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tionIn the last few de
ades we witnessed an amazing leap forward in our understanding of theformulation of quantum �eld theory on 
urved ba
kgrounds thanks to the e�orts of many resear
hgroups whi
h often ta
kled this topi
 by means of the algebrai
 formalism. A 
areful analysis ofall the related a
hievements, though tempting, would require a review on its own and, instead,we shall restri
t ourselves to brie
y mentioning the results of a re
ent manus
ript, whi
h hasprompted our interest towards the topi
 dis
ussed in this paper. To wit, in [DFP08℄, it wasshown that, in the framework of semi
lassi
al Einstein's equations, it is possible to 
onstru
texpli
it solutions for a homogeneous and isotropi
 Friedmann-Robertson-Walker spa
etime with
at spatial se
tions, where the assumption has been made that the matter 
ontent is des
ribedby a suitably quantised free massive s
alar �eld. In order to prove this result, two ingredientshave played a key role, namely, Hadamard states, as the natural 
andidates for a ground state,and the quantum behaviour of the regularised stress-energy tensor T�� . Parti
ularly, as endpoint of the above 
ited paper, a late times stable de Sitter solution has been displayed and,hen
e, an e�e
tive 
osmologi
al 
onstant has arisen without inserting it from the very beginningas an input datum. If one tries to seek the origin of this genuine quantum e�e
t, one 
an realisethat it is ultimately rooted in the so-
alled tra
e anomaly, i.e., in a few words, the expe
tationvalue of the regularised tra
e is not vanishing on Hadamard states, even though this is the 
aseat a 
lassi
al level.Although interesting, the derivation of the aforementioned result rises naturally the questionabout its robustness sin
e one 
ould wonder if this behaviour is a feature pertaining only tos
alar �elds or if it holds true for any kind of matter 
onstituent. It thus seems advisable totry to apply the same s
heme of reasoning in the 
ontext of a free Dira
 �eld. To our utmostsurprise, we have realised that the a

omplishment of this goal has not been as easy as one mighta priori believe sin
e, just by a qui
k s
an of the available literature, it is manifest how spinor�elds play a somehow an
illary role in the arena of algebrai
 quantum �eld theory. In fa
t,there are only few mathemati
ally sound results and many tools and 
on
epts, whi
h have beenthoroughly dis
ussed for s
alar �elds, have barely been s
rat
hed for spinors. As an example, letus re
all that we are mostly 
on
erned with the tra
e anomaly for Dira
 �elds and it turns outthat this quantity has indeed been already investigated in the late seventies in [Chr78, ChDu79℄,though by means of the so-
alled DeWitt-S
hwinger expansion whi
h la
ks mathemati
al rigourand, therefore, we 
annot 
all our understanding of this anomaly 
omplete yet.2



With this in mind, before we 
an ta
kle any spe
i�
 topi
 in a 
osmologi
al s
enario, our �rst
on
ern must lie in the amendment of the the above mentioned problem. This will indeed be themain point of the paper and we shall dis
uss it within the framework of the algebrai
 approa
h toquantum �eld theory. To this end, we must also take into a

ount that the s
ienti�
 
ommunityinterested in this problem might not be a
quainted with the formulation of a spinor �eld theoryon a 
urved ba
kground, whi
h, already at a 
lassi
al level, turns out to be rather di�erent andmore 
ompli
ated than the s
alar 
ounterpart. Hen
e, as a starting point, we shall review the
onstru
tion of a Dira
 �eld in a 
lassi
al framework emphasising the role of the underlyinggeometri
 stru
tures whi
h are needed in order to fully des
ribe both the kinemati
ally and thedynami
ally allowed �eld 
on�gurations. To this e�e
t, our analysis will bene�t from earlierworks whi
h have already dwelled on this topi
 and, most notably, we shall refer to the seminalpaper of Li
hnerowi
z [Li
64℄ as well as to [Dim82, Sa08℄.Subsequently, we shall dis
uss the quantisation of a Dira
 �eld on a 
urved ba
kground and,in this respe
t, one should mention that there are several possibilities at our disposal. On the onehand one 
ould follow the point of view already suggested in [Dim82℄, while, on the other hand,one 
ould also analyse the problem from the perspe
tive of Araki [Ar70℄, whose s
heme has thepe
uliarity of unifying spinors and 
ospinors in a single body before quantising them. This leadsto a natural de�nition both of a CAR �-algebra of �elds and of a subalgebra of observables,on
e we require at least that elements whose supports are spa
elike separated must 
ommute.Furthermore, this s
heme, also at the heart of [Ver96, K�o95, Kra00, Hol99, FeVe02, Sa08℄, hasthe remarkable advantage of being well suited to re
ast the quantum theory of Dira
 �elds inthe language of Lo
ally Covariant Quantum Field Theory [BFV03℄, as we will point out.In order to fully 
ontrol the ma
hinery of a quantum �eld, the s
alar �eld s
enario alreadythought us that one has to understand well whi
h algebrai
 states one should use and, to thisavail, the ones of Hadamard type are the natural 
hoi
e in the 
ontext of Dira
 �elds, too;these play the role of ground states in a 
urved ba
kground and their ultraviolet behaviour
losely mimi
s that of the Minkowski spa
etime va
uum state. Consequently, the 
u
tuationsof the 
omponents of the stress-energy tensor on these states are bounded, a property whi
his vital in the 
ontext of semi
lassi
al Einstein's equations. Hadamard states for Dira
 �eldshave already been dis
ussed in [K�o95, Ver96, Hol99, Kra00, SaVe01, DaHo06℄ and we will reviewtheir properties in detail before employing them to a
hieve the �rst of our main results, namely,the 
onstru
tion of the extended algebra of Wi
k polynomials in a spinor framework. To thisend, we will follow the path paved in the s
alar s
enario in [BFK95, BrFr00, HoWa01, HoWa02℄where it has been displayed that su
h polynomials lie at the basis of a sound S-matrix formalismfor intera
ting �eld theories on a globally hyperboli
 
urved ba
kground.Notwithstanding, Wi
k polynomials are already valuable in free �eld theories and we will, asalready anti
ipated, indeed use them to a
hieve our se
ond main result, i.e., the de�nition of awell-behaved quantum stress-energy tensor operator T�� for Dira
 �elds. To a
hieve this goal, weshall follow a pro
edure similar to that dis
ussed in [Mo03℄ (see also the related work [HoWa05℄)for a free s
alar �eld, i.e., we shall introdu
e an improved point-splitting pro
edure to de�neT�� evaluated on a Hadamard state. This leads to a new overall stress-energy tensor whi
h doesnot alter 
lassi
al dynami
s and is ultimately 
onserved at the quantum level. Furthermore, as3



a by-produ
t of our analysis, we shall also be able to expli
itly 
ompute the expe
tation value ofits tra
e whi
h will agree, up to terms proportional to �R, with previously found results whilebeing derived in a rigorous framework.2 Dira
 �elds: a 
lassi
al overviewSin
e, as we have outlined in the introdu
tion, the aim of this paper is to provide an as mu
has possible self-
ontained approa
h to some topi
s related to the quantum des
ription of Dira
�elds in 
urved ba
kgrounds, we will start with a des
ription of Dira
 spinors in a 
lassi
alframework. Although su
h topi
 has been already dis
ussed both from a geometri
al and froman analyti
al point of view by many authors, we re
kon the we should try to re
all the mainfeatures of the 
lassi
al approa
h in order both to fa
ilitate the understanding of the quantumaspe
ts and to �x some subtleties whi
h ubiquitously arise in these s
enarios.2.1 On the spin stru
ture and related geometri
 entitiesBearing in mind this overall philosophy, we shall mainly devote this subse
tion to the introdu
-tion of spin stru
tures and of the Dira
 bundles, in order to 
hara
terise (
o)spinors as suitablese
tions. We shall not dwell too mu
h on the geometri
al 
ontents and for the potential readerswho might �nd our approa
h too shallow we present our apologises and point them to [LaMi89℄for a 
areful dis
ussion of most of the forth
oming 
on
epts and appli
ations.As a starting point, let us �x that, in this paper, a spa
etime is meant to be a four-dimensional, Hausdor�, smooth manifold endowed with a Lorentzian metri
, whose signature is
hosen as (�;+;+;+). Furthermore, sin
e it is 
ommon wisdom to asso
iate Dira
 �elds to thenotion of spin, we need a few de�nitions as a �rst step:De�nition 2.1. We 
all spin group Spin(p; q) with p; q 2 N the double 
over of SO(p; q),i.e., it exists the following short exa
t sequen
e:feg �! Z2 �! Spin(p; q) �! SO(p; q) �! feg ;where feg stands for the trivial group, whereas Z2 := f�1g is the 
y
li
 group of order 2. There-fore, any element of Spin(p,q) indu
es an element of SO(p,q). Su
h a surje
tive 
overing will beindi
ated as � : Spin(p; q)! SO(p; q).Remark. As a 
onsequen
e of the above de�nition, it exists an isomorphism between Spin(p; q)and Spin(q; p) for any possible value of both p and q. Furthermore, it is also possible to talkabout the dimension of su
h 
lassi
al Lie group whi
h, per dire
t inspe
tion, isdim (Spin(p; q)) = 12(p+ q)(p+ q � 1):Furthermore, for all p; q > 0, the spin group has two 
onne
ted 
omponents, where we denote the
omponent 
onne
ted to the identity as Spin0(q; p). The latter insight entails that the s
enario4



