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Abstract: We describe the minimal space of polylogarithmic functions that is required to

express the six-particle amplitude in planar N = 4 super-Yang-Mills theory through six and

seven loops, in the NMHV and MHV sectors respectively. This space respects a set of extended

Steinmann relations that restrict the iterated discontinuity structure of the amplitude, as well

as a cosmic Galois coaction principle that constrains the functions and the transcendental

numbers that can appear in the amplitude at special kinematic points. To put the amplitude

into this space, we must divide it by the BDS-like ansatz and by an additional zeta-valued

constant ρ. For this normalization, we conjecture that the extended Steinmann relations and

the coaction principle hold to all orders in the coupling. We describe an iterative algorithm

for constructing the space of hexagon functions that respects both constraints. We highlight

further simplifications that begin to occur in this space of functions at weight eight, and

distill the implications of imposing the coaction principle to all orders. Finally, we explore the

restricted spaces of transcendental functions and constants that appear in special kinematic

configurations, which include polylogarithms involving square, cube, fourth and sixth roots

of unity.
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1 Introduction

Planar N = 4 super-Yang-Mills (SYM) theory [1, 2] has proven to be an increasingly fruitful

laboratory in which to explore the structure of quantum field theory and its intersection

with contemporary mathematics. Part of the beauty of this theory is that it respects both a

conformal [3–5] and a dual conformal symmetry [6–10], the latter of which is associated with

a duality between its amplitudes and light-like polygonal Wilson loops [9, 11–16]. Strictly

speaking, dual conformal symmetry is broken by the infrared divergences of these amplitudes,

but their divergent structure is known to all orders in the form of the BDS ansatz [17].

While the finite and dual-conformal-invariant functions that remain after dividing by the

BDS ansatz are currently only known at specific loop orders and particle multiplicities, they

are increasingly being recognized to exhibit many interesting geometric, algebraic, and motivic

features. In this article, we expound on some of these surprising properties.

The BDS ansatz first receives a nontrivial correction in six-particle kinematics [18–20].

This correction can be expressed as a linear combination of dual superconformal invariants

(encoding the helicity structure of the amplitude), multiplied by transcendental functions

of kinematic invariants (dual conformally invariant cross ratios) that can be expanded in

the coupling. For six particles, both ingredients are well understood [10, 21]. In particular,

the transcendental functions that enter these amplitudes are composed of iterated integrals

over dlog differential forms (or multiple polylogarithms [22–27]) of uniform transcendental

weight 2L at L loops. The branch cut structure of these polylogarithmic functions is made

manifest by considering their iterated total differential, often expressed in the form of the

symbol [28, 29], which exposes the collection of dlogs, or the symbol alphabet, that contribute to

each function. The alphabet of dlog forms relevant to six-particle scattering is (conjecturally)

known [21, 28], and has been observed (along with the alphabets entering higher-multiplicity

scattering amplitudes) to have intriguing connections [30–33] to cluster algebras [34–37].

Given this knowledge of the transcendental functions entering the six-particle amplitude,

it is possible to construct an ansatz for it at any loop order. By imposing symmetries and

physical constraints (such as universal behavior in singular limits) on this ansatz, the hexagon

function bootstrap program has succeeded in identifying the complete amplitude at six points

through six loops, as well as the maximally helicity violating (MHV) amplitude at seven

loops [21, 38–45]. The main computational challenge is constructing the space of functions

in which the ansatz lies; there is an overabundance of physical constraints. Using input from

the cluster algebra structure of the space of kinematics, a heptagon bootstrap has also been

carried out at seven points through four loops [32, 46, 47].

These bootstrap procedures can be carried out at two possible levels: either at the level

of the symbol, thus omitting any information about the contour the dlog forms should be
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integrated over, or at the level of fully integrated functions. In order to capture the entire

functional form of the amplitude, while still retaining many of the simplifications afforded by

the symbol, it is possible to supplement the symbol with integration boundary data using the

full Hopf algebra structure of polylogarithms, which upgrades the symbol to a coaction [48–

52]. That is, by specifying the full coaction of the amplitude, which essentially amounts to

supplementing its symbol with certain boundary values, all information about the amplitude

can be encoded.

Stated more simply, any multi-variate function can be specified by giving all of its first

derivatives and its value at one point. For multiple polylogarithms, the first derivatives are

expressible as a linear combination involving a finite set of polylogarithms of one lower weight.

(The number of terms in the linear combination is equal to the number of letters in the symbol

alphabet.) These functions can in turn be specified by their derivatives and values at the same

point, and so on, until one reaches weight-one functions, i.e. logarithms. However, the full

coaction contains other components, which are not merely (iterated) first derivatives.

The coaction is a specialized realization of a more general number-theoretical structure

that is concerned with motivic periods [50, 53–55]. On very general grounds, motivic periods

are expected to be described by a huge motivic Galois group. When the periods are restricted

to correspond to a particular class of amplitudes, a particular quotient of the motivic Galois

group can appear, called a cosmic Galois group [56–59]. Analogous to the algebraic Galois

group that acts on the roots of polynomials, the cosmic Galois group is conjectured to act on

particular classes of periods or amplitudes, exposing relations among them. Different cosmic

Galois groups can appear for different physical problems. For instance, periods in φ4 the-

ory are pure numbers, the coefficients of the ultraviolet divergences for primitively divergent

graphs. They have long been known to have interesting number-theoretic properties [60].

More recently it was observed [61, 62] that φ4 periods show a certain stability under a cos-

mic Galois group; namely, a certain component of the coaction of higher-loop φ4 periods is

composed entirely of only lower-loop φ4 periods. This so-called coaction principle was proven

for certain graphs [59] by embedding the phenomenon into the larger conjectural framework

of cosmic Galois theory. The coaction principle was further verified in φ4 periods up to 11

loops [62], and has also been observed to hold for the polylogarithmic part of the anomalous

magnetic moment of the electron through four loops [63, 64]. Only certain numbers appear

at lower loops, and the coaction principle makes predictions restricting the possible higher

loop numbers. In string perturbation theory, similar structures have also been observed, con-

necting not different loop orders but rather different orders in the α′ expansion of tree-level

string amplitudes [65].

In this paper, together with a companion paper [45], we provide further evidence for the

existence of a coaction principle in quantum field theory by analyzing the six-point amplitude

in planar N = 4 SYM. To do so, we first characterize the minimal space of Steinmann hexagon

functions needed to express the six-point amplitude through seven loops, as a subspace of the

space G of generalized polylogarithms built from the hexagon symbol alphabet. This space
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can be decomposed in transcendental weight as

G =
∞⊕
n=0

Gn , (1.1)

where Gn denotes the space of weight-n functions built from the hexagon symbol alphabet by

carrying out n iterated integrations. More precisely, we study the spaces of polylogarithms

that appear in the (iterated) derivatives of the amplitude at successive loop orders. As hinted

at above, this is most conveniently carried out using the coaction map

∆(G) = G ⊗ GdR , (1.2)

which sends (motivic) polylogarithms in G into into a tensor space of the original space G
times a new de Rham space GdR. While functions in G can be thought of as a pairing between

a differential form and a cycle (or integration contour), objects in GdR should be thought of

as pairings between differential forms and their associated duals.1 (A familiar example of this

pairing is provided by closed string amplitudes [66].) Concretely, this means that the objects

in GdR carry no information about the original contour of integration. The objects appearing

in the left entry of the tensor product in eq. (1.2) can be seen as the transcendental part of

the total derivative of the object on the left-hand side, in the sense that the derivative dG of

an iterated integral obeys

∆(dG) = (id⊗ d)∆(G) , (1.3)

i.e. it acts only on the last entry of the tensor product.

The coaction is coassociative, and therefore we can again apply the coaction to functions

in the first factor of (1.2). In particular, we can map the amplitude to an object in G ⊗
GdR⊗· · ·⊗GdR in which only logarithms (or rather, their de Rham avatars) appear in all but

the first tensor factor. The L-loop six-point amplitude provides six different transcendental

functions at weight 2L; one is associated with the MHV amplitude and five are associated

with different components of the next-to-MHV (NMHV) amplitude. We would like to study

the space of lower-weight functions that can be generated from these weight-2L functions. In

particular, we consider the functions appearing in the left-most entry of the tensor product

obtained from iterated application of the coaction ∆. Concretely, we can consider the k-fold

iteration of the coaction for GdR always of weight one, which allows us to associate a set

of weight-(2L − k) functions to the original weight-2L functions. Stated more simply, we

construct the span of all the weight-(2L − 1) functions appearing in the derivative of the

amplitude, then compute all of their derivatives and construct the span again, and repeat k

times. We observe that the dimension of the weight-(2L−k) function space generated in this

fashion increases with k until it saturates, usually around k = L.

The space Hhex ⊂ G that we construct in this way obeys a coaction principle, which we

will explain further in section 5, but which is encapsulated by the statement that

∆Hhex ⊂ Hhex ⊗Kπ , (1.4)

1We thank Claude Duhr for illuminating discussions on this topic.
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where Kπ is unimportant for now. The important statement in eq. (1.4) is that the left

part of the coaction on any element of Hhex is always in Hhex, not just in G. Part of this

statement is well known to physicists. At symbol level, when the left part of the coaction

has weight one, eq. (1.4) just says that for a given scattering amplitude, to all loop orders,

the first entry of its symbol can be consistently restricted to a subset of the symbol alphabet,

corresponding to the location of physical branch cuts [67]. Furthermore, because derivatives

commute with taking branch cuts, as reflected in eq. (1.3), the branch cut conditions apply to

all the functions obtained by taking derivatives of the loop amplitudes, i.e. they apply to all

of Hhex. The same statements hold at function level, and this is the essence of the hexagon

function bootstrap as implemented in ref. [39], to restrict G to a subspace having good branch

cuts. The space Hhex, like G, has a decomposition,

Hhex =
∞⊕
n=0

Hhex
n , (1.5)

i.e. a grading by the weight n.

It was later realized that (for amplitudes normalized by the BDS-like ansatz [68, 69])

there was also a consistent restriction on the first two entries [44]. This restriction, known as

the Steinmann relations [70–72], enforces the compatibility of branch cuts in different chan-

nels. Again, because of the commutativity of derivatives and branch cuts, these conditions

automatically apply to all functions in Hhex.

However, even the Steinmann restrictions are insufficient to account for the number of

functions in Hhex. For example, at weight two they would permit a constant, the Riemann

zeta value ζ2 = π2/6, to be a member of Hhex. It has no branch cuts, so it automatically

satisfies all branch-cut restrictions. But when the derivatives of the amplitudes are computed,

ζ2 does not appear as an independent element. Neither does ζ3, whereas ζ4 does. Our goal in

this paper is to identify the minimal space of functions Hhex which can contain the amplitudes

and all their derivatives, and to verify that eq. (1.4) holds as generally as possible, not only

for the full functions, but also for constants that appear when the functions are evaluated at

specific kinematic points.

As was also mentioned in the companion paper [45], eq. (1.4) is not obeyed for the

BDS-like normalized amplitude, but the situation can be remedied simply by dividing the

amplitudes by a kinematical constant, ρ, which depends on the coupling but at each order is

a multiple zeta value. At present, ρ needs to be determined at each loop order, and through

seven loops, only Riemann zeta values appear in it. Because it is a constant, ρ does not affect

the Steinmann relations. The six-point amplitudes, normalized by the product of ρ and the

BDS-like ansatz, and all their derivatives, are what we use to define the space Hhex.

Having thus identified the space Hhex, we can search for any systematic constraints

that it obeys to all orders. One constraint is a generalization of the Steinmann relations.

While the Steinmann relations were originally formulated as constraints on the first two

discontinuities of any amplitude, we observe that they are obeyed to all depths in the symbol

of functions inHhex. That is, instead of just imposing restrictions on the first two entries of the
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symbol, these extended Steinmann relations impose restrictions on all adjacent pairs of symbol

entries. There is a physical argument for why one should also impose the extended Steinmann

relations. Namely, the Steinmann relations should hold on any Riemann sheet. Moving from

one sheet to another involves shifting functions by their discontinuities, and then by their

discontinuities’ discontinuities, and so on for generic Riemann sheets. At the level of the

symbol, these operations correspond to removing successive initial entries of the symbol. Thus

they convert a condition between any pair of adjacent entries into the same one between the

first two entries. The extended Steinmann relations can also be understood in the context of

cluster algebras as the cluster adjacency of the (appropriately normalized) amplitude [73, 74],

which imply the extended Steinmann relations at all particle multiplicity [75].

As mentioned earlier, there are also constraints on the members of Hhex that are tran-

scendental constants, functions that are totally independent of the kinematics. On general

grounds, these constants are expected to be multiple zeta values (MZVs). Through weight

12, there are 47 such MZVs. However, the only ones that we need to include as independent

elements of Hhex are the five that are even powers of π:

ζ4 , ζ6 , ζ8 , ζ10 , ζ12 , . . . . (1.6)

(Recall that ζ2 is not independent.) Further constraints are also found to apply to the span

of the transcendental constants that appear as integration constants in this space. We fix

the integration constants at a special, symmetric point in the space of kinematics in the

bulk of the Euclidean region, called “(1, 1, 1)”, where the three kinematical variables (cross

ratios) become unity. At this point, all the functions in Hhex evaluate to MZVs, but only

particular linear combinations appear. Because only particular combinations appear, there is

a nontrivial coaction principle at this point,

∆Hhex(1, 1, 1) ⊂ Hhex(1, 1, 1)⊗Kπ(1, 1, 1) . (1.7)

If we had not divided by ρ, this principle would not be obeyed, as explained in ref. [45] for the

case of (ζ3)2. Thanks to ρ, we find that it is obeyed. It may be that eq. (1.7) is guaranteed

given eq. (1.4), but in practice we can check eq. (1.7) to much higher weight than we can

verify all the components of eq. (1.4).

Although we have given a “top-down” definition of Hhex, where we compute loop ampli-

tudes and then take their derivatives, there is also a “bottom-up” approach, where we build

the function space iteratively in the weight. We need the bottom-up approach past weight 7,

at which point we do not yet have enough derivatives to span the full space. On the other

hand, we do have enough information about the independent constants and the constants at

(1, 1, 1), to be able to construct the full function space Hhex through weight 11 (weight 12 up

to a small ambiguity).

The constraints (1.6) on the independent constants, in combination with the extended

Steinmann relations, greatly reduce the size of Hhex, relative even to the earlier Steinmann

hexagon space [44]. The smaller size has made it possible to bootstrap the MHV amplitude

through seven loops and the NMHV amplitude through six loops [45].
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We expect the coaction principle to hold in general kinematics. However, it is nontrivial

to compute all components of the coaction for general kinematics. For a weight-n function in

Hhex, the components of the coaction with weight {n− k, 1, . . . , 1}, constructed by taking k

derivatives, give a weight n−k function that is in Hhex by construction. However, the weight

{n− k, k} component of the coaction could contain a constant ζk in the second entry, which

would not be captured by the weight {n − k, 1, . . . , 1} component. In order to investigate

whether the coaction principle holds for {n − k, k} components for generic k, beyond the

point (1, 1, 1), we study further kinematical points. At many of these points, transcenden-

tal constants beyond MZVs appear, such as alternating sums and multiple polylogarithms

evaluated at higher roots of unity. To study the coaction at these points, it is especially

useful to work in terms of an f -alphabet, which makes the coaction structure of these con-

stants manifest [49, 76]. We also explore particular dimension-one limits, i.e. lines through

the three-dimensional space of cross ratios, in which the symbol alphabet simplifies to just

a few letters, and all functions in Hhex can be expressed as simpler polylogarithms, usually

harmonic polylogarithms [25]. In all such limits, we find that the coaction principle holds.

The remainder of this paper is organized as follows: in section 2, we set the stage for our

discussion of the hexagon function space by describing the kinematical setup and defining the

analytical properties of the space. In section 3 we discuss the extended Steinmann relations

and show the restrictions they impose on the space of hexagon functions. Afterwards, in

section 4 we show how the space of hexagon functions can be constructed in practice, including

the determination of the constant boundary terms that are needed to promote the symbol

expression to a full function. Equipped with a concrete realization of the function space,

we can study the implications of the coaction principle and cosmic Galois theory on this

space, which we describe in section 5. In section 6 we focus on our top-down definition of

Hhex, examining when the space of functions that appears in the amplitude saturates for

each weight. Section 7 investigates the implications of the coaction principle on various lines

and points within Hhex. We conclude in section 8. Two appendices contain the values of

the amplitudes at (1, 1, 1) in the f -basis (A) and some empirical longer-range restrictions on

symbol entries (B). An ancillary file ftoMZV.txt provides the conversion from the f -alphabet

to MZVs through weight 14.

2 Analytic Properties of the Six-Particle Amplitude

2.1 Normalization and kinematic dependence

The kinematic dependence of an amplitude in planar N = 4 SYM is strongly constrained

by dual conformal symmetry [6–10, 14, 17, 19, 20]. After normalizing by the BDS ansatz

ABDS
n , which accounts for the infrared divergences of the amplitude and an associated dual-

conformal anomaly, the amplitude becomes finite and its kinematic dependence is restricted to

dual-conformal-invariant cross ratios. Using N = 4 supersymmetry, amplitudes with different

external particles can be combined into a single superamplitude An. The superamplitude can
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be further factorized into an exponentiated remainder function and an expansion Pn in ratio

functions encoding the ratio of the NkMHV superamplitude to the MHV one, as

An = ABDS
n × exp(Rn)× Pn . (2.1)

The remainder function thus contains all nontrivial information about the MHV amplitude,

and it is a bosonic, pure transcendental function of dual-conformally-invariant cross ratios.

Restricting from now on to multiplicity n = 6, which will be the focus of this article, only

three such cross ratios can be formed, and they can be chosen to be

u =
s12s45

s123s345
, v =

s23s56

s234s123
, w =

s34s61

s345s234
, (2.2)

where si...j ≡ (pi + · · · + pj)
2 are Mandelstam invariants. Beyond MHV, the only other

inequivalent helicity configuration is NMHV, for which the ratio function reads

PNMHV =
1

2

[
[(1) + (4)]V (u, v, w) + [(2) + (5)]V (v, w, u) + [(3) + (6)]V (w, u, v)

+ [(1)− (4)]Ṽ (u, v, w)− [(2)− (5)]Ṽ (v, w, u) + [(3)− (6)]Ṽ (w, u, v)
]
. (2.3)

In the latter equation, V and Ṽ are pure functions similar to R6. They are accompanied by

dual superconformal R-invariants denoted by (f) [77, 78], which contain Grassmann variables

and rational dependence on the kinematical variables. The precise form of the R-invariants

will not be important for our purposes, but it may be found for example in ref. [79] or our

companion paper [45].

As we have reviewed so far, the computation of the six-particle amplitude of any helicity

in N = 4 SYM boils down to the determination of the functions R6, V and Ṽ , given the

known form of the R-invariants (f) and the BDS ansatz ABDS
6 . It is important to bear in

mind, however, that the factorization (2.1) is not unique. Apart from the infrared-divergent

part, there is still freedom in choosing the finite piece that enters in the first, normalization

factor. A main thesis of this article is that it is meaningful to tune the definition of this

normalization factor, such that the remaining finite, normalized amplitude becomes simpler

to compute, and manifests certain important physical and mathematical properties.

This strategy has already proven fruitful once in the past when considering the causal

properties of amplitudes. The Steinmann relations [70–72] govern the consistency of multiple

discontinuities in overlapping channels, in particular those involving different three-particle

invariants. The BDS ansatz violates these conditions [18], and therefore so does the amplitude

normalized by the BDS ansatz. However, the unique, dual conformal finite piece of ABDS
6

that depends on three-particle invariants can be removed from the BDS ansatz, yielding the

so-called BDS-like ansatz [68, 69]. When the amplitude is normalized by this latter ansatz,

it obeys the Steinmann relations [44] (see also ref. [46]) which greatly reduces the size of the

space of functions to which it belongs and thus facilitates its determination, as we will review

in subsection 2.4. The part of the BDS ansatz that must be removed is

exp

[
1

4
ΓcuspE(1)

]
, (2.4)
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where

E(1)(u, v, w) = Li2

(
1− 1

u

)
+ Li2

(
1− 1

v

)
+ Li2

(
1− 1

w

)
, (2.5)

and Γcusp is the cusp anomalous dimension for planar N = 4 SYM [80]. The kinematic

dependence of the factor (2.4) is fixed by the requirement that the Steinmann relations are

preserved. However, it could still be multiplied by a constant.

