onlusion is unhanged : the supersymmetri vaua form after the would-bemetastable ones, and this is due to the presene of the modulus.4.3 Degeneray between the vauaFinally, in this paragraph we ompute the degeneray temperature �deg at whih itbeomes possible for the �elds to go from the metastable vaua to the supersymmetriones. This temperature is de�ned as the moment when both vaua have the sameenergy.The total number of degrees of freedom in the non-supersymmetri vaua is(Nf +N)2 � 1. The vauum energy there ishV ijmeta = ��2�424 h(Nf +N)2 � 1i+ ��h2�4�� (Nf �N)�T0 + T 0�3 ;where we did not aount for the KKLT energy sine it is onstant over the wholeISS �eld spae.In the last paragraph, we showed that the squarks an be totally negleted inthe supersymmetri vaua. Therefore only the �nite (high) temperature orretionoming from the mesons is relevant. Realling that these vaua have zero energy at12



tree-level, using (4.8) and assuming again that b� = b�0, one �ndshV ijsusy = ��2�424 N2f + �N2f � 2� + �2�8 A2b�2��4�2�T0 + T 0�3 :Atually, it is easily seen from our numerial results (4.12) that the last term in theabove expression is negligible. To good approximation, the degeneray temperatureis thus given by6 �2deg ' s 24Nf�2 (2NNf +N2 � 1) ��h�2��(T + �T )3=2 : (4.14)Using our parameters, one �nds numerially �deg ' 7 � 10�9MP . As before, thedegeneray temperature expliitly depends on the modulus, reason why it is so lowompared to the ritial temperature. We believe that this is a major improvementover the ase of an isolated ISS setor. As was already noted in [8℄, the presene of themodulus enhanes the lifetime of the ISS metastable vaua. We on�rm this resulthere by showing that the supersymmetri vaua atually beome the true vaua ofthe theory only at relatively late times.5 Supergravity and �nite temperature orre-tions at the originThe omputations of Setion 4 have assumed that the origin of the ISS �eld spae is aminimum of the potential at high temperature. However, as pointed out in [16℄, thisis not as straightforward one one inludes supergravity. Consider for instane theross term KTTKTW2�TW 1 in the supergravity potential (3.2). It ontains a linearterm in � whih ontributes as a onstant to the equation ��V = 0, and produesa displaement from the origin. Generial temperature orretions ontain similarterms and one has to work out the full supergravity plus temperature orretedpotential and solve for a minimum around the origin. This is an important pointbeause, even though unexpeted, the displaement ould be large enough to spoilthe phase transition towards the supersymmetry breaking vaua.From the superpotential and K�ahler potential (2.3), one an see that only termsof at least quadrati order � '2, e'2, 'e' an appear in the salar potential. Con-sequently, the origin ' = e' = 0 is always a solution to the extremum equations�'V = 0 = �e'V . In what follows, we onentrate on the equation ��Ve� = 0 in thebakground ' = e' = 0 (here Ve� stands for the full potential de�ned in (3.1)).6This result is in slight disagreement with [15℄. First of all, they omputed the degeneray temperaturefrom the origin to the supersymmetri vaua. Indeed, when the KKLT setor is not present, the latterform before the metastable vaua. However, by dropping the T -dependene and replaing Nf by Nf �Nin the prefator of (4.14), we do not �nd exatly their result. This is due to the fat that they use a hightemperature expansion even for the squarks in the supersymmetri vaua, whih results in dropping the2NNf in the denominator. 13



The tree-level salar potentialV0 = eK hKTTDTWDTW +Ki�jDiWD�jW � 3 jW j2i (5.1)reeives temperature orretions given by (3.4), where the mass matries squared(3.5) and (3.6) an be developped using the semi-anonial K�ahler potential (2.8)TrM2f = h eG hKi�kKj�l (Gij +GiGj) (G�k�l +G�kG�l)� 2i i ; (5.2)and TrM2s = h 2Ki�j �2V0��i� ���j i : (5.3)The new minimum at high temperature satis�es�V0�� + �224 ��� �TrM2f +TrM2s	 ����'=e'=0 = 0 : (5.4)Let us start with the zero-temperature potential (5.1). Di�erentiating with re-spet to � yields��V0 = eK hKTT �(DTWK� +W�KT )W T +K�WTKTW	+ Ki�jD�jW (K�DiW +KiW� +Wi�) +WD�W i :Sine we expet the displaement h�i to be small, it is suÆient to keep the linearorder in �. One getsh��V0i = eK1 h�nKTT �DTW1W T +WTKTW 1�+ ��h2�4��Nf + jW1j2o� h�21INf nKTTKTWT +W 1 � 2h�� 2 Tr�oi ; (5.5)where K1 and W1 are the pure KKLT potentials de�ned in (2.1).It is a long but straightforward omputation to derive the other two ontributionsin (5.4) ; some steps are given in the Appendix A for the interested reader.The general solution to the linearised equation (5.4) is of the form� �T; T ;�� = h�2�A+B�2C +D�2� � 1INf ; (5.6)where A;B;C;D are funtions of T and T only, and given in (A.6).Figure 2 shows the behaviour of (5.6) with respet to temperature for T = T0. Itis of some relevane to onsider two di�erent situations. For instane, the gravitinomass (2.11) �xes all the parameters, sine the relation (2.2) between T0 and W0on the one hand, and the zero osmologial onstant (2.10) on the other hand areonditions of our model.We hoose to onsiderm3=2 = 1 TeV (blue, dashed line) andm3=2 = 100 GeV (red,plain line) as an example. In both ases, as expeted, the origin is the only vauumat very high temperature. One an already approximate � � 0 at � � 10�6MP for14
