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essfully 
ombining SUGRA hybrid in
ation andmoduli stabilisationS C Davis1 and M Postma2;31 Servi
e de Physique Th�eorique, Orme des Merisiers, CEA/Sa
lay, 91191Gif-sur-Yvette Cedex, Fran
e2 DESY, Notkestra�e 85, 22607 Hamburg, Germany3 Nikhef, Kruislaan 409, 1098 SJ Amsterdam, The NetherlandsE-mail: sdavis�lorentz.leidenuniv.nl, postma�mail.desy.deAbstra
t. In
ation and moduli stabilisation me
hanisms work well independently,and many string-motivated supergravity models have been proposed for them. Howevera 
omplete theory will 
ontain both, and there will be (gravitational) intera
tionsbetween the two se
tors. These give 
orre
tions to the in
aton potential, whi
hgeneri
ally ruin in
ation. This holds true even for �ne-tuned moduli stabilisations
hemes. Following a suggestion by [1℄, we show that a viable 
ombined model 
an beobtained if it is the K�ahler fun
tions (G = K + ln jW j2) of the two se
tors that areadded, rather than the superpotentials (as is usually done). Intera
tion between thetwo se
tors does still impose some restri
tions on the moduli stabilisation me
hanism,whi
h are derived. Signi�
antly, we �nd that the (post-in
ation) moduli stabilisations
ale no longer needs to be above the in
ationary energy s
ale.Keywords: in
ation, 
osmology of theories beyond the SM1. Introdu
tionMany attempts have been made to implement in
ation in extensions of the standardmodel, although to date there is still no model that is truly 
onvin
ing. Supersymmetri
(SUSY) theories appear to be more promising. They in
lude numerous moduli �elds,i.e. s
alar �elds whi
h in the supersymmetri
 limit have an exa
tly 
at potential, as isrequired for slow-roll in
ation. Any one of these moduli �elds 
ould play the role ofthe in
aton �eld. As a 
on
rete example we will 
onsider F -term hybrid in
ation inthis work. In the SUSY limit it has a 
at dire
tion, but when extended to in
ludegravity the situation is less rosy. The large energy density during in
ation breaksSUSY spontaneously, and supergravity (SUGRA) e�e
ts lift the 
atness of the modulipotential. This is the infamous �-problem [2, 3℄.Furthermore, the parti
ular form of the SUGRA potential means that all other, non-in
ationary se
tors of the full theory will 
ouple to the in
ation se
tor. The 
ouplingwill be small, in the models we 
onsider it is only of gravitational strength, but it 
an
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essfully 
ombining SUGRA hybrid in
ation and moduli stabilisation 2nevertheless have large e�e
ts. This is a generi
 problem for all in
ation models, and aswe will see, this small 
oupling between the di�erent se
tors frequently kills an otherwisegood model. As a spe
i�
 example, we will study the e�e
ts of a modulus stabilisationse
tor on 4D N = 1 SUGRA F -term hybrid in
ation. All the other, non-in
ationarymoduli �elds must be �xed during in
ation, and so a full SUGRA theory must in
ludeadditional physi
s to do this. For this we will 
onsider KKLT-like [4℄ and KL-like [5℄moduli stabilisation s
hemes. As we will see, the moduli se
tor gives rise to additional| and quite generi
ally fatal | 
orre
tions to the in
aton potential. This raises thequestions of whether the original SUSY hybrid in
ation model 
an a
tually be embeddedin a full, realisti
 theory, and if so, are its original predi
tions valid? For the answerto both these questions to be yes, the 
oupling between the two se
tors must somehowbe minimal, so that neither the moduli 
orre
tions to the in
ation potential, nor thein
aton 
orre
tions to the moduli stabilisation potential ruin the model. As we willshow, it is possible, but non-trivial, to a
hieve this.There are of 
ourse many other models of in
ation, whi
h o�er alternativeapproa
hes to the issue of moduli-in
ation 
oupling. For example, in modular in
ationmodels the modulus �eld itself is the in
aton [6℄. In a sense, the 
oupling is maximal| nevertheless su

essful (�ne-tuned) models have been 
onstru
ted [7℄. In branein
ation models the in
aton potential arises from brane intera
tions, and dependsexpli
itly on the volume modulus. Stabilising the modulus �eld then inevitably givesa 
urvature 
orre
tion to the in
ation potential [8℄. However expli
it examples havebeen 
onstru
ted where, for �ne-tuned parameters, the 
orre
tions to � 
an
el to a highdegree, allowing in
ation [9, 10℄. In 
ontrast to the above models, our strategy is tode
ouple the in
ation and modulus se
tors as mu
h as possible. One advantage of thisis that it also allows us to de
ouple the s
ale of in
ation from the gravitino mass s
ale.At the 
ost of tuning, it is then possible to have the gravitino in the phenomenologi
allyfavoured TeV range without the need for low s
ale in
ation.The �-problem is a 
ommon feature of SUGRA in
ation models. To illustrateit, 
onsider a 
anoni
ally normalised in
aton �eld with K = j�j2. The in
ationarypotential is of the form V � eKV� � V�(1 + j�j2 + � � �), with V� the nearly 
onstantenergy density driving in
ation. It follows that the slow-roll parameter � = V 00=V isof order unity, and slow-roll in
ation does not o

ur. To avoid this 
on
lusion one 
an�ne-tune the model su
h that the 
oeÆ
ient of the j�j2-term in the potential 
an
els.More elegantly perhaps, one 
an try to a
hieve the same using a symmetry. An exampleof the latter approa
h is the (a

idental) Heisenberg symmetry of the K�ahler potential inD-term hybrid in
ation [11℄. In this paper we avoid the above �-problem by using a shiftsymmetry for the in
aton, �! �+a, whi
h leaves the K�ahler potential invariant [6, 12℄.Sin
e the in
aton �eld Re(�) no longer appears expli
itly in the K�ahler potential, thelarge mass 
orre
tions to the in
aton �eld are avoided.However, the shift symmetry does not kill all the 
orre
tions to the in
atonpotential. In the presen
e of moduli �elds �- (and �-) problems appear again. As a
on
rete example, 
onsider the 
ase of a single modulus �eld T . If moduli �elds are
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ation and moduli stabilisation 3present, they need to be �xed during in
ation. The modulus potential typi
ally has alo
al minimum at �nite �eld value separated by a barrier from the global minimum atin�nity. The 
lassi
 example is the KKLT potential [4℄. To assure that the modulusdoes not run away during in
ation the barrier should be large. This is the 
ase if themodulus mass is large mT > H�, with H� being the Hubble 
onstant during in
ation [5℄.Now sin
e the moduli stabilisation me
hanism breaks SUSY, there are soft 
orre
tionsto the in
aton potential, typi
ally of O(m3=2H�). The 
atness of the in
aton potentialis lost unless the gravitino mass is suÆ
iently small m3=2 < H�. The problem with thisis that one 
annot tune the gravitino mass arbitrarily: in a generi
, KKLT-like potentialm3=2 � mT , and a small gravitino mass is at odds with keeping the modulus �xed. It istherefore diÆ
ult to embed in
ation in su
h a s
heme.A solution to the above moduli problem put forward by Kallosh and Linde(hen
eforth denoted by KL) [13℄ is to �ne-tune the modulus potential so that m3=2 �mT . Then if the Hubble 
onstant during in
ation is between these two mass s
ales, themodulus remains �xed while the soft 
orre
tions to the in
aton mass are small. Su
ha set-up has the additional advantage that the gravitino mass 
an be in the TeV rangewithout the need for low s
ale in
ation. KL gave an expli
it realisation of this idea usinga ra
etra
k potential for the modulus. All problems then appear to be solved, but this isde
eiving. Although the moduli 
orre
tions are small after in
ation thanks to the �ne-tuning in the KL set-up, this is not ne
essarily true during in
ation. During in
ationthe modulus �eld T is slightly displa
ed from its post-in
ationary minimum, disruptingthe minute �ne-tuning of the potential, with potentially serious 
onsequen
es. Indeed,as we will show, in F -term hybrid in
ation the e�e
ts of the modulus displa
ement aresubstantial, resulting in � � �3 and ruining in
ation. The need to in
lude the dynami
sof the modulus �eld during in
ation was previously noted in [14, 15℄.In this paper we will study F -term hybrid in
ation, whi
h serves to illustrate allthe observations made above. It is a multi-�eld model of in
ation, 
onsisting of thein
aton �eld, and two oppositely 
harged waterfall �elds whi
h are responsible for endingin
ation. When 
ombined with a KKLT modulus se
tor, the 
orre
tions to both thein
aton and the waterfall �eld potentials are large. Although the mass 
orre
tion to thein
aton 
an be prote
ted by a shift symmetry, this is not the 
ase for the waterfall �elds,and as a result there is generally no gra
eful exit from in
ation. Tuning the modulusse
tor, as in the KL set-up, 
an redu
e these 
orre
tions to a harmless size. Howeverall of this is under the assumption that the modulus T is �xed during in
ation. Takingthe modulus dynami
s into a

