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Desy 08-006, ZMP-HH/08-1Stable osmologial models driven by a free quantum salar �eldClaudio Dappiaggi,� Klaus Fredenhagen,y and Niola PinamontizII Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, D-22761 Hamburg, Germany.(Dated: February 4, 2008)In the mathematially rigorous analysis of semilassial Einstein's equations, the renormalisationof the stress-energy tensor plays a ruial role. We address suh a topi in the ase of a salar �eldwith both arbitrary mass and oupling with gravity in the hypothesis that the underlying algebraiquantum state is of Hadamard type. Partiularly, if we fous on highly symmetri solutions of thesemilassial Einstein's equations, the envisaged method displays a de Sitter type behaviour evenwithout an a priori introdued osmologial onstant. As a further novel result we shall show thatthese solutions turn out to be stable.PACS numbers: 04.62.+v, 98.80.Q, 98.80.Jk
I. INTRODUCTIONA landmark in present days observational osmologyhas been set by means of the measurement of the typeIA supernovae red shift whih, as a byprodut, provedthat the Universe is undergoing a phase of aeleratedexpansion. Suh a result, also ombined with the mostreent data olleted in several other experiments, sug-gests that, in order to explain the present state of ourUniverse, we must take into aount the presene of a\dark energy" playing the role of an e�etive osmolog-ial onstant. From a theoretial point of view we stilllak a full-edged satisfatory model for dark energy andsuh a problem was takled in the past in several ways,the most notables being by means either of a yet unob-served lassial salar �eld oupled to gravity [1, 2℄ or ofa modi�ed theory of gravity itself (see [3℄ and referenestherein for a reent review).In the present paper our aim is to onsider the bakre-ation of a massive quantum salar �eld oupled to grav-ity in order to disuss the role played by quantum e�etsin the framework of osmologial models. The interestin bakreation e�ets of quantum �elds in osmology isnot new sine, already in the eighties, Starobinsky [4℄addressed the same topi taking into aount a masslesssalar �eld onformally oupled to gravity (see also [5℄).The endpoint of Starobinsky seminal paper was the on-strution of a graeful exist from a de Sitter phase ofrapid expansion. Using quantum property of the soure�elds he observed that suh a de Sitter spaetime is anunstable solution of the semilassial Einstein's equations(see also [6℄). More reently, in [7℄, Shapiro and Sola alsoonsidered the massive ase in a similar way. They ob-�Eletroni address: laudio.dappiaggi�desy.deyEletroni address: klaus.fredenhagen�desy.dezEletroni address: niola.pinamonti�desy.de

tained as well a smooth exit from an inationary phase.Sine this is a topi partly far away from our goals, weshall onsider anew suh ase, namely we study the semi-lassial Einstein's equationGab = 8�GhTabi!;where the left hand side is the standard Einstein's tensorwhereas the right hand side is the expetation value forthe stress-energy tensor in the state !. It is a well knownproblem that the latter gives origin to divergenes. Heneit is ompulsory to invoke a renormalisation proedureand, within this perspetive, we would like to arry onour analysis along the lines disussed by Wald, using thepoint splitting regularisation.In a series of papers [8, 9℄, Wald sets out �ve axiomsthat need to be satis�ed in order to have a renormalisedstress-energy tensor that an be used in order to havepossible meaningful semilassial solutions of the Ein-stein's equation. Stiking to suh a perspetive we shallshow that, in some physially motivated limits, we an�nd a stable solution to the semilassial Einstein's equa-tion. This leads to a great di�erene from the originalStarobinsky model where, on the opposite, an unstablebehaviour is displayed. To this end, we must bear in mindthe following message already onveyed to us in [10, 11℄:the renormalisation of the stress-energy tensor su�ers ofsome ambiguities enoded in a modi�ation of the ationby the addition of terms depending only on the