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1. Introduction

We study the infrared (IR) singularities of some massivelone n-point Feynman integrals,

_&F dk T(k)
| = |nd/2/( %_m%)vl --(qiz_n‘ﬁz)vj---(q%—rﬂ%)v"’ (1.2)

by representing them with standard Feynman parameterraisewith characteristid= and U
forms:

_ (-

= /|‘|1o|xJ X1~ Zl Nv s " ),

(1.2)

with N, = YL, vi. For one loop integrals, tHe = ¥ x; may be set to one. THe-form is bilinear
in the x; and may be represented in turn by a multiple Mellin-Barne8)Nhtegral, using the
representation:
io+R
1 _
(A(X) 1 B(X)” 2m / dz AX)" B0 rv)

—io+R

(1.3)

where the integration contour separates the poles df-#umctions.

Afterwards, the Feynman parameters may be integrated dubraa has to solve the resulting
MB integral. This is in general quite non-trivial. Howeverere is an interesting kind of problems
where a systematic approach might be developed, namely#hgation of the IR divergent parts
of the Feynman integrals. They are at the begin oftlexpansion £ = (4—d)/2) of the Feynman
integral and so of smaller dimensionality in the varialdel fact, usually one subtracts them from
the rest of the integral and treats them separately.

The MB representation allows to do this in a special way whdght be of some practical
usefulness. We will discuss here only scalar one-loop fanst T (k) = 1, but tensors don’t show
additional problems. For basic definitions and formulae eferrto [1-[B] and references cited
therein. We use here and in the following the Mathematic&kages AMBRE [[L] and MB [[4]
for the derivations of the MB representations and forgkexpansions. In section 2 we apply the
MB-approach to the massive Bhabha vertex and box functindsatract theie-poles. Section 3
contains the treatment of both the virtgapoles and the endpoint singularities from an unresolved,
massless particles in a pentagon diagram of massive Bhahttaring. The method may be gen-
eralized to more complex cases, including higher loop ardart explicit evaluations become then
more and more complicated.

2. Simple g-poles. Massive QED vertex and box

We will setm =1, ands, t are the usual Mandelstam variables. The QED vertex funt¢tamn
the F-form:

F(9) = [X[2+X[3]J* + [~s] X[2]X[3], (2.1)



Mixed virtual and real IR-singularities Tord Riemann

leading, without a continuation in, to a one-dimensional MB representation and a series over
residues|[R]:

—ic0—1/2
M2(=2)r(—z+¢&)r(1+2

Vie) = 2se 2m / dz ( r(—22
—jc0—1/2

2 g Fn+1+e¢)
2¢ nZo (Zn”)(2n+1) r(n+1)

The complete series may be summed directly with Mathenfatical the vertex becomes:

efIE
V() =~ T(1+8) Rl 1+e3/25/4. (2.3)

2.2)

Alternatively, one may derive theexpansion by exploiting the well-known relation with hamnic
numbersS(n) = y, 1/ik:

—ag)k
k

r(n+ ag)
r(n)

The product expeye)l (1+¢) =1+ %Z[Z]sz + O(€3) yields expressions with zeta numbéis),
and, taking all terms together, one gets a collection ofrseédinomial sunts the first of them is
the IR divergent part:

=T (14 ag)exp|— % S(n—=1)f. (2.4)

V‘g( S) Vo) 4 - - (2.5)

12 g }4arcsir(\/§/2)
zz Ment+1) 2 VA-s/s

This procedure applies similarly to the Bhabha box diagrfdin\lVe take for definiteness the
schannel scalar loop integral. Theform is (again withm= 1):

(2.6)

F(s:t) = [X[2) + X412+ [~ X[UX[3 + [-t] X[2}X[4], (2.7)

and an MB representation is, after continuation to small sum of two terms:

+iwo—-7/16
(—9) MLt er[—e2en LTz [1+ 2]
BSY = 2~ T2 27 / da(= F—22] (2.:8)
—ic0—7/16
1 1 e +io—3/4
S\ 4
+ BTz @ / dz(2) " r-zlr -2+ e+ )1+ 2]
—i0—3/4
+ic0—7/16 r[ 1_ ]
PEPA E—1—D
xioo/7/16d22(—t) M2l 5 et g agy 26T A2

1The expression fov (s) was also derived ir{[S]; see additionalﬂ [6].
2For the first four terms of the-expansion in terms of inverse binomial sums or of polylibatic functions, see

.
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Due to the pre-factors;[—€]?/I[—2¢] = —2/& +2{[2]e + O(&?) and YT [-2¢] = —2¢ + 4y €2+
O(&3), only the first integral contributes to the first two termstuf £-expansion,

1 V()
B(st) = [E—In(—s)] s +0O(¢), (2.9)
whereV._; is from (2.6), and the IR divergency is:
B (st) = (2.10)

(=s)
We reproduce here the well-known fact that IR-divergendeg&uaices and boxes are algebraically
related, see e.gf][3].