with p = 3 and q = 1 is of great interest sin
e, in this 
ase, Spin0(1; 3) is isomorphi
 to SL(2; C ).The above de�nition represented only the �rst step toward the de�nition of a Dira
 �eldsin
e, in modern 
lassi
al �eld theory, the geometri
 interpretation of a kinemati
ally allowed
on�guration is that of a se
tion of a suitable asso
iated bundle. Within this respe
t, one shouldnoti
e that, (un)fortunately, in the often analysed 
ase of a s
alar �eld, su
h ni
e perspe
tivedoes not really enter the fray, whereas, in this 
ase, su
h a luxury is not at our disposal, being aspinor intrinsi
ally a ve
tor-valued �eld. Hen
e, we shall now show how the notion of spin group
an be intertwined with that of a 
lassi
al �eld. As a �rst step we need further de�nitions.De�nition 2.2. Given a ve
tor bundle E := E[V; �;M ℄ over a Lorentzian manifold M withtypi
al �bre V and proje
tion map � : E ! M , we 
all frame F (x) over the point x theassignment of an ordered basis to the �bre ��1(x) � V , i.e., a map p : K k ! ��1(x), being kthe dimension of V and K 2 fR; C g. Furthermore, we require that the right a
tion of the groupGL(k;K ) on the �bre is both free and transitive.Remark. Su
h a de�nition is at the heart of the widely exploited 
on
ept of tetrads in generalrelativity and, on a pra
ti
al ground, it is remarkable sin
e it guarantees us that whenever ave
tor bundle is asso
iated to the underlying spa
etime one is free to 
hoose a basis of su
h aspa
e and that the rules of 
hanging the basis are left untou
hed; this is en
oded in the a
tion ofGL(k;K ), i.e., ea
h element of this group transforms a basis into another one. Furthermore, therequest of transitivity guarantees us that it is always possible to transform any 
hosen basis intoany other one, whereas demanding a free a
tion entails that only the identity element leaves a
hosen basis un
hanged. The most notable and ubiquitously used appli
ation of su
h a de�nitionis the tangent bundle where V � Rk , being k = dimM . In the following, we shall have this 
asein mind and hen
e we shall identify E as E � TM = TM [Rk ; �;M ℄.Therefore, if we 
all FxM � GL(k;R) the set of all possible frames over a point x 2M , we
an gather all this information into a unique obje
t:De�nition 2.3. A frame bundle FM asso
iated to TM is FM := Fx FxM . This is a �brebundle on its own, namely FM = FM [GL(k;R); �0 ;M ℄, with GL(k;R) as typi
al �bre and theproje
tion map �0 : FM !M . Whenever the base spa
e M is an orientable and time orientablespa
etime, hen
e also endowed with a (lo
al) non-degenerate metri
 of signature (p; q), we 
an
hoose a spa
e and time orientation, and hen
e redu
e GL(k;R) to SO0(p; q) with p + q = k.We shall always 
onsider su
h 
ase in the following.Remark. A �bre bundle as above is an example of a prin
iple �bre bundle, having the samegroup as both the typi
al �bre and the stru
ture group. By requiring the right a
tion of thegroup to leave the base point invariant, e.g., �0ÆRGL(k;R) = �0 for FM , one 
an straightforwardlyextend it to the full prin
iple �bre bundle. This extension is independent of lo
al trivialisations,5



sin
e these are related by the left a
tion of the group and the left and right a
tion of a groupon itself 
ommute. One 
an even swit
h perspe
tives and de�ne the �bres and base points of aprin
iple �bre bundle via the orbits of the right a
tion.We are now in the position to eventually introdu
e the main geometri
 stru
ture of thispaper whi
h lies at the heart of the 
onstru
tion and of the analysis of a Dira
 (
o)spinor:De�nition 2.4. Given a manifold M with a non degenerate metri
 of signature (p; q), a spinstru
ture is the pair (SM; �) where SM := SM [Spin0(p; q); e�;M ℄ is a prin
iple �bre bundleover M with the identity 
omponent of the spin group as typi
al �bre. Moreover, � is a bundlehomomorphism from SM to FM subje
t to the following 
onditions:1. � is base point preserving, su
h that �0 Æ � = e�;2. � must be equivariant, i.e., 
alling Re� and R� the natural right a
tions of Spin0(p; q) onSM and of SO0(p; q) on FM respe
tively, we require that� ÆRe� = R� Æ �; 8� 2 SO0(p; q);where � = �(e�), being � as in de�nition 2.1.Remark. A natural, apparently na��ve, but ultimately rather 
ompli
ated question a potentialreader might ask, is why one should 
ope with su
h 
ompli
ated geometri
 stru
tures to deal witha somehow natural 
on
ept su
h as that of spin. To answer this question, let us keep in mindthe notion of a Dira
 �eld in the 
at s
enario and try to generalise it to a 
urved ba
kgroundwith O

am's razor as a prin
iple. That said, in four-dimensional Minkowski spa
etime, one
an employ a standard 
onstru
tion, dating from the late thirties and due to Wigner, a

ordingto whi
h a spin 12 �eld is nothing but a suitable fun
tion satisfying the Dira
 equation andtransforming under a unitary and parity invariant representation of the universal 
over of thePoin
ar�e group indu
ed from the j = 12 representation of SU(2) (see 
hapter 21 of [BaRa86℄for more details). It is remarkable to noti
e that, on
e restri
ted to SL(2; C ), i.e., negle
tingthe translations, this representation 
oin
ides with the D( 12 ;0) � D(0; 12) representation of theaforementioned group. Although there is no translational invarian
e in a 
urved ba
kground,the previous de�nitions grants us that, by means of the spin stru
ture, it is nonetheless possible tode�ne, barring 
ertain te
hni
al requirements, a natural notion of an SL(2; C )-group asso
iatedto a spa
etime. Furthermore, the very absen
e of translational invarian
e implies that su
h ade�nition of spin in 
urved ba
kgrounds seems really the best one 
an do.Hen
e, though not suÆ
ient to determine full dynami
s of a Dira
 spinor, our philosophywill be to seek to 
hara
terise the kinemati
ally allowed 
on�gurations of su
h a �eld by means6



of the mentioned D( 12 ;0) � D(0; 12 ) representation, while remembering at the same time that,
lassi
ally, �elds should be understood as se
tions of a suitable ve
tor bundle. To 
ombine thesetwo 
on
epts, we pro
eed in the following way:De�nition 2.5. We 
all Dira
 bundle of a four dimensional Lorentzian spa
etime M withrespe
t to the representation T := D( 12 ;0) � D(0; 12) of SL(2; C ) on C 4 the asso
iated bundleDM := SM �T C 4 . This is the set of equivalen
e 
lasses [(p; z)℄, where p 2 SM , z 2 C 4 andequivalen
e is de�ned out of the relation(p1; z1) � (p2; z2);if and only if it exists an element A of SL(2; C ) su
h that LA(p1) = p2 and T (A�1)z1 = z2,where LA denotes the left a
tion of A on SM . The global stru
ture of DM is that of a �brebundle over M with typi
al �bre C 4 , and the proje
tion map �D is traded from the one of SM ,namely, 8 [(p; z)℄ 2 DM , it holds �D[(p; zi)℄ := e�(p):Furthermore, if we endow C 4 with the standard non degenerate internal produ
t, we 
an 
onstru
tthe dual Dira
 bundle D�M as the C 4� -bundle asso
iated to SM requiring that (p1; z�1) and(LA(p1); z�1T (A)) are equivalent, where � denotes the adjoint with respe
t to the inner produ
ton C 4 and elements of C 4� are understood as row ve
tors. Consequently, the dual pairing of C 4and C 4� extends in a well-de�ned way to a �brewise dual pairing of DM and D�M .De�nition 2.6. Let E be an arbitrary ve
tor bundle over M . With E(E) := C1(M;E), wedenote the spa
e of smooth se
tions of E, endowed with the topology indu
ed by the familyof seminorms kfkk;C := supfjf (k)(x)j; x 2 Cg ; f 2 E(E) ;where C is an arbitrary 
ompa
t set and � (k) denotes a derivative of k-th order. Furthermore,we introdu
e the spa
e of smooth se
tions with 
ompa
t support D(E) := C10 (M;E),equipped with the topology indu
ed by the family of seminormskfkk := supfjf (k)(x)jg ; f 2 D(E) :In the 
ase E = DM , E = D�M , we 
an de�ne a global pairing of E(D�M) and D(DM)or D(D�M) and E(DM) by integrating the lo
al pairing indu
ed by the inner produ
t on C 4 ,e.g., hf; gi := ZM d�(x)f(x) (g(x))for all f 2 E(D�M), g 2 D(DM).We are �nally in the position to de�ne the key obje
t of our analysis:7