urva-ture and on the parameters desribing the �elds suhas for example the mass. This arbitrariness is then en-oded in the renormalisation parameters present in frontof this arbitrary terms. In the forthoming disussionwe shall �x the renormalisation parameters requiring aphysially meaningful theory and invoking the prinipleof general loal ovariane [12℄. It will also turn out thatthe original result due to Starobinsky in the ase of on-formal invariant �elds orresponds to another hoie ofthe renormalisation onstants; hene, employing a di�er-ent riterion, the system under analysis displays a ratherphysially di�erent behaviour.For a more mathematially oriented reader a few moreomments are in due ourse. Sine we are interested in
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2solutions of the semilassial Einstein's equation, wherequantum matter ats as a soure for the gravitational�eld, we need to employ a quantisation sheme indepen-dent from the spaetime itself. Suh a oneptual prob-lem was reently addressed in a work due to BrunettiFredenhagen and Verh [12℄. They showed that it is pos-sible to simultaneously quantise on all spaetimes and thequantisation sheme in this framework orresponds to as-sign a funtor between the ategory of spaetimes (Man)and the ategory of loal Algebras Lo generated �elds.Furthermore suh a funtor transforms ovariantly underany loal transformation. Unfortunately, while also �eldstransform ovariantly under isometries, a similar onlu-sion annot be drawn for states. Therefore, sine we areinterested in expetation values of �elds, we are fored toselet a lass of the mentioned states enjoying some suit-able physial properties and in the framework of FRWspaetimes, this naturally leads to selet the lass of theso-alled adiabati states. Starting from these premiseswe are now ready to use, within this abstrat shemeof analysis, quantum matter as a soure for the grav-ity whereas the role of Einstein's equations will seleta partiular set of objets in Man, as a sort of onsis-teny hek. To rephrase, even if we an quantise in allthe spaetimes simultaneously, one a family of states ishosen, only in few of those spaetimes the semilassialEinstein's equations hold true.After �xing some notation, in the next setion we shallreall briey the renormalisation proedure we shall em-ploy. In the third setion we shall perform a suitablehoie for the quantum state and, then we will disussthe assoiated solutions of the semilassial Einstein'sequations. In the fourth setion we shall justify this hy-potheses by means of physial motivations. Finally someonlusion are drawn in the last setion.A. Einstein's equation and osmologialbakgroundsTo set notations and onventions, let us larify thatour aim is to onsider spaetimes whose metri is used inthe desription of the Universe. Hene, we stik to thestandard onvention of requiring the Cosmologial Prin-iple to hold true; this straightforwardly leads to the fulllass of Friedmann-Robertson-Walker metris and, par-tiularly, here we shall only onsider those with a spatialat setion. In a Cartesian referene frame the metrireads ds2 = �dt2 + a(t)2Æijdxidxj ; i; j = 1; :::; 3 (1)where a(t) an be interpreted as usual as the expansionfator and it is the only funtion to be determined outof (the semilassial) Einstein's equations. A standardalulation shows that these an be redued to an identityat a level of traes i.e.�R = 8�hT i!; (2)

together with the onservation law for the stress-energytensor, namely rahTabi! = 0: (3)As already remarked in the introdution, hT i! standsfor the expetation value of the stress-energy tensor. Weshall deal with this issue more in detail in the forthomingdisussion. As a last remark we wish to reall that (2)and (3) are atually not equivalent to a single but onlyto a set of Einstein's equations whih di�er only by aonserved traeless tensor T 0ab; suh arbitrariness is �xedupon imposing suitable initial onditions.II. MASSIVE SCALAR FIELD.As we already emphasised in the introdution, we shallemploy a real salar �eld � as the prototype to disussthe quantum behaviour of lassial matter on a FRWbakground (1). Therefore the lassial dynami of oursystem is governed byP� = 0; P := ��+ �R+m2; (4)where � 2 R, R is the salar urvature whereas m isthe mass of the �eld. Bearing in mind that, unlessstated otherwise, our onvention for the metri signa-ture is (�;+;+;+), (1) entails the following identityR = 6� �aa + _a2a2 � where eah dot stands for derivationwith respet to t. In the next we shall indiate H = _a=a.Setting � = 16 orresponds to the so-alled onformal ou-pling.A. Quantisation proedure: States and HadamardonditionIn this paragraph we shall start dealing with the quan-tum behaviour of the solutions of (4) and, to this avail,we shall stik to the realm of the algebrai formulationof quantum �eld theory. Sine a detailed analysis of themain ingredients and results would require a review onits own just for the massive salar �eld, we shall pointan interested reader to [13, 14℄. Therefore, to ut along story short, let us state that, to our purposes, itsuÆes to remember, that being the FRW spaetime,globally hyperboli, it exists a standard proedure toassign a ��algebra, say W , out of (4) [13, 14℄. After-wards we need to add a further ingredient, namely a state! : W ! C , whih is the key tool out of whih we analulate the relevant objets i.e. expetation values ofthe �elds on that state, more ommonly referred to asn�point funtions whih we shall denote from now on as!n = h�(x1) : : : �(xn)i. From a formal perspetive theseobjets must be thought as distributions in D0(Mn) andthe singular struture, proper in general of distributions,arises whenever we perform in !n a oinidene limit.



3Therefore, in order either to formulate a mathemati-ally meaningful �eld theory either to onstrut a theorywhih allows us to perform alulations going beyond thepure formal level, the seletion of a suitable lass of statesis one of the main, if not the most important, task. Tothis avail, we shall impose some reasonable onstraintsand the �rst requires us to restrit the attention to theso-alled quasi-free states. These are haraterised by thefollowing property: all the odd n�points funtions van-ish while all the even an be reonstruted out of sumsof produts of the two-points funtion. In other wordsquasi free states are fully determined one !2(x; y) isknown. In the forthoming setions we shall display howthe above requirement is relevant to our disussion. Inpartiular we shall show that also the stress-energy ten-sor an be fully determined only out of !2 and this isthe key non-geometrial ingredient in the semi-lassialEinstein's equation.Nonetheless \quasi-free" is not a suÆient requirementfor our ! to satisfy and, partiularly, a seond and mostimportant hypothesis must be imposed, namely the stateshall be Hadamard. On a pratial ground, from suh aondition we an infer that the singular struture for thetwo-points funtion is �xed as!2(x; y) = 18�2 �u(x; y)�(x; y) + v log�(x; y) + w(x; y)� ;(5)where � is half of the square of the geodesi distane inthe FRW bakground. The funtions u; v and w, alsoknown as Hadamard oeÆients, are smooth and u, van be uniquely determined one the equation of motionand the metri of the underlying bakground are �xed.In the above expression it turns out u is the square rootof the so-alled van Vleek-Morette determinant whihdepends only on gab, i.e. u an be reonstruted onlyout of the geometri properties of the manifold on whihour �elds live. On the opposite, w is the ontributionto the Hadamard funtion whih depends upon the statewe have seleted. Therefore all the information of thesingular part in (5) is enoded inH(x; y) = 18�2 �u(x; y)�(x; y) + v(x; y) log �(x; y)� ;whih has a universal struture in every Hadamard state.Hene this is the ontribution that we an subtrat fromthe two-points funtion in order to get a smooth be-haviour; in other words this amounts to regularise thestate. As a notational onvention, from now on, we shallrefer to v(x; x) by means of the symbol [v℄. Furthermorev(x; y) admits an asymptoti expansion in powers of thegeodesi distane: v(x; y) = 1Pn=0 vn(x; y)�n(x; y). In theforthoming disussion the oeÆient v1 will play a dis-tinguished role.

