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We consider theories with one gauge group (SU, SO or Sp) and one

scalar in a two-index representation. The renormalizable action often

has accidental symmetries (such as global U(1) or unusual group par-

ities) that lead to one or more stable states, providing Dark Matter

candidates. We discuss the confined phase(s) of each theory and com-

pute the two Higgs phases, finding no generic dualities among them.

Discrete gauge symmetries can arise and accidental symmetries can

be broken, possibly giving pseudo-Goldstone Dark Matter. Dark Mat-

ter candidates can have a complicated sub-structure characteristic of

each group and can be accompanied by extra dark radiation.
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1 Introduction

We study the possibility that Dark Matter (DM) originates from elementary scalar/gauge

dynamics. We consider one elementary scalar S that fills a representation under a gauge group

G with vectors GAµ neutral under the SM gauge group. We write the most generic renormalizable

action, and study possible accidental symmetries related to group theory that can lead to stable

DM candidates. Gauge theories predict non-trivial dynamics, leading to DM candidates with

non-minimal cosmological history and specific features that depend on the gauge group.

The dark group G can become strongly interacting (‘confined phase’) and/or get spon-

taneously broken by vacuum expectation values of S (‘Higgsed phase’ breaking G to a sub-

group H that can confine at low energy). A surprising equivalence between the confined

and Higgsed phases holds for scalars S in the fundamental representation of the groups G =

{SU(N), SO(N), Sp(N), G2} [1]. In these models S has a unique self-quartic, that leads to a

unique symmetry breaking pattern where the only surviving scalar is a Higgs-like singlet. We

here extend the analysis considering a scalar in those representations such that G is asymptot-

ically free for any N: the symmetric, the anti-symmetric and the adjoint.1

The possible patterns of symmetry breaking of SU and SO groups have been classified

in [3] (see also [4]) assuming renormalizable potentials. We will extend these classical works by

1Furthermore, these representations describe geometric configurations of N self-intersecting D-branes [2].
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considering Coleman-Weinberg potentials, where running quartics lead to dynamical symmetry

breaking. Furthermore, we consider SU, SO and Sp groups, and symmetry breaking patterns

that connect them.

In these theories the scalar S has a mixed quartic coupling λHS with the Higgs and two

different quartic self-couplings. This leads to two different patterns of symmetry breaking and

to extra scalars in the broken phases.2

In section 2 we discuss some common generic features: the breaking patterns; the possi-

ble accidental symmetries intrinsic of the SU, SO, Sp gauge groups; the possible equivalence

between the Higgs and confined phases. Furthermore, dynamical symmetry breaking through

scalars in adjoints leads to unbroken U(1) factors: in section 3 we summarize the phenomenol-

ogy of DM charged under a dark U(1). Dark monopoles become possible DM candidates, as

summarized in section 3.4.

We next discuss the concrete models: a symmetric of SU(N) in section 4, an anti-symmetric

of SU(N) in section 5, an adjoint of SU(N) in section 6, a trace-less symmetric of SO(N) in

section 7, an anti-symmetric adjoint of SO(N) in section 8, a symmetric adjoint of Sp(N) in

section 9, a trace-less anti-symmetric of Sp(N) in section 10. These cases need to be discussed

separately as each one has its specific features. In each case we discuss the accidental sym-

metries, the renormalization group equations (RGE), the confined phase, the Higgs phases (in

particular we compute assuming dynamical symmetry breaking à la Coleman-Weinberg [7]),

and the DM candidates in each phase. We summarize our results and the generic lessons in the

conclusions, section 11.

2 Accidental symmetries

2.1 Gauge symmetry breaking patterns

Table 1 lists the breaking patterns produced by one scalar in one 1-index or 2-index represen-

tation of SU, SO, Sp groups, such that the gauge beta function is asymptotically free for any

N. That would not be the case, for instance, for a 3-index representation (whose contribution

to the gauge beta function scales as N3) or for an SO spinor (scaling as ∼ 2N/2). The SU and

SO breaking patterns were classified in [3,4,8] that assumed a quartic renormalizable potential.

The extension to Sp groups was recently considered in [2]. We also consider scale-invariant po-

tentials, where running quartics lead to dynamical symmetry breaking à la Coleman-Weinberg.

2The possibility that DM is a composite state made of elementary fermions in QCD-like theories was explored

in [5,6]. As elementary scalars interact with the Higgs through a scalar quartic, while elementary fermions can

have Yukawa couplings, the phenomenology is different. In particular the elementary scalar can be neutral

under the SM gauge group, such that collider experiments can probe the dark strong sector through precision

Higgs measurements.
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Unbroken group and its dimension

Representation SU(N), N2 − 1 SO(N), N(N − 1)/2 Sp(N), N(N + 1)/2

fundamental SU(N − 1) SO(N − 1) Sp(N − 2)

symmetric SU(N − k)⊗ SO(k) SO(N − k)⊗ SO(k) Sp(N − 2k)⊗ SU(k)⊗U(1)

anti-symmetric SU(N − 2k)⊗ Sp(2k) SO(N − 2k)⊗ SU(k)⊗U(1) Sp(N − 2k)⊗ Sp(2k)

adjoint SU(N − k)⊗ SU(k)⊗U(1) see anti-symmetric see symmetric

Table 1: Breaking patterns with one irreducible scalar representation of small size, such that the

gauge group confines for any N. The symmetric of SO(N) is trace-less, with a similar condition

on the anti-symmetric of Sp(N). The values of k at the absolute minima of renormalizable

potentials [2] and of Coleman-Weinberg potentials are either minimal (k = 1) or maximal

(k = N or N − 1). We recall that SU(2) = SO(3) = Sp(2), SO(5) = Sp(4), SU(4) = SO(6),

SO(4) = SU(2)2.

In section 2.2 we discuss the possible group-theoretical accidental global symmetries that can

lead to a stable DM candidate. According to unknown qualitative aspects of strong dynamics,

some of these symmetries could be, in principle, broken by the formation of scalars condensates,

as we discuss in section 2.3.

2.2 Accidental symmetries

First, we need to know which representations are real and which are complex. With this

information, we can next write actions and identify their accidental symmetries.

Reality conditions

The generators T acting on real and pseudo-real representations satisfy T ∗ = −V −1TV , where

V is a symmetric matrix for real representations (e.g. V = 1 for the N of SO(N)) and anti-

symmetric for pseudo-real representations (e.g. V = γN ≡ diag(ε, . . . , ε) for the N of Sp(N),

with ε = iσ2 in terms of Pauli matrices). Then, a scalar in the fundamental representation SI

transforms in the same way as (V S∗)I . A non-trivial reality condition on SI , i.e. S = V S∗, can

be then imposed only if V V ∗ = 1, i.e. for real groups but not for pseudo-real (or complex) ones.

Instead, a reality condition can be imposed on a 2-index representation SIJ (adjoint, symmetric,

anti-symmetric or bi-fundamental), i.e. S∗ = −V −1SV , for both real and pseudo-real groups,

since V V ∗ = ±1. To summarize, the elements of the fundamental of SU(N) and Sp(N) and

the symmetric and the anti-symmetric of SU(N) need to be complex numbers.

Global U(1)

The renormalizable action of a complex scalar can be invariant under an accidental global U(1)

symmetry that acts as an overall rephasing of S. The lightest state charged under this U(1) is
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a DM candidate (extra co-stable states are possible, depending on the spectrum). When a SU

(Sp) gauge interaction confines, the global U(1) results into stable baryons (mesons).

Local U(1) and Z2

Some symmetry breaking patters G → H leave unbroken a gauged U(1) or Z2 sub-group of

G that can imply DM stability. In the simplest case, a Z2 arises when G = U(1) is broken

by a scalar with charge 2. We will consider non-abelian groups with scalars in two-index

representations finding more examples of such Z2 (see e.g. section 10.3). We loosely include

such Z2 among the accidental symmetries, despite that they are gauge discrete symmetries.

Group parities P

The elements of the adjoint of SU(N) and all the 2-index representations of SO(N) and Sp(N)

(including bi-fundamentals of two Sp groups) can be taken to be real, so that there is no

global U(1). These theories can be accidentally invariant under an accidental “group parity”

Z2 discrete symmetry. Unlike usual Z2 symmetries, this symmetry acts on components of

multiplets rather than on multiplets. It is analogous to the usual space-parity, except that it

acts in group space rather than in space.

Group parity can be an accidental symmetry for SU(N) and SO(N) groups because it is

broken only by terms involving the Levi-Civita ε anti-symmetric tensor with N indices: for N

large enough, ε does not appear in the renormalizable action. On the other hand, for Sp(N)

groups, possibile group parities are broken by terms involving the γN tensor (analogous of the

δ tensor). As it has just two indices, the action contains terms odd under parity.

For SU(N), the theory is accidentally invariant under a reflection, which we dub U-parity,

of any of the N equivalent directions in group space. U-parity is obtained by flipping the sign

of any color, for example the 1st one. This flips the signs of those generators with an 1I entry,

preserving the SU(N) Lie algebra, such that U parity acts on components of vectors in the

adjoint and of other multiplets as

GJI
PU→ (−1)δ1I+δ1JGJI , SI

PU→ (−1)δ1ISI , SIJ
PU→ (−1)δ1I+δ1JSIJ (1)

having written the SU vectors GIJ = GA(TA)IJ .

For SO(N), the theory is accidentally invariant under a reflection under any of the N equiv-

alent directions in group space: the resulting accidental Z2 symmetry is O-parity [9, 1]. Rep-

resenting O-parity by flipping the direction 1, its action is analogous to eq. (1), dropping the

distinction between indices in the fundamental and anti-fundamental:

GIJ
PO→ (−1)δ1I+δ1JGIJ , SI

PO→ (−1)δ1ISI , SIJ
PO→ (−1)δ1I+δ1JSIJ . (2)

When a SU or SO gauge group confines, dark baryons built contracting constituents with one

ε tensor are odd under group parity. The lightest odd state can be a stable DM candidate.
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Group charge conjugations C

Theories with SU(N) gauge groups can be invariant under a charge conjugation symmetry.

Theories with SO(N) or Sp(N) gauge groups (with N even) can be invariant under a charge

conjugation symmetry that extends the one of their U(N/2) subgroup. For SO this has been

studied in [1]: the only invariant tensor that can give rise to odd states is again ε, so that it

does not give rise to new stable states.

A similar situation is found for Sp(N), as we now discuss (although the discussion is more

complicated and will have no practical relevance). The symmetry, that we dub CSp, acts on the

2-index representations considered in this paper as

GJI → (−1)I+JGJI , SJI → (−1)I+JSJI . (3)

Let us now show that this is a symmetry of the action. That is trivially true for bilinears and

quartics; cubics S3, when present, respect the symmetry3 because all indices are contracted, so

they appear an even number of times. Then, one only needs to check the compatibility with

the Lie algebra of Sp(N). Let us denote by Tsym = {Treal, 1N/2/
√
N} the symmetric generators

of U(N/2), and by Tasym = Timag the anti-symmetric ones. Among the Sp(N) generators,4 those

of the form
Tasym ⊗ 12√

2
,

Tsym ⊗ σ3√
2

(5)

are even under CSp (because the 2× 2 blocks are diagonal), whereas

Tsym ⊗ σ1√
2

,
Tsym ⊗ σ2√

2
(6)

are odd (because the 2 × 2 blocks are off-diagonal). The Lie algebra is compatible with this

symmetry: the product of two blocks in the set {12, σ3} stays in the set, so that [Teven, Teven]

is even; the product of two blocks in the set {σ1, σ2} is in {12, σ3}, so that [Todd, Todd] is even;

the product of two blocks belonging to the two different sets is in {σ1, σ2}, so that [Teven, Todd]

is odd.

As anticipated above, this symmetry is nothing but charge conjugation C for the U(N/2)

subgroup of Sp(N): since U(N/2) = SO(N) ∩ Sp(N), the U(N/2) sub-algebra is given by the

anti-symmetric generators, i.e. the first set in (5) and the second set in (6); the imaginary (real)

3This crucially depends on the overall sign of the transformation of S chosen in (3). Notice that, as a

consequence, one has ŜIJ ≡ (SγN)IJ → −(−1)I+J ŜIJ .
4We remind the reader that the Sp(N) generators can be written as

Tasym ⊗ 12√
2

,
Tsym ⊗ σk√

2
(4)

where k = 1, 2, 3. In the notation of Appendix A of [1], Tasym = T
(2)
αβ and Tsym = {T (1)

αβ ,
1√
2
T (1)
αα }, with α 6= β.
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generators are even (odd) under charge conjugation of U(N/2), and the same happens under

the symmetry of Sp(N).

The only invariant tensor that gives rise to odd states is γN. If S is complex, CSp implies

stability of mesons which are already stable because of accidental U(1). If S is real and a

two-index representation, CSp does not imply new stable bound states. CSp could give rise to

new stable states for real 1-index S, such as the bi-fundamental arising in the Higgs phases in

section 10. However, the CSp of the subgroups appearing there are broken in the full theory.

To summarize, CSp never gives rise to new stable states in the cases discussed in this work,

analogously to CSO.

2.3 Does scalar gauge dynamics break accidental symmetries?

Ref. [1] discussed the possible theories of scalars with gauge interactions such that the confined

phase is self-dual to the Higgs phase. In all those theories the scalar S is in the fundamental

representation of the gauge group G such that the breaking G→ H is univocally fixed by group

theory. The conjectured duality is based on the matching between the spectra and accidental

symmetries in the two phases: each particle in the Higgs phase, after condensation of the

subgroup H, is associated to a corresponding operator invariant under G, so that one expects

that the Higgs and confined phases are smoothly connected in the strong coupling limit g ∼ 4π.

We here study theories with scalar content such that G can be perturbatively broken to two

different sub-groups, H1 or H2.

At first sight, an apparently related result is the Fröhlich-Morchio-Strocchi (FMS) theo-

rem [10]. Seeking a manifestly gauge covariant description of the Higgs phase, FMS prove that

for each state in the Higgs phase there is a corresponding operator in the unbroken theory

covariant under G.5 In some theories the corresponding operators are invariant singlets, point-

ing to a relation between the confined and Higgs phases. But in general, the corresponding

operators are only covariant: their existence does not imply a duality between the Higgs and

confined phases. The formation of vacuum expectation values and/or condensates, even when

described by means of singlets of the original group G (without referring to the sub-group H)

is a dynamical phenomenon not controlled by the group-theoretical FMS theorem.

