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1. Introdu
tionSin
e its beginning, resear
h in supersymmetry (susy) has mainly been 
on
erned with 
on-stru
ting invariant a
tions, and dedu
ing the 
onsequen
es of their �eld equations. However,the �eld equations are only half of the information one needs for a mathemati
ally well-posedproblem; the other half are the boundary 
onditions (BC) one must impose on the �elds. Insusy (and supergravity) one usually assumes that �elds fall o� suÆ
iently fast at (spa
elikeand timelike) in�nity and that boundary terms whi
h arise from partial integration may beomitted. However, if there is a boundary, this assumption is unwarranted, and one must fa
ethe issue of BC. In this arti
le we present a thorough study of BC in models of rigid susywith a timelike boundary.We distinguish between two kinds of BC: those whi
h are needed to keep the a
tioninvariant under rigid susy, and those whi
h arise from the Euler-Lagrange (EL) �eld equations.The �rst set is o�-shell, the se
ond set is on-shell. Our main philosophy is to 
onstru
t bulk-plus-boundary a
tions whi
h are susy by themselves (under half of bulk susy), so no BC areneeded to 
an
el boundary terms in the susy variation of the a
tion. (This approa
h was �rstadvo
ated in [1, 2℄.) We 
all su
h models \susy without BC." We develop an extension ofthe usual tensor 
al
ulus whi
h gives the boundary a
tion whi
h one must add to the bulka
tion to obtain \susy without BC." On
e this boundary a
tion has been 
onstru
ted, one
an study the EL variation of the bulk-plus-boundary a
tion. In the bulk it gives standard�eld equations, but boundary terms arise whi
h 
an only be 
an
eled by imposing BC onsome of the �elds. It follows that the BC one obtains in this way are, to begin with, BC onon-shell �elds. However, on
e a set of su
h BC has been obtained, one 
an also require thatthey hold for o�-shell �elds. For example, in a path integral approa
h where �elds are, of
ourse, o�-shell, we might still impose su
h BC on these o�-shell �elds. We shall �rst studythe various possibilities in the examples 
onsidered below, and 
ome ba
k to more de�nitestatements in the 
on
lusions.As always, one has the option of using the x-spa
e (
omponent) approa
h, or the super-spa
e approa
h. In an earlier arti
le [3℄ we analyzed a parti
ular supergravity model (N = 1supergravity in 2+1 dimensions), and sin
e the superspa
e approa
h for supergravity is rather
ompli
ated, we 
ast that arti
le entirely in x-spa
e. However, the superspa
e approa
h ofrigid susy is mu
h simpler, and thus we shall �rst derive our new results in x-spa
e, but thenre
ast these results into superspa
e.Our program of 
onstru
ting invariant a
tions 
onsists of two parts. First we obtaina
tions with \susy without BC" by adding suitable a
tions on the boundary; these boundarya
tions are not susy by themselves but merely 
omplete the bulk a
tions, and we shall haveto �nd an appropriate superspa
e des
ription for them. Next, for some models it will turnout that we need to 
onstru
t another a
tion on the boundary whi
h is susy by itself; thisa
tion 
an be des
ribed by x-spa
e or superspa
e methods in one dimension less (boundarysuper�elds).Before introdu
ing our extension of the tensor 
al
ulus, it may be helpful to point out{ 2 {



some possible pitfalls. First, the boundary terms one obtains from partially integrating termsin the susy variation of the a
tion are in general di�erent from those in the EL variation ofthe a
tions. Thus even if \susy without BC" holds, one will in general nead EL BC. Se
ond,BC on spa
elike surfa
es (initial 
onditions) have physi
ally a very di�erent meaning from BCon timelike surfa
es (genuine BC, at all times). We 
onsider only the latter, and 
hoose asboundary the hypersurfa
e at x3 = 0. However, from a spa
e-time point of view, one 
an treatthese two sets of BC on equal footing; te
hni
ally this is a
hieved by introdu
ing proje
tionoperators P� = 12 (1 � n�
�) where n� is the normal to the boundary, and de
omposing thesusy parameters into eigenspinors �� of this proje
tion operator. This pro
edure was usedin [4℄, but note that in that arti
le a very di�erent philosophy was used: no \susy withoutBC" was implemented, and the 
onsisten
y of the 
omplete set of susy BC and EL BC wasstudied (the \orbit of BC"). Sin
e (half of) bulk susy is unbroken in our 
ase, and auxiliary�elds are present, the study of the orbit of BC 
an be written as BC on boundary super�elds.Finally, it is of 
ourse true that in varying a
tions on the boundary one may again need topartially integrate, thus obtaining boundary terms on the boundary. We assume that all totalderivatives on the boundary vanish. This is not ne
essary, but it simpli�es the analysis.Let us now introdu
e our extension of the usual tensor 
al
ulus whi
h takes boundariesinto a

ount. As an example, 
onsider the usual F -term formula for an invariant a
tion inthe bulk. De
omposing the integration measure dm+1x into a measure dmx on the boundaryand dx3 away from the boundary, one hasS = ZM dx3dmxF (1.1)Sin
e F varies into a total derivative, ÆF = �
��� , the variation of S is equal to a boundaryterm ÆS = � R dmx(�
3 ). We shall introdu
e a susy parameter �+ satisfying �+
3 = ��+.Then ÆS = R dmx �+ , and sin
e ÆA = � , we �nd a suitable a
tion Sboundary = R dmxAon the boundary, whose �+ variation 
an
els the variation of the bulk a
tion. So, the usualF -term formula is extended to the following \F+A" formula for a bulk-plus-boundary a
tion1S = ZM dx3dmxF � Z�M dmxA (1.2)We will �nd that this extended F -term formula works both in 3 and 4 dimensions. In whatfollows, we will indi
ate other ways in whi
h this formula 
an be derived and will apply it tovarious models of rigid susy in 3 and 4 dimensions.The presen
e of boundary terms may modify EL BC. Consider as an example the a
tionfor the spinning string, whi
h is the same as the 2D Wess-Zumino (WZ) a
tion,SWZ = Z d�dtL; L = ���X��X �  
��� + F 2 (1.3)1In [3℄ we derived the analog of this \F+A" formula in supergravity. There, instead of 
omponents F and A,one needs to use the 
orresponding densities. { 3 {



The susy variation ÆL = ��(��
�
� ��X+�
� F ) leads to a boundary term at � = 0 whi
h
an be 
an
eled (when � = �+) by adding the following boundary a
tion at � = 0,Sb = �Z dthXF +X��Xi (1.4)(The �rst term is the term denoted by \A" in (1.2) while the se
ond term is produ
ed if onerewrites the a
tion X����X as obtained from the tensor 
al
ulus as ���X��X+��(X��X)and uses R d���(X��X) = �X��X.) From the EL variation of SWZ , if one requires that all
oeÆ
ients of varied �elds vanish, one obtains a set of EL BC whi
h is too strong,X = F � ��X =  + =  � = 0 (1.5)As explained below (see se
tion 4.1) for the 3D WZ model, whi
h is very similar to the2D WZ model, one 
an add a separately susy a
tion on the boundary,Sb(extra) = Z dt�XF +X��X � 12  � (1.6)The total string a
tion now be
omesS = SWZ � 12 Z dt  (1.7)and one �nds now the same EL BC for X as before, ÆX��X = 0, while for  one �nds +Æ � = 0. These are the usual Diri
hlet or Neumann 
onditions for X and the Neveu-S
hwarz or Ramond 
onditions for  .2 They are needed to make the EL variation of S vanishon-shell, but they are not needed to make the �+ susy variation of S vanish (o�-shell).The EL variations on the boundary are of the form \pÆq," and one might expe
t thatone might 
hoose either p = 0 or q = 
onst as BC for ea
h �eld (whi
h would give 2N setsof BC where N is the number of q's). However, this is in
orre
t: 
onsisten
y of the EL BCwith susy [6, 7, 5, 4℄ leaves only two families of BC [8, 4℄. These families be
ome shorterwhen auxiliary �elds are properly in
orporated. Then, as we show in se
tion 4.1, ea
h family
orresponds to a BC on a boundary super�eld [1, 9℄. This ni
e result is of 
ourse due to \susywithout BC."We remark that our \susy without BC" approa
h, and the \F +A" formula in parti
ular,
an be applied to a variety of physi
ally interesting models, in
luding those involving stringsand branes, solitons and instantons. Some of the appli
ations were dis
ussed in [3℄.
2For the 2D 
ase, our 
onventions give x3 = � and 
3 = 
�. Taking a parti
ular representation ofgamma matri
es (whi
h we avoid in this paper) one 
an rewrite our two-
omponent spinors  � in terms ofone-
omponent spinors  � and re
over the usual form of the NS and R 
onditions,  + = � � (see e.g. [5℄).{ 4 {



