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MZ{TH/08{05DESY 08{008Next-to-next-to-leading order O(�4s) results for heavy quark pair prodution inquark{antiquark ollisions: The one-loop squared ontributionsJ. G. K�orner,1, � Z. Merebashvili,2, y and M. Rogal3, z1Institut f�ur Physik, Johannes Gutenberg-Universit�at, D-55099 Mainz, Germany2II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany3Deutshes Elektronen-Synhrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany(Dated: May 20, 2008)We alulate the next-to-next-to-leading order O(�4s) one-loop squared orretions to the pro-dution of heavy quark pairs in quark-antiquark annihilations. These are part of the next-to-next-to-leading order O(�4s) radiative QCD orretions to this proess. Our results, with the full massdependene retained, are presented in a losed and very ompat form, in the dimensional regu-larization sheme. We have found very intriguing fatorization properties for the �nite part of theamplitudes.PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+eI. INTRODUCTIONThere was reently muh ativity in the phenomenol-ogy of hadroni heavy quark pair prodution in onne-tion with the Tevatron and the CERN Large Hadron Col-lider (LHC) whih will have its startup this year. Therewill be muh experimental e�ort dediated to the disov-ery of the Higgs boson. There will also be studies of theopious prodution of top quarks and other heavy par-tiles, whih also serve as a bakground to Higgs bosonsearhes as well as to possible new physis beyond thestandard model. Therefore, it is mandatory to reduethe theoretial unertainty in phenomenologial alula-tions of heavy quark prodution proesses as muh aspossible.Several years ago the next-to-next-to-leading order(NNLO) ontributions to hadron prodution were al-ulated by several groups in massless QCD (see e.g. [1℄and referenes therein). The ompletion of a similar pro-gram for proesses that involve massive quarks requiresmuh more dediation and work sine the inlusion of anadditional mass sale dramatially ompliates the wholealulation.Until very reently there was the belief that the next-to-leading order (NLO) desription of heavy harm andbottom prodution in hadroni ollisions onsiderablyunderestimates the experimental results. In reent, morere�ned analyses [2, 3, 4℄ it was shown that a NLO anal-ysis does in fat properly desribe the latest harm andbottom quark prodution data [5℄. The authors of [2℄and [3, 4℄ deal very di�erently with the problem of largemass logarithms whih onstitute the entral problem inthe heavy quark phenomenology. Data on top quark pairprodution also agrees with the NLO predition within�Eletroni address:koerner�thep.physik.uni-mainz.deyEletroni address:zakaria.merebashvili�desy.dezEletroni address:Mikhail.Rogal�desy.de

theoretial and experimental errors (see e.g [6℄). In allof these NLO alulations there remains, among others,the problem that the renormalization and fatorizationsale dependene of the NLO alulations render the the-oretial results quite unertain. This alls for a NNLOalulation of heavy quark prodution in hadroni olli-sions whih is expeted to onsiderably redue the saledependene of the theoretial predition.At the lower energies of Tevatron II, top quark pairprodution is dominated by q�q annihilation (85 %). Theremaining 15% ome from gluon fusion. At the higherenergy LHC, gluon fusion dominates the prodution pro-ess (90 %) with 10 % left for q�q annihilation (perentage�gures from [6℄). This shows that both q�q annihilationand gluon fusion have to be aounted for in the alula-tion of top quark pair prodution.In general, there are four lasses of ontributions thatneed to be alulated for the NNLO orretions to thehadroni prodution of heavy quark pairs. The �rst lassinvolves the pure two-loop ontribution, whih has to befolded with the leading order (LO) Born term. The se-ond lass of diagrams onsists of the so-alled one-loopsquared ontributions (also alled loop{by{loop ontribu-tions) arising from the produt of one-loop virtual matrixelements. This is the topi of the present paper. Further,there are the one-loop gluon emission ontributions thatare folded with the one{gluon emission graphs. Finally,there are the squared two-gluon emission ontributionsthat are purely of tree{type.Bits and piees of the NNLO alulation are now be-ing assembled. The reent two{loop alulation of theheavy quark vertex form fator [7℄ an be used as one ofthe many building bloks in the �rst lass of proesses.In this ontext we would also like to mention the reentwork [8℄ on the NNLO alulation of two-loop virtual am-plitudes performed in the domain of high energy asymp-totis, where the heavy quark mass is small omparedto the other large sales. In this alulation mass powerorretions are left out, and only large mass logarithmsand �nite terms assoiated with them are retained. The
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2authors of the present paper have been involved in a sys-temati e�ort to alulate all the ontributions from theseond lass of proesses, the one{loop squared ontribu-tions. We shall desribe the present status of this pro-gram in the next paragraph. In the work [9℄ the full,exat NLO orretions to t�t+jet are presented. When in-tegrating over the full phase spae of the jet (or gluon),this alulation an be turned into a NNLO alulationof heavy hadron prodution of the third lass. To ourknowledge there does not exist a omplete alulationof the fourth lass of proesses, the squared two-gluonemission ontributions.Let us briey desribe the status of our e�ort to al-ulate the one{loop squared ontributions for the seondlass of proesses. The highest singularity in the one{loopamplitudes from infrared (IR) and mass singularities (M)is, in general, proportional to (1="2). This in turn impliesthat the Laurent series expansion of the one{loop ampli-tudes has to be taken up to O("2) when alulating theone-loop squared ontributions. In fat, it is the O("2)terms in the Laurent series expansion that really om-pliate things [10℄ sine the O("2) ontributions in theone-loop amplitudes involve a multitude of multiple poly-logarithms of maximal weight and depth 4 [11℄. All salarmaster integrals needed in this alulation have been as-sembled in [10, 11℄. Referene [10℄ gives the results interms of so-alled L funtions, whih an be written asone-dimensional integral representations involving prod-uts of log and dilog funtions, while [11℄ gives the resultsin terms of multiple polylogarithms. The divergent and�nite terms of the one{loop amplitude q�q ! Q �Q weregiven in [12℄. The remaining O(") and O("2) amplitudeshave been written down in [13℄. Squaring the one{loopamplitudes leads to the results of the present paper. In areent work [14℄ we have presented losed-form, one-loopsquared results for heavy quark prodution in the fusionof real photons.In this paper we report on a alulation of the NNLOone{loop squared matrix elements for the proess q�q !QQ. The alulation is arried out in the dimensionalregularization sheme [15℄ with spae-time dimensionn = 4 � 2". In sequels to this paper we shall presentresults on the square of hadroprodution amplitudes orig-inating from the gluon fusion subproess gg ! QQ andphotoprodution amplitudes g ! QQ.In our presentation we shall make use of our notationfor the oeÆient funtions of the relevant salar one-loop master integrals alulated up to O("2) in [10℄. Forthe ase of gluon-gluon and quark-antiquark ollisions,one needs all the salar integrals derived in [10℄, e.g. theone salar one-point funtion A; the �ve salar two{pointfuntions B1, B2, B3, B4, and B5; the six salar three{point funtions C1; C2; C3; C4; C5, and C6; and the threesalar four-point funtions D1; D2, and D3. Taking theomplex salar four-point funtion D2 as an example, wede�ne suessive oeÆient funtions D(j)2 for the Lau-

