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MZ{TH/08{05DESY 08{008Next-to-next-to-leading order O(�4s) results for heavy quark pair produ
tion inquark{antiquark 
ollisions: The one-loop squared 
ontributionsJ. G. K�orner,1, � Z. Merebashvili,2, y and M. Rogal3, z1Institut f�ur Physik, Johannes Gutenberg-Universit�at, D-55099 Mainz, Germany2II. Institut f�ur Theoretis
he Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany3Deuts
hes Elektronen-Syn
hrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany(Dated: May 20, 2008)We 
al
ulate the next-to-next-to-leading order O(�4s) one-loop squared 
orre
tions to the pro-du
tion of heavy quark pairs in quark-antiquark annihilations. These are part of the next-to-next-to-leading order O(�4s) radiative QCD 
orre
tions to this pro
ess. Our results, with the full massdependen
e retained, are presented in a 
losed and very 
ompa
t form, in the dimensional regu-larization s
heme. We have found very intriguing fa
torization properties for the �nite part of theamplitudes.PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+eI. INTRODUCTIONThere was re
ently mu
h a
tivity in the phenomenol-ogy of hadroni
 heavy quark pair produ
tion in 
onne
-tion with the Tevatron and the CERN Large Hadron Col-lider (LHC) whi
h will have its startup this year. Therewill be mu
h experimental e�ort dedi
ated to the dis
ov-ery of the Higgs boson. There will also be studies of the
opious produ
tion of top quarks and other heavy par-ti
les, whi
h also serve as a ba
kground to Higgs bosonsear
hes as well as to possible new physi
s beyond thestandard model. Therefore, it is mandatory to redu
ethe theoreti
al un
ertainty in phenomenologi
al 
al
ula-tions of heavy quark produ
tion pro
esses as mu
h aspossible.Several years ago the next-to-next-to-leading order(NNLO) 
ontributions to hadron produ
tion were 
al-
ulated by several groups in massless QCD (see e.g. [1℄and referen
es therein). The 
ompletion of a similar pro-gram for pro
esses that involve massive quarks requiresmu
h more dedi
ation and work sin
e the in
lusion of anadditional mass s
ale dramati
ally 
ompli
ates the whole
al
ulation.Until very re
ently there was the belief that the next-to-leading order (NLO) des
ription of heavy 
harm andbottom produ
tion in hadroni
 
ollisions 
onsiderablyunderestimates the experimental results. In re
ent, morere�ned analyses [2, 3, 4℄ it was shown that a NLO anal-ysis does in fa
t properly des
ribe the latest 
harm andbottom quark produ
tion data [5℄. The authors of [2℄and [3, 4℄ deal very di�erently with the problem of largemass logarithms whi
h 
onstitute the 
entral problem inthe heavy quark phenomenology. Data on top quark pairprodu
tion also agrees with the NLO predi
tion within�Ele
troni
 address:koerner�thep.physik.uni-mainz.deyEle
troni
 address:zakaria.merebashvili�desy.dezEle
troni
 address:Mikhail.Rogal�desy.de

theoreti
al and experimental errors (see e.g [6℄). In allof these NLO 
al
ulations there remains, among others,the problem that the renormalization and fa
torizations
ale dependen
e of the NLO 
al
ulations render the the-oreti
al results quite un
ertain. This 
alls for a NNLO
al
ulation of heavy quark produ
tion in hadroni
 
olli-sions whi
h is expe
ted to 
onsiderably redu
e the s
aledependen
e of the theoreti
al predi
tion.At the lower energies of Tevatron II, top quark pairprodu
tion is dominated by q�q annihilation (85 %). Theremaining 15% 
ome from gluon fusion. At the higherenergy LHC, gluon fusion dominates the produ
tion pro-
ess (90 %) with 10 % left for q�q annihilation (per
entage�gures from [6℄). This shows that both q�q annihilationand gluon fusion have to be a

ounted for in the 
al
ula-tion of top quark pair produ
tion.In general, there are four 
lasses of 
ontributions thatneed to be 
al
ulated for the NNLO 
orre
tions to thehadroni
 produ
tion of heavy quark pairs. The �rst 
lassinvolves the pure two-loop 
ontribution, whi
h has to befolded with the leading order (LO) Born term. The se
-ond 
lass of diagrams 
onsists of the so-
alled one-loopsquared 
ontributions (also 
alled loop{by{loop 
ontribu-tions) arising from the produ
t of one-loop virtual matrixelements. This is the topi
 of the present paper. Further,there are the one-loop gluon emission 
ontributions thatare folded with the one{gluon emission graphs. Finally,there are the squared two-gluon emission 
ontributionsthat are purely of tree{type.Bits and pie
es of the NNLO 
al
ulation are now be-ing assembled. The re
ent two{loop 
al
ulation of theheavy quark vertex form fa
tor [7℄ 
an be used as one ofthe many building blo
ks in the �rst 
lass of pro
esses.In this 
ontext we would also like to mention the re
entwork [8℄ on the NNLO 
al
ulation of two-loop virtual am-plitudes performed in the domain of high energy asymp-toti
s, where the heavy quark mass is small 
omparedto the other large s
ales. In this 
al
ulation mass power
orre
tions are left out, and only large mass logarithmsand �nite terms asso
iated with them are retained. The

http://arXiv.org/abs/0802.0106v2
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mailto:zakaria.merebashvili@desy.de
mailto:Mikhail.Rogal@desy.de