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Figure 2: Evolution of the mesons vev with the temperature for two values of the gravitinomass. When the temperature hits its ritial value, the minimum at � turns into a saddlepoint.the light gravitino ase. The surprise omes from the fat that the minimum fadesaway from the origin very fast when the temperature lowers down, and this happenswhile the high temperature expansion is still valid. However it ould very well bethat keeping the linear order in � is no longer a good approximation there.The ritial temperature (4.3) developped in Paragraph 4.1 depends on � andthus on the gravitino mass. From Figure 2, it is lear that the mesons still have avery small value at the ritial temperature, for both ases we onsidered. Therefore,the phase transition towards the non-supersymmetri vaua, in the squarks diretion,will not be a�eted by the displaement. A problem would have arised if the mesonsvev had been too high (at the ritial temperature), foring us to take into aountthe non-perturbative superpotential (4.4).Moreover, the system with a light gravitino remains around the origin duringa longer time, ensuring even more the phase transition. Indeed, one ould �nd aset of parameters mathing our two onditions (existene of a minimum for T , zeroosmologial onstant) for any gravitino mass. In the ase of a substantially heaviergravitino, not only the volume modulus would have a too small vev, but the phasetransition towards the would-be metastable vaua would be spoiled. We onludethat, even though it is not a very strong e�et, our model seems to prefer a lightgravitino.6 The modulus setorUp to now, we have been onsidering that the modulus T was sitting in its minimum.In this setion, we shall derive the ondition under whih this is valid at the typialISS temperatures.Let us reall that sine the moduli are only gravitationally oupled to the thermal15



bath, their interation rate is� ' �3M2P � H ' �2MP :As suh, the moduli potential is not in thermal equilibrium. However, indiret tem-perature orretions oming from other setors ould destabilise a modulus beausethey would result in an extra soure of uplifting.For instane, in [18℄, the authors studied the maximal (or ritial) temperaturebeyond whih a minimum generated by non-perturbative e�ets would be destroyed.Assuming that the visible setor lives on D3-branes, the gauge oupling is diretlyrelated to the vev of the dilaton g2 � 1=ReS. This implies that the dilaton potentialis thermally perturbed through the gauge oupling. Typially, these e�ets destroythe minimum if they ompensate the barrier between the metastable vauum atReS � 2 and the minimum at in�nity. Therefore, in [18℄, the dilaton was destabilisedfor temperatures � & pm3=2MP ' 10�8MP for a gravitino in the TeV range. Thesame ould happen to the T -modulus if the visible setor lives on D7-branes.In a KKLT setup, however, the dilaton is not stabilised by non-perturbative e�etsW � e�bS , but rather by non-trivial bakground uxes W � m + nS. Whereasgaugino ondensation takes plae at a sale ��MP , resulting in a low mass for themodulus (T or S aording to the model), a stabilisation by uxes happens at highenergy �MP . The dilaton is then heavy enough not to be a�eted by temperature,and we an simply deouple it at low energy, as in the zero temperature theory. Inwhat follows, we assume that this is the ase, i.e. that the visible setor does live onD3-branes.In our model, the T modulus potential reeives temperature orretions fromthe ISS setor. If there exists a ritial temperature above whih the potential isdestabilised, we assume it to be higher than the temperatures omputed in Setion4. In this ase, the ISS �elds are at the origin, with the mesons slightly displaed,eq. (5.6).We de�ne the destabilisation temperature �d and the orresponding value Td forthe modulus as the point where the minimum turns into a saddle point :�Ve��T (Td;�d) = 0 = �2Ve��T 2 (Td;�d) ; (6.1)where Ve� is the e�etive potential (3.1).The omputation follows similar steps as in Setion 5 and Appendix A. Wesimply give here the result for the e�etive potential at linear order in the mesonsdisplaement7V0 = VKKLT + eK1 ���h2�4��Nf � h�2ATr�� h�� 2A�Tr� � ;where A �T; T � = KT TKTWT +W 1 was also de�ned in the Appendix A.The traes of the mass matries (5.2) and (5.3) areTrM2f = �2eK1 hjW1j2 � h�2W 1Tr�� h�� 2W1Tr�i ;7Sine we expet the destabilisation temperature to be very high, the linear approximation made inSetion 5 is even more valid as one an onvine oneself from Figure 2.16



andTrM2s = 2eK1 h2Nf (Nf + 2N)nKTTDTW1DTW 1 � 2 jW1j2o+ f2 + 2Nf (Nf + 2N)g ��h2�4��Nf� �h�2Tr� f2Nf (Nf + 2N) + 1g�KTTKTW T + 2W 1� + h::�i :This expression is easily implemented in a Mathematia routine in order to solvethe system (6.1).