3. Mixed virtual and real IR-singularities. massive Bhabha pentagon

Things become more interesting for pentagon diagrams & [3! [8,[9]). We again use
Bhabha scattering as an example. A compafbrm is:

F(St,t',Va,Va) = (X2 +Xg+X5)2 + [~ xaX3 + [~ Va]XaXs + [—t]XoXs + [—t']XaX5 + [~ V2] X1 Xa.
(3.1)

It exhibits a set of five invariants (out of a set of 10 scalasdoicts at choice) describing the
kinematics of a 2+ 3 process (here assuming a final state emission of an uneeisphoton from

an s channel box diagram). Thgt,t’ are the usual Mandelstam variables for the fermions in
ete” — ete"y, and:

Vi=2pipy, i=1,...4 (3.2)

TheV, are proportional to the energy of the potentially unrestireassless particle.

From a subsequent phase space integration, we have to expepbint singularities arising
from terms proportional td/V> ~ 1/E, and1/V4 ~ 1/E,, so we have to control, for a complete
treatment of the IR-problem, not only teeexpansion, but also the first terms of theW, expan-
sions for small Y, V4.

In fact, theF-form @), written here in its shortest form, depends aséhtwo of the fouk,
which are related to the phase space of the given topology.

The MB-representation is a useful tool for that problem. therIR limit, we may approximate
t' =t, and the scalar pentagon may be written as:

es)'E 4 +i°°+u| |_| r]

_ =1
dz(—s ()4 (\H)B (V. —3—e-n-2-73-7_J

= sl / 3V e

(3.3)

with u; = (—5/8,—7/8,...) and with a normalizatiof o = '[—1 — 2¢], and the otheF -functions
are:

F1: F[—Zl], rzzr[—ZZ], r3:r[—23], r4:r[1+23]’
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Ms =T[14+2+2z), Me=T[-z], M7=T[1+2z], Tg=T[-1-€-7-2)],
Fo=T[-2-¢-z-2-23-2], Two=T[-2-€-2—23—12),
FM1=T—€4+z—2+2z), T2=T[83+e+z+2+23+2), (3.4)

and, in the denominator:
F13 = F[—l— 8—21—22—24], M4= r[—8—21—22+24]. (35)

Leaving out here the details of derivation (sge [3] for tha® just mention that we have to consider,
after continuation irg, eleven MB-integrals, being at most 4-dimensional {fet t). The resulting
IR-sensible part is:

157 = 157 (V) + 157 (Va), (3.6)
=) = =M ), (3.7)

The e-pole is again proportional to that of the vertex:

15,M) 1 2 (t)" V(b
ls - 2s\Me nZO 2n ~ sve’ (3.8)
( n) (2n+1)
and:
—2In(=V}) — 35 (n) + 25, (2n+ 1)), (3.9)

s 18 (t)"
1504) = 5 [
s\ n; <2nn> (2n+1)

where we have to understand +V;) = In(Vi/s) + In[—(s+i5) /m?]. The series fof§(Vi) may be
summed up in terms of polylogarithmic functions with the afdrable 1 of Appendix D of[[10],
see also[]3].

Equations[(3]6) -{(3/9) are the main physical result of thelgt One may express the complete
IR-divergent part of an amplitude with 5-point functionstémms of those expressions, subtract
it from the complete, divergent amplitude and get a matreaant, which is integrable in four
dimensions.

In the rest of this short write-up we would like to demongrathy we have here besides
the harmonic number§;(n) also those of the kin&;(2n+ 1). As mentioned, the scalar 5-point
function may be written as a sum of eleven MB-integrals afteontinuation, before-expansion.
Two types of them contribute to the IR-part (there are fowhsimtegrals [in an ad-hoc notations
J3,J4,J7,J9], but with a symmetry> <> V). The first one is:

2 +io-5/8 ~ o
J7=——(VZS/\Z) r[—2s]r[1+2s]% // dZ(—t)’Hr[‘s Z]r[ﬁzgz_]rz[z] iz
—i0—5/8
_ _(VZS/\Z)ZS ew;g\/ﬁ r[‘zgr][r?,[/zﬂgﬂs] JF[L 1+ 2¢,3/2+ £,1/4]
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(VZ/S)ZE £VE - n—1 r
— 2 e el [14-2¢] St
SV4 nzl

[€+n|T[2e+n]
[2e +2n]

(3.10)

