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1. IntrodutionSine its beginning, researh in supersymmetry (susy) has mainly been onerned with on-struting invariant ations, and deduing the onsequenes of their �eld equations. However,the �eld equations are only half of the information one needs for a mathematially well-posedproblem; the other half are the boundary onditions (BC) one must impose on the �elds. Insusy (and supergravity) one usually assumes that �elds fall o� suÆiently fast at (spaelikeand timelike) in�nity and that boundary terms whih arise from partial integration may beomitted. However, if there is a boundary, this assumption is unwarranted, and one must faethe issue of BC. In this artile we present a thorough study of BC in models of rigid susywith a timelike boundary.We distinguish between two kinds of BC: those whih are needed to keep the ationinvariant under rigid susy, and those whih arise from the Euler-Lagrange (EL) �eld equations.The �rst set is o�-shell, the seond set is on-shell. Our main philosophy is to onstrut bulk-plus-boundary ations whih are susy by themselves (under half of bulk susy), so no BC areneeded to anel boundary terms in the susy variation of the ation. (This approah was �rstadvoated in [1, 2℄.) We all suh models \susy without BC." We develop an extension ofthe usual tensor alulus whih gives the boundary ation whih one must add to the bulkation to obtain \susy without BC." One this boundary ation has been onstruted, onean study the EL variation of the bulk-plus-boundary ation. In the bulk it gives standard�eld equations, but boundary terms arise whih an only be aneled by imposing BC onsome of the �elds. It follows that the BC one obtains in this way are, to begin with, BC onon-shell �elds. However, one a set of suh BC has been obtained, one an also require thatthey hold for o�-shell �elds. For example, in a path integral approah where �elds are, ofourse, o�-shell, we might still impose suh BC on these o�-shell �elds. We shall �rst studythe various possibilities in the examples onsidered below, and ome bak to more de�nitestatements in the onlusions.As always, one has the option of using the x-spae (omponent) approah, or the super-spae approah. In an earlier artile [3℄ we analyzed a partiular supergravity model (N = 1supergravity in 2+1 dimensions), and sine the superspae approah for supergravity is ratherompliated, we ast that artile entirely in x-spae. However, the superspae approah ofrigid susy is muh simpler, and thus we shall �rst derive our new results in x-spae, but thenreast these results into superspae.Our program of onstruting invariant ations onsists of two parts. First we obtainations with \susy without BC" by adding suitable ations on the boundary; these boundaryations are not susy by themselves but merely omplete the bulk ations, and we shall haveto �nd an appropriate superspae desription for them. Next, for some models it will turnout that we need to onstrut another ation on the boundary whih is susy by itself; thisation an be desribed by x-spae or superspae methods in one dimension less (boundarysuper�elds).Before introduing our extension of the tensor alulus, it may be helpful to point out{ 2 {



some possible pitfalls. First, the boundary terms one obtains from partially integrating termsin the susy variation of the ation are in general di�erent from those in the EL variation ofthe ations. Thus even if \susy without BC" holds, one will in general nead EL BC. Seond,BC on spaelike surfaes (initial onditions) have physially a very di�erent meaning from BCon timelike surfaes (genuine BC, at all times). We onsider only the latter, and hoose asboundary the hypersurfae at x3 = 0. However, from a spae-time point of view, one an treatthese two sets of BC on equal footing; tehnially this is ahieved by introduing projetionoperators P� = 12 (1 � n��) where n� is the normal to the boundary, and deomposing thesusy parameters into eigenspinors �� of this projetion operator. This proedure was usedin [4℄, but note that in that artile a very di�erent philosophy was used: no \susy withoutBC" was implemented, and the onsisteny of the omplete set of susy BC and EL BC wasstudied (the \orbit of BC"). Sine (half of) bulk susy is unbroken in our ase, and auxiliary�elds are present, the study of the orbit of BC an be written as BC on boundary super�elds.Finally, it is of ourse true that in varying ations on the boundary one may again need topartially integrate, thus obtaining boundary terms on the boundary. We assume that all totalderivatives on the boundary vanish. This is not neessary, but it simpli�es the analysis.Let us now introdue our extension of the usual tensor alulus whih takes boundariesinto aount. As an example, onsider the usual F -term formula for an invariant ation inthe bulk. Deomposing the integration measure dm+1x into a measure dmx on the boundaryand dx3 away from the boundary, one hasS = ZM dx3dmxF (1.1)Sine F varies into a total derivative, ÆF = ���� , the variation of S is equal to a boundaryterm ÆS = � R dmx(�3 ). We shall introdue a susy parameter �+ satisfying �+3 = ��+.Then ÆS = R dmx �+ , and sine ÆA = � , we �nd a suitable ation Sboundary = R dmxAon the boundary, whose �+ variation anels the variation of the bulk ation. So, the usualF -term formula is extended to the following \F+A" formula for a bulk-plus-boundary ation1S = ZM dx3dmxF � Z�M dmxA (1.2)We will �nd that this extended F -term formula works both in 3 and 4 dimensions. In whatfollows, we will indiate other ways in whih this formula an be derived and will apply it tovarious models of rigid susy in 3 and 4 dimensions.The presene of boundary terms may modify EL BC. Consider as an example the ationfor the spinning string, whih is the same as the 2D Wess-Zumino (WZ) ation,SWZ = Z d�dtL; L = ���X��X �  ��� + F 2 (1.3)1In [3℄ we derived the analog of this \F+A" formula in supergravity. There, instead of omponents F and A,one needs to use the orresponding densities. { 3 {



The susy variation ÆL = ��(���� ��X+�� F ) leads to a boundary term at � = 0 whihan be aneled (when � = �+) by adding the following boundary ation at � = 0,Sb = �Z dthXF +X��Xi (1.4)(The �rst term is the term denoted by \A" in (1.2) while the seond term is produed if onerewrites the ation X����X as obtained from the tensor alulus as ���X��X+��(X��X)and uses R d���(X��X) = �X��X.) From the EL variation of SWZ , if one requires that alloeÆients of varied �elds vanish, one obtains a set of EL BC whih is too strong,X = F � ��X =  + =  � = 0 (1.5)As explained below (see setion 4.1) for the 3D WZ model, whih is very similar to the2D WZ model, one an add a separately susy ation on the boundary,Sb(extra) = Z dt�XF +X��X � 12  � (1.6)The total string ation now beomesS = SWZ � 12 Z dt  (1.7)and one �nds now the same EL BC for X as before, ÆX��X = 0, while for  one �nds +Æ � = 0. These are the usual Dirihlet or Neumann onditions for X and the Neveu-Shwarz or Ramond onditions for  .2 They are needed to make the EL variation of S vanishon-shell, but they are not needed to make the �+ susy variation of S vanish (o�-shell).The EL variations on the boundary are of the form \pÆq," and one might expet thatone might hoose either p = 0 or q = onst as BC for eah �eld (whih would give 2N setsof BC where N is the number of q's). However, this is inorret: onsisteny of the EL BCwith susy [6, 7, 5, 4℄ leaves only two families of BC [8, 4℄. These families beome shorterwhen auxiliary �elds are properly inorporated. Then, as we show in setion 4.1, eah familyorresponds to a BC on a boundary super�eld [1, 9℄. This nie result is of ourse due to \susywithout BC."We remark that our \susy without BC" approah, and the \F +A" formula in partiular,an be applied to a variety of physially interesting models, inluding those involving stringsand branes, solitons and instantons. Some of the appliations were disussed in [3℄.
2For the 2D ase, our onventions give x3 = � and 3 = �. Taking a partiular representation ofgamma matries (whih we avoid in this paper) one an rewrite our two-omponent spinors  � in terms ofone-omponent spinors  � and reover the usual form of the NS and R onditions,  + = � � (see e.g. [5℄).{ 4 {



