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DESY 08-004SUGRA haoti ination and moduli stabilisationS C Davis1 and M Postma2;31 Servie de Physique Th�eorique, Orme des Merisiers, CEA/Salay, 91191Gif-sur-Yvette Cedex, Frane2 DESY, Notkestra�e 85, 22607 Hamburg, Germany3 Nikhef, Kruislaan 409, 1098 SJ Amsterdam, The NetherlandsE-mail: sdavis�lorentz.leidenuniv.nl, postma�mail.desy.deAbstrat. Chaoti ination predits a large gravitational wave signal whih an betested by the upoming Plank satellite. We disuss a SUGRA implementation ofhaoti ination in the presene of moduli �elds, and �nd that ination does not workwith a generi KKLT moduli stabilisation potential. A viable model an be onstrutedwith a �ne-tuned moduli setor, but only for a very spei� hoie of K�ahler potential.Our analysis also shows that ination models satisfying �iWinf = 0 for all inationsetor �elds �i an be ombined suessfully with a �ne-tuned moduli setor.Keywords: ination, osmology of theories beyond the SM1. IntrodutionIn haoti ination models the energy sale of ination is high, typially of the orderof the grand uni�ed sale [1℄. As a onsequene these models give a large tensorontribution to the density perturbations. This makes them testable by urrent andfuture CMB experiments, most notably by the upoming Plank satellite. However,haoti ination is not easy to implement in a supergravity theory [2, 3℄. The inlusionof other high energy physis, suh as moduli �elds, reates further problems [4, 5, 6, 7℄.Naturally, any realisti ination model must be part of some full theory, ontaining allknown physis. The e�ets of other setors of the theory on ination an not be ignored.As shown by Lyth [8℄ in the ontext of slow-roll ination, a measurable tensor moderequires the inaton �eld to hange by superplankian values during ination. Examplesof suh \large �eld models" of ination are haoti and natural ination [9℄. At presentno string theory derivation of a large �eld inaton model exists. The displaement of theinaton in brane models of ination is bounded by the size of the ompati�ed spae,and in all known models less than the Plank sale [10, 11℄. In all examples of modularination the inationary sale is too low for an appreiable tensor signal [5, 6℄. N-ation [7, 12, 13℄, the stringy realization of assisted ination [14℄, gives rise to appreiabletensor modes. However, it is not lear whether all of the underlying assumptions aresatis�ed in these models [5℄. Despite the negative results, so far there is no \no-go"theorem stating that string theory annot give large �eld ination. It may very well be
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SUGRA haoti ination and moduli stabilisation 2that it an be realized in orners of the landsape not yet explored { after all, the searhhas only just begun.In this paper we onsider a N = 1 SUGRA implementation of haoti ination,and analyse what happens when it is ombined with a KKLT-like moduli setor. Inour set-up the inaton and moduli setor only interat gravitationally. Our approahis phenomenologial in that we analyse the SUGRA e�etive �eld theory, but do notattempt to derive the model from string theory. It should be noted in this ontextthat moduli �elds are not unique to string theory. Flat diretions abound in any SUSYtheory. If SUSY is broken in some hidden setor by non-perturbative physis, the modulisetor has the same qualitative properties as the KKLT model, and our results apply.As mentioned, it is not easy to onstrut a model of haoti ination in the preseneof additional moduli �elds, even when they are stable. First of all, there is the �-problem,present in all models of SUGRA ination [15, 16℄. The potential during ination is of theform V � eK ~V , whih for a anonially normalised inaton �eld ' gives rise to a largeinaton mass m2' � H2 ruining slow-roll ination. This an be solved by �ne-tuningthe K�ahler potential so that the inaton mass is aidentally small. More elegantly, theinaton mass an be proteted by symmetries. In this paper we will introdue a shiftsymmetry for the inaton �eld that leaves the K�ahler potential invariant to solve the�-problem [3, 17, 18℄.Inlusion of moduli �elds in the system gives rise to a whole new set of obstales toimplement ination. The moduli �xing potential breaks supersymmetry. Consequentlythere are soft orretions to the inaton potential. The soft terms are small in the limitof low sale SUSY breaking, with a small gravitino mass m23=2 . H2. At the sametime, the requirement that the moduli �elds remain stabilised in their minimum duringination, and do not run away to in�nity, implies that the moduli masses should besuÆiently large. This requirement is usually expressed as a onstraint on the Hubbleparameter during ination H2 � m2mod [19℄. In a generi potential m2mod � m23=2 andwithout �ne-tuning (in addition to that required to set the osmologial onstant tozero) these requirements are at odds with eah other. This is for example the ase inthe original KKLT model [20℄. It is diÆult to embed large �eld ination in suh a setup. We see there is tension between keeping the soft orretions to the inaton potentialsmall, and keeping the moduli �elds �xed during ination. This an be eased if themodulus setor is �ne-tuned so that the modulus and gravitino masses are no longer ofthe same order of magnitude. This is ahieved expliitly in the Kallosh-Linde (KL) set-up [19℄, whih uses a raetrak potential for the modulus �eld. In this ase, parametersare tuned so that the modulus mass is muh larger than the gravitino mass. Havingthe Hubble onstant during ination between these mass sales m2mod � H2 � m23=2o�ers a way to solve both problems. Note that it also allows the gravitino mass to bein the phenomenologially favoured TeV range, without the need for low sale ination(in fat, this was the original motivation for KL).In this paper we will analyse haoti ination in the presene of a single modulus