rent series expansion of D2. One hasD2 = iC"(m2)n 1"2D(�2)2 + 1"D(�1)2 +D(0)2 + "D(1)2+"2D(2)2 +O("3)o; (1.1)where C"(m2) is de�ned byC"(m2) � �(1 + ")(4�)2 �4��2m2 �" : (1.2)We use this notation for both the real and the imaginaryparts of D2, i.e. for ReD2 and ImD2. Similar expansionshold for the salar one{point funtion A, the salar two{point funtions Bi, the salar three{point funtions Ci,and the remaining four-point funtions Di. The oeÆ-ient funtions of the various Laurent series expansionswere given in [10℄ in the form of so{alled L funtions,and in [11℄ in terms of multiple polylogarithms of max-imal weight and depth 4. It is then a matter of hoiewhih of the two representations are used for the nu-merial evaluation. The numerial evaluation of the Lfuntions in terms of their one{dimensional integral rep-resentations is quite straightforward using onventionalintegration routines, while there exists a very eÆient al-gorithm to numerially evaluate multiple polylogarithms[16℄.Let us summarize the main features of thesalar master integrals. The master integralsA;B1; B3; B4; C2; C3, and D3 are purely real, whereasB2; B5; C1; C4; C5; C6; D1, and D2 are truly omplex.From the form (AB� +BA�) = 2(ReAReB + ImA ImB)it is lear that the imaginary parts of the master integralsmust be taken into aount in the one-loop squared on-tribution. The master integrals B2; B5; C1; C4; C5, andC6 are (t$ u) symmetri, where the kinemati variablest and u are de�ned in Se. II.The paper is organized as follows. Setion II on-tains an outline of our general approah and disussesrenormalization proedures. Setion III presents NLOresults for the quark-antiquark annihilation subproess.In Se. IV one �nds a disussion of the singularity stru-ture of the NNLO squared matrix element for the quark-antiquark annihilation subproess. In Se. V we disussthe struture of the �nite part of our result. Our resultsare summarized in Se. VI. In the Appendix we writedown expressions for the building bloks of that part ofthe �nite result that originates from the square of boxdiagrams. II. NOTATIONThe heavy avor hadroprodution proeeds throughtwo partoni subproesses: gluon fusion and light quark-antiquark annihilation. The �rst subproess is the mosthallenging one in QCD from a tehnial point of view. Ithas three prodution topologies already at the Born level.
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QFIG. 1: The lowest order Feynman diagram representing light quark{antiquark annihilation. Normal solid lines represent thelight quarks, the urly line represents the gluons and the thik solid lines orrespond to the heavy quarks.Here we onsider the seond subproess where there isonly one topology at the Born term level (see Fig. 1). Ir-respetive of the partons involved, the general kinematisis, of ourse, the same in both proesses. In partiular,for the quark-antiquark annihilation, Fig. 1, we haveq(p1) + �q(p2)! Q(p3) +Q(p4); (2.1)The momenta diretions orrespond to the physialon�guration; e.g. p1 and p2 are ingoing whereas p3 andp4 are outgoing. With m being the heavy quark mass,we de�nes � (p1 + p2)2; t � T �m2 � (p1 � p3)2 �m2;u � U �m2 � (p2 � p3)2 �m2; (2.2)so that the energy-momentum onservation reads s+ t+u = 0.We also introdue the overall fatorC = �g4sC"(m2)�2 ; (2.3)where gs is the renormalized strong oupling onstantand C"(m2) is de�ned in (1.2).As shown e.g. in [12, 13℄ the self{energy and ver-tex diagrams ontain ultraviolet (UV) and infrared andollinear (IR/M) poles even after heavy mass renormal-ization. The UV poles need to be regularized.Our renormalization proedure is arried out as fol-lows: when dealing with massless quarks we work in theMS sheme, while heavy quarks are renormalized in theon{shell sheme, where the heavy quark mass is the polemass. For ompleteness we list the set of one-loop renor-malization onstants that we have used:Z1 = 1 + g2s" 23 �(NC � nl)C"(�2)� C"(m2)	 ;Zm = 1� g2sCFC"(m2) 3� 2""(1� 2") ;Z2 = Zm; (2.4)Z1F = Z2 � g2s" NCC"(�2);Z1f = 1� g2s" NCC"(�2);Z3 = 1 + g2s" �(53NC � 23nl)C"(�2)� 23C"(m2)�

= 1 + g2s" �(�0 � 2NC)C"(�2)� 23C"(m2)� ;Zg = 1� g2s" ��02 C"(�2)� 13C"(m2)� :with �0 = (11NC � 2nl)=3. nl is the number of lightquarks, CF = 4=3, and NC = 3 is the number of ol-ors. The arbitrary mass sale � is the sale at whihthe renormalization is arried out. The above renormal-ization onstants are as follows: Z1 for the three-gluonvertex, Zm for the heavy quark mass, Z2 for the heavyquark wave funtion, Z1F for the (QQg) vertex, Z1f forthe (qqg) vertex, Z3 for the gluon wave funtion, and Zgfor the strong oupling onstant �s. Note that Z1 is notatually needed in the present appliation, but we havepresented it for ompleteness. For the massless quarksthere is no mass and wave funtion renormalization.The above oeÆients (exept for Zg) are needed ifone renormalizes graph by graph. However, one ouldhoose another route. From the �eld-theoretial point ofview, the renormalized matrix element is obtained fromthe unrenormalized one byMren =Yn Z�1=2fn Mbare(gbare ! Zggs;mbare ! Zmmr);(2.5)where Zfn are the wave funtion renormalization on-stants for all the external on-shell partiles under on-sideration. If one formally expands Mbare (e.g. Mbare =M0 + g2sM1 + : : :) and the renormalization parametersZfn as a series of powers in the oupling onstant to therequisite order, one arrives at the one-loop order resultM1;ren =Qn Z�1=2fn;1 M0(gbare ! Zggs;mbare ! Zmmr)+g2sM1(gs;mr); (2.6)where now the Zfn;1 orrespond to the one{loop renor-malization onstants for the external partiles. In ourase one has Zf1;1 = Zf2;1 = 1 and Zf3;1 = Zf4;1 = Z2.Thus, one ould apply inverse wave funtion renormaliza-tion for external legs and then replae the bare ouplingonstant gbare ! Zggs (as the mass parameter m doesnot expliitly enter the leading order Born term matrixelement, it is not renormalized at that order). We haveveri�ed that, in both ways, we arrive at the same renor-malized result.
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j kFIG. 2: One-loop Feynman diagrams ontributing to the subproess q�q ! QQ. The loop with the dotted line in (g) representsthe gluon, ghost, and light and heavy quarks.In order to �x our normalization we write down thedi�erential ross setion for q�q ! QQ in terms of thesquared amplitudes jM j2. One hasd�q�q!QQ = d(PS)22s 14N2C jM j2q�q!QQ ; (2.7)where the n{dimensional two{body phase spae is givenbyd(PS)2 = m�2"8�s (4�)"�(1� ") � tu� sm2sm2 ��" Æ(s+ t+u)dtdu(2.8)and we expliitly show ux (4p1p2)�1 = (2s)�1, initialquark and antiquark spin (2sf + 1)�2 = 1=4, and olorN�2C averaging fators. Then, at the leading Born termorder for q�q ! QQ, we have1g4s jM j2LO = 16�t2 + u2s2 + 2m2s � "� � B: (2.9)

III. NEXT-TO-LEADING ORDER RESULT
Folding the one{loop matrix elements depited inFig. 2 with the LO Born term, Fig. 1, one obtains thevirtual part of the NLO result. Although NLO virtualorretions to heavy avor hadroprodution were alu-lated before for the q�q ! Q �Q ase, one annot �nd ex-pliit results for this subproess in the literature. Wehave therefore realulated the virtual NLO ontributionto q�q{annihilation. In fat, we have alulated the virtualNLO results up to O("2). As it turns out, the expressionsfor the NLO virtual "1 and "2 ontributions onsiderablysimplify the presentation of the orresponding NNLO re-sults, in as muh as they appear as important buildingbloks in the NNLO results.