ount we �nd that even in the �ne-tuned KL-stabilisations
heme the 
orre
tions are not harmless after all. On the 
ontrary, they prevent in
ationfrom working.In all previous studies of the e�e
t of the moduli se
tor on in
ation [14, 15, 16, 17℄,the K�ahler and superpotentials of the modulus and in
aton se
tors were simply added toget the 
ombined theory, i.e. take Wtotal =Winf+Wmod to get the full superpotential. Inthis paper we instead multiply the superpotentials: Wtotal = WinfWmod, as proposed byA
h�u
arro and Sousa [1℄. As we will show, this greatly redu
es the moduli 
orre
tions.
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essfully 
ombining SUGRA hybrid in
ation and moduli stabilisation 4Indeed F -term hybrid in
ation 
ombined with KL, or even KKLT, in this way 
an give aviable in
ation model. Although multiplying superpotentials may sound odd at �rst, itis natural in a supergravity formulation in terms of the K�ahler fun
tion G = K+ln jW j2.Any supersymmetri
 theory only depends on the K�ahler- and superpotential throughthe 
ombination G, suggesting that it is the only signi�
ant quantity. Adding theK�ahler fun
tions of the two se
tors is equivalent to adding their K�ahler potentials andmultiplying their superpotentials.Adding K�ahler fun
tions has the ni
e property that a SUSY 
riti
al point of themodulus se
tor is automati
ally a SUSY 
riti
al point of the full theory as well [1, 18℄| this feature is at the heart of the redu
ed moduli 
orre
tions. In the limit of a smallgravitino mass, all the 
orre
tions to the in
aton potential are small, in
luding thosedue to the dynami
s of the modulus �eld during in
ation. The resulting in
ationarymodel thus gives similar in
ationary predi
tions to the usual F -term hybrid in
ation inthe absen
e of a modulus se
tor. Although there are still some 
onstraints on the modelparameters, we want to stress that su

essful in
ation is a
hieved without the needfor �ne-tuning | this is in 
ontrast to most other 
ombined in
aton-moduli models.A notable feature of the model is that it is possible for the va
uum modulus mass tobe smaller than the Hubble s
ale during in
ation, without the modulus running o� toin�nity.This paper is organised as follows. In the next se
tion we provide the relevantba
kground material. We start with a short review of standard F -term hybrid in
ation,both in a SUSY and SUGRA theories. This is followed by a 
on
ise dis
ussion of modulistabilisation in KKLT- and KL-style s
hemes. In se
tion 3 we dis
uss the resulting modelwhen the two se
tors are 
ombined by adding superpotentials. As we will see, even inthe �ne-tuned KL set-up this does not give a working model. In se
tion 4 we 
ombinethe modulus and in
aton se
tors by their multiplying superpotentials, or equivalentlyby adding their K�ahler-fun
tions. The modulus 
orre
tions to the in
aton potentialnow are under 
ontrol, and for a 
ertain range of parameters we get su

essful in
ation.The parameter range for whi
h the standard F -term hybrid in
ation predi
tions applyis determined in se
tion 5. We end with some 
on
luding remarks.Throughout this arti
le we will work in units with Mpl = 1=p8�GN = 1.2. Ba
kground2.1. SUSY F -term hybrid in
ationThe superpotential for standard SUSY F -term hybrid in
ation is [19, 20℄Winf = ��(�+�� � v2) : (1)with � the singlet in
aton �eld, and �� the waterfall �elds with 
harges �1 under someU(1) symmetry. We 
an make � real by an overall phase rotation of the superpotential,whereas the phase of v 
an be absorbed in the waterfall �elds. This is the 
onventionwe will use throughout this paper. In parti
ular, in se
tions 3 and 4 where we 
ombine
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essfully 
ombining SUGRA hybrid in
ation and moduli stabilisation 5in
ation with a moduli stabilisation potential, all residual phases reside in the modulisuperpotential. The s
alar potential isVinf = �2j�j2 �j�+j2 + j��j2�+ �2 ���+�� � v2��2 + VD : (2)Vanishing of the D-term potential enfor
es j�+j = j��j. In
ation takes pla
e for j�j > v,during whi
h the waterfall �elds sit at the origin �� = 0. The potential then redu
es toa 
onstant energy densityVinf = V� � �2v4 ; (3)whi
h drives in
ation. The in
aton potential is 
at at tree level, but quantum
orre
tions generate a slope for the in
aton �eld. The one-loop potential is given by theColeman-Weinberg formula [21, 22℄Vloop = 132�2StrM2�2 + 164�2StrM4�logM2�2 � 32� ; (4)with the supertra
e de�ned as Strf(M) = f(M(boson))�f(M(fermion)), and � is the 
ut-o�s
ale. During in
ation SUSY is broken and the masses of the waterfall �eld and theirsuperpartners are splitm2� = �2(j�j2 � v2) ; ~m2� = �2j�j2 ; (5)giving a non-zero 
ontribution to the logarithmi
 term in Vloop. In
ation ends when thein
aton drops below the 
riti
al value j�j = v, and one 
ombination of the waterfall �eldsbe
omes ta
hyoni
. During the phase transition ending in
ation the U(1) symmetry getsbroken and 
osmi
 strings form a