2. Extended tensor 
al
ulusIn this se
tion, we present extensions of the standard F - and D-term formulae for the 3D and4D 
ases.3 In both dimensions, we use Cartesian 
oordinates x� to des
ribe the bulkM andassume that the boundary �M is at x3 = 0 and is parametrized by xm. In M, x3 > 0. Inthe presen
e of the boundary, half of susy is (spontaneously) broken. We 
hoose to preservethe half parametrized by �+ = P+�, where P� = 12(1�
3). Then 
3�+ = �+ but �+
3 = ��+.2.1 3D extended F -term formulaConsider the 3D N = 1 s
alar multiplet �3 = (A; ; F ),ÆA = � ; Æ = 
����A+ F�; ÆF = �
��� (2.1)The standard F -term formula gives a bulk a
tion RM d3xF that is not susy in the presen
eof the boundary. Its susy variation gives rise to a boundary term � R�M d2x(�
3 ). Ourextended F -term formula, S = ZM d3xF � Z�M d2xA (2.2)gives a bulk-plus-boundary a
tion that is invariant under �+ susy. Indeed, ÆF = ��(�
� )yields a boundary term��+
3 = �+ under the �+ susy. Clearly, the 
orresponding variationof A on the boundary, ÆA = �+ , 
an
els the 
ontribution from the bulk.Another 3D N = 1 multiplet, whi
h in
ludes a 3D ve
tor v�, is the spinor multiplet	3 = (�;M; v�; �) with the following susy transformation rules,Æ� =M�+ 
��v�; ÆM = �12��+ �
����Æv� = �12�
��+ ����; Æ� = 2
�����v� (2.3)The highest 
omponent, �, transforms into a total derivative but, as � is a fermion, we 
annotuse a \�-term formula" for 
onstru
ting susy a
tions.2.2 4D extended F - and D-term formulaeFor the 4D N = 1 s
alar (
hiral) multiplet �4 = (A;B; ; F;G),ÆA = � ; ÆB = �i�
5 Æ = 
���(A� i
5B)�+ (F + i
5G)�ÆF = �
��� ; ÆG = i�
5
��� (2.4)the extended F -term formula isS = ZM d4xF � Z�M d3xA (2.5)3Our spinors are Majorana spinors, so  �  yi
0 is equal to  =  TC where C
�C�1 = �(
�)T andCT = �C. Furthermore, 
�
� = ��� + 
�� with ��� = (�1;+1; : : : ;+1) and in d = 4 we use 
5 with 
25 = 1.{ 5 {



Alternatively, one 
an use the extended G-term formula,S = ZM d4xG� Z�M d3xB (2.6)In both 
ases, we �nd a bulk-plus-boundary a
tion that is invariant under �+ susy.For the 4D N = 1 ve
tor multiplet V4 = (C;�;H;K; v� ; �;D),ÆC = i�
5�; Æ� = (i
5H �K � 
�v� + i
�
5��C)�ÆH = i�
5
����+ i�
5�; ÆK = ��
����� ��Æv� = ������ �
��; Æ� = 
�����v� + i
5D�; ÆD = i�
5
���� (2.7)the highest 
omponent, D, transforms into a total derivative and the standardD-term formulagives a bulk a
tion S = RM d4xD. This a
tion is not susy in the presen
e of the boundary.Our extended D-term formula isS = ZM d4xD + Z�M d3x(H � �3C) (2.8)and it gives bulk-plus-boundary a
tions that are invariant under �+ susy. (Here and hereafterwe assume that total tangential �m derivatives integrated over the boundary vanish.)The extended D-term formula 
an be derived from the extended F -term formula. Indeed,given a ve
tor multiplet V4, we 
an 
onstru
t the following s
alar multiplet,�4[V4℄ = (�H; K; �i
5(�+ 
����); D + ����C; ���v�) (2.9)Applying (2.5) to this multiplet, we re
over (2.8). Clearly, the F -term formula 
overs all
ases, and is also simpler.

{ 6 {



3. Appli
ationsThe extended F - and D-term formulae of the previous se
tion 
an be applied to a variety of
omposite multiplets. This allows straightforward 
onstru
tion of susy bulk-plus-boundarya
tions that are minimal extensions of known (bulk) a
tions. In this se
tion, we will 
onsiderseveral examples of this pro
edure. Generi
ally, terms linear in the (bulk) auxiliary �eldsappear in the boundary a
tions. We will �nd that in some, but not all, 
ases these terms 
anbe eliminated by adding separately susy boundary a
tions. It will follow that, generi
ally,\susy without BC" requires the presen
e of auxiliary �elds.3.1 3D Wess-Zumino modelGiven a 3D s
alar multiplet �3(A) = (A; ; F ), we 
an 
onstru
t a \kineti
" s
alar multipletwhose lowest 
omponent is F ,T (�3) � �3(F ) = (F; 
��� ; ����A) (3.1)The produ
t of �3(A) and �3(F ) gives another 3D s
alar multiplet,�3(AF ) = (AF; F +A
��� ; F 2 +A����A�  
��� ) (3.2)Applying our extended F -term formula (2.2) to this multiplet, we �nd the following bulk-plus-boundary a
tion,S = ZM d3x(F 2 � ��A��A�  
��� )� Z�M d2x(AF +A�3A) (3.3)where we partially integrated to arrive at the standard form for the bulk a
tion. This is the3D Wess-Zumino (WZ) model supplemented by a parti
ular boundary term. The bulk-plus-boundary a
tion is, by 
onstru
tion, invariant under �+ susy, as 
an be expli
itly veri�ed.We observe that the bulk auxiliary �eld F appears linearly on the boundary. Therefore,eliminating F via its �eld equation would require imposing a boundary 
ondition A = 0.The a
tion without auxiliary �elds would then ne
essarily be \susy with BC." To be ableto eliminate F while preserving \susy without BC," we will now look for a separately susyboundary a
tion that 
an
els the term linear in F .Separately susy boundary a
tions 
an be 
onstru
ted systemati
ally using 
o-dimensionone multiplets. To this extent, we split the 3D N = 1 multiplet �3 into two 2D N = (1; 0)multiplets under the �+ susy. (The third 
oordinate, x3, will appear in the 2D multiplets asa parameter.) De�ning  � = P� , we �ndÆA = �+ �; Æ � = 
m�+�mAÆ + = (F + �3A)�+; Æ(F + �3A) = �+
m�m + (3.4){ 7 {