5First, we write down a few abbreviations that we shall use throughout the paper:� =p1� 4m2=s; D = m2s� tu; (3.1)z2 = s+ 2t; z2u = s+ 2u; zt = 2m2 + t; zu = 2m2 + u:Note that D is not the spae{time dimension. We further de�ne the funtions:F (j)1 = 29(nl + 1) + 28NC9 � NC�2 �B(j)2 �3CF � 32NC + 1� �23 � (3.2)�B(j)5 �3CF � 5NC3 + 2nl3 � NC2�2�+ C(j)1 NCm2�2 � nC(j)4 s� C(j)6 (2m2 � s)o (2CF �NC);F (j)2 = 2 �s�2(2CF �NC)� 12m2NC��B(j)2 s�2(2CF �NC) +B(j)5 (8m2 + s)NC + C(j)1 6m2sNC ; (3.3)F (j)3 = 563 �2 �8m2�1t � z2s2�2��B(j)1 2t �m2 + Ds ��B(j)5 2zus�2 (3.4)+C(j)1 �4t2s � z2 8m4 � s2s2�2 �� C(j)3 2t�1 + 2Ts �+ (C(j)4 �D(j)2 t)1s (2D + s2 + 2t2)�+" ��8m2�3t � 2z2s2�2�+B(j)1 2�3ztt + 2ts ��B(j)5 2�2 + z2s�2��C(j)1 �8m2 + 4s+ 8m2t+ s2s�2 + 2m2s2 + 2t3D �+ C(j)3 2 ts �s� 4t� 2sts� tD ��(C(j)4 �D(j)2 t)�3s+ 4t+ 2sts� tD ��+"2 3s2D �C(j)1 zt + C(j)3 2t2s + C(j)4 t�D(j)2 t2�� ;F (j)4 = 163 �2 �8m2� 1u � z2us2�2��B(j)1u 2u �m2 + Ds ��B(j)5 2zts�2 (3.5)+C(j)1 �4u2s � z2u 8m4 � s2s2�2 �� C(j)3u 2u�1 + 2Us �+ (C(j)4 �D(j)2u u)1s (2D + s2 + 2u2)�+" ��8m2� 1u + 2z2us2�2�+B(j)1u 2�zuu � 2us ��B(j)5 2�1� 2zus�2�+C(j)1 �4zu + 8m2u+ s2s�2 + 2m2sz2uD �+ C(j)3u 2us �3s+ 4u� 2stuD ��(C(j)4 �D(j)2u u)�2m2s2D � s� 4u���"2 3s2D �C(j)1 zu + C(j)3u 2u2s + C(j)4 u�D(j)2u u2�� :The additional subsript \u" in some of the salar oef-�ient funtions in the expression for F (j)4 (suh as B(j)1u )is to be understood as an operational de�nition presrib-ing a (t $ u) interhange in the argument of that fun-tion, i.e. B(0)1u = B(0)1 ��t$u, et. Note that Bj5, Cj1 , andCj4 are intrinsially (t$ u) symmetri (see [10℄). Takingthe (t $ u) symmetry of Bj5 , Cj1 , and Cj4 into aount,one notes a orresponding (t$ u) symmetry for the �rst
and third square brakets in F (j)3 and F (j)4 .Before presenting our result for the NLO matrix el-ement, we would like to omment on its olor stru-ture. First note that all the vertex and self-energy (VSE)graphs are proportional to the LO Born term olor ma-tries (see Refs. [12, 13℄). Both the parallel ladder box,Fig. 2(a), and the rossed ladder box, Fig. 2(b), havetheir own olor strutures. Altogether one obtains the



6following three olor strutures,Tr(T aT b) Tr(T aT b) = dA4 ) 2; (3.6)Tr(T aT bT ) Tr(T bT aT ) = dA8 �NC � 2NC�) 73 ;Tr(T aT bT ) Tr(T aT bT ) = �dA4 1NC ) �23 ;from folding the Born term with the VSE graphs, theparallel ladder box, Fig. 2(a), and the rossed ladder box,Fig. 2(b), in that order. The ommon fator dA = N2C �1 = 8 is the dimension of the adjoint representation ofthe olor group SU(NC). We present our NLO resultseparately for these three olor strutures.At NLO the �nal spin and olor summed matrix ele-ment an be written down as a sum of three terms:1g2spC jM j2Loop�Born = Reh 1"2W (�2)(") + 1"W (�1)(")+W (0)(")i; (3.7)where C has been de�ned in (2.3). The notationjM j2Loop�Born means that one is retaining only the O(�3s)part of jM j2.The �rst two oeÆient funtions in (3.7) have a rathersimple struture:W (�2)(") = �2B(2CF �NC + 3); (3.8)W (�1)(") = �2B�5CF hC(�1)4 s� C(�1)6 (2m2 � s)i� (2CF �NC)� 23h7 ln(�tm2 ) + 2 ln(�um2 )i� ;where B is the Born term de�ned in Eq. (2.9). Oneshould keep in mind that the overall Born term fator Babove ontains a term multiplied by ". Therefore, if theexpression for B, Eq. (2.9), is substituted in W (�2) andW (�1), we will obtain (")�1 and �nite terms from the�rst two terms of Eq. (3.7).The third term in Eq. (3.7) readsW (0)(") = F (0)NLO; (3.9)where F (j)NLO =W (j)1 +W (j)2 +W (j)3 ; (3.10)and where W (j)1 = 2B F (j)1 + 128m2Ds4�4 F (j)2 ;W (j)2 = �2B�0 ln1+j(m2�2 ); (3.11)W (j)3 = F (j)3 + F (j)4 :Note that the �rst term in (3.11) originates entirely fromthe sum of self-energy and vertex diagrams while the se-ond term is due to renormalization. The terms F (j)3 and