SUGRA haoti ination and moduli stabilisation 3�eld with a no-sale K�ahler potential. The models we will study have the superpotentialW = Wmod(T ) +m�1�2 : (1)We onsider both a generi KKLT potential and a �ne-tuned KL potential. Theabove inaton superpotential was �rst proposed in [2℄. Refs. [4, 5, 6℄ added a modulisetor to the set-up. We extend their results by an in-depth disussion of the e�etsof the moduli dynamis, with an emphasis on �nding the onditions for suessfulination. As expeted, ination does not work in the KKLT set-up. Whether KLworks depends sensitively on the K�ahler potential for the inaton �elds. Although themoduli orretions are small after ination due to the �ne-tuning in the KL set-up, thisis not neessarily true during ination. During ination the modulus �eld T is slightlydisplaed from its post-inationary minimum, disrupting the minute �ne-tuning of thepotential, with potentially large e�ets. Indeed, onsider the following K�ahler potentialsK1 = � 3 log[T + �T ℄� 12(�1 � ��1)2 + �2 ��2 ; (2a)K2 = � 3 log[T + �T ℄� 12(�1 � ��1)2 � 12(�2 � ��2)2 ; (2b)K� = � 3 log �T + �T � 13(T + �T )� �2 ��2�� 12(�1 � ��1)2 : (2)All K�ahler potentials have a shift symmetry for the inaton �eld �1 to solve the �-problem. However, as we will show, only K1 ombined with the KL modulus setorgives a viable model. For all the other models, independent of modular weight �, theoupling between the modulus and inaton setors leads to instabilities in the potential,with a runaway behaviour for some of the �elds. It is thus ruial to take the dynamisof the modulus �eld during ination into aount for a orret analysis of the model.This paper is organised as follows. The next setion provides the bakgroundmaterial, with a onise summary of the KKLT and KL moduli stabilisation potential,as well as a disussion of SUGRA haoti ination without moduli. The rest of the paperdisusses the ombination of haoti ination and moduli �elds. In setion 3.1 we studythe model with K2 (2b). Although ination does not work, it is useful to analyse why.In setion 3.2 we onsider the model with K1 (2a). As mentioned above, this is a viablemodel of haoti ination. We disuss the inationary preditions, in partiular whetherthe supergravity orretions an leave a signature in the CMB. Finally, in setion 4 weuse the insight gained in the previous setions to disuss more generi ombinations ofhaoti ination and KL moduli stabilisation, inluding models with (2). We end withsome onluding remarks.Throughout this artile we will work in units with the redued Plank massmpl = 1=p8�GN set to unity.



SUGRA haoti ination and moduli stabilisation 42. Bakground2.1. Moduli stabilisationConsider a single volume modulus with a no-sale K�ahler potential K = �3 log[T + �T ℄.The modulus �eld is stabilised in an AdS minimum by a ombination of uxes [21℄and non-perturbative physis; an uplifting term is added to end up with a Minkowskivauum.2.1.1. KKLT In the original KKLT set-up the superpotential is of the form [20℄W = W0 + Ae�aT : (3)The �rst term omes from integrating out the omplex struture moduli, the seondoriginates from non-perturbative e�ets. The potential VF = eK [WIKI �JW �J � 3jW j2℄has a SUSY AdS minimum.The lifting term is of the form(Vlift)1 = E(T + �T )n ; or (Vlift)2 = EeK ; (4)with E a onstant whih an be tuned to get a zero osmologial onstant. (Vlift)1applies to D-term lifting (n = 3) [22, 23℄, or lifting by supersymmetry breaking anti-D3-branes loated in the throat (n = 2 ) or bulk (n = 3) [20℄. Using F -terms to uplift,the e�etive potential is of the form (Vlift)2. An e�etive F -lifting term, as opposed toproperly adding a ontribution to W and alulating things through, is only a goodapproximation if the SUSY breaking setor is a small orretion to the potential anddeouples [19, 24℄. This is not the ase for KKLT, but an be done in a KL set-updisussed below. This does not mean that the KKLT potential annot be uplifted usingF -terms, but just that it annot be desribed in suh a simple way as in (4). The detailsof the uplifting term do not really matter for ination; we heked that using di�erentlifting terms only give quantitative di�erenes, and in partiular it annot save a sikmodel or destroy a healthy one. For de�niteness we take (Vlift)1 with n = 2 in thefollowing.Without loss of generality we an take W0 to be real and negative. The potentialis then minimised for  = 0, where we have deomposed the �eld into its real andimaginary parts T = � + i. The mass matrix ismij = gik(�k�jV � �lkj�lV ) + 2�3 (�� + �)V (5)with gij the metri on �eld spae spanned by real �elds de�ned by Lkin =(1=2)gij���i���j.The derivation of the non-perturbative terms in (3) is only valid for a�0 � 1. In thislimit, approximate analyti expressions an be found for the mass sales [25℄. The SUSYAdS solution before lifting has DTW = 0, whih implies WT � 3W=(2T ). This relationsurvives the lifting proedure. It then follows that Vlift � 3m23=2, where m3=2 = eK=2jW jis the gravitino mass. The height of the barrier preventing the modulus from rolling to