2. Extended tensor alulusIn this setion, we present extensions of the standard F - and D-term formulae for the 3D and4D ases.3 In both dimensions, we use Cartesian oordinates x� to desribe the bulkM andassume that the boundary �M is at x3 = 0 and is parametrized by xm. In M, x3 > 0. Inthe presene of the boundary, half of susy is (spontaneously) broken. We hoose to preservethe half parametrized by �+ = P+�, where P� = 12(1�3). Then 3�+ = �+ but �+3 = ��+.2.1 3D extended F -term formulaConsider the 3D N = 1 salar multiplet �3 = (A; ; F ),ÆA = � ; Æ = ����A+ F�; ÆF = ���� (2.1)The standard F -term formula gives a bulk ation RM d3xF that is not susy in the preseneof the boundary. Its susy variation gives rise to a boundary term � R�M d2x(�3 ). Ourextended F -term formula, S = ZM d3xF � Z�M d2xA (2.2)gives a bulk-plus-boundary ation that is invariant under �+ susy. Indeed, ÆF = ��(�� )yields a boundary term��+3 = �+ under the �+ susy. Clearly, the orresponding variationof A on the boundary, ÆA = �+ , anels the ontribution from the bulk.Another 3D N = 1 multiplet, whih inludes a 3D vetor v�, is the spinor multiplet	3 = (�;M; v�; �) with the following susy transformation rules,Æ� =M�+ ��v�; ÆM = �12��+ �����Æv� = �12���+ ����; Æ� = 2�����v� (2.3)The highest omponent, �, transforms into a total derivative but, as � is a fermion, we annotuse a \�-term formula" for onstruting susy ations.2.2 4D extended F - and D-term formulaeFor the 4D N = 1 salar (hiral) multiplet �4 = (A;B; ; F;G),ÆA = � ; ÆB = �i�5 Æ = ���(A� i5B)�+ (F + i5G)�ÆF = ���� ; ÆG = i�5��� (2.4)the extended F -term formula isS = ZM d4xF � Z�M d3xA (2.5)3Our spinors are Majorana spinors, so  �  yi0 is equal to  =  TC where C�C�1 = �(�)T andCT = �C. Furthermore, �� = ��� + �� with ��� = (�1;+1; : : : ;+1) and in d = 4 we use 5 with 25 = 1.{ 5 {



Alternatively, one an use the extended G-term formula,S = ZM d4xG� Z�M d3xB (2.6)In both ases, we �nd a bulk-plus-boundary ation that is invariant under �+ susy.For the 4D N = 1 vetor multiplet V4 = (C;�;H;K; v� ; �;D),ÆC = i�5�; Æ� = (i5H �K � �v� + i�5��C)�ÆH = i�5����+ i�5�; ÆK = ������� ��Æv� = ������ ���; Æ� = �����v� + i5D�; ÆD = i�5���� (2.7)the highest omponent, D, transforms into a total derivative and the standardD-term formulagives a bulk ation S = RM d4xD. This ation is not susy in the presene of the boundary.Our extended D-term formula isS = ZM d4xD + Z�M d3x(H � �3C) (2.8)and it gives bulk-plus-boundary ations that are invariant under �+ susy. (Here and hereafterwe assume that total tangential �m derivatives integrated over the boundary vanish.)The extended D-term formula an be derived from the extended F -term formula. Indeed,given a vetor multiplet V4, we an onstrut the following salar multiplet,�4[V4℄ = (�H; K; �i5(�+ ����); D + ����C; ���v�) (2.9)Applying (2.5) to this multiplet, we reover (2.8). Clearly, the F -term formula overs allases, and is also simpler.
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3. AppliationsThe extended F - and D-term formulae of the previous setion an be applied to a variety ofomposite multiplets. This allows straightforward onstrution of susy bulk-plus-boundaryations that are minimal extensions of known (bulk) ations. In this setion, we will onsiderseveral examples of this proedure. Generially, terms linear in the (bulk) auxiliary �eldsappear in the boundary ations. We will �nd that in some, but not all, ases these terms anbe eliminated by adding separately susy boundary ations. It will follow that, generially,\susy without BC" requires the presene of auxiliary �elds.3.1 3D Wess-Zumino modelGiven a 3D salar multiplet �3(A) = (A; ; F ), we an onstrut a \kineti" salar multipletwhose lowest omponent is F ,T (�3) � �3(F ) = (F; ��� ; ����A) (3.1)The produt of �3(A) and �3(F ) gives another 3D salar multiplet,�3(AF ) = (AF; F +A��� ; F 2 +A����A�  ��� ) (3.2)Applying our extended F -term formula (2.2) to this multiplet, we �nd the following bulk-plus-boundary ation,S = ZM d3x(F 2 � ��A��A�  ��� )� Z�M d2x(AF +A�3A) (3.3)where we partially integrated to arrive at the standard form for the bulk ation. This is the3D Wess-Zumino (WZ) model supplemented by a partiular boundary term. The bulk-plus-boundary ation is, by onstrution, invariant under �+ susy, as an be expliitly veri�ed.We observe that the bulk auxiliary �eld F appears linearly on the boundary. Therefore,eliminating F via its �eld equation would require imposing a boundary ondition A = 0.The ation without auxiliary �elds would then neessarily be \susy with BC." To be ableto eliminate F while preserving \susy without BC," we will now look for a separately susyboundary ation that anels the term linear in F .Separately susy boundary ations an be onstruted systematially using o-dimensionone multiplets. To this extent, we split the 3D N = 1 multiplet �3 into two 2D N = (1; 0)multiplets under the �+ susy. (The third oordinate, x3, will appear in the 2D multiplets asa parameter.) De�ning  � = P� , we �ndÆA = �+ �; Æ � = m�+�mAÆ + = (F + �3A)�+; Æ(F + �3A) = �+m�m + (3.4){ 7 {