so that we �nd a s
alar and a spinor 2D N = (1; 0) multiplet,4�2 = (A;  �); 	2 = ( +; F + �3A) (3.5)Their produ
t is another spinor multiplet,�2 �	2 = (A +; A(F + �3A)�  + �) (3.6)whose highest 
omponent transforms into a total �m derivative. Therefore, the followinga
tion Z�M d2x(AF +A�3A�  + �) (3.7)is invariant under �+ susy. Adding it to (3.3), the �rst two terms 
an
el, and we obtainS = ZM d3x(F 2 � ��A��A�  
��� )� Z�M d2x12  (3.8)where we used   = 2 + �. Setting F = 0 in the a
tion and susy transformations, we arriveat the 3D WZ model without auxiliary �elds that is still \susy without BC."3.2 4D Wess-Zumino modelThe 4D WZ model will turn out to be more subtle. We start again with the s
alar multiplet�4 = (A;B; ; F;G) and 
onstru
t the kineti
 multiplet,T (�4) = (F; �G; 
��� ; �A; ��B) (3.9)where � = ����. Their produ
t gives the following s
alar multiplet�4 � T (�4) = (AF +BG; �AG+BF; (A+ i
5B)
��� + (F � i
5G) ;A�A+B�B + F 2 +G2 �  
��� ; �A�B +B�A+ i 
5
��� ) (3.10)Applying our extended F -term formula (2.5) to this multiplet, we �nd, after some partialintegration, the following a
tionS = ZM d4xh� ��A��A� ��B��B �  
��� + F 2 +G2i�Z�M d3xhA(F + �3A) +B(G+ �3B)i (3.11)This a
tion is invariant under �+ susy by 
onstru
tion. As in the 3D 
ase, we �nd termslinear in the bulk auxiliary �elds, F and G, in the boundary a
tion. However, unlike the 3D4The highest 
omponent of 	2, F + �3A, transforms into a total �m derivative under �+ susy. Integratingthis 
omponent over the 3D manifold M with boundary �M gives our \F + A" formula (2.2). The four-dimensional extended F - and D-term formulae 
an also be derived in su
h a way using 
o-dimension onemultiplets. { 8 {




ase, we will �nd that one 
annot eliminate both terms by adding a separately susy boundarya
tion.To 
onstru
t separately susy boundary a
tions, we split the 4D N = 1 s
alar multiplet �4into two 3D N = 1 s
alar multiplets under �+ susy. (The fourth 
oordinate, x3, will appearin the 3D multiplets as a parameter.) De�ning  � = P� , we �ndÆA = �+ �; Æ � = 
m�+�mA+ i
5(G+ �3B)�+; Æ(G + �3B) = i�+
5
m�m �ÆB = �i�+
5 +; Æ + = i
5
m�+�mB + (F + �3A)�+; Æ(F + �3A) = �+
m�m +so that the two 3D multiplets 
ontained in �4 are5�A = (A;  �; G+ �3B); �B = (B; �i
5 +; �F � �3A) (3.12)Their produ
t yields another 3D s
alar multiplet�A � �B = �AB; �i
5A + +B �; �A(F + �3A) +B(G+ �3B) +  + �� (3.13)The highest 
omponent of this multiplet 
an be used to 
onstru
t the following separatelysusy boundary a
tions,� Z�M d3xh�A(F + �3A) +B(G+ �3B) + 12  i (3.14)where we used   = 2 + �. We observe that adding this a
tion to (3.11) with � = �1 or� = +1, we 
an 
an
el either the term linear in F or the term linear in G, but not both.Therefore, eliminating auxiliary �elds in the 4D WZ model 
annot be done while maintainingthe \susy without BC" property (as a boundary 
ondition A = 0 or B = 0 arises in thepro
ess). Turning this around, we see that generi
ally auxiliary �elds are required for \susywithout BC."3.3 3D Maxwell modelFor the 3D N = 1 spinor multiplet 	3 = (�;M; v�; �), in (2.3), the kineti
 multiplet T (	3)is a spinor multiplet whose lowest 
omponent is �,T (	3) � 	3(�) = (�; 0; �����F ��; 2
����) (3.15)where F�� = ��v� � ��v� and 
��� = ����� (then �
����� = 
��). We will take �013 = +1so that 
0
3 = 
1 = 
1; 
1
3 = 
0 = �
0 (3.16)The produ
t of T (	3) with itself gives the following 3D N = 1 s
alar multiplet,T (	3)� T (	3) = (��; �2
���F�� ; 4F��F �� + 2�
����) (3.17)5We keep here the 4D gamma matri
es to des
ribe 3D multiplets. This des
ription avoids expli
it de
om-position of the gamma matri
es at the pri
e of an unusual de�nition of susy transformations.{ 9 {



Applying our \F +A" formula (2.2) to this multiplet, we obtainS = ZM d3xh4F��F �� + 2�
����i� Z�M d2x(��) (3.18)This a
tion is invariant under �+ susy and 
ontains the usual susy Maxwell a
tion in the bulk(up to an overall normalization 
onstant).6 As there is no auxiliary �eld in this a
tion, thereis no parti
ular reason to add a separately susy boundary a
tion.3.4 4D Maxwell modelThe Maxwell a
tion for the 4D N = 1 ve
tor multiplet V4 = (C;�;H;K; v� ; �;D) 
an bewritten using the F -term formula applied to the following 
omposite s
alar multiplet,�4 = (A
; B
;  
; F
; G
) (3.19)= (��; �i
5�; �
��F���+ 2i
5�D; F��F �� + 2�
����� 2D2; 12�����F��F��)Our extended F -term formula (2.5) applied to this multiplet gives (up to our fa
tor �1=2)S = ZM d4xh� 12F��F �� � �
����+D2i+ Z�M d3x12�� (3.20)This bulk-plus-boundary a
tion is \susy without BC" by 
onstru
tion. The auxiliary �eldD appears only in the bulk and we 
an eliminate it by its �eld equation (set D = 0) whilepreserving the \susy without BC" property. Adding a separately susy boundary a
tion inthis 
ase is, therefore, not required.It is instru
tive, however, to dis
uss an alternative derivation of the same a
tion. Asin the 3D 
ase, we 
an �rst 
onstru
t the kineti
 multiplet T (V4), a 
omposite 4D ve
tormultiplet whose lowest 
omponent is D,T (V4) = (D; 
����; 0; 0; ���F�� ; ������; �����D) (3.21)Unlike the 3D 
ase, however, the 4D Maxwell a
tion arises not from T (V4) � T (V4), butfrom V4 � T (V4). The latter is a 
omposite 4D ve
tor multiplet whose lowest 
omponent iseC = CD. Among other 
omponents of eV4 = V4 � T (V4) we �nd, in parti
ular,eH = HD � 12�
����eD = D2 � 12F��F �� � �
����+ ��h� C��D + 12�
�
����+ F ��v�i (3.22)Our extended D-term formula (2.8) applied to eV4 giveseS = ZM d4xh� 12F��F �� � �
����+D2i�Z�M d3xhvmF3m �D(H � �3C)� �+
����i (3.23)6One would have to de�ne �new = �=2 to get 
anoni
al kineti
 terms for v� and �new at the same time.Our 
hoi
e of � in 3D followed from a natural parametrization of the 
orresponding super�eld ��, see (5.1).In 4D, our � is 
anoni
ally de�ned. { 10 {