2authors of the present paper have been involved in a sys-temati
 e�ort to 
al
ulate all the 
ontributions from these
ond 
lass of pro
esses, the one{loop squared 
ontribu-tions. We shall des
ribe the present status of this pro-gram in the next paragraph. In the work [9℄ the full,exa
t NLO 
orre
tions to t�t+jet are presented. When in-tegrating over the full phase spa
e of the jet (or gluon),this 
al
ulation 
an be turned into a NNLO 
al
ulationof heavy hadron produ
tion of the third 
lass. To ourknowledge there does not exist a 
omplete 
al
ulationof the fourth 
lass of pro
esses, the squared two-gluonemission 
ontributions.Let us brie
y des
ribe the status of our e�ort to 
al-
ulate the one{loop squared 
ontributions for the se
ond
lass of pro
esses. The highest singularity in the one{loopamplitudes from infrared (IR) and mass singularities (M)is, in general, proportional to (1="2). This in turn impliesthat the Laurent series expansion of the one{loop ampli-tudes has to be taken up to O("2) when 
al
ulating theone-loop squared 
ontributions. In fa
t, it is the O("2)terms in the Laurent series expansion that really 
om-pli
ate things [10℄ sin
e the O("2) 
ontributions in theone-loop amplitudes involve a multitude of multiple poly-logarithms of maximal weight and depth 4 [11℄. All s
alarmaster integrals needed in this 
al
ulation have been as-sembled in [10, 11℄. Referen
e [10℄ gives the results interms of so-
alled L fun
tions, whi
h 
an be written asone-dimensional integral representations involving prod-u
ts of log and dilog fun
tions, while [11℄ gives the resultsin terms of multiple polylogarithms. The divergent and�nite terms of the one{loop amplitude q�q ! Q �Q weregiven in [12℄. The remaining O(") and O("2) amplitudeshave been written down in [13℄. Squaring the one{loopamplitudes leads to the results of the present paper. In are
ent work [14℄ we have presented 
losed-form, one-loopsquared results for heavy quark produ
tion in the fusionof real photons.In this paper we report on a 
al
ulation of the NNLOone{loop squared matrix elements for the pro
ess q�q !QQ. The 
al
ulation is 
arried out in the dimensionalregularization s
heme [15℄ with spa
e-time dimensionn = 4 � 2". In sequels to this paper we shall presentresults on the square of hadroprodu
tion amplitudes orig-inating from the gluon fusion subpro
ess gg ! QQ andphotoprodu
tion amplitudes 
g ! QQ.In our presentation we shall make use of our notationfor the 
oeÆ
ient fun
tions of the relevant s
alar one-loop master integrals 
al
ulated up to O("2) in [10℄. Forthe 
ase of gluon-gluon and quark-antiquark 
ollisions,one needs all the s
alar integrals derived in [10℄, e.g. theone s
alar one-point fun
tion A; the �ve s
alar two{pointfun
tions B1, B2, B3, B4, and B5; the six s
alar three{point fun
tions C1; C2; C3; C4; C5, and C6; and the threes
alar four-point fun
tions D1; D2, and D3. Taking the
omplex s
alar four-point fun
tion D2 as an example, wede�ne su

essive 
oeÆ
ient fun
tions D(j)2 for the Lau-

rent series expansion of D2. One hasD2 = iC"(m2)n 1"2D(�2)2 + 1"D(�1)2 +D(0)2 + "D(1)2+"2D(2)2 +O("3)o; (1.1)where C"(m2) is de�ned byC"(m2) � �(1 + ")(4�)2 �4��2m2 �" : (1.2)We use this notation for both the real and the imaginaryparts of D2, i.e. for ReD2 and ImD2. Similar expansionshold for the s
alar one{point fun
tion A, the s
alar two{point fun
tions Bi, the s
alar three{point fun
tions Ci,and the remaining four-point fun
tions Di. The 
oeÆ-
ient fun
tions of the various Laurent series expansionswere given in [10℄ in the form of so{
alled L fun
tions,and in [11℄ in terms of multiple polylogarithms of max-imal weight and depth 4. It is then a matter of 
hoi
ewhi
h of the two representations are used for the nu-meri
al evaluation. The numeri
al evaluation of the Lfun
tions in terms of their one{dimensional integral rep-resentations is quite straightforward using 
onventionalintegration routines, while there exists a very eÆ
ient al-gorithm to numeri
ally evaluate multiple polylogarithms[16℄.Let us summarize the main features of thes
alar master integrals. The master integralsA;B1; B3; B4; C2; C3, and D3 are purely real, whereasB2; B5; C1; C4; C5; C6; D1, and D2 are truly 
omplex.From the form (AB� +BA�) = 2(ReAReB + ImA ImB)it is 
lear that the imaginary parts of the master integralsmust be taken into a