B. Stress-energy tensorThe stress-energy tensor for a quantum real salar �eld� with massm and oupling to urvature � an be writtenasTab := �a��b�� 16gab �����+m2�2�� �ra�b�2++��Rab � R6 gab��2 +�� � 16� gab��2:Sine the key ingredient to our analysis is the trae andthe onservation equation for Tab, let us swith from theprevious formula toT = �3�16 � ����2 �m2�2; raT ab = 0:We stress to the reader that, here, we employ a non-standard form for Tab, i.e. it di�ers from the more famil-iar one by a term proportional to 13 ((P�)� + �(P�)) gab[15℄. At a lassial level this ontribution vanishes sine,on shell, P� = 0, but nonetheless it represents an im-portant feature in a full-edged analysis of the under-lying quantum theory, sine, in this ase, it is di�erentfrom zero. Furthermore, enompassing suh a term inthe stress-energy tensor, automatially aounts for thetrae anomaly whih, on the opposite, was usually addedby hand. As shown in [9, 10, 11, 15, 16℄, this automati-ally arises in the quantum theory one the point splittingregularisation is performed. We also exploit the latterin order to regularise the operator Tab in order, subse-quently, to alulate its expetation value on a quasi-freeHadamard state. Suh an expression would be quite um-bersome in the text and also of little avail; therefore aninterested reader an refer to the appendix A.1 for moredetails.Notie that the envisaged onservation equation forthe quantum stress-energy tensor, namelyrahT abi! = 0,holds true due to the following identities8�2h�P�i! = 6[v1℄; 8�2h(ra�)(P�)i! = 2ra[v1℄;where [v1℄ is here expliitly given in the appendix in for-mula (A1). The heritage of suh a onservation law isthe hange of the expetation value for the trae of Tabby means of a purely quantum term:hT i! := ��3�16 � ����m2� [w℄8�2 + 2[v1℄8�2 ;where the dependene upon the state is enoded in theterm [w℄.To onlude, we point out to a potential reader that,due to [v1℄, the above trae is non vanishing also in aonformal �eld theory [9℄.C. Remaining freedom in the de�nition of TabBymeans of point splitting regularisation we have �xedthe expetation value of hT i! in the so-alled minimal



4regularisation presription, namely we have only sub-trated the singular part form the two-points funtion.Nonetheless, as disussed by Wald [9℄, in the renormal-isation presription, there is still a freedom of geomet-ri nature. In detail we an add a tensor tab writtenonly in term of the loal metri and suh that it satis�esratab = 0 without either a�eting the equations of mo-tion for the matter either violating the �rst four axiomsintrodued and disussed in Wald paper. The onser-vation equation for tab is not the unique onstraint wemay wish to impose on suh a tensor and, in partiular,a further natural requirement would be that tab behavesas Tab under sale transformations. In other words thisimplies that tab arises out of the following variationtab = ÆÆgab Z ApgR2 +BpgRabRab;being A and B just arbitrary real numbers. Leavingthe details of the above onstrution and analysis to[9, 10, 11℄, we shall only stress that the trae of tab turnsout to be proportional to �R independently from thehoie of A and B. This is an unavoidable arbitrarinessin the employed sheme and, as a byprodut, it leads usto think of A and B as renormalisation onstants on theirown. We are now able to ompute the trae of the wholequantum modi�ed stress-energy tensor:hT i! := ��3�16 � ����m2� h�2i!8�2 + 2[v1℄8�2 + �R;where  is a linear ombination of A and B and it rep-resents the freedom in the renormalisation proedure weexploited. Eventually,  will be hosen in order for thetrae to satisfy the requirement oming out of the �fthWald's axiom (still see [9℄); in other words there mustbe no derivatives of the metri with degree higher than2 in the expetation values of Tab. The remaining renor-malisation ambiguity is enoded in the expetation valueof the �led h�2i!; we shall ome bak later to this point�xing the ambiguity by physial motivation.We stress that a similar observation brought interestin the so-alled modi�ed theory of gravity also knownas f(R) gravity. Nonetheless the view we wish to pushhome is the following: adding tab does not ome from amodi�ed gravitational ation, but it only originates formthe employed renormalisation sheme, i.e. it must be ane�et oming from quantum matter. Naturally this doesnot exlude that suh a perspetive annot provide hintson how a andidate theory of quantum gravity interatswith quantum matter. As a �nal omment we would liketo stress that the above is the subtlest point in the wholeonstrution. We used an expression for the stress-energytensor whih is suitable in order to deal with semilassialEinstein's equation. Nonetheless suh a modi�ation isnot arti�ial, orresponding as a matter of fats just toa spei� hoie of the renormalisation onstants arisingout of the employed sheme.