De�nition 2.7. A Dira
 spinor is a smooth global se
tion of the Dira
 bundle, i.e.,  2E(DM) or, equivalently, if we 
onsider a lo
al open neighbourhood U of any point x 2M ,  is(di�eomorphi
 to) a 4-ve
tor �eld  U , i.e.,  jU �  U : U ! C 4 , sin
e the bundle trivialises asDM jU � U�C 4 . Analogously, we 
all Dira
 
ospinor a smooth global se
tion of the dual Dira
bundle, namely,  0 2 E(D�M) or, in a lo
al neighbourhood U ,  0jU �  0U : U ! C 4� � C 4 .We would like to stress that our de�nition of Dira
 spinor �elds does not in
lude any equationof motion.It is quite safe to admit that the introdu
ed geometri
 obje
ts are rather te
hni
ally 
ompli-
ated, and one might wonder if the 
lass of spa
etimes admitting them is not rather restri
ted.Parti
ularly, from a physi
al point of view, one is interested in introdu
ing spinors and �eldsin general as global obje
ts. There is thus a 
ompelling need to understand whi
h is really theset of ba
kgrounds we 
an work with, and the answer is surprising and reassuring at the sametime. In fa
t, the following theorem 
an be proved (see [BoHi58℄ for the original proof and also[Ge68℄ for a more physi
ally oriented analysis and proof):Theorem 2.1. A manifold M admits a spin stru
ture if and only if it has a vanishing se
ondStiefel-Whitney 
lass or, in other words, if the se
ond de Rham1 
ohomology 
lass H2(M;Z2)is trivial. Furthermore, if the manifold is four-dimensional, spa
e and time-oriented, as well asglobally hyperboli
, this requirement is automati
ally satis�ed.This theorem is rather useful be
ause globally hyperboli
 spa
etimes are the most interestingand natural 
lass of manifolds whenever one deals with both 
lassi
al and quantum �eld theoryon 
urved ba
kgrounds. As a matter of fa
t, ea
h of these spa
etimes 
an be foliated as �� R,being � a smooth Cau
hy surfa
e [BeSa05℄. Therefore, on these ba
kgrounds one 
an statepre
isely the notion of initial value problem for the equations of motion, hen
e determiningthe 
lassi
al dynami
ally allowed 
on�gurations of a �eld as the solution of a 
ertain partialdi�erential equation.The property of globally hyperboli
, four-dimensional spa
etimes M whi
h guarantees theexisten
e of a spin stru
ture is their parallelisability, i.e., the fa
t that there always exists aglobal orthogonal frame on them. Consequently, FM is a trivial bundle in that 
ase, and thisproperty extends to SM , TM , T �M , DM , and D�M as well. We are thus in the position tointrodu
e global frames of the latter four bundles.1. Employing a global se
tion E of SM , we 
an de�ne a spin frame fEAgA=1���4, i.e., aset of four global se
tions of DM as EA(x) := [(E(x); zA)℄, being zA the standard basisof C 4 . Hen
e, any Dira
 spinor  
an be de
omposed as  (x) =  A(x)EA(x) where now A 2 C1(M).2. A dual spin frame fEBgB=1;��� ;4, i.e., a set of four global se
tions of D�M 
an then be1In the most general framework one should 
onsider the se
ond �Ce
h 
ohomology 
lass, but this 
oin
ides withthe de Rham one for di�erentiable manifolds. In this paper we deal solely with spa
etimes whi
h, a

ording tothe de�nition stated at the beginning of the se
tion, are di�erentiable.8



automati
ally 
onstru
ted out of the frame requiring EA(EB) = ÆBA . From now on 
apitalletter indi
es will refer to quantities expressed with respe
t to these bases.3. Exploiting de�nition 2.4, we 
an proje
t E to FM , hen
e obtaining a global se
tion e :=� Æ E of FM . Employing this, we 
an de�ne a Lorentz frame feaga=0;��� ;3, i.e., a setof four global se
tions of TM , by realising that TM 
an be understood as the R4 -bundleasso
iated to FM . Su
h a �brewise basis is orthonormal in the sense that g(ea; eb) = �ab,where �ab is the Minkowski metri
, and it is often referred to as the non-holonomi
 basisof the base manifold; this is in sharp 
ontrast with the standard (holonomi
) 
oordinatebasis �� whi
h is related to the basis ea by means of a basis 
hange or, in other words, bythe matrix e�a denoting the 
oeÆ
ients of ea in their expansion with respe
t to ��.4. Analogous to the spin 
ase, one 
an now straightforwardly de�ne a dual Lorentz framefebgb=0;��� ;3 
onstru
ted out of ea as ea(eb) = Æba. From now on, lower-
ase Roman let-ters will always refer to quantities expressed with respe
t to the non-holonomi
 basis,whereas lower-
ase Greek ones will indi
ate those with respe
t to the holonomi
 basis.Non-holonomi
 indi
es will be \raised" and \lowered" with �ab, while the same operationswill be performed on the holonomi
 ones using g�� = g(��; ��).The most notable 
onsequen
e of this new data is that we 
an de
ompose evert spinor-tensorf 2 E(TM 
 � � � 
 TM| {z }i 
T �M 
 � � � 
 T �M| {z }j 
DM 
 � � � 
DM| {z }k 
D�M 
 � � � 
D�M| {z }l )as followsf = fa1���aiA1���Akb1���bjB1���Bl ea1 
 � � � 
 eai 
 eb1 
 � � � 
 ebj 
EA1 
 � � � 
EAk 
EB1 
 � � � 
EBl :One 
ould in prin
iple 
ertainly 
hoose a di�erent global se
tion E0 of SM and thus obtaindi�erent spin and Lorentz frames whi
h are related to the previous ones by lo
al spin andLorentz transformations. On the level of 
oeÆ
ients, su
h a 
hange of frames results inf 0a01;:::;a0i;A01;:::;A0kb01;:::;b0j;B01;:::;B0l = ���1�a01a1 � � � ���1�a0iai �e��1�A01A1 � � � �e��1�A0kAk �b01b1 � � � �b0jbj e�B01B1 � � � e�B0kBl fa1���aiA1���Akb1���bjB1���Bl ;where e� 2 T (SL(2; C )), whereas � = �(e�) 2 SO0(3; 1).2.2 On the dynami
s of a 
lassi
al Dira
 �eldSin
e we have by now assured ourselves of the existen
e and well-posedness of the global stru
tureof Dira
 �elds in a globally hyperboli
 time and spa
e-oriented manifold, we shall next pro
eedto introdu
e the natural evolution operator out of whi
h one 
an des
ribe the 
lassi
al dynami
al
ontent of our theory. It is imperative to stress a sharp di�eren
e between the previous andthis subse
tion; in the pre
eding dis
ussion, all the introdu
ed geometri
 stru
tures have been9