Therefore, whether the Higgs and confined phases are dual is a non-trivial question. In

particular, dynamics could form complicated condensates that break the accidental symmetries

of the theory and invalidate gauge/Higgs dualities. Let us consider, for example, a confined

5However, we find that in some situations the gauge-covariant description of the Higgs phase cannot be

performed by means of finite polynomials of fields. Take for instance an SU(N) theory with a scalar S in the

symmetric that breaks it to SU(N− 1) and a fermion ψ in the fundamental. In the Higgs phase, the fermion ψ

splits into a singlet ψ0 and a fundamental of SU(N− 1). According to the FMS theorem, the fermion singlet ψ0

can be described by a singlet of SU(N). However, for even N, no finite polynomial field operators are fermionic

and singlet under SU(N).
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phase where a baryon B is stable because of an accidental U(1). If the condensate 〈B〉 forms in

some region of the parameter space, it would violate the accidental symmetry, destabilising the

DM candidate stable thanks to baryon number, and giving instead rise to a massless Goldstone

boson. An analogous situation could arise in the Higgs phase, when non-abelian factors of the

unbroken sub-group H become strongly interacting and generate condensates. If U(1)-breaking

condensates form only in one of the two phases (purely condensed, or Higgsed), their duality

would be lost.

For a vector-like fermion-gauge theory, a Vafa-Witten (VW) theorem [11] guarantees that

massless Goldstone bosons of vector-like symmetries are not present in the spectrum, and hence

that baryon U(1)-violating condensates do not form. The VW theorem does not hold in the

presence of a topological term θGG̃ (as it makes the Euclidean path integral not real) nor in the

presence of non-gauge interactions, such as scalar self-interactions. A trivial counter-example

is usual spontaneous symmetry breaking in the limit of vanishing gauge coupling. However,

the dynamics behind the VW theorem suggests that strong gauge interactions tend not to

break global vector-like symmetries (somehow analogously to how gauge interactions tend to

maximise the unbroken symmetries in composite Higgs models).

While scalars have extra quartic interactions that can behave differently, we can heuristically

expect that strong gauge interactions play the dominant role, provided that the numerical value

of scalar quartics at confinement is not too large. One-loop RGE running tends to make quartics

large and negative at lower energy, but in the Higgs phases scalars avoid large quartics, being

heavier than the scale where gauge couplings run non-perturbative. If quartics do not alter

significantly gauge dynamics, it seems plausible to assume that U(1)-violating condensates do

not form at the condensation of the residual gauge group H. The situation in the confined

phase is more uncertain, because quartics of massless scalars typically run to large values when

approaching confinement.

Furthermore, the VW theorem relies on showing the absence of Goldstone modes in the

spectrum, so that it does not apply to discrete global symmetries such as those found in the

previous section 2.2. Discrete symmetries might be broken even by pure gauge dynamics. More

in general, several different confined phases could be present, corresponding to the formation

of different sets of condensates.

For most of the discussion below we will assume that accidental symmetries (discrete or

continuous) are not broken by the formation of condensates. The reader should keep in mind

that this could be true only in part of the parameter space.

3 Models with unbroken dark U(1)

Some of the theories considered in the following leave an unbroken dark gauged U(1) under

which (part of) DM is charged. Such physics is constrained by bounds on dark radiation

(as summarised in section 3.1), by dark Coulombian scatterings (section 3.2), and by dark
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matter/dark radiation interactions (section 3.3), and still allowed in regions of the parameter

space where DM is heavy enough.

Furthermore, whenever a dark U(1) factor remains in the unbroken gauge group, dark

monopoles are stable and contribute to the DM relic density (see e.g. [12–14]; see also [15] for

other possible topological states). This will be discussed in section 3.4.

3.1 Dark radiation

Cosmology provides information on the amount of energy density in relativistic species, usually

reported as an effective number of extra neutrino species. The Planck satellite results imply [16]

∆Neff ≤ 0.30 at 95 % C.L. (7)

at the CMB temperature. A dark photon with energy density ρdark contributes as

∆Neff =
8

7

(
11

4

)4/3
ρdark

ργ
. (8)

We will consider models (specified later) where a dark scalar S interacts with the SM as

λHS|H|2|S|2. At a scale w the dark scalar breaks a dark gauge group G to a U(1) times a

non-abelian subgroup that confines at a scale Λ.

If the dark photon γdark decouples from the SM at a temperature Tdec <∼Λ low enough that

γdark is the only dark-sector particle, it contributes as gdark
∗s (Tdec) = 2 such that

∆Neff =
8

7

(
43gdark

∗s (Tdec)

8 gSM
∗s (Tdec)

)4/3

= 0.058

(
100

gSM
∗s (Tdec)

)4/3

(9)

which is allowed for Tdec above the QCD or electroweak scale. We estimate Tdec as follows.

The thermal interaction rate of dark photons is Γ ≈ λ2
HST

5/M4
s where Ms is the mass of the

dark Higgs. Imposing Γ ∼ H ∼ T 2/MPl gives Tdec ∼ M4/3
s /M

1/3
Pl λ

2/3
HS. Our initial assumption

Tdec <∼Λ is satisfied for

Λ

Ms

&

(
Ms

λ2
HSMPl

)1/3

. (10)

If instead dark photons decouple at Tdec � Λ when the dark sector contains dark gluons A as

extra degrees of freedom, the bound of eq. (7) is violated (for any SU(2) or bigger confining

group) if the extra energy ends up reheating dark photons rather than the SM. This conclusion

can only be avoided if the dark glue-balls mostly decay out of equilibrium into SM particles

rather than into dark photons.

Let us estimate the decay widths of dark glue-balls. Dark glue-balls can decay into the dark

photons only through dimension-8 operators

C1(Aa
µν)

2(γρσdark)2 + C2(Aa
µνγ

µν
dark)2. (11)
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Fi g ur e 1: W e c o n si d e r a t y pi c al  m o d el  wit h  D M c h a r g e d u n d e r d a r k p h ot o n s: o n e  Hi g g s

p h a s e of g a u g e d S U( 3) wit h a s c al a r i n t h e a dj oi nt.  T h e c o s m ol o gi c al  D M a b u n d a n c e i s r e-

p r o d u c e d t h e r m all y a r o u n d t h e b o u n d a r y b et w e e n t h e g r e e n ( D M u n d e r- d e n sit y ) a n d r e d ( D M

o v e r- d e n sit y ) r e gi o n s.  T h e r e gi o n s i n g r e y a r e e x cl u d e d b y t h e r e s ulti n g d a r k r a di ati o n a n d

C ol o u m bi a n s c att e ri n g s a m o n g  D M p a rti cl e s.  T h e c o n fi n e d p h a s e of t hi s  m o d el (i n  w hit e ) f e a-

t u r e s n o  D M c a n di d at e.

wit h C i ∼ 1 / ( 4π w 2 ) 2 .  T h e gl u e- b all d e c a y  wi dt hs ar e esti m at e d as ( o mitti n g f a ct ors of g ∼ 1)

Γ S M ∼
λ 2

H S Λ 5

( 4π ) 4 M 4
s

, Γ d a r k ∼
Λ 9

( 4π ) 4 w 8 ( 1 2)

w h er e w is t h e v a c u u m e x p e ct ati o n v al u e t h at br e a ks t h e d ar k g a u g e gr o u p G .  Ass u mi n g t h at

t h e d ar k-s e ct or c o ntri b uti o n t o t h e  Hi g gs s q u ar e d  m ass is n ot u n n at ur all y l ar g e, λ H S <∼ v 2 / w 2 ,

w e esti m at e t h at gl u e- b alls d o mi n a ntl y d e c a y i nt o S M p arti cl es if  Λ <∼ v .

3. 2  C o ul o m bi a n s c a t t e ri n g a m o n g  D M  p a r ti cl e s

T h e  m assl ess d ar k p h ot o n γ d a r k m e di at es  C o ul o m bi a n s c att eri n g a m o n g t w o  D M p arti cl es.  We

c o nsi d er its p h e n o m e n ol o g y a n d b o u n ds.  T h e tr a nsf er cr oss s e cti o n ( cr oss s e cti o n  w ei g ht e d b y

fr a cti o n al l o n git u di n al  m o m e nt u m tr a nsf er) is gi v e n b y [1 7 ]

σ t r a n =
g 4

π M 2 v 4 ( 1 3)

w h er e ∼ t e ns is a l o g arit h mi c I R e n h a n c e m e nt c ut- o ff e d b y t h e s m all pl as m a  m ass a c q uir e d

b y  m assl ess v e ct ors i n a c os m ol o gi c al  D M b a c k gr o u n d.  V ari o us o bs er v ati o ns (t h e b ull et cl ust er,

bl a c k h ol e a c cr eti o n, tri- a xi alit y of g al a xi es, et c) d e m a n d σ t r a n / M <∼ O ( c m 2 / g ) at v ∼ ( 3 0 −

1 0 0 0) k m / s [1 8 – 2 0 ], i m pl yi n g

M >∼ ( 0.3 − 3)  Te V × g 4 / 3 . ( 1 4)

1 1



When such bound is nearly saturated, self-interacting DM can marginally improve the potential

core-vs-cusp and too-big-to-fail problems.

3.3 Interactions of DM with the dark photon

Cosmological data are reproduced assuming that DM freely streams during structure formation

at T <∼Teq ≈ 0.74 eV. However, interactions in the dark sector can lead to a different fluid

similar to the baryon/photon system. This effect is controlled by the dark Thomson cross

section between DM and dark photons, σT = g4/6πM 2. Dark photons decouple very early from

DM, when nDMσT <∼H. DM decouples from dark photons when nγdarkσT (T/M)<∼H (where the

T/M factor accounts for the needed energy transfer), at

Tfs ∼
M3/2

g2M
1/2
Pl

∼ GeV

g2

(
M

100 TeV

)3/2

. (15)

Imposing Tfs > Teq gives

M >∼ g4/3M
1/3
Pl T

2/3
eq ∼ g4/3 GeV (16)

which is weaker than eq. (14).6

3.4 Dark monopoles

When the dark gauge group is broken to a subgroup that contains an unbroken U(1) factor,

dark magnetic monopoles exist with magnetic charge gmag = 4π/g and mass Mmag ∼MW/αDC.

Their abundance is negligible (one per Hubble volume at T ∼ MW) if symmetry breaking

occurs through a first order phase transition (as in the Coleman-Weinberg case). The monopole

abundance can instead be significant

Ωmagh
2 ≈ 1.5× 109Mmag

TeV

(
30 Tcr

MPl

) 3ν
1+ν ν=1/2−−−→ 0.12

Tcr

3.2× 107 GeV
(17)

if a second order phase transition takes place with critical temperature Tcr ∼ MW [12–14]. If

the critical exponent has the ‘classical’ value ν = 1/2 and the gauge group is strongly coupled,

g ∼ 4π at M ∼ 100 TeV, both W and dark magnetic monopoles have abundances comparable

to the DM cosmological abundances. Monopoles become unstable if the U(1) is spontaneously

broken at low-energy.

4 A symmetric of SU(N)

We now consider a scalar SIJ in the symmetric complex representation of SU(N). The dimension-

less Lagrangian for generic N 6= 2, 4 accidentally conserves a U(1) dark baryon number and

6Our result differs even parametrically from the previous result in [21].
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is

L = LSM −
1

4
GAµνG

Aµν + Tr(DµS)(DµS)† − VS (18)

with

VS = M2
S Tr(S†S) + λS(TrSS†)2 + λ′S Tr(SS†SS†)− λHS|H|2 TrSS†. (19)

The cases N = 2, 3, 4 are special because det S (invariant for any N) gives an extra renormal-

izable term that breaks the U(1) global symmetry. For N = 2 it is a mass term and a reality

condition can be imposed, reducing the components to 3, such that only a quartic exists and

no U(1) symmetry arises. Indeed the symmetric of SU(2) is the adjoint (or fundamental of

SO(3)). For N = 3 the theory admits the extra complex cubic det S. For N = 4 the theory

admits the extra complex quartic

Vextra = λ′′S det S =
λ′′S
4!
εIJKLεI

′
J
′
K
′
L
′
SII′SJJ ′SKK′SLL′ . (20)

It breaks dark baryon number, and it is thereby not generated by RGE. Ignoring it, the RGE

for N ≥ 3 are

(4π)2 dg

d lnµ
= −21N − 2

6
g3 (21a)

(4π)2 dλS
d lnµ

= g4

(
9 +

24

N
2

)
− 12g2λS

N
2 + N − 2

N
+ (21b)

+6λ′2S + 8(N + 1)λSλ
′
S + 2

(
8 + N + N

2
)
λ2
S

(4π)2 dλ′S
d lnµ

= 3g4

(
N − 16

N
+ 4

)
− 12g2λ′S

N
2 + N − 2

N
+ 2λ′2S (2N + 5) + 24λSλ

′
S. (21c)

4.1 A symmetric of SU(N): confined phase

We define dark baryon number such that S has charge 2/N. In the SU(N)-condensed phase the

following hadrons charged under baryon number form:

• for N = 2n even the baryon

B = εi1j1···injn(Gµ1ν1)
k1
i1
Sk1j1 · · · (Gµnνn)knin Sknjn (22)

For SU(2) = SO(3) the symmetric SIJ equals the fundamental of SO(3), and the baryon

reduces to the odd-ball of [1]: εIJ(Gµν)
K
I SKJ = SAGAµν = εABCSAGBCµν .

• for any N the di-baryon

BB = εI1···INεJ1···JNSI1J1 · · · SINJN . (23)

For odd N the di-baryon is stable, as no baryon exists. For even N it might be co-stable,

depending on its binding energy.
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4.2 A symmetric of SU(N): dynamical symmetry breaking

The most generic vacuum expectation value can be written as 〈S〉 = diag(w1, . . . , wN) with

wi ≥ 0. Dynamical symmetry breaking is induced by loop corrections, such that we must take

into account the one-loop potential, given by

V1 =
1

4(4π)2

[
3 TrM 4

V ln
M2

V

µ̄2 + TrM 4
S ln

M2
S

µ̄2

]
(24)

in terms of generic scalar and vector mass matrices. If S is written as a vector with real

components with gauge generators TA, the vector mass matrix is (M2
V )AB = g2 1

2
ST ·{TA, TB}·S.

In the limit of small quartics the one-loop potential is dominated by gauge corrections.