ount in the one-loop squared 
on-tribution. The master integrals B2; B5; C1; C4; C5, andC6 are (t$ u) symmetri
, where the kinemati
 variablest and u are de�ned in Se
. II.The paper is organized as follows. Se
tion II 
on-tains an outline of our general approa
h and dis
ussesrenormalization pro
edures. Se
tion III presents NLOresults for the quark-antiquark annihilation subpro
ess.In Se
. IV one �nds a dis
ussion of the singularity stru
-ture of the NNLO squared matrix element for the quark-antiquark annihilation subpro
ess. In Se
. V we dis
ussthe stru
ture of the �nite part of our result. Our resultsare summarized in Se
. VI. In the Appendix we writedown expressions for the building blo
ks of that part ofthe �nite result that originates from the square of boxdiagrams. II. NOTATIONThe heavy 
avor hadroprodu
tion pro
eeds throughtwo partoni
 subpro
esses: gluon fusion and light quark-antiquark annihilation. The �rst subpro
ess is the most
hallenging one in QCD from a te
hni
al point of view. Ithas three produ
tion topologies already at the Born level.
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QFIG. 1: The lowest order Feynman diagram representing light quark{antiquark annihilation. Normal solid lines represent thelight quarks, the 
urly line represents the gluons and the thi
k solid lines 
orrespond to the heavy quarks.Here we 
onsider the se
ond subpro
ess where there isonly one topology at the Born term level (see Fig. 1). Ir-respe
tive of the partons involved, the general kinemati
sis, of 
ourse, the same in both pro
esses. In parti
ular,for the quark-antiquark annihilation, Fig. 1, we haveq(p1) + �q(p2)! Q(p3) +Q(p4); (2.1)The momenta dire
tions 
orrespond to the physi
al
on�guration; e.g. p1 and p2 are ingoing whereas p3 andp4 are outgoing. With m being the heavy quark mass,we de�nes � (p1 + p2)2; t � T �m2 � (p1 � p3)2 �m2;u � U �m2 � (p2 � p3)2 �m2; (2.2)so that the energy-momentum 
onservation reads s+ t+u = 0.We also introdu
e the overall fa
torC = �g4sC"(m2)�2 ; (2.3)where gs is the renormalized strong 
oupling 
onstantand C"(m2) is de�ned in (1.2).As shown e.g. in [12, 13℄ the self{energy and ver-tex diagrams 
ontain ultraviolet (UV) and infrared and
ollinear (IR/M) poles even after heavy mass renormal-ization. The UV poles need to be regularized.Our renormalization pro
edure is 
arried out as fol-lows: when dealing with massless quarks we work in theMS s
heme, while heavy quarks are renormalized in theon{shell s
heme, where the heavy quark mass is the polemass. For 
ompleteness we list the set of one-loop renor-malization 
onstants that we have used:Z1 = 1 + g2s" 23 �(NC � nl)C"(�2)� C"(m2)	 ;Zm = 1� g2sCFC"(m2) 3� 2""(1� 2") ;Z2 = Zm; (2.4)Z1F = Z2 � g2s" NCC"(�2);Z1f = 1� g2s" NCC"(�2);Z3 = 1 + g2s" �(53NC � 23nl)C"(�2)� 23C"(m2)�

= 1 + g2s" �(�0 � 2NC)C"(�2)� 23C"(m2)� ;Zg = 1� g2s" ��02 C"(�2)� 13C"(m2)� :with �0 = (11NC � 2nl)=3. nl is the number of lightquarks, CF = 4=3, and NC = 3 is the number of 
ol-ors. The arbitrary mass s
ale � is the s
ale at whi
hthe renormalization is 
arried out. The above renormal-ization 
onstants are as follows: Z1 for the three-gluonvertex, Zm for the heavy quark mass, Z2 for the heavyquark wave fun
tion, Z1F for the (QQg) vertex, Z1f forthe (qqg) vertex, Z3 for the gluon wave fun
tion, and Zgfor the strong 
oupling 
onstant �s. Note that Z1 is nota
tually needed in the present appli
ation, but we havepresented it for 
ompleteness. For the massless quarksthere is no mass and wave fun
tion renormalization.The above 
oeÆ
ients (ex
ept for Zg) are needed ifone renormalizes graph by graph. However, one 
ould
hoose another route. From the �eld-theoreti
al point ofview, the renormalized matrix element is obtained fromthe unrenormalized one byMren =Yn Z�1=2fn Mbare(gbare ! Zggs;mbare ! Zmmr);(2.5)where Zfn are the wave fun
tion renormalization 
on-stants for all the external on-shell parti
les under 
on-sideration. If one formally expands Mbare (e.g. Mbare =M0 + g2sM1 + : : :) and the renormalization parametersZfn as a series of powers in the 
oupling 
onstant to therequisite order, one arrives at the one-loop order resultM1;ren =Qn Z�1=2fn;1 M0(gbare ! Zggs;mbare ! Zmmr)+g2sM1(gs;mr); (2.6)where now the Zfn;1 
orrespond to the one{loop renor-malization 
onstants for the external parti
les. In our
ase one has Zf1;1 = Zf2;1 = 1 and Zf3;1 = Zf4;1 = Z2.Thus, one 
ould apply inverse wave fun
tion renormaliza-tion for external legs and then repla
e the bare 
oupling
onstant gbare ! Zggs (as the mass parameter m doesnot expli
itly enter the leading order Born term matrixelement, it is not renormalized at that order). We haveveri�ed that, in both ways, we arrive at the same renor-malized result.
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a b c

d e f

g h i

j kFIG. 2: One-loop Feynman diagrams 
ontributing to the subpro
ess q�q ! QQ. The loop with the dotted line in (g) representsthe gluon, ghost, and light and heavy quarks.In order to �x our normalization we write down thedi�erential 
ross se
tion for q�q ! QQ in terms of thesquared amplitudes jM j2. One hasd�q�q!QQ = d(PS)22s 14N2C jM j2q�q!QQ ; (2.7)where the n{dimensional two{body phase spa
e is givenbyd(PS)2 = m�2"8�s (4�)"�(1� ") � tu� sm2sm2 ��" Æ(s+ t+u)dtdu(2.8)and we expli
itly show 
ux (4p1p2)�1 = (2s)�1, initialquark and antiquark spin (2sf + 1)�2 = 1=4, and 
olorN�2C averaging fa
tors. Then, at the leading Born termorder for q�q ! QQ, we have1g4s jM j2LO = 16�t2 + u2s2 + 2m2s � "� � B: (2.9)

III. NEXT-TO-LEADING ORDER RESULT
Folding the one{loop matrix elements depi
ted inFig. 2 with the LO Born term, Fig. 1, one obtains thevirtual part of the NLO result. Although NLO virtual
orre
tions to heavy 
avor hadroprodu
tion were 
al
u-lated before for the q�q ! Q �Q 
ase, one 
annot �nd ex-pli
it results for this subpro
ess in the literature. Wehave therefore re
al
ulated the virtual NLO 
ontributionto q�q{annihilation. In fa
t, we have 
al
ulated the virtualNLO results up to O("2). As it turns out, the expressionsfor the NLO virtual "1 and "2 
ontributions 
onsiderablysimplify the presentation of the 
orresponding NNLO re-sults, in as mu
h as they appear as important buildingblo
ks in the NNLO results.



