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haoti
 in
ation and moduli stabilisationS C Davis1 and M Postma2;31 Servi
e de Physique Th�eorique, Orme des Merisiers, CEA/Sa
lay, 91191Gif-sur-Yvette Cedex, Fran
e2 DESY, Notkestra�e 85, 22607 Hamburg, Germany3 Nikhef, Kruislaan 409, 1098 SJ Amsterdam, The NetherlandsE-mail: sdavis�lorentz.leidenuniv.nl, postma�mail.desy.deAbstra
t. Chaoti
 in
ation predi
ts a large gravitational wave signal whi
h 
an betested by the up
oming Plan
k satellite. We dis
uss a SUGRA implementation of
haoti
 in
ation in the presen
e of moduli �elds, and �nd that in
ation does not workwith a generi
 KKLT moduli stabilisation potential. A viable model 
an be 
onstru
tedwith a �ne-tuned moduli se
tor, but only for a very spe
i�
 
hoi
e of K�ahler potential.Our analysis also shows that in
ation models satisfying �iWinf = 0 for all in
ationse
tor �elds �i 
an be 
ombined su

essfully with a �ne-tuned moduli se
tor.Keywords: in
ation, 
osmology of theories beyond the SM1. Introdu
tionIn 
haoti
 in
ation models the energy s
ale of in
ation is high, typi
ally of the orderof the grand uni�ed s
ale [1℄. As a 
onsequen
e these models give a large tensor
ontribution to the density perturbations. This makes them testable by 
urrent andfuture CMB experiments, most notably by the up
oming Plan
k satellite. However,
haoti
 in
ation is not easy to implement in a supergravity theory [2, 3℄. The in
lusionof other high energy physi
s, su
h as moduli �elds, 
reates further problems [4, 5, 6, 7℄.Naturally, any realisti
 in
ation model must be part of some full theory, 
ontaining allknown physi
s. The e�e
ts of other se
tors of the theory on in
ation 
an not be ignored.As shown by Lyth [8℄ in the 
ontext of slow-roll in
ation, a measurable tensor moderequires the in
aton �eld to 
hange by superplan
kian values during in
ation. Examplesof su
h \large �eld models" of in
ation are 
haoti
 and natural in
ation [9℄. At presentno string theory derivation of a large �eld in
aton model exists. The displa
ement of thein
aton in brane models of in
ation is bounded by the size of the 
ompa
ti�ed spa
e,and in all known models less than the Plan
k s
ale [10, 11℄. In all examples of modularin
ation the in
ationary s
ale is too low for an appre
iable tensor signal [5, 6℄. N-
ation [7, 12, 13℄, the stringy realization of assisted in
ation [14℄, gives rise to appre
iabletensor modes. However, it is not 
lear whether all of the underlying assumptions aresatis�ed in these models [5℄. Despite the negative results, so far there is no \no-go"theorem stating that string theory 
annot give large �eld in
ation. It may very well be
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SUGRA 
haoti
 in
ation and moduli stabilisation 2that it 
an be realized in 
orners of the lands
ape not yet explored { after all, the sear
hhas only just begun.In this paper we 
onsider a N = 1 SUGRA implementation of 
haoti
 in
ation,and analyse what happens when it is 
ombined with a KKLT-like moduli se
tor. Inour set-up the in
aton and moduli se
tor only intera
t gravitationally. Our approa
his phenomenologi
al in that we analyse the SUGRA e�e
tive �eld theory, but do notattempt to derive the model from string theory. It should be noted in this 
ontextthat moduli �elds are not unique to string theory. Flat dire
tions abound in any SUSYtheory. If SUSY is broken in some hidden se
tor by non-perturbative physi
s, the modulise
tor has the same qualitative properties as the KKLT model, and our results apply.As mentioned, it is not easy to 
onstru
t a model of 
haoti
 in
ation in the presen
eof additional moduli �elds, even when they are stable. First of all, there is the �-problem,present in all models of SUGRA in
ation [15, 16℄. The potential during in
ation is of theform V � eK ~V , whi
h for a 
anoni
ally normalised in
aton �eld ' gives rise to a largein
aton mass m2' � H2 ruining slow-roll in
ation. This 
an be solved by �ne-tuningthe K�ahler potential so that the in
aton mass is a

identally small. More elegantly, thein
aton mass 
an be prote
ted by symmetries. In this paper we will introdu
e a shiftsymmetry for the in
aton �eld that leaves the K�ahler potential invariant to solve the�-problem [3, 17, 18℄.In
lusion of moduli �elds in the system gives rise to a whole new set of obsta
les toimplement in
ation. The moduli �xing potential breaks supersymmetry. Consequentlythere are soft 
orre
tions to the in
aton potential. The soft terms are small in the limitof low s
ale SUSY breaking, with a small gravitino mass m23=2 . H2. At the sametime, the requirement that the moduli �elds remain stabilised in their minimum duringin
ation, and do not run away to in�nity, implies that the moduli masses should besuÆ
iently large. This requirement is usually expressed as a 
onstraint on the Hubbleparameter during in
ation H2 � m2mod [19℄. In a generi
 potential m2mod � m23=2 andwithout �ne-tuning (in addition to that required to set the 
osmologi
al 
onstant tozero) these requirements are at odds with ea
h other. This is for example the 
ase inthe original KKLT model [20℄. It is diÆ
ult to embed large �eld in
ation in su
h a setup. We see there is tension between keeping the soft 
orre
tions to the in
aton potentialsmall, and keeping the moduli �elds �xed during in
ation. This 
an be eased if themodulus se
tor is �ne-tuned so that the modulus and gravitino masses are no longer ofthe same order of magnitude. This is a
hieved expli
itly in the Kallosh-Linde (KL) set-up [19℄, whi
h uses a ra
etra
k potential for the modulus �eld. In this 
ase, parametersare tuned so that the modulus mass is mu
h larger than the gravitino mass. Havingthe Hubble 
onstant during in
ation between these mass s
ales m2mod � H2 � m23=2o�ers a way to solve both problems. Note that it also allows the gravitino mass to bein the phenomenologi
ally favoured TeV range, without the need for low s
ale in
ation(in fa
t, this was the original motivation for KL).In this paper we will analyse 
haoti
 in
ation in the presen
e of a single modulus