Indeed, we will see that it is advantageous to further redefine our normalization by a

coupling-dependent constant ρ, such that the amplitude and its iterated derivatives respect

a coaction principle. We denote the new normalization as “cosmic” to indicate invariance of

the associated function space under a cosmic Galois group [56–59]. All in all, the cosmically

normalized functions E , specifying the MHV amplitude, as well as E and Ẽ, associated with

the NMHV one, will be related to their BDS-normalized analogs by

E =
A6

ρABDS−like
6

=
1

ρ
exp

[
1

4
ΓcuspE(1) +R6

]
, E = E × V, Ẽ = E × Ṽ . (2.6)

We will quote the value of ρ through seven loops in section 5, see in particular eq. (5.9), after

describing the coaction principle giving rise to it. In practice we determine ρ order by order

in perturbation theory, in parallel with the amplitude; it forms part of the ansatz we use in

order to identify the amplitude from within our minimal space of polylogarithmic functions

Hhex, with the procedure detailed in our companion paper [45].

In the remainder of this section, we will discuss the class of functions the cosmically

normalized amplitude (coefficients) E , E and Ẽ belong to, and their analytic properties.2

2.2 Multiple polylogarithms, coproducts and symbols

For the n-particle amplitude in planar N = 4 SYM, the transcendental functions entering the

remainder function and the NMHV ratio function (and hence also E , E and Ẽ), are expected

to be multiple polylogarithms (MPL) of weight 2L at any loop order L [81]. A function F is

defined to be an MPL of weight n if its total differential obeys

dF =
∑
φβ∈Φ

F φβd lnφβ , (2.7)

such that F φα is an MPL of weight n− 1, satisfying

dF φβ =
∑
φα∈Φ

F φα,φβd lnφα , (2.8)

and so on, with the recursive definition terminating with the usual logarithms on the left-

hand side at weight one, and rational numbers as coefficients of the total differentials on the

right-hand side corresponding to weight zero. The set Φ of arguments of the dlogs is called the

2To avoid confusion, note that in ref. [44] the same notation was used for the BDS-like normalized amplitude

coefficients, which are obtained from (2.6) after replacing ρ → 1. At the level of the symbol (defined in the

next subsection), the two normalizations are identical, because the symbol of ρ is equal to unity.
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symbol alphabet. It encodes the positions of the possible branch-points of the transcendental

functions. This iterative structure forms part of the Hopf algebra of MPLs. In particular the

coaction operation ∆ (sometimes loosely referred to as a coproduct), maps an MPL of weight

n to linear combinations of pairs of MPLs with weight {n− k, k} for k = 0, 1, . . . n.

The {n−1, 1} component of ∆ is essentially equivalent to the total differential (2.7), and

can be realized straightforwardly as

∆n−1,1F =
∑
φβ∈Φ

F φβ ⊗
[

lnφβ mod (iπ)
]
. (2.9)

Recall that in the general definition of the coaction, cf. eq. (1.2), the second factor is an element

of GdR and thus agnostic of the contour of integration of the original polylogarithm. This

means in particular, that the second entry of the coaction needs to be invariant under analytic

continuation, or shifts of the integration contour around poles. For multiple polylogarithms,

all monodromies around poles are proportional to (iπ). Thus the required invariance can be

realized by modding the second entry of the coaction by (iπ). In the following we will tacitly

assume that the second entry of the coaction is modulo monodromies, and we will suppress

the explicit notation.

The coaction may be repeatedly applied to either the first or the second factor of the

pair, yielding a further decomposition. As a result of the coassociativity of the coaction

there is a unique decomposition of an MPL of weight n into subspaces of MPLs with weight

{k1, . . . , km}, such that
∑m

i=1 ki = n. Denoting the projection of the coaction on each of these

subspaces by ∆k1,...,km , the previous equations (2.7)–(2.8) may be rewritten as3

∆n−1,1F =
∑
φβ∈Φ

F φβ ⊗ lnφβ , (2.10)

∆n−2,1,1F =
∑

φα,φβ∈Φ

F φα,φβ ⊗ lnφα ⊗ lnφβ . (2.11)

We will colloquially refer to the leftmost factors F φβ , F φα,φβ as the single and double co-

products of the function F . Note that the relations (2.10)–(2.11) also hold when the leftmost

factors are weight zero, i.e. rational numbers. Furthermore, maximally iterating the procedure

we just described defines the symbol,

S[F ] = ∆1, . . . , 1︸ ︷︷ ︸
n times

F =
∑

φα1 ,...,φαn

F φα1 ,...,φαn [lnφα1 ⊗ · · · ⊗ lnφαn ] , (2.12)

where one typically also simplifies the notation by replacing ln φαi → φαi for compactness.

The symbol letters φα are algebraic functions of the variables that F depends on. Partic-

ularly for the six-particle amplitude, there exist three independent variables, which may be

chosen to be the cross ratios (2.2), whereas the set of symbol letters or alphabet is

Φ→ S = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} , (2.13)

3In section 5 we will provide the general form of the coaction on MPLs, and provide more information on

the relatively minor distinction between the latter and the coproduct.
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with

yu =
u− z+

u− z−
, yv =

v − z+

v − z−
, yw =

w − z+

w − z−
, (2.14)

z± =
1

2

[
−1 + u+ v + w ±

√
∆
]
, ∆ = (1− u− v − w)2 − 4uvw . (2.15)

Parity acts as an inversion yi → 1/yi on the variables yi ∈ {yu, yv, yw}, or equivalently it sends√
∆→ −

√
∆, while leaving the cross ratios u, v, and w invariant. Consequently, each point

in (u, v, w) space corresponds to two points in (yu, yv, yw) space, with parity-even functions

taking the same value at both points, and parity-odd functions changing sign when going from

one point to the other. In other words, while even functions are well-defined in cross-ratio

space, odd functions are only defined up to a common overall sign.4

Given a symbol alphabet, any set with the same size, consisting of multiplicatively inde-

pendent combinations of its letters, is also equivalent: it simply amounts to a linear change

of basis in the equations (2.10)–(2.12). Taking advantage of this freedom, apart from S we

will also define and make use of the following equivalent alphabet,

Φ→ S ′ = {a, b, c,mu,mv,mw, yu, yv, yw} , (2.16)

where

a =
u

vw
, b =

v

uw
, c =

w

uv
, (2.17)

mu =
1− u
u

, mv =
1− v
v

, mw =
1− w
w

. (2.18)

As we will see later in this section, S ′ has the virtue of exposing important analytic properties

of the (properly normalized) amplitude in the most transparent fashion.

Before closing this subsection, let us also record the form of the new letters in terms of

the y-variables,

a =
yu(1− yvyw)2

(1− yu)2yvyw
, b =

yv(1− yuyw)2

yu(1− yv)2yw
, c =

yw(1− yuyv)2

yuyv(1− yw)2
, (2.19)

mu =
(1− yu)(1− yuyvyw)

yu(1− yv)(1− yw)
, mv =

(1− yv)(1− yuyvyw)

yv(1− yw)(1− yu)
, mw =

(1− yw)(1− yuyvyw)

yw(1− yu)(1− yv)
,

which illustrates explicitly how using (yu, yv, yw) as independent variables rationalizes the

alphabet.

4For this reason, it may some times be more convenient to use another set of three independent variables,

in which all letters become rational, such as the ‘y’ variables, or cluster X -coordinates [30, 82].
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2.3 Integrability conditions

In the previous subsection we specified the alphabet of a particular class of MPLs. However,

not every word we can form from this alphabet corresponds to a function. We need to

integrate a word of differential forms, drawn from our alphabet, along an integration contour

(see eqn. (5.1)). In general, the value of the integral will depend on the contour. Only certain

words can be lifted to functions that are independent of the details of the contour but only

depend on the endpoints (and the homotopy class of the contour). The conditions for such

homotopy invariant words are that the double derivatives of F with respect to two different

independent variables should commute, d2F = 0, or more explicitly

∂2F

∂ui∂uj
=

∂2F

∂uj∂ui
, i 6= j, (2.20)

where u1 = u, u2 = v, u3 = w. This condition, when computed using eqs. (2.7) and (2.8),

induces linear relations between the double coproducts F φα,φβ , known as the {n − 2, 1, 1}
integrability conditions.

In particular, for the hexagon functions relevant for the six-particle amplitude in planar

N = 4 SYM, the kinematic dependence of the nine-letter alphabet yields 26 linear equations

between the 81 double coproducts. Integrability conditions only involve the antisymmetric

combinations of double coproducts, which we denote by

F [x,y] ≡ F x,y − F y,x . (2.21)

The hexagon function integrability conditions can be conveniently expressed in the alphabet

S ′, defined in eq. (2.16), as

F [a,b] = 0 , (2.22)

F [a,mu] = 0 , (2.23)

F [a,yu] = 0 , (2.24)

F [a,yv ] − F [a,yw] = 0 , (2.25)

F [mu,yv ] − F [mu,yw] = 0 , (2.26)

plus their two a→ b→ c cyclic permutations,

F [mu,mv ] + F [mu,mw] = 0 , (2.27)

F [mw,a] + F [b,mw] + F [mu,mw] + F [yu,yv ] = 0 , (2.28)
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plus a single a→ b→ c cyclic permutation, and finally

F [b,yu] + F [c,yu] + F [mu,yu] = 0 , (2.29)

F [a,yv ] + F [c,yu] + F [mv ,yv ] = 0 , (2.30)

F [a,yv ] + F [b,yu] + F [mw,yw] = 0 , (2.31)

F [b,yu] − F [c,yu] − F [mv ,yu] + F [mw,yu] = 0 , (2.32)

F [a,yv ] − F [c,yu] − F [mu,yv ] + F [mw,yu] = 0 , (2.33)

F [mv ,a] + F [c,mv ] + F [mu,mv ] + F [yu,yw] = 0 , (2.34)

F [mu,mv ] − F [yu,yv ] + F [yu,yw] − F [yv ,yw] = 0 . (2.35)

For example, starting with the nine logarithms at weight one, eq. (2.16), we can form an

81-dimensional ansatz for the symbol of weight two functions, cf. eq. (2.11). Solving the

twenty-six integrability equations, we find a 55-dimensional basis for the most general space

of weight-two MPLs built from the hexagon alphabet. The integrability equations can be

solved iteratively for all adjacent pairs of entries, and the resulting space of MPLs is denoted

by G.

2.4 Physical singularities and the Steinmann relations

While the six-particle amplitude certainly lies within G, it turns out that it occupies a much

smaller subspace thereof, due to additional analytic properties. The most elementary such

property is a consequence of locality, known as the first-entry condition. It states that in

order for color-ordered planar amplitudes (of any multiplicity) in massless gauge theories to

have physical singularities, the first entry of their symbol must necessarily be a Mandelstam

invariant made of consecutive external momenta [67]. If we additionally have dual conformal

invariance, as is the case with N = 4 SYM, this condition in particular picks out the cross

ratios (2.2), or equivalently the letters a, b, c of the alphabet (2.16). With this restriction, it

is evident that the subspace of MPLs in which the amplitude and its derivatives/coproducts

live will just contain the three logarithms formed by these letters at weight one:

Hhex
1 = {ln a, ln b, ln c} ≡ {ln ai} . (2.36)

At weight two, the first-entry and integrability conditions allow only 9 of the 55 most general

MPLs with this alphabet at weight two, plus the constant ζ2,{
Li2

(
1− 1

ui

)
, ln2 ai, ln ai ln ai+1, ζ2

}
, i = 1, 2, 3, (2.37)

for a total of 10 weight two functions.

The next analytic constraints we will exploit are the Steinmann relations [70–72], which

demand that the double discontinuities of any amplitude vanish when taken in overlapping
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channels. Focusing in particular on three-particle Mandelstam invariants, for the six-particle

amplitude the Steinmann relations forbid the following overlapping discontinuities,

Discs234 (Discs345 (A6)) = Discs345 (Discs123 (A6)) = Discs234 (Discs123 (A6)) = 0 . (2.38)

As already remarked in subsection 2.1, these conditions carry over to the BDS-like or cosmi-

cally normalized amplitude defined in this paper, since in both cases the infrared-divergent

normalization factor by which we divide A6 has no dependence on three-particle invariants,

and thus commutes with the discontinuities in (2.38). In contrast, ABDS
6 does depend on

three-particle invariants, therefore the BDS-normalized amplitudes (and also the functions

R6, V and Ṽ ) will generically have nonvanishing double discontinuities that only cancel out

in the product (2.1).

At this point we can justify our choice of alternative alphabet S ′ in eq. (2.16): each of the

letters {a, b, c} depends on only a single three-particle Mandelstam invariant. For example, a

contains only s234 (and a number of two-particle invariants). Therefore, eq. (2.38) translates

directly into the following simple conditions on the functions F ≡ E , E, Ẽ, defined in (2.6),

and as remarked earlier on all their derivatives:

Disca (Discb (F )) = Discb (Discc (F )) = Disca (Discc (F )) = 0 . (2.39)

At the level of the symbol, taking a discontinuity around a given letter is particularly simple:

if the first entry of a term in the symbol is the letter under consideration we clip it off and

retain the remaining tail (or de Rham part) of the symbol, otherwise we discard the term.

This means that we can recast the Steinmann relation in eq. (2.39) in the coproduct notation

of eq. (2.11) as

F a,b = 0 , if F is a function of weight two , (2.40)

plus two more cyclic permutations. We have not included the equations where the order of

letters is reversed, as it can be easily checked that eqs. (2.22) and (2.40) (as well as their cyclic

permutations) automatically imply them. Imposing eq. (2.40) in the most general space of

MPLs with the alphabet (2.16) takes us to a 52-dimensional subspace.

Finally, combining the last formula with the first-entry condition and integrability (plus

certain beyond-the-symbol physical branch cut conditions we will review in subsection 4.3),

defines what have been previously coined as the Steinmann Hexagon Functions [44]. The

weight-one part of this space is still given by eq. (2.36), but the weight-two part is trimmed

from the 10 functions in eq. (2.37) down to seven:{
Li2

(
1− 1

ui

)
, ln2 ai, ζ2

}
, i = 1, 2, 3. (2.41)

The reduction in the size of the space, compared with not imposing the Steinmann relation

(2.40), is even more drastic at higher weight. Perhaps more importantly, it is possible to

generalize this condition, with far-reaching consequences that we will now move on to discuss.

– 14 –



3 The Extended Steinmann Relations

While the first-entry condition and Steinmann relations restrict which letters can appear in

the two leftmost symbol entries of the six-point amplitude, there are additional restrictions

on the symbol entries appearing at all further depths in the symbol. These restrictions

arise when we construct the higher-weight spaces iteratively in the weight (see section 4), by

imposing the first two entry conditions and integrability. Out of the 55 integrable weight-two

symbols, only 43 linear combinations of adjacent symbol entries actually appear in the space

of Steinmann hexagon functions.5 In other words, the branch-cut condition, integrability

condition and Steinmann relations jointly imply an additional 12 equations between double

coproducts, on top of (2.22)–(2.35) and (2.40), which prohibit an equal number of integrable

pairs of adjacent letters from appearing at any depth in the symbol. These equations may be

written as

F a,mu = 0, F a,yv = F a,yw ,

Fmu,yv + F yv ,mw = Fmu,yu + F yw,mw , (3.1)

Fmv ,mu + F yu,yv + F yw,yw = F yu,yw + F yw,yv ,

plus cyclic permutations.

This simplification is only part of the story. The space of adjacent symbol entries ap-

pearing in the six-point BDS-like normalized amplitude itself is yet smaller. To observe this,

we consider (at symbol level) the L-loop amplitudes, and all components of the coaction

∆ on them which take the form ∆w1,1,1,w2 , for any nonnegative integers w1, w2 satisfying

w1 +w2 = 2L− 2. The linear combination of adjacent symbol letters in the weight-one slots,

appearing between each independent pair of functions f, g in the w1, w2 slots, respectively,

represents an independent weight-two symbol. (See eq. (3.4) and the text below it for more

details.) We determine the span of all weight-two symbols in these amplitudes at a given

loop order by simultaneously considering all allowed values of w1 and w2.

Carrying out this analysis on all previously available results up to five loops [44], it is

found that only 40 linear combinations of adjacent symbol entries actually appear in the

amplitude [84]. The three additional pairs of adjacent symbol entries that are present in the

Steinmann hexagon space we have presented so far, but are absent in the amplitude, are6

((((((((
. . .⊗ a⊗ b⊗ . . . , ((((((((

. . .⊗ b⊗ c⊗ . . . , ((((((((
. . .⊗ c⊗ a⊗ . . . . (3.2)

In other words, the amplitudes reside in a space smaller than previously thought, with the

double coproduct (2.11) of every function F within this space obeying the extra condition

F a,b = 0 , (3.3)

5Here we consider pairs of adjacent symbol entries in the middle of the symbol, i.e. not the first two entries,

which are further restricted by the first entry condition, nor the last two entries, which for the amplitude are

constrained by dual superconformal symmetry [83].
6These results were initially reported at Amplitudes 2017, in a talk by one of the authors [85].
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

First entry 1 3 9 26 75 218 643 1929 5897 ? ? ? ? ?

Steinmann 1 3 6 13 29 63 134 277 562 1117 2192 4263 8240 ?

Ext. Stein. 1 3 6 13 26 51 98 184 340 613 1085 1887 3224 5431

Table 1. The dimensions of the hexagon, Steinmann hexagon, and extended Steinmann hexagon

spaces at symbol level.

plus cyclic permutations. Comparison with eq. (2.40) reveals that this condition is precisely

the application of the Steinmann relations to all depths in the symbol, and we thus refer to

eq. (3.3) as the extended Steinmann relations.

The extended Steinmann relations form an integral part of the refined hexagon function

space Hhex that we will define in the upcoming sections, but as we can see already at the level

of the symbol in Table 1, at weight 10 and above it leads to a more than 50% reduction in

the size of the space in which the six-particle amplitude needs to be identified. The extended

Steinmann dimensions at symbol level agree with ref. [86]. As mentioned in the introduction,

the extended Steinmann relations appear to follow from the physical requirement that the

ordinary Steinmann relations hold not only in the Euclidean region, but also on any Riemann

sheet.

To express this allowed 40-dimensional space of adjacent symbol entries [84], we adopt

the notation

fi ⊗ lnx⊗ ln y ⊗ gj ⇒ [x, y] , (3.4)

so that a sum of [x, y] denotes symbols of the form

fi ⊗ lnx⊗ ln y ⊗ gj + fi ⊗ ln z ⊗ lnw ⊗ gj ⇒ [x, y] + [z, w] . (3.5)

We emphasize that weight-two symbols should only be isolated in this way when each term

appears between the same functions fi and gj , which should themselves be linearly indepen-

dent from the other functions appearing in the first and last coproduct entries. Also note

that the bracket notation here, unlike in eq. (2.21), does not imply any commutator or an-

tisymmetrization. To denote cyclic classes, we write ai ∈ {a, b, c}, mi ∈ {mu,mv,mw}, and

yi ∈ {yu, yv, yw}, where i 6= j 6= k. In this notation, the 16 allowed odd pairs are

[ai, yi] + [yi, ai],

[ai, yjyk] + [yjyk, ai],

[mj/mk, yi] + [yi,mj/mk], (3.6)

[mi, yuyvyw] + [yuyvyw,mi],

[aimi, yjyk]− [mj , yj ]− [mk, yk]− [yjyk, aimi] + [yj ,mj ] + [yk,mk],

[mu, yvyw] + [mv, yuyw] + [mw, yuyv]− [yvyw,mu]− [yuyw,mv]− [yuyv,mw],
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while the 24 allowed even pairs are

[ai, ai],

[mi,mi],

[ai,mj ] + [mj , ai], [aiaj ,mk],

[mj ,mk] + [mk,mj ]− [yi, yi], (3.7)

[ai,mjmk] + [yi, yuyvyw],

[yu, y
2
uyvyw] + [y2

uyvyw, yu], [yv, yuy
2
vyw] + [yuy

2
vyw, yv],

[a,mv] + [mu,mv]− [mw, b] + [mw,mu]− [mw,mv] + [yv, yw].

The adjacent symbol entries of the double pentaladder integrals (which contribute to the

six-point amplitude at all loop orders) are also contained within this space [84].