We only need to consider the one-loop correction along the flat direction V = 0 that arises

at special values of the couplings. The tree-level quartic potential of S satisfies V ≥ 0 when

the quartic couplings satisfy λS + αλ′S ≥ 0 for α = 1 and for α = 1/N, which are the extremal

values of α = Tr(SS†SS†)/Tr(SS†)2.7 Thereby the two possible breaking patterns are:

• 〈S〉 = diag(0, . . . , w) which breaks SU(N)→ SU(N−1). The symmetry breaking bound-

ary is λS + λ′S = 0.

• 〈S〉 = diag(w, . . . , w), which breaks SU(N) ⊗ U(1) → SO(N). The symmetry breaking

boundary is λS + λ′S/N = 0.

Fig. 2 shows that RGE running can cross either boundaries, so that both symmetry breaking

patterns can be realised dynamically. Along the special RGE trajectory where both quartics

simultaneously cross 0 we find the breaking SU(N) → SO(N). Dynamical symmetry breaking

with a scalar in the symmetric had been studied in [22, 23].

4.3 A symmetric that breaks SU(N)→ SU(N− 1)

We here consider the range of potential parameters such that the scalar acquires vacuum ex-

pectation value w as

S =


S̃11 · · · S̃1,N−1 0
...

. . .
...

...

S̃1,N−1 · · · S̃N−1,N−1 0

0 · · · 0 w + s/
√

2

 (25)

which breaks the gauge group SU(N)→ SU(N − 1). This is the same breaking produced by a

scalar in the fundamental, so it is useful to consider the differences with respect to the model

studied in [1]. As in the model with S in the fundamental a global accidental symmetry remains

7Adding the Higgs H, the condition V ≥ 0 implies the extra conditions λH > 0 and 4λH(λS + αλ′S) > λ2HS.
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Figure 2: Coleman-Weinberg symmetry-breaking patterns for a SU(N) gauge theory with a

scalar in the symmetric (left) and anti-symmetric (right): the RGE flow towards low energy of

its quartics λS and λ′S can intersect the instability conditions in both their branches, leading to

the two different breaking patterns discussed in the text.

unbroken, corresponding to the generator N diag(1, . . . , 1, 0)/(N−1). Writing the gauge bosons

as

T aGaµ =

(
Aµ Wµ/

√
2

W∗µ/
√

2 0

)
− Zµ

√
N − 1

2N

(
−1/(N − 1) 0

0 1

)
, (26)

the perturbative spectrum is:

• N(N − 2) massless vectors A in the adjoint of SU(N − 1);

• (N−1) complex vectors W in the fundamental of SU(N−1) and with dark baryon number

±1 that acquire tree-level mass M2
W = g2w2 by ‘eating’ the corresponding Goldstones

scalars with squared mass m2 = 2(λS +λ′S)w
2 (massless at the symmetry breaking point);

• 1 vector Z neutral under H and under dark baryon number that acquires tree-level mass

mass M2
Z = 4g2w2(1− 1/N) by ‘eating’ the corresponding Goldstone scalar with squared

mass m2 = 2(λS + λ′S)w
2 (massless at the symmetry breaking point);

• the scalon s with loop-level mass Ms (its tree-level squared mass M2
s = 3m2 vanishes at

the symmetry breaking point);

• the new particle (not present in models where S fills a fundamental) is N(N−1)/2 scalars

with squared mass M2
S̃ = 2w2λS that fill a symmetric S̃ under SU(N − 1), with dark
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baryon number 2 and gauge interactions

Tr|DµS|2 = Tr

∣∣∣∣(D̃µ −
2ig√

2N(N − 1)
Zµ

)
S̃

∣∣∣∣2 +
1

2
(∂µs)

2 +
g2(N − 1)

N
s̃2Z2

µ + (27)

+
√

2g2s̃Re (S̃∗ijWiµWjµ) +
g2

2
W∗iµWiµs̃

2 + g2W∗iµWjµS̃ikS̃
∗
jk (28)

in terms of s̃ = s+
√

2w and of the H-covariant D̃ derivative.

At the symmetry breaking boundary λS + λ′S = 0 the Goldstones and the scalon s become

massless, and other scalars acquire positive squared masses. The tree-level potential equals

V = (λS +λ′S)s
4/4 along the scalon (its second derivative equals M2

s ); thereby at loop level the

scalon acquires squared mass

M2
s = 2w2(βλS + βλ′S) =

2w2

(4π)2

[
3g4 8− 16N + 7N2 + N3

N2 + λ2
S(2N2 − 2N)

]
. (29)

The same result is obtained using the one-loop effective potential [22]. M2
Z/M

2
W is twice higher

than what obtained from a scalar in the fundamental [1]. Apart from the different masses, the

new feature is the presence of S̃.

W is a stable DM candidate, and S̃ is stable too if MS̃ < 2MW. The Z decays at tree-level

to S̃S̃∗ and thereby to SM particles.

For N > 2 condensation of SU(N − 1) forms dark baryons

εWN−1, εWN−3AS̃, εWN−5(AS̃)2, . . . (30)

as well as dark di-baryons

εεS̃N−1, εεS̃N−2W2, εεS̃N−3W4, . . . . (31)

The DM candidate(s) changes depending on MS̃/MW. At the constituent level, if MS̃ > 2MW

the lightest baryon is WN−1 and the lightest di-baryon is W2(N−1): the di-baryon might be

stable if its binding energy is large enough. If MS̃ < 2MW, the lightest di-baryon is S̃N−1; for

even N the lightest baryon is WS̃N/2−1, heavier than half of the mass of S̃N−1, so that they

are both stable. Instead, for odd N the lightest baryon is S̃(N−1)/2 and the stability of the

di-baryon depends again on the binding energies. Two baryons can merge into one di-baryon:

their relative abundance is usually given by thermal equilibrium at decoupling.

4.4 A symmetric that breaks SU(N)→ SO(N)

We consider again the model of eq. (18). An interesting feature is that dark baryon number is

spontaneously broken, but some particles are kept stable by an accidental Z2 symmetry, that

arises from charge conjugation as follows. To define a charge conjugation symmetry of the
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Lagrangian that acts on a scalar as S → S∗ one needs to also transform the SU(N) gauge-

covariant derivative Dµ = ∂µ + iGAµT
A as Dµ → D∗µ. In the usual Gell-Mann basis, some

SU(N) generators associated to some vectors Gareal are real and symmetric (for example, σ1,3

for SU(2)) and the remaining generators associated to vectors Gbimag are purely imaginary and

anti-symmetric (for example, σ2 for SU(2)). The needed transformation thereby is

Gareal → −Gareal, Gbimag → Gbimag. (32)

This is an automorphism of the gauge group8 (it is the outer automorphism of SU(N) for N > 2)

and thus a symmetry of the full Lagrangian of eq. (18). This charge conjugation symmetry

remains unbroken when the symmetric S acquires vacuum expectation value w as

S =

[(
w +

s√
2N

)
diag(1, . . . , 1) + (s̃b + iãb)T breal

]
eia/
√

2Nw (33)

where s, a, s̃b, ãb are canonically normalized fields.

After symmetry breaking, the SU(N) vectors G decompose into A and W as follows. The

imaginary generators give rise to massless vectors in the adjoint (anti-symmetric) of SO(N),

Aa = Gaimag. The real generators give rise to massive vectors (eating the ãb) in the trace-less

symmetric of SO(N), Wb = Gbreal.

Even after symmetry breaking, the Lagrangian respects the charge conjugation Z2 sym-

metry, under which the massive vectors W and the scalar a are odd, and all other fields are

even:

s
C→ s, s̃

C→ s̃, a
C→ −a, A

C→ A, W
C→ −W. (34)

At tree level the spectrum is:

• N(N − 1)/2 massless vectors Aa in the adjoint of SO(N);

• N(N+ 1)/2− 1 vectors Wb in the traceless symmetric of SO(N) that acquire mass M2
W =

4g2w2 by “eating” the N(N + 1)/2− 1 scalar Goldstones ãb;

• the Goldstone of global accidental U(1), a, with squared mass m2 = 2(NλS + λ′S)w
2;

• N(N + 1)/2− 1 scalars s̃b in the traceless symmetric of SO(N) with squared mass M2
s̃ =

2(NλS + 3λ′S)w
2;

• a scalar scalon s with squared mass M2
s = 3m2.

At the symmetry breaking boundary λS + λ′S/N = 0 the Goldstones and the scalon s become

massless, and other scalars have positive squared masses. The tree-level potential equals V =

8The SU(N) structure constants vanish, fabc = 0, when a corresponds to a real generator, and b, c to

imaginary generators.
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(λS +λ′S/N)s4/4 along the scalon (its second derivative is M2
s ): thereby at loop level the scalon

acquires squared mass

M2
s = 2Nw2(βλS +

βλ′S
N

) = 2Nw2

[
12g4N

2 + N − 2

N2 + λ2
S(4N2 + 4N − 8)

]
. (35)

The a is a Goldstone of global accidental U(1): it remains massless if U(1) is an exact symmetry.9

Expanding the Lagrangian, it acquires the following schematic form

L ∼ (DA)2 + (DW)2 + (Ds̃)2 + (∂s)2 +
(∂a)2

w2 [(w + s)2 + s̃2] + g2W2(w + s + s̃)2 +

+g
∂a

w
(w + s + s̃)s̃W + (λS + λ′S)[(w + s)2 + s̃2]2 + λ′Sws̃

3 (36)

where order one factors have been omitted (including them the mass term of s cancels out)

and where D = ∂ + igA is here the SO(N) covariant derivative. The lightest among the C-odd

states W and a is stable.

Let us assume that a is massless or very light. Then s decays into aa; s̃ into AA (at

loop level thanks to the λ′Sws̃
3 interaction); W decays into as̃ or aAA, depending on the mass

hierarchies.10

At lower energy the pure gauge SO(N) confines, without affecting the neutral state a. SO

gauge dynamics respects O-parity [1] which, as discussed in section 2.2, extends to U-parity in

the full SU(N) theory. The vacuum expectation values of Sij preserves U-parity. Thereby:

• For N even the odd glue-ball B ∼ Ai1i2 · · ·AiN−1iNεi1···iN is stable thanks to U-parity (B

is U-parity odd, so it cannot decay into a’s which are U-parity even) This DM candidate

has power-suppressed interactions to SM particles and is accompanied by dark radiation

a.

• For N odd one can form glue-balls AA, which can decay into SM particles as well as into

aa, as they have the same C-parity and U-parity.

This just means that the heavier SU(N) dynamics gives no qualitatively new effect beyond pure

SO(N) gauge dynamics apart from leaving the massless scalar a.

After confinement of SO(N), for even N the stable state are a, odd under C, and the U-ball

εAN/2, odd under U-parity. Bound states made with W, e.g. Tr(AWA), decay into a and

possibly the U-ball. For odd N, no U-odd state exists, so that the only stable state is a.

9In the presence of extra massive fermions charged under the group G and carrying a global U(1) charge

anomalous under G, a behaves as an axion in the dark sector. By introducing extra fermions also charged

under QCD, one can arrange for a QCD axion with accidental Peccei-Quinn symmetry protected up to effective

operators of canonical dimension N [24], corresponding to det S. For w ≈ 1010 GeV, this mechanism provides a

solution of the so-called Peccei-Quinn quality problem [25–27] as long as N & 10.
10If MW > Ms̃ this happens at tree level via the vertex g(∂a/w)ws̃W. Otherwise, the decay proceeds at

one-loop, e.g. W→ a(s̃→ A
2), or via a kinetic mixing beween ∂a and W due to the operator g(∂a/w)s̃2W.
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The massless Goldstone a can become a massive pseudo-Goldstone DM candidate if extra

interactions break the spontaneously broken accidental global U(1) symmetry while preserving

the C-parity. An interesting possibility arises for N = 3, 4: the potential admits an extra cubic

or quartic coupling λ′′S det S that breaks U(1). The phase of S can always be redefined such

that the extra coupling is real, respecting the C-parity. The stable pseudo-Goldstone boson a

acquires a squared mass m2
a ∼ λ′′Sw

N−2. The spin-independent cross section for direct detection

of a dark matter is suppressed by its possibly small mass,11

σSI ∼
m4
Nm

2
a

4πv2w2f
2 sin2(2γ)

(
1

M2
1

− 1

M2
2

)2

(37)

where f ' 0.3, γ is the mixing angle that diagonalises the Higgs-scalon mass matrix, Mi are

the resulting mass eigenvalues. If a becomes very massive, DM is the C-odd state Tr(AWA) if

N is odd, while for even N both the state Tr(AWA), odd under C, and the U-ball εAN/2, odd

under U-parity, are stable.

If the gauge group SU(N) is extended to U(N), as in D-brane models, the massless Goldstone

a is ‘eaten’ by a massive Z vector.

4.5 Dualities between the confined/Higgs phases?

Some theories (among which SU(N) with a scalar in the fundamental) exhibit a non-trivial

feature [1]: the confined phase and the Higgs phase give rise to the same asymptotic states.

We now search for possible dualities between the purely confined phase and the two Higgs

phases. We find that for N even the confined phase could be dual to the SU(N)→ SU(N − 1)

Higgs phase, since there is a map between the spectra and the accidental symmetries in the two

phases, while for N odd such correspondence is not possible, and hence there should be a phase

transition when going to strong coupling g ∼ 4π. Analogously, we find a different spectrum in

the SU(N)→ SO(N) Higgs phase.

It should be noted that there could be in principle multiple, physically inequivalent, confined

phases, where the various accidental symmetries are unbroken or not. Analogously, when the

residual gauge group in the Higgs phases confines, several sub-phases are possible if condensates

breaking the residual global symmetries form. Lattice studies could help in clarifying these

issues. As discussed in section 2.3, we assume here that condensates that break the accidental

symmetries do not form.