SUGRA 
haoti
 in
ation and moduli stabilisation 3�eld with a no-s
ale K�ahler potential. The models we will study have the superpotentialW = Wmod(T ) +m�1�2 : (1)We 
onsider both a generi
 KKLT potential and a �ne-tuned KL potential. Theabove in
aton superpotential was �rst proposed in [2℄. Refs. [4, 5, 6℄ added a modulise
tor to the set-up. We extend their results by an in-depth dis
ussion of the e�e
tsof the moduli dynami
s, with an emphasis on �nding the 
onditions for su

essfulin
ation. As expe
ted, in
ation does not work in the KKLT set-up. Whether KLworks depends sensitively on the K�ahler potential for the in
aton �elds. Although themoduli 
orre
tions are small after in
ation due to the �ne-tuning in the KL set-up, thisis not ne
essarily true during in
ation. During in
ation the modulus �eld T is slightlydispla
ed from its post-in
ationary minimum, disrupting the minute �ne-tuning of thepotential, with potentially large e�e
ts. Indeed, 
onsider the following K�ahler potentialsK1 = � 3 log[T + �T ℄� 12(�1 � ��1)2 + �2 ��2 ; (2a)K2 = � 3 log[T + �T ℄� 12(�1 � ��1)2 � 12(�2 � ��2)2 ; (2b)K� = � 3 log �T + �T � 13(T + �T )� �2 ��2�� 12(�1 � ��1)2 : (2
)All K�ahler potentials have a shift symmetry for the in
aton �eld �1 to solve the �-problem. However, as we will show, only K1 
ombined with the KL modulus se
torgives a viable model. For all the other models, independent of modular weight �, the
oupling between the modulus and in
aton se
tors leads to instabilities in the potential,with a runaway behaviour for some of the �elds. It is thus 
ru
ial to take the dynami
sof the modulus �eld during in
ation into a

ount for a 
orre
t analysis of the model.This paper is organised as follows. The next se
tion provides the ba
kgroundmaterial, with a 
on
ise summary of the KKLT and KL moduli stabilisation potential,as well as a dis
ussion of SUGRA 
haoti
 in
ation without moduli. The rest of the paperdis
usses the 
ombination of 
haoti
 in
ation and moduli �elds. In se
tion 3.1 we studythe model with K2 (2b). Although in
ation does not work, it is useful to analyse why.In se
tion 3.2 we 
onsider the model with K1 (2a). As mentioned above, this is a viablemodel of 
haoti
 in
ation. We dis
uss the in
ationary predi
tions, in parti
ular whetherthe supergravity 
orre
tions 
an leave a signature in the CMB. Finally, in se
tion 4 weuse the insight gained in the previous se
tions to dis
uss more generi
 
ombinations of
haoti
 in
ation and KL moduli stabilisation, in
luding models with (2
). We end withsome 
on
luding remarks.Throughout this arti
le we will work in units with the redu
ed Plan
k massmpl = 1=p8�GN set to unity.
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haoti
 in
ation and moduli stabilisation 42. Ba
kground2.1. Moduli stabilisationConsider a single volume modulus with a no-s
ale K�ahler potential K = �3 log[T + �T ℄.The modulus �eld is stabilised in an AdS minimum by a 
ombination of 
uxes [21℄and non-perturbative physi
s; an uplifting term is added to end up with a Minkowskiva
uum.2.1.1. KKLT In the original KKLT set-up the superpotential is of the form [20℄W = W0 + Ae�aT : (3)The �rst term 
omes from integrating out the 
omplex stru
ture moduli, the se
ondoriginates from non-perturbative e�e
ts. The potential VF = eK [WIKI �JW �J � 3jW j2℄has a SUSY AdS minimum.The lifting term is of the form(Vlift)1 = E(T + �T )n ; or (Vlift)2 = EeK ; (4)with E a 
onstant whi
h 
an be tuned to get a zero 
osmologi
al 
onstant. (Vlift)1applies to D-term lifting (n = 3) [22, 23℄, or lifting by supersymmetry breaking anti-D3-branes lo
ated in the throat (n = 2 ) or bulk (n = 3) [20℄. Using F -terms to uplift,the e�e
tive potential is of the form (Vlift)2. An e�e
tive F -lifting term, as opposed toproperly adding a 
ontribution to W and 
al
ulating things through, is only a goodapproximation if the SUSY breaking se
tor is a small 
orre
tion to the potential andde
ouples [19, 24℄. This is not the 
ase for KKLT, but 
an be done in a KL set-updis
ussed below. This does not mean that the KKLT potential 
annot be uplifted usingF -terms, but just that it 
annot be des
ribed in su
h a simple way as in (4). The detailsof the uplifting term do not really matter for in
ation; we 
he
ked that using di�erentlifting terms only give quantitative di�eren
es, and in parti
ular it 
annot save a si
kmodel or destroy a healthy one. For de�niteness we take (Vlift)1 with n = 2 in thefollowing.Without loss of generality we 
an take W0 to be real and negative. The potentialis then minimised for 
 = 0, where we have de
omposed the �eld into its real andimaginary parts T = � + i
. The mass matrix ismij = gik(�k�jV � �lkj�lV ) + 2�3 (�� + �
)V (5)with gij the metri
 on �eld spa
e spanned by real �elds de�ned by Lkin =(1=2)gij���i���j.The derivation of the non-perturbative terms in (3) is only valid for a�0 � 1. In thislimit, approximate analyti
 expressions 
an be found for the mass s
ales [25℄. The SUSYAdS solution before lifting has DTW = 0, whi
h implies WT � 3W=(2T ). This relationsurvives the lifting pro
edure. It then follows that Vlift � 3m23=2, where m3=2 = eK=2jW jis the gravitino mass. The height of the barrier preventing the modulus from rolling to
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haoti
 in
ation and moduli stabilisation 5in�nity is also 3m23=2, and is lo
ated 
lose to � = �0 + (1=a) log(2a�0=n). FurthermoreW � W0. The moduli masses m2� � m2
 � KT �TVT �T � (2a�0m3=2)2 are somewhat largerthan the gravitino mass. For future referen
e we note that WTT � �3m�=p2�0.2.1.2. KL Ref. [19℄ 
onstru
ted a �ne-tuned modulus potential with m3=2 � m�.Then for m3=2 � H � m� one expe
ts the soft 
orre
tions to the in
aton potential tobe small, while the modulus �eld remains �xed during in
ation. This set-up allows forlow-s
ale SUSY breaking without the ne
essity for low-s
ale in
ation.The idea is to 
onstru
t a potential that has a supersymmetri
 Minkowski va
uumwith W = WT = 0. Perturbing this potential slightly, by order m23=2, gives an AdSminimum with a small negative 
osmologi
al 
onstant. After uplifting, the result isa small gravitino mass but a large barrier separating the minimum from the runawayminimum at in�nity (whi
h requires a large modulus mass). Lifting 
an be F -term,e.g. by introdu
ing an O'Raifeartaigh se
tor [26℄ as in [19℄, or by SUSY breaking termsusing a throat D3-brane. Implementing a KL-style set-up with D-term lifting does notseem possible, as is produ
es a barrier height of similar size to m23=2.The simplest potential that does the tri
k is the modi�ed ra
etra
k potentialWmod =W0 + Ae�aT � Be�bT : (6)This has a SUSY Minkowski minimum with W = WT = 0 for �ne-tuned parametersW0 = w0 � �A�bBaA�a=(a�b) +B �bBaA�b=(a�b) ; (7)and with the modulus stabilised at�0 = 1a� b ln�aAbB� : (8)In the limit a�0; b�0 � 1, the maximum of the potential is lo
ated near to � =�0 + ln(a=b)=(a � b). For (a � b) � a, its height is then approximately W 20 a2=(6�0e2).This is of order m2T =(a�0)2, a relation whi
h in
identally also holds for the KKLT set-updis
ussed before.To introdu
e a non-zero gravitino mass we perturb W0 = w0 + Æ with Æ � 1.Then E � Æ2;W � WTT � Æ. And thus the gravitino mass m3=2 � eK=2Æ 
an bemade arbitrarily small. On the other hand VT �T � eKW 20 and thus the moduli mass isinsensitive to Æ. The required hierar
hy m23=2 � m2� is obtained when Æ2 � KT �TW 20 .For future referen
e we also note that WTT is not smallW 2TT = 3�V�� +O(Æ2) (9)at � = �0. In the a�0 � 1 limit, a similar relation also holds for KKLT: W 2TT � 3�V��.2.2. Chaoti
 in
ation without a moduli se
torIn the simplest model of 
haoti
 in
ation the potential is just a monomial, for examplein quadrati
 