III. EVOLUTION EQUATION OF THE MODELIn the ase of onformal oupling � = 1=6, equation(2), written in terms of H = _a=a, beomes�6� _H + 2H2� = �8�Gm2h�2i!++G� �� 130 � _HH2 +H4�+ m44 � : (6)The aim of this setion is to analyse in detail the pos-sible solutions of (6) under some spei� hypotheses onthe expetation value for h�2i!. Partiularly we shallshow that a de Sitter spae with a spei� urvature willappear as a stable solution.A. Conformal invariant ase: stability of de SitterphaseAs a starting point we shall deal with the senario inwhih m = 0, already enompassed in Starobinsky paper[4℄ (see also [5℄). As remarked above, there is no need toselet a spei� state and an ordinary di�erential equa-tion rules the evolution of H . Hene, setting m = 0 in(6), we end up with_H �H2 �H20� = �H4 + 2H20H2: (7)Here H20 = 180�G depends on the Newton onstant and ithas an order of magnitude of 24 times the inverse Planktime. Let us notie that, out of the right hand side of (7),we an extrat two ritial points; therefore (7) admitstwo onstant solutions, namely H(t) = 0 and H(t) =H+ = p2H0 orresponding respetively to a Minkowskispaetime and to a de Sitter one. Suppose now to assignan initial ondition at a �xed time t0 suh that H(t0) 6=0 and H(t0) 6= H+; we are interested to realize if thesolution interpolating suh an initial ondition ows atlarge times either to 0 or to H+ i.e., in order words,whether these two ritial points are stable or not. Tobring suh task to a good end, we simply need to notiethat (7) is integrable as:Ke4t = e2=H ����H +H+H �H+ ����1=H+ ; (8)where K stands for the integration onstant to be �xedout of the initial ondition H0. Depending on suh lastvalue, all the solutions H(t) ow either to 0 or to H+.Hene both ritial points turn out to be stable. This re-sult is di�erent from the lassial outome of the analysisdue to Starobinsky [4℄ (see also Vilenkin and Ford [5, 6℄).The prie to pay, in order to ahieve suh a result, is ahoie by hand of a renormalisation onstant. It turnsout to be an addition of a tensor written only in terms ofthe metri and suh operation introdues in the theorya sale-length, as already disussed by Wald in [9℄. We



5have to stress that, on the dark side, the above de Sit-ter solution annot desribe the present days form of theuniverse being H+ ' 6:4 � 1044s�1 i.e. many orders ofmagnitude bigger then the present measured Hubble on-stant (2:6�0:2)�10�18s�1. On the bright side, instead,we have shown that, enompassing the full quantum ef-fets, we are lead to �nd a stable de Sitter solution evenif no osmologial onstant is present in the equations.B. Massive ase with � = 1=6: stability of the deSitter phase, e�etive osmologial onstantIn this setion we swith from the massless to the mas-sive ase. The most important di�erene is the follow-ing: the righthand side of (6) depends expliitly uponthe state via the expetation value of �2. The expe-tation value of h�2i! on a general Hadamard state ! is[w℄8�2 +�m2+�R, where � and � are renormalisation on-stants enoding the ambiguities still present in the proe-dure. We assume for the moment the existene of a set ofHadamard states e!, one for eah spaetime whose metriis of the form (1) being H = _a=a and h�2ie! = �m2+�R.We shall see later that this assumption turns out to bean approximation of the expetation values of the �eldsomputed on the adiabati states of FRW in the limitwhere m2 >> R and m >> H . Moreover, by the prini-ple of general loal ovariane [10, 11, 12℄, we are entitledto �x the renormalisation onstants one and in the sameway for every spaetime we are onsidering. Then the ex-petation value of h�2ie! on the states we are onsideringtakes the following values:h�2ie! = �m2 + �R; (9)on all the onsidered FRW spaetimes. Therefore, takinginto