so that we �nd a salar and a spinor 2D N = (1; 0) multiplet,4�2 = (A;  �); 	2 = ( +; F + �3A) (3.5)Their produt is another spinor multiplet,�2 �	2 = (A +; A(F + �3A)�  + �) (3.6)whose highest omponent transforms into a total �m derivative. Therefore, the followingation Z�M d2x(AF +A�3A�  + �) (3.7)is invariant under �+ susy. Adding it to (3.3), the �rst two terms anel, and we obtainS = ZM d3x(F 2 � ��A��A�  ��� )� Z�M d2x12  (3.8)where we used   = 2 + �. Setting F = 0 in the ation and susy transformations, we arriveat the 3D WZ model without auxiliary �elds that is still \susy without BC."3.2 4D Wess-Zumino modelThe 4D WZ model will turn out to be more subtle. We start again with the salar multiplet�4 = (A;B; ; F;G) and onstrut the kineti multiplet,T (�4) = (F; �G; ��� ; �A; ��B) (3.9)where � = ����. Their produt gives the following salar multiplet�4 � T (�4) = (AF +BG; �AG+BF; (A+ i5B)��� + (F � i5G) ;A�A+B�B + F 2 +G2 �  ��� ; �A�B +B�A+ i 5��� ) (3.10)Applying our extended F -term formula (2.5) to this multiplet, we �nd, after some partialintegration, the following ationS = ZM d4xh� ��A��A� ��B��B �  ��� + F 2 +G2i�Z�M d3xhA(F + �3A) +B(G+ �3B)i (3.11)This ation is invariant under �+ susy by onstrution. As in the 3D ase, we �nd termslinear in the bulk auxiliary �elds, F and G, in the boundary ation. However, unlike the 3D4The highest omponent of 	2, F + �3A, transforms into a total �m derivative under �+ susy. Integratingthis omponent over the 3D manifold M with boundary �M gives our \F + A" formula (2.2). The four-dimensional extended F - and D-term formulae an also be derived in suh a way using o-dimension onemultiplets. { 8 {



ase, we will �nd that one annot eliminate both terms by adding a separately susy boundaryation.To onstrut separately susy boundary ations, we split the 4D N = 1 salar multiplet �4into two 3D N = 1 salar multiplets under �+ susy. (The fourth oordinate, x3, will appearin the 3D multiplets as a parameter.) De�ning  � = P� , we �ndÆA = �+ �; Æ � = m�+�mA+ i5(G+ �3B)�+; Æ(G + �3B) = i�+5m�m �ÆB = �i�+5 +; Æ + = i5m�+�mB + (F + �3A)�+; Æ(F + �3A) = �+m�m +so that the two 3D multiplets ontained in �4 are5�A = (A;  �; G+ �3B); �B = (B; �i5 +; �F � �3A) (3.12)Their produt yields another 3D salar multiplet�A � �B = �AB; �i5A + +B �; �A(F + �3A) +B(G+ �3B) +  + �� (3.13)The highest omponent of this multiplet an be used to onstrut the following separatelysusy boundary ations,� Z�M d3xh�A(F + �3A) +B(G+ �3B) + 12  i (3.14)where we used   = 2 + �. We observe that adding this ation to (3.11) with � = �1 or� = +1, we an anel either the term linear in F or the term linear in G, but not both.Therefore, eliminating auxiliary �elds in the 4D WZ model annot be done while maintainingthe \susy without BC" property (as a boundary ondition A = 0 or B = 0 arises in theproess). Turning this around, we see that generially auxiliary �elds are required for \susywithout BC."3.3 3D Maxwell modelFor the 3D N = 1 spinor multiplet 	3 = (�;M; v�; �), in (2.3), the kineti multiplet T (	3)is a spinor multiplet whose lowest omponent is �,T (	3) � 	3(�) = (�; 0; �����F ��; 2����) (3.15)where F�� = ��v� � ��v� and ��� = ����� (then ������ = ��). We will take �013 = +1so that 03 = 1 = 1; 13 = 0 = �0 (3.16)The produt of T (	3) with itself gives the following 3D N = 1 salar multiplet,T (	3)� T (	3) = (��; �2���F�� ; 4F��F �� + 2�����) (3.17)5We keep here the 4D gamma matries to desribe 3D multiplets. This desription avoids expliit deom-position of the gamma matries at the prie of an unusual de�nition of susy transformations.{ 9 {



Applying our \F +A" formula (2.2) to this multiplet, we obtainS = ZM d3xh4F��F �� + 2�����i� Z�M d2x(��) (3.18)This ation is invariant under �+ susy and ontains the usual susy Maxwell ation in the bulk(up to an overall normalization onstant).6 As there is no auxiliary �eld in this ation, thereis no partiular reason to add a separately susy boundary ation.3.4 4D Maxwell modelThe Maxwell ation for the 4D N = 1 vetor multiplet V4 = (C;�;H;K; v� ; �;D) an bewritten using the F -term formula applied to the following omposite salar multiplet,�4 = (A; B;  ; F; G) (3.19)= (��; �i5�; ���F���+ 2i5�D; F��F �� + 2������ 2D2; 12�����F��F��)Our extended F -term formula (2.5) applied to this multiplet gives (up to our fator �1=2)S = ZM d4xh� 12F��F �� � �����+D2i+ Z�M d3x12�� (3.20)This bulk-plus-boundary ation is \susy without BC" by onstrution. The auxiliary �eldD appears only in the bulk and we an eliminate it by its �eld equation (set D = 0) whilepreserving the \susy without BC" property. Adding a separately susy boundary ation inthis ase is, therefore, not required.It is instrutive, however, to disuss an alternative derivation of the same ation. Asin the 3D ase, we an �rst onstrut the kineti multiplet T (V4), a omposite 4D vetormultiplet whose lowest omponent is D,T (V4) = (D; ����; 0; 0; ���F�� ; ������; �����D) (3.21)Unlike the 3D ase, however, the 4D Maxwell ation arises not from T (V4) � T (V4), butfrom V4 � T (V4). The latter is a omposite 4D vetor multiplet whose lowest omponent iseC = CD. Among other omponents of eV4 = V4 � T (V4) we �nd, in partiular,eH = HD � 12�����eD = D2 � 12F��F �� � �����+ ��h� C��D + 12������+ F ��v�i (3.22)Our extended D-term formula (2.8) applied to eV4 giveseS = ZM d4xh� 12F��F �� � �����+D2i�Z�M d3xhvmF3m �D(H � �3C)� �+����i (3.23)6One would have to de�ne �new = �=2 to get anonial kineti terms for v� and �new at the same time.Our hoie of � in 3D followed from a natural parametrization of the orresponding super�eld ��, see (5.1).In 4D, our � is anonially de�ned. { 10 {