haoti
 in
ation [1℄V = 12m2'2 (10)
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haoti
 in
ation and moduli stabilisation 6with ' the 
anoni
ally normalised real in
ation �eld. Su
h a model 
an be realized ina supersymmetri
 theory with a superpotential [2℄W = m�1�2 ; (11)and de�ning the in
ation �eld via ' =p(j�1j2 + j�2j2)=2. The equations des
ribing theperturbation spe
trum are summarised in Appendix A, here we just mention the mainresults for quadrati
 
haoti
 in
ation. In
ation ends for 'e ' p2. Observable s
alesleave the horizon N� � 60 e-folds before the end of in
ation when '� ' 2pN� � 15:5.Here and in the following the subs
ript � denotes the 
orresponding quantity duringobservable in
ation. The spe
tral index is ns � 1 ' �2=N� � 0:967. Normalisation ofthe power spe
trum to the observed values determines the mass s
alem ' 1:8�1013GeV.For future referen
e we also give the slow roll parameters:�� = �� � 8:4� 10�3 : (12)More generi
ally the potential will be some polynomial.2.2.1. Supergravity embedding Embedding 
haoti
 in
ation in supergravity gives
orre
tions to the above SUSY model. Expli
itly:VF = eK �VSUSY + 2Re[K�{jK�{ �W�jW ℄ + [K�{jK�{Kj � 3℄jW j2� : (13)model 1 The model is de�ned byK1 = �12(�1 � ��1)2 + �2 ��2 ; W = m�1�2 : (14)The K�ahler potential is invariant under a shift symmetry for the in
aton �eld �1 !�1 + 
, whi
h solves the �-problem. The shift symmetry is broken expli
itly by thesuperpotential, allowing for a small but �nite in
aton mass.We introdu
e the real 
anoni
ally normalised �elds �i = ('i + i�i)=p2z. It 
an be
he
ked that the potential is minimised for �i = 0 for parameter values of interest. Thepotential is thenVF = e'22=2 12m2�'21 �1� '222 + '424 �+ '22� '2!0�! 12m2'21 : (15)For '2 = 0, whi
h is a stable minimum, all supergravity 
orre
tions vanish and weretrieve quadrati
 
haoti
 in
ation (10). Sin
e the potential is steeper in the '2-dire
tion(no shift symmetry), even with general initial values for both �elds '2 will be rapidlydamped to zero, and in
ation 
an 
ommen
e. A potential problem with this model isthat for small �2 values, the masses m2'2 = m2�2 = m2 are also light during in
ation.It was re
ently 
laimed that su
h a model may lead to large non-Gaussianities duringpreheating [27℄.z Arguably it is more natural to take �2 = ('2=p2) exp(i�=p2) for the 
anoni
ally normalised �eld,but sin
e Im�2 = 0 in the minimum there is no di�eren
e. For numeri
s the former de�nition is moreuseful as it does not restri
t '2 to positive values.
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haoti
 in
ation and moduli stabilisation 7model 2 As a se
ond expli
it example we 
onsider a model that is symmetri
 underthe inter
hange �1 $ �2, obtained by also introdu
ing a shift symmetry for �2 in theK�ahler K2 = �Xi=1;2 12(�i � ��i)2 : (16)De
omposing again �i = ('i + i�i)=p2 and setting �i = 0 in the minimum, the F -termpotential is VF = 12m2 �'21 + '22 � 32'21'22� : (17)For '2 = 0 the potential is that of quadrati
 