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Figure 3: Non-destabilisation of the T modulus at high temperature.As a result, the one-loop e�etive potential is shown in Figure 3. We point out thatthe onstant term �C�4 in (3.4) has not been inluded for graphial onveniene.One an see that there is no destabilisation of the modulus at all, and indeed thesystem (6.1) turns out to be non-solvable.We already argued in Setion 5 that the parameters are �xed by the gravitinomass. In Figure 3, we took m3=2 = 1 TeV ; the rest of the parameters is the same,namely a = 1, h = 1, and b = 0:3. The onstants W0 and � are �xed by equations(2.2) and (2.10), and the solution � (T;�) was derived in the Appendix A. Thisomputation assumes that the value of T at the minimum does not vary too muh,whih is ross-heked on Figure 3.In [22℄, the authors worked out the phase struture of the O'KKLT model [10℄,whih an be viewed as a simpli�ed version of our model. Although they assumed themodulus to be in thermal equilibrium, it was found there that it is not destabilisedby thermal orretions. In this perspetive, we reover their result as the limit inwhih the thermal ontribution of T is negligible, whih is indeed the ase of interestfor an expanding Universe.7 Conlusions and future hallengesFollowing earlier work [13, 15, 16℄, we have studied in great detail the stati phasestruture of the ISS-KKLT model when thermal orretions are onsidered.17



We are now able to give the omplete piture of its thermal evolution. At veryhigh temperature, �� � , the ISS �elds are at the origin beause this is the pointwhere the entropy is maximised. At these temperatures, the modulus T is alreadystabilised (Fig. 3). One it lies in its minimum, we an onsider it to be stati andneglet its quantum orretions to the ISS �elds. Then, as the Universe ools down,the ISS �elds start being driven away from the origin (Fig. 2), but they are still verylose to it when the temperature hits its ritial value � � 10�7MP . A seond orderphase transition takes plae towards the would-be metastable vaua whih at thisstage are the true vaua of the theory. At a lower temperature, the supersymmetrypreserving vaua form. They are separated from the origin by a barrier. Therefore,even if one enhanes the dynamial sale �m in suh a way that these vaua form�rst, it would onsist of a �rst order phase transition and would thus be thermallydisfavoured. For our parameters, however, the non-supersymmetri vaua form �rst.At a temperature �deg � 10�8MP , the supersymmetri vaua beome the globalvaua of the model and from that moment on, the ISS �elds an tunnel from themetastable vaua to the supersymmetri ones.Even though we tried to give a omplete and quantitative study of the model,there are still hallenges that deserve further attention. First of all, we showed that,if the visible setor lives on D3 branes, the modulus T is not destabilised by �nitetemperature orretions oming from the ISS setor. This assumes that the setorresponsible for the stabilisation of T is out of thermal equilibrium. Another limitingpoint that we have not treated is the dynamial evolution of the system, espeially inthe modulus setor. Indeed, the potential generated for a modulus is generially sosteep that it seems very unlikely that the �eld will atually end up in the minimum,and not overshoot the barrier towards the runaway minimum8 (this e�et is known asthe Brustein-Steinhardt problem [23, 1℄). Both issues have been reently addressedin [24℄. Based on the onlusions of [18℄, the authors have studied the onditionsunder whih a stabilising setor (in their ase, a SUSY-QCD) in thermal equilibriuman lead to a destabilisation of the modulus at some temperature. They developpedthe whole set of dynamial equations