This bulk-plus-boundary a
tion is \susy without BC" by 
onstru
tion. We see, however, thatthe boundary a
tion 
ontains now a term linear in the auxiliary �eld D. Again, we would liketo �nd a separately susy boundary a
tion whi
h, upon adding it to eS, would 
an
el this term.A systemati
 sear
h for su
h an a
tion would require de
omposing V4 into 
o-dimension one(3D) multiplets and then using tensor 
al
ulus to 
onstru
t a 3D s
alar multiplet whose F
omponent 
ontains the D(H��3C) 
ombination. Instead of following this tedious pro
edure,we simply dedu
e the answer by noting that sin
e both S and eS, in (3.20) and (3.23), are\susy without BC," so is their di�eren
e,S � eS = Z�M d3xh12��+ vmF3m �D(H � �3C)� �+
����i (3.24)One 
an verify that this boundary a
tion is, indeed, invariant under �+ susy.3.5 3D Chern-Simons modelReturning to the 3D 
ase and taking now the produ
t of 	3 with T (	3), we �nd another 3DN = 1 s
alar multiplet	3 � T (	3) = ���; (M � 
�v�)�� 
��F���; ��(�
��) + 2����v�F�� + ��� (3.25)The 3D extended F -term formula (2.2) now givesS = ZM d3xh��(�
��) + 2����v�F�� + ��i� Z�M d2x(��) (3.26)Using �� = �+�� + ���+ and �
3� = ��+�� + ���+, the a
tion simpli�es toS = ZM d3xh2����v�F�� + ��i� Z�M d2x(2���+) (3.27)By 
onstru
tion, this a
tion is invariant under �+ susy. Its bulk Lagrangian 2����v�F�� + ��is the usual 3D susy Chern-Simons Lagrangian.7 In this model (unlike the Maxwell 
ase)� is nonpropagating. We observe that it appears quadrati
ally in the bulk and linearly onthe boundary. On the other hand, � and M are the �elds that would be set to zero in the3D Wess-Zumino (WZ) gauge.8 As � appears in the boundary a
tion, we 
on
lude that,generi
ally, \susy without BC" requires su
h �elds to be present. In other words, it may notbe possible to impose the WZ gauge and to still have a bulk-plus-boundary a
tion that is\susy without BC."7Combining the Maxwell and Chern-Simons a
tions would require introdu
ing a dimensionful (mass) pa-rameter. In fa
t, the Chern-Simons a
tion gives rise naturally to a gauge-invariant (up to a boundary variation)mass term for the 3D ve
tor �eld v�.8The usual gauge transformation, Ægv� = ��A, is extended in superspa
e to Æ	3 = D�3, see (5.8), where�3 = (A; ; F ) is now a multiplet of parameters. This gives Æ� =  , ÆM = F , Æv� = ��A and Æ� = 0. If thistransformation is a symmetry of an a
tion, one 
an impose the WZ gauge: set � =M = 0. However, (3.27) isnot invariant under su
h transformation (though its variation is only a boundary term).{ 11 {



It is instru
tive to 
onsider two 
ases when the boundary a
tion in (3.27) vanishes. The�rst 
ase is when the WZ gauge � =M = 0 is imposed. The bulk a
tion then varies into9ÆS = Z�M d2xh� 2(�+
m�+)vmi (3.28)The se
ond 
ase is when one eliminates the auxiliary �eld � by its �eld equation (that is, bysetting � = 0 in (2.3) and (3.27)). The bulk a
tion now varies intoÆS = Z�M d2xh� 2(�+
mn��)Fmni (3.29)We see that in both 
ases one needs to impose some boundary 
onditions to make the susyvariation vanish, that is only \susy with BC" is possible when some of the \auxiliary" �eldsare absent.Returning to the a
tion (3.27), we now ask if it is possible to �nd a separately susyboundary a
tion that allows to remove the term linear in the auxiliary �eld �. On
e again,to 
onstru
t su
h an a
tion we split the 3D N = 1 spinor multiplet 	3 into 2D N = (1; 0)multiplets under �+ susy. First, we �nd thatÆ�+ = �+(M + v3); Æ(M + v3) = �+
m�m�+Æv3 = �+(12�� + �3��); Æ(12�� + �3��) = 
m�+�mv3Æ�� = 
m�+vm; Ævm = �12�+
m�+ + �+�m��; Æ�+ = 
mnFmn�+ (3.30)whi
h gives a spinor multiplet (�+; M + v3), a s
alar multiplet (v3; 12�� + �3��) and amultiplet (��; vm; 12�+). The latter is, in fa
t, further redu
ible under �+ susy. To see this,we �rst note that (3.16) implies
0�+ = 
1�+; 
0�� = �
1�� (3.31)De�ning v� = v0 � v1 and �� = �0 � �1, and using identities like
m�+�m = 
1�+�+; 
m��vm = �
1��v� (3.32)we �nd after a little algebra another spinor and s
alar multipletÆ(
1��) = �+v+; Æv+ = �+
m�m(
1��)Æv� = �+[
1�+ + ����℄; Æ[
1�+ + ����℄ = 
m�+�mv� (3.33)We 
on
lude that the 3D N = 1 spinor multiplet 	3 = (�;M; v�; �) splits into the followingfour 2D N = (1; 0) multiplets,	2 = (�+; M + v3); �2 = (v3; 12�� + �3��)	02 = (
1��; v+); �02 = (v�; 
1�+ + ����) (3.34)9As is well-known, in the WZ gauge one must add a 
ompensating gauge transformation to the susytransformation. To keep Æ� = ÆM = 0, we need a gauge transformation with (A
;  
; F
) = (0;�
��v�; 12 ��).The resulting susy transformations, as follows from (2.3), are Æv� = � 12 �
�� and Æ� = 
��F���.{ 12 {



Multiplying 	02 with �02, we obtain a 
omposite 2D N = (1; 0) spinor multiplet,	02 � �02 = (
1��v�; v+v� + ���+ + ��
1����) (3.35)Its highest 
omponent transforms into a total �m derivative under �+ susy so that2Z�M d2xhv+v� + ���+ + ��
1����i (3.36)is invariant under �+ susy. Adding this boundary a
tion to (3.27), we obtain10S = ZM d3xh2����v�F�� + ��i+ 2Z�M d2xhv+v� + ��
1����i (3.37)This bulk-plus-boundary a
tion is invariant under �+ susy. The term linear in the auxiliary�eld � no longer appears in the boundary a
tion so that we 
an eliminate it (set � = 0) whilepreserving \susy without BC."We observe that the elimination of the term linear in � from the boundary a
tion hasturned the hitherto pure-gauge bulk fermioni
 �eld �� into a dynami
al boundary �eld. Thedistin
tive feature of the Chern-Simons model that is responsible for this e�e
t is that it isgauge invariant only up to a boundary term. In this sense it is very similar to supergravitytheories where the (super)di�eomorphism invarian
e of the bulk a
tion also holds only up toa boundary term [3℄. Therefore, it is expe
ted that some of the usual pure gauge degrees offreedom (usually removed by imposing the WZ gauge) will be
ome important for bulk-plus-boundary supergravity theories.