haoti
 in
ation. However '2 is not astable minimum for large '1 values. Although �2V = 0 at '2 = 0, the se
ond derivative�22V = (m2=4)(4�6'21) turns negative for �eld values '1 > 2=3 as required for in
ation.Instead of rolling towards the minimum 'i = 0, the �elds will run o� to 'i !1. Thenegative quarti
 term in VF is the 
ause of this instability. The quarti
 term 
omesfrom the last term in (13). Adding a no-s
ale modulus with K = �3 ln(T + �T ), whi
hhas KTKT �TK �T = 3 (but for now without T appearing in the superpotential), the term
an
els. The resulting potential is VF = (1=2)(T + �T )�3m2('21+'22), perfe
t for 
haoti
in
ation provided T is �xed somehow. This model might therefore work with a no-s
alemoduli se
tor, and we will look at it in some detail in the next se
tion.3. Chaoti
 in
ation with a modulus se
torWe now 
ombine in
ation with the modulus stabilisation se
tor [5℄. To do so we simplyadd the respe
tive K�ahler and superpotentialsK = �3 ln(T + �T ) +Ka(�i; ��i) ; W = ei#Wmod(T ) +m�1�2 ; (18)withKa, a = 1; 2 the K�ahler potential of the in
ation model in the absen
e of the moduli(14), (16). Wmod(T ) is the non-perturbative superpotential that stabilises the volumemodulus; either a 
onstant plus a single exponential as in KKLT (3), or a modi�edra
etra
k potential with �ne-tuned parameters as in KL (6). We will take Wmod andm to be real. Any relative phase between the in
ation and moduli se
tors phase is
ontained in #.To assure that the modulus �eld does not run o� to in�nity during in
ation it hasto be suÆ
iently heavy:m2T � H2� = 13V� � 10�9: (19)To get the se
ond expression above we used the COBE normalisation for the e�e
tivein
aton mass eKm2 � 6� 10�11: (20)
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haoti
 in
ation and moduli stabilisation 83.1. Model 2First 
onsider Model 2 with a K�ahler (16) whi
h is invariant under shifts of both �eldsin the in
aton se
tor. As mentioned in the introdu
tion, this model does not work.However, it is interesting to see why.Using (16), (18) the potential 
an be written as V = Vmod(T ) + Vinf(T; �i) +Vmix(T; �i), with Vmod(T ) the moduli potential after in
ation when �i = 0, Vinf(T; �i) thein
aton potential in the limitWmod ! 0, and Vmix(T; �i) the remaining terms mixing themodulus and in
aton se
tor. Introdu
e the real �elds �i = ('i+i�i)=p2 and T = �+i
.In the regime of interest the potential is minimised for �i = 0. ThenVmod(T ) = 16� �jWT j2 � 3Re[WT �Wmod℄� � + Vlift(�) ;Vinf(T; 'i) = 1(2�)3m22 ('21 + '22) ;Vmix(T; 'i) = 1(2�)3mM(T )2 '1'2 ; (21)with M(T ) = �4�Re[ei#WT ℄ ; (22)Vmix is the 
orre
tion to the in
aton potential due to the presen
e of the moduli se
tor.We will 
onsider generi
 phases # for now. Although �ne-tuning the phase 
an make the
orre
tion term Vmix arbitrarily small, this is not enough to save in
ation. As we willsee shortly [see (24) below℄ keeping the modulus T as a dynami
al �eld during in
ationwill lead to instabilities in the in
aton potential, independently of #.In the KKLT s
enario making the modulus heavy requires a large WT , and the
orre
tion term is large, ruining in
ation. For the model to work the 
orre
tion termshould at least satisfy M < m . Then in the va
uum after in
ation when Vmod = 0,the in
aton mass eigenstates m2� = m(m �M) are all positive de�nite. In the KKLTs
enario WTT � W0, and M 
an be made small de
reasing W0. However, this alsolowers the height of the barrier (3m23=2 � W 20 ) separating metastable minimum from therunaway minimum at in�nity. For generi
 phases there is no parameter spa
e where themoduli 
orre
tions are smallM < m yet the volume modulus remains �xed m23=2 � H2.This result is independent of the spe
i�
 form of the lifting term.But the KL approa
h o�ers hope. A large stabilising modulus mass requires WTTlarge while M / TWT � m3=2 
an be arbitrary small. Indeed, after in
ation when�i = 0 the moduli and in
aton se
tor de
ouple in the mass matrix (5), and by 
hoosingsuitable parameters, m2T � m2' � m23=2 is possible. We will give a numeri
al example.Take W0 = w0+ Æ, see (7), with A = 2; B = 2:4; a = 0:2; b = 0:25. Then W0 = �0:079,and the modulus potential after in
ation is minimised for � = 8:1 and 
 = 0. Thein
aton mass s
ale is set by the COBE normalisation m = 5� 10�4 (20). The modulimasses m2� � m2
 � 6�10�7 are mu
h larger than the nearly degenerate in
aton massesm2inf � 6 � 10�11. The gravitino mass 
an be made arbitrarily small by taking Æ ! 0.
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haoti
 in
ation and moduli stabilisation 9E.g. for Æ = 10�10 we have m23=2 � 2 � 10�14 and E = 5 � 10�17. Then the moduli
orre
tions in Vmix are very small as well M=m � 10�10.This looks all great, but the above masses are evaluated after in
ation, when 'i = 0and the mass matrix of the modulus and in
aton se
tor de
ouple. During in
ation the
orre
tion term, the mixing between the modulus �eld and the in
aton �elds givesrise to a ta
hyoni
 mode. Consider for example '1 = 10 and all other �elds at theirinstantaneous minima. The moduli masses are pra
ti
ally the same as in the va
uum,but the in
aton mass eigenstates (whi
h have a small admixture of the modulus) arenow m2' = f�9 � 10�9; 5 � 10�9; 9 � 10�9; 6 � 10�11g. It is not enough to have aneigenstate with m2' � H2, the other mass eigenstates should be non-ta
hyoni
 as well.The origin of the ta
hyoni
 instability lies in the fa
t that for non-zero 'i the massmatrix has large o�-diagonal terms / (Vmix)'� / 'W��. Although W; W� � m3=2are small in KL, W�� / m� is not (9). There is related e�e
t as well: the T -�eld isdispla
ed from the minimum. Even though this displa
ement is small, as a result the�ne-tuned 
an
ellation (tuning at the level Æ = 10�10 in our numeri
al example) in theKL minimum no longer applies, and WT 
an be mu
h larger than it is after in
ation.As a result of all this the potential develops an instability, no matter how small thegravitino mass in the post-in
ationary va
uum. The e�e
tive potential as a fun
tion of'1; '2 and with all other �elds at their instantaneous minima is shown in �gure 1.The appearan
e of the instability 
an be made expli
it. As remarked above, Tis displa
ed from the post-in
ationary minimum. Following [25℄ to estimate the e�e
tof this we expand the potential during in
ation T = �0 + Æ� + iÆ
 with T = �0 thepost-in
ationary minimum. ThenV = Vinf(�0; 'i)+ XxA=�;
��AVmix(�0)ÆxA + 12�2AVmod(�0)(ÆxA)2�+O�(ÆxA)3; 1�0 ; Æ� (23)where we have used that Vmod(�0) = V 0mod(�0) = 0, ���
Vmod = 0 (the mass matrixis diagonal in xA = f�; 
g), and we only kept the dominant terms. Minimising thepotential with respe
t to ÆxA givesÆxA = � �AVmix�2AVmod ) ÆV = XxA=�;
��12 (�AV mix)2�2AVmod � : (24)Using the expli
it form for Vmix (21) this evaluates to a potential during in
ationVe� = Vinf + ÆV withVe� � 12 m2(2�0)3 �'21 + '22 � 
os2(#) W 2TT(2�0)�2�Vmod'21'22 � sin2(#) W 2TT(2�0)�2
Vmod'21'22�� 12 m2(2�0)3 �'21 + '22 � 32'21'22� ; (25)with # the phase between the two se
tors (18). To get the bottom expression we usedrelation (9), and the near degenera
y �2�Vmod = �2
Vmod + O(Æ2) of the moduli masses.We see the appearan
e of a destabilising quarti
 term. The mass m22 / 1 � (3=2)'21be
omes ta
hyoni
 during in
ation when 'i = O(10), and the potential develops an
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aled units) with � at instantaneous minimum for model1 (left) and model 2 (right top).instability. It is no use tuning the relative phases to set Vmix ! 0; the phase onlydetermines whether it is the displa
ement of � or 
 that gives the largest 
orre
tion,but its overall size is phase-independent. For the above analysis to be valid, we needÆxA � �0, implying m'1'2 � m��3=20 . This will hold if the moduli stabilisation s
aleis mu
h higher than the in
ationary s
ale.Ref. [4℄ studied a similar model of SUGRA 
haoti
 in
ation 
ombined with a KKLTmoduli se
tor (they set '1 = '2), and found viable in
ation for some parameters. Theirmodel avoids the instabilities 
oming from the variation of T , although only for a narrowrange of the ratio m=m�. Our results (23-25) do not apply to their model be
ause intheir 
ase the higher order terms, both ÆT=T and 1=T , are not small. However this
omes at the 
ost of �ne-tuning. Furthermore, the value of � at the KKLT minimumdoes not satisfy �0 � 1, and so the parameters used are on the borderline of the validityof the model. Even so, this does give a 
on
rete example of how to evade (23) and itsimpli
ations. In this paper we are more interested in 
haoti
 in
ation models that workfor general m=m�, without the need for tuning, and will des
ribe su
h a setup in thenext subse
tion.To 
on
lude, although the in
aton and modulus se
tors 
an be nearly de
oupledin the va
uum after in
ation in the KL set-up, this is not true during in
ation. Thereason is that the (o�-diagonal) 
orre
tions to the mass matrix / (�iWinf)WTT are stilllarge, leading to a ta
hyoni
 dire
tion in the potential. To see this e�e
t, it is essentialto treat the modulus T as a dynami
al �eld during in
ation. Even though the modulusdispla
ement during in
ation is small, it gives a large 
orre
tion to the in
aton potentialwhi
h is 
ru
ial for a 
orre
t analysis of the model.
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tion we dis
uss model 1 (14) 
ombined with a moduli se
tor. As we willsee, moduli 
orre
tions do not destroy in
ation, but give small 
orre
tions whi
h arepotentially measurable. Comparing with model 2 dis
ussed in the previous se
tion maygive further insight into what is needed for a su