SUGRA haoti ination and moduli stabilisation 5in�nity is also 3m23=2, and is loated lose to � = �0 + (1=a) log(2a�0=n). FurthermoreW � W0. The moduli masses m2� � m2 � KT �TVT �T � (2a�0m3=2)2 are somewhat largerthan the gravitino mass. For future referene we note that WTT � �3m�=p2�0.2.1.2. KL Ref. [19℄ onstruted a �ne-tuned modulus potential with m3=2 � m�.Then for m3=2 � H � m� one expets the soft orretions to the inaton potential tobe small, while the modulus �eld remains �xed during ination. This set-up allows forlow-sale SUSY breaking without the neessity for low-sale ination.The idea is to onstrut a potential that has a supersymmetri Minkowski vauumwith W = WT = 0. Perturbing this potential slightly, by order m23=2, gives an AdSminimum with a small negative osmologial onstant. After uplifting, the result isa small gravitino mass but a large barrier separating the minimum from the runawayminimum at in�nity (whih requires a large modulus mass). Lifting an be F -term,e.g. by introduing an O'Raifeartaigh setor [26℄ as in [19℄, or by SUSY breaking termsusing a throat D3-brane. Implementing a KL-style set-up with D-term lifting does notseem possible, as is produes a barrier height of similar size to m23=2.The simplest potential that does the trik is the modi�ed raetrak potentialWmod =W0 + Ae�aT � Be�bT : (6)This has a SUSY Minkowski minimum with W = WT = 0 for �ne-tuned parametersW0 = w0 � �A�bBaA�a=(a�b) +B �bBaA�b=(a�b) ; (7)and with the modulus stabilised at�0 = 1a� b ln�aAbB� : (8)In the limit a�0; b�0 � 1, the maximum of the potential is loated near to � =�0 + ln(a=b)=(a � b). For (a � b) � a, its height is then approximately W 20 a2=(6�0e2).This is of order m2T =(a�0)2, a relation whih inidentally also holds for the KKLT set-updisussed before.To introdue a non-zero gravitino mass we perturb W0 = w0 + Æ with Æ � 1.Then E � Æ2;W � WTT � Æ. And thus the gravitino mass m3=2 � eK=2Æ an bemade arbitrarily small. On the other hand VT �T � eKW 20 and thus the moduli mass isinsensitive to Æ. The required hierarhy m23=2 � m2� is obtained when Æ2 � KT �TW 20 .For future referene we also note that WTT is not smallW 2TT = 3�V�� +O(Æ2) (9)at � = �0. In the a�0 � 1 limit, a similar relation also holds for KKLT: W 2TT � 3�V��.2.2. Chaoti ination without a moduli setorIn the simplest model of haoti ination the potential is just a monomial, for examplein quadrati haoti ination [1℄V = 12m2'2 (10)



SUGRA haoti ination and moduli stabilisation 6with ' the anonially normalised real ination �eld. Suh a model an be realized ina supersymmetri theory with a superpotential [2℄W = m�1�2 ; (11)and de�ning the ination �eld via ' =p(j�1j2 + j�2j2)=2. The equations desribing theperturbation spetrum are summarised in Appendix A, here we just mention the mainresults for quadrati haoti ination. Ination ends for 'e ' p2. Observable salesleave the horizon N� � 60 e-folds before the end of ination when '� ' 2pN� � 15:5.Here and in the following the subsript � denotes the orresponding quantity duringobservable ination. The spetral index is ns � 1 ' �2=N� � 0:967. Normalisation ofthe power spetrum to the observed values determines the mass salem ' 1:8�1013GeV.For future referene we also give the slow roll parameters:�� = �� � 8:4� 10�3 : (12)More generially the potential will be some polynomial.2.2.1. Supergravity embedding Embedding haoti ination in supergravity givesorretions to the above SUSY model. Expliitly:VF = eK �VSUSY + 2Re[K�{jK�{ �W�jW ℄ + [K�{jK�{Kj � 3℄jW j2� : (13)model 1 The model is de�ned byK1 = �12(�1 � ��1)2 + �2 ��2 ; W = m�1�2 : (14)The K�ahler potential is invariant under a shift symmetry for the inaton �eld �1 !�1 + , whih solves the �-problem. The shift symmetry is broken expliitly by thesuperpotential, allowing for a small but �nite inaton mass.We introdue the real anonially normalised �elds �i = ('i + i�i)=p2z. It an beheked that the potential is minimised for �i = 0 for parameter values of interest. Thepotential is thenVF = e'22=2 12m2�'21 �1� '222 + '424 �+ '22� '2!0�! 12m2'21 : (15)For '2 = 0, whih is a stable minimum, all supergravity orretions vanish and weretrieve quadrati haoti ination (10). Sine the potential is steeper in the '2-diretion(no shift symmetry), even with general initial values for both �elds '2 will be rapidlydamped to zero, and ination an ommene. A potential problem with this model isthat for small �2 values, the masses m2'2 = m2�2 = m2 are also light during ination.It was reently laimed that suh a model may lead to large non-Gaussianities duringpreheating [27℄.z Arguably it is more natural to take �2 = ('2=p2) exp(i�=p2) for the anonially normalised �eld,but sine Im�2 = 0 in the minimum there is no di�erene. For numeris the former de�nition is moreuseful as it does not restrit '2 to positive values.