ording to the Kibble me
hanism [23, 24℄.The predi
tions for the CMB power spe
trum and spe
tral index areP = V150�2� ; ns = 1� d lnP (N)dN � 1 + 2� � 6� ; (6)evaluated at N = N� � 60, where N = � log a is the number of e-folds before the end ofin
ation. The slow-roll parameters are � = (1=2) (V 0=V )2 and � = V 00=V , with primesdenoting di�erentiation with respe
t to the 
anoni
ally normalised real in
aton �eld ',whi
h for the above model is ' = p2j�j. The COBE normalisation [25℄ for the powerspe
trum is P � 4 � 10�10, and WMAP3 results [26℄ give ns � 0:95 � 0:02. We notehowever that if 
osmi
 strings give a minor 
ontribution to the power spe
trum, largervalues of the spe
tral index are favoured [27℄.We 
an get approximate analyti
al expressions in two limiting 
ases. For large
ouplings �2 & 7:4 � 10�6 in
ation takes pla
e for large �eld values ' � v, and thepotential in
luding loop 
orre
tions approximates toVinf � V� �1 + �28�2 log �'p2�� : (7)It follows that N e-folds before the end of in
ation, the in
aton �eld is ' � �pN=(2�).The predi
tion for the power spe
trum is P � 16N�v4=75, whi
h when normalised tothe COBE s
ale gives v2 � 5:6 � 10�6. The spe
tral index is ns � 1 � 1=N� � 0:98.In the opposite limit, �2 . 7:4 � 10�6, in
ation takes pla
e for in
aton values 
lose
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essfully 
ombining SUGRA hybrid in
ation and moduli stabilisation 6to the 
riti
al value '� � 'end � p2v. Fitting the power spe
trum to the COBEnormalisation now gives v2 = 5:6�10�6[�2=(7:4�10�6)℄1=3, and an approximately s
aleinvariant spe
trum ns � 1.Cosmi
 strings 
an 
ontribute up to about 10% (depending on the angular s
ale) tothe CMB power spe
trum [27, 28, 29℄. This puts an upper bound on the string tension,and equivalently on the symmetry breaking s
ale v2 < 10�5 | 10�6, whi
h implies� < 10�3 | 10�4 [30, 31℄. However there are ways to avoid 
osmi
 string produ
tion,or at least relax the bound [32℄. In any 
ase, the pre
ise in
ationary predi
tions andthe issue of 
osmi
 strings is not the main point of this paper. Even if ruled out byfuture data, F -term hybrid in
ation still serves as a useful toy model to study thee�e
ts of a moduli se
tor on in
ation. In parti
ular it provides an expli
it example forwhi
h multiplying superpotentials, instead of adding them, helps to keep the moduli
orre
tions under 
ontrol.2.2. SUGRA F -term hybrid in
ationGeneri
ally when an in
aton model is extended to in
lude supergravity 
orre
tions thepotential develops a large 
urvature, resulting in a slow-roll parameter � � 1 that is fartoo large for in
ation [2, 3℄. For F -term hybrid in
ation with a 
anoni
ally normalisedin
aton �eld this 
urvature 
orre
tion mira
ulously vanishes [33℄. However, when higherorder 
orre
tions to the the K�ahler potential are taken into a