Let us now consider in turn the various cases:

11The direct detection cross section for massive pseudo-Goldstone boson DM vanishes at tree level [28] for a

quadratic U(1) breaking term. This does not happen for the case considered here.
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SU(N)→ SU(N− 1) with N even

Baryons in the confined phase are built with the building block (GS)IJ . After decomposing

I = {i,N}, with i spanning over SU(N−1), (GS)IJ contains the two-index combinations (AS̃)ij,

(ZS̃)ij, (WW)ij and the one-index combinations (AW)i, (ZW)i, Wi, (sW)i: within each set all

operators have the same charge under the global U(1) symmetry, and the combination of two

one-index operator has the same U(1) charge as the two-index ones. Therefore, after mapping

the two accidental U(1)’s (in the broken and unbroken phase) into each other, the baryon of the

confined phase maps into a single physical state with the same charge as in the Higgs phase.

For instance, the baryon ε(GS)N corresponds to the operators εWN−1, εWN−3(AS), etc., all with

the same quantum numbers. To see this, notice that the N-dimensional ε forces exactly one

index to be the last one (I = N): (GS)NJ maps into Wj (or other one-index combinations);

and (GS)iJ map into the two-index combinations. All operators obtained in this way have the

same quantum numbers. The same argument holds true for di-baryons, with building block

SIJ , that contains w, s, S̃ij,Wi and the charge matches again the number of indices. For N

even the map proceeds also in the opposite direction: when the vacuum expectation value gets

smaller and smaller there is no distinction between the different operators interpolating the

baryon; in particular the one that contains only one one-index operator, say εi···Wi · · · , maps

into εNi···(GS)Ni · · · .

SU(N)→ SU(N− 1) with N odd

For N odd the map does not exist: in the Higgs phase there are baryons, but not in the confined

phase12. Therefore, the Higgs phase cannot be dual to the confined one.

SU(N)→ SO(N)

For even N, the baryons in the confined phase are built with the building-block (GS)IJ . In

the Higgs phase (GS)IJ contains, among other combinations, the unbroken gauge vectors Aij

(when the 〈S〉 part of S is taken) and the combination (AW)ij (when the Goldstone part of S

is taken). These two combinations have different quantum numbers under charge conjugation

C defined in eq. (34). So baryons with different C-parity quantum numbers can be built in the

Higgs phase, namely εAN/2 and ε(AW)AN/2−1, respectively even and odd under C. Thereby

the baryon ε(GS)N/2 in the confined phase would correspond to two distinct baryons in the

Higgs phase. For odd N, the di-baryon εεSN in the confined phase is stable (protected by

the accidental U(1)), whereas the di-baryons in the Higgs phase (εεAN,εεWN,εεs̃N,. . . ) are not

(since they are not protected by the residual U-parity, relic of the accidental U(1)), and the

12More precisely, it is possible to write a composite operator transforming as a fundamental of SU(N), therefore

not corresponding to a physical state in the confined phase: in the Higgsed phase, when S takes a vev, one

component of this operator transforms as a singlet of SU(N − 1) and corresponds to the baryon.
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two phases cannot be dual to each other.

5 An anti-symmetric of SU(N)

We now consider a scalar SIJ in the anti-symmetric representation of SU(N), that is generically

complex. For N ≥ 5 the Lagrangian is analogous to eq. (18)

L = LSM −
1

4
GAµνG

Aµν +
1

4
Tr(DµS)(DµS)† − VS (38)

with VS as in eq. (19) respecting a global accidental U(1). For N = 2 the anti-symmetric is

equivalent to a singlet, and a reality condition can be imposed. For N = 3 the anti-symmetric is

equivalent to an anti-fundamental, reducing to the model with a single quartic already studied

in [1]. The extra Pfaffian invariant Pf S =
√

det S is renormalizable for N = {4, 6, 8} and

breaks the global U(1). For N = 4 it is a mass term and one can impose a self-duality reality

condition, obtaining a real 6 of SO(6) = SU(4) already studied in [1]. For N = 6 it gives the

extra cubic coupling εI1J1I2J2I3J3SI1J1SI2J2SI3J3 . For N = 8 it gives the extra quartic coupling

εI1J1I2J2I3J3I4J4SI1J1SI2J2SI3J3SI4J4 .

5.1 An anti-symmetric of SU(N): confined phase

The discussion is the same as for the symmetric of SU(N) (section 4.1): an accidental U(1)

baryon number is conserved, and baryons must be formed using constituents with two indices.

The only difference is that, with an anti-symmetric, extra gluons are not needed to avoid

vanishing index contractions: the baryon is now

B = εi1j1···injnSi1j1 · · · Sinjn (39)

for N = 2n even. For N odd an extra derivative or gluon is needed to avoid the vanishing due

to det S = 0 for the di-baryons.

5.2 An anti-symmetric of SU(N): dynamical symmetry breaking

The most general vacuum expectation value of one anti-symmetric can be written in terms of

ε (the 2× 2 anti-symmetric tensor) as

〈S〉 =

{
diag(w1ε, . . . , wkε) for N = 2n even

diag(w1ε, . . . , wkε, 0) for N = 2n+ 1 odd
(40)

with wi ≥ 0.

The most generic breaking patterns can be described as follows. If all wi are non-vanishing

and different the breaking pattern is SU(N) → SU(2)n. If one w vanishes and N is odd, the
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corresponding SU(2) extends to SU(3). If two w vanish, their SU(2)2 extends to SU(4) for N

even (to SU(5) for N is odd). If two w are equal their SU(2)2 extends to Sp(4). If k of the w’s

are equal and the remaining w are vanishing, the unbroken gauge group is SU(N−2k)⊗Sp(2k),

as written in table 1.

We next describe the vacuum expectation values realised in renormalizable quantum field

theories. A quartic potential, depending on the value of its couplings, has minima corresponding

to [3]:

1) to minimal k = 1, namely only one non-vanishing w 6= 0. The unbroken gauge group is

SU(N − 2)⊗ SU(2), with SU(2) = Sp(2).

2) to maximal k, namely all w are equal. The unbroken gauge group is Sp(Ñ) where Ñ = N

for N even, and Ñ = N − 1 for N odd.

These same two possibilities are realised with Coleman-Weinberg symmetry breaking, because

they are encountered at the positivity border of the tree-level quartic potential of S. The

condition V ≥ 0 implies λS + αλ′S ≥ 0 for α = 1/2 (a single w non-vanishing) and for α = 1/Ñ

(all w equal). Fig. 2b shows that both these conditions can be crossed by the RGE flow, given

for N ≥ 5 by

(4π)2 dg

d lnµ
=

2 + 21N

6
g3 (41a)

(4π)2 dλS
d lnµ

= g4

(
9

16
+

3

2N2

)
− 12g2λS

(
N − 1− 2

N

)
+ (41b)

+96λ′2S + 128(N − 1)λSλ
′
S + 32

(
N

2 −N + 8
)
λ2
S

(4π)2 dλ′S
d lnµ

= g4

(
3N

16
− 3

4
− 3

N

)
− 12g2λ′S

(
N − 1− 2

N

)
+ 64λ′2S (N − 5

2
) + 384λ′SλS. (41c)

We next study the physics that occurs in the two possible breakings.

5.3 An anti-symmetric that breaks SU(N) to Sp(Ñ)

In section 5.3.1 we study even N = Ñ; in section 5.3.2 we study odd N = Ñ + 1.

5.3.1 Even N, SU(N)→ Sp(N)

Loosely speaking, SO is the real part of SU and Sp is its imaginary part. While the SO

invariant tensor is the unit matrix (giving rise to simple expressions), Sp is the group of rotations

U = exp(iθATA) that leave γN = 1N/2 ⊗ ε invariant, UTγNU = γN. So the Sp Hermitian

generators TA satisfy TA∗ = −γNTAγ−1
N . The Sp fundamental is pseudo-real with N complex

components: γNN
∗ transforms as the fundamental N. The adjoint is the real symmetric with

dimension N(N + 1)/2. The anti-symmetric s̃ has dimension N(N − 1)/2 − 1, as it satisfies a

reality condition

s̃∗ = −γN · s̃ · γN (42)
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and a ‘trace-less’ condition Tr(s̃γN) = 0 with the Sp invariant tensor γN.

For even N = Ñ the vectors G of SU(N) form a massless adjoint (symmetric) Ab of Sp(N)

and a massive Wa in the ‘trace-less’ anti-symmetric of Sp(N). The complex anti-symmetric

scalar S of SU(N) (N(N − 1) real components) decomposes in two singlets s and a and two

anti-symmetric s̃ and ã under Sp(N) (ã gets eaten by the W vectors). The embedding of Sp(N)

in SU(N) is non-trivial and can be performed as follows. The SU(N) generators TA that are

Sp(N) generators T a are those such that γNT
A is symmetric, while the broken generators are

those such that γNT
A is anti-symmetric. Such traceless Hermitian matrices T̃ satisfy the ‘SU

− Sp’ condition

T̃ ∗ = −γN · T̃ · γN. (43)

One of such matrices is 1N, the others satisfy the trace-lessness condition Tr(T̃ ã) = 0.13 The

anti-symmetric S of SU(N) is expanded in Sp(N) multiplets as

S =

[(
w +

s√
N/2

)
γN + 2

∑
ã

(s̃ã + iãã)T̃ ã · γN
]
eia/
√

N/2w (45)

such that s and a are singlets and s̃ and ã form two different real anti-symmetric ‘trace-less’

irreducible representations of Sp(N) (as they independently satisfy the reality condition of

eq. (42), by virtue of T̃ · γN = (γN · T̃ )∗, the ordering is important).

The accidental global U(1) is broken by the vacuum expectation value and not present in

the low energy Sp dynamics.

The perturbative spectrum in the broken phase is:

• N(N + 1)/2 massless vectors A in the adjoint of Sp(N).

• N(N − 1)/2 − 1 vectors Wa in the real ‘trace-less’ anti-symmetric of Sp(N) that ac-

quire mass M2
W = g2w2 by ‘eating’ the ã with Coleman-Weinberg squared mass M2

ã =

8w2(ÑλS + λ′S) that vanishes at the symmetry-breaking boundary.

• The scalon s. With Coleman-Weinberg SU(N) → Sp(N) breaking its tree-level squared

mass M2
s = 3M2

ã vanishes at the breaking boundary.

• The massless Goldstone boson a (unless the global U(1) symmetry is explicitly broken,

for example for N = 6, 8 by the extra renormalizable term PfS).

13For N even, an explicit orthonormal basis for the SU/Sp coset matrices T̃ ã is given by

1√
2

(
Tasym ⊗ σk

)
,

1√
2

(
Tsym ⊗ 12

)
, (44)

where Tasym = Timag and Tsym = {Treal, 1N/2/
√
N} are respectively the antisymmetric and symmetric generators

of U(N/2). The basis for N odd is obtained by including the matrices in eq. (44) restricted to the N−1 subspace

plus those belonging to the SU(N)/SU(N − 1) coset.
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• N(N − 1)/2− 1 scalars s̃a that fill a real ‘trace-less’ anti-symmetric of Sp(N). Assuming

Coleman-Weinberg breaking its tree-level squared mass equals M2
s̃ = 8w2(ÑλS + 3λ′S).

The vacuum expectation value 〈S〉 respects the charge conjugation symmetry S → S∗,

Dµ → D∗µ of SU(N). Its action in terms of the Sp-covariant fields is more transparent in terms

of Hermitian matrix fields s̃ ≡ s̃ãT̃ ã, ã ≡ ããT̃ ã that transform as the gauge vectors under Sp(N).

Since charge conjugation is equivalent to SγN → (SγN)∗, one has

s
C→ s, a

C→ −a, s̃
C→ −γNs̃γN, ã

C→ γNãγN, A
C→ −γNAγN, W

C→ γNWγN. (46)

The invariant tensor γN appears because C raises/lowers indices in U(N)-covariant notation.

Expanding the Lagrangian, it acquires the same schematic form as the Lagrangian obtained

in the case of SU(N) broken to SO(N) by a symmetric, eq. (36), except that D = ∂+igA is now

the Sp(N) covariant derivative. Its terms indeed respect the C-parity of eq. (46).14 Thereby

at the perturbative level (i.e. before considering confinement), the lightest among W and a is

stable, and other particles decay as in the SU→ SO case: if a is massless or very light s decays

into aa, s̃ into AA, W into as̃ or aAA.

A big difference arises at non-perturbative level: while SO baryons are stable because odd

under O-parity, Sp baryons decay into mesons because the ε tensor can be decomposed as

εi1···iN = γi1i2N · · · γiN−1iN
N +permutations [9]. Mesons Tr(WW) and glue-balls Tr(AA), Tr(AAA)

are even under C-parity and decay. Tr(WA) is identically zero. Tr(WAA) and a are odd under

C-parity: thereby the lighter state is a stable DM candidate.

If a acquires a small mass, it can be pseudo-Goldstone DM with dominant derivative inter-

actions. Similarly to the SU → SO case, for N = 6, 8 the potential admits an extra cubic or

quartic coupling, Pf S (with real coefficient) that breaks U(1) giving mass to a while respecting

C-parity. If a becomes very massive, DM is the C-odd meson containing one W. If the gauge

group SU(N) is extended to U(N), as in D-brane models, the massless Goldstone a becomes a

massive Z vector.

5.3.2 Odd N, SU(N)→ Sp(N− 1)

For odd N = Ñ + 1 the perturbative spectrum in the broken phase15 is as in section 5.3.1 plus

• One singlet vector Z with mass M2
Z = g2w2/N. It acquires mass by ‘eating’ the massless

Goldstone a.

• 2Ñ vectors X in the fundamental of Sp(Ñ) with mass M2
X = g2w2/4. They acquire mass

by ‘eating’ 2Ñ scalars x in the fundamental of Sp(Ñ) with tree-level Coleman-Weinberg

mass M2
x = 8w2(2λS + λ′S) that vanishes at the symmetry breaking point.

14The cubic s̃3 vanishes for N = 4 but this is a special case: SU(4) ' SO(6) broken by a 6 to Sp(4) ' SO(5).
15
N = 5 is potentially special because Sp(4) = SO(5). However the SU(5) → Sp(4) discussed here corresponds

to a different embedding (such that 24 = 10⊕ 5⊕ 2× 4⊕ 1) than the SU(5)→ SO(5) (such that 24 = 10⊕ 14)

discussed in section 4.4.
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The charge conjugation symmetry is again unbroken by the vacuum, with the extra states

transforming as

x→ −x∗, X→ −X∗, Z→ −Z. (47)

Then, as long as binding energies are not so big as to compensate the difference in constituents

mass, the C-odd meson Tr(WAA) can decay into Z, which is a stable DM candidate. The

massless Goldstone has become a massive Z.