somehow natural and intrinsi
, i.e., no spe
ial 
hoi
e has been performed with the due ex
eptionof the D( 12 ;0)�D(0; 12 ) representation to de�ne the Dira
 bundle. Conversely, in the forth
omingdis
ussion, some arbitrariness appears and we shall try to emphasise it to a potential reader,sin
e we have to keep tra
k of it to ensure that it does not play a distinguished role in theforth
oming dis
ussion of the quantum �elds. To wit, we are referring to the de�nition of theso-
alled 
-matri
es. To obtain them, we 
an pro
eed as follows:De�nition 2.8. Given Rp;q endowed with the metri
 � of signature (p; q), we 
all Cli�ord al-gebra Cl(p; q) of Rp;q the real asso
iative algebra generated by the identity I and an orthonormalbasis of Rp;q whose elements 
a with a = 1; :::; p + q are subje
t to the relationsf
a; 
bg := 
a
b + 
b
a = 2�abI: (1)Parti
ularly, if p = 3 and q = 1 or vi
e-versa, one 
an refer to Cl(3; 1) or Cl(1; 3) as Dira
-Cli�ord algebra.Remark. It is a dire
t 
onsequen
e of this de�nition that a basis for the Cli�ord algebra is givenby the identity and by all produ
ts 
a1 ::::
an with a1 < ::: < an and n � p + q, whi
h entailsthat dim(Cl(p; q)) = 2p+q. As a further important datum, we wish to underline that Cl(p; q) isa Z2-graded algebra; this arises if we introdu
e the automorphism � : Cl(p; q) ! Cl(p; q) su
hthat �(
a) = �
a for all possible a. Sin
e �2 
oin
ides with the identity map, we 
an alwaysde
ompose: Cl(p; q) = Cl0(p; q)� Cl1(p; q);where Cli(p; q) = �a 2 Cl(p; q) j �(a) = (�)ia	. By dire
t inspe
tion, one 
an realise thatCl0(p; q) is the subalgebra of the full Cli�ord algebra generated by produ
ts of even numbers of
a. The Dira
-Cli�ord algebra enjoys many relevant properties of great interest for our dis-
ussion. As a �rst step, using the periodi
ity theorem 4.1 in [LaMi89℄, one 
an prove perdire
t inspe
tion that Cl(1; 3)C := Cl(1; 3) 
 C is isomorphi
 to the algebra M(4; C ) of4 � 4 
omplex matri
es. This entails that it is natural to seek for a 
omplex representationT : Cl(1; 3)C ! Hom(C 4 ; C 4) and, a

ording to theorem 5.7, still in [LaMi89℄, there is onlyone of these whi
h is, up to equivalen
e, irredu
ible. Its matrix form 
an be des
ribed by thematri
es 
AaB , whi
h we 
hoose in su
h a way that (
�0)AB = �
A0B whereas (
�a)AB = 
AaB fora = 1; 2; 3, i.e., 
0 = i� I2 00 �I2 � ; 
a = i� 0 �a��a 0 � ; (2)where a = 1; :::; 3 and �a is a Pauli matrix, whereas In denotes the n � n-identity matrix.Furthermore, these matri
es, independently of the 
hoi
e in (2), are the so-
alled 
-matri
es andthey 
an always be interpreted as the 
oeÆ
ients of a global tensor 
 2 E(T �M 
DM 
D�M)10



admitting the following expansion:
 = 
AaBea 
EA 
EB : (3)This identity yields that, if we use the tetrad 
oeÆ
ients ea� to de�ne 
� := 
aea�, we re
over thestandard anti
ommutation relations for the 
-matri
es in 
urved ba
kgroundsf
�; 
�g = 2g��I4 : (4)This is the net e�e
t of 
hanging from a non-holonomi
 to a holonomi
 basis.Let us stress at this point that we have 
hosen a spe
i�
 representation of the Dira
-Cli�ordalgebra out of the possible equivalent ones and indeed this is the arising arbitrariness announ
edat the beginning of this subse
tion. The 
hoi
e of di�erent representations of the Dira
-Cli�ordalgebra 
an be shown to lead to quantum �eld theories whi
h are equivalent up to gauge trans-formations [Sa08℄ and, moreover, if one restri
ts to the quantum observables, the 
hoi
e of arepresentation be
omes even irrelevant, as we will dis
uss in the next se
tion.A se
ond interesting property of the Cli�ord algebra arises from the realisation that it 
on-tains the spin group (see x2 of [LaMi89℄) and, most notably, Spin(3; 1) � Cl0(3; 1). It is thusnatural to wonder how the above introdu
ed representation yielding the 
-matri
es restri
ts tothe spin group, and the answer to this query 
omes from proposition 5.15, still in [LaMi89℄,whi
h guarantees us that ea
h irredu
ible 
omplex representation of the Cli�ord algebra on ave
tor spa
e 
an be restri
ted to the sum of two inequivalent irredu
ible representations of thespin group. In the 
ase under analysis, one 
an by dire
t inspe
tion realise that the restri
tionof T to Spin(3; 1) yields the sum of two non-equivalent irredu
ible representations, whi
h, onSL(2; C ) � Spin0(3; 1), 
oin
ide with the previously mentioned D( 12 ;0) �D(0; 12) representation.A

ording to our analysis, for any ve
tor �eld v 2 E(TM), we 
an meaningfully introdu
e6v := va
a;whi
h is an element of E(DM
D�M), su
h that its 
oeÆ
ients vAB form a 4�4 
omplex matrix.Noti
e that, from now on, we will not spe
ify expli
itly when we shall deal with abstra
t Dira
-Cli�ord algebra elements 
a or with their matrix representations. It is understood that, wheneverwe either 
ontra
t 
-matri
es with a ve
tor �eld or these matri
es are applied to a ve
tor in C 4 ,we refer to the latter 
ase.The last ingredient we need to spe
ify the dynami
s of Dira
 �elds is a parallel transporton the Dira
 bundle. The grand strategy is rather simple, namely, we introdu
e the standardmetri
 
onne
tion, interpret it on the frame bundle and eventually lift it to both the spin andthe Dira
 bundle:De�nition 2.9. Let ! : FM ! T �FM 
 o(3; 1) denote the 
onne
tion 1-form of the uniqueLevi-Civita 
onne
tion on FM . It indu
es the standard Levi-Civita 
onne
tion on TM (andvi
e versa) whi
h 
an be expressed as the 
ovariant derivativer : E(TM)! E(TM 
 T �M); rea = �ba
eb 
 e
;11



where the 
onne
tion 
oeÆ
ients �ba
 of the Levi-Civita 
onne
tion are spe
i�ed by�ba
 := eb ((! Æ e) [e� Æ ea℄ e
) ;with e� : T �M ! T �FM denoting the push-forward of e in the sense of 
otangent ve
tors.The pull-ba
k 
 := (d�)�1 Æ �� Æ ! of ! to SM , with d� : sl(2; C ) ! o(3; 1) denoting thederivative of the 
overing � at the identity, de�nes the spin 
onne
tion, whi
h by the de�nitionof DM as a bundle asso
iated to SM 
an be spe
i�ed as a 
ovariant derivativer : E(DM)! E(DM 
 T �M); rEA = �BaAea 
EB ;where the spin 
onne
tion 
oeÆ
ients are given by�BaA := EB ((
 Æ E) [E� Æ ea℄EA) (5)and E� : T �M ! T �SM denotes the push-forward of E in the sense of 
otangent ve
tors.We will soon prove that the 
oeÆ
ients �BaA 
an be expressed in a simple way by means of boththe 
oeÆ
ients �ba
 and the 
-matri
es. Before we ta
kle su
h task, let us stress that the 
ovariantderivatives r from de�nition 2.9 
an be straightforwardly extended to any spinor-tensorf 2 E(TM 
 � � � 
 TM| {z }i 
T �M 
 � � � 
 T �M| {z }j 
DM 
 � � � 
DM| {z }k 
D�M 
 � � � 
D�M| {z }l )by de�ningr : E(TM 
 � � � 
 TM| {z }i 
T �M 
 � � � 
 T �M| {z }j 
DM 
 � � � 
DM| {z }k 
D�M 
 � � � 
D�M| {z }l )!! E(T �M 
 TM 
 � � � 
 TM| {z }i 
T �M 
 � � � 
 T �M| {z }j 
DM 
 � � � 
DM| {z }k 
D�M 
 � � � 
D�M| {z }l ):(6)At a level of 
omponents and, for notational simpli
ity, only in the 
ase i = j = l = k = 1, (6)reads rf = e
r
 �faAbB ea 
 eb 
EA 
EB� =h�
faAbB � �d
bfaAdB + �a
dfdAbB � �A
CfaCbB + �C
BfaAbC i e
 
 ea 
 eb 
EA 
EB :As promised, we shall now give an expli
it expression for the �-
oeÆ
ients. Although ademonstration of the next lemma is already present in [Li
64℄ (see also 
hapter 13 of [Wa84℄),we shall prove it again due to ubiquitous sign subtleties arising from the 
hoi
e of the metri
signature and possibly leading to 
onfusions when 
omparing with the literature, [Dim82℄ inparti
ular. 12