aount these remarks, (6) takes the following form:_H �H2 �H20� = �H4 + 2H20H2 +M; (10)where H0 and M are the following two onstants withthe following valuesH20 = 180�G � 8�2180m2�; M = 152 m4 � 240�2m4�:As in the previous setion, the right hand side of (10)displays at most two ritial points amounting toH2� = H20 �qH40 +M; (11)both orresponding either to a de Sitter phase or to aMinkowski phase. A straightforward analysis shows thatboth H(t) = H� appear to be stable sine all the so-lutions ow to either one of the two �xed points. It isremarkable that the existene and the stability behaviourof the latter is left unhanged whether the right hand sideof (9) is modi�ed adding a term suh as Aa��(t), being� 2 R and A a onstant of suitable dimension. It is

also interesting to notie that a formula similar to (11)already appeared in [17℄ although, in the ited paper, alassial osmologial onstant has been introdued fromthe beginning. At this stage our simple model dependson three parameters �; �;m. A minimal and, to a ertainextent, ompulsory hoie is to require Minkowski as asolution of our system. This amounts to �x � = (32�2)�1whih, on the other hand, entails M = 0. The form ofthe solution is then equal to that of the massless ase (8),where one of the �xed points orresponds to a Minkowskispae - H(t) = 0 -, while the other �xed point H(t) = H+orresponds to de Sitter. With respet to the masslessonformal fator, here we an �ne-tune the parameters �and m in suh a way for H+ to be small enough in orderto aount for the present measured value of the Hubbleonstant. Hene, heuristially speaking, our system be-haves as if an e�etive osmologial onstant enters thefray without even being present at the beginning and thisis a strit onsequene of enompassing the full quantumproperties of the �eld. As a further remark we wouldlike to notie that (8) displays, for a large lass of initialonditions, an early time phase of rapid expansion whihis a prerequisite feature of modern models for studyingthe early stages of evolution of the Universe. This isin sharp ontrast with the anonial paradigm aordingto whih quantum e�ets should aount only for smallutuations with respet to the lassial behaviour. Onthe opposite, even in the most simple example of a mas-sive salar �eld and with the most simple assumptions,our system displays a behaviour whih drastially di�ersfrom the one we ould a priori expet only from a las-sial analysis. Hene this suggests that, when dealingwith salar �elds on a FRW bakground, one should al-ways perform a full-edged analysis of the semilassialbehaviour of the system sine the quantum ontributionsappear to be hardly negligible as one an also infer from�gure 1.As a �nal omment we would like to stress that, in aneighbourhood of H = H+, the found solution (8) looksrather similar to the one of a lassial at universe withosmologial onstant �lled with radiation. As a matterof fat, in that ase H(t) = A tanh(2(t � t0)A) where Ais a onstant related to the osmologial onstant, and itan be inverted asKe4t = ����H +AH �A ����1=A ;whih looks very similar to (8) whenH � A andH+ = A;this orresponds to the dashed line in �gure 1. The quan-tum e�ets are not important only around H = 0 where(8) looks like H(t) in a at universe �lled only with radi-ation, namely the dotted line in the �gure 1. Eventuallywe would like to stress that onsidering the upper brunhof the solution, in the past, it displays the behaviour ofa lassial at universe with a kind of matter suh that� = A a(t)�2. Even in this regime quantum e�ets arenot negligible. As a further remarkable onsequene ofthe analyti form of H(t), it turns out that the singular-