In addition, there is also an unbroken global U(1) symmetry, with generator diag(0, . . . , 0, 1).

At the perturbative level, the only charged state is X. Then, after confinement of Sp(N − 1),

the meson XTγÑX is stable too.

5.4 An anti-symmetric that breaks SU(N)→ SU(N− 2)⊗ SU(2)

After dropping the scalars ‘eaten’ by massive vectors, the scalar anti-symmetric can be expanded

in components as

S =

(
S̃ 0

0 ε(w + s)

)
=



0 S̃12 · · · S̃1,N−2 0 0

−S̃12 0 · · · S̃2,N−2 0 0
...

...
. . .

...
...

...

−S̃1,N−2 · · · −S̃2,N−2 0 0

0 0 · · · 0 0 w + s

0 0 · · · 0 −w − s 0


(48)

such that the S̃ij and s are canonically normalized. Writing the gauge bosons as

T aGaµ =

(
Aµ Wµ/

√
2

W∗µ/
√

2 A′µ

)
−

Zµ

2
√
N(N − 2)

(
−21N−2 0

0 (N − 2)12

)
, (49)

the perturbative spectrum in the broken phase is:

• (N − 1)(N − 3) massless vectors A in the adjoint of SU(N − 2);

• 3 massless vectors A′ in the adjoint of SU(2);

• 4(N−2) massive vectors W in bi-fundamental (N−2, 2)⊕(N − 2, 2) of SU(N−2)⊗SU(2)

with mass M2
W = g2w2/4;

• 1 massive vector Z with mass M2
Z = g2w2(N − 2)/N corresponding to the generator

diag(2, . . . , 2,−(N − 2),−(N − 2))/2
√

N(N − 2).

• The scalon s.

• (N−2)(N−3) scalars that fill an anti-symmetric S̃ of SU(N−2) with mass M2
S̃

= 16w2λS.
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There is an unbroken conserved global U(1) with generator proportional to diag(1, . . . , 1, 0, 0).

under which W has charge 1, S̃ has charge 2 and all other fields are neutral. So W and S̃ are

possible DM candidates. Gauge interactions give rise to WW↔ S̃ processes:

1

4
Tr|DµS|2 =

1

4
Tr

∣∣∣∣(D̃µ −
2ig√

N(N − 2)
Zµ

)
S̃

∣∣∣∣2 +
1

2
(∂µs)

2 +
g2(N − 2)

2N
s̃2Z2

µ +

+
g2

2
εαβ s̃Re (S̃∗ijW

α
iµW

β
jµ) +

g2

4
W∗αiµW

α
iµs̃

2 +
g2

4
W∗αiµW

α
jµS̃ikS̃

∗
jk (50)

where s̃ = s + w; D̃ is the SU(N − 2)-covariant derivative; i, j = 1, . . . ,N − 2 are SU(N − 2)

indices; α, β = 1, 2 are SU(2) indices.

Assuming that massive particles have masses comparable to MW, both unbroken groups

SU(N − 2) and SU(2) confine at ΛSU(N−2) > ΛSU(2), where

Λi ≈MW exp(− 2π

biαDC

), bSU(N−2) =
11

3
(N − 2), bSU(2) =

22

3
. (51)

SU(2) interactions respect a custodial symmetry, which is however broken by SU(N− 2) inter-

actions. After the double confinement the non-perturbative spectrum contains:

• Glue-balls of SU(N − 2) and of SU(2) that decay to SM particles.

• The unstable Z and s.

• Baryons made of W only:

– If N is odd, SU(N − 2) confinement cannot form SU(2) singlets. Confinements give

rise to bi-baryons made of W2(N−2) and to their anti-bi-baryons made of W̄2(N−2).

Extra bi-baryons made of WN−2W̄N−2 decay to glue-balls through WW̄ annihilations.

– If N is even, SU(N−2) confinement can form SU(2) singlets. Confinements give rise

to baryons made of WN−2 and to their anti-baryons made of W̄N−2.

• Baryons with a WiWj pair replaced by one S̃ij. The mass difference is 2MW − MS +

O(ΛSU(2)).

6 A trace-less adjoint of SU(N)

Being a real representation, an adjoint SA carries no dark baryon number. Writing it as an

Hermitian matrix SJI = SA(TA)JI using the generators in the fundamental, such that TrS2 =

(SA)2/2, the Lagrangian is

L = LSM −
1

4
GAµνG

Aµν + Tr(DµS)(DµS)− VS (52)
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Figure 3: Coleman-Weinberg symmetry-breaking patterns for a SU(N) gauge theory with a

scalar in the adjoint: the RGE flow towards low energy of its quartics λS and λ′S can intersect

the instability conditions in both their branches, leading to the two different breaking patterns

discussed in the text.

with

VS = M2
S Tr(S2) + ATr(S3) + λS Tr(S2)2 + λ′S Tr(S4)− λHS|H|2 TrS2. (53)

for N ≥ 4, while λ′S is redundant for N = 3. Because of the cubic, the theory is not acci-

dentally invariant under the S → −S symmetry, so that there are no stable DM candidates

in the perturbative spectrum. One can consider a dimension-less theory where masses arise

dynamically as a fermion condensate in a different sector (e.g. section 5.1 of [29]) such that the

renormalizable Lagrangian has an accidental S → −S symmetry and S only acquires a mass

term through gravitational loops.

6.1 An adjoint of SU(N): confined phase

In the presence of the S3 cubic term there is no stable state. One S decays into two gluons

via a loop of S (the Sa → GbGc amplitude is proportional to the non-vanishing group-theory

factor (daij + ifaij)fikbfjkc). In addition, bound states cannot be stabilized by U-parity (or

some other analogous Z2 symmetry acting non-trivially on the different components), because

singlets made with G and S necessarily involve indices appearing in pairs: there are no baryons.

If cubic terms are absent, the state Tr(SG) becomes stable, with phenomenology similar to

the 1-ball of SO(N) [1]. The SU(2) case was computed on the lattice [30].
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6.2 An adjoint of SU(N): dynamical symmetry breaking

The RGE for the dimension-less couplings for N ≥ 3 are

(4π)2 dg

d lnµ
= −7N

2
g3 (54a)

(4π)2 dλS
d lnµ

= 9g4 − 12Ng2λS +

(
6 +

18

N
2

)
λ′2S + 8

(
N − 3

2N

)
λSλ

′
S + 2

(
7 + N

2
)
λ2
S (54b)

(4π)2 dλ′S
d lnµ

= 3Ng4 − 12Ng2λ′S + 4λ′2S

(
N − 9

N

)
+ 24λSλ

′
S. (54c)

The RGE for λS for N = 3 is obtained replacing 9 with 27/2 and setting λ′S = 0.

The tree-level quartic potential of S satisfies V ≥ 0 when the quartic couplings satisfy

λS + αλ′S ≥ 0, where α are the extremal values of α = Tr(SS†SS†)/Tr(SS†)2. The maximal

value is α = (N2 − 3N + 3)/N(N − 1) corresponding to 〈S〉 ∝ diag(w, . . . , w,−(N − 1)w),

which breaks SU(N) → SU(N − 1) ⊗ U(1). For N = 2k even the minimal value is α = 1/N

corresponding to 〈S〉 ∝ diag(w, . . . , w,−w, . . . ,−w), which breaks SU(N)→ SU(k)⊗ SU(k)⊗
U(1). For N = 2k + 1 odd the minimal value is α = (N2 + 3)/N(N2 − 1) corresponding to

〈S〉 ∝ diag(kw, . . . , kw, kw,−(k + 1)w, . . . ,−(k + 1)w), which breaks SU(N) → SU(k + 1) ⊗
SU(k)⊗U(1). Thereby the possible unbroken gauge groups selected by the Coleman-Weinberg

mechanism up to e.g. N = 6 are16

SU(2)→ U(1) ,

SU(3)→ SU(2)⊗ U(1) ,

SU(4)→ SU(3)⊗ U(1), SU(2)⊗ SU(2)⊗ U(1) ,

SU(5)→ SU(4)⊗ U(1), SU(3)⊗ SU(2)⊗ U(1) ,

SU(6)→ SU(5)⊗ U(1), SU(3)⊗ SU(3)⊗ U(1) ,

(55)

and so on for N > 6. In general SU(N1)⊗ SU(N2)⊗U(1) contains a U(1) factor, such that the

lightest charged state is a stable DM candidate; dark photons γdark are massless; as discussed

in section 3.4 dark magnetic monopoles exist with magnetic charge gmag = 4π/g and mass

Mmag ∼MW/αDC.

6.3 An adjoint that breaks SU(N)→ SU(N− 1)⊗U(1)

After dropping the scalars ‘eaten’ by massive vectors, the scalar adjoint can be expanded in

block form as

S = (w + s)TN
2−1 +

(
S̃ 0

0 0

)
(56)

16The case N = 3 is special since α = 1/2 identically. Therefore the quartic scalar potential contains a unique

invariant Tr(S2)2, such that there is an O(8) accidental global symmetry, spontaneously broken to O(7). This

yields 7 Goldstone bosons, of which 4 are eaten by the massive vectors of the local SU(3) → SU(2) ⊗ U(1)

breaking and 3 remains in the physical spectrum. At tree level they are massless, but gauge interactions, which

do not respect the accidental O(8) symmetry of the scalar potential, will lift them to MGB ' g2w/4π.
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where TN
2−1 = diag(1, · · · , 1, 1−N)/

√
2N(N − 1). Writing the gauge bosons as

G =

(
A W+

W− 0

)
+ γdarkT

N
2−1, (57)

the perturbative spectrum in the broken phase is:

• (N − 1)2 − 1 massless vectors A in the adjoint of SU(N − 1).

• 1 massless vector γdark corresponding to the unbroken U(1), with generator proportional

to 〈S〉.

• N − 1 complex massive vector W± in the fundamental of SU(N − 1) with mass M2
W =

g2w2Q2 and with charge Q = ±
√
N/2(N − 1) under the unbroken U(1) gauge group.

• The scalon s with loop-level mass Ms.

• (N− 1)2− 1 scalars S̃ that fill an adjoint of SU(N− 1) with squared mass M2
S̃

= w2(λS +

3λ′S/(N(N − 1))) and neutral under the U(1) gauge group.

At perturbative level W± is a stable DM candidate, while S̃ decays into AA through loops

involving the wS̃WW∗ gauge coupling. At non-perturbative level, condensation of SU(N − 1)

gives stable dark baryons εWN−1 charged under U(1).

Glueball decays

The glueballs can decay into dark photons through the dimension-8 interactions of eq. (11)

where the coefficients C1,2 ≈ (N − 2)/(4πw2)2, yielding a decay width

ΓDG→γdarkγdark ≈
α4

dark(N − 2)2

8π

f 2
DGM

3
DG

(MW)8 , (58)

where fDG ≈M3
DG is a form factor. This has to be compared with the decay into SM particles,

which proceeds through the Higgs-scalon portal. From

LsAA =
αdark

8π
bW(Aa

µν)
2 s

w
, (59)

where bW = −7/2 is the contribution of a loop of W’s to the SU(N− 1) beta function, one has

ΓDG→SM ≈
α2

darkf
2
DGb

2
W

512π3

λ2
HS

MDGM
4
s

. (60)

Dark glueball decay predominantly into SM particles if(
MDG

MW

)4(βλS + αβλ′S
αbWλHS

)2(
8(N − 2)(N − 1)

N

)2

. 1, with α =
N2 − 3N + 3

N(N − 1)
. (61)

These results have been used in figure 1.
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6.4 An adjoint that breaks SU(N)→ SU(N1)⊗ SU(N2)⊗U(1)

After dropping the scalars ‘eaten’ by massive vectors, the scalar adjoint can be expanded in

block form as

S =
w + s√
2N1N2N

(
N21N1

0

0 −N11N2

)
+

(
S̃1 0

0 S̃2

)
(62)

and the gauge vectors as

G =

(
A1 W+

W− A2

)
+

γdark√
2N1N2N

(
N21N1

0

0 −N11N2

)
. (63)

The perturbative spectrum is:

• 1 massless vector γdark corresponding to the unbroken U(1).

• N2
1 − 1 massless vectors A1 in the adjoint of SU(N1), and N2

2 − 1 massless vectors A2 in

the adjoint of SU(N2).

• N1N2 complex massive vectors W± in the bi-fundamental of SU(N1) ⊗ SU(N2) with

squared mass M2
W = g2w2Q2 and with charge Q = ±

√
N/2N1N2 under the unbroken

U(1) gauge group.

• The scalon s, singlet under the unbroken gauge group.

• N2
1− 1 neutral real scalars S̃1 in the adjoint of SU(N1) with squared mass M2

S̃1
= w2(λS +

3λ′SN2/N1N), and N2
2 − 1 neutral real scalars S̃2 in the adjoint of SU(N2) with squared

mass M2
S̃2

= w2(λS + 3λ′SN1/N2N).

The dark scalars S̃1,2 in adjoints of SU(N1,2) decay into their gauge bosons in view of their

S̃3
1,2 cubic couplings. The massive vectors in the bi-fundamental W±i1i2 are stable, for example

because they are the lightest state with U(1) charge.

The group with larger N1 > N2 confines earlier, forming dark baryons WN1 in various

representations of SU(N2) with N2-ality N1 − N2. The smallest representation containing the

lightest states can be a singlet if N1 = kN2 with integer k, a fundamental if they differ by 1,

an anti-symmetric if they differ by 2, etc. At lower energy SU(N2) confines forming baryons of

baryons. The lightest DM candidate is charged under U(1), with charge equal to the number

of constituents in this matryoshka. The abundance of dark photons can be estimated as in the

previous section.
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7 A trace-less symmetric of SO(N)

We now consider a scalar SIJ in the trace-less symmetric real representation of SO(N). The

Lagrangian is

L = LSM −
1

4
GAµνG

Aµν +
1

2
Tr(DµS)(DµS)− VS (64)

with

VS =
M2

S

2
Tr(S2) + λS(TrS2)2 + ATr(S3) + λ′S Tr(S4)− λHS|H|2 Tr(S2). (65)

The only special case is N = 3: the λ′S quartic can be removed using Tr(S4) = Tr(S2)2/2; the

possible extra cubic det S equals Tr(S3)/3. For N = 4 the possible extra quartic coupling det S

can be rewritten in terms of λS and λ′S as det S = Tr(S4)/4− Tr(S2)2/8. The action is invariant

under O-parity, that can be written as17

GIJ
PO→ (−1)δ1I+δ1jGIJ and SIJ

PO→ (−1)δ1I+δ1JSIJ . (66)

7.1 A symmetric of SO(N): confined phase

We consider the phase where SO(N) confines. Baryons are odd under O-parity, so that the

lightest baryon is a stable DM candidate.