5First, we write down a few abbreviations that we shall use throughout the paper:� =p1� 4m2=s; D = m2s� tu; (3.1)z2 = s+ 2t; z2u = s+ 2u; zt = 2m2 + t; zu = 2m2 + u:Note that D is not the spa
e{time dimension. We further de�ne the fun
tions:F (j)1 = 29(nl + 1) + 28NC9 � NC�2 �B(j)2 �3CF � 32NC + 1� �23 � (3.2)�B(j)5 �3CF � 5NC3 + 2nl3 � NC2�2�+ C(j)1 NCm2�2 � nC(j)4 s� C(j)6 (2m2 � s)o (2CF �NC);F (j)2 = 2 �s�2(2CF �NC)� 12m2NC��B(j)2 s�2(2CF �NC) +B(j)5 (8m2 + s)NC + C(j)1 6m2sNC ; (3.3)F (j)3 = 563 �2 �8m2�1t � z2s2�2��B(j)1 2t �m2 + Ds ��B(j)5 2zus�2 (3.4)+C(j)1 �4t2s � z2 8m4 � s2s2�2 �� C(j)3 2t�1 + 2Ts �+ (C(j)4 �D(j)2 t)1s (2D + s2 + 2t2)�+" ��8m2�3t � 2z2s2�2�+B(j)1 2�3ztt + 2ts ��B(j)5 2�2 + z2s�2��C(j)1 �8m2 + 4s+ 8m2t+ s2s�2 + 2m2s2 + 2t3D �+ C(j)3 2 ts �s� 4t� 2sts� tD ��(C(j)4 �D(j)2 t)�3s+ 4t+ 2sts� tD ��+"2 3s2D �C(j)1 zt + C(j)3 2t2s + C(j)4 t�D(j)2 t2�� ;F (j)4 = 163 �2 �8m2� 1u � z2us2�2��B(j)1u 2u �m2 + Ds ��B(j)5 2zts�2 (3.5)+C(j)1 �4u2s � z2u 8m4 � s2s2�2 �� C(j)3u 2u�1 + 2Us �+ (C(j)4 �D(j)2u u)1s (2D + s2 + 2u2)�+" ��8m2� 1u + 2z2us2�2�+B(j)1u 2�zuu � 2us ��B(j)5 2�1� 2zus�2�+C(j)1 �4zu + 8m2u+ s2s�2 + 2m2sz2uD �+ C(j)3u 2us �3s+ 4u� 2stuD ��(C(j)4 �D(j)2u u)�2m2s2D � s� 4u���"2 3s2D �C(j)1 zu + C(j)3u 2u2s + C(j)4 u�D(j)2u u2�� :The additional subs
ript \u" in some of the s
alar 
oef-�
ient fun
tions in the expression for F (j)4 (su
h as B(j)1u )is to be understood as an operational de�nition pres
rib-ing a (t $ u) inter
hange in the argument of that fun
-tion, i.e. B(0)1u = B(0)1 ��t$u, et
. Note that Bj5, Cj1 , andCj4 are intrinsi
ally (t$ u) symmetri
 (see [10℄). Takingthe (t $ u) symmetry of Bj5 , Cj1 , and Cj4 into a

ount,one notes a 
orresponding (t$ u) symmetry for the �rst
and third square bra
kets in F (j)3 and F (j)4 .Before presenting our result for the NLO matrix el-ement, we would like to 
omment on its 
olor stru
-ture. First note that all the vertex and self-energy (VSE)graphs are proportional to the LO Born term 
olor ma-tri
es (see Refs. [12, 13℄). Both the parallel ladder box,Fig. 2(a), and the 
rossed ladder box, Fig. 2(b), havetheir own 
olor stru
tures. Altogether one obtains the



6following three 
olor stru
tures,Tr(T aT b) Tr(T aT b) = dA4 ) 2; (3.6)Tr(T aT bT 
) Tr(T bT aT 
) = dA8 �NC � 2NC�) 73 ;Tr(T aT bT 
) Tr(T aT bT 
) = �dA4 1NC ) �23 ;from folding the Born term with the VSE graphs, theparallel ladder box, Fig. 2(a), and the 
rossed ladder box,Fig. 2(b), in that order. The 
ommon fa
tor dA = N2C �1 = 8 is the dimension of the adjoint representation ofthe 
olor group SU(NC). We present our NLO resultseparately for these three 
olor stru
tures.At NLO the �nal spin and 
olor summed matrix ele-ment 
an be written down as a sum of three terms:1g2spC jM j2Loop�Born = Reh 1"2W (�2)(") + 1"W (�1)(")+W (0)(")i; (3.7)where C has been de�ned in (2.3). The notationjM j2Loop�Born means that one is retaining only the O(�3s)part of jM j2.The �rst two 
oeÆ
ient fun
tions in (3.7) have a rathersimple stru
ture:W (�2)(") = �2B(2CF �NC + 3); (3.8)W (�1)(") = �2B�5CF hC(�1)4 s� C(�1)6 (2m2 � s)i� (2CF �NC)� 23h7 ln(�tm2 ) + 2 ln(�um2 )i� ;where B is the Born term de�ned in Eq. (2.9). Oneshould keep in mind that the overall Born term fa
tor Babove 
ontains a term multiplied by ". Therefore, if theexpression for B, Eq. (2.9), is substituted in W (�2) andW (�1), we will obtain (")�1 and �nite terms from the�rst two terms of Eq. (3.7).The third term in Eq. (3.7) readsW (0)(") = F (0)NLO; (3.9)where F (j)NLO =W (j)1 +W (j)2 +W (j)3 ; (3.10)and where W (j)1 = 2B F (j)1 + 128m2Ds4�4 F (j)2 ;W (j)2 = �2B�0 ln1+j(m2�2 ); (3.11)W (j)3 = F (j)3 + F (j)4 :Note that the �rst term in (3.11) originates entirely fromthe sum of self-energy and vertex diagrams while the se
-ond term is due to renormalization. The terms F (j)3 and