Lemma 2.1. The 
onne
tion 
oeÆ
ients of the spin 
onne
tion 
an be expressed as�BaA = 14�bad
BbC
dCA : (7)Proof. The strategy of the proof is the following: we �rst derive an expli
it expression for thedouble 
overing homomorphism � : Spin0(3; 1) � SL(2; C ) � SO0(3; 1). From this we obtainan expression for its derivative at the identity d� : sl(2; C ) ! o(3; 1), whi
h, inserted in (5),yields the wished-for result.Let us thus re
all that Spin0(3; 1) 
an be understood as a subgroup of Cl(3; 1). This entailsthat, for any e� 2 SL(2; C ), we 
an de�ne the adjoint a
tionAde�(
a) := e�
ae��1:Being SL(2; C ) a �nite 
over of SO0(3; 1), applying an indu
tion-redu
tion me
hanism, we knowit exists a representation T of SO0(3; 1) su
h that, setting � := �(e�), we haveT (�)
a = Ade�(
a): (8)Sin
e we are dealing with Lie groups, we re
all that all �nite-dimensional representations arematrix representations, i.e., we 
an simply write T (�)
a := �ba
b. Hen
e, e�
ae��1 = �ba
b,where we noti
e the invarian
e of the left hand side under the Z2-a
tion sending e� ! �e�, asone 
ould have expe
ted, being SL(2; C ) the double 
over of SO0(3; 1).Let us now take an arbitrary di�erentiable path t 7! e�(t) in SL(2; C ) whose proje
tion onSO0(3; 1) is di�erentiable; the following identity holdse�(t)
ae�(t)�1 = �(t)ba
b:If we derive with respe
t to t, an identity between algebra representations arises, namely,de�(t)dt 
ae�(t)�1 + e�(t)
a de�(t)�1dt = �d�(t)dt �ba 
b, de�(t)dt 
ae�(t)�1 � e�(t)
ae�(t)�1 de�(t)dt e�(t)�1 = �d�(t)dt �ba 
b; (9)where we have exploited that the derivation of e�(t)e�(t)�1 = I yieldsde�(t)dt e�(t)�1 = �e�(t)de�(t)�1dt :Applying the adjoint a
tion of e�(t)�1 to (9), we end up withe�(t)�1 de�(t)dt 
a � 
ae�(t)�1 de�(t)dt = Ade�(t)�1 "�d�(t)dt �ba 
b# :13



We use (8) as well as the basi
 property of a representation, namely, Ad(e��1) � Ad(e�)�1, toderive e�(t)�1 de�(t)dt 
a � 
ae�(t)�1de�(t)dt = ���1�
a�d�(t)dt �b
 
b = ���1d�(t)dt �ba 
b:If we 
all � := e�(t)�1 de�(t)dt and � := �(t)�1 d�(t)dt , it holds �
a� 
a� = �ba
b. Let us multiply thisidentity on the right with 
a and, if we bear in mind that 
a
a = �ab
a
b = �ab�ab = 4, we endup with 4�� 
a�
a = �ab
a
b: (10)Taking into a

ount the antisymmetry of � 2 o(3; 1) and the identity 
a
[b

℄
a = 0, a possiblesolution of (10) is � = 14�ab
a
b:The uniqueness of this solution is not guaranteed, sin
e, being the left hand side of (10) linearin �, we have merely found a parti
ular solution, and we are free to add any further solutionof the homogeneous 
ounterpart, i.e., any � su
h that 4� � 
a�
a = 0. This implies that the
ommutator [
a; �℄ = 0, and S
hur's lemma (see th. 4.26 in [Ha03℄) entails that � = kI, beingI the identity.The value of k 
an be unambiguously determined if we noti
e that, a

ording to our previous
onstru
tion, � is an element in the algebra of SL(2; C ), whi
h 
onsists of matri
es with vanishingtra
e. Therefore, if we impose Tr(�) = Tr(kI) = 0, the only possibility is k = 0.Sin
e the di�erentiable path 
hosen in the proof has been arbitrary, we have now proven theexpli
it form of d� in terms of its inverse, namely,(d�)�1 : o(3; 1) ! sl(2; C ); (d�)�1(�ab) = 14�ab
a
b 8�ab 2 o(3; 1):Remembering the de�nition of 
, re
alling e = � ÆE, and inserting the expression of (d�)�1into (5), we �nally obtain �BaA = 14�bad
BbC
dCA:2Lemma 2.2. The Dira
-Cli�ord 
-matri
es are 
ovariantly 
onstant, i.e., r
 = 0.Proof. This is a straightforward 
al
ulation, on
e a subtlety has been 
lari�ed: the matri
es
 are 
onstru
ted as the matrix form of an irredu
ible representation of the Cli�ord algebraand then subsequently glued to ea
h point of the underlying base manifold M via (3). Thispres
ription entails that �a
b = 0 for any a; b = 0; :::; 3.We 
an now 
ompute r
 = ebrb �
AaBea 
EA 
EB� ;14



whi
h, exploiting de�nition 2.9, be
omesr
 = eb ��b
AaBea 
EA 
EB + 
AaB ��ab
e
 
EA 
EB+��CbAea 
EC 
EB + �BbCea 
EA 
EC�� :If we apply formula (6) to se
tions of T �M 
DM
D�M and 
onsider that the matrix elementsare 
onstant fun
tions, the lemma is proved out of dire
t substitution. 2We are ready, at last, to des
ribe the dynami
ally allowed 
on�gurations of a spinor �eld in a
urved ba
kground. Parti
ularly, if we now understand multipli
ation with the 
-matri
es toa
t from the left on spinors and from the right on 
ospinors, we shall 
all dynami
ally alloweda Dira
 (
o)spinor  (0) whi
h satis�es the Dira
 equation2D := (�6r+m) = 0; (11)D0 0 := (6r+m) 0 = 0; (12)where  2 E(DM), whereas  0 2 E(D�M).2.3 The Cau
hy problem and the fundamental solutionsIn this subse
tion we shall dis
uss the 
lassi
al initial value problem for Dira
 �elds. As it iswell-known from 
at spa
etimes, a solution of the Dira
 equation is usually related to a solutionof a hyperboli
 di�erential equation.Lemma 2.3. Every solution  of (11) is also a solution of the spinorial Klein-Gordonequation P := �rara � R4 �m2� = 0; (13)where R is the s
alar 
urvature of (M; g). A similar statement holds for ea
h 
ospinor  0,solution of (12).Proof. Let us take a solution of (11) and let us multiply it with D0. We end up withD0D = (6r+m)(�6r+m) = (�6r6r+m2) = 0;whi
h means that we need to prove that 6r2 = rara � R4 . To this avail, let us write6r2 = 
ara
brb = 
a
brarb = 
(a
b)rarb + 
[a
b℄rarb;2 In Minkowski spa
etime, the Dira
 equation is most notable for having a purely imaginary 
oeÆ
ient i infront of the Dira
 operator. Here, su
h a number does not appear and the underlying reason is rooted in theemployed 
onvention for both the metri
 signature and the sign of the de�ning anti
ommutation relations for theCli�ord algebra. To wit, i is absorbed in the de�nition of the 
-matri
es, as stated in (2).15



where in the se
ond equality we have exploited lemma 2.2, whereas in the third one we split theexpression in its symmetri
 and antisymmetri
 part. Sin
e 
(a
b) = 12f
a; 
bg is equal to themetri
 times the identity, it holds6r2 = rara + 
[a
b℄rarb = rara + 
a
br[arb℄ = rara + 12
a
bCab; (14)with Cab denoting the 
urvature tensor of the spin 
onne
tion.Let us brie
y state some properties of Cab, whi
h are examined in more detail in appendixA.1: �rstly, from lemma 2.1 one 
an infer thatCab = 14Rab
d