Let us reiterate that the 15 constraints embodied by eqs. (3.6) and (3.7), which reduce

the allowed adjacent pairs from 55 to 40, are empirically consequences of just the three

constraints (3.3) together with the first-entry condition. While we have not been able to

prove this connection analytically, we have verified that it holds at least to weight 13 at

symbol level, and weight 11 at function level.

It is interesting that the combination of first-entry, integrability and Steinmann conditions

have a “nonlocal” effect anywhere in the symbol, which may be equivalently recast in terms

of the local equations (3.1), as we observed at the beginning of this subsection. Such a local

restriction can alternatively be accomplished using cluster adjacency [47, 73], which is often

phrased in terms of non-dual-conformally-invariant four brackets. While we do not need

to impose the equations (3.1) when constructing our minimal space Hhex recursively in the

weight, as they follow for free (empirically) given eq. (3.3), we do have to impose them when

relaxing the first entry condition, in order to study the full space of symbols that is expected

to appear in any middle w entries of the BDS-like or cosmically normalized amplitudes at

arbitrary loop order.

Explicitly constructing this space, we find that its dimension is {9, 40, 140, 432, 1233, 3340}
at weights w = 1, 2, 3, 4, 5, 6. These dimensions coincide with an analysis of the cluster-

adjacency condition [73, 86]. For comparison, {9, 55, 285, 1351} analogous non-Steinmann

satisfying symbols were reported for w = 1, 2, 3, 4 in eq. (3.2) of ref. [87]. The five-loop ampli-

tudes saturate the 140-dimensional weight-three space but not the 432-dimensional weight-

four space. The six-loop amplitudes saturate this latter space, but not the 1233-dimensional

weight-five space.

Notice that eqs. (3.1) and (3.3) only allow the symbol letters a, b, and c to appear adjacent

to the letters

Sa = {a,mv,mw, yu, yvyw},
Sb = {b,mw,mu, yv, ywyu}, (3.8)

Sc = {c,mu,mv, yw, yuyv}.

– 17 –



It would be nice to develop a physical intuition for what the restrictions such as eq. (3.8)

are enforcing. To do so, we search for analogous restrictions on pairs of letters that are not

adjacent but at larger separation in the symbol. We consider first next-to-adjacent symbol

entries. While all nine hexagon letters (2.16) can be next-to-adjacent to all other hexagon let-

ters, a different type of restriction still occurs. In particular, only special linear combinations

of letters appear between letters that are not allowed to be adjacent by the constraint (3.8).

Consider for instance the 140-dimensional space of weight-three symbols obeying the

constraints (3.1) and (3.3) but not the first-entry condition. Any symbol letter that appears

between a and b must reside in both Sa and Sb. There are only two possible letters, mw and

yuyvyw. However, the term a⊗yuyvyw⊗b never appears in any integrable symbol, leaving just

a single term of this form, a⊗mw⊗b. Intriguingly, there also exists a clear physical difference

between these two terms. Consider the kinematic limit where both discontinuities in a ∼ s234

and b ∼ s345 are simultaneously accessible. As these variables go to zero, w = 1/
√
ab → ∞

and so mw = (1−w)/w approaches a constant, and the symbol a⊗mw ⊗ b vanishes. On the

other hand, yuyvyw → w/(uv)→∞ as w →∞ with u, v fixed, so the symbol a⊗ yuyvyw ⊗ b
remains nonzero in the region probed by the Steinmann relations for the overlapping channels

s234 and s345. (See also the discussion in appendix B.) Perhaps the vanishing of a⊗mw ⊗ b
in this region is suppressing a subleading overlapping branch-cut singularity, thus explaining

why this combination can appear, and not a⊗ yuyvyw ⊗ b. In fact, this interpretation can be

extended to higher depths in the symbol, and to sequences of iterated discontinuities between

any pair of symbol letters that are restricted by eq. (3.8), as we show in appendix B.

While not the focus of this article, for the amplitude with n = 7 particles the usual Stein-

mann relations [46] may also be extended to apply anywhere in the symbol. Intriguingly, for

both n = 6, 7 it has been found that the space of integrable symbols with physical branch cuts

respecting them is also uniquely picked out by the principle of “cluster adjacency” [73, 74].

This principle states that symbol letters can only appear next to each other when they also

appear together in a cluster of Gr(4,n). (See refs. [81] and [30] for more background on how

cluster algebras appear in the integrand and kinematic space of planar N = 4 SYM am-

plitudes, respectively.) This condition has also helped in determining the four-loop NMHV

seven-particle amplitude [47]. Like the extended Steinmann relations, cluster adjacency gives

rise to a set of constraints that are expected to be obeyed by all BDS-like normalized ampli-

tudes. (Cluster algebras also encode information about which symbol letters are allowed to

appear in the amplitude at larger separations [74].) While no BDS-like ansatz can be formed

when n is a multiple of four [88, 89], generalized BDS normalizations can be formed that make

the Steinmann relations manifest for any number of particles [90], in which cluster adjacency

can also be shown to hold [75]. As shown in the latter reference, cluster adjacency implies

the extended Steinmann relations at all n, however it is not yet known whether these two

conditions are equivalent in integrable symbols that have physical branch cuts more generally.
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4 Constructing Hhex

In this section, we describe our general procedure for building the function space Hhex rel-

evant for six-particle scattering in N = 4 SYM up to weight 12 (as well as to weight 13

at symbol level, and to weight 14 for MHV final entries). We incorporate in particular the

extended Steinmann relations, the evidence for which we described in the previous section.

At function level, we have to maintain the proper branch cuts and Steinmann relations, and

these conditions fix certain zeta values [39, 44]. Here we impose another restriction on Hhex:

we only include constant functions (MZVs) as independent elements of the function space

when we are forced to. We will find that very few such independent constants are required.

Another surprising aspect is that certain symbols that pass all symbol-level conditions cannot

be completed to functions passing all the zeta-valued conditions, starting at weight eight. We

will defer the latter details until section 6.1, after discussing the coaction principle.

The function space Hhex was an essential ingredient in the determination of the six-

loop NMHV and seven-loop MHV six-particle amplitudes in a companion paper [45]. It also

provides an important testing ground for elucidating the precise form of a coaction principle

on this space, to be discussed in the next section.

In addition to imposing the extended Steinmann relations and zeta-valued restrictions

just mentioned, there are two new technical aspects of our approach to constructing Hhex.

First, instead of the original symbol alphabet (2.13), we use the multiplicatively equivalent

alphabet (2.16), which maximally simplifies the (extended) Steinmann relations, as well as

the MHV final-entry condition. (In these respects, it is similar to the choice of alphabet

for the seven-particle amplitude bootstrap [32].) Second, we adopt the method described in

refs. [39, 46], also building on the latter reference, for representing and constructing integrable

symbols, and functions, in terms of sparse tensors with purely numeric, integer entries. These

new aspects drastically reduce the complexity of the linear systems one has to solve in the

process of building the function space, thus allowing one to push the latter to higher weights.

4.1 Representing coproducts efficiently

As we saw in sections 2 and 3, the simplest space containing the six-particle amplitude consists

of MPLs with alphabet (2.16) whose first symbol entry contains the letters (2.17) and whose

81 double coproducts (2.11) obey the 26+3 integrability relations (2.22)–(2.35) plus extended

Steinmann relations (3.3). More generally, once we have specified our set of symbol letters

Φ with size |Φ|, then any set of l linearly independent equations on the double coproducts of

the functions we wish to construct is fully encoded in a l × |Φ| × |Φ| tensor D,

|Φ|∑
α,β=1

Dmαβ F
φα,φβ = 0 , m = 1, 2, . . . , l . (4.1)

In a similar vein, if we have a basis

F
(n)
in

, in = 1, 2, . . . , dn , (4.2)
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of multiple polylogarithms obeying any given set of constraints of the form (4.1) at weight

n, then the {n − 1, 1} coproduct component of each basis element may be represented as a

dn × dn−1 × |Φ| tensor T ,

∆n−1,1F
(n)
in

=
∑
in−1,α

Tαin,in−1
F

(n−1)
in−1

⊗ lnφα , (4.3)

once we have also specified the corresponding basis F
(n−1)
in−1

at one weight fewer, in addition to

the alphabet Φ. This representation of the relevant function space in terms of matrices and

tensors is extremely efficient [46], owing to the fact that the entries of T are simply rational

numbers, and T is usually very sparse.

We may generalize the above representation to any {n− k, 1, . . . , 1} coproduct,

∆n−k,1, . . . , 1︸ ︷︷ ︸
k times

F
(n)
in

=
∑

in−k,α1,...,αk

Tα1,...,αk
in,in−k

F
(n−k)
in−k

⊗ lnφα1 ⊗ · · · ⊗ lnφαk , (4.4)

with

Tα1,...,αk
in,in−k

=
∑

in−1,...,in−k+1

Tαkin,in−1
T
αk−1

in−1,in−2
· · ·Tα1

in−k+1,in−k
, (4.5)

which is also valid for k = 1 provided no summation is implied in that case. Finally, we may

extend this notation to the case where k = n, for which there exists a single index i0 = 1.

So for example at weight one, with k = n = 1, then Tαi1,1 essentially becomes a matrix rather

than a tensor, and without loss of generality we can also set set F
(0)
1 = 1 for the basis element

multiplying it, since the latter is now just a rational number. For example in the ordered

alphabet (2.16), we choose the weight-one extended Steinmann hexagon functions (2.36), and

thus their corresponding matrix representation, as

F
(1)
1 = ln a , F

(1)
2 = ln b , F

(1)
3 = ln c ⇔ Tαi1,1 =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 , (4.6)

with rows labeled by i1 and columns by α.

4.2 Constructing integrable symbols via tensors

Let us now describe how we iteratively construct the space of symbols of a given alphabet,

subject to the integrability conditions as well as any other linear constraints on their double

coproducts such as the extended Steinmann relations. Suppose we already have a basis of

such symbols F
(n)
in

at weight n. Then, the {n, 1} coproduct of any function F of the same

alphabet at weight n+ 1 lies in the tensor product space with elements

F
(n)
in
⊗ lnφβ , ∀ in, β . (4.7)
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We can thus form an ansatz,

∆n,1F =
∑

j,γ,in,β

cjγL
γβ
jin
F

(n)
in
⊗ lnφβ , (4.8)

where the ‘c’s are yet-to-be determined coefficients, and L is a known tensor, which in the

most generic case can be chosen as

Lγβjin = δjinδ
γβ , (4.9)

corresponding to the largest possible ansatz with dn × |Φ| variables, namely the case where

we attach an independent unknown coefficient to each element of the tensor product space

(4.7).

In order to reduce the initial size of our ansatz, we may however make more restricted

choices exploiting any additional property or symmetry of the function space. For example,

if we wish to restrict ourselves to the weight-(n+ 1) hexagon function space with MHV final

entries (Ea = Eb = Ec = 0), we may choose

Lγβjin = δjinL
γβ
MHV , LγβMHV =



0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


. (4.10)

Similarly, we can choose the tensor L so as to construct and solve ansätze for the parity-

even and -odd functions separately. Indeed, we have found it advantageous to construct our

extended Steinmann hexagon symbol space in this manner, as it leads to smaller and simpler

systems of equations.

Once we have built an ansatz of the form (4.8) at weight n+1, the next step is to enforce

the appropriate conditions (4.1) on its {n − 1, 1, 1} coproduct components. By virtue of

eqs. (4.3) and (4.8) we may show, analogously to eqs. (4.4)–(4.5), that the double coproduct

of our ansatz for the function F will be

F φα,φβ =
∑

j,γ,in,in−1

cjγL
γβ
jin
Tαin,in−1

F
(n−1)
in−1

. (4.11)

Given that F
(n−1)
in−1

is a basis of independent functions, the equations (4.1) will have to hold

separately for each of their coefficients in the above equation. In this manner, we arrive at

the following system of linear equations for the unknowns cjγ ,∑
j,γ

M(min−1)(jγ)c(jγ) = 0 , (4.12)
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where (min−1) = (11), . . . , (1dn−1), (21), . . . , (2dn−1), . . . , (ldn−1) denotes a combined index,

similarly for (jγ), and finally the elements of the matrix M are given by

M(min−1)(jγ) ≡
∑
α,β,in

DmαβT
α
in,in−1

Lγβjin . (4.13)

In summary, starting from a basis of symbols (4.3) at weight n, obeying conditions of the

form (4.1) on their double coproducts, we may construct a basis with the same properties at

weight n + 1, by determining the right kernel, or nullspace, of the matrix M in eq. (4.13),

with the known tensor L encoding optional additional restrictions on our initial ansatz (4.8),

for example such as in eq. (4.10) for specific final entries in the case of hexagon functions.

Letting N(jγ)in+1
denote the elements of the matrix whose columns correspond to different

basis vectors on the nullspace of M , M ·N = 0, the new basis of symbols at weight n+ 1 will

be explicitly given by

∆n,1F
(n+1)
in+1

=
∑
in,α

Tαin+1,inF
(n)
in
⊗ lnφα , with Tαin+1,in =

∑
j,γ

N(jγ)in+1
Lγαjin . (4.14)

The procedure we have described can be applied to the construction of general integrable

symbols subject to additional analytic constraints, with the “data” characterizing each specific

realization being the particular choices of alphabet Φ, weight-1 functions Tαi11, {n − 1, 1, 1}
coproduct conditions Dmαβ , as well as optional restrictions to particular subspaces Lγαjin . The

application we have in mind here is of course to extended Steinmann hexagon symbols, for

which we reiterate that we have chosen the alphabet (2.16), weight-1 functions (4.6), double

coproduct conditions that may be inferred from eqs. (2.22)–(2.35) and (3.3), and separate

ansätze for the parity even and odd subspaces respectively.

Before closing this section, let us also briefly comment on our strategy for tackling the

most computationally challenging step in the construction of our extended Steinmann hexagon

function space, the computation of the nullspace of the matrix M in (4.13). The main idea,

advocated in ref. [32], is to choose the constituents of the matrix M such that they only

have integer entries. On the one hand, this allows one to bound the size of the entries

of M at intermediate stages of its Gaussian elimination, thereby reducing the runtime and

intermediate storage required. On the other hand, it gives the opportunity to apply the

Lenstra-Lenstra-Lovàsz algorithm to further improve the sparsity and/or entry size of the

final expression for the nullspace matrix N , and thus facilitate the repetition of the procedure

at higher weight. In this manner, standard symbolic software such as Maple and Mathematica

was sufficient for going up to weight 11. Beyond this point, more specialized tools were

required, such as SageMath [91] at weight 12, SpaSM at weight 13, and custom C++ code at

weight 14 with MHV final entries that exploits finite field techniques for solving the linear

systems, avoiding the generation of complicated rational numbers in intermediate steps.

4.3 Promoting symbols to functions

A basis of symbols can be iteratively promoted to a basis of functions. There are two separate

aspects to this promotion. One aspect is to associate, if possible, each non-vanishing symbol
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with a unique function that satisfies function-level conditions corresponding to those imposed

already at symbol level. The second aspect is to allow for functions that vanish entirely at

symbol level. We will only add such functions when we determine that a particular constant

zeta value must be included as an independent element of the function space. As mentioned

in the introduction and in section 5.3, for Hhex the first time this happens is for ζ4. This

independent zeta value then spawns a set of allowed functions at weight n of the form

ζ4 F
(n−4)
in−4

, in−4 = 1, 2, . . . , dn−4 . (4.15)

In other words, the second aspect of the function-level construction is rather trivial, because

we just need to clone the function space from four weights lower, and it will automatically

obey all function-level conditions. In the rest of this section, therefore, we will focus on the

first aspect, associating consistent functions iteratively with non-vanishing symbols.

At each weight, the ∆n−1,1 coproduct component encodes the total derivative of each

function, which can be integrated into multiple polylogarithms once the symbols appearing

in the weight n− 1 entry have been upgraded to functions. In the case of hexagon functions,

there is a natural kinematic point at which to set the integration constant—the point where

all three cross ratios u, v, and w are 1, on the Euclidean sheet, which we refer to as (1, 1, 1).

The physical branch cut condition guarantees that hexagon functions are finite and smooth

at this point (whereas they can develop logarithmic singularities when one of the cross ratios

vanishes). Moreover, it has been observed that the six-point amplitude and its coproducts

only involve multiple zeta values at this point, providing a natural restriction on the types of

boundary data that must be considered here.

Steinmann Hexagon functions in fact require the appearance of multiple zeta values in

their coproduct entries in order to remain consistent with the branch cut condition. This

is due to the existence of kinematic limits where the derivatives of these functions have the

potential to become singular—namely, where the symbol letters in their last entry vanish.

To avoid these singularities, the lower-weight functions appearing in front of them in the

coproduct must vanish in this potentially singular limit. Intuitively, this is just the statement

that in the limit that any hexagon symbol letter φα other than a, b, or c vanishes, hexagon

functions must be free of coproduct terms such as ζn−1⊗ lnφα (or more generally, free of any

weight n− 1 function that doesn’t vanish in the φα → 0 limit).

This manifestation of the branch cut condition at higher weight does not, as one might

näıvely expect, amount to the requirement that F 1−ui → 0 as ui → 1 and F yi → 0 as yi → 0.

In general, these coproduct entries get mixed together in kinematic limits, allowing for more

complicated cancellations to take care of unphysical singularities. For instance, in the limit

that w → 1, the yi letters become

yu → (1− w)
u(1− v)

(u− v)2
, yv →

1

(1− w)

(u− v)2

v(1− u)
, yw →

1− u
1− v

. (4.16)

Thus, the coproduct entry F 1−w will get mixed with the functions F yu and F yv , and it is
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sufficient to require that [
F 1−w + F yu − F yv

]
w→1

= 0. (4.17)

In general, this relation only requires the addition of zeta-valued constants to these coproduct

entries. It can be imposed anywhere on the w = 1 surface.

If F is a parity-even function, then in eq. (4.17) zeta values can only be added to F 1−w,

and it is convenient to impose this condition directly at the point u = v = w = 1, which

is located on the surface ∆(u, v, w) = 0 where all parity-odd functions F yi vanish. Thus we

require, considering also the cyclic images of (4.17),

F 1−ui(1, 1, 1) = 0, F parity even. (4.18)

Since this condition is homogeneous, it can only force functions to vanish at (1, 1, 1), i.e. set

potential coefficients of MZVs to zero.

If F is a parity-odd function, then zeta values can only be added to the coproduct

entries F yi . However, the condition (4.17) is not sufficient to determine these zeta-valued

contributions, since only differences of these coproduct entries appear. Instead, they can be

determined on the surface where one of the yi variables becomes unity, which is also part of

the parity-odd vanishing surface ∆(u, v, w) = 0. In this limit, the derivatives with respect to

the other two variables ∂/∂yj 6=i become proportional to F yj 6=i/yj 6=i. It therefore suffices to

require that

F yv
∣∣∣
yu→1

= 0 , (4.19)

as well as all S3 permutations of this condition when F is parity odd.

A convenient place to impose eq. (4.19) is on the line (u, u, 1) in the limit that u = v → 0.

In this limit, from eq. (4.16), yw → 1 while yu and yv can remain different from 1. Thus we

can impose

F yu(u, u, 1)|u→0 = F yv(u, u, 1)|u→0 = 0, F parity odd, (4.20)

as well as the cyclically related constraints. On the line (u, u, 1), all hexagon functions collapse

to harmonic polylogarithms (HPLs) [25] H~w(u) with indices wi ∈ {0, 1}. The constraint (4.20)

sets the coefficient of all independent zeta values to zero, but this does not imply that the

value of these coproduct entries vanishes at the point (1, 1, 1). Rather, the functions F yu

and F yv can still generate nonzero zeta-valued contributions when integrated along the line

back to (1, 1, 1) (as can be seen in identities relating HPLs with argument u to HPLs with

argument 1 − u). Thus, in general, nonzero coefficients are induced for MZVs appearing in

F yi(1, 1, 1).

The conditions (4.17) and (4.19) must first be imposed for weight 2 functions F , where the

coproduct entries F 1−ui are nonzero. However, at this weight all F yi = 0, reducing eq. (4.17)

to the condition (4.18), which is automatically satisfied since all ln ai vanish at (1, 1, 1). At

weight 3, this condition becomes nontrivial for the first time in a parity odd function, which

can be identified as the one-loop six-dimensional hexagon integral Φ̃6 [92, 93]. From eq. (B.8)
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of ref. [39], its yu coproduct is

Φ̃yu
6 = −

3∑
i=1

Li2(1− ui)− ln v lnw + 2ζ2 (4.21)

=

3∑
i=1

Li2

(
1− 1

ui

)
+

1

4

[
(ln2 b+ 4ζ2) + (ln2 c+ 4ζ2)

]
. (4.22)

In the form (4.21) we can see how the condition (4.20) holds: the functions Li2(1 − w) and

ln v lnw vanish, while Li2(1 − u) and Li2(1 − v) both approach ζ2, forcing the last term to

be +2ζ2. In the second form (4.22), we have rewritten the result in the basis of eq. (2.41).