10The boundary a
tion in (3.37) 
an also be written as �2 R�M d2x(vmvm + ��
m�m��).{ 13 {



4. Euler-Lagrange variation and boundary 
onditionsOur extended F - andD-term formulae give bulk-plus-boundary a
tions that are \susy withoutBC." Nevertheless, BC do arise if one requires the Euler-Lagrange (EL) variation to vanish.The BC one �nds in this way have to be 
onsistent with susy: the susy variation of a given BCmay generate a new BC whi
h has to be added to the total set of BC, and the susy variation ofthis new BC may generate yet another BC, et
. The total set of BC forms a (�nite or in�nite)\susy orbit" of BC [6, 7, 4℄. In this se
tion, using the 3D and 4D Wess-Zumino models asexamples, we show that one needs to 
onsider only �nite susy orbits when auxiliary �elds arepresent. In the next se
tion, we will show that su
h orbits arise naturally as BC on super�eldson
e one passes to the formulation in terms of 
o-dimension one (boundary) super�elds [1, 9℄.4.1 3D Wess-Zumino modelFirst, we simplify our equations by writing bulk-plus-boundary a
tions as bulk Lagrangianswith appropriate total �3 derivatives. The 3D Wess-Zumino bulk-plus-boundary a
tion (3.3)is then written as the following Lagrangian,L = LB + �3Lb; LB = F 2 � ��A��A�  
��� ; Lb = AF +A�3A (4.1)The EL variation of LB givesÆLB = (EOM) � �3[2ÆA�3A+  
3Æ ℄ (4.2)where (EOM) = 2(FÆF + ÆA����A� Æ 
��� ) and we dropped an (insigni�
ant) total �mderivative. For the EL variation of the total Lagrangian L we then �ndÆL = (EOM) + �3hAÆF + (F � �3A)ÆA +AÆ(�3A) +  +Æ � �  �Æ +i (4.3)Requiring this to vanish for arbitrary variations of the �elds on the boundary gives thefollowing set of BC, A = F � �3A =  + =  � = 0 (4.4)whi
h is obviously too strong. (A; �3A) and ( �;  +) 
an be thought of as (q; p) pairs of
anoni
ally 
onjugated variables with respe
t to the x3 dire
tion. Therefore, a

eptable BCwould be 
onditions on p or q, but not on both of them at the same time.For the modi�ed a
tion (3.8), we have Lb =  + � so thatÆL = (EOM) + �3h� 2(�3A)ÆA+ 2 +Æ �i (4.5)We see that the boundary pie
e of the EL variation is in the \pÆq" form, so that Neumann(N) BC \p = 0" follow from requiring ÆL to vanish for arbitrary Æq on the boundary, or one
an set \q = 
onst" as Diri
hlet (D) BC. In the 
ase at hand,11N : (�3A; +) = 0; D : (A; �) = 
onst (4.6)11When \
onst" stands for a multiplet (or a super�eld), it is understood that only the lowest 
omponent isa non-zero 
onstant, whereas higher 
omponents have to be zero by susy.{ 14 {



The Diri
hlet BC form a 
losed susy orbit, see (3.4), but the Neuman BC, (�3A; +) = 0,do not form a 
losed orbit. Indeed, (3.4) indi
ates that (F + �3A; +) = 0 would be 
losedunder �+ susy, whereas (2.1) says that omitting F would lead to an in�nite orbit of 
onditionsinvolving restri
tions of bulk equations of motion to the boundary (as was observed in [4℄).However, the same a
tion (3.8) 
an be shown to give rise to Neumann BC whi
h do forma 
losed susy orbit. This is a
hieved by a �eld rede�nition in a

ordan
e with the stru
tureof the 
o-dimension one multiplets (3.5).12 De�ning F 0 = F + �3A, we �nd thatLB = F 2 � (�3A)2 + � � � = (F 0)2 � 2F 0�3A+ : : : (4.7)Using F 0 as an independent bulk �eld gives, instead of (4.5),ÆL = (EOM) + �3h� 2F 0ÆA+ 2 +Æ �i (4.8)and instead of (4.6), we �nd the following susy orbits of BC,N : 	2 = 0; D : �2 = 
onst (4.9)where �2 and 	2 are de�ned in (3.5). We will see later that these BC follow naturally in thesuperspa
e formulation with 
o-dimension one super�elds. It then will also be
ome obviousthat if, instead of adding (3.7) to (3.3), as we did to obtain (3.8), we subtra
t it, the resultingbulk-plus-boundary a
tion would have 
ipped sets of BC,N : �2 = 0; D : 	2 = 
onst (4.10)4.2 4D Wess-Zumino modelThe analysis of the EL variation and asso
iated BC for the 4D Wess-Zumino model is verysimilar to the 3D 
ase. We �nd that the sum of (3.11) and (3.14), with � = �1, gives a
tionswhose EL variations are in the \pÆq" form provided we use F 0 = F + �3A and G0 = G+ �3Bas independent bulk �elds. The 
orresponding BC are� = +1 ) N : �A = 0; D : �B = 
onst� = �1 ) N : �B = 0; D : �A = 
onst (4.11)where �A and �B are de�ned in (3.12).
12The ne
essity of su
h �eld rede�nitions was dis
ussed in [1℄ for a parti
ular 5D susy model.{ 15 {



5. Superspa
e approa
hIn this se
tion we will demonstrate how the results derived so far in the susy tensor 
al
ulusapproa
h follow from superspa
e. In parti
ular, we will explain how 
o-dimension one super-�elds 
an be obtained by proje
tion with superspa
e 
ovariant derivatives. We will dis
ussonly the 3D 
ase (with 2D boundaries).135.1 Super�elds and superspa
e 
ovariant derivativesA super�eld glues 
omponents of a susy multiplet into a single obje
t (a �eld over super-spa
e). Using the same letter for a multiplet and the 
orresponding super�eld, the 3D N = 1super�elds are14� = (A; �; F ) = A+ � + �2F�� = (��;M; v�; ��) = �� + ��M + (
��)�v� + �2h�� � (
����)�i (5.1)where �� is an anti
ommuting parameter (a two-
omponent 3D Majorana spinor) and�2 = 12�� = 12�TC� = 12��C���� = 12���� (5.2)Here we introdu
ed spinor indi
es � that so far have been hidden in our notation. Keepingthese indi
es expli
it is often 
onvenient in superspa
e 
al
ulations. In our 
onventions,� = �� �; (
��)� = (
�)����; �� = ��C��; �� = ��C��; ���� = �C���2C��C�
 = Æ�
 ; C�� = �C��; 
��� � (
�)�
C
� = 
��� (5.3)Susy transformations of super�elds are generated by di�erential operators Q�,Æ� = �Q�; Æ�� = �Q��; Q� = �� � (
��)���; �� = ���� (5.4)On the 
omponent level, this gives the transformations (2.1) and (2.3). In our 
onventions,���� = Æ�� and ���� = C�� , so that introdu
ingD� = �� + (
��)��� (5.5)we obtain the following algebrafQ�; Q�g = 2
�����; fQ�;D�g = 0; fD�;D�g = �2
����� (5.6)13The 4D 
ase (with 3D boundaries) 
an be dis
ussed along similar lines but is more involved. If one 
hoosesthe original approa
h to superspa
e due to Salam and Strathdee [10℄, then one 
an keep the 4D gamma matri
esin a general representation and use them to des
ribe 
o-dimension one (3D) super�elds. A more 
onventionalapproa
h [11, 12℄ uses two-
omponent spinors, whi
h assumes a parti
ular representation of the 4D gammamatri
es from the start. One way to de�ne 
o-dimension one super�elds in this approa
h was des
ribed in [13℄.Their de�nition by proje
tion with 
ovariant derivatives 
an also be established. This was essentially done bySiegel in [14℄, only there the dependen
e of �elds on extra 
oordinates was suppressed.14Our 3D superspa
e 
onventions are 
lose to those in [12℄.{ 16 {