d:Employing the Cli�ord relations and the symmetry properties of the Riemann tensor Rab
d, itis straightforward to show that
a
bCab = �
b
aCab = �12
b
aRab = �R2 :Inserting this into (14), we �nally obtain6r2 = rara � R4and thus D0D = DD0 = �P = �rara + R4 +m2:2Remarks. One should noti
e that the above lemma 
an be seen as a parti
ular appli
ation ofWeizenb�o
k's formula [LaMi89℄.It is furthermore worth noting that rara in the above expression is not diagonal in thespinor indi
es, and thus not � times the identity. Its prin
ipal symbol g��k�k� , however, isindeed diagonal and even of metri
 type.Let us also stress that, in sharp 
ontrast to the s
alar Klein-Gordon equation in four spa
e-time dimensions, there is no freedom to sele
t a 
oupling for Dira
 �elds to the s
alar 
urvaturesin
e this is universally �xed to 14 . Furthermore, for Dira
 �elds, su
h fa
tor 
orresponds to the
onformal 
oupling whereas, for the s
alar 
ase, the latter is 16 .The introdu
tion of the Dira
 operator and the dis
ussion of its main properties allow us tostate and to prove the main theorem related to the 
lassi
al dynami
al behaviour of spinors on
urved ba
kgrounds:Theorem 2.2. Let (M; g) be a four-dimensional globally hyperboli
 oriented and time orientedspa
etime, su
h that M is di�eomorphi
 to � � R, with � a three-dimensional Riemannian16



manifold. Let us furthermore 
all � : � ,! M a smooth embedding of � into M , su
h that �(�)is a Cau
hy surfa
e of M . If we refer to D� as the bundle 
onstru
ted out of the pull-ba
k ofDM via �, then the following Cau
hy problem admits a unique solution� D = 0�� �  0 ; (15)where  2 E(DM) and  0 2 D(D�).Proof. For notational simpli
ity we will omit the embedding � and just write  j� instead of�� for any  2 E(DM).A

ording to lemma 2.3, ea
h solution of the Dira
 equation also solves a spinorial 
oun-terpart of the Klein-Gordon equation, namely, P = ��� R4 �m2� = 0 where P has metri
prin
ipal symbol and is thus a normally hyperboli
 di�erential operator.Hen
e, we 
an invoke the results on hyperboli
 partial di�erential equations (see [BGP07℄and theorem 3.2.11 in parti
ular), whi
h guarantee us that any Cau
hy problem for 
ompa
tlysupported initial data for the the 
onsidered partial di�erential equation admits a unique smoothsolution supported in the 
ausal past and future of the initial datum. The only problem left is togive a pres
ription on how to swit
h from a Cau
hy problem for the Dira
 equation, hen
e withonly one given initial datum, to one for a se
ond order hyperboli
 partial di�erential equation,where two data on the Cau
hy surfa
e have to be pres
ribed. To solve this dilemma, let us notdeal with (15), but with the following system:� ��� R4 �m2�u = 0uj� = 0; ��u�n j� � 6n 0 ;where u 2 E(DM) and n denotes the ve
tor �eld normal to � su
h that �abnanb = �1. As statedbefore, su
h a system admits a unique global smooth solution ~u and, hen
e, let us introdu
ethe smooth se
tion e := D0~u. It is immediate to see that e is a solution of the Dira
 equationD e = 0. Sin
e e is smooth, it 
an be dire
tly evaluated on the Cau
hy surfa
e � wheree j� = D0~uj� = ( 6r+m) ~uj�. Inserting the initial 
ondition for ~u, the se
ond term vanishes,whereas the �rst reads
ara~uj� = 
ana �~u�n����� = �
ana
bnb 0 = ��abnanb 0 =  0:Hen
e, the se
tion e 
onstitutes a unique solution of the Cau
hy problem in the thesis of thetheorem. 2Sin
e our aim is to deal with quantum �eld theory over 
urved ba
kgrounds in the long run,it is more useful to prove not only the existen
e and uniqueness of the solution of a Cau
hyproblem, but also the existen
e of the so-
alled fundamental solution, whi
h is the last relevanttheorem of the 
lassi
al theory that we shall need:17



Theorem 2.3. The Dira
 operator admits unique advan
ed (�) and retarded (+) fundamentalsolutions, i.e., 
ontinuous linear maps S� : D(DM) ! E(DM) ful�lling DS� = I = S�D.These maps are determined by their support propertiessupp(S�f) � J�(supp f); 8f 2 D(DM);with J�(U) denoting the 
ausal future/past of the set U . Similarly, there exist unique advan
edand retarded fundamental solutions S�� : D(D�M)! E(D�M) of D0.Proof. The strategy will be similar to the one employed in the proof of the existen
e of thesolution of the Cau
hy problem. Thus, let us start from P = �D0D = �DD0; sin
e this is anormally hyperboli
 di�erential operator, we already know (see [BGP07, Ho94℄) that it exists aunique advan
ed - say E+ - and a unique retarded - say E� - fundamental solution for P onD(DM). Hen
e, for any f 2 D(DM), we know thatPE� = I = E�P and supp(E�f) � J�(supp f):We 
an now de�ne S� := �D0E� whi
h, per dire
t inspe
tion, satis�es DS� = I and is further-more 
ontinuous and has the 
orre
t support properties, sin
e the appli
ation of D0 preservesthese features. In the same way, we 
an 
onstru
t advan
ed and retarded right fundamentalsolutions for the dual Dira
 operator as S�� := �DE�� , with E�� being the fundamental solutionsof P on D(D�M).The next step 
onsists of proving that the right fundamental solution is \also a left one" andwe only show this for S�, sin
e the proof for S�� is analogous. Consider any h 2 D(D�M) andany f 2 D(DM). Sin
e Df 2 D(DM), we end up withhh; S�Dfi = hD0S�� h; S�Dfi = hS�� h;DS�Dfi == hS�� h;Dfi = hD0S�� h; fi = hh; fi;where all expressions are well-de�ned sin
e suppS�f \ suppS�� h is 
ompa
t due to global hy-perboli
ity of M .It remains to be shown that the fundamental solutions are unique and again we only provethis for S� here. To this end, let us take any h 2 D(M;D�M) and any f 2 D(M;DM). Supposetwo di�erent sets of fundamental solutions, say S� and eS�, exist. Starting from0 = hIh� Ih; fi = h(S� � eS�)Dh; fi;uniqueness of the right fundamental solutions follows from the non-degenera
y of h ; i, whileuniqueness in the sense of left fundamental solutions 
an be dedu
ed in a similar way. 2In analogy with the s
alar 
ase, we shall from now on 
all S = S+ � S� the 
ausal propa-gator for the Dira
 operator D and S� = S+� � S�� the 
ausal propagator for D0.To 
on
lude the se
tion, we wish to underline that, up to this point, we have basi
ally
onsidered the Dira
 spinor and 
ospinor �elds as 
ompletely distin
t obje
ts. As it is usually18



done in Minkowski spa
e, however, we 
an de�ne a well-behaved Dira
 
onjugation map mappingspinors into 
ospinors and vi
e versa. Furthermore, this 
onjugation turns out to map anydynami
ally allowed 
on�gurations into another one.De�nition 2.10. We 
all Dira
 
onjugation matrix the unique matrix � 2 SL(4; C ) su
hthat �� = �; 
�a = ��
a��1 8a = 0; :::; 3;and furthermore i�na
a > 0, being n timelike and future-dire
ted.Starting from this obje
t, we 
an de�ne Dira
 
onjugation maps:�y : E(DM) �! E(D�M); f y := f��;�y : E(D�M) �! E(DM); hy := ��1h�;where � denotes the adjoint with respe
t to the Hermitian inner produ
t on C 4 .Remarks. � is only unique, on
e a representation of the Dira
-Cli�ord algebra has been 
hosen.A dire
t inspe
tion of the above identities shows that, with the de�nition of 
-matri
es as in(2), � = �i
0 and thus � = ��1.It furthermore follows in general that applying the Dira
 
onjugation twi
e gives the identityand that, as already anti
ipated, �y preserves the Dira
 equations in the sense that D0f y = (Df)y,Dhy = (D0h)y for any f 2 E(DM), h 2 E(D�M).3 Dira
 �elds: quantum point of viewThe aim of this se
tion is twofold: on the one hand, we shall dis
uss the already availableformulation of a quantum theory for Dira
 �elds on a 
urved ba
kground while, on the otherhand, we shall show for the �rst time that the notion of Wi
k polynomials 
an be 
oherentlyintrodu
ed also in this s
enario, giving rise to an enlarged algebra of observables. Parti
ularly,we shall point out how all these topi
s �t into the framework of the lo
ally 
ovariant formulationof quantum �eld theory.To a
hieve our goal, we shall refer to an earlier work due to Araki [Ar70℄, though we shallalso pro�t from [Dim82, K�o95, Hol99, Kra00, SaVe01, Ver01, FeVe02, Sa08℄.3.1 The lo
al algebras of �elds and observablesAlthough the �rst paper formulating a quantum theory of Dira
 �elds on 
urved spa
etimes inthe algebrai
 framework is [Dim82℄, its underlying approa
h is slightly di�erent from the one weshall employ, albeit it is ultimately fully equivalent. Parti
ularly, in the aforementioned paper,the quantisation s
heme 
alls for the 
hoi
e of both a Cau
hy surfa
e � and initial data on � asbuilding blo
ks of the quantum theory. We shall not dwell into the details of this method sin
ewe re
kon that, in the spirit of lo
al 
ovarian
e, it is not best suited for our later purposes.19