In section 5.3, we will see that the ζ2 factors can be absorbed into the ln2 ai functions as

indicated.

This construction then continues, iteratively in the weight. It turns out, however, that

not all zeta values are required to appear in hexagon functions to fix bad branch cuts in

this way. We now turn to cosmic Galois theory, which will provide the appropriate tools for

understanding the implications of this observation.

5 Cosmic Galois Theory

Feynman integrals correspond to integrals of rational functions over rational contours (that

is, domains specified by rational inequalities). As such, they should be described by a Galois

theory of periods. While the existence of such a theory remains strictly conjectural [57,

58], this issue can be sidestepped by studying the motivic avatars of Feynman integrals,

which in the polylogarithmic case realize all known functional relations as shuffle and stuffle

relations [50, 59]. In particular, motivic polylogarithms come endowed with a coaction that

enforces the shuffle and stuffle relations algebraically and allows one to algorithmically (via

fibration bases [54, 94, 95]) expose all functional equations. These properties have already

proven useful for studying Feynman integrals and amplitudes in diverse contexts, ranging from

φ4 theory [62], QED [64], and QCD [94] to maximally supersymmetric gauge theory [28, 30]

and string theory [65]. They have also played a central role in the amplitude bootstrap

program. However, in this context only some of the power of the coaction has been utilized—

namely, the part that has a natural physical interpretation in terms of branch cuts and

derivatives. In this section, we expand our use of the coaction to take into account coaction

restrictions on the transcendental constants that appear in the amplitude. These in turn prove

to be an essential ingredient in pushing the computation of the planar six-point amplitude

in N = 4 super Yang-Mills theory to six and seven loops for the NMHV and MHV helicity

configurations, respectively, which we have carried out in a companion paper [45]. While

these more general coaction restrictions don’t have a clear physical interpretation, they may

point to some graph-theoretic property respected by all Feynman diagrams contributing to

these amplitudes.
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5.1 The coaction on multiple polylogarithms

Multiple polylogarithms, considered abstractly as functions that map from a kinematic do-

main to the complex numbers, are extremely complicated multi-valued objects. For special

values of the kinematics, they evaluate to interesting numerical constants. It has proven fa-

mously hard for mathematicians to show that even the simplest constants in this space—the

odd Riemann zeta values—are transcendental. The only odd zeta value proven to be irra-

tional is ζ3 [96]. (Although it is also known that “many” of the odd zeta values are irrational;

for example, for any ε > 0, at least 2(1−ε) ln s/ ln ln s of the odd zeta values between 3 and s are

irrational [97].) Nothing is proven about whether they are actually transcendental, i.e. not

algebraic numbers.

This situation is greatly ameliorated by considering instead the motivic versions of mul-

tiple polylogarithms, as all identities between these motivic objects can be trivialized7 using

the coaction [48, 98], as further refined in [29, 49, 51]. The coaction is easiest to express in

the notation

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t), (5.1)

of which the (possibly more familiar) notation

G(an, . . . , a1; an+1) = I(0; a1, . . . , an; an+1) (5.2)

is a special case (note the reversal of arguments). The coaction then corresponds to the

operation

∆I(a0; a1, . . . , an; an+1) = (5.3)

∑
0=i1<···<ik+1=n

I(a0; ai1 , . . . , aik ; an+1)⊗

 k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1) mod iπ

 ,
which breaks up polylogarithms into tensor products of functions of lower transcendental

weight (where the total weight in each term in the sum is conserved). The above definition

contains trivial terms corresponding to the decomposition of the polylogarithm into itself. It

is therefore useful to define the reduced coproduct ∆′ through

∆(I) = 1⊗ I + I ⊗ 1 + ∆′(I). (5.4)

An element a of the Hopf algebra of multiple polylogarithms with ∆′(a) = 0 is referred to as

a primitive element.

The coaction can be applied iteratively, until what remains is a tensor product of weight-

one functions—namely, logarithms. In this way, all identities between polylogarithms can

7Note that the coaction only trivializes these identities up to algebraic identities between symbol letters,

which can be arbitrarily complex. This will not concern us here, since we are only considering polylogarithms

with the hexagon symbol alphabet, as defined in eq. (2.13).
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first be reduced to identities between logarithms, and then built back up to identities between

higher-weight polylogarithms systematically [29, 51].8

Strictly speaking, the left and right factors in the tensor product of (5.3) exist within

different spaces. The left factor maps back to the original space of (motivic) polylogarithms,

while functions appearing in the right factor are de Rham periods. These de Rham periods

are actually functions on a group—namely, the cosmic Galois group [55]—and are thus dual

to its generators. Correspondingly, while the cosmic Galois group acts on the space of motivic

periods (here, our polylogarithms), these dual objects coact as seen in the operation (5.3).

In particular, these dual objects have no knowledge of the integration contour of the original

polylogarithm and as such are invariant under deformations of said contour, even when the

contour deformation crosses a branch point of the original function. The back entries of the

coaction therefore need to be invariant under analytic continuation of the original function,

which corresponds to deforming the contour of integration around the branch points of the

integrand to change its homotopy class. Since all monodromies of the multiple polylogarithms

are proportional to powers of (iπ), the space of de Rham periods can be simply realized for the

coaction on multiple polylogarithms by working modulo (iπ) in the back entry of the coaction.

We can therefore almost entirely ignore the distinction between the two spaces and write the

coaction in the final form (5.3). In practice, we can furthermore neglect the distinction

between polylogarithms and their motivic avatars, since every identity resulting from shuffle

and stuffle relations constitutes a valid identity between (non-motivic) polylogarithms; what

remains conjectural is merely that there exist no other identities between these functions—a

fact that in practice we can safely ignore.

5.2 The coaction principle

The hexagon function bootstrap program [21, 38–45] takes advantage of the algebraic struc-

ture of the coaction (5.3) to construct the six-point amplitude directly from its analytic and

kinematic properties. It starts from the assumption (supported both by explicit computation

at low loops [28, 99–101] and an all-orders analysis of the Landau equations [102]), that the

polylogarithmic part of these amplitudes can be expressed in terms of multiple polylogarithms

with symbol letters drawn from the set (2.13), or equivalently (2.16). As described in sec-

tion 4, this space of functions (in particular, the span of such functions that have physical

branch cuts and obey the extended Steinmann relations) can be built directly at the level

of their coproduct, supplemented with (integration) boundary data. This construction is re-

cursive in the weight, implying that the only functions that appear in the first entry of the

coaction of higher-weight functions are those that have already appeared at lower weight.

This can be phrased formally as a coaction principle [59, 62, 64]:

∆Hhex ⊂ Hhex ⊗Kπ . (5.5)

8In order for this procedure to be well-defined one must use shuffle regularization [48, 53] to handle functions

in the coaction which would näıvely diverge. We omit the details of this procedure here.
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Namely, the coaction maps a generic function in the Steinmann hexagon function space back

to the same space tensored with the space of de Rham periods discussed above. The functions

appearing in Kπ are more general than Hhex; for instance, their first symbol entries can be any

of the nine letters of the alphabet (2.13), implying that they can have additional logarithmic

branch points when 1− ui and yi vanish.

At symbol level, the fact that the Steinmann hexagon function space satisfies a coaction

principle is true by construction. Therefore, once we have accepted the conjecture that

the six-point amplitude can be expressed in the basis constructed in section 4, it directly

follows that the symbol of the amplitude also satisfies this coaction principle. When the

construction based on the ∆n,1 coaction ansatz (4.8) is lifted to function level, as described in

section 4.3, then the coaction principle also must be satisfied for all components of the form

∆n−k,1,...,1, corresponding to an arbitrary number of iterated derivatives. The novel import

of eq. (5.5) resides in the fact that transcendental constants such as Riemann zeta values

also exhibit structure under the coaction map [49], even though they are in the kernel of

the projection ∆n−k,1,...,1. We now explain why such constants are required to appear in the

hexagon function space, and investigate what it means for these constants to respect (or not

respect) the coaction principle (5.5).

5.3 Integration constants and branch cut conditions

The branch cut conditions (4.18) and (4.20) only require the addition of specific zeta values

to the coproducts of Steinmann hexagon symbols to upgrade them to functions. As shown

in section 4.3, nonzero values are only forced by the conditions (4.20) on the yi coproducts

of parity-odd functions. For instance, at weight two we see from eq. (4.22) that a contri-

bution proportional to ζ2 must be added to the yi coproduct entries of the first parity-odd

function in the hexagon function space, Φ̃6. However, because Φ̃6 is fully symmetric under

all permutations of the six-particle cross ratios, ζ2 is only required to appear in a single linear

combination of weight-two functions and its images under the dihedral group. From examin-

ing eq. (4.22) alone, we might consider adding it to either Li2(1 − 1/ui) or ln2 ai. However,

the 1− ui coproduct of Li3(1− 1/ui) is Li2(1− 1/ui), and so if we added ζ2 to Li2(1− 1/ui)

we would spoil its vanishing at ui = 1, which is required by eq. (4.18). Therefore we must

add ζ2 to ln2 ai. Dihedral symmetry and the condition (4.20) fix the normalization to be as

shown in eq. (4.22). That is, ζ2 always appears in the specific linear combinations

ln2 ai + 4ζ2 , i = 1, 2, 3. (5.6)

Thus we are not actually forced to include ζ2 as an independent weight-two function—rather,

we just shift the relevant orbit of weight-two functions to include this contribution, as given

in eq. (5.6). In summary, there are only six functions in Hhex at weight 2,

Hhex
2 =

{
Li2

(
1− 1

ui

)
, ln2 ai + 4ζ2

}
, i = 1, 2, 3, (5.7)

not the seven we might näıvely have expected.

– 28 –



Now let us consider the branch-cut conditions for weight-four functions. We find that

the conditions (4.18) on the even functions are so strong that they force all the even weight

three functions to vanish at (1, 1, 1), and so, rather surprisingly, Hhex
3 (1, 1, 1) is empty! (The

constraints (4.20) applied to the two parity-odd weight-four functions are consistent with this

fact, of course.) Because all higher-weight functions are constructed on top of the weight-four

basis, the coaction principle (5.5) implies that ζ3 does not appear in the first entry of the

coaction on any hexagon function.

On the other hand, the promotion of the weight-five basis from symbols to functions does

require the addition of ζ4 contributions. In fact, so many linearly independent combinations

of weight-four functions must be shifted by ζ4 contributions that ζ4 must be included as

an independent function in the weight-four space. That is, it is not possible to just shift

the existing weight-four functions by a multiple of ζ4: fixing the branch cuts in some of the

weight-five functions in this way makes it impossible to fix the branch cuts in other functions.9

This impossibility is entirely associated with the three weight-four even functions that contain

parity-odd letters in their symbols, which are associated with the double pentagon integral

Ω(2)(u, v, w) and its two cyclic images. That is, the branch-cut conditions (4.18) for the even

weight-five functions force all the other weight-four functions, the ones with no parity-odd

letters, to vanish at (1, 1, 1).

At first sight, the fact that ζ4 is an independent constant might seem slightly puzzling,

considering that ζ4 = 2
5ζ

2
2 and one might thus expect the addition of a free ζ4 to spoil terms

in the coaction involving ζ2. However, it is important to remember that the second entry

of the coaction is modulo (iπ) and thus ∆2,2(ζ4) = 0, so that this apparent contradiction

is resolved. In general, all even Riemann zeta values ζ2k are primitive, or indecomposable,

under the coaction, so their appearance can never be forbidden by the coaction principle.

The branch cut conditions can be solved in an analogous way at each higher weight;

in practice we carried out this construction through weight eight. We refer to the space

of hexagon functions constructed in this way (where only the zeta values required to solve

the branch cut conditions are introduced) as Hζ . Our final, minimal space Hhex will be

slightly smaller than Hζ , because not all functions with non-vanishing symbols appear in the

amplitudes’ coproducts, starting at weight eight.

The zeta values that appear in Hζ are given through weight eight in Table 2. In this table,

we distinguish between zeta values that appear in the span of all functions in Hζ evaluated

at the point u = v = w = 1, and those that are required to appear in this function space as

independent constant functions. We see from the table that the space of weight-five constants

is similar to weight-three—the branch-cut conditions at one higher weight can be satisfied by

shifting the existing (symbol-level) basis of functions. Note that only one of the two possible

linear combinations of ζ5 and ζ2ζ3 appears. Weight six is also similar to weight four, insofar

as the branch cut conditions one weight higher cannot be solved just by shifting the existing

9We might entertain the alternate possibility that such functions should just be removed from the space.

However, we know from Table 4 that all weight-five functions are required to describe the derivatives of the

five-loop amplitude.
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Weight Multiple Zeta Values Appear in Hζ(1, 1, 1) Independent Constants in Hζ

0 1 1 1

1 − − −

2 ζ2 ζ2 −

3 ζ3 − −

4 ζ4 ζ4 ζ4

5 ζ5, ζ2ζ3 5ζ5 − 2ζ2ζ3 −

6 (ζ3)2, ζ6 ζ6 ζ6

7 ζ7, ζ2ζ5, ζ4ζ3 7ζ7 − ζ2ζ5 − 3ζ4ζ3, ζ7 − 4ζ4ζ3 ζ7 − 4ζ4ζ3

8 ζ5,3, ζ3ζ5, ζ2(ζ3)2, ζ8 ζ5,3 + 5ζ3ζ5 − ζ2(ζ3)2, ζ8 ζ8

Table 2. Through weight 8, we display first the complete set of MZVs, followed by the linear combi-

nations that appear in the intermediate function space Hζ ⊃ Hhex when the functions are evaluated

at (1, 1, 1), followed by the independent constants that are required in Hζ .

weight-six basis. However, there is now a two-dimensional space of constants we can consider

adding to our basis. Since we want to add the smallest number of free zetas to the space,

we first try to solve these branch cut conditions after adding just a single linear combination

of ζ6 and (ζ3)2 to the space, as well as allowing further shifts to be absorbed into individual

basis functions. This gives rise to a nonlinear system of equations that can only be solved if

the independent constant is chosen to be ζ6. A similar analysis yields the results at weight

seven and eight in Table 2.

While the six-particle amplitudes are known to be expressible in this basis at the level of

their symbol, there is no guarantee they will exist within the span of this basis as functions. In

fact, the BDS-like-normalized amplitudes do not. However, the MHV and NMHV amplitudes

in this normalization are misaligned with Hζ by the same exact amount. This is seen first at

three loops, where the BDS-like-normalized MHV and NMHV amplitudes evaluate to

Eold (3)(1, 1, 1) =
413

3
ζ6 + 8(ζ3)2 , Eold (3)(1, 1, 1) = −940

3
ζ6 + 8(ζ3)2 . (5.8)

These numbers are not in the span of Hζ(1, 1, 1) due to the appearance of (ζ3)2. However,

we have the freedom to normalize the amplitudes differently, for instance shifting them by

−8(ζ3)2 at three loops. This amounts to multiplying the BDS-like ansatz by a constant factor

ρ(g2), which allows us to adjust the amplitudes’ normalization by a constant at each loop
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order. Through seven loops, this factor can be chosen to be [45]

ρ(g2) = 1 + 8(ζ3)2 g6 − 160ζ3ζ5 g
8 +

[
1680ζ3ζ7 + 912(ζ5)2 − 32ζ4(ζ3)2

]
g10

−
[
18816ζ3ζ9 + 20832ζ5ζ7 − 448ζ4ζ3ζ5 − 400ζ6(ζ3)2

]
g12

+
[
221760ζ3ζ11 + 247296ζ5ζ9 + 126240(ζ7)2 − 3360ζ4ζ3ζ7 − 1824ζ4(ζ5)2

− 5440ζ6ζ3ζ5 − 4480ζ8(ζ3)2
]
g14 + O(g16). (5.9)

We emphasize that this “cosmic normalization” only works because the parity-even parts of

the MHV and NMHV amplitudes, evaluated at u = v = w = 1, are misaligned by exactly the

same factor at each loop order. The choice of the factor ρ is then unique, given the conditions

described in our companion paper [45].

The fact that the six-particle amplitude can be shifted in the above way through six loops

motivates an all-loop conjecture:

Branch Cut (Over-)Completeness: The space of hexagon functions Hhex

needed to describe E , E and Ẽ is contained within the minimal space required to

upgrade extended Steinmann hexagon symbols to functions, namely Hζ .

This conjecture requires that the difference E(L)(1, 1, 1)− E(L)(1, 1, 1), computed using only

the value of ρ truncated at one lower loop order, is within Hζ(1, 1, 1) to all loop orders L.

We have no proof of this assertion. Perhaps it can be argued for from the perspective of the

graph-theoretic properties of the Feynman diagrams contributing to these amplitudes (cf. the

‘small graphs principle’ for φ4 theory [59]).

5.4 Restrictions from cosmic Galois theory

While the conjecture of the last section may seem modest, it puts strong, all-loop-order con-

straints on the transcendental constants that can appear in the six-point amplitude and its

derivatives. The constraints follow from the coaction on multiple zeta values, which breaks

down these constants into simpler primitives, just as the symbol breaks down full polylog-

arithms into logarithmic primitives. In section 7, we will verify that the coaction principle

also holds for more general spaces of transcendental constants, such as alternating sums and

multiple polylogarithms evaluated at higher roots of unity, by evaluating the functions in

Hhex at other points besides (1, 1, 1).

Multiple zeta values are a generalization of the Riemann zeta values to include multiple

(nested) infinite sums. A finite multiple zeta value can be associated with every string of

positive integers ~w by the definition

ζ~w = ζw1,...,wd ≡
∑

k1>···>kd>0

1

kw1
1 · · · k

wd
d

, (5.10)

whenever w1 > 1. The depth is d and the weight is n =
∑d

i=1wi. These constants satisfy

many shuffle and stuffle relations, and the dimension dMZV
n of the vector space they form over
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Q at weight n is given by the generating function

dMZV(t) ≡
∞∑
n=0

dMZV
n tn =

1

1− t2 − t3
= 1 + t2 + t3 + t4 + 2t5 + 2t6 + . . . , (5.11)

at least motivically [49, 60, 103].

The multiple zeta values also exist in one-to-one correspondence with HPLs with indices

{0, 1} evaluated at unity, namely (up to sign conventions) the restriction of eq. (5.2) to indices

taking the value 0 or 1, and evaluated at an+1 = 1. (The wi in eq. (5.10) correspond to wi−1

‘0’s followed by a ‘1’ in the G function notation, or a ‘1’ followed by wi − 1 ‘0’s in the

I notation.) As a result, MZVs inherit the coaction structure of polylogarithms [49]. For

instance, we can take the coaction of the multiple zeta value ζ5,3 = I(0; 1, 0, 0, 1, 0, 0, 0, 0; 1)

using eq. (5.3). It is found that

∆′ζ5,3 = −5 I(0; 1, 0, 0; 1)⊗ I(0; 1, 0, 0, 0, 0; 1)

= −5 ζ3 ⊗ ζ5 , (5.12)

after shuffle regularization. Since ζ3 is absent from the weight-three basis in Hζ(1, 1, 1), we

immediately conclude that ζ5,3 cannot appear by itself in Hζ(1, 1, 1). And indeed, by reference

to Table 2, we see that ζ5,3 appears only in the linear combination ζ5,3 + 5ζ5ζ3 − ζ2(ζ3)2. As

can be checked via eq. (5.3), ζ5 and ζ3 are primitives under the coaction (i.e. they don’t

decompose into simpler objects), and since the coproduct of the product is the product of

coproducts, we simply have

∆′(ζ5ζ3) = ζ5 ⊗ ζ3 + ζ3 ⊗ ζ5 . (5.13)

The ζ3 ⊗ ζ5 term of the coaction thus cancels in the combination ζ5,3 + 5ζ5ζ3 − ζ2(ζ3)2, as

needed. Indeed,

∆5,3

(
ζ5,3 + 5ζ5ζ3 − ζ2(ζ3)2

)
= (5ζ5 − 2ζ2ζ3)⊗ ζ3 , (5.14)

is also consistent with the linear combination that appears at weight five in Hζ(1, 1, 1).