For even N baryons exist, made with the constituents GIJ and (GS)IJ . As long as MS is

non negligible compared to the confinement scale, the lightest baryon is the 0-ball εGN/2, odd

under O-parity. The detailed structure of S (a symmetric or a fundamental) does not impact

DM phenomenology.

For odd N no baryon exists. Differently from the analogous SU(N) model, di-baryons εεS

are unstable, because even under O-parity. Indeed, for SO(N) the product of two ε’s can be

expressed as the sum of products of N Kronecker δ’s [9]. So there is no DM candidate.

7.2 A symmetric of SO(N): dynamical symmetry breaking

The tree-level quartic potential of S satisfies V ≥ 0 when the quartic couplings satisfy λS +

αλ′S ≥ 0 where α are the minimal and maximal values of α = Tr(S4)/Tr(S2)2. The maximal

value is α = 1 − 3/N − 1/(N − 1) corresponding to S ∝ diag(1, . . . , 1,N − 1), which breaks

SO(N) → SO(N − 1). For N = 2k even the minimal value is α = 1/N corresponding to

S ∝ diag(1, . . . , 1,−1, . . . ,−1), which breaks SO(N) → SO(k)2. For N = 2k + 1 odd the

minimal value is α = (3 +N2)/(N3−N) which corresponds to the SO(N)→ SO(k+ 1)⊗SO(k)

breaking. For N = 3 the minimal and maximal values of α coincide, corresponding to the

unique breaking SO(3)→ SO(2).

17The cubic term TrS3 respects O-parity because each S has two indices. This differs from the model where

S if a fundamental where O-parity was a symmetry because a cubic term was forbidden by gauge invariance.
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Figure 4: Coleman-Weinberg symmetry-breaking patterns for a SO(N) gauge theory. The RGE

flow towards low energy of its quartics λS and λ′S can enter both instability conditions, leading

to the two different breaking patterns discussed in the text.

The RGE for N ≥ 4 are

(4π)2 dg

d lnµ
= −21N − 46

3
g3 (67a)

(4π)2 dλS
d lnµ

= 18g4 − 24g2NλS + (67b)

+12

(
1 +

6

N2

)
λ′2S + 8

2N2 + 3N − 6

N
λSλ

′
S + 4

(
14 + N + N2

)
λ2
S

(4π)2 dλ′S
d lnµ

= 6Ng4 − 24Ng2λ′S + 4
2N2 + 9N − 36

N
λ′2S + 96NλSλ

′
S. (67c)

Fig. 4a shows that, again, the RGE flow can cross both stability conditions depending on the

values of the couplings.

7.3 A symmetric that breaks SO(N)→ SO(N− 1)

The trace-less symmetric scalar can be expanded as

S =
w + s√
N(N − 1)

(
1N−1 0

0 −(N − 1)

)
+

(
S̃ 0

0 0

)
(68)
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and the gauge vectors as

G =

(
A W

−WT 0

)
. (69)

O-parity is preserved in this vacuum, since it can be realised as a reflection along any of the

unbroken N − 1 directions [1]. The perturbative spectrum is:

• The scalon s, singlet under SO(N − 1) and O-parity even.

• (N − 1)(N − 2)/2 massless vectors A in the adjoint of SO(N − 1).

• N − 1 vectors W with squared mass M2
W = 2Ng2w2/(N − 1) in the fundamental of

SO(N − 1).

• N(N − 1)/2 − 1 scalars in the trace-less symmetric S̃ of SO(N − 1) with squared mass

M2
S̃

= 4w2(λS + 3λS′/N(N − 1)).

S̃ and s decay into AA through loops involving the wS̃WW and wsWW gauge couplings. The W

is stable: being the only field with one index it is the only field odd under a diag(−1, . . . ,−1, 1)

O(N) reflection, respected by the vacuum expectation values.

DM phenomenology remains as in the model where SO(N) is broken to SO(N − 1) by a

scalar in the fundamental [1], because S̃ is the only extra state. SO(N − 1) confines at a scale

Λ forming baryons odd under O-parity and other states. The lightest baryon is a stable DM

candidate. The baryon constituents are Aij, Wi. For N even the lightest baryon is the 1-ball

WA(N−2)/2. For N odd the lightest baryon is the 0-ball A(N−1)/2.

7.4 A symmetric that breaks SO(N)→ SO(k)⊗ SO(N− k)

The trace-less symmetric scalar can be expanded as

S =

√
N − k
Nk

(w + s)

(
1k 0

0 −1N−kk/(N − k)

)
+

(
S̃1 0

0 S̃2

)
(70)

and the gauge vectors as

G =

(
A1 W

−WT A2

)
. (71)

Symmetry breaking selects k = N/2 for N even and k = (N − 1)/2 for N odd.

O-parity splits into two independent O-parities O1 and O2. This is because reflections acting

in the two subspaces are not equivalent under the unbroken gauge group. For even N there is

also a twin symmetry that exchanges the two SO(N/2).

The perturbative spectrum is:

• The scalon s, singlet under the unbroken gauge group and even under O-parities.
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• k(k − 1)/2 massless vectors A1 in the adjoint of SO(k).

• (N − k)(N − k − 1)/2 massless vectors A2 in the adjoint of SO(N − k).

• k(N − k) vectors W in the bi-fundamental of SO(k) ⊗ SO(N − k) with squared mass

M2
W = 2g2w2N/k(N − k).

• k(k + 1)/2 − 1 real scalars S̃1 in the trace-less symmetric of SO(k) with squared mass

M2
S̃1

= 4w2(λS + 3λ′S(N − k)/kN).

• (N − k)(N − k + 1)/2 − 1 real scalars S̃2 in the trace-less symmetric of SO(N − k) with

squared mass M2
S̃2

= 4w2(λS + 3λ′Sk/N(N − k)).

S̃1,2 decay into A1,2A1,2 through loops involving the wS̃1,2WW gauge couplings. The W is

stable being the only field odd under the O(N) reflection diag(−1k, 1N−k), which is an unbroken

symmetry of the action.

When the two SO groups confine they can form baryons odd under the two independent

O-parities. We need to distinguish 3 cases:

1. N even, N/2 even, for example SO(8) → SO(4)2. In this case the two independently

stable 0-balls B1 ∼ εA
k/2
1 , B2 ∼ εA

k/2
2 are DM candidates. They are degenerate because

the entries of their 2×2 mass matrix is related by the permutation symmetry, and because

its off-diagonal elements vanish. The two O-parities are independent: in the full theory

the unbroken SO(N) O-parity forbids operators of the form B1B2 and as a consequence

there are no B1 ↔ B2 oscillations.

2. N even, k = N/2 odd, for example SO(6) → SO(3)2. Baryons do not exists. However,

the bi-baryon εεWA
(k−1)/2
1 A

(k−1)/2
2 is stable since it is odd under both O-parities and no

separately odd states exist.

3. N odd, for example SO(7) → SO(4) ⊗ SO(3). Without loss of generality, we take k =

(N ± 1)/2 even, N − k odd. The 0-ball εA
k/2
1 exists and is stable, being odd under O1-

parity. No O2-parity odd baryons exist (even states decay) and neither bi-baryons, odd

under both O-parities. While the DM phenomenology is analogous to a SO(k) model, its

cosmological abundance can be affected by the extra states.

The case N = 4 and N = 5 are special.

For N = 4 the breaking pattern is SO(4) → SO(2)1 ⊗ SO(2)2. The particles are a massive

W charged under both the two SO(2) = U(1), the unstable scalon s, degenerate massive scalars

S̃i with charge Qi(S̃i) = 2Qi(W) under U(1)i. The DM candidate is W, accompanied by S̃i if

MS̃1,2
< 2MW. As all interactions are perturbative, the DM abundance is reproduced for DM

masses that can conflict with the bounds of section 3.2.
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For N = 5 the breaking pattern is SO(5) → SO(3) ⊗ SO(2). The perturbative spectrum

contains the following massive particles: the scalon s, vectors W± in the 3 of SO(3) charged

under U(1), a neutral scalar S̃ in the symmetric traceless of SO(3) a singlet S̃±± with U(1)

charge Q(S̃±±) = 2Q(W±). Even assuming that its decay S̃±± → W±W± is not kinematically

forbidden, confinement of SO(3) gives various potentially (co)stable DM candidates, thanks

to conservation of dark U(1) charge and of O-parity: the baryons B± = εW±A and B±±± =

εW±W±W±, the meson M±± = W±W±.

8 An anti-symmetric adjoint of SO(N)

We consider a scalar SIJ in the anti-symmetric representation of SO(N), with N(N− 1)/2 real

components. The Lagrangian is

L = LSM −
1

4
GAµνG

Aµν − 1

4
Tr(DµS)(DµS)− VS (72)

with

VS = −M
2
S

4
Tr(S2) + λS(TrS2)2 + λ′S Tr(S4)− λHS|H|2 Tr(S2). (73)

The cubic Tr(S3) identically vanishes, and det S vanishes for N odd. For N = 2 SO(2) = U(1)

and the anti-symmetric of SO(2) is the neutral adjoint of U(1). For N = 3 SO(3) = SU(2)

and the anti-symmetric of SO(3) is the adjoint of SU(2); furthermore Tr(S4) = Tr(S2)2/2 so

that the potential contains only one independent quartic. For N = 4 SO(4) = SU(2)2 and the

anti-symmetric splits into two irreducible representations SIJ = ±εIJKLSKL/2 which are the

adjoints of SU(2)2. For N = 6 SO(6) = SU(4) and the anti-symmetric of SO(6) is the adjoint of

SU(4): its extra cubic invariant is written in SO language as Pf S. For N = 8 there is an extra

real quartic invariant λ′′SPf S. The Pfaffian is proportional to the square root of the determinant

of an anti-symmetric matrix with even dimension. So for N 6= 6 the theory has an accidental

S→ −S symmetry.

8.1 An anti-symmetric of SO(N): confined phase

The discussion is the same as for the symmetric (section 7.1), with in this case baryon con-

stituents GIJ and SIJ .

8.2 An anti-symmetric of SO(N): dynamical symmetry breaking

As the anti-symmetric is the adjoint, the unbroken group contains a U(1) factor. In order

to understand the unbroken group, we consider the most generic vacuum expectation value

of the form of eq. (40) with generic non-vanishing wi = w. As explained below, we can

assume that k wi are equal and that the remaining ones vanish. The breaking pattern is

35



SO(N) → SO(N − 2k) ⊗ SU(k) ⊗ U(1). Indeed, blocks with vanishing vacuum expectation

value leave an SO(N − 2k) factor unbroken. Blocks with equal w = wi form a S2k = 1k ⊗ ε,
giving rise to a SU(k) × U(1) as follows. Let us consider generators of the form Sa ⊗ ε and

iAb ⊗ 12, where Sa and Ab are, respectively, k × k symmetric and anti-symmetric matrices.

They commute with the vacuum expectation value S2k; are generators of SO(2k) ⊂ SO(N);

close the SU(k)× U(1) algebra.

Minima of renormalizable potentials [3] and of Coleman-Weinberg potentials (discussed

below) give rise to vacuum expectation values of the form considered above with special values

of k = 1 or k = [N/2], depending on the numerical values of the quartics.

The tree-level quartic potential of S satisfies V ≥ 0 when the quartic couplings satisfy

λS + αλ′S ≥ 0 where α are the minimal and maximal values of α = Tr(S4)/Tr(S2)2. The

maximal value is α = 1/2 corresponding to S ∝ diag(0, . . . , 0, ε), which breaks SO(N) →
SO(N − 2) ⊗ U(1). For N = 2k even the minimal value is α = 1/N corresponding to S ∝
diag(ε, . . . , ε) = 1k ⊗ ε, which breaks SO(N) → SU(k) ⊗ U(1). For N = 2k + 1 odd the

minimal value is α = 1/(N−1) corresponding to S ∝ diag(ε, . . . , ε, 0) which corresponds to the

SO(N) → SU(k) ⊗ U(1) breaking. For N = 3 the minimal and maximal values of α coincide,

corresponding to the unique breaking SO(3)→ U(1).

The RGE for N ≥ 4 are

(4π)2 dg

d lnµ
= 7(2−N)g3 (74a)

(4π)2 dλS
d lnµ

=
9

2
g4 − 24g2(N − 2)λS + (74b)

+48λ′2S + 32(2N − 1)λSλ
′
S + 16

(
16−N + N2

)
λ2
S

(4π)2 dλ′S
d lnµ

=

(
3

2
N − 12

)
g4 − 24 (N − 2) g2λ′S + 16 (2N − 1)λ′2S + 384NλSλ

′
S. (74c)

Fig. 4b shows that, again, the RGE flow can cross both stability conditions depending on the

values of the couplings.

8.3 An anti-symmetric that breaks SO(N) → SO(N− 2)⊗ U(1)

After dropping the scalars ‘eaten’ by massive vectors, the scalar anti-symmetric can be expanded

in components as

S =

(
S̃ 0

0 ε(w + s)

)
=



0 S̃12 · · · S̃1,N−2 0 0

−S̃12 0 · · · S̃2,N−2 0 0
...

...
. . .

...
...

...

−S̃1,N−2 · · · −S̃2,N−2 0 0 0

0 0 · · · 0 0 w + s

0 0 · · · 0 −w − s 0


(75)
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such that the S̃ij and s are canonically normalized. Writing the gauge bosons as

G =

(
A W

−WT 0

)
+ γdarkT

N(N−1)/2, (76)

the perturbative spectrum in the broken phase is:

• The scalon s with loop-level mass Ms.

• (N − 2)(N − 3)/2 massless vectors Aµ in the adjoint of SO(N − 2).

• 1 massless vector γdark corresponding to the unbroken U(1) generator TN(N−1)/2 that

performs rotations of the two latter directions.