SUGRA haoti ination and moduli stabilisation 7model 2 As a seond expliit example we onsider a model that is symmetri underthe interhange �1 $ �2, obtained by also introduing a shift symmetry for �2 in theK�ahler K2 = �Xi=1;2 12(�i � ��i)2 : (16)Deomposing again �i = ('i + i�i)=p2 and setting �i = 0 in the minimum, the F -termpotential is VF = 12m2 �'21 + '22 � 32'21'22� : (17)For '2 = 0 the potential is that of quadrati haoti ination. However '2 is not astable minimum for large '1 values. Although �2V = 0 at '2 = 0, the seond derivative�22V = (m2=4)(4�6'21) turns negative for �eld values '1 > 2=3 as required for ination.Instead of rolling towards the minimum 'i = 0, the �elds will run o� to 'i !1. Thenegative quarti term in VF is the ause of this instability. The quarti term omesfrom the last term in (13). Adding a no-sale modulus with K = �3 ln(T + �T ), whihhas KTKT �TK �T = 3 (but for now without T appearing in the superpotential), the termanels. The resulting potential is VF = (1=2)(T + �T )�3m2('21+'22), perfet for haotiination provided T is �xed somehow. This model might therefore work with a no-salemoduli setor, and we will look at it in some detail in the next setion.3. Chaoti ination with a modulus setorWe now ombine ination with the modulus stabilisation setor [5℄. To do so we simplyadd the respetive K�ahler and superpotentialsK = �3 ln(T + �T ) +Ka(�i; ��i) ; W = ei#Wmod(T ) +m�1�2 ; (18)withKa, a = 1; 2 the K�ahler potential of the ination model in the absene of the moduli(14), (16). Wmod(T ) is the non-perturbative superpotential that stabilises the volumemodulus; either a onstant plus a single exponential as in KKLT (3), or a modi�edraetrak potential with �ne-tuned parameters as in KL (6). We will take Wmod andm to be real. Any relative phase between the ination and moduli setors phase isontained in #.To assure that the modulus �eld does not run o� to in�nity during ination it hasto be suÆiently heavy:m2T � H2� = 13V� � 10�9: (19)To get the seond expression above we used the COBE normalisation for the e�etiveinaton mass eKm2 � 6� 10�11: (20)



SUGRA haoti ination and moduli stabilisation 83.1. Model 2First onsider Model 2 with a K�ahler (16) whih is invariant under shifts of both �eldsin the inaton setor. As mentioned in the introdution, this model does not work.However, it is interesting to see why.Using (16), (18) the potential an be written as V = Vmod(T ) + Vinf(T; �i) +Vmix(T; �i), with Vmod(T ) the moduli potential after ination when �i = 0, Vinf(T; �i) theinaton potential in the limitWmod ! 0, and Vmix(T; �i) the remaining terms mixing themodulus and inaton setor. Introdue the real �elds �i = ('i+i�i)=p2 and T = �+i.In the regime of interest the potential is minimised for �i = 0. ThenVmod(T ) = 16� �jWT j2 � 3Re[WT �Wmod℄� � + Vlift(�) ;Vinf(T; 'i) = 1(2�)3m22 ('21 + '22) ;Vmix(T; 'i) = 1(2�)3mM(T )2 '1'2 ; (21)with M(T ) = �4�Re[ei#WT ℄ ; (22)Vmix is the orretion to the inaton potential due to the presene of the moduli setor.We will onsider generi phases # for now. Although �ne-tuning the phase an make theorretion term Vmix arbitrarily small, this is not enough to save ination. As we willsee shortly [see (24) below℄ keeping the modulus T as a dynamial �eld during inationwill lead to instabilities in the inaton potential, independently of #.In the KKLT senario making the modulus heavy requires a large WT , and theorretion term is large, ruining ination. For the model to work the orretion termshould at least satisfy M < m . Then in the vauum after ination when Vmod = 0,the inaton mass eigenstates m2� = m(m �M) are all positive de�nite. In the KKLTsenario WTT � W0, and M an be made small dereasing W0. However, this alsolowers the height of the barrier (3m23=2 � W 20 ) separating metastable minimum from therunaway minimum at in�nity. For generi phases there is no parameter spae where themoduli orretions are smallM < m yet the volume modulus remains �xed m23=2 � H2.This result is independent of the spei� form of the lifting term.But the KL approah o�ers hope. A large stabilising modulus mass requires WTTlarge while M / TWT � m3=2 an be arbitrary small. Indeed, after ination when�i = 0 the moduli and inaton setor deouple in the mass matrix (5), and by hoosingsuitable parameters, m2T � m2' � m23=2 is possible. We will give a numerial example.Take W0 = w0+ Æ, see (7), with A = 2; B = 2:4; a = 0:2; b = 0:25. Then W0 = �0:079,and the modulus potential after ination is minimised for � = 8:1 and  = 0. Theinaton mass sale is set by the COBE normalisation m = 5� 10�4 (20). The modulimasses m2� � m2 � 6�10�7 are muh larger than the nearly degenerate inaton massesm2inf � 6 � 10�11. The gravitino mass an be made arbitrarily small by taking Æ ! 0.