This type of reasoning gives rise to an increasingly large number of constraints as one

moves up in weight. In practice, these constraints are easiest to impose at the point u =

v = w = 1, as we have done above, although the coaction principle (5.5) holds for generic

values of u, v, and w. To apply the constraints most efficiently, it is useful to translate the

MZVs into an ‘f -alphabet’ in which each odd Riemann zeta value ζ2k+1 is mapped to the

letter f2k+1 [49]. The letters f2k+1 form a free algebra over the rationals Q〈f2k+1〉 that, when

supplemented by powers of π2, is isomorphic to the vector space over the rationals formed by

the multiple zeta values. In other words, products of f ’s in different orders are independent

objects (words), while even Riemann zeta values can be commuted at will across the strings of

f ’s. We will adopt the shorthand notation for products, f2k+1,2l+1,2m+1 ≡ f2k+1f2l+1f2m+1.

Also, we will adopt the ordering convention in refs. [62, 76], which unfortunately is reversed

from our tensor product notation for the coaction.
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The coaction on multiple polylogarithms simply becomes deconcatenation in the f -

alphabet. This means that the f -alphabet representation of any multiple zeta value can

be read directly off of its coaction, up to the contribution coming from generators of the

same weight as that of the original constant. For instance, it can be seen from eqs. (5.12)

and (5.13) that ζ5,3 → −5f5f3 ≡ −5f5,3 (due to the reversed ordering for the f notation) and

ζ5ζ3 → f3,5 + f5,3, up to primitives of weight 8. In the latter case, we see that multiplication

is represented in the f -alphabet by the shuffle product—any product of multiple zeta values

ζ~w1
ζ~w2

is mapped to the shuffle product of the f -alphabet representations of ζ~w1
and ζ~w2

.

While there are no primitives of the form f2k+1 at even weights, an additional letter

should be added to our f -alphabet to account for the appearance of even zeta values, ζ2k.

These constants are semi-simple under the coaction, meaning that they are mapped to zero

in the de Rham factor of the coproduct [49, 51, 55]. In equation form, we have

∆ζ2k = ζ2k ⊗ 1 . (5.15)

Because even zeta values cannot appear in the de Rham factor of the coaction, their position

in words formed out of the f -alphabet doesn’t encode any information; thus we may use a

convention to write ζ2k in front of all f ’s. Also, we will use a single even Riemann zeta value

ζ2k instead of k powers of ζ2 or π2, as it tends to simplify the rational numbers that appear.

The f -alphabet representations of the MZVs have been tabulated to high weight [65,

76]. (Note that the first reference defines MZVs with indices reversed from our convention,

although the f ordering is the same as ours.) The translation of single odd zeta values (and

their products) follows directly from the definition

ζ2k+1 → f2k+1 , (5.16)

and the translation of multiplication to the shuffle product, for example

(ζ3)2ζ5 → f3 x f3 x f5 = 2f3,3,5 + 2f3,5,3 + 2f5,3,3 . (5.17)

The decomposition of multiple zeta values is computed via the coaction (5.3), which has a

single ambiguity due to the appearance of a new f2k+1 (ζ2k) letter at weight 2k + 1 (2k),

which belongs to its kernel. This ambiguity can be fixed numerically [49].

Using the f -alphabet, it is easy to determine the space of allowed constants at u =

v = w = 1, given which constants have appeared at all lower weights. Since the coaction

acts as deconcatenation on words in this alphabet, constraints following from the coaction

principle (5.5) can be derived by isolating all terms with a given sequence of odd indices on

the left. This corresponds to taking a sequence of ‘derivations’ ∂2k+1, each of which returns

the left factor of the coaction (5.3) whenever a specific odd zeta value appears in the right

(de Rham) factor, and zero otherwise. Since our coaction and f -alphabet conventions have

reversed order with respect to each other, this means the derivations ∂2k+1 act on the left as

∂2k+1 (fi1,i2,...,ir) =

{
fi2,...,ir if i1 = 2k + 1,

0 otherwise.
(5.18)
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Weight Multiple Zeta Values Appear in Hζ(1, 1, 1)

0 1 1

1 − −

2 ζ2 ζ2

3 f3 −

4 ζ4 ζ4

5 f5, ζ2f3 5f5−2ζ2f3

6 f3,3, ζ6 ζ6

7 f7, ζ2f5, ζ4f3 7f7−ζ2f5−3ζ4f3, f7−4ζ4f3

8 f5,3, f3,5, ζ2f3,3, ζ8 5f3,5 − 2ζ2f3,3, ζ8

∂5

∂3 ∂3

∂5

∂3

Table 3. The left columns in Table 2, rewritten in the f -alphabet. The arrows illustrate the action

of the derivations ∂3 and ∂5.

No such derivations exist for the even zeta values, which don’t appear in the de Rham factor

of the coaction. Correspondingly, the coaction principle does not forbid terms such as ζ4 f3

from appearing in Hζ(1, 1, 1), because ζ4 is in Hζ(1, 1, 1) at weight four, and there is no

coaction term in which ζ3 appears alone in the first entry, i.e. ∆′(ζ4ζ3) = ζ4 ⊗ ζ3.

The operation (5.18) is at the heart of how we apply cosmic Galois theory in this paper:

in addition to taking derivatives with respect to dynamical variables, it allows us to formally

take derivatives with respect to odd zeta values. Equation (5.18) can be loosely thought of as

an infinitesimal version of the coaction (5.3), or as its specialization to MZV points. As far as

we understand, ∂2k+1 is interpreted in the mathematics literature as dual to an infinitesimal

generator of the cosmic Galois group [55]. For our purposes, the group structure amounts

to saying that it suffices to study eq. (5.18) together with the constraints from usual partial

derivatives discussed in section 3. That is, we expect that inspecting the action of ∂2k+1 at

the point (1, 1, 1) will exhaust all additional constraints from the coaction principle. As a

check, the properties of the coaction at other kinematic points and along various lines will be

analyzed explicitly in section 7.

The constraints implied by the coaction principle can be formulated as a system of linear

constraints on the general space of weight-w multiple zeta values, by taking all possible

derivations and requiring the resulting words to lie within the span of the relevant space at

lower weight. This is illustrated in Table 3, where the action of ∂3 and ∂5 on the weight-

eight MZVs is shown. Since only f5,3 is mapped to f3 by ∂5, and f3 isn’t in the span of the

(cosmically normalized) amplitudes, f5,3 cannot appear at weight eight. Similarly, only the

combination 5f3,5 − 2ζ2f3,3 maps to the allowed combination of weight-five constants under

∂3. Note that we don’t need to consider taking multiple derivations, because the lower-weight
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spaces already respect the coaction principle, by construction.

The space Hζ that we constructed through weight eight obeys all the restrictions of

the coaction principle at (u, v, w) = (1, 1, 1). Imposing the coaction principle simplifies the

branch cut conditions (4.18) and (4.20), to an increasing degree at higher weights, because it

limits which constants can appear at (1, 1, 1). For instance, it immediately follows from these

restrictions that (ζ3)2 could not have appeared in Hζ(1, 1, 1), a fact that we arrived at by a

more complicated means in the last section.

On the other hand, it becomes increasingly cumbersome to fix all the zeta valued con-

stants at (1, 1, 1) from the “bottom up” as we did in the last section. Also, the space of

functions Hζ may still be larger than Hhex, which we defined to be the minimal space con-

taining the cosmically normalized amplitudes and all of their derivatives ({n − k, 1, . . . , 1}
coproducts). We will return to this issue in the next section.

6 The Saturation of Hhex

6.1 Saturation of full functions

Having computed the NMHV amplitude through six loops and the MHV amplitude through

seven loops, we can construct a large number of weight-n functions in Hhex by taking all

{n, 1, 1, . . . , 1} coproducts. In principle, there are 92L−n possibilities, i.e we can choose a

different symbol letter for each of the 2L − n weight-one coproduct entries. In practice, a

much smaller number of functions are needed, due to integrability, the extended Steinmann

relations, final-entry conditions (for small values of 2L − n), and so on. The numbers of

linearly independent weight-n functions generated in this way is shown in Table 4, where

each successive row gives the number using both MHV and NMHV amplitudes at L loops,

except for the last line which combines the information from all amplitudes together, including

seven-loop MHV. For a given loop order, reading from right to left, the numbers first increase

and then decrease. The increase is because there are nine letters, so each function could have

several linearly independent functions among its first coproducts. The decrease is because

eventually all the functions have to fit into a fixed space, Hhex, whose dimension decreases as

the weight decreases. At a fixed weight n, as L increases, the dimension shown in the table

increases until it saturates. At this point, Hhex
n is spanned by the iterated coproducts of the

L-loop amplitude, for all higher loop orders.

In Table 4, we use a green color to denote numbers where saturation has been achieved.

If the next loop order is available, we suppose that saturation has been achieved if the number

does not grow with the addition of that additional information, i.e. if the next number below is

the same. We can also ask if the green (saturated) number agrees with the number constructed

from the “bottom-up” approach, i.e. with the dimension of Hζ . These numbers always agree,

until one hits the ‘200’ at weight 7 and L = 7+. Indeed, combining the constants in Table 2

with the symbols in Table 1 would have produced 201 weight-7 functions. However, we find

that the constant ζ7 − 4ζ4ζ3 displayed in the ‘Independent Constants’ column in Table 2

is not in the span of the 200 weight-7 parity-even amplitude coproducts in Table 4. This
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 1 1 3 4

L = 2 1 3 6 10 6

L = 3 1 3 6 13 24 15 6

L = 4 1 3 6 13 27 53 50 24 6

L = 5 1 3 6 13 27 54 102 118 70 24 6

L = 6 1 3 6 13 27 54 105 199 269 181 78 24 6

L = 7+ 1 3 6 13 27 54 105 200 338 331 210 85 27 6 1

Table 4. The number of independent {n, 1, 1, . . . , 1} coproducts of the MHV and NMHV amplitudes

through L = 6 loops. A green number denotes saturation. The final line gives the number using all

known loop orders together, including 7 loop MHV.

weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 1 0 0 0

L = 2 0 0 0 1 2

L = 3 0 0 0 1 2 6 2

L = 4 0 0 0 1 2 6 13 12 2

L = 5 0 0 0 1 2 6 13 30 30 12 2

L = 6 0 0 0 1 2 6 13 30 59 82 36 12 2

L = 7+ 0 0 0 1 2 6 13 30 59 110 98 43 11 3 0

Table 5. Same as Table 4, but just the parity odd {n, 1, 1, . . . , 1} coproducts of the MHV and NMHV

amplitudes. Note that saturation of the odd functions now begins two loops earlier.

independent constant was needed in Hζ in order to prevent the branch-cut constraints from

removing a particular weight 8 parity-odd function, O8, which is allowed by the symbol-level

constraints. However, in Table 5 we can see from the repeated ‘59’ that the weight-8 parity-

odd space already appears to saturate at 6 loops; that is, the seven-loop MHV amplitude did

not require any more such functions—and O8 is not in the span of these 59 functions. We

conclude that Hhex starts to be smaller than Hζ beginning with an independent constant at

weight 7, and going on to actual dropout functions starting at weight 8. A dropout function

is any function whose symbol is allowed, but the function is forbidden by the branch-cut

constraints, once we have restricted the independent constants to those in eq. (1.6).

In Table 6 we show the number of {n, 1, . . . , 1} coproducts of the L loop amplitudes

which have no parity-odd yi letters in their symbols, which we call ‘K’. (The remaining

yi-containing functions, we call ‘non-K ’). Rather interestingly, at high loop order L one has
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 1 1 3 4

L = 2 1 3 6 9 1

L = 3 1 3 6 12 19 4 0

L = 4 1 3 6 12 22 38 15 0 0

L = 5 1 3 6 12 22 39 67 36 0 0 0

L = 6 1 3 6 12 22 39 67 113 94 0 0 0 0

L = 7+ 1 3 6 12 22 39 67 114 156 32 0 0 0 0 0

Table 6. Same as Table 4, but just for the parity even K functions that do not contain yi in their

symbols. Note that for loop order L > 2, the first L− 2 coproducts of the amplitudes do not include

any K functions.

to take a large number of iterated coproducts of an amplitude, L−2 to be precise, before one

encounters a K function.

Because the parity-even part of the function space is only saturated through weight 7,

we have to extrapolate somewhat to say that the space of independent constants is really

ζ4, ζ6, ζ8, . . .. In fact, ζ8 by itself is not in the span of the 338 weight 8 functions shown in

Table 4. (Of these functions, 279 are parity-even, whereas 313 would be needed to span the

full expected weight 8 parity-even space. On the other hand, the set of 279 even functions does

include all of the 123 more complicated, yi-containing ‘non-K’ functions shown in Table 11.)

6.2 Saturation at (1, 1, 1)

What is easier to identify to higher weights is the correct space of zeta values in Hhex at (1, 1, 1)

because there is no issue of mixing with all the other functions, as there is in determining

the independent constants. In Table 7 we show that the weight-8 space is saturated by

four loops. (We can only get 2 values at weight 2L, one from E(L)(1, 1, 1) and one from

E(L)(1, 1, 1); this is enough at weight 8, but not at weight 10.) Odd weights are harder to

saturate because the final-entry conditions on the MHV and NMHV amplitudes, together with

the branch-cut condition, imply that all the weight 2L− 1 first coproducts of the amplitudes

vanish at (1, 1, 1). (For example, E1−ui(1, 1, 1) = 0 by the branch-cut condition (4.18), but

Eui(1, 1, 1) = −E1−ui(1, 1, 1) = 0 by the final-entry condition, and Eyi(1, 1, 1) = 0 by parity.)

Weight 9 is saturated by 7 loops, although it is a bit marginal because we don’t have any

8-loop data. Weight 10 is also saturated at 7 loops. This case is more secure, because only

three linear combinations of weight 10 zeta values are allowed by the coaction principle.

In summary, the space Hhex(1, 1, 1) is spanned by the following elements through weight
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 1 1 0 1

L = 2 1 0 1 0 1

L = 3 1 0 1 0 1 0 1

L = 4 1 0 1 0 1 1 1 0 2

L = 5 1 0 1 0 1 1 1 1 2 0 2

L = 6 1 0 1 0 1 1 1 1 2 1 2 0 2

L = 7+ 1 0 1 0 1 1 1 1 2 3 3 1 2 0 1

Table 7. Same as Table 4, but just the space of values of {n, 1, 1, . . . , 1} coproducts of the MHV and

NMHV amplitudes at (1, 1, 1). Saturation of Hhex(1, 1, 1) is achieved through weight 10.

12, in the f alphabet of ref. [76], from weights 0 through 12:

1 (6.1)

−
ζ2

−
ζ4

5f5 − 2ζ2f3

ζ6

7f7 − ζ2f5 − 3ζ4f3

ζ8 , 5f3,5 − 2ζ2f3,3

7f9 − 6ζ4f5 , 5f9 − 3ζ6f3, ζ2f7 − ζ6f3

ζ10 , 7f3,7 − ζ2f3,5 − 3ζ4f3,3 , 5f5,5 − 2ζ2f5,3

33f11 − 20ζ8f3 , ζ2f9 − ζ8f3 , 3ζ4f7 − 2ζ8f3 , 3ζ6f5 − 2ζ8f3 , 5f3,3,5 − 2ζ2f3,3,3 +
5611

132
ζ8f3

ζ12 , 7f3,9 − 6ζ4f3,5 , 5f3,9 − 3ζ6f3,3 , ζ2f3,7 − ζ6f3,3 , 7f5,7 − ζ2f5,5 − 3ζ4f5,3 , 5f7,5 − 2ζ2f7,3 .

In appendix A, we provide the conversion between the f -alphabet and MZVs through weight

11. In the ancillary file ftoMZV.txt we do the same through weight 14.

At weight 11, we make use of a subspace of the hexagon functions that can be defined

to all weights, which is related to, but is larger than, the Ω space associated with double

pentaladder integrals [84]. This subspace saturates Hhex(1, 1, 1) through weight 10, and we

assume it does so at weight 11. This assumption removes one of the weight 11 zeta values

allowed by the coaction principle. The values at weight 11 are also consistent with an analysis

of the branch-cut constraints for the general function space that takes into account the triple
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 1 1 3 1

L = 2 1 3 6 4 1

L = 3 1 3 6 13 14 6 1

L = 4 1 3 6 13 27 35 20 6 1

L = 5 1 3 6 13 27 54 78 51 21 6 1

L = 6 1 3 6 13 27 54 105 170 128 58 21 6 1

L = 7 1 3 6 13 27 54 105 200 338 300 159 62 21 6 1

Table 8. The number of independent {n, 1, 1, . . . , 1} coproducts of the MHV amplitudes through

L = 7 loops. A green color indicates saturation.

coproducts of E(7). And they are consistent with the computed E(7)(1, 1, 1) and the nontrivial

existence of a suitable seven-loop ρ to make it compatible with the coaction principle.

In appendix A, we provide the values of the MHV and NMHV amplitudes at u = v =

w = 1, E(L)(1, 1, 1) and E(L)(1, 1, 1), through seven and six loops respectively, in terms of

the f -basis given in eq. (6.1) and rational number coefficients. Most of the coefficients are

actually integers.

From eq. (6.1) one can count how many combinations of zeta values disappear without

being forced to by the coaction principle. Without such disappearances, the coaction principle

would be trivially satisfied. The only such disappearances are at odd weights 3, 5, 7, 9, 11, . . .,

and the number missing are 1, 1, 2, 1, 1, . . .. We assume that there are no such disappearances

at weight 12, since there were none at smaller even weights. We have no “amplitudes data”

at weight 13, and only 1 data point at weight 14, namely E(7)(1, 1, 1). The coaction principle,

given eq. (6.1), allows 9 independent combinations at weight 13, and 12 combinations at

weight 14. In comparison, the total number of MZVs at these weights is dMZV
13 = 16 and

dMZV
14 = 21, or almost twice the dimension.

Returning to Table 4, one can see another kind of saturation taking place: the number

of weight 2L − 1 entries, or single coproducts of the MHV and NMHV amplitudes together,

saturates at 24, of which 12 are parity-even and 12 are odd (using also Table 5). (The last line

of these tables should be disregarded in this analysis, since it does not include the unknown

7-loop NMHV amplitude.) On the other hand, the set of weight 2L−2 double coproducts has

not yet clearly reached a maximum at 6 loops, at 78. If we look at the same tables for just the

MHV amplitude, Tables 8 and 9, we see that the MHV double coproducts have saturated at

21, of which 12 are parity-even and 9 are odd. It is not yet clear if the MHV triple coproducts

have saturated. This kind of saturation provides very useful information; the saturation of

the MHV double coproducts at 21 next-to-final-entries was assumed in constructing the initial

ansatz for E(7) in ref. [45].
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

L = 1 0 0 0

L = 2 0 0 0 1 0

L = 3 0 0 0 1 2 3 0

L = 4 0 0 0 1 2 6 8 3 0

L = 5 0 0 0 1 2 6 13 21 9 3 0

L = 6 0 0 0 1 2 6 13 30 50 27 9 3 0

L = 7 0 0 0 1 2 6 13 30 59 110 75 31 9 3 0

Table 9. Same as Table 8, but just the parity odd {n, 1, 1, . . . , 1} coproducts of the MHV amplitude.

Note that saturation of the odd functions begins one loop earlier.

weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

P even dropouts 0 0 0 0 0 0 0 0 0 1 0 2 0? 3??

P odd dropouts 0 0 0 0 0 0 0 0 1 0 2 0 2? 0??

Table 10. The number of dropouts: functions that do not appear in Hhex even though they satisfy

all the constraints at symbol level. The numbers at weights 12 and 13 are slightly uncertain.

In Table 10 we show the number of dropout functions, which are not in Hhex even though

their symbols satisfy all symbol-level constraints. As mentioned earlier, the first such dropout

is a unique (dihedrally symmetric) weight-8 parity-odd function. At weight 9, there is a unique

parity-even dropout. At weight 10, there are two dropouts, now parity odd, and also two at

weight 11 parity even. The situation at weight 12, and especially beyond, is less clear.

In Table 11 we show the dimension of Hhex, graded by parity. We split the parity-even

functions into the K functions with no parity-odd letters in their symbols and the remaining

yi-containing functions (non-K).