F (j)4 in W (j)3 represent the ontributions from boxes aand b, respetively.The massless limit of our NLO result Eq. (3.7) withoutthe O(") and O("2) order terms was ompared (inlud-ing also the imaginary part) with orresponding resultsobtained from the methods developed in Ref. [17℄ [22℄.There was agreement [19℄. This serves as a rigorous hekon our singularity struture as well as on all the mass log-arithms of our original NLO matrix element [12℄.IV. SINGULARITY STRUCTURE OF THENNLO SQUARED AMPLITUDEThe NNLO �nal spin and olor summed squared ma-trix element an be written down as a sum of �ve terms:1C jM j2Loop�Loop = Reh 1"4V (�4)(") + 1"3V (�3)(") (4.1)+ 1"2V (�2)(") + 1"V (�1)(") + V (0)(")i;where C has been de�ned in (2.3). Note Eq. (4.1) is nota Laurent series expansion in " sine the oeÆient fun-tions V (m)(") are funtions of " as expliitly annotatedin Eq. (4.1). It is nevertheless useful to write the NNLOone-loop squared result in the form of Eq. (4.1) in orderto exhibit the expliit " strutures. All �ve oeÆientfuntions V (m)(") are bilinear forms in the oeÆientfuntions that de�ne the Laurent series expansion of thesalar master integrals (1.1). Some of these oeÆientfuntions are zero and some of them are just numbers orsimple logarithms. In the latter ase we will substitutethese numbers or logarithms for the oeÆient funtionsV (m) in the �ve terms above. This will be done for theoeÆient funtions A(m), B(�1)1 , B(�1)1u , B(�1)5 , C(�1)3 ,and C(�1)3u .We mention that in the ourse of our work we took fulladvantage of the fat that in [12℄ all the poles in the ma-trix element for the q�q ! QQ subproess are multipliedonly by the leading order Born Dira struture to astthe singular terms of the squared matrix element into anappropriately fatorized form.Before proeeding further, we present three more olorstrutures appearing in the NNLO alulation in additionto the ones presented in Eq. (3.6) :Tr(T aT bT b0T a0) Tr(T bT aT a0T b0) = (4.2)dA16 �N2C � 3 + 3N2C �) 196 ;Tr(T aT bT b0T a0) Tr(T aT bT b0T a0) = dA16 �1 + 3N2C �) 23 ;Tr(T aT bT b0T a0) Tr(T bT aT b0T a0) =�dA16 �1� 3N2C �) �13 :



7The above three olor strutures arise from folding box awith box a, box b with box b, as well as the interfereneof the two boxes, respetively.Let us �rst introdue a notation whih will help us topresent the oeÆients of the singular terms in the mostonise fashion:L1 = (2CF �NC)�C(�1)4 s� C(�1)6 (2m2 � s)� ;L2 = 15CF � 14 ln(�tm2 )� 4 ln(�um2 );L3 = 35CF � 38 ln(�tm2 )� 4 ln(�um2 );L4 = 5CF � 2 ln(�tm2 )� 4 ln(�um2 ): (4.3)The two most singular terms in (4.1) are proportionalto the Born term B de�ned in (2.9). One hasV (�4)(") = (2CF �NC + 3)2B; (4.4)V (�3)(") = 2(2CF �NC + 3)B �L1 + L23 � :We also obtainV (�2)(") = B3 h(3L1 + L2)(L1 + 5CF )� (4.5)�2 ln(�tm2 )(7L1 + L3)�4 ln(�um2 )(L1 + L4)i�(2CF �NC + 3)F (0)NLO:

The last term in Eq. (4.5) is obtained from folding theO("�2) singular term of the matrix element with its �nitepart, while the rest is obtained from folding the singlepoles. Note that when one substitutes the Laurent ex-pansions for B and F (0)NLO, one gets additional 1=" polesand �nite terms in Eq. (4.5).The struture of the last term in Eq. (4.1) is a littlemore ompliated. One hasV (�1)(") = �L�1F (0)NLO � L23 (W (0)1 +W (0)2 ) (4.6)�L37 F (0)3 � L4F (0)4+(2CF �NC + 3) h�F (1)NLO + V 0i :The terms multiplied by the Lm funtions above are dueto folding the single pole terms in the original matrixelement with its �nite O("0) part, while the last term isdue to interferene O("�2) � O(") terms in the originalmatrix element. This pole term is due to the Taylorexpansion of the original matrix element and annot bededued from the knowledge of the LO terms alone. Thefuntion F (1)NLO is de�ned in Eq. (3.10) and is nothingbut the �nite part of the NLO term with indies of theoeÆient funtions of the salar master integrals and thepower of the logarithm that multiplies the �0 funtion,shifted upward by 1. For the remaining term V 0 , oneobtains
V 0 = �2B ��02 ln2(m2�2 ) + 8CF � NC�2 � 2nl + 2 + 28NC27 +B(0)2 2�2 � 18CF + 9NC9 (4.7)+B(0)5 29(5NC + nl � 9CF )�� 128m2Ds3�4 h2(6�2CF �NC)�B(0)2 2�2(2CF �NC)�B(0)5 2NC � C(0)1 sNCi�563 �2 �8m2�1t � z2s2�2�+�2s + s� tD ��C(0)1 szt + C(0)3 2t2 + C(0)4 st�D(0)2 st2���" �8m2�3t � 2z2s2�2�+�8s + 7s� 4tD ��C(0)1 szt + C(0)3 2t2 + C(0)4 st�D(0)2 st2����163 �2 �8m2 z2us2�2 +B(0)1u 2�2Dsu � 1��B(0)5 2z2us�2 � C(0)1 �m2 �4 + sz2uD �� 2zt�2 ���z2us � tuD��C(0)3u 2u+ C(0)4 s�D(0)2u su��+" ��8m2� 1u + 2z2us2�2�+�8s + 9s+ 4uD ��C(0)1 szu + C(0)3u 2u2 + C(0)4 su�D(0)2u su2��� :When one substitutes the Laurent expansions for F (0)3 ,F (0)4 , and F (1)NLO, one gets �nite and O(") order terms inEq. (4.6). However, sine we are only interested in the Laurent series expansion up to the �nite term, these O(")ontributions should be omitted.