ount, or when a modulusse
tor is in
luded, this a

idental 
an
ellation is destroyed, and the �-problem reappears.It 
an be solved by introdu
ing a shift symmetry for the in
aton �eld into the in
ationaryK�ahler potential [6, 12℄Kinf = �(�� ��)22 + j�+j2 + j��j2 : (8)The 
anoni
ally normalised in
aton, whi
h is now ' = p2Re(�) (rather than j�j), doesnot appear expli
itly in the K�ahler.However, the SUGRA model with K�ahler (8) and superpotential (1) still does notwork. The reason is that the mass of the axion �eld a = p2 Im(�) is ta
hyoni
:m2a = �3�2v4. This problem is solved if we in
lude an extra no-s
ale modulus �eldT in the model. Expli
itly, take K = �3 ln(T + �T ) +Kinf andWinf = �0�(�+�� � v20) : (9)The modulus �eld T 
an arise in string theory as the breathing mode of 
ompa
ti�edextra dimensions; we will dis
uss it in more detail in the next subse
tion. In the limitthat T is �xed we re
over (3) with v = v0, and � = �0(2ReT )�3=2 the res
aled 
oupling.The mass of the axion �eld is now positive de�nite m2a = 2�2v4(3 + 2�2). The massesof the waterfall �elds are also alteredm2� = �2[�2 + v4(1 + �2)� v2(1 + 2�2)℄ ; ~m2� = �2j�j2: (10)Sin
e v � 1 the v4 term is negligbly small. For � . 0:5 we have �2 . 1, and theother 
orre
tion is also small. The water�eld masses then redu
e to the global SUSYresults (5), and the model approa
hes the SUSY limit.
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ombining SUGRA hybrid in
ation and moduli stabilisation 7This is all very well, but in the above dis
ussion we have negle
ted to in
lude astabilisation me
hanism for the modulus T . The full theory must in
lude additionalpotential terms, whi
h break SUSY and are expe
ted to give 
orre
tions to the e�e
tivein
aton potential. This is a
tually part of a wider issue, namely that in
ation doesnot exist in isolation | it is part of a full theory 
ontaining other very high energyphysi
s (su
h a stabilisation me
hanisms for moduli �elds like T ). Given the restri
tiveform of SUGRA theories, intera
tion between di�erent se
tors is unavoidable (gravity
ouples to everything). As we will see in later se
tions, this 
an be 
atastrophi
 for manyapparently good theories, and leads to severe restri
tions on others. Before dis
ussingthe moduli 
orre
tions to in
ation, we will �rst review moduli stabilisation in the KKLTand KL set-ups.2.3. KKLT and KL moduli stabilisationKKLT devised an expli
it method for 
onstru
ting dS or Minkowksi va
ua in stringtheory [4℄. In their set-up all moduli �elds are �xed by 
uxes [34℄, ex
ept for the volumemodulus T whi
h is stabilised by the superpotentialWKKLT =W0 + Ae�aT ; K = �3 log[T + �T ℄ ; (11)where W0 
omes from 
uxes, and the non-perturbative exponential term from gaugino
ondensation or alternatively from instanton e�e
ts. For a general SUGRA theory, theF -term potential isVF = eK �KI �JDIW �D �J �W � 3jWj2� (12)with DIW = W;I + KIW. The minimum of the above superpotential (11) is SUSYpreserving and AdS. However, we require a Minkowski or dS va
uum with a small
osmologi
al 
onstant to desribe our universe. This 
an be obtained by adding anuplifting term, whi
h then gives a minumum in whi
h SUSY is broken. In the originalKKLT paper an anti-D-brane was used for uplifting. Alternatively a D-term 
an beused [35℄ although additional meson �elds are required to implement this [36℄. D-term uplifting has the advantage that the full theory 
an still be des
ribed by SUGRA,whereas the KKLT uplifting term breaks SUSY expli
itly. In this paper we assume anylifting term takes the formVlift / K2TRe f(T ) ; (13)where f(T ) / T , or is a 
onstant. This gives the 
orre
t form for the KKLT liftingVlift / (ReT )�n with n = 2; 3. The D-term will also in
lude the meson �elds, althoughVlift is qualatively the same (at least for the analysis of this paper).Alternatively one 
an introdu
e an uplifting F -term se
tor, su
h as anO'Raifeartaigh [37℄ or ISS [38℄ se
tor. An expli
it example of this is the O'KKLTmodel [13℄, in whi
h a minimal O'Raifeartaigh se
tor is added to (11). In this paper we
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essfully 
ombining SUGRA hybrid in
ation and moduli stabilisation 8will implement the theory with a no-s
ale K�ahler. The full moduli stabilisation se
toris then K = �3 ln �T + �T � KO03 � ; W =WKKLT +WO0 (14)with KO0 = S �S � (S �S)2�2s ; WO0 = ��2S : (15)The O'Raifeartaigh se
tor breaks SUSY and lifts the AdS va
uum to Minkowski. Thereis then no need for a separate non-F lifting term in the theory.The resulting stabilisation potential Vmod = VF+Vlift has only one s
alemT � m3=2.The Minkowski minimum is separated from T = 1 by a barrier of height Vmax � m2T .The barrier needs to be higher than the in
ationary s
ale, otherwise the moduli willroll o� to in�nity and the internal spa
e will be de
ompa
ti�ed, whi
h gives the boundH� < m3=2 on the in
ationary s
ale [5℄.KL devised a moduli stabilisation s
heme that 
ir
umvents the above bound onthe Hubble s
ale during in
ation [13℄. Instead of the KKLT superpotential they use amodi�ed ra
etra
k superpotentialWKL =W0 + Ae�aT +Be�bT : (16)The extra parameters in the superpotential allow us to tune W;T = W = 0, giving ametastable SUSY Minkowski va
uum without the need for a lifting term. As it stands,the model has m3=2 = 0. This 
an be avoided by slightly perturbing the Minkowskisolution to obtain an AdS minimum V � �m23=2 � m2T , whi
h is then uplifted to aSUSY breaking Minkowski va
uum. Uplifting 
an be done with a small KKLT liftingterm, or alternatively by adding an uplifting F -term se
tor (15), as was used in se
tion3 of [13℄. If the SUSY-breaking s
ale is small, we have TW;T � W � m3=2T 3=2 and thegravitino mass is far smaller than the modulus mass s
ale, whi
h is typi
ally set by W0in the superpotential. It is then possible to have m23=2 � H2� � Vmax � m2T , whi
hopens the possibility of having in
ation with �xed moduli but small soft 
orre
tionsto the in
aton potential. Note that su
h a s
enario 
annot be implemented with anuplifting D-term. In this 
ase gauge symmetry implies that the Minkowski solutionW;T = W = 0 is obtained along a 
at dire
tion in the meson-modulus �eld spa
e. Asa result, after perturbing the solution and uplifting to Minkowski, only one modulusmass eigenstate is large. The other is only O(m3=2), and so the barrier height along thepreviously 
at dire
tion is also small Vmax � m23=2, even when the modulus mass is largemT � m3=2.The above model (14) uses a slightly di�erent K to [13℄, although it has similarproperties. We have 
hosen the above K�ahler to simplify the analyti
al expressions. Butwe want to emphasise that the exa
t way the modulus potential and the O'Raifeartaighse
tion are 
ombined does not signi�
antly a�e
t in
ation. For that matter, the upliftingse
tor does not have to be O'Raifeartaigh either, but 
an be some other F -term SUSYbreaking se
tor su
h as the ISS model. The di�eren
es in the resulting potential will
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essfully 
ombining SUGRA hybrid in
ation and moduli stabilisation 9be of order O(m23=2), and as long as m3=2 � H� su
h di�eren
es are irrelevant duringin
ation. As we will see in se
tion 4, whether the uplifting is F -term or not 
an make amajor di�eren
e. For the 
ase where the modulus and in
aton se
tor are 
ombined byadding their respe
tive K�ahler fun
tions it is the di�eren
e between a viable model andno model at all.3. Combining in
ation and moduli stabilisation by additionThe usual way to 
ombine the models of the previous se
tions is to add the respe
tivesuperpotentials W = W + Winf . Here W is the modulus superpotential, eitherKKLT (11) or KL (16), possibily in
luding an F -term O'Raifeartaigh lifting se
tor.For the K�ahler potential we 
onsider the simplest possibilityK = �3 ln [X℄ +Kinf ; (17)with X = T + �T � KO03 : (18)If uplifting is a
hieved via an anti-D-brane or D-term, WO0 and KO0 are simply set tozero. To verify that the qualitative results are independent of the exa
t form of theK�ahler, we also 
onsider the more general expressionK = �3 ln �X �X�Kinf3 � : (19)For � = 0 this gives a fully no-s
ale K�ahler potential: KaKa�bK�b = 3 with a; b runningover both moduli and in
aton �elds.Slow-roll in
ation with a s
ale invariant spe
trum of perturbations requires �; � � 1.Hen
e we have to make sure the moduli indu
ed 
orre
tions to the slope and 
urvatureof the in
aton potential are suÆ
iently small. The 
orre
tions to the masses of thewaterfall and axion �elds must also be small. If the mass 
orre
tions to the waterfall�elds are too large and positive de�nite, they prevent �� be
oming ta
hyoni
, and thereis no exit from in
ation. Alternatively, if the 
orre
tions are large and ta
hyoni
 thesystem ends up in the wrong va
uum. Furthermore, the axion mass has to be positivede�nite during in
ation, whi
h is not automati
. For the moment we work in theapproximation that the moduli are �xed at the minimum T = T0 during in
ation. Atthe end of this se
tion we will drop this assumption, and analyse its impli
ations.For either 
hoi
e of K�ahler we �nd there are 
orre
tions to the slope of thein
ationary potential [14℄. For (17), the full F -term potential for the 
ombined theoryis VF = eKinfVF + Vlift + eK j�iWinf +Ki(Winf +W)j2 + Vmix ; (20)whi
h is roughly the sum of the potential for the in
ation and moduli se
tors (withsome res
aling), and the additional mixing termsVmix = 2eK Re[(KI �JDIWK �J � 3W) �Winf)℄ + eK(KI �JKIK �J � 3)jWinfj2 : (21)
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ation and moduli stabilisation 10The index i runs over the in
ation se
tor �elds, while I; J run over the moduli se
tor�elds. During in
ation all Ki = 0, and the SUGRA KiW 
orre
tions to SUSY in
ationvanish. Furthermore, for a no-s
ale moduli K�ahler (17) the se
ond term of Vmix isidenti
ally zero. The K�ahler potential (19) gives rise to similar mixing terms.Mu
h of the moduli intera
tion e�e
tively re-s
ales the in
ationary parameters, andso it is 
onvenient to introdu
e� = �0X3�=2 ; v2 = v20X1�� ; V� = 3H2� = �2v4 ; ' = p2X��1Re� : (22)These apply to the general K�ahler (19), and also to (17) if � is set to 1. In both 
asesthe in
ationary potential redu
es toVinf = V� + Vmod + p2Re(W;T )pX �v2' (23)with ' the 
anoni
ally normalised in
aton. The in
aton independent modulus potentialis Vmod(T ) = VF +Vlift. We see that a nearly 
at in
aton potential, with �� 1, requiresVmix / ReW;T to be small. This 
an be a
hieved either be making jW;T j small (whi
his the 
ase for the two-s
ale KL-style stabilisation), or by having W;T imaginary, i.e.having a phase di�eren
e between the in
ation and moduli superpotentials.We also need to 
he
k that the 
orre
tions to the masses of the waterfall �elds donot radi
ally 
hange the ending of in
ation, and that the axion a = p2 Im� remainsstable. We introdu
e the mass s
alesm = WX3=2 ; m0 = W;TpX ; M = pXW;TT3 : (24)Up to small O(eKinf) 
orre
tions jmj � m3=2 is the gravitino mass after in
ation, and ina KL-style s
heme jMj � mT the modulus mass. For KKLT we still have jMj � mT .For the K�ahler (17) with 
anoni
ally normalised in
aton se
tor �elds the masses of theaxion and waterfall �elds arem2a = 2�2v4(3 + 2�2) + 2VF + 4jmj2 � 4Re[2m�m0℄�v2� ; (25)m2� = �2�2��2v2 ����1� 2m�m0�v2 �+ 2�2����+VF+jmj2+�2v4(1+�2)+2�v2Re[m0�m℄� :(26)For a one-s
ale KKLT-like moduli se
tor m;m0 � m3=2 � mT . The requirement that themoduli remain �xed during in
ation, i.e. H2� < Vmax � m2T , implies that the O(m;m0)moduli se
tor 
orre
tions to m2� dominate, preventing a gra
efull exit from in
ation. Afurther problem for models whi
h use a D-brane or D-term lifting term Vlift is that theaxion and waterfall masses re
ieve large ta
hyoni
 