essful in
ation model in the presen
eof moduli.In
luding a moduli se
tor the potential for model 1 (14), (18) is V = Vmod+Vmix+Vinf withVmod = e'22=26� �jWT j2 + 3Re(WT �Wmod)� � + Vlift ;Vinf = e'22=2(2�)3 12m2�'21�1 + 12'22�2 + '22� ;Vmix = e'22=2(2�)3�12mM'1'2 +mRe[ei#Wmod℄'1'2�1 + '222 � + '222 jWmodj2� ; (26)with M given in (22). We have set �i = 0, their values at the minimum during andafter in
ation in the parameter regime of interest.The KKLT s
enario does not work, due to the usual argument that it is not possibleto keep the moduli �xed during in
ation while keeping the soft 
orre
tions to in
ationsmall. Let us thus 
on
entrate on the �ne-tuned KL model. One 
an 
al
ulate thee�e
tive potential, taking into a

ount the displa
ement of T during in
ation, analogousto (23){(25). The result is similar (note that the e�e
ts of all extra terms appearing inVmix in model 1 
ompared to model 2 give 
ontributions / Wmod or / W 0mod and aresmall in the KL set-up):V = Vinf + ÆV � 12 m2(2�)3 e'22=2 "'21�1 + 12'22�2 + '22 � 32'21'22# (27)The di�eren
e between model 1 and 2 is that in model 1 the �eld '2 appears expli
itlyin the K�ahler, and 
onsequently m22 re
eives additional stabilising 
ontributions. Thisis just enough to keep the '2-mass positive de�nite m22 � m2=(2�0)3; the '1-dependent
ontribution to the mass from Vinf and ÆV 
an
els exa
tly. A plot of the potential asa fun
tion of '1; '2 and all other �elds at their instantaneous minimum is shown in�gure 1, whi
h 
on�rms that the potential is stable during in
ation; the subdominantterms negle
ted in the analysis (27) do not a�e
t the stability.Thus the moduli se
tor does not destabilise the in
ationary potential, and model1 provides a viable model of SUGRA 
haoti
 in
ation. Ve� redu
es to the quadrati