when the stabilising setor is inluded in thethermal uid, and onstrained the initial onditions for the rolling modulus to reahits minimum. Their onlusion is that there is a region of initial onditions whih leadto a stabilisation of the modulus. The allowed region is slightly redued ompared tothe ase where temperature orretions are not onsidered, but this is not a dramatie�et. We believe that these onlusions an be applied to our ase - atually theauthors of [24℄ do study the KKLT setup - knowing that on the other hand wehave showed that the temperature ontribution oming from the ISS setor does notdestabilise T . However, we think that a loser evaluation of the dynamis of ourmodel needs to be done. In partiular, thermal utuations around the origin mightbe very important.Another interesting diretion is ination. It has been a big hallenge for quite awhile to ombine ination with string-inspired supergravity models : see for example[10, 25℄ and [26℄ for a review. Here, the oupling of the ISS-aton [27℄ to supergravityas in the ISS-KKLT setup ould be of partiular interest [28℄.8I thank Z. Lalak and S. Pokorski for bringing my attention on this problem.18



AknowledgmentsI very warmly thank W. Buhm�uller, E. Dudas, M. Endo, Y. Mambrini, M. Postmaand A. Romagnoni for enlightening disussions, support and proofreading during theompletion of this artile. I also thank Z. Lalak and S. Pokorski for many disussionson the dynamis of the modulus. Part of this work was done when I was a PhD stu-dent at the LPT, Universit�e Orsay-Paris XI and at the CPHT, �Eole Polytehnique,Frane.A Expression of the displaement of the mesonsIn this appendix, we derive the displaement � of the mesons in terms of the modulusT and the temperature � as given in (5.6). As already skethed in Setion 5, wehave to solve the equation�V0�� + �224 ��� �TrM2f +TrM2s � ����'=e'=0 = 0 ; (A.1)where V0, TrM2f and TrM2s were respetively de�ned in (5.1), (5.2) and (5.3).Keeping the linear order in �, it is easy to show that the tree-level (and thustemperature independent) ontribution to the displaement ish ��V0 i = h eK1 h�nKTT �DTW1WT +WTKTW 1�+ ��h2�4��Nf + jW1j2o� h�21INf nKTTKTWT +W 1 � 2h�� 2Tr�oi i ; (A.2)We now turn to the fermion mass matrix and ompute �� hTrM2fi. The �rstterm in (5.2) gives the following ontribution at the linear orderh �� n eGKi�kKj�l (Gij +GiGj) (G�k�l +G�kG�l)oi= h 2eK1 � ��h2 �N + ���4��Nf� 	+ 1INf ��h2�4��Tr� �i : (A.3)The last term is 2eG whih simply givesh �� ��2eG�i = �h 2eK1 h � jW1j2 � h�21INf �W 1 � h�� 2Tr� �i i : (A.4)All together, (A.3) and (A.4) give the ontribution �� hTrM2f i in equation (A.1).The trae of the salar mass matrix squared is given in (5.3) and needs the sametreatment as before : h ��� 2Ki�j �2V0��i� ���j � i :
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However, with some patiene, one an get the following result for this ontributionh 2eK1h�n (4 + 2Nf (Nf + 2N)) � ��h2�4��Nf + 2h2N+(1 + 2Nf (Nf + 2N))�KT TDTW1DTW 1 � jW1j2�o�h�21INfn� 6 (1 +Nf (Nf + 2N)) h�� 2Tr� (A.5)+ (1 + 2Nf (Nf + 2N))�KT TKTDTW 1 �W 1�oii ;where we used the fat that Ki�jKi�j = 2Nf (Nf + 2N), whih is a trae over the ISSsalar �elds.From all these results, it is lear that the linearised solution takes the form � =�01INf whih implies that 1INfTr� = Nf�0.Eventually, plugging the di�erent ontributions into (A.1), the displaement ofthe mesons takes the form�(T; T ;�) = h�2�A+B�2C +D�2� � 1INf ;with the following entriesA �T; T � = KTTKTDTW 1 � 2W 1 ; (A.6)B �T; T � = 112 hf1 + 2Nf (Nf + 2N)g�KTTKTDTW 1 �W 1��W 1i ;C �T; T � = KTT jDTW1j2 � 2 jW1j2 + 3 ��h2�4��Nf ;D �T; T � = 112 hf1 + 2Nf (Nf + 2N)g�KTT jDTW1j2 � jW1j2�� jW1j2+3h2N + ��h2�4��Nf (11 + 8Nf (Nf + 2N))� :
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