ontributions from the moduli se
torF -term potential / VF � �3m23=2. For F -term lifting VF = 0 in the Minkowski va
uumafter in
ation, and so the 
ontribution of VF during in
ation is small.In prin
iple, all these problems 
an be avoided with suÆ
ient �ne-tuning, althoughthe single mass s
ale superpotential (11) does not 
ontain enough parameters. Hen
ewe must swit
h to a two-s
ale KL moduli stabilisation s
heme, whi
h is tuned so thatW = W;T � 0 and thus m;m0;VF � 0. The moduli 
orre
tions to the waterfall (26)
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ation and moduli stabilisation 11and axion (25) �eld masses, as well as to the in
aton potential (23), are then negligiblysmall during in
ation.So it appears that the potential 
an be kept 
at and the mass 
orre
tions smallin a KL-style set-up. But as we will now show this is not the �nal pi
ture. In theabove analysis we assumed T was �xed at the minimum of Vmod. However, no �eld istruly �xed at a 
onstant value during in
ation, and in parti
ular the modulus minimumwill shift slightly during in
ation. Taking the dynami
s of the modulus into a

ount,we will now show that it produ
es sigini�
ant 
urvature 
orre
tions to the potential,and 
onsequently gives too large a value for � [14℄. To do so we Taylor expand thepotential (23) in ÆT = T � T0, with as before T0 the modulus value that minimises thepost-in
ationary potential:Vinf = V�(T0) + Vmod(T0) + 2ReW;T (T0)X2 �0v20�+ ÆVinf +O�jÆT j3; �0v20�jÆT j; V�jÆT j� (27)where ÆVinf = Vmod;T �T ÆT ÆT +Re[Vmod;TT ÆT 2℄+ 2 [X Re(W;TT ÆT )� 4Re(W;T ) Re(ÆT )℄ �0v20X3 � (28)gives the leading order 
orre
tions to Vinf from the variation of T . Now for KLjMj � jmj; jm0j, hen
e this redu
es toÆVinf � 3 jMj2X2 jÆT j2 + 3p2�v2'X Re[M ÆT ℄ : (29)Minimising with respe
t to ÆT we �ndÆTX � � �v2'p2M (30)whi
h is small (as expe
ted). However when this is substituted ba
k into the abovepotential, it produ
es a large negative in
aton massÆVinf � �32V�'2 : (31)The �-problem rears its head again: � = V;''=V � �3. For KL without the SUSYbreaking O'Raifeartaigh se
tor the above expressions are exa
t, while an uplifting se
tor| O'Raifeartaigh or otherwise | gives rise to small O(m23=2) 
orre
tions (both due tothe above ÆT expression, as well as the displa
ement of e.g. the O'Raifeartaigh �eldÆS). The large slow-roll parameter rules out F -term hybrid in
ation with KL modulistabilisation. The reason for the large 
orre
tions, even in the �ne-tuned KL set-up isthat although W � W;T � 0 are small, jW;TT j2 = 3XVmod;T �T + O(Mm3=2) is not. Inthe Minkowski va
uum after in
ation the potential is �ne-tuned so that m23=2 � m2T ,but during in
ation, due to the small displa
ement of the modulus �eld, this tuning isdisrupted, and 
orre
tions are large.For the more general K�ahler (19) the in
aton potential is still given by (23). Thewaterfall masses take the formm2� = �2'22 � �2v2 ����1 + (1 + 2�)m0 � 6�m3p2�v2 '+ �'2����+ 2 + �3 VF + 2(1� �)3 Vlift
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ation and moduli stabilisation 12+ �jmj2 + p2�v23 Re[(2 + �)m0 � 3�m℄'+ �2v4�23 + �'22 � : (32)In general, the model will have all the same problems as that arising from the simplerK�ahler (17), and one-s
ale KKLT-style moduli stabilisation superpotentials are ruledout. It is interesting to note that for a no-s
ale � = 0 model most of the 
orre
tions tom� 
an
el (
ompare with the D-term in
ation model proposed in [16℄). In parti
ular,all the m, VF and Vlift 
orre
tions disappear. It would seem that we then only need toimpose the single �ne-tuning m0 � 0, to obtain a viable in
ation model. Unfortunatelythe KKLT superpotential (11) does not have enough freedom to do this, and viablein
ation is not obtained. Furthermore, the above dis
ussion does not take into a