F (j)4 in W (j)3 represent the 
ontributions from boxes aand b, respe
tively.The massless limit of our NLO result Eq. (3.7) withoutthe O(") and O("2) order terms was 
ompared (in
lud-ing also the imaginary part) with 
orresponding resultsobtained from the methods developed in Ref. [17℄ [22℄.There was agreement [19℄. This serves as a rigorous 
he
kon our singularity stru
ture as well as on all the mass log-arithms of our original NLO matrix element [12℄.IV. SINGULARITY STRUCTURE OF THENNLO SQUARED AMPLITUDEThe NNLO �nal spin and 
olor summed squared ma-trix element 
an be written down as a sum of �ve terms:1C jM j2Loop�Loop = Reh 1"4V (�4)(") + 1"3V (�3)(") (4.1)+ 1"2V (�2)(") + 1"V (�1)(") + V (0)(")i;where C has been de�ned in (2.3). Note Eq. (4.1) is nota Laurent series expansion in " sin
e the 
oeÆ
ient fun
-tions V (m)(") are fun
tions of " as expli
itly annotatedin Eq. (4.1). It is nevertheless useful to write the NNLOone-loop squared result in the form of Eq. (4.1) in orderto exhibit the expli
it " stru
tures. All �ve 
oeÆ
ientfun
tions V (m)(") are bilinear forms in the 
oeÆ
ientfun
tions that de�ne the Laurent series expansion of thes
alar master integrals (1.1). Some of these 
oeÆ
ientfun
tions are zero and some of them are just numbers orsimple logarithms. In the latter 
ase we will substitutethese numbers or logarithms for the 
oeÆ
ient fun
tionsV (m) in the �ve terms above. This will be done for the
oeÆ
ient fun
tions A(m), B(�1)1 , B(�1)1u , B(�1)5 , C(�1)3 ,and C(�1)3u .We mention that in the 
ourse of our work we took fulladvantage of the fa
t that in [12℄ all the poles in the ma-trix element for the q�q ! QQ subpro
ess are multipliedonly by the leading order Born Dira
 stru
ture to 
astthe singular terms of the squared matrix element into anappropriately fa
torized form.Before pro
eeding further, we present three more 
olorstru
tures appearing in the NNLO 
al
ulation in additionto the ones presented in Eq. (3.6) :Tr(T aT bT b0T a0) Tr(T bT aT a0T b0) = (4.2)dA16 �N2C � 3 + 3N2C �) 196 ;Tr(T aT bT b0T a0) Tr(T aT bT b0T a0) = dA16 �1 + 3N2C �) 23 ;Tr(T aT bT b0T a0) Tr(T bT aT b0T a0) =�dA16 �1� 3N2C �) �13 :



7The above three 
olor stru
tures arise from folding box awith box a, box b with box b, as well as the interferen
eof the two boxes, respe
tively.Let us �rst introdu
e a notation whi
h will help us topresent the 
oeÆ
ients of the singular terms in the most
on
ise fashion:L1 = (2CF �NC)�C(�1)4 s� C(�1)6 (2m2 � s)� ;L2 = 15CF � 14 ln(�tm2 )� 4 ln(�um2 );L3 = 35CF � 38 ln(�tm2 )� 4 ln(�um2 );L4 = 5CF � 2 ln(�tm2 )� 4 ln(�um2 ): (4.3)The two most singular terms in (4.1) are proportionalto the Born term B de�ned in (2.9). One hasV (�4)(") = (2CF �NC + 3)2B; (4.4)V (�3)(") = 2(2CF �NC + 3)B �L1 + L23 � :We also obtainV (�2)(") = B3 h(3L1 + L2)(L1 + 5CF )� (4.5)�2 ln(�tm2 )(7L1 + L3)�4 ln(�um2 )(L1 + L4)i�(2CF �NC + 3)F (0)NLO:

The last term in Eq. (4.5) is obtained from folding theO("�2) singular term of the matrix element with its �nitepart, while the rest is obtained from folding the singlepoles. Note that when one substitutes the Laurent ex-pansions for B and F (0)NLO, one gets additional 1=" polesand �nite terms in Eq. (4.5).The stru
ture of the last term in Eq. (4.1) is a littlemore 
ompli
ated. One hasV (�1)(") = �L�1F (0)NLO � L23 (W (0)1 +W (0)2 ) (4.6)�L37 F (0)3 � L4F (0)4+(2CF �NC + 3) h�F (1)NLO + V 0i :The terms multiplied by the Lm fun
tions above are dueto folding the single pole terms in the original matrixelement with its �nite O("0) part, while the last term isdue to interferen
e O("�2) � O(") terms in the originalmatrix element. This pole term is due to the Taylorexpansion of the original matrix element and 
annot bededu
ed from the knowledge of the LO terms alone. Thefun
tion F (1)NLO is de�ned in Eq. (3.10) and is nothingbut the �nite part of the NLO term with indi
es of the
oeÆ
ient fun
tions of the s
alar master integrals and thepower of the logarithm that multiplies the �0 fun
tion,shifted upward by 1. For the remaining term V 0 , oneobtains
V 0 = �2B ��02 ln2(m2�2 ) + 8CF � NC�2 � 2nl + 2 + 28NC27 +B(0)2 2�2 � 18CF + 9NC9 (4.7)+B(0)5 29(5NC + nl � 9CF )�� 128m2Ds3�4 h2(6�2CF �NC)�B(0)2 2�2(2CF �NC)�B(0)5 2NC � C(0)1 sNCi�563 �2 �8m2�1t � z2s2�2�+�2s + s� tD ��C(0)1 szt + C(0)3 2t2 + C(0)4 st�D(0)2 st2���" �8m2�3t � 2z2s2�2�+�8s + 7s� 4tD ��C(0)1 szt + C(0)3 2t2 + C(0)4 st�D(0)2 st2����163 �2 �8m2 z2us2�2 +B(0)1u 2�2Dsu � 1��B(0)5 2z2us�2 � C(0)1 �m2 �4 + sz2uD �� 2zt�2 ���z2us � tuD��C(0)3u 2u+ C(0)4 s�D(0)2u su��+" ��8m2� 1u + 2z2us2�2�+�8s + 9s+ 4uD ��C(0)1 szu + C(0)3u 2u2 + C(0)4 su�D(0)2u su2��� :When one substitutes the Laurent expansions for F (0)3 ,F (0)4 , and F (1)NLO, one gets �nite and O(") order terms inEq. (4.6). However, sin
e we are only interested in the Laurent series expansion up to the �nite term, these O(")
ontributions should be omitted.