This bulk-plus-boundary ation is \susy without BC" by onstrution. We see, however, thatthe boundary ation ontains now a term linear in the auxiliary �eld D. Again, we would liketo �nd a separately susy boundary ation whih, upon adding it to eS, would anel this term.A systemati searh for suh an ation would require deomposing V4 into o-dimension one(3D) multiplets and then using tensor alulus to onstrut a 3D salar multiplet whose Fomponent ontains the D(H��3C) ombination. Instead of following this tedious proedure,we simply dedue the answer by noting that sine both S and eS, in (3.20) and (3.23), are\susy without BC," so is their di�erene,S � eS = Z�M d3xh12��+ vmF3m �D(H � �3C)� �+����i (3.24)One an verify that this boundary ation is, indeed, invariant under �+ susy.3.5 3D Chern-Simons modelReturning to the 3D ase and taking now the produt of 	3 with T (	3), we �nd another 3DN = 1 salar multiplet	3 � T (	3) = ���; (M � �v�)�� ��F���; ��(���) + 2����v�F�� + ��� (3.25)The 3D extended F -term formula (2.2) now givesS = ZM d3xh��(���) + 2����v�F�� + ��i� Z�M d2x(��) (3.26)Using �� = �+�� + ���+ and �3� = ��+�� + ���+, the ation simpli�es toS = ZM d3xh2����v�F�� + ��i� Z�M d2x(2���+) (3.27)By onstrution, this ation is invariant under �+ susy. Its bulk Lagrangian 2����v�F�� + ��is the usual 3D susy Chern-Simons Lagrangian.7 In this model (unlike the Maxwell ase)� is nonpropagating. We observe that it appears quadratially in the bulk and linearly onthe boundary. On the other hand, � and M are the �elds that would be set to zero in the3D Wess-Zumino (WZ) gauge.8 As � appears in the boundary ation, we onlude that,generially, \susy without BC" requires suh �elds to be present. In other words, it may notbe possible to impose the WZ gauge and to still have a bulk-plus-boundary ation that is\susy without BC."7Combining the Maxwell and Chern-Simons ations would require introduing a dimensionful (mass) pa-rameter. In fat, the Chern-Simons ation gives rise naturally to a gauge-invariant (up to a boundary variation)mass term for the 3D vetor �eld v�.8The usual gauge transformation, Ægv� = ��A, is extended in superspae to Æ	3 = D�3, see (5.8), where�3 = (A; ; F ) is now a multiplet of parameters. This gives Æ� =  , ÆM = F , Æv� = ��A and Æ� = 0. If thistransformation is a symmetry of an ation, one an impose the WZ gauge: set � =M = 0. However, (3.27) isnot invariant under suh transformation (though its variation is only a boundary term).{ 11 {



It is instrutive to onsider two ases when the boundary ation in (3.27) vanishes. The�rst ase is when the WZ gauge � =M = 0 is imposed. The bulk ation then varies into9ÆS = Z�M d2xh� 2(�+m�+)vmi (3.28)The seond ase is when one eliminates the auxiliary �eld � by its �eld equation (that is, bysetting � = 0 in (2.3) and (3.27)). The bulk ation now varies intoÆS = Z�M d2xh� 2(�+mn��)Fmni (3.29)We see that in both ases one needs to impose some boundary onditions to make the susyvariation vanish, that is only \susy with BC" is possible when some of the \auxiliary" �eldsare absent.Returning to the ation (3.27), we now ask if it is possible to �nd a separately susyboundary ation that allows to remove the term linear in the auxiliary �eld �. One again,to onstrut suh an ation we split the 3D N = 1 spinor multiplet 	3 into 2D N = (1; 0)multiplets under �+ susy. First, we �nd thatÆ�+ = �+(M + v3); Æ(M + v3) = �+m�m�+Æv3 = �+(12�� + �3��); Æ(12�� + �3��) = m�+�mv3Æ�� = m�+vm; Ævm = �12�+m�+ + �+�m��; Æ�+ = mnFmn�+ (3.30)whih gives a spinor multiplet (�+; M + v3), a salar multiplet (v3; 12�� + �3��) and amultiplet (��; vm; 12�+). The latter is, in fat, further reduible under �+ susy. To see this,we �rst note that (3.16) implies0�+ = 1�+; 0�� = �1�� (3.31)De�ning v� = v0 � v1 and �� = �0 � �1, and using identities likem�+�m = 1�+�+; m��vm = �1��v� (3.32)we �nd after a little algebra another spinor and salar multipletÆ(1��) = �+v+; Æv+ = �+m�m(1��)Æv� = �+[1�+ + ����℄; Æ[1�+ + ����℄ = m�+�mv� (3.33)We onlude that the 3D N = 1 spinor multiplet 	3 = (�;M; v�; �) splits into the followingfour 2D N = (1; 0) multiplets,	2 = (�+; M + v3); �2 = (v3; 12�� + �3��)	02 = (1��; v+); �02 = (v�; 1�+ + ����) (3.34)9As is well-known, in the WZ gauge one must add a ompensating gauge transformation to the susytransformation. To keep Æ� = ÆM = 0, we need a gauge transformation with (A;  ; F) = (0;���v�; 12 ��).The resulting susy transformations, as follows from (2.3), are Æv� = � 12 ��� and Æ� = ��F���.{ 12 {



Multiplying 	02 with �02, we obtain a omposite 2D N = (1; 0) spinor multiplet,	02 � �02 = (1��v�; v+v� + ���+ + ��1����) (3.35)Its highest omponent transforms into a total �m derivative under �+ susy so that2Z�M d2xhv+v� + ���+ + ��1����i (3.36)is invariant under �+ susy. Adding this boundary ation to (3.27), we obtain10S = ZM d3xh2����v�F�� + ��i+ 2Z�M d2xhv+v� + ��1����i (3.37)This bulk-plus-boundary ation is invariant under �+ susy. The term linear in the auxiliary�eld � no longer appears in the boundary ation so that we an eliminate it (set � = 0) whilepreserving \susy without BC."We observe that the elimination of the term linear in � from the boundary ation hasturned the hitherto pure-gauge bulk fermioni �eld �� into a dynamial boundary �eld. Thedistintive feature of the Chern-Simons model that is responsible for this e�et is that it isgauge invariant only up to a boundary term. In this sense it is very similar to supergravitytheories where the (super)di�eomorphism invariane of the bulk ation also holds only up toa boundary term [3℄. Therefore, it is expeted that some of the usual pure gauge degrees offreedom (usually removed by imposing the WZ gauge) will beome important for bulk-plus-boundary supergravity theories.

10The boundary ation in (3.37) an also be written as �2 R�M d2x(vmvm + ��m�m��).{ 13 {