The se
ond property, fQ;Dg = 0, implies that D� are superspa
e 
ovariant derivatives,Æ(D�1 : : : D�n�) = �Q(D�1 : : : D�n�) (5.7)For example, D�� is a spinor multiplet like ��. This is used to de�ne super�eld gaugetransformations asÆg�� = (Æ��; ÆM; Æv�; Æ��) = D�� = ( �; F; ��A; 0) (5.8)so that v� transforms like a gauge �eld and �� is gauge-invariant. When su
h a super�eldtransformation is a symmetry of the a
tion, one 
an impose a Wess-Zumino gauge: �� =M = 0.As the indi
es � are two-dimensional, [D�;D� ℄ is proportional to C�� and we �ndD�D� = �
����� � C��D2; D2 = 12D�D� (5.9)As the 
omplete antisymmetrization of three two-dimensional indi
es gives zero, we �nd thefollowing identityD�D�D
 = 12D�fD�;D
g � 12D�fD�;D
g+ 12D
fD�;D�g (5.10)It then follows that an arbitrary produ
t of D� 
an be written as a linear 
ombination of 1,D� and D2 with ��-dependent 
oeÆ
ients. For example,D�D�D� = 0; D2D� = �D�D2 = (
�D)���; D2D2 = ���� (5.11)In turn, this implies that all the independent 
omponents of a 3D N = 1 super�eld S 
an bede�ned in terms of lowest 
omponents of S, D�S and D2S. For example,� = (A; �; F ) = (�; D��; �D2�)j�� = (��;M; v�; ��) = ���; �12D�; �12D
��; �D2�� + (
����)��j (5.12)where the bar \j" indi
ates setting � = 0. The fa
t that �� is a gauge-invariant 
omponent�eld 
orresponds to the fa
t thatw� = �D�D��� = �D2�� + (
����)� (5.13)is a gauge-invariant super�eld. We �nd (
ompare with �� in (5.1)),w� = (��; 0; �����F ��; 2(
����)�) = �� + (
���)�F�� + �2(
����)� (5.14)Note that �D2� and w� 
orrespond to the kineti
 multiplets (3.1) and (3.15), respe
tively.{ 17 {



5.2 Co-dimension one super�eldsWe now pro
eed to de
ompose the 3D N = 1 super�elds � and �� into 2D N = (1; 0)super�elds transforming in the standard way under �+ susy. First, we write�Q = �+Q� + ��Q+; �� = P��; Q� � P�Q (5.15)where P� = 12 (1� 
3). From (5.4), using � = (m; 3), we obtainQ� = Q0� + ���3; Q0�� � ��� � (
m�+)��m; ��� � ����+Q+ = Q0+ � �+�3; Q0+� � �+� � (
m��)��m; �+� � ����� (5.16)By de�nition, Q� is the generator of �+ susy transformations on 3D N = 1 super�elds,Æ+� = (�+Q�)�; Æ+�� = (�+Q�)�� (5.17)On the other hand, Q0� has the standard form for the generator of �+ susy transformationson 2D N = (1; 0) super�elds. The two operators are related as follows (as was also observedand used in [15℄), Q0� = Q� � ���3 = e+�+���3Q�e��+���3 (5.18)Therefore, writing � = e��+���3h bA+ �� b +i (5.19)we �ndÆ+� = (�+Q�)� = e��+���3(�+Q0�h bA+ �� b +i) = e��+���3h(Æ+ bA) + ��(Æ+ b +)i(5.20)so that the �+-dependent obje
ts bA and b + de�ned by (5.19) are, indeed, 2D N = (1; 0)super�elds. The �+ expansions of these super�elds follow from (5.19),bA+ �� b + = e+�+���3� = (1 + �+���3)(A+ �+ � + �� + + �+��F ) (5.21)whi
h gives15 bA = A+ �+ �; b + =  + + �+(F + �3A) (5.22)15We denote the 
o-dimension one super�elds by the same letter as the 
orresponding lowest 
omponent,but with a hat on it. These lowest 
omponents 
an be obtained by setting �+ = 0 in the 3D super�eld, e.g.�(�+ = 0) = A+ �� +. { 18 {



The super�eld transformations Æ+ bA = (�+Q0�) bA and Æ+ b + = (�+Q0�) b + give rise to the
omponent susy transformations (3.4).The 
o-dimension one super�elds 
an also be de�ned by proje
tion with superspa
e 
o-variant derivatives. To this extent, we de
ompose D� into D�� = (P�D)�,D� = D0� � ���3; D0�� � ��� + (
m�+)��mD+ = D0+ + �+�3; D0+� � �+� + (
m��)��m (5.23)and observe that D0+ = D+ � �+�3 = e+�+���3D+e��+���3 (5.24)A
ting with D+� on � and setting �� = 0 then givesD+�j��=0 = D0+h bA+ �� b +ij��=0 = b + (5.25)where we used that�+���� = (P+)�
�
�Æ(P+)Æ� = (P+)�
(P+)
� = (P+)�� (5.26)As a result, the 
o-dimension one de
omposition of � by proje
tion is given bybA = �j��=0; b + = D+�j��=0 (5.27)The de
omposition of the 3D N = 1 spinor multiplet �� is quite similar. We �nd,�+ = e��+���3hb�+ � 
1��bv�i�� = e��+���3hb�� + ��(
M � bv3)i (5.28)where b�+ = �+ + �+(M + v3); bv� = v� + �+
1[�+ + 
1����℄b�� = �� + 
1�+v+; (
M � bv3) = (M � v3)� �+[�� � 
1�+�+ + 2�3��℄ (5.29)Observing that �D0�b�+ =M + v3 + �+
1�+�+, we further �nd
M =M + �+h� 12�� + 
1�+�+ � �3��i; bv3 = v3 + �+h12�� + �3��i (5.30)The multiplets b�+, b��, bv� and bv3 mat
h those in (3.34). These multiplets 
an also be de�nedby proje
tion. For the following, we only note that��j��=0 = b��; (D+��+�)j��=0 = (P+
1)��bv� (5.31)
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5.3 Co-dimension one de
omposition of 3D LagrangiansIn 3D, an N = 1 susy Lagrangian is usually de�ned as the F -term of a s
alar super�eld,L = F = [�℄F = Z d2�� = �D2�j (5.32)Su
h a Lagrangian transforms into a total �� = (�m; �3) derivative and is not susy in thepresen
e of a boundary. Using the following identity (that will be proven shortly),D2 = D�D+ + �3 (5.33)we �nd that the following modi�ed Lagrangian,L0 = F + �3A = [�℄F + �3(�j) = �D�D+�j = �D0� b +j�+=0 = [ b +℄f (5.34)is written as the f -term of a 2D N = (1; 0) spinor super�eld b + =  ++�+f . Therefore, under�+ susy, it transforms into a total �m derivative and is susy in the presen
e of a boundary atx3 = 
onst. This way we re
over our \F +A" formula (2.2) and also obtain a way to rewritethe resulting modi�ed Lagrangian in terms of 
o-dimension one super�elds.To prove (5.33), we �rst proje
t (5.9) with P� to �nd thatD��D+� = (P�)�
(P+)�ÆD
DÆ= �(P�
�P�)���� � (P�P�)��D2 = (P�)��(�3 �D2) (5.35)where we used (P�)�� = �(P+)�� as follows from (P�)�� = 12(C�� � 
3��). Contra
tion withC�� gives C��D��D+� = D�D+ = �(P�)��(�3 �D2) = �(�3 �D2) (5.36)whi
h proves (5.33). Altogether, (5.9) de
omposes asD��D�� = �(
mP+)���m; D��D+� = (P�)��(�3 �D2)D+�D+� = �(
mP�)���m; D+�D�� = (P�)��(�3 +D2) (5.37)from whi
h we �nd thatfD��;D��g = �2(P�
m)���m; fD��;D+�g = 2(P�)���3 (5.38)Now we are ready to apply the formalism to spe
i�
 examples.
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5.4 3D Wess-Zumino modelWe start with the 3D Lagrangian,L = D2(�D2�)j = F 2 �  
��� +A����A (5.39)The modi�ed Lagrangian (5.34) is given byL0 = L+ �3(AF ) = D��D+�(�D2�)j (5.40)and 
orresponds to the bulk-plus-boundary a
tion (3.3). To write this Lagrangian in termsof 
o-dimension one super�elds, we have to move the D+� past all D� and then set �� = 0.Using D2 = D�D+ + �3; D+�D2 = �(
mD�)��m �D+��3 (5.41)(the se
ond identity follows from (5.11) by proje
tion), we �ndL0 = D��h(D+��)�3�� ��3(D+��) + (D+��)(D�D+�)� �(
mD�)��m�ij (5.42)Setting �� = 0 givesL0 = D0�� h b +��3 bA� bA�3 b +� + b +�(D0� b +)� bA(
mD0�)��m bAij�+=0 (5.43)This Lagrangian is written in terms of 2D N = (1; 0) super�elds and is manifestly �+ susy(it varies into a total �m derivative) in the presen
e of a boundary at x3 = 
onst. The ELvariation, on the other hand, givesÆL0 = (EOM) + �3nD0�� h b +�Æ bA� bAÆ b +�ij�+=0o (5.44)We observe that bA and b + are 
onjugated super�elds, with respe
t to the \time derivative" �3,but the boundary variation is not in the \pÆq" form. It is however easy to see whi
h separatelysusy boundary Lagrangians 
an be added to bring the boundary pie
e of the EL variation tothe \pÆq" form. De�ningL0� = L0 � �3�; � = D0�� [ b +� bA℄j�+=0 = �A(F + �3A) +  � + (5.45)we �nd that the boundary pie
e of the EL variation and the 
orresponding Neumann (N) andDiri
hlet (D) boundary 
onditions areÆL0+ ) 2 b +Æ bA ) N : b + = 0; D : bA = 
onstÆL0� ) �2 bAÆ b + ) N : bA = 0; D : b + = 
onst (5.46)The boundary Lagrangian � 
orresponds to the one in (3.7).{ 21 {