8V. STRUCTURE OF THE FINITE PARTIn this se
tion we present the �nite part of our result.We 
al
ulate the �nite part in several pie
es, e.g.V (0) = Re hV (0)Bf1 + V (0)Bf2 + V (0)f0f0i : (5.1)The �rst two terms originate from the interferen
e ofthe O("�1)�O(") and O("�2)�O("2) pie
es of the ini-tial matrix element. Ea
h of them 
an be 
onvenientlypresented as a sum of �ve 
ompa
t expressions:V (0)Bf1 = G1 +G2 +G3 +G4 +G5; (5.2)whereG1 = �128m2D(L�1 + L2=3)hF (1)2+ 12s�2CF � 2sNC �B(0)2 2s�2(2CF �NC)�B(0)5 2sNC � C(0)1 s2NCi=(s4�4) ;G2 = �2B(L�1 + L2=3)h27F (1)1 � 2nl � 2� 28NC + 216CF � 27NC=�2 �B(0)2 3(18CF

� 9NC � 2�2)�B(0)5 6(9CF � 5NC � nl)i=27 ;G3 = �0B ln2(m2�2 )(L1 + L2=3) ; (5.3)G4 = �16(7L�1 + L3)hF (1)3 3=112+ 8m2(1=t� z2=(s2�2)) + (C(0)1 zt + C(0)3 2t2=s+ C(0)4 t�D(0)2 t2)(2D + s2 � st)=Di=3 ;G5 = �32(L�1 + L4)hF (1)4 3=32+ 8m2z2u=(s2�2) +B(0)1u 2(2D=(su)� 1)�B(0)5 2z2u=(s�2)� C(0)1 (m2sz2u=D� 2(8m4 + st)=(s�2))� (C(0)3u 2u=s+ C(0)4�D(0)2u u)(z2u � stu=D)i=3 :The �rst three terms above are due to the VSE 
ontri-butions, and the last two terms are due to the two boxdiagrams. Similarly, for the se
ond term in Eq. (5.1) wewriteV (0)Bf2 = H1 +H2 +H3 +H4 +H5; (5.4)with H1 = �128(2CF �NC + 3)Dm2hF (2)2 + 4s�2(7CF +NC)� 10sNC �B(1)2 2s�2(2CF �NC)�B(1)5 2sNC � C(1)1 s2NCi=(s4�4) ;H2 = �(2CF �NC + 3)BhF (2)1 162 + 2(1296CF + 76NC � 10nl � 10� 243NC=�2) +B(0)2 24�2�B(1)2 18(18CF � 9NC � 2�2) +B(0)5 12(NC + 2nl)�B(1)5 36(9CF � 5NC � nl)i=81 ;H3 = (2CF �NC + 3)B�0 ln3(m2�2 )=3 ; (5.5)H4 = �112(2CF �NC + 3)hF (2)3 3=112+ 24m2(1=t� z2=(s2�2)) + (zt(2C(0)1 + C(1)1 )+ 2t2(2C(0)3 + C(1)3 )=s+ t(2C(0)4 + C(1)4 )� t2(2D(0)2 +D(1)2 ))(2D + s2 � st)=Di=3 ;H5 = �32(2CF �NC + 3)hF (2)4 3=32 + 8m2(1=u+ z2u=(s2�2)) +B(1)1u 2(2D=(su)� 1)�B(1)5 2z2u=(s�2)� (C(0)1 zu + C(0)3u 2u2=s+ C(0)4 u�D(0)2u u2)(4D + 3s2 + 2su)=D� C(1)1 (m2sz2u=D � 2(8m4 + st)=(s�2))� (C(1)3u 2u=s+ C(1)4 �D(1)2u u)(z2uD � stu)=Di=3 :Note again that the O(") and O("2) order terms in the above expressions for V (0)Bf1 and V (0)Bf2 
an be disregarded.We also mention that the s
alar 
oeÆ
ient fun
tions with