6.3 K functions and asymptotic growth

The K functions can be constructed systematically. (A similar set of K functions was con-

structed in ref. [44], but that set was too large; it included many functions that did not satisfy

the extended Steinmann relations.) The basis for constructing the K functions is a set of

HPLs of the form H~w(x), where x = 1− 1/u and wi ∈ {0, 1}. The extended Steinmann con-

dition forbids two adjacent ‘u’s in the symbol, which means there cannot be two adjacent ‘1’s

in the list of wi. (This restriction is equivalent to the A1 cluster algebra adjacency restriction,

and so the counting of functions will be the same [86].) In the compressed notation (where

k − 1 ‘0’s followed by a ‘1’ is represented by ‘k’), a ‘1’ can only appear at the beginning of
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weight n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

total 1 3 6 13 27 54 105 200 372 679 1214 2136 3693? 6292?

P even, K 1 3 6 12 22 39 67 114 190 315 517 846 1378 2241

P even, non K 0 0 0 0 3 9 25 56 123 244 474 872 1573 2740?

P odd 0 0 0 1 2 6 13 30 59 120 223 418 742? 1311?

Table 11. The dimension of the extended Steinmann hexagon function space Hhex, graded by parity

and by K vs. non-K in the P-even case. Beyond weight 7, the coproducts of known amplitudes do

not saturate all of the functions, and so the numbers may be further reduced eventually. At weights

12 and 13, the numbers may be off by one or two.

the string, and at weight n the string is a partition of n. So the first few functions are

H1(x),

H2(x),

H3(x), H1,2(x),

H4(x), H1,3(x), H2,2(x) (6.2)

H5(x), H1,4(x), H2,3(x), H3,2(x), H1,2,2(x),

...

Notice that if the last element in the string for an HPL at weight n is a ‘2’, then it corresponds

to appending a ‘2’ to one of the functions at weight n− 2; otherwise it corresponds to adding

‘1’ to the last entry of one of the functions at weight n − 1. In other words, the number of

such functions is given by the sum of the two previous numbers, i.e. it is enumerated by the

Fibonacci sequence.

The full set of K functions based on u also has dependence on v/w. At weight n, one

can construct a suitable function for every function in eq. (6.2) with weight less than or equal

to n by multiplying by powers of ln(v/w) and adding some correction terms. For example,

suppressing the argument x of the HPLs, the first few are

weight 1: H1, ln(v/w), (6.3)

weight 2: H2, H1 ln(v/w), 1
2 ln2(v/w) +H1,1,

weight 3: H3, H1,2, H2 ln(v/w), 1
2H1 ln2(v/w) +H1,1,1,

1
6 ln3(v/w) +H1,1 ln(v/w).

Since the sum of the first n terms in a Fibonacci sequence is also a Fibonacci sequence, we

again get a Fibonacci sequence for the dimensions of this space. The sequence of dimensions

in eq. (6.2) is generated by 1 + t/(1 − t − t2), while the one in eq. (6.3) is generated by

(1 + t)/(1− t− t2).

To get the complete set of K functions, we need to consider also cyclic permutations of

the functions in eq. (6.3), i.e. functions whose HPL arguments are 1 − 1/v or 1 − 1/w. At
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each weight, the cyclic permutations include a double-count of three pure-log functions that

have to be removed, so altogether we get a generating function of

1 + 3

[
1 + t

1− t− t2
− 1

1− t

]
= 1 +

3 t

(1− t)(1− t− t2)
. (6.4)

Finally, at weight n the independent constants ζ4, ζ6, ζ8, etc., can multiply K functions of

lower weight n − 4, n − 6, n − 8, etc. We can take them into account by multiplying the

generating function (6.4) by the generating function counting this sequence. That is, the

generating function for the sequence of dimensions kn of all possible K functions is

k(t) =
∞∑
n=0

knt
n =

[
1 +

3 t

(1− t)(1− t− t2)

]
(1 + t4 + t6 + t8 + t10 + . . .). (6.5)

Series expanding k(t) gives the dimensions in the line ‘P even, K’ in Table 11.

The asymptotic growth rate of any Fibonacci sequence involves the golden ratio φ =

(1 +
√

5)/2 = 1.618. . ., i.e. kn/kn−1 ∼ φ as n→∞. This growth rate can be computed from

the generating function k(t) by finding the singularity on the positive t axis closest to the

origin, which comes from the factor 1− t− t2 and is located at t = 1/φ, and taking its inverse.

What about the growth rate of the dimensions hn of Hhex
n , the weight n part of Hhex? We

don’t have a closed formula generating hn, but the last several ratios hn/hn−1 from Table 11

are 1.8600, 1.8253, 1.7879, 1.7595, 1.7289, 1.7037. It is tempting to think that this sequence

might be approaching the golden ratio asymptotically.

7 The coaction principle at work on special lines and points

As described earlier, the coaction principle is built into the construction of the space of

hexagon functions Hhex at the level of the ∆n−1,1 coaction. Ideally, we would also like to

explore its validity for general coaction components ∆n−m,m, as well as for arbitrary val-

ues of the cross ratios u, v, and w in the bulk. For all weights n ≤ 8, we have verified

the coaction principle in the bulk for arbitrary m, using the generalized polylogarithmic

representations of hexagon functions that can be computed, for example, with the package

PolyLogTools [104]. However, beyond weight eight, explicit representations for the ele-

ments of Hhex in terms of generalized polylogarithms become so large that the construction

of their coproducts in the bulk becomes infeasible.

As an alternative, we can check the coaction principle on lower-dimensional surfaces

within the three-dimensional bulk. The focus on lower-dimensional surfaces is not a concep-

tual restriction for the study of the coaction principle; the coassociativity of the Hopf algebra

of multiple polylogarithms, cf. ref. [51], promotes the built-in coaction principle for the com-

ponents ∆n−1,1, to a coaction principle for all components ∆n−m,m for which the weight m

component in the second entry of the coaction has a non-vanishing ∆1,...,1 component. Hence

the non-trivial checks of the coaction principle arise from components of ∆ for which the

second entry vanishes when acting again with ∆•,1 — for example, a transcendental constant
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(u, v, w) for line symbol letters special points more special points

(u, u, 1) u, 1− u u = 0, 1,∞ ⇒ MZVs u = 1
2 , 2 ⇒ ASums

(u, 1, 1) u, 1− u u = 0, 1,∞ ⇒ MZVs u = 1
2 , 2 ⇒ ASums

(u, 0, 1) u, 1− u u = 0, 1,∞ ⇒ MZVs u = 1
2 , 2 ⇒ ASums

(u, 0, 0) u, 1− u u = 0, 1,∞ ⇒ MZVs u = 1
2 , 2 ⇒ ASums(

y
1+y , 0,

y
1+y

)
y, 1− y, 1 + y y = 1,−1 ⇒ ASums −(

(1+y)2

4y , 1
2 ,

1
2

)
y, 1− y, 1 + y y = 1,−1 ⇒ ASums y = i ⇒ 4th Roots(

y
(1+y)2

, y
(1+y)2

, y
(1+y)2

)
y, 1 + y, y − ω, y − ω̄ y = 1 ⇒ 6th Roots −(

1+y+y2

(1+y)2
, 1+y+y2

(1+y)2
, y

(1+y)2

)
y, 1 + y, y − ω, y − ω̄ y = 1 ⇒ 6th Roots −

Table 12. Examples of special lines through the space of cross ratios where the function space

collapses to cyclotomic polylogarithms, and special points where the functions evaluate to MZVs or

generalizations thereof. Here ω = exp(2πi/3), ω̄ = exp(−2πi/3).

such as a MZV. We are therefore particularly interested in studying the coproduct structure

of the hexagon function space in the presence of constants in the second entry. Studying the

hexagon function space in kinematic limits, such as lower-dimensional surfaces, allows such

constants to survive and provides a particularly rich laboratory for our studies.

In this section, we will first discuss the spaces of functions obtained when we collapse

Hhex onto various one-dimensional lines, where the functions become either harmonic poly-

logarithms (HPLs) [25] or their generalizations, cyclotomic polylogarithms (CPLs) [105]. Ta-

ble 12 shows several examples of such lines, as well as special points along the line where the

functions evaluate to MZVs, alternating sums (ASums), or cyclotomic polylogarithms whose

weights include 4th or 6th roots of unity, evaluated at 1 (4th Roots or 6th Roots, for short).

Interestingly, the latter two spaces of numbers are also found [64] in the analytic formula

for the four-loop electron anomalous magnetic moment [63]. Some of the special points are

plotted in Figure 1.

7.1 Lines with symbol alphabet {u, 1− u}

The first four lines of Table 12 are all similar in that there are only two symbol letters, u and

1− u. The functions must be HPLs H~w with weight vectors ~w for which all the components

wi ∈ {0, 1}. For argument of the HPLs, we use the variable x = 1−1/u. Because there are no

cuts at u = 1, the last weight vector index is always 1. The dimensionality of Hhex, restricted

to each of the lines, is different in each case, as shown in Table 13. The line ‘maximal dim.’

in the table refers to only imposing the branch-cut constraint on the HPLs, and allowing for

all possible MZVs to be present as independent constants. The generating function for HPLs
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u

v

w

MZVs
Alternating sums
4th roots of unity
6th roots of unity,

,

finite
1 variable singular
2 variables singular
3 variables singular

Figure 1. Points associated with the unit cube in (u, v, w) where the functions in Hhex evaluate to

interesting transcendental numbers associated with polylogarithms with indices that are square, fourth

and sixth roots of unity, as indicated by the shape of the symbol. The color of the symbol indicates

how many of the three cross ratios are singular (equal to zero) at that point.

with no branch cuts at u = 1 is

dH(t) =
1− t
1− 2t

= 1 + t+ 2t2 + 4t3 + 8t4 + . . . , (7.1)

while the generating function for the MZVs was given in eq. (5.11). The generating function

for the maximal set of functions with symbol letters u, 1− u and no branch cuts at u = 1 is

just the product

dH(t)dMZV(t) = 1 + t+ 3t2 + 6t3 + 12t4 + 25t5 + 50t6 + . . . , (7.2)

as shown in the first row of Table 13.

On all four lines shown in Table 13, the number of functions that hexagon functions Hhex

approach in the limit is considerably less than for the maximal set. The last two lines, (u, 0, 1)

and (u, 0, 0), are short-hand for (u, v, 1) with v → 0 and (u, v, w) with v, w → 0. On these

lines, the limiting behavior of functions in Hhex also includes powers of the singular logarithm

ln v (and in the second case, also lnw), multiplied by lower-weight functions of the same type.
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weight 1 2 3 4 5 6 7 8 9 10

maximal dim. 1 3 6 12 25 50 101 203 407 816

(u, u, 1) dim. 1 3 4 8 15 26 48 84 150 256

(u, 1, 1) dim. 1 2 3 6 10 18 30 52 90 152

(u, 0, 1) dim. 1 3 5 10 19 36 68 129 240 443

(u, 0, 0) dim. 1 3 6 11 21 38 68 120 207 352

Table 13. Dimensions of Hhex when restricted to four lines with symbol letters u, 1− u, for weights

up to 10. The maximal dimension corresponds to allowing all MZVs and all HPLs with no branch

cuts at u = 1. For the last two lines, only the finite parts of the singular limits onto the lines are used.

For simplicity, the table just counts the dimension of the finite terms, i.e. we ignore the terms

with positive powers of ln v or lnw.

Some of the four sequences of dimensions are strictly smaller than others; however, none

of the four function spaces is contained in the others. To illustrate this, we provide bases for

the various function spaces through weight 4:

(u, u, 1) :

H1

H2, H1,1, ζ2 (7.3)

H3, H2,1, H1,2, H1,1,1 + 1
2ζ2H1

H4, H3,1, H2,2, H2,1,1 + 1
2ζ2H2, H1,3, H1,1,1,1 + 1

2ζ2H1,1, H1,2,1 +H1,1,2, ζ4

(u, 1, 1) :

H1

H2, H1,1 + 2ζ2 (7.4)

H3, H1,2, H1,1,1 + 2ζ2H1

H4, H2,2, H1,3, H1,1,1,1 + 2ζ2H1,1, H1,1,2 +H2,1,1 + 2ζ2H2, ζ4

(u, 0, 1) :

H1

H2, H1,1, ζ2 (7.5)

H3, H1,2, H1,1,1, ζ2H1, ζ3

H4, H2,2, H2,1,1, ζ2H2, H1,3, H1,1,2, H1,1,1,1, ζ2H1,1, ζ3H1, ζ4
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(u, 0, 0) :

H1

H2, H1,1, ζ2 (7.6)

H3, H2,1, H1,2, H1,1,1, ζ2H1, ζ3

H4, H3,1, H2,2, H2,1,1 +H1,2,1, H1,3, H1,2,1 +H1,1,2, H1,1,2 + ζ2H2, H1,1,1,1, ζ2H1,1, ζ3H1, ζ4.

On the line (u, 1, 1), there is a dropout at weight 2, in that H1,1 and ζ2 do not appear

separately, but only in the combination H1,1 + 2ζ2. This reflects a similar combination of ζ2

with logarithms in the bulk. Also, the function H2,1 does not appear at weight 3. At weight

4, two HPLs have to be combined into a sum. Similar dropouts happen on the other lines.

Even though there are always fewer functions on the line (u, 1, 1) than on the line (u, u, 1),

the former space is not a subset of the latter, starting at weight 3, because the coefficients

‘r’ in H1,1,1 + rζ2H1 are different in the two cases. Similarly, the (u, u, 1) functions are not

contained in the (u, 0, 0) functions, beginning at weight 4.

One can see the coaction principle at work by examining the lists of functions. For

example, on the line (u, 1, 1), once the function H2,1 does not appear at weight 3, then the

function H3,1 cannot appear at weight 4, because

∆3,1H3,1 = H2,1 ⊗ lnx (7.7)

Similarly, the combination H1,1,1+2ζ2H1 at weight 3 is dictated by the combination H1,1+2ζ2

at weight 3.

These examples just illustrate the {n− 1, 1} component of the coaction. However, using

the iterated integral representations of the HPLs, we can verify that the coaction principle

holds on these lines for {n −m,m} for generic m for sufficiently large n. The restriction to

large enough n ensures that the dimension of the space in the first entry of the coproduct is

at least as large as the dimension of the space in the second entry.

In the process, we find that the space Kπ represented by the second, de Rham term in

the coaction (5.5) on these lines seems to be totally unrestricted. That is, all HPLs with

weight-vector components {0, 1} appear and all MZVs appear, except for powers of π2 which

never appear in the second entry of ∆ by construction. The generating function for this space

is

ddR{0,1}(t) =
1− t2

1− t2 − t3
1

1− 2t
= 1 + 2t+ 4t2 + 9t3 + 18t4 + 37t5 + 75t6 + . . . . (7.8)

In Table 14 we give the dimensions deduced for this space by performing the coaction on

elements of Hhex
n , where n is the overall weight. Again a green color denotes saturation,

i.e. reaching the dimensions predicted by eq. (7.8). Even going to overall weight 10, we can

only saturate through de Rham weight 4. The problem is that the number of de Rham entries

is growing much faster with weight than the number of first entries, but one cannot see more

independent elements of Kπ than there are first-entry functions with which to pair them.
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←− de Rham weight −→

overall weight 1 2 3 4 5 6 7 8 9

2 1

3 2 1

4 2 3 1

5 2 4 3 1

6 2 4 4 3 1

7 2 4 8 4 3 1

8 2 4 9 8 4 3 1

9 2 4 9 15 8 4 3 1

10 2 4 9 18 15 8 4 3 1

Table 14. Dimensions of the space Kπ of de Rham entries of the coaction of hexagon functions

restricted to the line (u, u, 1). The green entries mark spaces that are saturated, in the sense that all

possible functions in Kπ at the given weight, cf. eq. (7.8), appear as independent de Rham entries of

the coaction.

There are three values of u for which the values of functions in Hhex on the four lines

approach MZVs: u = 0, 1,∞. At u = 0 and ∞, there can be associated singular factors of

lnu. At all of these points except for the base point (u, v, w) = (1, 1, 1), the values of the

functions span the complete set of MZVs through weight 10, achieving the dimension given by

eq. (5.11). In other words, the only MZV point that we have found where there are dropout

MZV values — and a nontrivial coaction principle — is (1, 1, 1). (However, as we will discuss

further in section 8, there are indications based on the flux tube expansion [106–108] that

there should be dropouts at the point (u, v, w) = (1, 0, 0) and its cyclic images.) In contrast,

we will find multiple points exhibiting nontrivial coaction features in the alternating sum and

cyclotomic cases.

7.2 Lines with symbol alphabet {y, 1− y, 1 + y}

The next class of lines in Table 12 are the two lines with symbol letters y, 1 − y, and 1 + y.

Functions built from this alphabet must be HPLs H~w(y) with weight vectors ~w drawn from

the set {0, 1,−1}, and argument y. The first-entry condition ensures that there is only a

single weight one function in each case: ln
( y

1+y

)
= H0−H−1 in the case of the first line, and

ln
( (1+y)2

4y

)
= 2H−1 − H0 − 2 ln 2 in the case of the second line. Consequently, at weight n,

there are at most 3n−1 different functions that can be built from this symbol alphabet.

Specializing the space of HPLs with weight vectors drawn from {0, 1,−1} to unit argu-

ment results in the space of alternating sums. Alternating sums can be defined as harmonic
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weight basis elements conversion to f2-alphabet

1 ln 2 −f2
1

2 ζ2 ζ2

3 ζ3 −4
3f

2
3

4 ζ4 ζ4

Li4(1
2) 15

16ζ4 + 1
2ζ2f

2
1,1 − 7

6f
2
1,3 − f2

1,1,1,1

5 ζ5 −16
15f

2
5

Li5(1
2) −11

20f
2
5 + 15

16ζ4f
2
1 + 1

2ζ2f
2
1,1,1 − 7

6f
2
1,1,3 − f2

1,1,1,1,1

6 ζ6 ζ6

Li6(1
2) 53

64ζ6 + 15
16ζ4f

2
1,1 + 1

2ζ2f
2
1,1,1,1 − 11

20f
2
1,5 − 7

6f
2
1,1,1,3 − f2

1,1,1,1,1,1

S−5,−1 −23
16ζ6 + 4

3f
2
3,3 + 31

15f
2
1,5

Table 15. Indecomposable basis elements for alternating sums at the first few weights.

sums evaluated at infinity,

Sk1,...,kd =
∑

1≤nd≤nd−1≤···≤n1≤∞

sign(k1)n1

nk11

. . .
sign(kd)

nd

nkdd
. (7.9)

For positive indices, this definition reduces to (linear combinations of) the ordinary MZVs.

One choice of basis for alternating sums at the first few weights is shown in Table 15. The

f -alphabet representation is also provided [76], using the same notation as in the MZV case

except for the superscript ‘2’ on the f to indicate the alternating sum case.