Although the standard paradigm in parti
le physi
s 
alls for the treatment of parti
les andantiparti
les as distin
t, albeit related obje
ts, in this paper we shall, as it has been done bymost of the authors mentioned in the introdu
tion of this se
tion, bear in mind the lessons from[Ar70℄ and, thus, we shall 
onsider spinors and 
ospinors as part of a single entity, sin
e it willturn out to be more 
onvenient for our later purposes.On a pra
ti
al ground, the building blo
ks of our dis
ussion will be three. The �rst onearises out of the dire
t sum DM � D�M , namely, D := D(M) := D(DM � D�M), the spa
eof 
ompa
tly supported smooth se
tions of DM �D�M with the usual topology, i.e., the oneindu
ed by the family of seminormskfkk := sup jf (k)(x)j ; f 2 D ;while the se
ond is the map � : D! D su
h that�(f � h) = hy � f y 8f � h 2 D; (16)being �y the Dira
 
onjugation introdu
ed in de�nition 2.10. Furthermore, in order to eventuallyimpose the anti
ommutation relations, we need a third datum, namely, a sesquilinear form onD2 := D �(DM �D�M)�2�: let f = f1 � f2 and h = h1 � h2 be two elements of D. Then(�; �) : D2 ! C is de�ned as: (f; h) := �ihf y1 ; Sh1i+ ihS�h2; f y2i; (17)whi
h is positive semide�nite, as one 
an infer with minor modi�
ations either from lemma4.2.4 in [Sa08℄ or, with little more e�ort, from proposition 1.1 in [Dim82℄; let us also notethat (�f;�h) = (h; f). Furthermore, one 
an straightforwardly show that, using all the aforeintrodu
ed tools, we 
an de�ne the following algebra:De�nition 3.1. We 
all algebra of �elds the unital ��algebra F(M; g) generated by theidentity and the abstra
t elements B(f) with f 2 D satisfying the following requirements:i) the map f 7! B(f) is linear,ii) B(Df1 �D0f2) = 0 for all f1 � f2 2 D,iii) B(�f) = B(f)�, for all f 2 D and with � de�ned as in (16),iv) fB(f)�; B(h)g := B(f)�B(h) +B(h)B(f)� = (f; h) , where the right hand side is given by(17).In order to 
onvin
e a potential reader that we are employing a sensible de�nition, let us�rst dis
uss some general properties.Remark. It is possible to re
over the standard notion of spinor and 
ospinor quantum �eldstarting from the B-generators as follows: 20



� the spinor arises as  (h) := B(0� h).� the 
ospinor is given by  y(f) := B(f � 0),Parti
ularly, to be 
onvin
ed of the self-
onsisten
y of su
h statement, one should noti
e thatthe spinor and 
ospinor �elds are related due to property iii) and they respe
tively satisfy theDira
 and the dual Dira
 equation of motion in the distributional sense thanks to ii). Finally,it is iv) whi
h 
orresponds to the usual anti
ommutation relations between  and  y, namely,f (h);  y(f)g = �ihh; Sfi; f (h1);  (h2)g = f y(f1);  y(f2)g = 0:In order to better grasp the stru
ture of F(M; g), one should realise that it is nothing buta topologi
al �-algebra; this 
an be fully understood starting from an a priori di�erent, albeitultimately equivalent, perspe
tive, namely, the so 
alled Bor
hers-Uhlmann algebra for Dira
�elds, whi
h is expli
itly dis
ussed in [Sa08℄. It is 
onstru
ted as the following quotientF(M; g) :=  1Mn=0Dn! =I (18)where Dn := D �(DM �DM�)�n� denotes the 
ompa
tly supported se
tions of the n-fold outertensor produ
t of DM �D�M and D0 := C , whereas I is the 
losed �-ideal whi
h arises out ofthe relations (ii), (iii), and (iv) in de�nition 3.1. It is hen
e generated by elements of the formDf1�D0f2 with f1�f2 2 D, by those of the form (f1�f2)���(f1�f2), and �nally by those ofthe form f 
 h+h
 f � (f; h) with f; h 2 D. F(M; g) 
an be equipped with a natural topologyindu
ed from that onL1n=0Dn. This is tantamount to the request that a sequen
e fj = �nfj;nis said to 
onverge to f if and only if1. every fj;n ! fn inDn with respe
t to the topology of uniform 
onvergen
e of all derivativeson a �xed 
ompa
t set,2. it exists an N 2 N su
h that fj;n vanishes for every n > N and for every j.In the forth
oming dis
ussions it will sometimes also be possible to use a weaker version ofF(M; g) whi
h is de�ned in the same way as F(M; g), but without in
luding the Dira
 equationsin the 
onstru
tion of the ideal I; we shall refer to this 
ase as the o�-shell formalism.As a subsequent natural step, one 
an realise that the sesquilinear form (�; �) 
an be promotedto a genuine non-degenerate s
alar produ
t on the 
oset spa
e D= ker S�S�, whi
h, in turn, 
anbe 
ompleted to a Hilbert spa
e H with respe
t to the said s
alar produ
t. As a by-produ
t, thisentails the possibility to extend F(M; g) to a C��algebra F(M; g) representing the elements asbounded operators onH itself. Following [Ar70℄, we shall refer to this s
enario as the assignmentof the C��algebra of Dira
 �elds F(M; g) to the pair (H;�).We have explained how to 
onstru
t the lo
al algebra in the 
ase of Dira
 �elds; however,from a physi
al point of view, observables are required to 
ommute at spa
elike separations and21



the full F(M; g) does not ful�l su
h requirement. As a �rst step towards a de�nition of thealgebra of lo
al observables of a Dira
 �eld, we 
an restri
t our attention toFeven(M; g) := even subalgebra of F(M; g);whi
h, e.g., 
an be de�ned as the subalgebra invariant under B(f) 7! �B(f) [Dim82, Hol99,Sa08℄. The reason to 
hoose su
h a subalgebra stems from the fa
t that any two elements ofFeven(M; g) indeed 
ommute for spa
elike separations:Proposition 3.1. Let Ai, i 2 f1; 2g be two elements of Feven(M; g) whi
h arise as �nitelinear 
ombinations of smeared B(f) generatorsAi :=Xn B(f in;1) � � �B(f in;2kn)su
h that [n;j supp f1n;j and [n;j supp f2n;jare spa
elike separated. Then [A1; A2℄ = 0 :Proof. The proof des
ends out of two key observations: on the one hand we know the followingrelation between the 
ommutator and anti
ommutator of four operators A;B;C and D:[AB;CD℄ = AfB;CgD �ACfB;Dg � CfA;DgB + fA;CgDB : (19)On the other hand we know that, given two �eld algebra elements B(f) and B(g) with thesupport of f and g spa
elike separated, 
ondition iv) in de�nition 3.1 together with the supportproperties of the 
ausal propagator, proved in theorem 2.3, entail thatB(f)�B(h) +B(h)B(f)� = 0:To 
on
lude the proof, one needs to noti
e that, sin
e only produ
ts of an even number of�elds appear, the properties of the 
ommutator allow to redu
e [A1; A2℄ to a linear 
ombina-tion of 
ommutators, all of the form (19) with AB and CD of the form B(f1n;j1)B(f1n;j2) andB(f2n;j1)B(f2n;j2) respe
tively. This operation together with the requirement on the supports ofthe test se
tions de�ning A1 and A2 
on
ludes the proof. 2With the restri
tion to Feven(M; g) we have been able to assure lo
al 
ommutativity. This
riterion is, however, not suÆ
ient to extra
t the observable elements out of F(M; g) andFeven(M; g) is thus still too large to be a 
andidate for the algebra of lo
al observables. To obtainsu
h a good 
andidate, we have to take only so-
alled \gauge invariant" elements of Feven(M; g)into a

ount, 
f., e.g., [Ar70, Dim82, Hol99, Sa08℄, and we denote the resulting subalgebra with22