SUGRA haoti ination and moduli stabilisation 9E.g. for Æ = 10�10 we have m23=2 � 2 � 10�14 and E = 5 � 10�17. Then the moduliorretions in Vmix are very small as well M=m � 10�10.This looks all great, but the above masses are evaluated after ination, when 'i = 0and the mass matrix of the modulus and inaton setor deouple. During ination theorretion term, the mixing between the modulus �eld and the inaton �elds givesrise to a tahyoni mode. Consider for example '1 = 10 and all other �elds at theirinstantaneous minima. The moduli masses are pratially the same as in the vauum,but the inaton mass eigenstates (whih have a small admixture of the modulus) arenow m2' = f�9 � 10�9; 5 � 10�9; 9 � 10�9; 6 � 10�11g. It is not enough to have aneigenstate with m2' � H2, the other mass eigenstates should be non-tahyoni as well.The origin of the tahyoni instability lies in the fat that for non-zero 'i the massmatrix has large o�-diagonal terms / (Vmix)'� / 'W��. Although W; W� � m3=2are small in KL, W�� / m� is not (9). There is related e�et as well: the T -�eld isdisplaed from the minimum. Even though this displaement is small, as a result the�ne-tuned anellation (tuning at the level Æ = 10�10 in our numerial example) in theKL minimum no longer applies, and WT an be muh larger than it is after ination.As a result of all this the potential develops an instability, no matter how small thegravitino mass in the post-inationary vauum. The e�etive potential as a funtion of'1; '2 and with all other �elds at their instantaneous minima is shown in �gure 1.The appearane of the instability an be made expliit. As remarked above, Tis displaed from the post-inationary minimum. Following [25℄ to estimate the e�etof this we expand the potential during ination T = �0 + Æ� + iÆ with T = �0 thepost-inationary minimum. ThenV = Vinf(�0; 'i)+ XxA=�;��AVmix(�0)ÆxA + 12�2AVmod(�0)(ÆxA)2�+O�(ÆxA)3; 1�0 ; Æ� (23)where we have used that Vmod(�0) = V 0mod(�0) = 0, ���Vmod = 0 (the mass matrixis diagonal in xA = f�; g), and we only kept the dominant terms. Minimising thepotential with respet to ÆxA givesÆxA = � �AVmix�2AVmod ) ÆV = XxA=�;��12 (�AV mix)2�2AVmod � : (24)Using the expliit form for Vmix (21) this evaluates to a potential during inationVe� = Vinf + ÆV withVe� � 12 m2(2�0)3 �'21 + '22 � os2(#) W 2TT(2�0)�2�Vmod'21'22 � sin2(#) W 2TT(2�0)�2Vmod'21'22�� 12 m2(2�0)3 �'21 + '22 � 32'21'22� ; (25)with # the phase between the two setors (18). To get the bottom expression we usedrelation (9), and the near degeneray �2�Vmod = �2Vmod + O(Æ2) of the moduli masses.We see the appearane of a destabilising quarti term. The mass m22 / 1 � (3=2)'21beomes tahyoni during ination when 'i = O(10), and the potential develops an
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SUGRA haoti ination and moduli stabilisation 113.2. Model 1In this setion we disuss model 1 (14) ombined with a moduli setor. As we willsee, moduli orretions do not destroy ination, but give small orretions whih arepotentially measurable. Comparing with model 2 disussed in the previous setion maygive further insight into what is needed for a suessful ination model in the preseneof moduli.Inluding a moduli setor the potential for model 1 (14), (18) is V = Vmod+Vmix+Vinf withVmod = e'22=26� �jWT j2 + 3Re(WT �Wmod)� � + Vlift ;Vinf = e'22=2(2�)3 12m2�'21�1 + 12'22�2 + '22� ;Vmix = e'22=2(2�)3�12mM'1'2 +mRe[ei#Wmod℄'1'2�1 + '222 � + '222 jWmodj2� ; (26)with M given in (22). We have set �i = 0, their values at the minimum during andafter ination in the parameter regime of interest.The KKLT senario does not work, due to the usual argument that it is not possibleto keep the moduli �xed during ination while keeping the soft orretions to inationsmall. Let us thus onentrate on the �ne-tuned KL model. One an alulate thee�etive potential, taking into aount the displaement of T during ination, analogousto (23){(25). The result is similar (note that the e�ets of all extra terms appearing inVmix in model 1 ompared to model 2 give ontributions / Wmod or / W 0mod and aresmall in the KL set-up):V = Vinf + ÆV � 12 m2(2�)3 e'22=2 "'21�1 + 12'22�2 + '22 � 32'21'22# (27)The di�erene between model 1 and 2 is that in model 1 the �eld '2 appears expliitlyin the K�ahler, and onsequently m22 reeives additional stabilising ontributions. Thisis just enough to keep the '2-mass positive de�nite m22 � m2=(2�0)3; the '1-dependentontribution to the mass from Vinf and ÆV anels exatly. A plot of the potential asa funtion of '1; '2 and all other �elds at their instantaneous minimum is shown in�gure 1, whih on�rms that the potential is stable during ination; the subdominantterms negleted in the analysis (27) do not a�et the stability.Thus the moduli setor does not destabilise the inationary potential, and model1 provides a viable model of SUGRA haoti ination. Ve� redues to the quadratihaoti inationary potential in the limit '2 ! 0. But '2 = 0 is not a minimum duringination when '1 6= 0: �2V j'2=0 = m'1(Wmod � (T + �T )WT )=(T + �T )3 6= 0. With KLmoduli stabilisation the instantaneous minimum of '2 is lose to zero. As a result thepotential is not exatly quadrati but lose to it. To see whether these small deviationsare detetable, we have integrated the equations of motion during ination numerially.The relevant equations are given in Appendix A. The results are independent of the