haoti
 in
ationary potential in the limit '2 ! 0. But '2 = 0 is not a minimum duringin
ation when '1 6= 0: �2V j'2=0 = m'1(Wmod � (T + �T )WT )=(T + �T )3 6= 0. With KLmoduli stabilisation the instantaneous minimum of '2 is 
lose to zero. As a result thepotential is not exa
tly quadrati
 but 
lose to it. To see whether these small deviationsare dete
table, we have integrated the equations of motion during in
ation numeri
ally.The relevant equations are given in Appendix A. The results are independent of the
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onditions as long as '1 is large enough for 60 e-folds of in
ation; '2 (no shiftsymmetry) and T are heavy and will soon settle in their instantaneous minimum.Consider a parti
ular example with parameters A = 1; B = 1:4; a = 0:2; b =0:3; Æ = 10�8. Then from (7) W0 ' �0:076, and E ' 2 � 10�17 is tuned to get aMinkowski va
uum after in
ation. The in
aton mass m = 3:9 � 10�4 is set by theCOBE normalisation. The �eld evolution as a fun
tion of number of e-folds N sin
e thebeginning of in
ation is shown in �gure 2. We started with '1 = 20 and the other �eldsinitially at their instantaneous minimum. In
ation ends for N ' 102, observable s
alesleave the horizon at N ' 42, when ('1)� = 15:4.In the va
uum after in
ation the in
aton and modulus masses are well separated:m2T = 3:4� 10�5, and m2inf = 4:2� 10�12. The gravitino mass m23=2 = 3� 10�12 is smallas a 
onsequen
e of small Æ. The hierar
hy is preserved during in
ation. At COBEs
ales the modulus mass is m2T = 3:5� 10�5, the lowest mass eigenstate (predominantlythe shift symmetri
 '1 with a small admixture of '2 and �) is m21 = 3:8� 10�12, whilethe other in
aton �eld is heavier m22 = 3:8 � 10�9. The two in
aton mass eigenstatesm2i =H2 with i = 1; 2 are shown in �gure 2. The gravitino mass during in
ation ism23=2 = 4:6� 10�7.In all of parameter spa
e (with one ex
eption to be dis
ussed shortly) m22 >0:1 � 1H2. Although all �elds evolve during in
ation, single �eld in
ation is a goodapproximation. We 
al
ulated the slow-roll parameters proje
ted along the in
atontraje
tory, and 
ompared them with the usual slow-roll parameter in terms of derivativesof the potential [4, 31, 32, 33℄; the di�eren
e is less than one per
ent. See Appendix Afor the relevant de�nitions.The result for the perturbation spe
trum are as follows. The spe
tral index in all ofparameter spa
e is ns = 0:967, the same value as in quadrati
 in
ation. The potentialis not purely quadrati
 though. In �gure 3 the slow-roll parameters are shown as afun
tion of (b� a) (the results are fairly independent on absolute s
ale a). In the limitof large (b � a) the slow-roll parameters approa
h �� ' �� ' 0:0083 as for a purelyquadrati
 potential (12), but they deviate for small (b� a). If tensor perturbations areobserved in the future these deviations may be measured, sin
er = 16�; nT = �2�: (28)This breaks the degenera
y between a purely quadrati
 potential and the 
urrent modelwith small (b � a). Figure 3 shows the slow-roll parameters as a fun
tion of B=A, fora = 0:2; b = 0:3 and a = 0:2; b = 0:5 (lower and upper line). The 
on
lusion is thatthe deviations from a purely quadrati
 potential 
an be large in the limit (b� a) ! 0,a! 0 and large B=A. This is exa
tly the limit for whi
h �0 (8) is large.The model works for Æ . 10�4. For larger Æ, i.e. for a modulus se
tor with largerdeviations from the Minkowski SUSY minimum, the mass eigenstates of the in
atonand moduli se
tor 
an no longer be separated, and the model is plagued by the sameproblems as the KKLT set-up. In the region Æ � 10�4 � 10�6 there are parametersfor whi
h iso
urvature 
u
tuations 
an be large. An example is shown in �gure 4,
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ation and moduli stabilisation 14for parameters A = 1; B � 1:2; a = 0:5; b = 0:66; Æ = 10�5. The reason is that forlarger Æ the �eld '2 
rosses the origin during the in
ationary evolution. Around theorigin the �eld is light m22 � H2. If this 
rossing happens around COBE s
ales, largeiso
urvature 
u
tuations are produ
ed. This is the 
ase for our numeri
al example,where the origin 
rossing o

urs around 60 e-folds before the end of in
ation whenN � 40. The evolution of both the adiabati
 and iso
urvature perturbation is neededto determine the spe
trum; this is beyond the s
ope of this paper.4. KL moduli stabilisation and in
ationWhen 
an one su

essfully 
ombine in
ation with a �ne-tuned KL-style modulise
tor (adding their respe
tive superpotentials and only 
oupling the two se
torsgravitationally), and when not? The answer is model dependent but the 
urrentdis
ussion has gained some insight. In this se
tion we will expand on this some more.Consider a model with a K�ahler potentialK = �3 log �T + �T � (T + �T )�Ka(�i; ��j)3 �+Kb(�i; ��j) � �3 logX +Kb : (29)The sour
e of instability 
omes from the termsVmix = eK[KT �TKTWTW inf +DiWinfKi �TW �T + 
:
:℄ + � � � ; (30)
oupling the modulus and in
aton se
tor. Although Vmix is small during in
ation in theKL set-upx, the o�-diagonal 
orre
tions to the mass matrix / (Vmix)T i / (Winf)iWTTare not (9). As a result, during in
ation T is slightly displa
ed from its minimumÆT / �TVmix. Although the displa
ement is small, it disrupts the minute �ne-tuning present in the KL model, and as a result 
an lead to large 
orre
tions to thein
aton potential. This 
an be made expli
it by Taylor expanding T around its post-in
ationary va
uum [25℄. The result is [see (23){(25)℄ ÆV = �P(�AVmix)2=�2AVmod withÆxA = fÆ�; Æ
g. The minus sign appears be
ause T will adjust to minimise the totalpotential. The e�e
tive in
ationary potential is(Vinf)e� = Vinf � XxA=�;
 (�AVmix)22�2AVmod +O�Æ; 1� 0; Æ�3; Æ
3� ; (31)with Vinf the potential in the limit that the moduli 
orre
tion is absent Wmod ! 0.The 
orre
tion is potentially large, sin
e �AVmix / WTT , but model dependent. Thesuperpotential 
ould be a series of exponentials, or some polynomial in the in
aton �elds.Here we have looked at polynomials, although we expe
t similar results for both 
ases.The term ÆV 
orre
ts the masses of the in
aton se
tor �elds. For su