ountthe varation of T during in
ation. The above analysis of ÆT also applies for the moregeneral K�ahler (19), and so it too is ruled out.To 
on
lude, F -term hybrid in
ation does not work for either KKLT- or KL-stylemoduli stabilisation, no matter what the form the K�ahler takes, at least if we 
ombinethe in
ation and modulus se
tor by adding superpotentials. In fa
t, if more exponentialterms are added to the moduli stabilisation superpotential, its �rst three derivatives areappropriately tuned, and the K�ahler is 
arefully 
hoosen, the moduli dynami
s 
ouldbe di�erent to those used to get (31). A viable model of in
ation 
ould 
on
ievably be
onstru
ted, although it is hard to justify all the �ne-tuning. Furthermore, there is noguarantee that additional problems will not arise as a result of this tuning. We will not
onsider su
h as set-up here, and will instead turn to a mu
h more elegant solution.4. Combining in
ation and moduli stabilisation by multipli
ationThe in
aton and modulus se
tors 
an also be 
ombined by multiplying theirsuperpotentials. Although due to its unfamiliarity this seems strange at �rst, we arguethat from a supergravity point of view it is a rather natural thing to do. Multiplyingsuperpotentials greatly redu
es the mixing between se
tors [1, 18℄. Indeed, as we willdis
uss in this se
tion F -term hybrid in
ation 
ombined in this way with KL or even aKKLT moduli se
tor gives a viable in
ation model.The supergravity formulation in terms of K and W is redundant, as a K�ahlertransformation leaves the theory invariant. Instead the theory 
an be formulated interms of single K�ahler invariant fun
tion G = K + ln jW j2, whi
h is known as theK�ahler fun
tion. The kineti
 terms and F -term potential are then given in terms ofG only. This suggests that the K�ahler fun
tion is a more \fundamental" or \natural"quantity to 
onsider. Hen
e when 
ombining se
tors, it may be argued that one shouldadd their respe
tive K�ahler fun
tions, whi
h 
orresponds to adding K�ahler potentialsand multiplying superpotentials.For the 
ombined theory we then take G = Gmod + Ginf . The redu
ed in
aton-moduli intera
tions are a result of the following property. Consider a SUSY 
riti
al pointT = T0 of the modulus se
tor �TGmod(T0) = 0, whi
h 
orresponds to a SUSY extremumof the moduli potential. It 
an easily be shown that this is then a SUSY 
riti
al point
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ation and moduli stabilisation 13of the full theory as well �TG(T0) = 0 [1, 18℄. This is exa
tly what we want, as itimplies that the modulus minimum is not shifted during in
ation. The ÆT 
orre
tionsto the potential, whi
h were fatal when adding superpotentials, are then absent. Of
ourse, with SUSY broken in the modulus se
tor the minimum of the modulus potentialis not exa
tly in a 
riti
al point. But in the KL-like set-up the deviations away from theSUSY 
riti
al point are small, of the order of the small gravitino mass. Consequently weexpe
t the modulus �eld to be nearly 
onstant during in
ation, and the 
orresponding
orre
tion to the potential to be suppressed by the smallness of the gravitino mass. Aswe will see, this is indeed the 
ase.One disadvantage of the K�ahler fun
tion formulation of SUGRA is that it is illde�ned whenever W = 0. This presents a problem for F -term hybrid in
ation, as thein
ationary superpotential (1) is zero after in
ation. To solve this problem we \
orre
t"the superpotential by adding a 
onstantWinf = �0�(�+�� � v20)� C : (33)Here we will assume that C is real and positive, although generalisation of the analysis toin
lude a phase is straightforward. The 
onstant C is of 
ourse irrelevant in the IR globalSUSY limit, whereas in the UV regime it makes the model well behaved. Similarly, forthe modulus potential we 
annot take the supersymmetri
 KL limit, a �nite amountof SUSY breaking (expli
itly provided in (16) by an O'Raifeartaigh se
tor) is required.The e�e
tive superpotential of the model with the modulus in
luded is nowW =WWinf : (34)For the K�ahler potential we still use (17) with 
anoni
ally normalised in
aton �elds.To test the dependen
e of the results on the exa
t form of the K�ahler we also give theresults for the general expression (19).For the minimal K�ahler (17) the potential that follows from (33),(34) isV = eKinf jWinfj2VF + eKjWj2eKinf j�iWinf +KiWinf j2 + Vlift : (35)As advertised, the mixing between the in
aton and modulus se
tor is drasti
ally redu
ed
ompared to the 
ase of adding superpotentials (21). The main e�e
t is just a re-s
alingof the potential. We de�ne the re-s
aled quantities� = �0jWjX3�=2 ; v2 = v20X1�� ; Vmod = C2VF + Vlift ; ' = p2X��1Re� : (36)V� = 3H2� = �2v4 is then the res
aled in
ationary potential driving in
ation, while Vmodis the full res
aled modulus stabilsation potential after in
ation. The �eld ' is the real,
anoni
ally normalised, in
aton �eld. As before, the expressions for (17) 
orrespond to� = 1. We also de�ne the mass s
alesm = CjWjX3=2 ; M = CpXjW;TT j3 ; (37)
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h 
an respe
tively be thought of as the gravitino and moduli mass in the va
uum,after in
ation. With these de�nitions the potential during in
ation for both (17) and(19) redu
es toVinf = V� + Vmod�1 + �v2'p2m�2 � �v2'p2m �2 + �v2'p2m�Vlift : (38)We see that if a seperate lifting term is present (either an anti-D-brane or a D-term),its potential Vlift � m23=2 gives a large negative 
ontribution to �. This holds for boththe KKLT and KL superpotential, and so all our moduli stabilisation s
enarios withnon-F lifting terms are in
ompatible with F -term hybrid in
ation. In the remainder ofthis se
tion will thus fo
us on the 
ase of F -term lifting with Vlift = 0.In the limit that the modulus remains �xed during in
ation Vmod = 0 for F -termlifting, and there are no 
orre
tions to the in
aton potential at all. This is in sharp
ontrast to the potential obtained when adding superpotentials (23). Although themodulus is not truly �xed during in
ation, we will see below that the 
orre
tions to thisassumption are small.In multiplying the superpotentials, our intention was to redu
e the e�e
t of themoduli se
tor on in
ation. We see from (38) that a bene�
ial side e�e
t of this is thatthe in
aton enhan
es the moduli stabilisation. In parti
ular the barrier height for themoduli stabilisation potential is nowVmax �M2 1 + p3H�'p2m !2 : (39)Hen
e we expe
t the moduli to remain near their minimum during in
ation ifM� H�(as is usually assumed), or if (M=m)'� 1. Sin
e ' > 'end � v, the moduli should bestable thoughout in
ation if either(a) M� H� or (b) M� mv & 4� 102m : (40)Signi�
antly, the se
ond possibility does not depend on the Hubble 
onstant duringin
ation, and so having H� >M is not a problem. The H� <M bound was a majormotivation for the KL s
enario, and its removal suggests that a two-s
ale, KL-stylemoduli se
tor is no longer needed. However, while the bound (40b) is easily satis�edfor KL, it 
annot be satis�ed by KKLT. Hen
e it seems that a two-s
ale KL-like modulise
tor is needed after all, although not ne
essarily for the reasons that were originallyenvisaged.For the simplest K�ahler (17) the waterfall �eld masses arem2� = �2�2 � �2v2�1 + 2m�v2�+ 2�2�+ (m + �v2�)2 + �2v4 : (41)In the limit m � m3=2 � �v2' (42)the moduli 
orre
tions are subdominant, and in
ation ends as in usual hybrid in
ation.From the COBE normalisation it follows that v2 � 1 and all v2 
orre
tions 
an be
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ted as well. For a KKLT-style superpotential (11) with m � M, it is diÆ
ultto satisfy both of the above bounds (40), (42) simultaneously, and most vlaues of Mare ruled out. For smaller values of � (for whi
h '� � 1) there is a small window ofparameter spa
e H� � M � H�='� where in
ation will be viable. For a two-s
aleKL-style s
enario there is more room to satisfy the bounds (40), (42), but at the 
ostof �ne-tuning the potential.For the more general K�ahler (19) the waterfall masses are insteadm2� = �2'22 � �2v2 �����1 + ��+ (1� �)XW;T3W � "'+ p2m�v2 #'�����+ ��m + �v2'p2 �2 + 2�2v43 ; (43)For � 6= 1 there are additional 
orre
tions to the watefall �elds proportional to W;T .These are expe
ted to be of the same size as the other 
orre
tions. Hen
e KKLT-stylemodels are again mostly ruled out, ex
ept for a small range ofM.We now turn to the behaviour of the moduli �elds during in
ation. We saw abovehow a lower bound onM arises from the requirement that Vmax � V�. In fa
t, a strongerbound onM 
omes from the in
ationary 
orre
tions to the moduli se
tor masses. Therespe
tive masses of the real and imaginary parts of T , and their fermioni
 superpartnersarem2ReT � ~m2T +Mm V� ; m2ImT � ~m2T � Mm V� ; ~m2T �M2�1 + �v2'p2m�2 (44)up to O(m) 
orre
tions. To get the above expressions we have used that jW;TT j2 =3XVmod;T �T +O(Mm) in the KL set-up; it should also be remembered that the res
aled
oupling � is modulus dependent. We have assumed, for simpli
ity, that W and itsderivatives all have the same phase. The masses (44) for KKLT will have di�erent
oeÆ
ents, but will be qualitatively similar. Requiring that ImT is not ta
hyoni
 implieseither (a) M & H2�m or (b) M & mv2 & 2� 105m : (45)For large enoughM, (a) is satis�ed by KL- and KKLT-style moduli se
tors, and 
an inboth 
ases be 
ombined with (42). The other range (b) is easily satis�ed for KL, butnot for KKLT.Finally, we need to 
he
k that taking the modulus �xed during in
ation, as assumedabove, is a good approximation. As we saw in se
tion 3, the modulus dynami
sdestroys in
ation even for the �ne-tuned KL set-up when the modulus and in
ationsuperpotentials are added. For a model with multiplied superpotentials, this problem isavoided. We will assume thatW and all its dervatives have the same phases. Expanding,mu
h as before, around the minumum of Vmod, we take T = T0+ÆTR+iÆTI . Minimisingthe resulting potential, we �nd ÆTI = 0 andÆTRX � � V�3m2Re T �XDTWW + 1� �� (46)
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ation and moduli stabilisation 16giving � ÆVinfV� � V�3m2ReT �DTWW + 1� �X �2 . min� H2�M2 ; m2M2'2 ; mM� : (47)This is just a small 
orre
tion to the in
ationary potential (38) provided that eitherM� H�, orM� m. At least one of these 
onditions is satis�ed if we require that Tis not ta
hyoni
 during in
ation (45).To summarise, 
ombining the two bounds (42) and (45) givespMTm3=2 � H� � m3=2'� ; (48)or alternativelym3=2 � H�'� ;MTv2 ; (49)where MT � M is the mass of T after in
ation. Either of the above bounds 
anbe satis�ed by a KL-style s
enario without additional �ne-tuning. KKLT-style models
an also satisfy bound (48) and give a viable model of in
ation for a limited range ofM. These 
on
lusions also apply for the more generi
, �-dependent K�ahler (19). Inboth KKLT and KL moduli stabilisation potentials, if either of the above bounds issatis�ed, then the modulus does not vary signi�
antly during in
ation. Hen
e with onlya moderate degree of tuning, in
ation 
an be su