4. Euler-Lagrange variation and boundary onditionsOur extended F - andD-term formulae give bulk-plus-boundary ations that are \susy withoutBC." Nevertheless, BC do arise if one requires the Euler-Lagrange (EL) variation to vanish.The BC one �nds in this way have to be onsistent with susy: the susy variation of a given BCmay generate a new BC whih has to be added to the total set of BC, and the susy variation ofthis new BC may generate yet another BC, et. The total set of BC forms a (�nite or in�nite)\susy orbit" of BC [6, 7, 4℄. In this setion, using the 3D and 4D Wess-Zumino models asexamples, we show that one needs to onsider only �nite susy orbits when auxiliary �elds arepresent. In the next setion, we will show that suh orbits arise naturally as BC on super�eldsone one passes to the formulation in terms of o-dimension one (boundary) super�elds [1, 9℄.4.1 3D Wess-Zumino modelFirst, we simplify our equations by writing bulk-plus-boundary ations as bulk Lagrangianswith appropriate total �3 derivatives. The 3D Wess-Zumino bulk-plus-boundary ation (3.3)is then written as the following Lagrangian,L = LB + �3Lb; LB = F 2 � ��A��A�  ��� ; Lb = AF +A�3A (4.1)The EL variation of LB givesÆLB = (EOM) � �3[2ÆA�3A+  3Æ ℄ (4.2)where (EOM) = 2(FÆF + ÆA����A� Æ ��� ) and we dropped an (insigni�ant) total �mderivative. For the EL variation of the total Lagrangian L we then �ndÆL = (EOM) + �3hAÆF + (F � �3A)ÆA +AÆ(�3A) +  +Æ � �  �Æ +i (4.3)Requiring this to vanish for arbitrary variations of the �elds on the boundary gives thefollowing set of BC, A = F � �3A =  + =  � = 0 (4.4)whih is obviously too strong. (A; �3A) and ( �;  +) an be thought of as (q; p) pairs ofanonially onjugated variables with respet to the x3 diretion. Therefore, aeptable BCwould be onditions on p or q, but not on both of them at the same time.For the modi�ed ation (3.8), we have Lb =  + � so thatÆL = (EOM) + �3h� 2(�3A)ÆA+ 2 +Æ �i (4.5)We see that the boundary piee of the EL variation is in the \pÆq" form, so that Neumann(N) BC \p = 0" follow from requiring ÆL to vanish for arbitrary Æq on the boundary, or onean set \q = onst" as Dirihlet (D) BC. In the ase at hand,11N : (�3A; +) = 0; D : (A; �) = onst (4.6)11When \onst" stands for a multiplet (or a super�eld), it is understood that only the lowest omponent isa non-zero onstant, whereas higher omponents have to be zero by susy.{ 14 {



The Dirihlet BC form a losed susy orbit, see (3.4), but the Neuman BC, (�3A; +) = 0,do not form a losed orbit. Indeed, (3.4) indiates that (F + �3A; +) = 0 would be losedunder �+ susy, whereas (2.1) says that omitting F would lead to an in�nite orbit of onditionsinvolving restritions of bulk equations of motion to the boundary (as was observed in [4℄).However, the same ation (3.8) an be shown to give rise to Neumann BC whih do forma losed susy orbit. This is ahieved by a �eld rede�nition in aordane with the strutureof the o-dimension one multiplets (3.5).12 De�ning F 0 = F + �3A, we �nd thatLB = F 2 � (�3A)2 + � � � = (F 0)2 � 2F 0�3A+ : : : (4.7)Using F 0 as an independent bulk �eld gives, instead of (4.5),ÆL = (EOM) + �3h� 2F 0ÆA+ 2 +Æ �i (4.8)and instead of (4.6), we �nd the following susy orbits of BC,N : 	2 = 0; D : �2 = onst (4.9)where �2 and 	2 are de�ned in (3.5). We will see later that these BC follow naturally in thesuperspae formulation with o-dimension one super�elds. It then will also beome obviousthat if, instead of adding (3.7) to (3.3), as we did to obtain (3.8), we subtrat it, the resultingbulk-plus-boundary ation would have ipped sets of BC,N : �2 = 0; D : 	2 = onst (4.10)4.2 4D Wess-Zumino modelThe analysis of the EL variation and assoiated BC for the 4D Wess-Zumino model is verysimilar to the 3D ase. We �nd that the sum of (3.11) and (3.14), with � = �1, gives ationswhose EL variations are in the \pÆq" form provided we use F 0 = F + �3A and G0 = G+ �3Bas independent bulk �elds. The orresponding BC are� = +1 ) N : �A = 0; D : �B = onst� = �1 ) N : �B = 0; D : �A = onst (4.11)where �A and �B are de�ned in (3.12).
12The neessity of suh �eld rede�nitions was disussed in [1℄ for a partiular 5D susy model.{ 15 {



5. Superspae approahIn this setion we will demonstrate how the results derived so far in the susy tensor alulusapproah follow from superspae. In partiular, we will explain how o-dimension one super-�elds an be obtained by projetion with superspae ovariant derivatives. We will disussonly the 3D ase (with 2D boundaries).135.1 Super�elds and superspae ovariant derivativesA super�eld glues omponents of a susy multiplet into a single objet (a �eld over super-spae). Using the same letter for a multiplet and the orresponding super�eld, the 3D N = 1super�elds are14� = (A; �; F ) = A+ � + �2F�� = (��;M; v�; ��) = �� + ��M + (��)�v� + �2h�� � (����)�i (5.1)where �� is an antiommuting parameter (a two-omponent 3D Majorana spinor) and�2 = 12�� = 12�TC� = 12��C���� = 12���� (5.2)Here we introdued spinor indies � that so far have been hidden in our notation. Keepingthese indies expliit is often onvenient in superspae alulations. In our onventions,� = �� �; (��)� = (�)����; �� = ��C��; �� = ��C��; ���� = �C���2C��C� = Æ� ; C�� = �C��; ��� � (�)�C� = ��� (5.3)Susy transformations of super�elds are generated by di�erential operators Q�,Æ� = �Q�; Æ�� = �Q��; Q� = �� � (��)���; �� = ���� (5.4)On the omponent level, this gives the transformations (2.1) and (2.3). In our onventions,���� = Æ�� and ���� = C�� , so that introduingD� = �� + (��)��� (5.5)we obtain the following algebrafQ�; Q�g = 2�����; fQ�;D�g = 0; fD�;D�g = �2����� (5.6)13The 4D ase (with 3D boundaries) an be disussed along similar lines but is more involved. If one hoosesthe original approah to superspae due to Salam and Strathdee [10℄, then one an keep the 4D gamma matriesin a general representation and use them to desribe o-dimension one (3D) super�elds. A more onventionalapproah [11, 12℄ uses two-omponent spinors, whih assumes a partiular representation of the 4D gammamatries from the start. One way to de�ne o-dimension one super�elds in this approah was desribed in [13℄.Their de�nition by projetion with ovariant derivatives an also be established. This was essentially done bySiegel in [14℄, only there the dependene of �elds on extra oordinates was suppressed.14Our 3D superspae onventions are lose to those in [12℄.{ 16 {