SUGRA haoti ination and moduli stabilisation 12initial onditions as long as '1 is large enough for 60 e-folds of ination; '2 (no shiftsymmetry) and T are heavy and will soon settle in their instantaneous minimum.Consider a partiular example with parameters A = 1; B = 1:4; a = 0:2; b =0:3; Æ = 10�8. Then from (7) W0 ' �0:076, and E ' 2 � 10�17 is tuned to get aMinkowski vauum after ination. The inaton mass m = 3:9 � 10�4 is set by theCOBE normalisation. The �eld evolution as a funtion of number of e-folds N sine thebeginning of ination is shown in �gure 2. We started with '1 = 20 and the other �eldsinitially at their instantaneous minimum. Ination ends for N ' 102, observable salesleave the horizon at N ' 42, when ('1)� = 15:4.In the vauum after ination the inaton and modulus masses are well separated:m2T = 3:4� 10�5, and m2inf = 4:2� 10�12. The gravitino mass m23=2 = 3� 10�12 is smallas a onsequene of small Æ. The hierarhy is preserved during ination. At COBEsales the modulus mass is m2T = 3:5� 10�5, the lowest mass eigenstate (predominantlythe shift symmetri '1 with a small admixture of '2 and �) is m21 = 3:8� 10�12, whilethe other inaton �eld is heavier m22 = 3:8 � 10�9. The two inaton mass eigenstatesm2i =H2 with i = 1; 2 are shown in �gure 2. The gravitino mass during ination ism23=2 = 4:6� 10�7.In all of parameter spae (with one exeption to be disussed shortly) m22 >0:1 � 1H2. Although all �elds evolve during ination, single �eld ination is a goodapproximation. We alulated the slow-roll parameters projeted along the inatontrajetory, and ompared them with the usual slow-roll parameter in terms of derivativesof the potential [4, 31, 32, 33℄; the di�erene is less than one perent. See Appendix Afor the relevant de�nitions.The result for the perturbation spetrum are as follows. The spetral index in all ofparameter spae is ns = 0:967, the same value as in quadrati ination. The potentialis not purely quadrati though. In �gure 3 the slow-roll parameters are shown as afuntion of (b� a) (the results are fairly independent on absolute sale a). In the limitof large (b � a) the slow-roll parameters approah �� ' �� ' 0:0083 as for a purelyquadrati potential (12), but they deviate for small (b� a). If tensor perturbations areobserved in the future these deviations may be measured, siner = 16�; nT = �2�: (28)This breaks the degeneray between a purely quadrati potential and the urrent modelwith small (b � a). Figure 3 shows the slow-roll parameters as a funtion of B=A, fora = 0:2; b = 0:3 and a = 0:2; b = 0:5 (lower and upper line). The onlusion is thatthe deviations from a purely quadrati potential an be large in the limit (b� a) ! 0,a! 0 and large B=A. This is exatly the limit for whih �0 (8) is large.The model works for Æ . 10�4. For larger Æ, i.e. for a modulus setor with largerdeviations from the Minkowski SUSY minimum, the mass eigenstates of the inatonand moduli setor an no longer be separated, and the model is plagued by the sameproblems as the KKLT set-up. In the region Æ � 10�4 � 10�6 there are parametersfor whih isourvature utuations an be large. An example is shown in �gure 4,
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SUGRA haoti ination and moduli stabilisation 14for parameters A = 1; B � 1:2; a = 0:5; b = 0:66; Æ = 10�5. The reason is that forlarger Æ the �eld '2 rosses the origin during the inationary evolution. Around theorigin the �eld is light m22 � H2. If this rossing happens around COBE sales, largeisourvature utuations are produed. This is the ase for our numerial example,where the origin rossing ours around 60 e-folds before the end of ination whenN � 40. The evolution of both the adiabati and isourvature perturbation is neededto determine the spetrum; this is beyond the sope of this paper.4. KL moduli stabilisation and inationWhen an one suessfully ombine ination with a �ne-tuned KL-style modulisetor (adding their respetive superpotentials and only oupling the two setorsgravitationally), and when not? The answer is model dependent but the urrentdisussion has gained some insight. In this setion we will expand on this some more.Consider a model with a K�ahler potentialK = �3 log �T + �T � (T + �T )�Ka(�i; ��j)3 �+Kb(�i; ��j) � �3 logX +Kb : (29)The soure of instability omes from the termsVmix = eK[KT �TKTWTW inf +DiWinfKi �TW �T + ::℄ + � � � ; (30)oupling the modulus and inaton setor. Although Vmix is small during ination in theKL set-upx, the o�-diagonal orretions to the mass matrix / (Vmix)T i / (Winf)iWTTare not (9). As a result, during ination T is slightly displaed from its minimumÆT / �TVmix. Although the displaement is small, it disrupts the minute �ne-tuning present in the KL model, and as a result an lead to large orretions to theinaton potential. This an be made expliit by Taylor expanding T around its post-inationary vauum [25℄. The result is [see (23){(25)℄ ÆV = �P(�AVmix)2=�2AVmod withÆxA = fÆ�; Æg. The minus sign appears beause T will adjust to minimise the totalpotential. The e�etive inationary potential is(Vinf)e� = Vinf � XxA=�; (�AVmix)22�2AVmod +O�Æ; 1� 0; Æ�3; Æ3� ; (31)with Vinf the potential in the limit that the moduli orretion is absent Wmod ! 0.The orretion is potentially large, sine �AVmix / WTT , but model dependent. Thesuperpotential ould be a series of exponentials, or some polynomial in the inaton �elds.Here we have looked at polynomials, although we expet similar results for both ases.The term ÆV orrets the masses of the inaton setor �elds. For suessful inationthe orretion to the inaton mass needs to be suÆiently small so that j�j � 1. Butin addition we have to make sure the masses of all other �elds remain positive de�nitex In fat Vmix an be tuned arbitrarily small by tuning the relative phase between WT and W inf .However, as disussed in setion 3.1 the orretion to the potential due to the dynamis of the modulus�eld is independent of this phase, and thus annot be tuned.