essfully 
ombined with a modulusse
tor when their respe
tive superpotentials are multiplied.5. In
ationary predi
tionsHaving investigated the e�e
ts of the moduli stabilisation se
tor on the tree level in
atonpotential, we will now determine the moduli 
orre
tions to the one-loop potential. Thein
aton slope and 
urvature, whi
h determine the power spe
trum and the spe
tralindex, are dominated by the one-loop 
ontribution. This is given expli
itly by theColeman-Weinberg formula (4). Vloop re
eives 
ontributions from the non-degenerateboson and fermion pairs, whi
h in our model are not only the waterfall �elds, but alsothe modulus �eld T (we will ignore any other �elds for simpli
ity). Sin
e the masses are'-dependent, their 
ontribution to the loop potential will generate a non-trivial potentialfor the in
aton �eld. In the limit that the slope and 
urvature of the in
aton potentialis dominated by the waterfall �eld 
ontribution to the loop potential, the in
ationarypredi
tions are the same as for the global SUSY model dis
ussed in subse
tion 2.1.We will then have a working model of in
ation. In this se
tion we will determine the
orresponding parameter spa
e. More pre
ise bounds 
ould be obtained by 
omparisonwith the WMAP data, although the results will be sensitive to the details of the modulisuperpotential. Here, we will 
ontent ourselves with order of magnitude bounds. Likethe 
on
lusions of the previous se
tion, our results will apply to the simple K�ahler (17),and to the more generi
 one (19) for any 
hoi
e of �.We start by 
al
ulating the loop potential. In the limit that the gravitino mass issmall and the bound (42) is satis�ed, the expressions for the waterfall masses approa
h
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ation and moduli stabilisation 17the SUGRA results (10). If we further restri
t to the regime ' < 1 or � . 0:5, wherethe results are manifestly 
ut-o� independent, we retrieve the global SUSY results (5).The loop potential due to the waterfall �elds is given by the familiar expression [20℄V (�)loop = �2V�32�2 �2 ln��2v2x2�2 �+ (x2 + 1)2 ln(1 + x�2) + (x2 � 1)2 ln(1� x�2)� 3� (50)with x2 = '2=(2v2). In
ation takes pla
e for x > 1 and ends as x! 1 with the ta
hyoni
instability. Using (44) the modulus 
ontribution to the loop potential isV (T )loop = V 2�M264�2m2�2 ln�V�Mz2�2m �+ (z2 + 1)2 ln(1 + z�2) + (z2 � 1)2 ln(1� z�2)� 3� (51)with z2 = ~m2TmV�M = Mm � m�v2 + 'p2�2 : (52)The loop potential gives a negligible 
ontribution to the total energy density duringin
ation V�, but it is the dominant 
ontribution to the slow-roll parameters � and �.Hen
e to see whether it is the waterfall or the modulus 
ontribution to the potentialwhi
h dominates the in
ationary dynami
s, we have to 
ompare their derivatives. Inaddition we need to satisfy the upper bound on m (42), so that negle
ting O(m) terms isa good approximation. Requiring that the axion is non-ta
hyoni
 during in
ation givesa further, lower bound on the modulus mass s
ale M (45). Finally, we note that bothKKLT and KL moduli stabilisation potentials have m .M, whi
h restri
ts the allowedparameter spa
e. If the above 
onstraints are satis�ed, then the modulus automati
allyremains �xed during in
ation, and its dynami
s do not produ
e further 
onstraints.We expe
t to retrieve standard hybrid in
ation results in the limit that the masssplitting between the modulus �eld and its superpartners is small, as this sets the overalls
ale of the modulus loop potential. In this limit z2 � 1. The '-dependen
e only entersV (T )loop via ~m2T , and we �nd it 
onvenient to write~mT =M(1 + Æm) ; with Æm = �v2'p2m : (53)The modulus loop e�e
ts are suppressed in the limit Æm ! 0. As it turns out the Æm ! 0limit 
an be relaxed, and it will be suÆ
ient to 
onsider the loop potential in the regimez2 � 1 in order to determine the allowed parameter spa
e. The modulus 
ontributionin the large z-limit is�V (T )loop�0� � �5v10M216p2�2m3 1(1 + Æm) : (54)This is to be 
ompared with the equivalent expression for the waterfall �eld potential.5.1. Large 
oupling, �2 & 10�5In the large 
oupling regime, �2 > 7:4� 10�6, we 
an approximate (50) by the large xresult (7) and limx�1�V (�)loop�0� � �3v44�pN� ; (55)
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Figure 1. Parameter spa
e in flog10(m); log10(M)g for (a) � = 0:1 and (b) � = 10�4.In the white region the model redu
es to SUSY hybrid in
ation. Regions I-IV areex
luded, be
ause I: the modulus mass dominates the 1-loop potential, II: the gravitinomass is too large, III: the modulus is ta
hyoni
 during in
ation, and IV: the moduluspotential property m .M is not satis�ed. The dashed lines 
orrespond to H� =Mwhere we used '� � �pN�=(2�). This dominates over (54) forM2 < 4p2�m3(1 + Æm)pN��2v6 � ( 1:3� 1016m3��2 ; Æm � 16:4� 1010m2 ; Æm � 1 (56)where we used v2 � 6� 10�6 and N� = 60. Small m < 4:8� 10�6�2 
orresponds to thelarge Æm > 1 regime. This should be 
ombined with the axion mass bound (45) whi
htranslates to M > �2v4m(1 + Æm)2 � ( 3:1� 10�11m�1�2 ; Æm � 11:3m��2 ; Æm � 1 (57)and the bound from modulus 
orre
tions to m� (42), whi
h gives m < 1:4� 10�5.The parameter spa
e in the flog10(m); log10(M)g-plane is shown for � = 0:1 in�gure 1a. In the white region the in
ationary results approa
h those of the globalSUSY model dis
ussed in se
tion 2.1. Hen
e, there is a region of parameter spa
e forwhi
h multiplying superpotentials gives a viable model of F -term hybrid in
ation. Thisis in sharp 
ontrast to a 
ombined model in whi
h the superpotentials are summed: aswe saw in se
tion 3, in
ation fails in this 
ase.In all of parameter spa
e z2 � 1, and our analyti
 results are valid. In region I theloop potential is dominated by the modulus 
ontribution (56); when this be
omes toolarge in
ation is ruined. In region II the bound (42) on the gravitino mass is violated,and moduli 
orre
tions are too large for su