The J; is proportional to V4. We have a second integral of the same type, being propattton
l/VzZ

Js = J(Va & Vo). (3.11)
The other type of integral,, Jg, with:

Ji = Jo(Va & Vo), (3.12)
are two-fold MB-integrals:

Fliog] e o8 e B
Jo = I'[—[l _‘%g] (2mi)2 / dz / dzo(—9)2(—t)E at2(—\y) 12 2(y,) 22
—i0—5/8  —iw—7/8
x [[-z|lA-1-2z|l -2 -zl [-1-e—z1—z|c[-€+ 27— ][ [-Z)]
F[24 2] Tg[l+26+2] Ml+&—2z+2)]
M[—2z] T[-1-2c—22)] :

(3.13)

The integral looks like being, in the limit; — 0, too singular. This limit is an endpoint of the
phase space integration. Let us close the contour to theWfshift now the integration contour
in z, to the left, raising in this way the (real part of the) power(el,) to a value which makes
the photon phase space integral explicitely integrabig at 0 in d = 3— 2¢ space dimensions. If
singularities of the integrand (from-functions) at some values = zz are crossed one has to add
the corresponding residué§(zg), so getting one-dimensional MB-integrals to be considered

Jo =27y I(za) + 35" (3.14)
7R

The resulting integra.llghift differs from Jg only by the shifted integration path, but will now not
contribute to the IR-singular part and will not be considehere any more. We see that only the
residues of crossed singular pointszincontain the IR-relevant endpoint singularities\is V,.
Here, two of them (at> = —1 [argument of » in (8.13)] and aiz, = —1 — 2¢ [argument of gin
(B.13))) contribute due to a shift fromMz, = —7/8to 0z, = —7/8 — 1 = —15/8. The first of them
is:

(Vo) % I[—2¢]lg[2¢] &%

A= T TE1-2¢ 2n
o 5/8 M[—2e— 2] IM—zi]rel+ z))
1 gl [—2e—all-e—z]l[-z]lc 4
x '/S/Sdzl(—t) ! F—1—2¢ [—2¢ —221)]
_\/,\—2E92€ —2¢12

We performed here an irrelevant shéft— z; 4 € in order to make the argument 6§ independent
of €. This will be here the only -function producing residues i when closing again the contour
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to the left. The explicie-expansion of the hypergeometric function[in (B.15) may limioed with
the Mathematica package HypExd2][{lL, 5]. Alternatively, way perform the sum of residues
arising fromlrc(1+ z) directly:

(—Vz)_zeegyEl'[—Zs]F[Zs] o il [—2e+n[—£+n]

Zt

sV, r-1-2¢ & rM-2e+2n °’
and apply then[(2]4) to it. It is here where we may see why thimbaic numbersS; (2n + 1)
appear, which were not contributing to the vertex or the bblere was nd -function with an
e-shifted, doubled argument in the denominator of the finedsuvhile here this appears. In the
general massive case, this will usually happen.

The second residue crossed by the contour shifting inzihgane gives the third kind of
contribution to be added; after a shift— z; — €:

Joa = — (3.16)

e +ic0—5/8
Jog = M[1—2¢]r [~ 2] a[2¢] 5~ / dz(—t)""*
—i0—5/8
e —z)l[2e — z]M[-z]Mc[1+ z1]
M—1-2¢]l[2e — 27]

_ (Va/9)* F[1— 2¢€]r[—2¢]r[2¢)?

= TWeeWSﬁZZSF[—l—ZS]r[3/2+S] 2F1[1,1+28,3/2+€,t/4]

_ (Va/9)%  T[1—2e]l[—2e]M[2e] & 1T[e+nl[2e+n]

= s ¢ ity & teean (3.17)

Again, this may be expanded into arseries over inverse binomial sums by use[of] (2.4).

Collecting everything together, we rediscovier(3.6) (@dslitional terms of no relevance for
the IR-treatment):

B+ daa+dag+I7+doa+dog = = [I5,(Vo) +1°1(Va)] +15(V2) +15(Va) +---  (3.18)

™| =

4. Conclusions

We gave a pedagogical introduction to the treatment of migatiand virtual IR-singularities.
This kind of problems arises in NNLO problems, where one loasdat the unresolved mass-
less particle phase space for loop integrals. The presenétdod was exemplified for a scalar
integral, but it may be easily applied to general tensor tions. For the QED pentagon, this
is discussed in[J3], which may be considered as an introoludb this presentation. Aeriva-
tion of MB-representations for higherpoint functions or for multi-loop integrals is more or less
straightforward, although aanalytical evaluationwill become more and more troublesome. It
is an interesting open question how useful the MB techniquigght appear for realistic, so far
unsolved applications.
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