SUGRA haoti ination and moduli stabilisation 15during ination, and the potential does not display an instability. All mass orretionsautomatially vanish ifWinf = �iWinf = 0 during ination with i running over all inatonsetor �elds. This is for example the ase in D-term hybrid ination [28, 29, 30℄. Butin all other ases the mass orretions need to be heked, beause as noted, they arelarge and potentially destrutive.Consider �rst the ase with Ka = �iKa = �iKb = 0 during ination; from (B.2) wesee that the seond term in Vmix / Ki �T vanishes, and the e�etive potential beomes(Vinf)e� = Vinf � 3 eKb(2�0)3 jWinf j2 ; (32)where we have allowed for the variation of T during ination, and used (9). Take asuperpotential Winf / �� linear in the inaton �eld. The orretion term in (32) thenalters the inaton mass. Introduing a shift symmetry for the inaton � to solve the �-problem, the moduli orretion an be alulated expliitly. It is too large: � ' �3. Anexample is F -term hybrid ination [25℄. Thus KL with a linear inaton superpotentialthat is non-zero during ination does not work .Consider then Winf � ��i�nii some polynomial in inaton setor �elds. Now theorretion term is a negative quarti or higher order polynomial. As before, inationrequires a suÆiently small inaton mass j�j � 1; this is automati if (Winf)1 = 0with '1 the inaton �eld. In addition all other \spetator" �elds for whih (Winf)i 6= 0should be non-tahyoni during ination. For the haoti ination models disussed inthis paper this is ahieved if the spetator �eld '2 appears in Kb, as was the ase formodel 1. Note that the dominant mass orretion to '2 from ÆV is the same for allforms of the K�ahler. The reason that model 1 is stable and model 2 is not, is simply thatthe inaton potential Vinf in the former model gives a larger stabilising ontribution tothe '2-mass.We will now onsider a model with a more generi K�ahler potential, for whih Kais non-zero (29), i.e. with the inaton setor �elds appearing inside the logK� = �3 log �T + �T � 13(T + �T )� �2 ��2�� 12(�1 � ��1)2 : (33)The most stable models are those for whih Vinf gives the largest mass to '2. Whetherthe shift-symmetri inaton �1 is inside or outside the log does not a�et the issue ofstability | for simpliity we have put it outside the log in the K�ahlers above. However,how and where �2 appears is ruial. If �2 has a shift symmetry the potential has aninstability during ination, m22 < 0 for '1 � 1� 10, whether �2 appears outside the login Kb (as in model 2) or inside the log in Ka.As an be seen from the expressions in Appendix B, the form of the di�erent partsof the potential (Vmod, et.) is rather ompliated. However we only require theirleading order behaviour in '22. Furthermore, only the WT dependene part of Vmix willontribute signi�antly to ÆV (24). The relevant terms are thenVmod = 16� �jWT j2 � 3Re[WT �Wmod℄� �+O('22) ;



SUGRA haoti ination and moduli stabilisation 16Vinf = m2'212(2�)2+� + �1 + 2 + 4�+ �26 '21� m2'222(2�)3 +O('42) ;Vmix = 1(2�)3 � + 26 mM'1'2 +O(Wmod; '32) : (34)Using the formula (24), we �nd ÆV � �(2�)�3m2'21'22(� + 2)2=12, givingm22 = m2(2�)3 �1� '213 � ; (35)independently of �. What is rather surprising is that even K� with � = 1 does notwork. For small �2 � 1 the log an be expanded to give K� = K1 + O(j�j4). Sinemodel 1 gives a viable model, one would expet K� to give similar results for � = 1.But this is not the ase. The inaton potential Vinf di�ers for K1 and K�, and thus '2reeives di�erent stabilising mass ontributions in eah ase. It is not enough to expandK� �rst, and show that during ination �2 is small to justify the expansion | analysingthe full potential shows an instability.We see that the plaing �2 inside or outside the log is ruial to the suess ofination. Model 1 with �2 outside the log gives a marginally stable model, where the '1dependent moduli orretions just anel. As it turns out this is the most stable model.Plaing �2 inside the log, no matter what the modular weight � is, gives a tahyonimode.5. ConlusionsIn this paper we studied SUGRA haoti ination in the presene of stabilised moduli�elds. To avoid the usual �-problem a shift symmetry for the inaton �eld is introdued.But this is not enough, as the moduli stabilisation setor gives rise to additionalontributions to � and � whih are generially not small. The moduli setor breakssupersymmetry, and as a result the inaton �elds get soft mass ontributions of theorder of the gravitino mass. These orretions need to be small for suessful ination.But in a generi moduli potential suh as KKLT, the modulus mass is of the sameorder as the gravitino mass, and it is impossible to keep the orretions to the inatonsmall while making sure the modulus remains �xed in its minimum during ination. KLaddressed this problem by onstruting a �ne-tuned moduli potential with m23=2 � m2T .Indeed, alulating the potential in any model in whih ination is ombined with aKL moduli setor by adding the respetive superpotentials, the moduli orretions toination appear small while at the same time the modulus is heavy.All of the above assumes that the modulus T is �xed during ination. However,the modulus is a dynamial �eld, and this hanges the situation drastially. Althoughduring ination the modulus is only slightly displaed from its post-inationary vauum,this is enough to disrupt the minute �ne-tuning of the KL model. The orretions tothe e�etive inaton potential are generially large, and whether ination works is amodel dependent question.