essful in
ation. Region III is ex
ludedas it gives a ta
hyoni
 axion (45). Ex
ept for very near the border with region IIIthe �-parameter is dominated by the waterfall �eld 
ontribution to the loop potential.Finally, region IV bounds m . M whi
h is a property of both KKLT and KL-stylemoduli se
tors. Viable, KKLT-style models 
orrespond to the upper-left edge of regionIV. Sin
e this 
lass of models has only one mass s
ale M� m, it 
orresponds to a linein the plotted, two-dimensional parameter spa
e. The fa
t that '� < 1 during in
ation
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ation and moduli stabilisation 19allows (42) and (45) to be realised simultaneously for a limited range of M (whi
hin
reases in size as 
oupling � is redu
ed). The two-s
ale KL model works throughoutthe white region of parameter spa
e in the plot.In the Æm � 1 regime the e�e
tive modulus mass is enhan
ed during in
ation
ompared to its va
uum value M, as 
an be seen from (39). This allows for thepossibility of having m < M < H�, yet with the modulus �xed during in
ation. For� = 0:1 the in
ationary s
ale is H� � 10�6. The dashed lines in �gure 1 
orrespondto M = H�; we see that indeed M < H� is realised in large part of parameter spa
e,
ontrary to naive expe
tations.5.2. Small 
oupling, �2 . 10�5We 
an apply the same analysis for the small 
oupling regime �2 < 7:4� 10�6. In this
ase '� � p2v and v2 = 5:6 � 10�6[�2=(7:4 � 10�6)℄1=3. In the small x ! 1 limit theslope of the waterfall loop potential be
omeslimx!1�V (�)loop�0 � �4v3 log(2)4p2�2 (58)whi
h is to be 
ompared with (54). The waterfall �eld 
ontribution dominates theone-loop potential forM2 < 4 log(2)(1 + Æm)m3�v7 � ( 6:9� 1012m3��10=3; Æm � 13:4� 107m2��4=3; Æm � 1 (59)Smallm < 4:9�10�6�2 
orresponds to the large Æm > 1 regime. This has to be 
ombinedwith m < 1:2� 10�2�4=3 from (42) andM > ( 8:3� 10�8m�1�10=3; Æm � 13:4� 103m��2=3; Æm � 1 (60)from (45). The results for � = 10�4 are shown in �gure 1b. We see that for smaller
ouplings the modulus stabilisation s
ale needs to be larger than the Hubble s
ale duringin
ation. E.g. for � = 10�4 the in
ationary s
ale is H� � 10�10, and M > H� in allof parameter spa
e for su

essful in
ation. This 
ontrasts with the situation for larger
ouplings, as we saw in the previous subse
tion.6. Con
lusionsThe 
atness of the in
ationary potential in SUGRA models is typi
ally spoilt by
orre
tions 
oming from supersymmetry breaking. Ironi
ally enough, the va
uum energywhi
h drives in
ation breaks SUSY spontaneously, and so gives soft 
orre
tions to thein
aton; this is the well-known �-problem. Introdu
ing a shift symmetry for the in
atonwill prote
t the in
ation se
tor from itself, and remove the problem. However there willstill be 
orre
tions 
oming from other se
tors of the full theory, whi
h 
an also disruptin
ation. In this paper we studied the e�e
ts of a moduli stabilisation se
tor on aF -term SUGRA hybrid in
ation model.
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ation and moduli stabilisation 20We 
onsidered both a KKLT-like moduli stabilisation s
heme, in whi
h there isonly one s
ale in the potential so mT � m3=2, as well as a �ne-tuned two-s
ale KL-likeset-up with mT � m3=2. In the KKLT set-up, requiring the modulus to be �xed duringin
ation raises the s
ale of the modulus potential, and as a result the soft 
orre
tionsto both the in
aton slope and the waterfall �eld masses are too large for in
ation totake pla
e. This problem is 
ir
umvented in the KL set-up where the gravitino mass,and 
onsequently the 
orre
tions to the in
ationary potential, 
an be tuned arbitrarilysmall.One would be in
lined to 
on
lude that KL moduli stabilisation 
an be 
ombinedalmost e�ortlessly with in
ation. But this is not true. The above 
on
lusions onlyhold in the limit that the modulus �eld remains �xed during in
ation. Although thisseems like a good approximation, as the displa
ement of the modulus minimum duringin
ation is indeed small, the 
orre
tion to the 
at in
aton potential is nevertheless large.In fa
t, it gives � � �3, and thus no slow-roll in
ation. This analysis shows that itis important to take the dynami
s of all �elds during in
ation into a

ount, otherwise
ru
ial e�e
ts may be missed.We have proposed a way to solve all of the above problems, and su

essfully 
ombineF -term hybrid in
ation with moduli stabilisation. The idea is to 
ombine the modulusand in
aton se
tors not by adding their respe
tive superpotentials, as is usually done,but by adding their respe
tive K�ahler fun
tions G = K+ln jW j2 instead. Adding K�ahlerfun
tions 
orresponds to adding K�ahler potentials and multiplying superpotentials. Thisway of 
ombining se
tors greatly redu
es their intera
tions. In parti
ular, for the 
aseof 
ombining in
ation with a modulus se
tor, it greatly redu
es the displa
ement ofthe modulus during in
ation. Consequently the 
orre
tion to the in
ationary potentialis harmlessly small. For the �ne-tuned two-s
ale KL set-up, or for a one-s
ale KKLTset-up with a �ne-tuned mass s
ale, the 
orre
tions to the in
aton slope and waterfallmasses are small as well. Hen
e we indeed su

eeded in 
onstru
ting a su

essful modelof in
ation in the presen
e of moduli.Even when multiplying superpotentials, there are still some 
onstraints on themoduli se
tor parameters for viable in
ation. The graviton mass should be smallenough to suppress the moduli 
orre
tions during in
ation. The modulus mass needsto be heavy and non-ta
hyoni
 during in
ation to remain stabilised. Finally the looppotential should be dominated by the 
ontribution of the waterfall �elds rather thanby the modulus 
ontribution. Nevertheless, there is still a large region of gravitinoand modulus mass s
ales for whi
h in
ation works, and the in
ationary predi
tions arenearly indistinguishable from the global SUSY model in the absen
e of moduli �elds.A
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