9supers
ript \2" above involve multiple polylogarithms.We emphasize that the fa
torized forms of all the ex-pressions given in this paper hold only when one retainsthe full " dependen
e in the Born and NLO terms.The last term in Eq. (5.1) 
omes from the square of theO("0) term of the matrix element. It 
an also be writtenas a sum of �ve terms:V (0)f0f0 =MV SE +MBV SE +Maa +Mba +Mbb: (5.6)The �rst term is the square of the �nite parts of vertexand self-energy graphs; the se
ond one is an interferen
eof the vertex and self-energy graphs with the two boxdiagrams. These two terms 
an be presented in a very
ompa
t form:MVSE = F (0)1 �W (0)1 +W (0)2 �B F (0)1 ��� ��F (0)2 ��2 32m2D=(s5�6) (5.7)� �0 ln(m2�2 )�W (0)2 =2 +W (0)1 � 2BF (0)1 � ;MBV SE = 7P + 2P jt$u +�F (0)1 � �0 ln(m2�2 )�� (F (0)3 + F (0)4 )�; (5.8)withP = 64m2F (0)�2 h2D=t�B(0)1 D=t+ C(0)1 Tz2 � C(0)3 2tT+ (C(0)4 �D(0)2 t)(D + t2)i=(3s3�4): (5.9)When writing out P jt$u one has to do the t $ u op-eration in all the terms in the fun
tion P , i.e. forz; t; F (0)2 ; B(0)1 ; C(0)3 ; T , and D(0)2 (C(0)1 and C(0)4 are t$ usymmetri
).Finally, we are left with the last three terms inEq. (5.6), whi
h are the longest terms in our NNLO re-sult. However, to our surprise, we were able to dis
overni
e fa
torization properties of the square of the two boxdiagrams. This part of the 
ross se
tion 
an be put to-gether with the help of several building blo
ks; e.g. ea
hof the last three terms in Eq. (5.6) 
an be written as asum of bilinear produ
ts. Ea
h of the fa
tors in the bi-linear produ
ts are linear 
ombinations of s
alar integral
oeÆ
ient fun
tions multiplied by some 
ombination ofkinemati
 variables. To be more spe
i�
, we writeMaa = 763 hs�1Q1Q�8 + 4m2Q2Q�3 +Q4Q�10+m2Q5Q�11 � 2s�1Q6Q�12 +Q7Q�13i;Mbb = 419Maajt$u; (5.10)Mba = 163 hs�1Q8Q�14 + 4m2Q9Q�15 +Q10Q�16+ 2m2Q11Q�16 + 2s�1Q12Q�17 +Q13Q�18i:

Expli
it expressions for the 18 linear forms Qi are givenin the Appendix. The bilinear forms above arise fromfolding 
ertain pairs of Dira
 stru
tures in our originalmatrix element. The expression for Mba represents theresult of the interferen
e of the �nite parts of box a andbox b.It is quite obvious that the fa
torized forms for the�nite part of the NNLO result for the q�q ! QQ sub-pro
ess should also hold for the 
orresponding masslessamplitudes. We have not seen this being displayed in theliterature.In the �nite 
ontribution, Eq. (5.1), one 
an see theinterplay of the produ
t of powers of " resulting from theLaurent series expansion of the s
alar integrals [
f. Equa-tion (1.1)℄ on the one hand, and powers of " resulting fromdoing the spin algebra in dimensional regularization onthe other hand. For example, for the �nite part one hasa 
ontribution from C(�1)6 B(0)�1 as well as a 
ontributionfrom C(�1)6 B(1)�1 . Terms of the type C(�1)6 B(0)�1 , wherethe supers
ripts 
orresponding to " powers do not 
om-pensate, would be absent in the regularization s
hemeswhere tra
es are e�e
tively taken in four dimensions, i.e.in the so-
alled four-dimensional s
hemes or in dimen-sional redu
tion.We want to emphasize that all our fa
torized resultsgiven in this paper take up about 10 Kb of hard diskspa
e. This has to be 
ompared with the length of theoriginal 
omputer output. The original 
omputer outputfor the one-loop squared 
ross se
tion of the q�q ! QQsubpro
ess turned out to be very long and took up ap-proximately 4 MB of hard disk spa
e. Therefore, theredu
tion is of the order of 400 in the present 
ase.As a �nal remark we want to emphasize that we havedone two independent 
al
ulations using REDUCE [20℄and FORM [21℄ when squaring the one{loop amplitudes.After 
asting the results into the above 
ompa
t form,we have 
he
ked the �nal result against the original un-treated versions using again the REDUCE Computer Al-gebra System. VI. CONCLUSIONSWe have presented analyti
al O(�4s) NNLO results forthe one-loop squared 
ontributions to heavy quark pairprodu
tion in quark{antiquark annihilation. These arethe �rst exa
t results for the hadroprodu
tion of heavyquarks at NNLO where the heavy quark mass dependen
eis fully retained. Our results form part of the NNLO de-s
ription of heavy quark pair produ
tion relevant for theNNLO analysis of ongoing experiments at the Tevatronand planned experiments at the LHC.Our analyti
al results are presented in fa
torizedforms. For the divergent parts, the squared matrix el-ements are given in terms of the Laurent series expan-sion of the 
orresponding LO and NLO 
ontributions ex-panded up to O(") and O("2), respe
tively. In this waywe 
ould transfer parts of the �nite part of the squared



10amplitudes to the 
oeÆ
ient fun
tions of the pole terms.After this we found that the remaining parts of the �nite
ontribution 
ould be further fa
torized, partly in termsof the 
orresponding LO and NLO pie
es, and, for thebox graphs, in terms of fa
torizing forms as des
ribed inSe
. V. Writing our analyti
al results in fa
torized formsled to a redu
tion of the length of the original output bya fa
tor of 400. To the best of our knowledge these ni
efa
torization properties of the squared amplitude werenot known before. It would be interesting to �nd out theunderlying reason for this fa
torization.The present paper deals with unpolarized quarks in theinitial and �nal states. Sin
e our results for the matrixelements in [13℄ 
ontain the full spin information of thepro
ess, an extension to the polarized 
ase with polariza-tion in the initial state and/or in the �nal state in
ludingspin 
orrelations is not diÆ
ult.The present 
al
ulation 
onstitutes a �rst step in ob-taining the full NNLO 
orre
tions to the heavy quark pro-du
tion pro
esses in QCD. A further next step is to pro-vide one{loop squared results for gluon-initiated heavyquark pair produ
tion. Work on the gluon{initiated
hannel is in progress.