SUGRA haoti ination and moduli stabilisation 17Ination ombined with the KL moduli stabilisation sheme works well if thederivative of the inaton superpotential during ination vanishes (Winf)i = 0 with irunning over all inaton setor �elds. This is for example the ase for D-term hybridination. On the other hand if (Winf)i 6= 0, there are large orretions to the masses ofthe inaton setor �elds, whih are missed if the modulus dynamis are not kept. Formodels with Winf a polynomial in the shift symmetri inaton �eld, these orretionsare fatal. If Winf is some polynomial of inaton and \spetator" �elds, the orretionsto the �-parameter an be harmlessly small if the spetator �elds have a small VEV.However, one must also hek that the masses of the spetator �elds are positive de�niteduring ination to avoid a run away behaviour. For the haoti ination models underonsideration this requires the spetator �eld �2 to have a minimal K�ahler (but notethat this model is only \just" stable). It is not suÆient for �2 to appear inside themodulus log with unit modular weight, in whih ase upon a small �eld expansion itwill have a minimal K�ahler. In fat, no matter what the modular weight, if �2 is plaedinside the log [see (29)℄ the spetator �eld beomes tahyoni during ination.Our route to a suessful ination model in this paper was to take a spei� hoieof K�ahler potential that minimises the impat of the moduli orretions. We alulatedthe inationary preditions for the viable model 1, whih has a minimal kineti term forthe spetator �eld '2 (14), (18). Although the spetral index ns = 0:967 is the same asfor haoti ination with a quadrati potential, the values of the slow-roll parametersdi�er from those of a purely quadrati potential. The di�erene is largest for thoseparameters that stabilise T at large values. The degeneray between the quadratimodel and the model with moduli an be broken if tensor perturbations are observed,as this allows us to extrat the values of � and � from the CMB data. Hene, in thefuture, with the launh of the Plank satellite, we may be able to observe the preseneof moduli �elds in the sky.Note that the problems arising from the variation of the modulus T during inationare not unique to haoti ination. Combining moduli with F -term hybrid ination wasreently disussed in [34℄, where even a areful hoie of K�ahler ould not save the model.Instead, taking inspiration from [35℄, the moduli problems were redued by multiplyingthe superpotentials of the two setors, instead of adding them. It would be interestingto see if a similar approah an help haoti ination models, although we will leavethis for future work.AknowledgmentsSCD thanks the Netherlands Organisation for Sienti� Researh (NWO) for �nanialsupport.Appendix A. PerturbationsIn this appendix we summarise the relevant equations for the perturbation spetrum.



SUGRA haoti ination and moduli stabilisation 18It is onvenient to use the number of e-foldings N = � ln a (normalised so thatN = 0 at the beginning of ination) as a measure of time. The sales measured byCOBE and WMAP leave the horizon Nend�N� � 60 e-folds before the end of ination.As before the subsript � denotes the orresponding quantity at COBE sales. Slow-rollination ends when one of the slow-roll parameters beomes greater than one. In ournumerial analysis we use � = 1 to determine the end of ination.To determine the inationary trajetory, and the perturbation spetrum, weintegrate the equations of motion numerially, usingd'idN = 1H _'i(�i);d�idN = � 3�i � 1H (V ('i)� Lkin); (A.1)with �i = �Lkin=� _'i. Dots indiate derivatives with respet to N .We an de�ne the diretional slow-roll parameter �k as the usual slow-roll parameter� = (1=2)(V 0=V )2 projeted along the inaton path [4, 31, 32, 33℄:�k = (�NV )212LkinV : (A.2)We have heked that in all of parameter spae (exept for the ase with largeisourvature perturbations shown in �gure 4) j���kj=� < 10�2, and ination is e�etivelysingle-�eld with an adiabati perturbation spetrum.The salar power spetrum is then given byP = V150�2�k (A.3)evaluated 60 e-folds before the end of ination. The COBE normalisation imposesthat P � 4 � 10�10. A seond ruial observable is the spetral index of the inatonutuations: ns � 1� d lnPdN : (A.4)WMAP3 has measured ns = 0:95 � 0:02 for a negligible tensor ontribution to theperturbation spetrum [36℄, and ns = 0:98� 0:02 for non-zero r. We heked that usingns = 1 + 2� + 6� instead to alulate the spetral index di�ers by less than a perentfrom the spetral index (A.4) of the adiabati mode, on�rming one again that theusual single �eld equations apply. The slow-roll parameter � is de�ned as the minimumeigenvalue of the matrixNab = ga(��bV � �eb�eV )V (A.5)where the metri gab is given by Lkin = (1=2)gab��'a��'b.Appendix B. General K�ahlerFor a K�ahler potential of the formK = � ln�T + �T � (T + �T )�k(�i; ��i)3 � = �3 lnX (B.1)
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