Instead of (5.39), one 
ould start with an alternative 3D Lagrangian,L2 = �D2�12D��D���j = F 2 �  
��� � ��A��A (5.47)that di�ers from (5.39) by a total �� derivative. The modi�ed Lagrangian (5.34) is nowL02 = L2 + �3�12  � = �D��D+��D��D+��j (5.48)whi
h in terms of 
o-dimension one super�elds be
omesL02 = D0�� h2 b +��3 bA+ (D0�� b +�) b +� + �m bA(
mD0�)� bAij�+=0 (5.49)This way we get dire
tly a Lagrangian whose boundary pie
e of the EL variation is in the\pÆq" form. One 
an 
he
k that L02 di�ers from L0+ by an (insigni�
ant) total �m derivative.Adding a superpotential would not 
hange the form of the super�eld boundary 
onditions.To see this, let us 
onsiderL3 = �D2hW (�)ij = �12W 00(A)  +W 0(A)F (5.50)The modi�ed Lagrangian (5.34) is16L03 = L3 + �3hW (A)i = �D�D+hW (�)ij = D0�� h�W ( bA) b +�ij�+=0 (5.51)Obviously, adding this to L0� would not 
hange the BC (5.46). However, on the 
omponentlevel, one 
ould look for the form of BC with the auxiliary �eld F eliminated. Then thesuperpotential W would expli
itly appear in the BC as in that 
ase 2F = �W 0(A).5.5 3D Chern-Simons modelThe super�eld 3D Lagrangian for the Chern-Simons model isL = �D2(w�)j = 2����v�F�� + ��+ ��(�
��) (5.52)The modi�ed Lagrangian (5.34) isL0 = L+ �3(��) = �D��hD+�w�ij (5.53)Using (5.13) and (5.41), we �nd thatD+�(w�) = D+�(��D2� + �
����)= �(D+��)D2� + �(D+�D2�) + (D+��)
����� �
���(D+��)= �(D+��)�3�� ��3(D+��) + (D+��)
3�3�� �
3�3(D+��) + (no �3)= �2(D+��+)�3�� � 2���3(D+��+) + (no �3) (5.54)16The fa
t that the bulk superpotential W (A) is a natural boundary Lagrangian was observed in [16℄. In [5℄this was also derived using superspa
e methods, but the general philosophy of that work was to use BC for susy.Here we emphasize that the 
o-dimension one superspa
e methods give rise to bulk-plus-boundary a
tions thatare \susy without BC." { 22 {



where we dropped terms not involving �3. As a result,L0 = 2D��h(D+��+)�3�� + ���3(D+��+) + (no �3)ij (5.55)Setting �� = 0 and using (5.31), we arrive atL0 = 2D0�� hbv��3(
1b��)� � (
1b��)��3bv� + (no �3)ij�+=0 (5.56)This shows that bv� and b�� are the 
onjugated 
o-dimension one super�elds for the Chern-Simons model. Again, we 
an de�ne two Lagrangians for whi
h the boundary pie
e of theEL variation is in the \pÆq" form,L0� = L0 � 2�3�; � = D0�� hbv�(
1b��)�ij�+=0 = v+v� + ���+ + ��
1���� (5.57)The boundary pie
e of the EL variation and the super�eld Neumann and Diri
hlet BC forthese Lagrangians are as follows,ÆL0+ ) 4bv�Æ(
1b��) ) N : bv� = 0; D : b�� = 
onstÆL0� ) �4(
1b��)Æbv� ) N : b�� = 0; D : bv� = 
onst (5.58)The boundary Lagrangian � 
orresponds to the one in (3.36).Note that deriving these BC in the 
omponent formulation is tri
ky as one has to 
hooseappropriate independent bulk �elds (namely, �0� = ���
1�+�++2�3��) as di
tated by theway �elds appear in the 
o-dimension one super�elds.5.6 3D Maxwell modelThe super�eld 3D Lagrangian for the Maxwell model isL = �D2(ww)j = 4F��F �� + 2�
���� (5.59)The modi�ed Lagrangian (5.34) isL0 = L+ �3(��) = �D��D+�(2w+w�)j (5.60)where the proje
tions w�, as follows from (5.13), arew+ = 
m�m�� �D�D+�+w� = 
m�m�+ �D�D+�� � 2�3�� (5.61)To �nd 
onjugated 
o-dimension one super�elds in this model, we perform the 
o-dimensionone de
omposition of the EL variation ÆL0 and look for terms with �3 a
ting on variations ofsuper�elds. Using D+�D�D+ = �2�3D+� + (no �3), we �nd thatD+�(w+Æw� + w�Æw+) = �2(D+�w+)�3Æ�� � 2w��3(D+��+) + (no �3Æ�) (5.62){ 23 {