essful in
ationthe 
orre
tion to the in
aton mass needs to be suÆ
iently small so that j�j � 1. Butin addition we have to make sure the masses of all other �elds remain positive de�nitex In fa
t Vmix 
an be tuned arbitrarily small by tuning the relative phase between WT and W inf .However, as dis
ussed in se
tion 3.1 the 
orre
tion to the potential due to the dynami
s of the modulus�eld is independent of this phase, and thus 
annot be tuned.
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ation, and the potential does not display an instability. All mass 
orre
tionsautomati
ally vanish ifWinf = �iWinf = 0 during in
ation with i running over all in
atonse
tor �elds. This is for example the 
ase in D-term hybrid in
ation [28, 29, 30℄. Butin all other 
ases the mass 
orre
tions need to be 
he
ked, be
ause as noted, they arelarge and potentially destru
tive.Consider �rst the 
ase with Ka = �iKa = �iKb = 0 during in
ation; from (B.2) wesee that the se
ond term in Vmix / Ki �T vanishes, and the e�e
tive potential be
omes(Vinf)e� = Vinf � 3 eKb(2�0)3 jWinf j2 ; (32)where we have allowed for the variation of T during in
ation, and used (9). Take asuperpotential Winf / �� linear in the in
aton �eld. The 
orre
tion term in (32) thenalters the in
aton mass. Introdu
ing a shift symmetry for the in
aton � to solve the �-problem, the moduli 
orre
tion 
an be 
al
ulated expli
itly. It is too large: � ' �3. Anexample is F -term hybrid in
ation [25℄. Thus KL with a linear in
aton superpotentialthat is non-zero during in
ation does not work .Consider then Winf � ��i�nii some polynomial in in
aton se
tor �elds. Now the
orre
tion term is a negative quarti
 or higher order polynomial. As before, in
ationrequires a suÆ
iently small in
aton mass j�j � 1; this is automati
 if (Winf)1 = 0with '1 the in
aton �eld. In addition all other \spe
tator" �elds for whi
h (Winf)i 6= 0should be non-ta
hyoni
 during in
ation. For the 
haoti
 in
ation models dis
ussed inthis paper this is a
hieved if the spe
tator �eld '2 appears in Kb, as was the 
ase formodel 1. Note that the dominant mass 
orre
tion to '2 from ÆV is the same for allforms of the K�ahler. The reason that model 1 is stable and model 2 is not, is simply thatthe in
aton potential Vinf in the former model gives a larger stabilising 
ontribution tothe '2-mass.We will now 
onsider a model with a more generi
 K�ahler potential, for whi
h Kais non-zero (29), i.e. with the in
aton se
tor �elds appearing inside the logK� = �3 log �T + �T � 13(T + �T )� �2 ��2�� 12(�1 � ��1)2 : (33)The most stable models are those for whi
h Vinf gives the largest mass to '2. Whetherthe shift-symmetri
 in
aton �1 is inside or outside the log does not a�e
t the issue ofstability | for simpli
ity we have put it outside the log in the K�ahlers above. However,how and where �2 appears is 
ru
ial. If �2 has a shift symmetry the potential has aninstability during in
ation, m22 < 0 for '1 � 1� 10, whether �2 appears outside the login Kb (as in model 2) or inside the log in Ka.As 
an be seen from the expressions in Appendix B, the form of the di�erent partsof the potential (Vmod, et
.) is rather 
ompli
ated. However we only require theirleading order behaviour in '22. Furthermore, only the WT dependen
e part of Vmix will
ontribute signi�
antly to ÆV (24). The relevant terms are thenVmod = 16� �jWT j2 � 3Re[WT �Wmod℄� �+O('22) ;
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ation and moduli stabilisation 16Vinf = m2'212(2�)2+� + �1 + 2 + 4�+ �26 '21� m2'222(2�)3 +O('42) ;Vmix = 1(2�)3 � + 26 mM'1'2 +O(Wmod; '32) : (34)Using the formula (24), we �nd ÆV � �(2�)�3m2'21'22(� + 2)2=12, givingm22 = m2(2�)3 �1� '213 � ; (35)independently of �. What is rather surprising is that even K� with � = 1 does notwork. For small �2 � 1 the log 
an be expanded to give K� = K1 + O(j�j4). Sin
emodel 1 gives a viable model, one would expe
t K� to give similar results for � = 1.But this is not the 
ase. The in
aton potential Vinf di�ers for K1 and K�, and thus '2re
eives di�erent stabilising mass 
ontributions in ea
h 
ase. It is not enough to expandK� �rst, and show that during in
ation �2 is small to justify the expansion | analysingthe full potential shows an instability.We see that the pla
ing �2 inside or outside the log is 
ru
ial to the su

ess ofin
ation. Model 1 with �2 outside the log gives a marginally stable model, where the '1dependent moduli 
orre
tions just 
an
el. As it turns out this is the most stable model.Pla
ing �2 inside the log, no matter what the modular weight � is, gives a ta
hyoni
mode.5. Con
lusionsIn this paper we studied SUGRA 
haoti
 in
ation in the presen
e of stabilised moduli�elds. To avoid the usual �-problem a shift symmetry for the in
aton �eld is introdu
ed.But this is not enough, as the moduli stabilisation se
tor gives rise to additional
ontributions to � and � whi
h are generi
ally not small. The moduli se
tor breakssupersymmetry, and as a result the in
aton �elds get soft mass 
ontributions of theorder of the gravitino mass. These 
orre
tions need to be small for su