• (N − 2) complex vectors Wi
µ with squared mass MW = g2w2Q2 in the real fundamental

of SO(N − 2) and with charge Q = ±1 under the U(1) gauge group.

• (N − 2)(N − 3)/2 real scalars that fill an anti-symmetric S̃ of SO(N − 2) with mass

M2
S̃

= 16w2λS neutral under U(1).

The W is stable because charged under unbroken gauge U(1), while S̃ decays into AA through

loops involving the wS̃WW∗ gauge coupling.

We expect that confinement of SO(N − 2) at Λ does not break the U(1). Indeed in the

limit MW � Λ the heavy W form condensates suppressed by their mass (in analogy with heavy

quarks, see e.g. [31]). Strong interactions do not discriminate between the neutral condensate

W+
i W

−
i and the charged condensates W±i W

±
i ; weak U(1) interactions favour the neutral con-

densate W+W− such that U(1) remains unbroken. Then U(1) as well as O-parity can lead to

stable bound states. The non-perturbative spectrum contains

• Unstable states, such as glue-balls and mesons neutral under the U(1), M0 = W+
i W

−
i .

• Mesons possibly stable because charged under the U(1), M±± = W±i W
±
i .

• Baryons odd under O-parity of SO(N− 2) (not broken by the vacuum expectation value)

and with different U(1) charges:

B0 ≡ εA(N−2)/2, B±± ≡ εW±W±A(N−4)/2, . . . for N even

B± ≡ εW±A(N−3)/2, B±±± ≡ εW±W±W±A(N−5)/2, . . . for N odd
. (77)

The stable states are as follows:

• For even N, the lightest baryon B0 and the lightest charged state, B±± or M±± (they

are co-stable if both their decay channels B±± → B0M±± and M±± → B0B±± are

kinematically closed; higher-charge baryons could also be co-stable).

• For odd N, the lightest baryon B±. Likely, M±± is co-stable and B±±± decays into

B±M±±.
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8.4 An anti-symmetric that breaks SO(N)→ SU(k)⊗U(1)

8.4.1 For even N, k = N/2, SO(N)→ SU(N/2)⊗U(1)

After dropping the scalars ‘eaten’ by massive vectors, the scalar in the anti-symmetric adjoint

can be expanded in block form as

S =

√
1

k
(w + s) 1k ⊗ iσ2 + iS̃aT aSU (78)

where a = 1, · · · , k2 − 1 and T aSU are the SU(k) generators explicitly given by

√
2(TSU)asym ⊗ 12,

√
2(TSU)sym ⊗ σ2. (79)

The perturbative spectrum in the broken phase is:

• 1 massless vector γdark corresponding to the unbroken U(1) with generator (1k ⊗ σ2)/
√
k

proportional to 〈S〉.

• k2 − 1 massless vectors A in the adjoint of SU(k) corresponding to the generators of

eq. (79).

• k(k − 1)/2 complex massive vectors W±±ij with mass M2
W = g2w2Q2

W that fill an anti-

symmetric of SU(k) and with charge QW = ±2/
√
k under the U(1) gauge group. They

correspond to the combinations W±± ∼ (TSU)asym ⊗ (σ3 ± iσ1).

• the scalon s with loop-level mass Ms.

• k2−1 scalars S̃ neutral under U(1) that fill an adjoint of SU(k) with mass M2
S̃

= 8w2(2λS+

3λ′S/k).

Analogously to section 8.3, the W is stable because charged under unbroken gauge U(1), while

S̃ decays into AA through loops involving the wS̃WW∗ gauge coupling.

At non-perturbative level SU confinement acts as in section 5.1, forming charged baryons

εWN/4 for N/2 even, or di-baryons for N/2 odd.

8.4.2 For odd N, k = (N− 1)/2, SO(N)→ SU((N− 1)/2)⊗U(1)

After dropping the scalars ‘eaten’ by massive vectors, the scalar in the anti-symmetric adjoint

can be expanded in block form as

S′ = diag (S, 0) (80)

where S is given by eq. (78). The perturbative spectrum in the broken phase is as in the

previous section, with an extra state:

• 1 massless vector γdark corresponding to the unbroken U(1).
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• k2 − 1 massless vectors A in the adjoint of SU(k).

• k(k − 1)/2 complex vectors W±±ij with squared mass M2
W = g2w2Q2

W that fill an anti-

symmetric of SU(k) and with charge QW = ±2/
√
k under the U(1).

• the scalon s with loop-level mass Ms.

• k2 − 1 scalars S̃ that fill an adjoint of SU(k) neutral under the U(1) with mass M2
S̃

=

8w2(2λS + 3λ′S/k).

• k extra complex massive vectors X±i with mass M2
X = g2w2Q2

X that fill a fundamental of

SU(k) and with charge QX = ±1/
√
k under the U(1).

The X± is stable, being the lightest state charged under unbroken gauge U(1). In view of its

mass, W±± decays into X±X±; S̃ decays into AA through loops involving the wS̃WW∗ gauge

coupling.

At non-perturbative level, confinement of SU(k) leads to stable dark-charged baryons B ∼
εXk.

9 A symmetric adjoint of Sp(N)

We now consider a scalar S in the symmetric adjoint representation of Sp(N), which is a real

representation. Since the symmetric is the adjoint, it can be written in terms of components

SA (A = 1, . . . ,N(N + 1)/2) as SJI = (SATA)JI that transforms as S→ USU † and obeys S = S†.

S also satisfies the reality condition S∗ = γNSγN, analogous to eq. (42), such that it decomposes

into quaternionic 2 × 2 blocks [2]. However S is not a symmetric matrix, because the Sp

generators TA are not symmetric.

An equivalent description that makes the symmetry explicit is obtained lowering one index

obtaining ŜIJ ≡ (SγN)IJ which transforms as Ŝ → U ŜUT . Ŝ is symmetric (because TAγN is

symmetric) and obeys the reality condition Ŝ∗ = γNŜγN. However Ŝ is not hermitian, Ŝ 6= Ŝ†.

We use the S representation.

The Lagrangian for an Sp adjoint is analogous to the SU adjoint, eq. (52):

L = LSM −
1

4
GAµνG

Aµν + Tr(DµS)(DµS)− VS (81)

except that the cubic Tr(S3) identically vanishes, as well as other odd powers (as clear using

the Ŝ representation, such that one γN is needed to contract indices) such that

VS = M2
S Tr(S2) + λS(TrS2)2 + λ′S Tr(S4)− λHS|H|2 TrS2. (82)

For N = 2 Sp(2) = SU(2) and Tr(S4) = Tr(S2)2/2 and there is only one quartic. The renormal-

izable action is invariant under S → −S, that can be explicitly broken by non-renormalizable

operators, and spontaneously broken by a vacuum expectation value of S.
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9.1 An adjoint of Sp(N): confined phase

In view of the S → −S symmetry, the lightest bound state containing an odd number of S is

a stable DM candidate. Presumably this is the state Tr(SG). Sp baryons decay into mesons,

because the ε tensor can be expanded as combinations of γN.

9.2 An adjoint of Sp(N): dynamical symmetry breaking

As the symmetric is the adjoint, the unbroken group contains a U(1) factor.

The tree-level quartic potential of S satisfies V ≥ 0 when the quartic couplings satisfy

λS + αλ′S ≥ 0 where α are the minimal and maximal values of α = Tr(S4)/Tr(S2)2. The

maximal value is α = 1/2 corresponding to S ∝ diag(0, . . . , 0, 1,−1), which breaks Sp(N) →
Sp(N− 2)⊗U(1). The minimal value is α = 1/N corresponding to S ∝ diag(1,−1, . . . , 1,−1),

which breaks Sp(N)→ SU(N/2)⊗ U(1).

The RGE for N ≥ 4 are

(4π)2 dg

d lnµ
= −7

4
(N + 2)g3 (83a)

(4π)2 dλS
d lnµ

=
9

2
g4 − 6g2(N + 2)λS + (83b)

+3λ′2S + 2(2N + 1)λSλ
′
S +

(
16 + N + N2

)
λ2
S

(4π)2 dλ′S
d lnµ

=
3

2
(N + 8) g4 − 6 (N + 2) g2λ′S + (2N + 1)λ′2S + 24λSλ

′
S. (83c)

Fig. 5 shows that, again, the RGE flow can cross both stability conditions depending on the

values of the couplings.

9.3 An adjoint that breaks Sp(N) → Sp(N− 2)⊗ U(1)

After dropping the scalars ‘eaten’ by massive vectors, the scalar adjoint can be expanded in

block form as

S =

 S̃ 0 0

0 (w + s)/2 0

0 0 −(w + s)/2

 (84)

and the gauge bosons as

G ∼

 A −γN−2X
− X+

X+TγN−2 γdark W++

X−T W−− −γdark

 . (85)

The perturbative spectrum in the broken phase is:

• (N − 1)(N − 2)/2 massless vectors A in the adjoint of Sp(N − 2).
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• 1 massless vector γdark corresponding to the unbroken U(1), with generator proportional

to 〈S〉.

• 1 complex massive vector W±± singlet of Sp(N − 2) with mass M2
W = g2w2Q2

W and with

charge QW = ±1 under the unbroken U(1) gauge group.

• N − 2 complex massive vectors X± in the fundamental of Sp(N − 2) with mass M2
X =

g2w2Q2
X and with charge QX = ±1/2 under the unbroken U(1) gauge group.

• The scalon s with loop-level mass Ms.

• (N−1)(N−2)/2 scalars S̃ that fill a symmetric (adjoint) of Sp(N−2) with squared mass

M2
S̃

= w2λS and neutral under the U(1) gauge group.

At perturbative level X± is a stable DM candidate, W±± could be co-stable or decay to X±X±

(at tree level MW = 2MX, so that loop corrections are needed to establish if the decay is

kinematically allowed); S̃ decays into AA through loops involving the wS̃XX∗ gauge coupling.

We expect that confinement of Sp(N− 2) leaves U(1) unbroken. The reason is analogous to

section 8.3: the possible condensates involve an even number of charged X, so that a neutral

condensate is possible and energetically favoured by the weak gauging. After confinement of

Sp(N − 2) the lightest charged states are W±± and the charged mesons M±± ≡ X±TγN−2X
±.

At tree level they have the same constituent mass, but the meson becomes slightly heavier

than the W so that they could be co-stable. They co-annihilate such that the non-perturbative

annihilation cross-section of the meson depletes their common abundance. If the mass splitting

is ∆M ∼ keV one gets the direct-detection phenomenology known as ‘inelastic DM’.

9.4 An adjoint that breaks Sp(N) → SU(N/2)⊗ U(1)

After dropping the scalars ‘eaten’ by massive vectors, the scalar adjoint can be expanded in

block form as

S =

√
1

2N
(w + s) diag(1,−1, . . . , 1,−1) + S̃aT aSU (86)

where a = 1, · · · , (N/2)2 − 1 and T aSU are the SU(N/2) generators explicitly given by

1√
2

(TSU)asym ⊗ 12,
1√
2

(TSU)sym ⊗ σ3. (87)

The perturbative spectrum is:

• (N/2)2−1 massless vectors A in the adjoint of SU(N/2), corresponding to the generators

of eq. (87).

• 1 massless vector γdark corresponding to the unbroken U(1), with generator (1 ⊗ σ3)/
√

2N

proportional to 〈S〉.
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• N(N + 2)/8 complex massive vectors W± that fill a symmetric of SU(N/2) with squared

mass M2
W = g2w2Q2

W and with charge QW = ±
√

2/N under the unbroken U(1). They cor-

respond to W± ∼ Tsym⊗σ±, where Tsym = {Treal, 1N/2/
√
N} are the symmetric generators

of U(N/2).

• The scalon s with loop-level mass Ms.

• (N/2)2 − 1 scalars that fill a adjoint representation S̃ of SU(N/2) with squared mass

M2
S̃

= w2(λS + 3λ′S/N) and neutral under the U(1) gauge group.

The W± are stable DM candidates, while the S̃ decay into AA through the wS̃W+W− gauge

interaction.

When SU(N/2) confines, we expect that gauge U(1) remains unbroken.18 Then the lightest

charged bound state is stable. SU condensation proceeds as described in section 4.1, with the

replacements N → N/2, G→ A, S̃: the stable states are baryons and/or di-baryons, according

to the parity of N/2.

10 A trace-less anti-symmetric of Sp(N)

We now consider a scalar S in the anti-symmetric representation of Sp(N). It can be expanded

in components Sa as

SJI = (SaT̃ a)JI , with a = 1, . . . ,N(N − 1)/2− 1. (88)

where the generators T̃ a are the sub-set of the Sp generators in the fundamental that satisfy the

‘SU − Sp’ condition (see eq. (43) and footnote 13). The matrix S transforms as S→ USU † and

obeys S = S†, the reality condition S∗ = −γN · S · γN, and the traceless condition Tr(SγN) = 0,

but it is not an anti-symmetric matrix.

An equivalent description that makes anti-symmetry manifest is obtained lowering one index

obtaining ŜIJ ≡ (SγN)IJ (T̃ aγN is anti-symmetric) that transforms as Ŝ → U ŜUT . However Ŝ

is not hermitian, Ŝ 6= Ŝ†. We use the S representation.

The Lagrangian is

L = LSM −
1

4
GAµνG

Aµν + Tr(DµS)(DµS)− VS (89)

18As argued in section 2.3, based on Vafa-Witten-like considerations we expect that no charged det(W) con-

densate forms. This is surely true for N/2 even because, even if det(W) acquires a condensate, it is energetically

favoured to stay in its neutral component (while for N/2 odd all components of det(W) are charged). If the

gauge U(1) gets broken, its massive vector is a stable DM candidate with exponentially suppressed mass pro-

portional to the det(W) condensate and tiny kinetic mixing ε ∼ λHSeg/(4π)4 with the photon (achieving such

small values naturally is usually difficult). Similar considerations can be done whenever there is an unbroken

gauged U(1), e.g. in section 6.
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Figure 5: Coleman-Weinberg symmetry-breaking patterns for a Sp(N) gauge theory. The RGE

flow towards low energy of its quartics λS and λ′S can enter both instability conditions, leading

to the two different breaking patterns discussed in the text.

with

VS = M2
S Tr(S2) + λS(TrS2)2 + ATr(S3) + λ′S Tr(S4)− λHS|H|2 TrS2. (90)

For N = 4 and N = 6 there is only one quartic in view of Tr(S4) = Tr(S2)2/4. For N = 4 the

cubic vanishes because the anti-symmetric of Sp(4) is the fundamental of SO(5). Again, cubics

are allowed for fields that satisfy a trace-less condition. The action is invariant under the CSp

accidental symmetry, which will not lead to stable DM states.