Therefore, the EL variation of L0 readsÆL0 = (EOM) + 4�3nD��hw�Æ(D+��+) + (D+�w+)Æ��ijo (5.63)This shows that, unlike the Wess-Zumino and Chern-Simons models, here we have two pairsof 
onjugated 
o-dimension one super�elds and the EL variation is already in the \pÆq" form.To write this more expli
itly, we need an analog of (5.31) for w�. First, we �nd thatw+ = �+ + �+F+� + 2
1��F�3 + �+��(�
1���� + �3�+)w� = �� � ��F+� + 2
1�+F+3 + �+��(
1�+�+ � �3��) (5.64)where F+� = �+v� � ��v+, F+3 = �+v3 � �3v+, F�3 = ��v3 � �3v� (or, equivalently,F+� = �2F01, F+3 = F03 +F13, F�3 = F03 � F13) with v� = v0 � v1 and �� = �0 � �1. Thisleads to the following de
omposition,w+ = e��+���3hb�+ + 2
1�� bF�3iw� = e��+���3hb�� � �� bF+�i (5.65)where b�+ = �+ + �+F+�; bF�3 = F�3 + 12�+(���� � 2
1�3�+)b�� = �� + 2
1�+F+3; bF+� = F+� + �+
1�+�+ (5.66)These super�elds 
an also be de�ned by proje
tion. We only need two of the proje
tions,w�j��=0 = b��; (D+�w+�)j��=0 = �2(P+
1)�� bF�3 (5.67)Together with (5.31), this allows us to rewrite (5.63) asÆL0 = (EOM) + 4�3n�D0�� h(
1b��)�Æbv� + 2 bF�3(
1Æb��)ij�+=0o (5.68)This 
learly shows (b��; bv�) and ( bF�3; b��) as the two pairs of 
onjugated 
o-dimension onesuper�elds. (In 
omponents, we haveÆL0 = (EOM) + 4�3n2F+3Æv� + 2F�3Æv++��Æ(�+ + 
1����) + Æ��(
1���� � 2�3�+)o (5.69)Proving this on the 
omponent level is rather tri
ky, as one has to de�ne �0+ = �++ 
1����and �0� = �� � 
1�+�+ + 2�3�� and 
onsider them as independent bulk �elds.)In the Maxwell model, we 
an de�ne four Lagrangians with di�erent sets of BC. Namely,L01 = L0; L02 = L0 + 4�3�1; L03 = L0 + 4�3�2; L04 = L0 + 4�3(�1 +�2) (5.70){ 24 {



with �1 = D0�� h(
1b��)�bv�ij�+=0; �2 = D0�� h2 bF�3(
1b��)�ij�+=0 (5.71)The Neumann BC in the four 
ases are, respe
tively,(b��; bF�3) = 0; (bv�; bF�3) = 0; (b��; b��) = 0; (bv�; b��) = 0 (5.72)Ea
h of these four sets of BC is 
losed under �+ susy. The �rst set is also gauge-invariant.6. Con
lusionsIn this arti
le we have made a systemati
 study of boundary 
onditions (BC) in rigidlysupersymmetri
 (susy) models. We �rst analyzed the models in x-spa
e, and were able to
onstru
t susy bulk-plus-boundary a
tions whi
h were susy by themselves, without the needfor BC. We 
alled su
h a
tions \susy without BC." To a
hieve this, we had to add boundarya
tions whi
h 
ompleted the bulk a
tions, but whi
h themselves were not susy. In some 
aseswe ended up with models whi
h 
ontained boundary terms whi
h were linear in auxiliary�elds. Sin
e elimination of auxiliary �elds in su
h models gave too strong BC, we addedseparately susy a
tions on the boundary whi
h 
an
eled the terms linear in auxiliary �elds.In the tensor 
al
ulus approa
h, the key to the 
onstru
tion of susy bulk-plus-boundarya
tions was our extended F -term formula (or \F + A" formula): (2.2) in 3D and (2.5) in4D. In 4D, we found also an extended D-term formula (2.8). For 
onstru
ting separatelysusy boundary a
tions, we needed in addition to de
ompose bulk susy multiplets into a set of
o-dimension one multiplets out of whi
h, using standard tensor 
al
ulus methods, we 
ould
onstru
t susy boundary a
tions.To 
onstru
t the susy bulk-plus-boundary a
tions in superspa
e (whi
h we dis
ussedexpli
itly only for the 3D 
ase), we used the de
omposition in (5.33),D2 = D�D+ + �3 (6.1)where D = D� are the usual superspa
e 
ovariant derivatives (with the spin index �), andD� = P�D with P� = 12(1 � 
3). The modi�ed Lagrangian L0 = (�D2 + �3)�j for a
omposite super�eld � 
onsisted of the usual bulk term F from �D2�j, and the boundaryterm A from �3�j whi
h is to be added on the boundary. So, starting from the LagrangianL0 = �D�D+�j = �D��D+��j, the nonsupersymmetri
 boundary term \A" whi
h 
ompletesthe bulk a
tion \F" is in
luded from the start.The operators D+ = D+� were used to de
ompose a bulk super�eld whi
h depends on�+ and �� into a set of 
o-dimension one super�elds whi
h depend only on �+. While the
omponents of a super�eld are de�ned by a
ting on it with D� and setting �+ = �� = 0, see(5.12), we de�ned the 
o-dimension one super�elds by a
ting on the parent super�eld withD+� and setting ��� = 0, see (5.27). This approa
h led naturally to the foliation of bulksuper�elds into 
o-dimension one (boundary) super�elds whi
h is similar to the de
omposition{ 25 {



ofN = 2 super�elds into N = 1 super�elds. Using these 
o-dimension one super�elds we 
ould
onstru
t separately susy boundary a
tions using the usual superspa
e methods. The susy
ovariant derivatives D0� of the lower-dimensional superspa
e (whi
h depend on �+ and �m,but not on �� and �3) were obtained by setting �� = 0 in D�.We 
on
lude that the 
omponent approa
h and the superspa
e approa
h remain equiva-lent in the presen
e of boundaries.An issue we want now to 
onfront 
on
erns the BC for Euler-Largange (EL) variations.In various 
ases we were able to add separately susy boundary a
tions su
h that the ELvariation of the a
tion was of the form \pÆq" on the boundary. We thus imposed either p = 0or q = 
onst on the boundary as BC for on-shell �elds, in other words as the BC whi
h makethe �eld equations to a mathemati
ally well-posed problem. Should one also use these BC foro�-shell �elds, for example in path integrals? We do not believe so as it is natural to preserve\susy without BC." If one does impose BC o�-shell, the boundary a
tion 
an be simpli�ed(and in our examples it would vanish), but the resulting bulk-plus-boundary a
tion wouldnot be \susy without BC." If the boundary terms in the EL variation of the a
tion are notof the form \pÆq" (but in the 
ases we studied they 
ould always be 
ast into this form byadding a suitable separately susy a
tion on the boundary), we believe that any set of BC,whi
h makes this boundary term vanish on-shell, is allowed. Taking any set of (on-shell) BCrequires, of 
ourse, to study their 
onsisten
y and to 
onstru
t the orbit of BC. This orbit isparti
ularly simple in our \susy without BC" formulation: then the orbit is just a boundarysuper�eld (provided we keep enough auxiliary �elds).The results of the present arti
le for rigidly susy models in x-spa
e and superspa
e, andthose of [3℄ for lo
ally susy models in x-spa
e, have settled some of the questions we had aboutsusy models with boundaries. We are now interested in ta
kling the Horava-Witten modelin 11D [17, 18℄, and various (susy) AdS/CFT and Randall-Sundrum models in dimensionsgreater than four. In these 
ases full sets of auxiliary �elds are not known (or do not exist), andthus no 
omplete superspa
e formulations are available. Therefore, many of our 
onstru
tionsare not dire
tly appli
able. However, in our arti
les we also studied the issue of eliminatingauxiliary �elds while preserving \susy without BC," and in many 
ases it was indeed possibleto do so. Therefore, we expe
t that some of the higher dimensional models 
an be made \susywithout BC."A
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