essful in
ation.But in a generi
 moduli potential su
h as KKLT, the modulus mass is of the sameorder as the gravitino mass, and it is impossible to keep the 
orre
tions to the in
atonsmall while making sure the modulus remains �xed in its minimum during in
ation. KLaddressed this problem by 
onstru
ting a �ne-tuned moduli potential with m23=2 � m2T .Indeed, 
al
ulating the potential in any model in whi
h in
ation is 
ombined with aKL moduli se
tor by adding the respe
tive superpotentials, the moduli 
orre
tions toin
ation appear small while at the same time the modulus is heavy.All of the above assumes that the modulus T is �xed during in
ation. However,the modulus is a dynami
al �eld, and this 
hanges the situation drasti
ally. Althoughduring in
ation the modulus is only slightly displa
ed from its post-in
ationary va
uum,this is enough to disrupt the minute �ne-tuning of the KL model. The 
orre
tions tothe e�e
tive in
aton potential are generi
ally large, and whether in
ation works is amodel dependent question.
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ation 
ombined with the KL moduli stabilisation s
heme works well if thederivative of the in
aton superpotential during in
ation vanishes (Winf)i = 0 with irunning over all in
aton se
tor �elds. This is for example the 
ase for D-term hybridin
ation. On the other hand if (Winf)i 6= 0, there are large 
orre
tions to the masses ofthe in
aton se
tor �elds, whi
h are missed if the modulus dynami
s are not kept. Formodels with Winf a polynomial in the shift symmetri
 in
aton �eld, these 
orre
tionsare fatal. If Winf is some polynomial of in
aton and \spe
tator" �elds, the 
orre
tionsto the �-parameter 
an be harmlessly small if the spe
tator �elds have a small VEV.However, one must also 
he
k that the masses of the spe
tator �elds are positive de�niteduring in
ation to avoid a run away behaviour. For the 
haoti
 in
ation models under
onsideration this requires the spe
tator �eld �2 to have a minimal K�ahler (but notethat this model is only \just" stable). It is not suÆ
ient for �2 to appear inside themodulus log with unit modular weight, in whi
h 
ase upon a small �eld expansion itwill have a minimal K�ahler. In fa
t, no matter what the modular weight, if �2 is pla
edinside the log [see (29)℄ the spe
tator �eld be
omes ta
hyoni
 during in
ation.Our route to a su

essful in
ation model in this paper was to take a spe
i�
 
hoi
eof K�ahler potential that minimises the impa
t of the moduli 
orre
tions. We 
al
ulatedthe in
ationary predi
tions for the viable model 1, whi
h has a minimal kineti
 term forthe spe
tator �eld '2 (14), (18). Although the spe
tral index ns = 0:967 is the same asfor 
haoti
 in
ation with a quadrati
 potential, the values of the slow-roll parametersdi�er from those of a purely quadrati
 potential. The di�eren
e is largest for thoseparameters that stabilise T at large values. The degenera
y between the quadrati
model and the model with moduli 
an be broken if tensor perturbations are observed,as this allows us to extra
t the values of � and � from the CMB data. Hen
e, in thefuture, with the laun
h of the Plan
k satellite, we may be able to observe the presen
eof moduli �elds in the sky.Note that the problems arising from the variation of the modulus T during in
ationare not unique to 
haoti
 in
ation. Combining moduli with F -term hybrid in
ation wasre
ently dis
ussed in [34℄, where even a 
areful 
hoi
e of K�ahler 
ould not save the model.Instead, taking inspiration from [35℄, the moduli problems were redu
ed by multiplyingthe superpotentials of the two se
tors, instead of adding them. It would be interestingto see if a similar approa
h 
an help 
haoti
 in
ation models, although we will leavethis for future work.A
knowledgmentsSCD thanks the Netherlands Organisation for S
ienti�
 Resear
h (NWO) for �nan
ialsupport.Appendix A. PerturbationsIn this appendix we summarise the relevant equations for the perturbation spe
trum.
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onvenient to use the number of e-foldings N = � ln a (normalised so thatN = 0 at the beginning of in
ation) as a measure of time. The s
ales measured byCOBE and WMAP leave the horizon Nend�N� � 60 e-folds before the end of in
ation.As before the subs
ript � denotes the 
orresponding quantity at COBE s
ales. Slow-rollin
ation ends when one of the slow-roll parameters be
omes greater than one. In ournumeri
al analysis we use � = 1 to determine the end of in
ation.To determine the in
ationary traje
tory, and the perturbation spe
trum, weintegrate the equations of motion numeri
ally, usingd'idN = 1H _'i(�i);d�idN = � 3�i � 1H (V ('i)� Lkin); (A.1)with �i = �Lkin=� _'i. Dots indi
ate derivatives with respe
t to N .We 
an de�ne the dire
tional slow-roll parameter �k as the usual slow-roll parameter� = (1=2)(V 0=V )2 proje
ted along the in
aton path [4, 31, 32, 33℄:�k = (�NV )212LkinV : (A.2)We have 
he
ked that in all of parameter spa
e (ex
ept for the 
ase with largeiso
urvature perturbations shown in �gure 4) j���kj=� < 10�2, and in
ation is e�e
tivelysingle-�eld with an adiabati
 perturbation spe
trum.The s
alar power spe
trum is then given byP = V150�2�k (A.3)evaluated 60 e-folds before the end of in
ation. The COBE normalisation imposesthat P � 4 � 10�10. A se
ond 
ru
ial observable is the spe
tral index of the in
aton
u
tuations: ns � 1� d lnPdN : (A.4)WMAP3 has measured ns = 0:95 � 0:02 for a negligible tensor 
ontribution to theperturbation spe
trum [36℄, and ns = 0:98� 0:02 for non-zero r. We 
he
ked that usingns = 1 + 2� + 6� instead to 
al
ulate the spe
tral index di�ers by less than a per
entfrom the spe
tral index (A.4) of the adiabati
 mode, 
on�rming on
e again that theusual single �eld equations apply. The slow-roll parameter � is de�ned as the minimumeigenvalue of the matrixNab = ga
(�
�bV � �e
b�eV )V (A.5)where the metri
 gab is given by Lkin = (1=2)gab��'a��'b.Appendix B. General K�ahlerFor a K�ahler potential of the formK = � ln�T + �T � (T + �T )�k(�i; ��i)3 � = �3 lnX (B.1)
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ation and moduli stabilisation 19we �nd that KT = �[3 + �(T + �T )��1k℄=X and Ki = (T + �T )�ki=X. The 
omponentsof the inverse metri
 areK �TT = X3C  T + �T � (T + �T )� ~k3! ; K �Tj = (1� �)X3C kj ; (B.2)K�{j = Xk�{j(T + �T )� � ��2� �� (T + �T )��1k3� X3(T + �T )C k�{kj ; (B.3)where kj = �k�{k�{j, ~k = k � k�{j�k�{kj andC = 1� �3 (T + �T )��1 �k + ~k�2� �� (T + �T )��1k3�� : (B.4)For a minimal K�ahler ~k = 0, while for a shift symmetry ~k = �k. We see that for all themodels 
onsidered in this paper, ~k = 0 during in
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