10.1 An anti-symmetric of Sp(N): confined phase

Charge conjugation CSp does not lead to stable states. As in section 6.1, if cubic terms are

absent, the S→ −S symmetry implies that the lightest bound states made by an odd number

of S is stable. As Tr(GS)vanishes by anti-symmetry, the lightest state presumably is SSS,

corresponding to the operator Tr(S3).

10.2 An anti-symmetric of Sp(N): dynamical symmetry breaking

Even in the Sp case, the most generic vacuum expectation value of an anti-symmetric repre-

sentation has the form of eq. (40) [2].

The tree-level quartic potential of S satisfies V ≥ 0 when the quartic couplings satisfy

λS + αλ′S ≥ 0 where α are the minimal and maximal values of α = Tr(S4)/Tr(S2)2. The
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maximal value is α = (N2 − 6N + 12)/(2N2 − 4N) corresponding to

〈S〉 ∝ diag(−2, . . . ,−2,N − 2,N − 2) (91)

which breaks Sp(N) → Sp(N − 2) ⊗ Sp(2). For N = 4k the minimal value is α = 1/N

corresponding to 〈S〉 ∝ (−12k, 12k), which breaks Sp(4k) → Sp(2k)2. For N = 4k + 2 the

minimal value is α = (N2 + 12)/N(N2 − 4) corresponding to 〈S〉 ∝ diag(−k12k+2, (k + 1)12k),

which breaks Sp(4k+ 2)→ Sp(2k+ 2)⊗Sp(2k). For N = 4, 6 the minimal and maximal values

of α coincide, corresponding to the unique breakings Sp(4) → Sp(2) ⊗ Sp(2) and Sp(6) →
Sp(4)⊗ Sp(2).

The RGE for N ≥ 8 are

(4π)2 dg

d lnµ
= −

(
7

4
N +

23

6

)
g3 (92a)

(4π)2 dλS
d lnµ

=
9

2
g4 − 6Ng2λS +

(
N2 −N + 14

)
λ2
S + (92b)

+
4N2 − 6N − 12

N
λSλ

′
S +

(
3 +

18

N2

)
λ′2S

(4π)2 dλ′S
d lnµ

=
3

2
Ng4 − 6Ng2λS + 24λSλ

′
S +

2N2 − 9N − 36

N
λ′2S . (92c)

Fig. 5b shows that, again, the RGE flow can cross both stability conditions depending on the

values of the couplings.

10.3 An anti-symmetric that breaks Sp(N)→ Sp(N1)⊗ Sp(N2)

After dropping the scalars ‘eaten’ by massive vectors, the trace-less anti-symmetric scalar S

can be expanded as:

S =
w + s√
2NN1N2

(
−N21N1

0

0 N11N2

)
+

(
S̃1 0

0 S̃2

)
. (93)

with N2 = N −N1. For N = 4k one has N1 = N2 = N/2 e.g. Sp(8)→ Sp(4)2. For N = 4k + 2

one has N1 = (N + 2)/2 and N2 = N1 − 2, e.g. Sp(6) → Sp(4) ⊗ Sp(2). Writing the gauge

bosons as

G =

(
A1 W

WT A2

)
, (94)

the perturbative spectrum is:

• N1(N1 + 1)/2 massless gauge bosons A1 in the adjoint of Sp(N1).

• N2(N2 + 1)/2 massless gauge bosons A2 in the adjoint of Sp(N2).
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• N1N2 real massive bosons Wii
′ in the bi-fundamental of Sp(N1) ⊗ Sp(N2) with mass

M2
W = Ng2w2/2N1N2.

• the scalon s with loop-level mass Ms.

• N1(N1 − 1)/2 − 1 real scalars S̃1 in the trace-less anti-symmetric of Sp(N1) with mass

w2[λS + 3λ′SN2/NN1].

• N2(N2 − 1)/2 − 1 real scalars S̃2 in the trace-less anti-symmetric of Sp(N2) with mass

w2[λS + 3λ′SN1/NN2].

For N1 = N2 = N/2 the dynamics is invariant under a permutation symmetry that exchanges

the two Sp(N/2) groups. For any N the S̃1(S̃2) decays into A1A1(A2A2) through loops involving

the wS̃1(S̃2)WW gauge coupling. The W is stable because the vacuum and the action of

eq. (89) leave unbroken a gauge discrete Z2 symmetry, corresponding to the Sp transformation

G→ UGU †, S→ USU † with U = (−1N1
, 1N2

). This Z2 acts on the fields as

s→ s, S̃1 → S̃1, S̃2 → S̃2, A1 → A1, A2 → A2, W→ −W. (95)

W would be a stable DM candidates. But, when the two Sp(N1) and Sp(N2) factors in the

unbroken sub-group H confine, W form bi-mesons M = γi1j1N1
γi2j2N2

Wi1i2
Wj1j2

. M would be stable

if the two Sp-arities of the two factors were symmetries of the full theory. However the full

theory respects a unique CSp and M decays in view of WWA1A2 interactions. This theory

predicts no DM candidate (unless one considers small enough coupling g that confinements

happen on super-horizon scales).

10.4 An anti-symmetric that breaks Sp(N) → Sp(N− 2)⊗ Sp(2)

After dropping the scalars ‘eaten’ by massive vectors, the scalar S in the anti-symmetric repre-

sentation can be expanded in block form as

S =
w + s√

4N(N − 2)

(
−21N−2 0

0 (N − 2)12

)
+

(
S̃ 0

0 0

)
(96)

Writing the gauge bosons as

G =

(
A W

WT A′

)
, (97)

the perturbative spectrum is:

• (N − 2)(N − 1)/2 massless vectors A in the adjoint of Sp(N − 2).

• 3 massless vector A′ corresponding in the adjoint of unbroken Sp(2).
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Stable DM candidates in the confined phase

Representation SU(N) even SU(N) odd SO(N) even SO(N) odd Sp(N) even

fundamental εSN εSN εGN/2 εSG(N−1)/2
S
T γS

symmetric ε(GS)N/2, εεSN εεSN εGN/2 — Tr(SG)

anti-symmetric εSN/2, εεSN εεSN εGN/2 — —

adjoint — — see anti-symmetric see symmetric

Table 2: Stable DM candidates in the confined phase. A — denotes no accidental DM candi-

date, either because the action contains S3 cubics (SU and Sp theories) or because di-baryons

are unstable (SO theories).

• 2(N−2) massive vectors Wii
′ that fill a bi-fundamental representation of Sp(N−2)⊗Sp(2)

with squared mass M2
W = Ng2w2/4(N − 2). It satisfies a non trivial reality condition.

• The scalon s with loop-level mass Ms.

• (N− 2)(N− 3)/2− 1 scalars that fill an anti-symmetric representation of Sp(N− 2) with

squared mass M2
S̃

= w2[λS + 6λ′S/N(N − 2)]. The analogous field for the second Sp(2) is

absent.

S̃ decays into AA through loops involving the wS̃WW gauge coupling. The W is stable but

forms unstable M = γij2 γ
i
′
j
′

N−2Wii
′Wjj

′ in the confined phase, as already discussed in section 10.3.

11 Conclusions

We considered Quantum Field Theory models with one gauge group G and one scalar S, ex-

ploring the possible groups and two-index representations. These renormalizable theories often

have accidental symmetries implying one or more stable particles that are possible Dark Matter

candidates. The accidental symmetries can be classified as:

• Global U(1) can arise accidentally when S lies in a complex (or pseudo-real) representation

of G, see section 2.

• Group parities, namely reflections in group space analogous to the usual parity, act on

components of vectors and scalars S, rather than on full multiplets. Theories with G =

SU(N) or SO(N) often accidentally respect a group parity, unlike Sp(N) theories.

• Group charge conjugations, that do not give extra stable states.
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Table 3: Summary of the broken phases. For simplicity we loosely include gauge discrete symmetries among accidental global sym-

metries: P denotes a group parity; C a group charge conjugation. Possibly stable particles and unbroken local U(1) are in green. B

denotes a dark baryon, BB a di-baryon, M a dark meson. Theories with low N can be special.

Unbroken phase Broken phase: perturbative Broken condensed

gauge scalar accidental unbroken accidental massive massive Dark

G rep S global gauge H global H vectors scalars Matter

SU(N)

fundamental U(1) SU(N − 1) U(1) W,Z s B ∼W
N−1

symmetric U(1)
SU(N − 1) U(1) W,Z s, S̃ B ∼W

N−1, S̃ can be co-stable

SO(N) PU,C W a, s, s̃ a + 0-ball if N even

antisymm U(1)

SU(N − 2)⊗ SU(2) U(1) W,Z s, S̃ B ∼W
N−2 if N even; W2(N−2) if odd

Sp(N) C W a, s, s̃ a

Sp(N − 1) C, U(1) W,Z,X s, s̃ Z,M ∼ X
TγN−1X

adjoint –
SU(N1)⊗ SU(N2)⊗U(1) – W

± s, S̃1, S̃2 charged double B, depends on N1,2

SU(N − 1)⊗U(1) – W
± s, S̃ charged B ∼W

N−1

SO(N)

fundamental PO SO(N − 1) PO W s 0(1)-ball for N odd (even)

symmetric
traceless

PO

SO(N − 1) PO W s, S̃ 0(1)-ball for N odd (even)

SO(N/2)⊗ SO(N/2),N/2 even PO1
,PO2

W s, S̃1, S̃2 0-ball

SO(N/2)⊗ SO(N/2),N/2 odd PO1
,PO2

W s, S̃1, S̃2 1-ball bi-baryon

SO((N + 1)/2)⊗ SO((N − 1)/2) PO1
,PO2

W s, S̃1, S̃2 0-ball

antisymm
adjoint PO,Z2

SO(N − 2)⊗U(1),N even PO W
± s, S̃ neutral 0-ball + charged 2-ball or M

±±

SO(N − 2)⊗U(1),N odd PO W
± s, S̃ charged 1-ball B± + possibly M

±±

SU(N/2)⊗U(1),N even – W
±±
ij s, S̃ charged baryon W

N/4 or dibaryon

SU((N − 1)/2)⊗U(1),N odd – W
±±
ij ,X±i s, S̃ charged baryon X

(N−1)/2

Sp(N)

fundamental U(1) Sp(N − 2) U(1) W,X,Z s W and M ∼ X
TγN−2X

symmetric
adjoint Z2

Sp(N − 2)⊗U(1) – W
±±,X±i s, S̃ W

±± and M
±± ∼ X

±TγN−2X
±

SU(N/2)⊗U(1) – W
±
ij s, S̃ charged baryon W

N/4 or dibaryon

antisymm
traceless

CSp

Sp(N1)⊗ Sp(N2) Z2,CSp Wi1i2
s, S̃1, S̃2 DM exists only in special cases

Sp(N − 2)⊗ Sp(2) Z2,CSp W s, S̃ DM exists only in special cases
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Furthermore, extra symmetries (and DM candidates) arise when S acquires vacuum expec-

tation values such that G gets broken to a sub-group that contains a gauge Z2 discrete symmetry

or a gauge U(1).

In the latter case, the theory contains massless (or exponentially light) dark photons γdark,

and some DM candidates are charged under the gauge U(1), so that DM interacts with γdark.

This gives rise to a specific DM phenomenology, summarized in section 3: dark radiation in

addition to dark matter; DM particles elastically scatter with each other and with dark photons;

the possibility of dark monopoles.

Choosing a given G and S, each theory is very predictive, and can have different phases

with different vacuum expectation values 〈S〉 and/or condensates, that can break or preserve

its accidental symmetries. In [1] we considered scalars in fundamental representations of SU,

SO, Sp and G2 groups, so that there is a unique Higgs phase that shows a surprising duality

with the confined phase. We here considered scalars in two-index representations of SU, SO,

Sp groups, so that there are two Higgs phases, and qualitatively new patterns of symmetry

breaking. In principle, there could be multiple confined phases, where different operators

acquire condensates. We found that no duality holds in general, as in some models the possible

breaking patterns of the accidental symmetry differ from the Higgs and the condensed phases

(giving rise to different or no DM candidates). Based on the physics behind a Vafa-Witten

theorem that applies to gauge interactions of fermions, we assumed scalar condensations that

minimally break the symmetries of the theory.19

For each choice of G and S we wrote the most generic renormalizable action and found its

symmetries, as summarized in table 3. We then wrote its RGEs finding that both Higgs phases

can always be realised, not only with a generic renormalizable potential, but also dynamically

in the specific case of Coleman-Weinberg potentials. We computed the spectrum in the Higgs

phase, first at perturbative level and next taking into account condensations of the unbroken

non-abelian sub-groups. Each model often leads to DM candidates with a specific phenomenol-

ogy. Table 3 summarizes our findings in the Higgs phases, and table 2 our findings in the

confined phases.

Various models give composite DM candidates. In some models DM is twice composite, as

the gauge group G gets broken to two non-abelian factors that confine at lower energies. In

most models DM constituents are heavy vectors W that arise when G breaks to H. At the

same time, the scalar S splits into components: we find that they almost never play a role as

DM candidates. In some models DM is made only of the dark gluons of H.

Direct detection rates are often similar to those in [1], with a main exception. The symmetry

breaking patterns that connect SU with SO or with Sp (SU(N) → SO(N) is obtained with S

in the symmetric, and SU(N) → Sp(N) with S in the antisymmetric) feature a spontaneously

19Interesting physics can arise in the opposite case. For example some condensates could break at expo-

nentially small scales the dark U(1) (giving masses to dark photons) or the Lorentz symmetry in the dark

sector.
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broken accidental global U(1), leading to pseudo-Goldstone DM.20

Multiple DM candidates arise in theories with multiple accidental symmetries and/or with

special relations among particle masses that imply extra co-stable states. As a consequence,

the cosmological history that determines the relic DM abundance is often more complicated

than thermal decoupling, involving one or two re-couplings when broken groups confine.
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