The seond property, fQ;Dg = 0, implies that D� are superspae ovariant derivatives,Æ(D�1 : : : D�n�) = �Q(D�1 : : : D�n�) (5.7)For example, D�� is a spinor multiplet like ��. This is used to de�ne super�eld gaugetransformations asÆg�� = (Æ��; ÆM; Æv�; Æ��) = D�� = ( �; F; ��A; 0) (5.8)so that v� transforms like a gauge �eld and �� is gauge-invariant. When suh a super�eldtransformation is a symmetry of the ation, one an impose a Wess-Zumino gauge: �� =M = 0.As the indies � are two-dimensional, [D�;D� ℄ is proportional to C�� and we �ndD�D� = ������ � C��D2; D2 = 12D�D� (5.9)As the omplete antisymmetrization of three two-dimensional indies gives zero, we �nd thefollowing identityD�D�D = 12D�fD�;Dg � 12D�fD�;Dg+ 12DfD�;D�g (5.10)It then follows that an arbitrary produt of D� an be written as a linear ombination of 1,D� and D2 with ��-dependent oeÆients. For example,D�D�D� = 0; D2D� = �D�D2 = (�D)���; D2D2 = ���� (5.11)In turn, this implies that all the independent omponents of a 3D N = 1 super�eld S an bede�ned in terms of lowest omponents of S, D�S and D2S. For example,� = (A; �; F ) = (�; D��; �D2�)j�� = (��;M; v�; ��) = ���; �12D�; �12D��; �D2�� + (����)��j (5.12)where the bar \j" indiates setting � = 0. The fat that �� is a gauge-invariant omponent�eld orresponds to the fat thatw� = �D�D��� = �D2�� + (����)� (5.13)is a gauge-invariant super�eld. We �nd (ompare with �� in (5.1)),w� = (��; 0; �����F ��; 2(����)�) = �� + (���)�F�� + �2(����)� (5.14)Note that �D2� and w� orrespond to the kineti multiplets (3.1) and (3.15), respetively.{ 17 {



5.2 Co-dimension one super�eldsWe now proeed to deompose the 3D N = 1 super�elds � and �� into 2D N = (1; 0)super�elds transforming in the standard way under �+ susy. First, we write�Q = �+Q� + ��Q+; �� = P��; Q� � P�Q (5.15)where P� = 12 (1� 3). From (5.4), using � = (m; 3), we obtainQ� = Q0� + ���3; Q0�� � ��� � (m�+)��m; ��� � ����+Q+ = Q0+ � �+�3; Q0+� � �+� � (m��)��m; �+� � ����� (5.16)By de�nition, Q� is the generator of �+ susy transformations on 3D N = 1 super�elds,Æ+� = (�+Q�)�; Æ+�� = (�+Q�)�� (5.17)On the other hand, Q0� has the standard form for the generator of �+ susy transformationson 2D N = (1; 0) super�elds. The two operators are related as follows (as was also observedand used in [15℄), Q0� = Q� � ���3 = e+�+���3Q�e��+���3 (5.18)Therefore, writing � = e��+���3h bA+ �� b +i (5.19)we �ndÆ+� = (�+Q�)� = e��+���3(�+Q0�h bA+ �� b +i) = e��+���3h(Æ+ bA) + ��(Æ+ b +)i(5.20)so that the �+-dependent objets bA and b + de�ned by (5.19) are, indeed, 2D N = (1; 0)super�elds. The �+ expansions of these super�elds follow from (5.19),bA+ �� b + = e+�+���3� = (1 + �+���3)(A+ �+ � + �� + + �+��F ) (5.21)whih gives15 bA = A+ �+ �; b + =  + + �+(F + �3A) (5.22)15We denote the o-dimension one super�elds by the same letter as the orresponding lowest omponent,but with a hat on it. These lowest omponents an be obtained by setting �+ = 0 in the 3D super�eld, e.g.�(�+ = 0) = A+ �� +. { 18 {



The super�eld transformations Æ+ bA = (�+Q0�) bA and Æ+ b + = (�+Q0�) b + give rise to theomponent susy transformations (3.4).The o-dimension one super�elds an also be de�ned by projetion with superspae o-variant derivatives. To this extent, we deompose D� into D�� = (P�D)�,D� = D0� � ���3; D0�� � ��� + (m�+)��mD+ = D0+ + �+�3; D0+� � �+� + (m��)��m (5.23)and observe that D0+ = D+ � �+�3 = e+�+���3D+e��+���3 (5.24)Ating with D+� on � and setting �� = 0 then givesD+�j��=0 = D0+h bA+ �� b +ij��=0 = b + (5.25)where we used that�+���� = (P+)���Æ(P+)Æ� = (P+)�(P+)� = (P+)�� (5.26)As a result, the o-dimension one deomposition of � by projetion is given bybA = �j��=0; b + = D+�j��=0 (5.27)The deomposition of the 3D N = 1 spinor multiplet �� is quite similar. We �nd,�+ = e��+���3hb�+ � 1��bv�i�� = e��+���3hb�� + ��(M � bv3)i (5.28)where b�+ = �+ + �+(M + v3); bv� = v� + �+1[�+ + 1����℄b�� = �� + 1�+v+; (M � bv3) = (M � v3)� �+[�� � 1�+�+ + 2�3��℄ (5.29)Observing that �D0�b�+ =M + v3 + �+1�+�+, we further �ndM =M + �+h� 12�� + 1�+�+ � �3��i; bv3 = v3 + �+h12�� + �3��i (5.30)The multiplets b�+, b��, bv� and bv3 math those in (3.34). These multiplets an also be de�nedby projetion. For the following, we only note that��j��=0 = b��; (D+��+�)j��=0 = (P+1)��bv� (5.31)
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5.3 Co-dimension one deomposition of 3D LagrangiansIn 3D, an N = 1 susy Lagrangian is usually de�ned as the F -term of a salar super�eld,L = F = [�℄F = Z d2�� = �D2�j (5.32)Suh a Lagrangian transforms into a total �� = (�m; �3) derivative and is not susy in thepresene of a boundary. Using the following identity (that will be proven shortly),D2 = D�D+ + �3 (5.33)we �nd that the following modi�ed Lagrangian,L0 = F + �3A = [�℄F + �3(�j) = �D�D+�j = �D0� b +j�+=0 = [ b +℄f (5.34)is written as the f -term of a 2D N = (1; 0) spinor super�eld b + =  ++�+f . Therefore, under�+ susy, it transforms into a total �m derivative and is susy in the presene of a boundary atx3 = onst. This way we reover our \F +A" formula (2.2) and also obtain a way to rewritethe resulting modi�ed Lagrangian in terms of o-dimension one super�elds.To prove (5.33), we �rst projet (5.9) with P� to �nd thatD��D+� = (P�)�(P+)�ÆDDÆ= �(P��P�)���� � (P�P�)��D2 = (P�)��(�3 �D2) (5.35)where we used (P�)�� = �(P+)�� as follows from (P�)�� = 12(C�� � 3��). Contration withC�� gives C��D��D+� = D�D+ = �(P�)��(�3 �D2) = �(�3 �D2) (5.36)whih proves (5.33). Altogether, (5.9) deomposes asD��D�� = �(mP+)���m; D��D+� = (P�)��(�3 �D2)D+�D+� = �(mP�)���m; D+�D�� = (P�)��(�3 +D2) (5.37)from whih we �nd thatfD��;D��g = �2(P�m)���m; fD��;D+�g = 2(P�)���3 (5.38)Now we are ready to apply the formalism to spei� examples.
{ 20 {