The number of all basis elements (including products of lower weight constants) for

alternating sums at a given weight n is counted by the Fibonacci number Fn+1 [60, 103], and

the generating function for these dimensions is

dalt(t) =
1

1− t− t2
= 1 + t+ 2t2 + 3t3 + 5t4 + 8t5 + 13t6 + . . . . (7.10)

The generating function for HPLs with indices drawn from {0, 1,−1} and no branch cuts

except at u = 0,∞ is

dH(±1)(t) =
1− 2t

1− 3t
= 1 + t+ 3t2 + 9t3 + 27t4 + 81t5 + 243t6 + . . . . (7.11)

The generating function for the maximal set of functions with symbol letters y, 1 − y, 1 + y

and no branch cuts except at u = 0,∞ is then just the product,

dH(±1)(t)dalt(t) = 1 + 2t+ 6t2 + 17t3 + 50t4 + 148t5 + 441t6 + . . . . (7.12)
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As was the case for the lines in Table 13, the hexagon functions actually span a much

smaller set of functions when constrained to these particular lines. In Table 16 we tabulate

the dimensions of the spaces obtained from the hexagon functions. This table shows that

the dimensions of the spaces obtained from restricting the hexagon functions to lines with

a three letter alphabet are all significantly smaller than the maximal dimension possible for

this alphabet. (It could not really be otherwise, since the number of independent functions

cannot be greater than the total number of hexagon functions, which grows by a factor of

about 1.7 for each additional weight, while the three-letter space grows by a factor of 3 for

each additional weight.) Thus, much of the rich structure of the space of hexagon functions

survives when limiting to either line. Restricting to the line
(

(1+y)2

4y , 1
2 ,

1
2

)
, the basis for the

space of functions can be expressed most conveniently in terms of HPLs with indices ±1 and

0, and argument y. For the first few weights we have then,{
H0 − 2H−1, ln 2

}
,

{
H2
−1 −H−1,0 + 2H1,−1 −H1,0 − 2 ln 2(H−1 +H1), (H0 − 2H−1)2,

ln 2(H0 − 2H−1) + ln2 2, ζ2

}
,

{
2H0,−1,−1 −H0,−1,0 −H0,0,−1 + 4H1,−1,−1 − 2H1,−1,0 + 4H1,1,−1 − 2H1,1,0

+ 1
12H

3
0 + ζ2(H−1 −H1)− 2 ln 2(H2

1 + 2H1,−1),

2H−1,−1,0 + 2H−1,0,1 −H−1,0,0 + 2H0,−1,−1 −H0,−1,0 −H0,0,−1 − 2
3H

3
−1 + 1

12H
3
0 ,

2H−1,−1,0 + 4H−1,1,−1 − 2H−1,1,0 − 2H0,−1,−1 +H0,−1,0 − 2H0,1,−1 +H0,1,0

+2
3H

3
−1 + 2 ln 2(H0,−1 +H0,1 − 2H−1,1 −H2

−1),

H0,0,−1 − 2H0,1,−1 +H0,1,0 + 1
12H

3
0 + 2ζ2H−1 + 2 ln 2(H0,−1 +H0,1),

ln 2(H0 − 2H−1)2 + 2 ln2 2(H0 − 2H−1) + 4
3 ln3 2,

ζ2(H0 − 2H−1), ζ2 ln 2, ζ3

}
. (7.13)

Using explicit representations of the hexagon functions on the line, we can study the

structure of the coaction on the hexagon functions. We once again verify that the coaction

principle holds on these lines as well for {n −m,m} components of the coaction for generic

m and sufficiently large n. In the process of verifying the coaction principle, we can study

the space of functions appearing in the second term of the coaction. In Table 17 we tabulate

the dimensions of the space of functions observed in the back (de Rham) entry. Once again

we observe that the number of functions that can appear in the back entry is considerably

larger at a given weight than the space of functions on the line at the same weight. Again the

explanation is that the back-entry functions are not required to fulfill a first-entry condition.

Because the space of back-entry functions is larger than the space of hexagon functions and
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weight 1 2 3 4 5 6 7 8 9 10

maximal dim. 2 6 17 50 148 441 1318 3946 11825 35454(
y

1+y , 0,
y

1+y

)
1 3 6 11 24 45 88 163 301 539(

(1+y)2

4y , 1
2 ,

1
2

)
2 4 8 15 28 52 96 174 319 567

Table 16. Dimensions of Hhex when restricted to the two lines with with symbol letters y, 1−y, 1+y.

The maximal dimension corresponds to allowing all alternating sums and all HPLs with no branch

cuts except at u = 0,∞. We only count the finite parts of the functions on the first, singular line.

←− de Rham weight −→

overall weight 1 2 3 4 5 6 7

2 2

3 4 2

4 4 4 2

5 4 8 4 2

6 4 11 8 4 2

7 4 11 15 8 4 2

8 4 11 28 15 8 4 2

Table 17. Dimensions of the space Kπ of de Rham entries of the hexagon functions restricted to

the line ( (1+y)2

4y , 12 ,
1
2 ). The colored entries mark spaces that are saturated, in the sense that no more

functions should appear in Kπ at the given de Rham weight, even when the overall weight is increased

further.

grows faster with increasing weight, the functions appearing in the back entry of the coaction

saturate very slowly, as can be seen in Table 17.

A basis for the saturated space of back entries at weights one and two can be written as,

{H0, H1, H−1, ln 2} ,
{H2

0 , H
2
−1, H−1,1, H0H1, H0H−1, H0,1, H0,−1, H0 ln 2,

H2
1 − 2H1,−1, H−1 ln 2− 1

2 ln2 2, H−1H1 −H1 ln 2− 1
2 ln2 2} . (7.14)

From the explicit representation of the back-entry functions, it is clear that the back-entry

space is not completely unrestricted but still seems to retain some residual constraints from

the full space: two of the 13 potential weight two functions (from the generating function

(1− t2)/(1− t− t2)/(1− 3t) = 1 + 4t+ 13t2 + . . .) are missing from eq. (7.14). This behavior

is contrary to what was observed on the simpler lines with symbol alphabet {u, 1− u}.
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weight 1 2 3 4 5 6 7 8

maximal dim. (2nd line) 2 9 35 139 556 2222 8887 35546(
y

(1+y)2
, y

(1+y)2
, y

(1+y)2

)
dim. 1 2 4 7 13 25 43 77(

1+y+y2

(1+y)2
, 1+y+y2

(1+y)2
, y

(1+y)2

)
dim. 2 4 8 16 31 59 110 ?

Table 18. Dimensions of Hhex when restricted to two lines with symbol letters y, 1 + y, y − ω, 1− ω̄,

for weights up to 8. The maximal dimension corresponds to allowing all MZVs and all cyclotomic

HPLs with no branch cuts on (u, u, 1− u) other than at u = 0, 1.

7.3 Lines with symbol alphabet {y, 1 + y, y − ω, y − ω̄}

The final pair of lines in Table 12 have the four-letter symbol alphabet {y, 1+y, y−ω, y− ω̄}.
Here ω = exp(2πi/3) is a sixth root of unity arising as a zero of the cyclotomic polynomial

1+y+y2. (It is also a cube root of unity, of course, but since 1+y also appears as a letter, it is

better to consider it a sixth root, along with −1.) The functions built from this alphabet are

cyclotomic polylogarithms that can be expressed as G functions with indices drawn from the

set {0,−1, ω, ω̄} with argument y. The first entry condition allows only branch cuts starting

at u = 0, which means that there is only a single weight one function in the case of the first

line (lnu), and two functions in the case of the second line (ln u and lnw = ln(1 − u)). The

generating functions for cyclotomic polylogarithms with these first entry conditions are,

dC1(t) =
1− 3t

1− 4t
= 1 + t+ 4t2 + 16t3 + 64t4 + . . . , (7.15)

dC2(t) =
1− 2t

1− 4t
= 1 + 2t+ 8t2 + 32t3 + 128t4 + . . . . (7.16)

These formulas are significant overcounts, though, because (y−ω) and (y− ω̄) do not appear

independently in the derivatives of functions in Hhex; only the product (y − ω)(y − ω̄) =

1 + y + y2 appears.

At the base point of integration for the construction of these lines, (0, 0, 0), respectively

(1, 1, 0), the hexagon functions degenerate to MZVs. The possible appearance of these bound-

ary values needs to be taken into account when counting the maximal number of independent

functions that can appear on these lines. The generating function for the MZVs is given in

eq. (5.11). If we assume that all MZVs can appear independently, we can obtain a generating

function for the maximum number of functions that can appear on the second four-letter line

as the product,

dC2(t)dMZV(t) = 1 + 2t+ 9t2 + 35t3 + 139t4 + 556t5 + 2222t6 + . . . , (7.17)

as also shown in the first row of Table 18.

In addition to the theoretical maximal dimension, we also show the actual dimensions

of the lines in the hexagon space in Table 18. Once again the dimension of the space of
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hexagon functions grows considerably more slowly than the theoretical maximum. As in the

case of the lines discussed previously, this is due to the structure of the full space of hexagon

functions that survives when restricting to the lines. To illustrate we show a possible basis

choice for the line ( y
(1+y)2

, y
(1+y)2

, y
(1+y)2

) at low weight in terms of G functions with implicit

argument y:

{G0 − 2G−1} ,
{−2Gω̄,−1 +Gω̄,0 − 2Gω,−1 +Gω,0 + 2G0,−1 −G0,0 − ζ2,

4G−1,−1 − 2G−1,0 − 2G0,−1 +G0,0 + 2ζ2} . (7.18)

We can observe that at weight two, ζ2 does not appear as an independent function, but rather

only in specific combinations.

7.4 Alternating sum points

Finally we specialize from lines to points. Figure 1 shows a host of points where the hexagon

functions reduce to numbers associated with cyclotomic polylogarithms [105] with unit argu-

ment and indices that are various roots of unity. These points can be classified by how many

cross ratios are vanishing, leading to logarithmic singularities, as well as by which roots of

unity are involved.

In this subsection we consider points where the hexagon functions reduce to alternating

sums. There are at least two different ways to generate alternating sums from the lines

displayed in Table 12. One way is to set u = 1/2 or u = 2 on one of the lines with symbol

alphabet {u, 1−u}. The other is to set y = 1 on a line with symbol alphabet {y, 1−y, 1+y}.
Four examples of the first type are the points ( 1

2 , 1, 1), (2, 1, 1), (1
2 ,

1
2 , 1), and (2, 2, 1). These

four points are all nonsingular, as no cross ratio vanishes. Through weight 10, the spaces of

alternating sum values at these points exhibit no missing values whatsoever; the dimension

is generated precisely by the Fibonacci sequence, i.e. by dalt(t).

There is also a singular point, ( 1
2 , 0, 1), which has very similar behavior: ignoring coef-

ficients of the ln v singular factors, the finite parts again exhibit no missing values through

weight 10.

At the doubly singular point ( 1
2 , 0, 0), the situation looks identical at first, through weight

8. (Again we focus on the finite parts and ignore the coefficients of positive powers of ln v

and lnw.) However, at weight 9 the first missing value occurs. Instead of having the six

independent values,

f2
3,1,3,1,1, f

2
3,1,1,3,1, f

2
1,3,3,1,1, f

2
1,3,1,1,3, f

2
1,1,3,3,1, f

2
1,1,3,1,3, (7.19)

only five of the six appear, in the following linear combinations:

f2
3,1,3,1,1+f2

3,1,1,3,1, f
2
1,3,3,1,1+f2

1,3,1,1,3, f
2
1,1,3,3,1+f2

1,1,3,1,3, f
2
3,1,3,1,1+f2

1,3,3,1,1, f
2
1,3,1,1,3+f2

1,1,3,1,3.

(7.20)
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weight 1 2 3 4 5 6 7 8 9 10

maximal dim. 1 2 3 5 8 13 21 34 55 89

(1
2 , 0, 0) dim. 1 2 3 5 8 13 21 34 54 86

new missing 0 0 0 0 0 0 0 0 1 2

(1
2 , 0,

1
2) dim. 1 2 3 5 8 12 19 29 44 67

new missing 0 0 0 0 0 1 1 3 5 9

(∞, 0,∞) dim. 0 1 2 2 4 7 11 18 29 47

new missing 1 0 0 1 0 0 0 0 0 0

Table 19. Dimensions of Hhex when restricted to various alternating-sum points, for weights up to 10.

The maximal dimension corresponds to all alternating sums and is given by the Fibonacci sequence. It

is attained through weight 10 by the points ( 1
2 , 1, 1), (2, 1, 1), ( 1

2 ,
1
2 , 1), (2, 2, 1) and ( 1

2 , 0, 1). The ‘new

missing’ lines refer to the number of values that are absent at a given weight that are not predicted

to be absent by the coaction principle.

Table 19 displays the dimension that Hhex reduces to at (1
2 , 0, 0), as well as the number of

values that are absent on this line, beyond those predicted by the coaction principle. At weight

10 there are two new missing values, which like eq. (7.20) involve taking linear combinations

of words with two f2
3 letters, and the remaining (four) letters are f2

1 .

Next we turn to two alternating-sum points on the line (u, 0, u) = ( y
1+y , 0,

y
1+y ), again

focusing on the finite values, ignoring any values multiplied by ln v factors. The first point

has u = 1
2 (y = 1). As shown in Table 19, the first missing value at ( 1

2 , 0,
1
2) is at weight 6. It

corresponds to replacing f2
1,3,1,1 and f2

1,1,3,1 with the single linear combination

f2
1,3,1,1 + f2

1,1,3,1 . (7.21)

At weight 7, f2
1,3,1,1,1, f2

1,1,3,1,1 and f2
1,1,1,3,1 are similarly replaced by their sum,

f2
1,3,1,1,1 + f2

1,1,3,1,1 + f2
1,1,1,3,1 . (7.22)

One of the two removed combinations (f2
1,1,3,1,1 + f2

1,1,1,3,1) is predicted by the coaction prin-

ciple, given eq. (7.21), while the other is new. At weight 8, the three new dropouts are

associated with

f2
1,3,1,1,1,1 + f2

1,1,3,1,1,1 + f2
1,1,1,3,1,1 + f2

1,1,1,1,3,1 ,

f2
1,5,1,1 + f2

1,1,5,1 ,

ζ2 (f2
1,3,1,1 + f2

1,1,3,1), (7.23)

and so on. The missing values at the point ( 1
2 , 0,

1
2) have a very characteristic pattern, but

its significance is not clear to us.
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weight 1 2 3 4 5 6 7 8 9 10

“maximal” dim. 1 3 5 11 21 43 85 171 341 683

(1
2 ,

1
2 ,

1
2) dim. 1 2 4 5 11 17 32 53 99 167

new “missing” 0 1 0 2 2 8 9 21 27 59

Table 20. Dimensions of Hhex when restricted to the 4th root of unity point ( 1
2 ,

1
2 ,

1
2 ), for weights up

to 10. The “maximal” dimension is defined in the text.

The final alternating-sum point we have examined is from setting y = −1 (u→∞), which

we denote by (∞, 0,∞). We also ignore singular factors of ln u (or ln(1+y)) in this limit. Here

the first dropout is at weight one: f2
1 = − ln 2 is missing. Through the coaction principle,

this one low-weight missing value causes a huge reduction in the dimension of Hhex(∞, 0,∞).

There is also a missing value at weight 4, in that f2
1,3 and ζ2 f

2
1,1 get replaced by the linear

combination

7f2
1,3 − 9ζ2f

2
1,1 . (7.24)

Remarkably, that is the last new missing value at this point through weight 10. The contrast

between the behavior at this point and the previous ones in Table 19 is striking, and we have

no explanation for it.

7.5 4th root of unity point

Next we examine the point ( 1
2 ,

1
2 ,

1
2) at the center of the cube in Figure 1. As indicated in

Table 12, this point can be reached by setting y = i on the line (u, 1
2 ,

1
2) for u = (1+y)2/(4y).

However, a better parametrization for the line (u, 1
2 ,

1
2) for u < 1 is to let u = 1/(r2 + 1) =

1/[(r+ i)(r− i)] (y = (r+ i)/(r− i)). The alphabet is {r, r+ i, r− i}. As r goes from 0 to 1,

u goes from 1 (an alternating-sum point) down to 1
2 . This parametrization puts the complex

values into the indices rather than the argument of the G functions.

In contrast to most of the other points we have considered, this point is not on the parity-

odd vanishing surface ∆(u, v, w) = 0. The parity odd functions are pure imaginary at this

point, while the parity even functions are real.

The dimensions of Hhex at this point are shown in Table 20. The f -alphabet for 4th roots

of unity has a separate letter at each weight, f4
1 , f4

2 , f4
3 , f4

4 , etc. The generating function for

these words is 1/(1− t− t2 − t3 − t4 − · · · ) = (1− t)/(1− 2t). There are also both odd and

even powers of iπ. The types of constant values coming from the parity even and parity odd

sectors are quite different. If we define the words of even weight, (f4
2 , f4

4 , etc.) and iπ, to

have odd parity, and the words of odd weight (f4
1 , f4

3 , f4
5 , etc.) to have even parity, then that

parity always agrees with the parity of the function from which the constant originated.

There is a subspace of the even parity values that involve only the words of odd weight

and Riemann zeta values ζ2k. There are no missing values in this subspace; all new missing

values are associated with the odd subspace. We also find that the odd powers of π are not
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independent, but are coupled to other odd f -alphabet words the first time they appear. With

this property in mind, we define a “maximal” dimension which only counts powers of π2 along

with the f -alphabet. The generating function is then:

1

1− t2
1− t
1− 2t

= 1 + t+ 3t2 + 5t3 + 11t4 + 21t5 + 43t6 + . . . , (7.25)

as shown in Table 20. With respect to this definition of “maximal”, the first missing value is

at weight 2, where f4
2 does not appear (because there are no parity-odd weight 2 functions).

At weight 3, the function Φ̃6 evaluates to something proportional to

f4
2,1 −

iπ3

48
. (7.26)

At weight 4, the two parity odd functions both vanish on the entire line (u, u, u), and so

they also vanish at the point ( 1
2 ,

1
2 ,

1
2). Associated with this, the potential odd values f4

1,2,1 −
(iπ3/48)f4

1 and ζ2 f
4
2 are missing, as shown in the table. There are just two weight 5 odd

values,

3f4
4,1 + 8f4

2,3 −
79

5376
iπ5 , f4

2,1,1,1 + 2ζ2f
4
2,1 −

59

2880
iπ5 , (7.27)

while two are missing. As the table shows, there is an increasing number of new missing values

at higher weight, and the actual values in Hhex(1
2 ,

1
2 ,

1
2) are quite restricted. The coaction

principle is obeyed at this point as far as we have been able to check it, through weight 10.

7.6 6th root of unity points

Finally we examine two points where Hhex reduces to 6th root of unity values, ( 1
4 ,

1
4 ,

1
4) and

(3
4 ,

3
4 ,

1
4). Both points are located on the parity-odd vanishing surface ∆(u, v, w) = 0, so we

only have to evaluate the parity-even functions here. There are two weight 1 letters in the

6th root of unity f -alphabet, f6
±1 and one letter for each higher integer weight, f6

2 , f6
3 , f6

4 ,

etc. However, we find that only the odd weight letters appear at these two points, f6
±1, f6

3 ,

f6
5 , etc. The absence of the even weight letters may be related to being on the ∆ = 0 surface.

The generating function for the odd weight letters and the Riemann zeta values ζ2k is

1

1− t2
1

1− 2t− t3 − t5 − t7 − · · ·
=

1

1− 2t− t2 + t3
(7.28)

= 1 + 2t+ 5t2 + 11t3 + 25t4 + . . . .

Table 21 shows that there are many other missing values for both of the 6th root of unity

points. A basis for the first three weights of Hhex(1
4 ,

1
4 ,

1
4) is given by

{f6
−1} , (7.29){
f6
−1,−1 + 2ζ2 , f6

1,−1 +
2

3
ζ2

}
, (7.30){

3f6
3 − f6

1,1,−1 −
2

3
ζ2f

6
1 , 5f6

3 − 8f6
−1,1,−1 −

16

3
ζ2f

6
−1 , f6

−1,−1,−1 + 2ζ2f
6
−1

}
. (7.31)
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weight 1 2 3 4 5 6 7 8

maximal dim. 2 5 11 25 56 126 283 636

(1
4 ,

1
4 ,

1
4) dim. 1 2 3 7 11 22 36 66

new missing 1 1 2 1 6 4 18 21

(3
4 ,

3
4 ,

1
4) dim. 2 4 7 15 27 52 93 170

new missing 0 1 2 2 8 12 31 53

Table 21. Dimensions of Hhex when restricted to the 6th root of unity points ( 1
4 ,

1
4 ,

1
4 ) and ( 3

4 ,
3
4 ,

1
4 ),

for weights up to 8.

The corresponding basis at ( 3
4 ,

3
4 ,

1
4) is given by

{f6
1 , f6

−1} , (7.32){
f6

1,1 + ζ2 , f6
1,−1 +

2

3
ζ2 , f6

−1,1 +
4

3
ζ2 , f6

−1,−1 + 2ζ2

}
, (7.33){

f6
1,1,1 + ζ2f

6
1 , f6

−1,−1,−1 + 2ζ2f
6
−1 ,

3

4
f6

3 + f6
1,−1,1 + f6

−1,1,1 + ζ2f
6
−1 +

4

3
ζ2f

6
1 ,

5f6
1,−1,−1 + 10ζ2f

6
1 − 31f6

−1,1,−1 − 14ζ2f
6
−1 + 5f6

−1,−1,1 , 5f6
−1,1,1 − 23ζ2f

6
−1 − 42f6

−1,1,−1 ,

−5f6
3 + 8f6

−1,1,−1 +
16

3
ζ2f

6
−1 , −6f6

3 + 2f6
1,1,−1 +

4

3
ζ2f

6
1

}
. (7.34)

The coaction principle is obeyed at these two points as far as we have been able to check it,

through weight 8.