8V. STRUCTURE OF THE FINITE PARTIn this setion we present the �nite part of our result.We alulate the �nite part in several piees, e.g.V (0) = Re hV (0)Bf1 + V (0)Bf2 + V (0)f0f0i : (5.1)The �rst two terms originate from the interferene ofthe O("�1)�O(") and O("�2)�O("2) piees of the ini-tial matrix element. Eah of them an be onvenientlypresented as a sum of �ve ompat expressions:V (0)Bf1 = G1 +G2 +G3 +G4 +G5; (5.2)whereG1 = �128m2D(L�1 + L2=3)hF (1)2+ 12s�2CF � 2sNC �B(0)2 2s�2(2CF �NC)�B(0)5 2sNC � C(0)1 s2NCi=(s4�4) ;G2 = �2B(L�1 + L2=3)h27F (1)1 � 2nl � 2� 28NC + 216CF � 27NC=�2 �B(0)2 3(18CF

� 9NC � 2�2)�B(0)5 6(9CF � 5NC � nl)i=27 ;G3 = �0B ln2(m2�2 )(L1 + L2=3) ; (5.3)G4 = �16(7L�1 + L3)hF (1)3 3=112+ 8m2(1=t� z2=(s2�2)) + (C(0)1 zt + C(0)3 2t2=s+ C(0)4 t�D(0)2 t2)(2D + s2 � st)=Di=3 ;G5 = �32(L�1 + L4)hF (1)4 3=32+ 8m2z2u=(s2�2) +B(0)1u 2(2D=(su)� 1)�B(0)5 2z2u=(s�2)� C(0)1 (m2sz2u=D� 2(8m4 + st)=(s�2))� (C(0)3u 2u=s+ C(0)4�D(0)2u u)(z2u � stu=D)i=3 :The �rst three terms above are due to the VSE ontri-butions, and the last two terms are due to the two boxdiagrams. Similarly, for the seond term in Eq. (5.1) wewriteV (0)Bf2 = H1 +H2 +H3 +H4 +H5; (5.4)with H1 = �128(2CF �NC + 3)Dm2hF (2)2 + 4s�2(7CF +NC)� 10sNC �B(1)2 2s�2(2CF �NC)�B(1)5 2sNC � C(1)1 s2NCi=(s4�4) ;H2 = �(2CF �NC + 3)BhF (2)1 162 + 2(1296CF + 76NC � 10nl � 10� 243NC=�2) +B(0)2 24�2�B(1)2 18(18CF � 9NC � 2�2) +B(0)5 12(NC + 2nl)�B(1)5 36(9CF � 5NC � nl)i=81 ;H3 = (2CF �NC + 3)B�0 ln3(m2�2 )=3 ; (5.5)H4 = �112(2CF �NC + 3)hF (2)3 3=112+ 24m2(1=t� z2=(s2�2)) + (zt(2C(0)1 + C(1)1 )+ 2t2(2C(0)3 + C(1)3 )=s+ t(2C(0)4 + C(1)4 )� t2(2D(0)2 +D(1)2 ))(2D + s2 � st)=Di=3 ;H5 = �32(2CF �NC + 3)hF (2)4 3=32 + 8m2(1=u+ z2u=(s2�2)) +B(1)1u 2(2D=(su)� 1)�B(1)5 2z2u=(s�2)� (C(0)1 zu + C(0)3u 2u2=s+ C(0)4 u�D(0)2u u2)(4D + 3s2 + 2su)=D� C(1)1 (m2sz2u=D � 2(8m4 + st)=(s�2))� (C(1)3u 2u=s+ C(1)4 �D(1)2u u)(z2uD � stu)=Di=3 :Note again that the O(") and O("2) order terms in the above expressions for V (0)Bf1 and V (0)Bf2 an be disregarded.We also mention that the salar oeÆient funtions with



9supersript \2" above involve multiple polylogarithms.We emphasize that the fatorized forms of all the ex-pressions given in this paper hold only when one retainsthe full " dependene in the Born and NLO terms.The last term in Eq. (5.1) omes from the square of theO("0) term of the matrix element. It an also be writtenas a sum of �ve terms:V (0)f0f0 =MV SE +MBV SE +Maa +Mba +Mbb: (5.6)The �rst term is the square of the �nite parts of vertexand self-energy graphs; the seond one is an interfereneof the vertex and self-energy graphs with the two boxdiagrams. These two terms an be presented in a veryompat form:MVSE = F (0)1 �W (0)1 +W (0)2 �B F (0)1 ��� ��F (0)2 ��2 32m2D=(s5�6) (5.7)� �0 ln(m2�2 )�W (0)2 =2 +W (0)1 � 2BF (0)1 � ;MBV SE = 7P + 2P jt$u +�F (0)1 � �0 ln(m2�2 )�� (F (0)3 + F (0)4 )�; (5.8)withP = 64m2F (0)�2 h2D=t�B(0)1 D=t+ C(0)1 Tz2 � C(0)3 2tT+ (C(0)4 �D(0)2 t)(D + t2)i=(3s3�4): (5.9)When writing out P jt$u one has to do the t $ u op-eration in all the terms in the funtion P , i.e. forz; t; F (0)2 ; B(0)1 ; C(0)3 ; T , and D(0)2 (C(0)1 and C(0)4 are t$ usymmetri).Finally, we are left with the last three terms inEq. (5.6), whih are the longest terms in our NNLO re-sult. However, to our surprise, we were able to disovernie fatorization properties of the square of the two boxdiagrams. This part of the ross setion an be put to-gether with the help of several building bloks; e.g. eahof the last three terms in Eq. (5.6) an be written as asum of bilinear produts. Eah of the fators in the bi-linear produts are linear ombinations of salar integraloeÆient funtions multiplied by some ombination ofkinemati variables. To be more spei�, we writeMaa = 763 hs�1Q1Q�8 + 4m2Q2Q�3 +Q4Q�10+m2Q5Q�11 � 2s�1Q6Q�12 +Q7Q�13i;Mbb = 419Maajt$u; (5.10)Mba = 163 hs�1Q8Q�14 + 4m2Q9Q�15 +Q10Q�16+ 2m2Q11Q�16 + 2s�1Q12Q�17 +Q13Q�18i:

Expliit expressions for the 18 linear forms Qi are givenin the Appendix. The bilinear forms above arise fromfolding ertain pairs of Dira strutures in our originalmatrix element. The expression for Mba represents theresult of the interferene of the �nite parts of box a andbox b.It is quite obvious that the fatorized forms for the�nite part of the NNLO result for the q�q ! QQ sub-proess should also hold for the orresponding masslessamplitudes. We have not seen this being displayed in theliterature.In the �nite ontribution, Eq. (5.1), one an see theinterplay of the produt of powers of " resulting from theLaurent series expansion of the salar integrals [f. Equa-tion (1.1)℄ on the one hand, and powers of " resulting fromdoing the spin algebra in dimensional regularization onthe other hand. For example, for the �nite part one hasa ontribution from C(�1)6 B(0)�1 as well as a ontributionfrom C(�1)6 B(1)�1 . Terms of the type C(�1)6 B(0)�1 , wherethe supersripts orresponding to " powers do not om-pensate, would be absent in the regularization shemeswhere traes are e�etively taken in four dimensions, i.e.in the so-alled four-dimensional shemes or in dimen-sional redution.We want to emphasize that all our fatorized resultsgiven in this paper take up about 10 Kb of hard diskspae. This has to be ompared with the length of theoriginal omputer output. The original omputer outputfor the one-loop squared ross setion of the q�q ! QQsubproess turned out to be very long and took up ap-proximately 4 MB of hard disk spae. Therefore, theredution is of the order of 400 in the present ase.As a �nal remark we want to emphasize that we havedone two independent alulations using REDUCE [20℄and FORM [21℄ when squaring the one{loop amplitudes.After asting the results into the above ompat form,we have heked the �nal result against the original un-treated versions using again the REDUCE Computer Al-gebra System. VI. CONCLUSIONSWe have presented analytial O(�4s) NNLO results forthe one-loop squared ontributions to heavy quark pairprodution in quark{antiquark annihilation. These arethe �rst exat results for the hadroprodution of heavyquarks at NNLO where the heavy quark mass dependeneis fully retained. Our results form part of the NNLO de-sription of heavy quark pair prodution relevant for theNNLO analysis of ongoing experiments at the Tevatronand planned experiments at the LHC.Our analytial results are presented in fatorizedforms. For the divergent parts, the squared matrix el-ements are given in terms of the Laurent series expan-sion of the orresponding LO and NLO ontributions ex-panded up to O(") and O("2), respetively. In this waywe ould transfer parts of the �nite part of the squared



10amplitudes to the oeÆient funtions of the pole terms.After this we found that the remaining parts of the �niteontribution ould be further fatorized, partly in termsof the orresponding LO and NLO piees, and, for thebox graphs, in terms of fatorizing forms as desribed inSe. V. Writing our analytial results in fatorized formsled to a redution of the length of the original output bya fator of 400. To the best of our knowledge these niefatorization properties of the squared amplitude werenot known before. It would be interesting to �nd out theunderlying reason for this fatorization.The present paper deals with unpolarized quarks in theinitial and �nal states. Sine our results for the matrixelements in [13℄ ontain the full spin information of theproess, an extension to the polarized ase with polariza-tion in the initial state and/or in the �nal state inludingspin orrelations is not diÆult.The present alulation onstitutes a �rst step in ob-taining the full NNLO orretions to the heavy quark pro-dution proesses in QCD. A further next step is to pro-vide one{loop squared results for gluon-initiated heavyquark pair prodution. Work on the gluon{initiatedhannel is in progress.