5.4 3D Wess-Zumino modelWe start with the 3D Lagrangian,L = D2(�D2�)j = F 2 �  ��� +A����A (5.39)The modi�ed Lagrangian (5.34) is given byL0 = L+ �3(AF ) = D��D+�(�D2�)j (5.40)and orresponds to the bulk-plus-boundary ation (3.3). To write this Lagrangian in termsof o-dimension one super�elds, we have to move the D+� past all D� and then set �� = 0.Using D2 = D�D+ + �3; D+�D2 = �(mD�)��m �D+��3 (5.41)(the seond identity follows from (5.11) by projetion), we �ndL0 = D��h(D+��)�3�� ��3(D+��) + (D+��)(D�D+�)� �(mD�)��m�ij (5.42)Setting �� = 0 givesL0 = D0�� h b +��3 bA� bA�3 b +� + b +�(D0� b +)� bA(mD0�)��m bAij�+=0 (5.43)This Lagrangian is written in terms of 2D N = (1; 0) super�elds and is manifestly �+ susy(it varies into a total �m derivative) in the presene of a boundary at x3 = onst. The ELvariation, on the other hand, givesÆL0 = (EOM) + �3nD0�� h b +�Æ bA� bAÆ b +�ij�+=0o (5.44)We observe that bA and b + are onjugated super�elds, with respet to the \time derivative" �3,but the boundary variation is not in the \pÆq" form. It is however easy to see whih separatelysusy boundary Lagrangians an be added to bring the boundary piee of the EL variation tothe \pÆq" form. De�ningL0� = L0 � �3�; � = D0�� [ b +� bA℄j�+=0 = �A(F + �3A) +  � + (5.45)we �nd that the boundary piee of the EL variation and the orresponding Neumann (N) andDirihlet (D) boundary onditions areÆL0+ ) 2 b +Æ bA ) N : b + = 0; D : bA = onstÆL0� ) �2 bAÆ b + ) N : bA = 0; D : b + = onst (5.46)The boundary Lagrangian � orresponds to the one in (3.7).{ 21 {



Instead of (5.39), one ould start with an alternative 3D Lagrangian,L2 = �D2�12D��D���j = F 2 �  ��� � ��A��A (5.47)that di�ers from (5.39) by a total �� derivative. The modi�ed Lagrangian (5.34) is nowL02 = L2 + �3�12  � = �D��D+��D��D+��j (5.48)whih in terms of o-dimension one super�elds beomesL02 = D0�� h2 b +��3 bA+ (D0�� b +�) b +� + �m bA(mD0�)� bAij�+=0 (5.49)This way we get diretly a Lagrangian whose boundary piee of the EL variation is in the\pÆq" form. One an hek that L02 di�ers from L0+ by an (insigni�ant) total �m derivative.Adding a superpotential would not hange the form of the super�eld boundary onditions.To see this, let us onsiderL3 = �D2hW (�)ij = �12W 00(A)  +W 0(A)F (5.50)The modi�ed Lagrangian (5.34) is16L03 = L3 + �3hW (A)i = �D�D+hW (�)ij = D0�� h�W ( bA) b +�ij�+=0 (5.51)Obviously, adding this to L0� would not hange the BC (5.46). However, on the omponentlevel, one ould look for the form of BC with the auxiliary �eld F eliminated. Then thesuperpotential W would expliitly appear in the BC as in that ase 2F = �W 0(A).5.5 3D Chern-Simons modelThe super�eld 3D Lagrangian for the Chern-Simons model isL = �D2(w�)j = 2����v�F�� + ��+ ��(���) (5.52)The modi�ed Lagrangian (5.34) isL0 = L+ �3(��) = �D��hD+�w�ij (5.53)Using (5.13) and (5.41), we �nd thatD+�(w�) = D+�(��D2� + �����)= �(D+��)D2� + �(D+�D2�) + (D+��)����� ����(D+��)= �(D+��)�3�� ��3(D+��) + (D+��)3�3�� �3�3(D+��) + (no �3)= �2(D+��+)�3�� � 2���3(D+��+) + (no �3) (5.54)16The fat that the bulk superpotential W (A) is a natural boundary Lagrangian was observed in [16℄. In [5℄this was also derived using superspae methods, but the general philosophy of that work was to use BC for susy.Here we emphasize that the o-dimension one superspae methods give rise to bulk-plus-boundary ations thatare \susy without BC." { 22 {



where we dropped terms not involving �3. As a result,L0 = 2D��h(D+��+)�3�� + ���3(D+��+) + (no �3)ij (5.55)Setting �� = 0 and using (5.31), we arrive atL0 = 2D0�� hbv��3(1b��)� � (1b��)��3bv� + (no �3)ij�+=0 (5.56)This shows that bv� and b�� are the onjugated o-dimension one super�elds for the Chern-Simons model. Again, we an de�ne two Lagrangians for whih the boundary piee of theEL variation is in the \pÆq" form,L0� = L0 � 2�3�; � = D0�� hbv�(1b��)�ij�+=0 = v+v� + ���+ + ��1���� (5.57)The boundary piee of the EL variation and the super�eld Neumann and Dirihlet BC forthese Lagrangians are as follows,ÆL0+ ) 4bv�Æ(1b��) ) N : bv� = 0; D : b�� = onstÆL0� ) �4(1b��)Æbv� ) N : b�� = 0; D : bv� = onst (5.58)The boundary Lagrangian � orresponds to the one in (3.36).Note that deriving these BC in the omponent formulation is triky as one has to hooseappropriate independent bulk �elds (namely, �0� = ���1�+�++2�3��) as ditated by theway �elds appear in the o-dimension one super�elds.5.6 3D Maxwell modelThe super�eld 3D Lagrangian for the Maxwell model isL = �D2(ww)j = 4F��F �� + 2����� (5.59)The modi�ed Lagrangian (5.34) isL0 = L+ �3(��) = �D��D+�(2w+w�)j (5.60)where the projetions w�, as follows from (5.13), arew+ = m�m�� �D�D+�+w� = m�m�+ �D�D+�� � 2�3�� (5.61)To �nd onjugated o-dimension one super�elds in this model, we perform the o-dimensionone deomposition of the EL variation ÆL0 and look for terms with �3 ating on variations ofsuper�elds. Using D+�D�D+ = �2�3D+� + (no �3), we �nd thatD+�(w+Æw� + w�Æw+) = �2(D+�w+)�3Æ�� � 2w��3(D+��+) + (no �3Æ�) (5.62){ 23 {