8 Conclusions

In this work we have presented a minimal space of functions relevant to six-particle scattering

in planar N = 4 super-Yang-Mills theory, at least through six loops in the NMHV sector and

seven loops in the MHV sector. This space of functions obeys two novel constraints, the

extended Steinmann relations and a cosmic Galois coaction principle—in particular, employ-

ing the derivations ∂2k+1 in eq. (5.18) acting at the point (1, 1, 1)—which together severely

restrict the number of functions that can appear. We have also described how to construct

this space of functions order by order in transcendental weight, and have carried out this

procedure through weight eleven, with partial results for weight twelve.

The extended Steinmann relations, described in section 3, generalize the Steinmann re-

lations to a property that holds on all Riemann sheets. Namely, they correspond to applying

the Steinmann relations after carrying out any sequence of analytic continuations, thereby

constraining not just the first two discontinuities of the amplitude, but any consecutive pair

of discontinuities. The resulting space also exhibits constraints on longer sequences of dis-

continuities, as described in appendix B. The extended Steinmann relations exhibit a striking

resemblance to the recently-discovered phenomenon of cluster adjacency [73]. While these
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constraints are equivalent at six points (and the latter implies the former at all n [75]), the

relation between these constraints is still not fully understood. Moreover, while something

resembling the extended Steinmann relations ought to hold for a wider class of quantum field

theories, we have left this investigation for future work.

We have also described the presence of a coaction principle [59, 62, 64] that is obeyed by

the space of functions entering the six-particle amplitude. This property requires the intro-

duction of a new normalization constant ρ, which suggests that the coaction principle selects a

preferred scheme for subtracting infrared divergences. It would be interesting to identify this

scheme in terms of known (or new) physical quantities, and investigate its interplay with the

observed positivity of the amplitude [109, 110]. There also remains the question of whether

a truly “bottom-up” definition of the space of constants present in these amplitudes exists.

In particular, it would be interesting to find an explanation for why we have only found it

necessary to include even powers of π as independent constant functions in Hhex.

We know that Hhex cannot be any smaller through weight 7, nor for the parity-odd

part at weight 8, because the coproducts of the amplitudes we have computed span these

parts of Hhex. However, starting with the parity even functions at weight 8, there is still

the possibility that a more minimal space should be defined. Indeed, we have fairly strong

evidence that this possibility will be realized, based on the behavior of the functions at

the point (u, v, w) = (1, 0, 0) and its cyclic images (0, 1, 0) and (0, 0, 1). These three points

represent combined soft and collinear limits of the amplitude, which are predicted to all loop

orders by the flux tube or pentagon operator product expansion [106–108]. This expansion

never contains any MZVs with depth greater than one; only depth-one Riemann zeta values

ζn arise. Since the operator product expansion can be expressed as a series expansion in

all three variables around (1, 0, 0), this same conclusion applies to arbitrary derivatives of

the amplitudes evaluated at (1, 0, 0), i.e. to arbitrary coproducts: only Riemann zeta values

should ever appear. On the other hand, the first irreducible depth 2 MZV, ζ5,3, appears in

the values of many of the 313 weight 8 functions at (1, 0, 0) — but it does not appear in

the limits of the 279 functions that are actually coproducts of presently known amplitudes!

We conclude that at least three linear combinations of the 313 functions will have to be

removed from Hhex, one each to kill the ζ5,3 in the (1, 0, 0), (0, 1, 0) and (0, 0, 1) limits. Also,

because the 279 amplitude coproducts span all 123 of the non-K functions, the functions to

be removed should be the simpler K functions.

We have looked at a variety of other MZV points to see whether ζ5,3 disappears from

the amplitude coproducts. The only other point we have found with this property is the

origin, (u, v, w) = (0, 0, 0). This point is far from the OPE limit, so it is not as clear that

depth 2 MZVs cannot appear here. Some of the 313 functions in the basis do have ζ5,3 in

their limits at the origin, though none of the 279 amplitude coproducts do. However, after

we eliminate ζ5,3 from the (1, 0, 0), (0, 1, 0) and (0, 0, 1) limits of the weight 8 functions, by

removing the three linear combinations mentioned above, we find that the remaining 310

functions at the origin are free of ζ5,3. A similar phenomenon occurs at weight 9, where ζ5,3

can be seen accompanying ln ui in the limits, and for the non-Riemann zeta values ζ7,3 and
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ζ2ζ5,3 appearing in the same limits at weight 10.

It is clear there is still more to learn about the bottom-up construction of the space Hhex

(defined in the introduction as the minimal space containing all amplitude coproducts). What

are the proper constraints to impose, beyond the coaction principle exploited in this paper?

Will we need to compute new seven- and eight- loop amplitudes to determine precisely which

functions should drop out, at weight 8 and beyond? Is it obvious that the smaller space will

still satisfy a coaction principle?

While we have primarily investigated the coaction principle at kinematic points and on

codimension-two surfaces, it is expected to hold in general kinematics. It would be interesting

to find out whether higher-point amplitudes also obey a coaction principle for the same

choice of ρ. For a sufficiently large number of particles, these amplitudes will no longer be

polylogarithmic [81, 111–117]; however, this presents no a priori obstacle to the existence of

a coaction principle, as a coaction can also be constructed on the more complicated periods

that are expected to arise [55]. This has already been done explicitly for the case of elliptic

polylogarithms [118, 119]. While non-supersymmetric amplitudes generically involve more

complicated rational prefactors and will not enjoy uniform transcendental weight, there is

also no a priori obstacle to finding coaction principles in more general quantum field theories,

as has already been done in string theory, φ4 theory, and QED [59, 62, 64, 65].
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A Values of the Amplitudes at (1, 1, 1) in the f-basis

The values of the MHV amplitudes E(L)(1, 1, 1) for L = 1 to 7 in the f -basis are:

E(1)(1, 1, 1) = 0 , (A.1)

E(2)(1, 1, 1) = −10 ζ4 , (A.2)

E(3)(1, 1, 1) =
413

3
ζ6 , (A.3)

E(4)(1, 1, 1) = −5477

3
ζ8 + 24

[
5f3,5 − 2ζ2f3,3

]
, (A.4)

E(5)(1, 1, 1) =
379957

15
ζ10 − 384

[
7f3,7 − ζ2f3,5 − 3ζ4f3,3

]
− 312

[
5f5,5 − 2ζ2f5,3

]
, (A.5)

E(6)(1, 1, 1) = −2273108143

6219
ζ12 + 2264

[
7f3,9 − 6ζ4f3,5

]
+ 6536

[
5f3,9 − 3ζ6f3,3

]
− 3072

[
ζ2f3,7 − ζ6f3,3

]
+ 5328

[
7f5,7 − ζ2f5,5 − 3ζ4f5,3

]
+ 4224

[
5f7,5 − 2ζ2f7,3

]
, (A.6)

E(7)(1, 1, 1) =
2519177639

1260
ζ14 − 63968

[
5f9,5 − 2ζ2f9,3

]
− 77952

[
7f7,7 − ζ2f7,5 − 3ζ4f7,3

]
− 34976

[
7f5,9 − 6ζ4f5,5

]
− 95552

[
5f5,9 − 3ζ6f5,3

]
+ 44640

[
ζ2f5,7 − ζ6f5,3

]
− 413920

11

[
33f3,11 − 20ζ8f3,3

]
+ 28000

[
ζ2f3,9 − ζ8f3,3

]
+ 62720

[
3ζ4f3,7 − 2ζ8f3,3

]
+

218696

3

[
3ζ6f3,5 − 2ζ8f3,3

]
− 4992

[
5f3,3,3,5 − 2ζ2f3,3,3,3 +

5611

132
ζ8f3,3

]
. (A.7)

The values of the NMHV amplitudes E(L)(1, 1, 1) for L = 1 to 6 in the f -basis are:

E(1)(1, 1, 1) = −2 ζ2 , (A.8)

E(2)(1, 1, 1) = 26 ζ4 , (A.9)

E(3)(1, 1, 1) = −940

3
ζ6 , (A.10)

E(4)(1, 1, 1) =
36271

9
ζ8 − 24

[
5f3,5 − 2ζ2f3,3

]
, (A.11)

E(5)(1, 1, 1) = −1666501

30
ζ10 + 528

[
7f3,7 − ζ2f3,5 − 3ζ4f3,3

]
+ 384

[
5f5,5 − 2ζ2f5,3

]
,(A.12)

E(6)(1, 1, 1) =
5066300219

6219
ζ12 − 4664

[
7f3,9 − 6ζ4f3,5

]
− 11384

[
5f3,9 − 3ζ6f3,3

]
+ 5664

[
ζ2f3,7 − ζ6f3,3

]
− 8928

[
7f5,7 − ζ2f5,5 − 3ζ4f5,3

]
− 6528

[
5f7,5 − 2ζ2f7,3

]
. (A.13)

Notice the abundance of integers among the rational-number coefficients. The ones that are

not integers are typically associated with even Riemann zeta values. Those coefficients might
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take a simpler form if the even zeta values were rewritten in terms of sums of products of

other even Riemann zeta values, but we refrain from doing this, since there is no unique way

to do so.

We also provide the conversion between the f -alphabet and MZVs through weight 11:

f3,3 =
1

2
(ζ3)2 , (A.14)

f5,3 = −1

5
ζ5,3 , (A.15)

f3,3,3 =
1

6
(ζ3)3 , (A.16)

f3,7 = ζ3ζ7 +
1

14

[
3(ζ5)2 + ζ7,3

]
, (A.17)

f7,3 = − 1

14

[
3(ζ5)2 + ζ7,3

]
, (A.18)

f5,5 =
1

2
(ζ5)2 , (A.19)

f3,3,5 =
1

2

[
ζ6 + (ζ3)2

]
ζ5 +

1

5

[
−ζ5,3,3 + ζ3ζ5,3 − 3ζ4ζ7

]
− 9ζ2ζ9 , (A.20)

f3,5,3 = −ζ6ζ5 +
1

5

[
2ζ5,3,3 − ζ3ζ5,3 + 6ζ4ζ7

]
+ 18ζ2ζ9 , (A.21)

f5,3,3 =
1

2
ζ6ζ5 −

1

5

[
ζ5,3,3 + 3ζ4ζ7

]
− 9ζ2ζ9 . (A.22)

The ancillary file ftoMZV.txt gives the same results through weight 14.

B Longer-Range Symbol Restrictions

In section 3, it was pointed out that only certain combinations of symbol letters appear

between pairs of letters, such as a and b, that are restricted from appearing in adjacent

entries by the Steinmann relations. We here explore this phenomenon further, and show that

all sequences of symbol letters that appear between restricted letters (namely, those disallowed

by equation (3.8)) vanish in the kinematic limit where the discontinuities in a ∼ s234 and

b ∼ s345 are simultaneously accessible. Conversely, between all other pairs of letters, there

exist sequences of symbol letters that do not vanish in this limit.

The discontinuities corresponding to the symbol letters a ∼ s234 and b ∼ s345 are acces-

sible in the region where both of these Mandelstam invariants vanish. We can take this limit

while keeping all other Mandelstam invariants generic by sending

yu →
1

yw
+ δu, yv →

1

yw
+ δv, (B.1)
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w · · · ⊗ a · · · ⊗mv · · · ⊗mw · · · ⊗ yu · · · ⊗ yvyw · · · ⊗ b · · · ⊗ c · · · ⊗mu · · · ⊗ yv/yw

2 1 1 1 1 1 0 0 0 0

3 6 6 6 6 6 1 1 3 3

4 36 40 40 41 41 15 19 29 29

5 227 285 283 302 302 142 172 242 242

Table 22. The number of distinct terms that have first entry a and a given last entry in the space

of weight-w symbols constructed out of the 40 adjacent entry pairs given in eqs. (3.6) and (3.7). This

number depends on the symbol alphabet used; we express these symbols in terms of the alphabet

{a, b, c,mu,mv,mw, yuyw, yvyw, yw} everywhere but in the last entry.

where both δu and δv are infinitesimal. This implies

a→ y3
w

(1− yw)2
(δv)

2, b→ y3
w

(1− yw)2
(δu)2, c→ (1 + yw)2

yw
,

mu → −1, mv → −1, mw → −1, (B.2)

yuyw → 1, yvyw → 1, yw → yw ,

where the yu and yv letters have been put into combinations that are independent of yw in

this limit. It is again easy to see how the two letters mw and yuyvyw mentioned in section 3

behave differently in this limit—any symbol involving mw will vanish, while those involving

yuyvyw in general will not, since yuyvyw → 1/yw.

Next we investigate the weight-four case, in which two symbol entries appear between the

letters a and b, by constructing the full space of weight-four symbols without the first entry

condition imposed. More specifically, we construct the space of symbols involving only the

40 weight-two combinations given in equations (3.6) and (3.7) in all pairs of adjacent entries,

but allow any of the nine hexagon symbol letters to appear in the first (and last) entries. We

then identify all terms in this space that have first entry a and last entry b, after expressing

the middle entries in terms of the symbol alphabet in (B.2). Note that these terms will not

in general be integrable by themselves, which is why we construct the space of symbols with

general first and last entries despite being interested in terms with specific such entries. In

this way, we find fifteen pairs of letters:

a⊗mw, mv ⊗mu, mv ⊗mw, mv ⊗ yuyw, mw ⊗ b,
mw ⊗mu, mw ⊗mw, mw ⊗ yuyw, mw ⊗ yvyw, mw ⊗ yw, (B.3)

yuyw ⊗mw, yvyw ⊗mu, yvyw ⊗mw, yvyw ⊗ yuyw, yw ⊗mw.

By reference to equation (B.2), it is easy to see that every one of these terms will vanish in

the limit (B.1).

To see that this behavior is non-generic, let us consider terms that have the letter a in

their first entry, and arbitrary letters (not just b) in their last entry. We present the number
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w · · · ⊗ a · · · ⊗mv · · · ⊗mw · · · ⊗ yu · · · ⊗ yvyw · · · ⊗ b · · · ⊗ c · · · ⊗mu · · · ⊗ yv/yw

2 1 1 1 1 1 0 0 0 0

3 2 2 2 2 2 0 0 0 0

4 4 4 4 4 4 0 0 0 0

5 8 8 8 8 8 0 0 0 0

Table 23. The number of terms in Table 22 whose middle w−2 entries do not vanish in the limit (B.1).

of such terms for different final entries in Table 22, where we have separated final entries that

are in Sa in equation (3.8) and those that are in its complement. Beyond weight 2 (where we

know that only the letters in Sa appear next to a) there generically exist terms with first entry

a and every possible last entry. However, in Table 23 we also give the number of these terms

that remain nonzero in the limit (B.1). (We ignore whether or not the last entry vanishes in

this limit, focusing only on the properties of the middle w−2 entries.) We see that all the

symbol terms with first entry a vanish in this limit if and only if the last entry is not in Sa.

We can provide evidence that this phenomenon will persist to all weights by constructing

the full space generated by the letters that remain non-constant in (B.2). At any weight, only

three types of functions can be formed out of these letters, namely

ln

(
y3
w

(1− yw)2
(δv)

2

)
, ln

(
y3
w

(1− yw)2
(δu)2

)
, H~w(yw), (B.4)

where ~w can be any sequence of ‘0’s and ‘−1’s. However, only products of ln(yw) = H0(yw)

and ln
( y3w

(1−yw)2
(δv)

2
)

ever actually appear between the letter a and the final entries in Sa in

the limit (B.1). This follows from the fact that instances of ln
( y3w

(1−yw)2
(δu)2

)
and H...,−1,...(yw)

can only arise from symbols involving the letters b and c. Since, as seen in Table 23, terms in

which either letter appears in the last entry always vanish in the limit (B.1), it follows that

any term in which they appear in one of the middle entries must also vanish.

This leaves at most w − 1 functions that can appear between a and the final entries in

Sa after we take the limit (B.1), namely the functions

lnw−2−n
(

y3
w

(1− yw)2
(δv)

2

)
lnn yw (B.5)

for any 0 ≤ n ≤ w−2. Since these functions are all products of logs, they give rise to 2w−2

distinct symbol terms (namely, any length-(w−2) sequence of the letters yw and y3w
(1−yw)2

(δv)
2).

We find that this number, 2w−2, is saturated by all the entries in the left half of Table 23.

More importantly, we conjecture that the last four columns of Table 23 remain 0 for all w.

It seems likely that this vanishing mechanism protects the amplitude from having (perhaps

sub-leading) unphysical branch cuts, but at this time we don’t know how to derive these

constraints directly from the Steinmann relations.
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[87] T. Harrington and M. Spradlin, “Cluster Functions and Scattering Amplitudes for Six and

Seven Points,” JHEP 07 (2017) 016, arXiv:1512.07910 [hep-th].

[88] L. F. Alday, J. Maldacena, A. Sever, and P. Vieira, “Y-system for Scattering Amplitudes,” J.

Phys. A43 (2010) 485401, arXiv:1002.2459 [hep-th].

[89] G. Yang, “Scattering amplitudes at strong coupling for 4K gluons,” JHEP 12 (2010) 082,

arXiv:1004.3983 [hep-th].

[90] J. Golden and A. J. Mcleod, “Cluster Algebras and the Subalgebra Constructibility of the

Seven-Particle Remainder Function,” JHEP 01 (2019) 017, arXiv:1810.12181 [hep-th].

[91] W. Stein and D. Joyner, “SAGE: System for algebra and geometry experimentation,” ACM

SIGSAM Bulletin 39 (2005) no. 2, 61–64. http://www.sagemath.org.

– 67 –

http://dx.doi.org/10.1103/PhysRevLett.120.161601
http://dx.doi.org/10.1103/PhysRevLett.120.161601
http://arxiv.org/abs/1710.10953
http://dx.doi.org/10.1007/JHEP03(2019)086
http://dx.doi.org/10.1007/JHEP03(2019)086
http://arxiv.org/abs/1810.08149
http://arxiv.org/abs/1902.11286
https://www.math.fau.de/person/oliver-schnetz/
http://dx.doi.org/10.1007/JHEP05(2013)135
http://dx.doi.org/10.1007/JHEP05(2013)135
http://arxiv.org/abs/0905.1473
http://dx.doi.org/10.1088/1126-6708/2009/11/045
http://arxiv.org/abs/0909.0250
http://arxiv.org/abs/1308.1697
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://arxiv.org/abs/hep-th/0610251
http://arxiv.org/abs/1212.5605
http://dx.doi.org/10.1007/JHEP11(2015)136
http://arxiv.org/abs/1507.01950
http://arxiv.org/abs/1507.01950
http://dx.doi.org/10.1007/JHEP12(2011)066
http://arxiv.org/abs/1105.5606
http://dx.doi.org/10.1007/JHEP07(2018)170
http://arxiv.org/abs/1806.01361
https://indico.ph.ed.ac.uk/event/26/contributions/342/attachments/284/319/Papathanasiou_Amplitudes2017.pdf
https://indico.ph.ed.ac.uk/event/26/contributions/342/attachments/284/319/Papathanasiou_Amplitudes2017.pdf
http://dx.doi.org/10.1007/JHEP07(2017)016
http://arxiv.org/abs/1512.07910
http://dx.doi.org/10.1088/1751-8113/43/48/485401
http://dx.doi.org/10.1088/1751-8113/43/48/485401
http://arxiv.org/abs/1002.2459
http://dx.doi.org/10.1007/JHEP12(2010)082
http://arxiv.org/abs/1004.3983
http://arxiv.org/abs/1004.3983
http://dx.doi.org/10.1007/JHEP01(2019)017
http://arxiv.org/abs/1810.12181
http://www.sagemath.org


[92] V. Del Duca, C. Duhr, and V. A. Smirnov, “The massless hexagon integral in D = 6

dimensions,” Phys.Lett. B703 (2011) 363–365, arXiv:1104.2781 [hep-th].

[93] L. J. Dixon, J. M. Drummond, and J. M. Henn, “The one-loop six-dimensional hexagon

integral and its relation to MHV amplitudes in N=4 SYM,” JHEP 1106 (2011) 100,

arXiv:1104.2787 [hep-th].

[94] C. Anastasiou, C. Duhr, F. Dulat, and B. Mistlberger, “Soft triple-real radiation for Higgs

production at N3LO,” JHEP 07 (2013) 003, arXiv:1302.4379 [hep-ph].

[95] E. Panzer, “Algorithms for the symbolic integration of hyperlogarithms with applications to

Feynman integrals,” Comput. Phys. Commun. 188 (2015) 148–166, arXiv:1403.3385 [hep-th].
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