Analytial results in eletroni format for all the termsin Eq. (4.1), inluding the (t $ u) symmetri terms ex-pliitly written out, as well as ombined full results, arereadily available [23℄.AknowledgmentsWe would like to thank J. Gegelia and B. Kniehl foruseful disussions. Z.M. aknowledges a very helpfulommuniation with A. Grozin. Z.M. would like to thankthe Partile Theory Group of the Institut f�ur Physik,Universit�at Mainz for hospitality, where large parts ofthis work were done. The work of Z.M. was supportedby the German Researh Foundation DFG through GrantNo. KO 1069/11-1, in part by the Georgia National Si-ene Foundation through Grant No. GNSF/ST07/4-196,by the German Federal Ministry for Eduation and Re-searh BMBF through Grant No. 05 HT6GUA, and bythe DFG through Grant No. KN 365/7-1. M.R. was sup-ported by the Helmholtz Gemeinshaft under ContratNo. VH-NG-105.APPENDIXHere we present the expressions for the terms Qm appearing in Equation (5.10).Q1 = h8m2(s=t� z2=(s�2))�B(0)1 2(m2s+D)=t�B(0)5 2zu=�2 + C(0)1 (2D + s2 + 2tzt + 2m2z2=�2)� C(0)3 2t(s+ 2T ) + C(0)4 (2D + s2 + 2t2)�D(0)2 t(2D + s2 + 2t2)i=D ;Q2 = 2=t�B(0)1 =t+ C(0)1 Tz2=D � C(0)3 2tT=D+ C(0)4 (1 + t2=D)�D(0)2 t(1 + t2=D) ; (A.1)Q3 = 4(2m2zt �D)=(s�2t) +B(0)1 2T=t+B(0)5 2zt=(s�2) + C(0)1 (zt=�2 + (m2st� t3)=D)+ C(0)3 2t3=D + C(0)4 st2=D �D(0)2 st3=D ;Q4 = h8m2zu=(s�2) +B(0)1 2m2 +B(0)5 2m2z2=(s�2) + C(0)1 (2tT +m2z2=�2)� C(0)3 2m2t+ C(0)4 (m2s+ 2t2)�D(0)2 t(m2s+ 2t2)i=D ;Q5 = h16m2zu=(s�2) +B(0)1 4m2 +B(0)5 4m2z2=(s�2) + C(0)1 2(2tT +m2z2=�2)� C(0)3 4m2t+ C(0)4 2(m2s+ 2t2)�D(0)2 2t(m2s+ 2t2)i=D ;Q6 = 16m2=(s�2) +B(0)1 2�B(0)5 2=�2 � C(0)1 (4t(D +m2t) + s2T=�2 + 4m2t2=�2)=D+ C(0)3 2tT z2=D � C(0)4 z2(D + t2)=D +D(0)2 tz2(D + t2)=D ;Q7 = h8m2(s=t� 4� 5zt=(s�2))�B(0)1 2(2D=t� 3m2 + u) +B(0)5 2(m2s+ 6m2t� su)=(s�2)+ C(0)1 (2m2s+ 10tT + (m2 + s)z2=�2)� C(0)3 2t(5m2 + z2) + C(0)4 (s(5m2 + z2) + 10t2)�D(0)2 t(s(5m2 + z2) + 10t2)i=D ;



11Q8 = 8m2(D=t� tz2=(s�2))�B(0)1 2T (2D=t� s) +B(0)5 2(D + tzt=�2)� C(0)1 s(m2s� t2 � tzt � tzt=�2 � t2(m2s� t2)=D)� C(0)3 2stT (1 + st=D)+ C(0)4 s(m2s+ 2t2 + st3=D)�D(0)2 st(m2s+ 2t2 + st3=D) ;Q9 = �4(T=t+ zt=(s�2)) +B(0)1 2T=t+B(0)5 2zt=(s�2) + C(0)1 (zt=�2 + t(m2s� t2)=D) + C(0)3 2t3=D+ C(0)4 st2=D �D(0)2 st3=D ;Q10 = h8m2D �B(0)1 2Dzt +B(0)5 2tD � C(0)1 st(m2s+ 4m2t+ t2) + C(0)3 2t2(m2s� t2)+ C(0)4 st(m2s� t2)�D(0)2 st2(m2s� t2)i=D ;Q11 = h8Dzu=(s�2) +B(0)1 2D +B(0)5 2z2D=(s�2)� C(0)1 s(m2s� t2 � z2D=(s�2))� C(0)3 2st2� C(0)4 s2t+D(0)2 s2t2i=D ;Q12 = 8m2zt=(s�2) +B(0)1 2T � B(0)5 2(D � tzt)=(s�2) + C(0)1 szt((2m2 � s)=(s�2) + t2=D)� C(0)3 2st2T=D � C(0)4 s2tT=D +D(0)2 s2t2T=D ;Q13 = C(0)1 szt + C(0)3 2t2 + C(0)4 st�D(0)2 st2 ;Q14 = h8m2(s=u� z2u=(s�2))�B(0)1u 2(m2s+D)=u�B(0)5 2zt=�2 + C(0)1 (2D + s2 + 2uzu + 2m2z2u=�2)� C(0)3u 2u(s+ 2U) + C(0)4 (2D + s2 + 2u2)�D(0)2u u(2D+ s2 + 2u2)i=D ;Q15 = 2=u�B(0)1u =u+ C(0)1 Uz2u=D � C(0)3u 2uU=D+ C(0)4 (1 + u2=D)�D(0)2u u(1 + u2=D) ;Q16 = h8m2(s=u� zu=(s�2))�B(0)1u 2(D �m2t)=u�B(0)5 2(t�m2z2u=(s�2))+ C(0)1 (s2 � tzu +D=�2 � 2m2uz2u=(s�2))� C(0)3u 2u(m2 + z2u)+ C(0)4 (D + s2 � tu)�D(0)2u u(D + s2 � tu)i=D ;Q17 = 16m2=(s�2) +B(0)1u 2�B(0)5 2=�2 � C(0)1 (4u(D +m2u) + s2U=�2 + 4m2u2=�2)=D + C(0)3u 2uUz2u=D� C(0)4 z2u(D + u2)=D +D(0)2u uz2u(D + u2)=D ;Q18 = h8m2(4s=u� 1� 5zu=(s�2))�B(0)1u 2(5D � 3m2t+ tu)=u�B(0)5 2(4t� 5m2z2u=(s�2))+ C(0)1 (4s2 + 2(4s+ 5u)U + 5m2z2u=�2)� C(0)3u 2u(5m2 + 4z2u) + C(0)4 (5m2s+ 4sz2u + 10u2)�D(0)2u u(5m2s+ 4sz2u + 10u2)i=D :
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