Therefore, the EL variation of L0 readsÆL0 = (EOM) + 4�3nD��hw�Æ(D+��+) + (D+�w+)Æ��ijo (5.63)This shows that, unlike the Wess-Zumino and Chern-Simons models, here we have two pairsof onjugated o-dimension one super�elds and the EL variation is already in the \pÆq" form.To write this more expliitly, we need an analog of (5.31) for w�. First, we �nd thatw+ = �+ + �+F+� + 21��F�3 + �+��(�1���� + �3�+)w� = �� � ��F+� + 21�+F+3 + �+��(1�+�+ � �3��) (5.64)where F+� = �+v� � ��v+, F+3 = �+v3 � �3v+, F�3 = ��v3 � �3v� (or, equivalently,F+� = �2F01, F+3 = F03 +F13, F�3 = F03 � F13) with v� = v0 � v1 and �� = �0 � �1. Thisleads to the following deomposition,w+ = e��+���3hb�+ + 21�� bF�3iw� = e��+���3hb�� � �� bF+�i (5.65)where b�+ = �+ + �+F+�; bF�3 = F�3 + 12�+(���� � 21�3�+)b�� = �� + 21�+F+3; bF+� = F+� + �+1�+�+ (5.66)These super�elds an also be de�ned by projetion. We only need two of the projetions,w�j��=0 = b��; (D+�w+�)j��=0 = �2(P+1)�� bF�3 (5.67)Together with (5.31), this allows us to rewrite (5.63) asÆL0 = (EOM) + 4�3n�D0�� h(1b��)�Æbv� + 2 bF�3(1Æb��)ij�+=0o (5.68)This learly shows (b��; bv�) and ( bF�3; b��) as the two pairs of onjugated o-dimension onesuper�elds. (In omponents, we haveÆL0 = (EOM) + 4�3n2F+3Æv� + 2F�3Æv++��Æ(�+ + 1����) + Æ��(1���� � 2�3�+)o (5.69)Proving this on the omponent level is rather triky, as one has to de�ne �0+ = �++ 1����and �0� = �� � 1�+�+ + 2�3�� and onsider them as independent bulk �elds.)In the Maxwell model, we an de�ne four Lagrangians with di�erent sets of BC. Namely,L01 = L0; L02 = L0 + 4�3�1; L03 = L0 + 4�3�2; L04 = L0 + 4�3(�1 +�2) (5.70){ 24 {



with �1 = D0�� h(1b��)�bv�ij�+=0; �2 = D0�� h2 bF�3(1b��)�ij�+=0 (5.71)The Neumann BC in the four ases are, respetively,(b��; bF�3) = 0; (bv�; bF�3) = 0; (b��; b��) = 0; (bv�; b��) = 0 (5.72)Eah of these four sets of BC is losed under �+ susy. The �rst set is also gauge-invariant.6. ConlusionsIn this artile we have made a systemati study of boundary onditions (BC) in rigidlysupersymmetri (susy) models. We �rst analyzed the models in x-spae, and were able toonstrut susy bulk-plus-boundary ations whih were susy by themselves, without the needfor BC. We alled suh ations \susy without BC." To ahieve this, we had to add boundaryations whih ompleted the bulk ations, but whih themselves were not susy. In some aseswe ended up with models whih ontained boundary terms whih were linear in auxiliary�elds. Sine elimination of auxiliary �elds in suh models gave too strong BC, we addedseparately susy ations on the boundary whih aneled the terms linear in auxiliary �elds.In the tensor alulus approah, the key to the onstrution of susy bulk-plus-boundaryations was our extended F -term formula (or \F + A" formula): (2.2) in 3D and (2.5) in4D. In 4D, we found also an extended D-term formula (2.8). For onstruting separatelysusy boundary ations, we needed in addition to deompose bulk susy multiplets into a set ofo-dimension one multiplets out of whih, using standard tensor alulus methods, we ouldonstrut susy boundary ations.To onstrut the susy bulk-plus-boundary ations in superspae (whih we disussedexpliitly only for the 3D ase), we used the deomposition in (5.33),D2 = D�D+ + �3 (6.1)where D = D� are the usual superspae ovariant derivatives (with the spin index �), andD� = P�D with P� = 12(1 � 3). The modi�ed Lagrangian L0 = (�D2 + �3)�j for aomposite super�eld � onsisted of the usual bulk term F from �D2�j, and the boundaryterm A from �3�j whih is to be added on the boundary. So, starting from the LagrangianL0 = �D�D+�j = �D��D+��j, the nonsupersymmetri boundary term \A" whih ompletesthe bulk ation \F" is inluded from the start.The operators D+ = D+� were used to deompose a bulk super�eld whih depends on�+ and �� into a set of o-dimension one super�elds whih depend only on �+. While theomponents of a super�eld are de�ned by ating on it with D� and setting �+ = �� = 0, see(5.12), we de�ned the o-dimension one super�elds by ating on the parent super�eld withD+� and setting ��� = 0, see (5.27). This approah led naturally to the foliation of bulksuper�elds into o-dimension one (boundary) super�elds whih is similar to the deomposition{ 25 {



ofN = 2 super�elds into N = 1 super�elds. Using these o-dimension one super�elds we ouldonstrut separately susy boundary ations using the usual superspae methods. The susyovariant derivatives D0� of the lower-dimensional superspae (whih depend on �+ and �m,but not on �� and �3) were obtained by setting �� = 0 in D�.We onlude that the omponent approah and the superspae approah remain equiva-lent in the presene of boundaries.An issue we want now to onfront onerns the BC for Euler-Largange (EL) variations.In various ases we were able to add separately susy boundary ations suh that the ELvariation of the ation was of the form \pÆq" on the boundary. We thus imposed either p = 0or q = onst on the boundary as BC for on-shell �elds, in other words as the BC whih makethe �eld equations to a mathematially well-posed problem. Should one also use these BC foro�-shell �elds, for example in path integrals? We do not believe so as it is natural to preserve\susy without BC." If one does impose BC o�-shell, the boundary ation an be simpli�ed(and in our examples it would vanish), but the resulting bulk-plus-boundary ation wouldnot be \susy without BC." If the boundary terms in the EL variation of the ation are notof the form \pÆq" (but in the ases we studied they ould always be ast into this form byadding a suitable separately susy ation on the boundary), we believe that any set of BC,whih makes this boundary term vanish on-shell, is allowed. Taking any set of (on-shell) BCrequires, of ourse, to study their onsisteny and to onstrut the orbit of BC. This orbit ispartiularly simple in our \susy without BC" formulation: then the orbit is just a boundarysuper�eld (provided we keep enough auxiliary �elds).The results of the present artile for rigidly susy models in x-spae and superspae, andthose of [3℄ for loally susy models in x-spae, have settled some of the questions we had aboutsusy models with boundaries. We are now interested in takling the Horava-Witten modelin 11D [17, 18℄, and various (susy) AdS/CFT and Randall-Sundrum models in dimensionsgreater than four. In these ases full sets of auxiliary �elds are not known (or do not exist), andthus no omplete superspae formulations are available. Therefore, many of our onstrutionsare not diretly appliable. However, in our artiles we also studied the issue of eliminatingauxiliary �elds while preserving \susy without BC," and in many ases it was indeed possibleto do so. Therefore, we expet that some of the higher dimensional models an be made \susywithout BC."Aknowledgments. We thank the C. N. Yang Institute for Theoretial Physis atSUNY Stony Brook and Deutshes Eletronen-Synhrotron DESY in Hamburg for hospitalityextended to us during visits related to this projet. The researh of D.V.B. was supportedin part by the German Siene Foundation (DFG). The researh of P.v.N. was supported bythe NSF grant no. PHY-0354776. { 26 {
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