Analyti
al results in ele
troni
 format for all the termsin Eq. (4.1), in
luding the (t $ u) symmetri
 terms ex-pli
itly written out, as well as 
ombined full results, arereadily available [23℄.A
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tNo. VH-NG-105.APPENDIXHere we present the expressions for the terms Qm appearing in Equation (5.10).Q1 = h8m2(s=t� z2=(s�2))�B(0)1 2(m2s+D)=t�B(0)5 2zu=�2 + C(0)1 (2D + s2 + 2tzt + 2m2z2=�2)� C(0)3 2t(s+ 2T ) + C(0)4 (2D + s2 + 2t2)�D(0)2 t(2D + s2 + 2t2)i=D ;Q2 = 2=t�B(0)1 =t+ C(0)1 Tz2=D � C(0)3 2tT=D+ C(0)4 (1 + t2=D)�D(0)2 t(1 + t2=D) ; (A.1)Q3 = 4(2m2zt �D)=(s�2t) +B(0)1 2T=t+B(0)5 2zt=(s�2) + C(0)1 (zt=�2 + (m2st� t3)=D)+ C(0)3 2t3=D + C(0)4 st2=D �D(0)2 st3=D ;Q4 = h8m2zu=(s�2) +B(0)1 2m2 +B(0)5 2m2z2=(s�2) + C(0)1 (2tT +m2z2=�2)� C(0)3 2m2t+ C(0)4 (m2s+ 2t2)�D(0)2 t(m2s+ 2t2)i=D ;Q5 = h16m2zu=(s�2) +B(0)1 4m2 +B(0)5 4m2z2=(s�2) + C(0)1 2(2tT +m2z2=�2)� C(0)3 4m2t+ C(0)4 2(m2s+ 2t2)�D(0)2 2t(m2s+ 2t2)i=D ;Q6 = 16m2=(s�2) +B(0)1 2�B(0)5 2=�2 � C(0)1 (4t(D +m2t) + s2T=�2 + 4m2t2=�2)=D+ C(0)3 2tT z2=D � C(0)4 z2(D + t2)=D +D(0)2 tz2(D + t2)=D ;Q7 = h8m2(s=t� 4� 5zt=(s�2))�B(0)1 2(2D=t� 3m2 + u) +B(0)5 2(m2s+ 6m2t� su)=(s�2)+ C(0)1 (2m2s+ 10tT + (m2 + s)z2=�2)� C(0)3 2t(5m2 + z2) + C(0)4 (s(5m2 + z2) + 10t2)�D(0)2 t(s(5m2 + z2) + 10t2)i=D ;



11Q8 = 8m2(D=t� tz2=(s�2))�B(0)1 2T (2D=t� s) +B(0)5 2(D + tzt=�2)� C(0)1 s(m2s� t2 � tzt � tzt=�2 � t2(m2s� t2)=D)� C(0)3 2stT (1 + st=D)+ C(0)4 s(m2s+ 2t2 + st3=D)�D(0)2 st(m2s+ 2t2 + st3=D) ;Q9 = �4(T=t+ zt=(s�2)) +B(0)1 2T=t+B(0)5 2zt=(s�2) + C(0)1 (zt=�2 + t(m2s� t2)=D) + C(0)3 2t3=D+ C(0)4 st2=D �D(0)2 st3=D ;Q10 = h8m2D �B(0)1 2Dzt +B(0)5 2tD � C(0)1 st(m2s+ 4m2t+ t2) + C(0)3 2t2(m2s� t2)+ C(0)4 st(m2s� t2)�D(0)2 st2(m2s� t2)i=D ;Q11 = h8Dzu=(s�2) +B(0)1 2D +B(0)5 2z2D=(s�2)� C(0)1 s(m2s� t2 � z2D=(s�2))� C(0)3 2st2� C(0)4 s2t+D(0)2 s2t2i=D ;Q12 = 8m2zt=(s�2) +B(0)1 2T � B(0)5 2(D � tzt)=(s�2) + C(0)1 szt((2m2 � s)=(s�2) + t2=D)� C(0)3 2st2T=D � C(0)4 s2tT=D +D(0)2 s2t2T=D ;Q13 = C(0)1 szt + C(0)3 2t2 + C(0)4 st�D(0)2 st2 ;Q14 = h8m2(s=u� z2u=(s�2))�B(0)1u 2(m2s+D)=u�B(0)5 2zt=�2 + C(0)1 (2D + s2 + 2uzu + 2m2z2u=�2)� C(0)3u 2u(s+ 2U) + C(0)4 (2D + s2 + 2u2)�D(0)2u u(2D+ s2 + 2u2)i=D ;Q15 = 2=u�B(0)1u =u+ C(0)1 Uz2u=D � C(0)3u 2uU=D+ C(0)4 (1 + u2=D)�D(0)2u u(1 + u2=D) ;Q16 = h8m2(s=u� zu=(s�2))�B(0)1u 2(D �m2t)=u�B(0)5 2(t�m2z2u=(s�2))+ C(0)1 (s2 � tzu +D=�2 � 2m2uz2u=(s�2))� C(0)3u 2u(m2 + z2u)+ C(0)4 (D + s2 � tu)�D(0)2u u(D + s2 � tu)i=D ;Q17 = 16m2=(s�2) +B(0)1u 2�B(0)5 2=�2 � C(0)1 (4u(D +m2u) + s2U=�2 + 4m2u2=�2)=D + C(0)3u 2uUz2u=D� C(0)4 z2u(D + u2)=D +D(0)2u uz2u(D + u2)=D ;Q18 = h8m2(4s=u� 1� 5zu=(s�2))�B(0)1u 2(5D � 3m2t+ tu)=u�B(0)5 2(4t� 5m2z2u=(s�2))+ C(0)1 (4s2 + 2(4s+ 5u)U + 5m2z2u=�2)� C(0)3u 2u(5m2 + 4z2u) + C(0)4 (5m2s+ 4sz2u + 10u2)�D(0)2u u(5m2s+ 4sz2u + 10u2)i=D :
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