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FIG. 1: Here the dashed line orresponds to the behaviour ofHH+ as a funtion of time t (normalised with respet to 1=H+)in a FRW universe with a non vanishing osmologial onstantand �lled with radiation, while the dotted line stands for thelone lassial ontribution oming from radiation. Converselythe ontinuous line depits the outome of our model wherequantum e�ets are also taken into aount.ity at t = t0 oinides with null past in�nity in the atspaetime onformally related to (1); hene it desendsthat the partile horizon is not present. Therefore anypair of points in the underlying bakground was asuallyrelated in the past, and, thus, as a byprodut, suh prop-erty of our model ould provide a solution to the problemof homogeneity.IV. EXPECTATION VALUE OF �2 ON THEADIABATIC VACUUMIn the preeding setion we have seen that, assuminga suitable form of h�2i, two stable de Sitter phases anarise as solutions of the semilassial Einstein's equation.We would like to give a justi�ation for our assumption,namely we shall show that there is a regime in whih itis is valid. Here we restrit our attention to the ase ofa massive salar �eld with a onformal oupling to themetri. The �rst observation is that, if we selet theBunh-Davies state !B [18℄ on a de Sitter spaetime andif we ompute the renormalised version of the expetationvalue of �2, we obtain a onstant that depends only onthe mass m and on H . With this observation we animmediately onlude that the two �xed points H(t) =H+ and H(t) = H� disussed above are really exatsolutions of the semilassial Einstein's equation. In thenext we shall selet a lass of states that, in the limit ofa large mass, shows an expetation value for h�2i! thatis of the type �m2 + �R.A. Adiabati states and large mass expansionWe would like to selet here the lass of adiabatistates, i.e. those introdued by Parker [19℄ in order to

minimise partile reation (see also [20℄ for a derivationof the expetation values of the stress tensor). Muhwork has been done also reently in order to make thede�nition of these states preise [21, 22, 23℄. In orderto write the two-points funtion of these states we followthe onstrution as in Parker [19℄. In the ase of onfor-mal oupling it is onvenient to use the onformal time� de�ned as � � �0 = R tt0 dt0a(t) . Therefore the two-pointsfuntion of suh kind of states is!(x1; x2) = 18�3 1a(�1)a(�2) Z d3k	k(�1)	k(�2)eik�(x1�x2);above xi ki are four vetors and xi are three vetorswhereas jkj stands for the length of the spatial vetork. The funtions 	k(�) are solutions of a di�erentialequation with a suitable normalisation ondition:� d2d�2 + k2 +m2a(�)2�	k(�) = 0;	k(�) dd� 	k(�)�	k(�) dd� 	k(�) = i:Eah 	k(�) an alternatively be written in the followingway: 	k(�) = 1p2
k(�)ei R ��0 
k(�):In the adiabati approximation 
k(�) is a funtion on-struted reursively in the following way:
(0)k 2(�) = k2 +m2a(�)2;and
(n+1)k 2(�) = k2+m2a(�)2+34  
(n)k 0(�)
(n)k (�) !2�12 
(n)k 00(�)
(n)k (�) ;(12)where the prime stands for the derivation with respetto � . The n-th order approximation onsists then in thesubstitution of 
k with 
(n)k in 	k(�) and we shall indi-ate with !(n)2 the ounterpart for the two-points fun-tion of the state. Nonetheless one should bear in mindthat this reursive proedure does not have nie onver-gene properties though, thanks to the work of Junkerand Shrohe [22℄, we know that the state onstrutedin this way is an adiabati state in the sense that !(n)2have a ertain Sobolev wavefront set. Hene, if n is largeenough, we an use the approximated state in order tobuild the stress-energy tensor or the expetation valueof �2. In partiular, we an ompute the approximatedexpetation value h�2i(n) = limx!y(!(n)2 (x; y) � H(x; y)),whih, more expliitly, beomesh�2i(n) = 14�2 a(�)2 Z 10 dk k2 1
(n)k (�) � 1
(0)k (�)!++�0R+ �0m2:



7Above �0 and �0 need to be interpreted as renormalisationonstants. An exat omputation of this integral an bevery diÆult to perform, hene we will show only howto ompute an expetation value in the limit of a largemass, namely, assuming that H(t) is a smooth funtionand m2 >> R. In this ase, if furthermore n � 2, it ispossible to expand the integral in powers of 1=m2, as:h�2i(n) = �m2 + �R+O� 1m2� ;where � and � are slightly di�erent from the one writtenbefore. In the large mass limit we shall simply onsiderh�2i(n) = �m2 + �R. The result should be read as aon�rmation for the approximation we have done in thepreeding setion.V. INTERPRETATION OF THE RESULTS ANDFINAL COMMENTSIn the present paper we have shown that, when dealingwith osmologial models, quantum e�ets are not negli-gible even when we onsider basi models. As a matter offats, our analysis displays that, from a areful analysis ofthe expetation values of the renormalised stress-energytensor, it arises an e�etive osmologial onstant whihan be interpreted as dark energy.Suh a feature is manifest if we take into aounta massive salar �eld propagating in a urved bak-ground, although we envisage that similar e�ets wouldbe present if we onsider other kinds of �elds. Further-more we have seen that a de Sitter solution appears as astable �xed point of the semilassial Einstein's equationand, to a ertain extent, also a phase of rapid expansionan be foreseen in the model. We also believe that, sinethe found results, and partiularly the stability of thede Sitter solution, are based upon a modi�ation of thepoint splitting proedure by a pure gravitational term,this ould be read as an hint for future study of quan-tum gravitational models interating with matter. Tothis avail it also seems interesting to pinpoint that, evenonsidering the one-loop orretions to the ation of anf(R) theory, one is lead to a stable of de Sitter solution[24, 25℄. Furthermore, also in this last ase, stability is ajoint e�et of quantum theory and lassial gravity andthis is a behaviour whih a lone f(R) = R2 term doesnot display. Aknowledgements.The work of C.D. is supported by the von HumboldtFoundation and that of N.P. has been supported by theGerman DFG Researh Program SFB 676. We would liketo thank R. Brunetti, S. Hollands, V. Moretti and R. M.Wald for useful disussions. We are also grateful to I. L.

Shapiro and A. A. Starobinsky for useful omments andremarks.APPENDIX A: POINT SPLITTINGREGULARISATION OF THE STRESS-ENERGYTENSORLet !2 be the two-points funtion of a quasi freeHadamard state. The expetation value of the stress-energy tensor regularised by means of the point splittingproedure is:hTabi!(z) := lim(y;x)!(z;z)��a�0b � 16gab �gd�d�0 +m2� +�2� (ra�b + �a�0b) + ��Rab(z)� R(z)6 gab�++(� � 16)gab(2r� + 2gd(z)�d�0)�12 (!2(y; x)�H(y; x) + !2(x; y)�H(x; y)) :where the prime stands for a derivative in y whereas theone without prime is a derivative with respet to x. Areader should notie that, in the last part of the equa-tion, there is a symmetrisation done at the level of two-points funtion and that H(x; y) is the singular part ofthe Hadamard series.1. [v1℄ oeÆient in the osmologial aseSine it is a relevant datum in our proedure, we pro-vide the expliit expression for 2[v1℄ = [a2℄=2, being a2the Shwinger-de Witt oeÆient as derived at pag. 194in [16℄ with the hoie of V = �R +m2, (see also [26℄)2[v1℄ = 1360 �CijklCijkl +RijRij � R23 +�R�++14 �16 � ��2R2 + m44 � 12 �16 � ��m2R++ 112 �16 � ���R: (A1)Furthermore, assuming that the metri has the form ofa at FRW universe (1) and writing H = _a=a, [v1℄ takesthe following form2[v1℄ = � 130 � _HH2 +H4�+ 112 �15 � ���R++9�16 � ��2 � _H2 + 4H2 _H + 4H4�+ m44 +�3�16 � ��m2 � _H + 2H2� :
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