A(M; g). Parti
ularly, if we 
onsider any A := PnB(fn;1) � � �B(fn;2kn) in Feven(M; g), it is ly-ing in A(M; g) if and only if it is invariant under the a
tion of any S 2 Spin0(3; 1); su
h ana
tion is de�ned by a straightforward extension of the known one on DM and on D�M , �rstto DM �D�M and subsequently to arbitrary outer tensor produ
ts of the latter, su
h that wehave a well-de�ned a
tion on the test se
tions fn;1
 � � � 
 fn;2kn determining A. This de�nitionof an observable is 
ompatible with the produ
t of algebra elements, and thus de�nes a subal-gebra of Feven(M; g) in a well-de�ned way. In the rest of the paper we shall always work withFeven(M; g), though all our results 
an be applied to A(M; g) (and to the topologi
al 
losuresof the mentioned algebras) as well.It is remarkable that, in order to get to the de�nition of the various algebras introdu
edabove, on
e a parti
ular representation of the Cli�ord algebra has been 
hosen, the only otherne
essary datum is the geometry of the underlying manifold. This 
an be understood realisingthat, beside the Dira
 bundles DM and D�M themselves, the overall analysis relies on the
ausal propagators S and S�, whi
h are unique in a globally hyperboli
 spa
etime with spinstru
ture. This apparently inno
uous observation will play an important role in identifying thequantisation of the Dira
 �eld as a parti
ular lo
ally 
ovariant quantum �eld theory, as we willexplain in the next subse
tion.3.2 Lo
ality and general 
ovarian
eIn order to establish a 
onne
tion between the previous dis
ussion and the modern interpreta-tion of quantum �eld theory over 
urved ba
kgrounds, it is mandatory to address the questionwhether the axioms of a lo
ally 
ovariant theory, as proposed by Brunetti, Fredenhagen, andVer
h in [BFV03℄ are ful�lled for the above displayed algebrai
 quantisation of Dira
 �elds, andan aÆrmative answer has indeed been given in [Sa08℄. We shall not dwell on a re
apitulation ofthe pre
ise de�nition of all the needed tools, e.g., the involved 
ategori
al notions here: instead,we 
hoose to provide a short overview and we refer an interested reader to [BFV03, BrFr09, Sa08℄for further details. That said, per dire
t inspe
tion of the previous analysis, we 
an infer thatthe following axioms of a lo
ally 
ovariant theory are satis�ed:1. It is possible to asso
iate to every globally hyperboli
 spa
etime (M; g) with spin stru
ture(SM; �) the 
orresponding ��algebra F(M; g) of �elds in a unique way, on
e a globalrepresentation of the Cli�ord algebra has been 
hosen.2. To every map � whi
h is an isometri
 and orientation preserving embedding of (M1; g1) into(M2; g2) and at the same time maps (SM1; �1) to (SM2; �2) in a 
oherent and equivariantway (
f. De�nition 2.3.1 of [Sa08℄), one 
an asso
iate an inje
tive, unit-preserving �-homomorphism �� between the 
orresponding �elds algebras F(M1; g1) and F(M2; g2).3. Let us 
hoose two maps as above, namely, �1 : (M1; g1; SM1; �1)! (M2; g2; SM2; �2) and�2 : (M2; g2; SM2; �2)! (M3; g3; SM3; �3); then the following 
omposition law is satis�edfor the 
orresponding algebra morphisms��1Æ�2 = ��1 Æ ��2 :23



Let us note that the above axioms are also ful�lled in the o�-shell formalism, i.e., for Dira
spinor �elds not subje
t to the Dira
 equations. We 
an, furthermore, add another two axiomsin spe
ial 
ases: on the one hand, if we restri
t the 
onstru
tion to Feven(M; g), the axiom ofEinstein 
ausality is ful�lled on a

ount of proposition 3.1:4. Consider two globally hyperboli
 spa
etimes with spin stru
ture (M1; g1; SM1; �1) and(M2; g2; SM2; �2) together with �1 and �2 respe
tively, two embeddings into a thirdspa
etime with spin stru
ture (M3; g3; SM3; �3) of the aforementioned kind. Under theassumption that �1(M1) and �2(M2) are spa
elike separated inM3, it holds that for everyA1 2 Feven(M1; g1) and A2 2 Feven(M2; g2), [��1(A1); ��2(A2)℄ = 0.At the same time, in the on-shell formalism - though not slavishly for the extended algebrawe shall later introdu
e - the Time sli
e axiom (
f., proposition 4.2.22 of [Sa08℄) holds:5. Let � :M1 !M2 be a map between two globally hyperboli
 spa
etimes with spin stru
turewith the properties already dis
ussed. If a Cau
hy surfa
e of M2 is 
ontained in �(M1),then �� is an isomorphism.These axioms state properties of the full �eld algebras, but one 
an re�ne these statementsand identify �elds with a spe
ial behaviour under the maps � and ��, the so-
alled lo
ally
ovariant �elds [BFV03, HoWa01℄. In fa
t, as dis
ussed by Sanders in [Sa08℄, the �eld B(�),and, thus, also the single �elds  (�),  y(�), are lo
ally 
ovariant �elds. This entails that B(�) 
anbe understood as family of 
ontinuous maps, indexed by spa
etimes with spin stru
ture M3,BM : D(M)! F(M; g);su
h that, given two spa
etimes with spin stru
ture M1 and M2 and a map � : M1 !M2 withthe properties dis
ussed in axiom 1., one gets the same result by either building a quantum�eld out of a test se
tion fM1 2 D(M1) and then mapping this �eld to F(M2; g2) via �� or bymapping the test se
tion fM1 to fM2 := ��(fM1) 2 D(M2) via the push-forward �� of � and thenbuilding BM2(fM2) out of it. On the level of maps, we thus have:�� Æ BM1 = BM2 Æ ��:Similarly, one 
an identify 
ertain observable 
omposite �elds as lo
ally 
ovariant quantum�elds via spe
i�
 
hoi
es of test se
tion spa
es, and, furthermore, the Wi
k polynomials we shalldis
uss later �t into the same framework as well.3.3 Spinors and Hadamard statesThe algebra A(M; g) � Feven(M; g), is, at this point of our dis
ussion, the best 
andidate toplay the role of an algebra of observables for a free Dira
 �eld theory. Unfortunately, this status3We omit the other data determining a spa
etime with spin stru
ture in the remainder of this paragraph infavour of notational simpli
ity. 24



is far from being satisfa
tory be
ause obje
ts su
h as all the Dira
 bispinors, the 
urrent inparti
ular, and the (
omponents of the) stress-energy tensor are not 
ontained in A(M; g) orFeven(M; g). Sin
e we want to 
onsider these as genuine observables, the best option is to solvethis problem along the same lines employed in the s
alar 
ase, namely, we shall suitably enlargeFeven(M; g) to in
lude all the wanted elements. Although reasonable and, to a 
ertain extentnatural, su
h idea 
omes with a pri
e to pay, i.e., not all the well-behaved algebrai
 states forFeven(M; g) are admissible for the extended algebra; in fa
t, we have to sele
t only those withthe suitable ultraviolet behaviour already possessed by the Minkowskian va
uum state.This is indeed not a novel problem and it has been ta
kled by several authors; the underlyingphilosophy is to 
hara
terise the admissible states imposing suitable physi
al 
onditions, su
has �niteness of quantum 
u
tuations, and thus the possibility to employ these states to de�ne asensible expe
ted stress-energy tensor [Wa77℄. The translation of these ideas in a mathemati
allanguage leads to the notion of Hadamard states, whi
h we shall now dis
uss in our frame-work. The available literature is immense and we point a reader interested in further details to[KaWa91, Rad96a, Rad96b, K�o95℄ for s
alar �elds or to [Hol99, Kra00, SaVe01℄ for a dis
ussionrelated to spinors.As a �rst step and as main topi
 of this se
tion, we shall pro
eed introdu
ing the notion ofHadamard states for the whole F(M; g) and only later we shall restri
t them to Feven(M; g).The already anti
ipated enlargement of the algebra to in
lude all interesting observables of thefree �eld will then be the 
ore of a subsequent dis
ussion.That said, hen
eforth, we shall 
onsider a state ! to be a 
ontinuous, positive, and normedlinear fun
tional on F(M; g), su
h that!(A�A) � 0 8A 2 F(M; g); !(1) = 1;sin
e this algebra is generated, a

ording to de�nition 3.1, by the abstra
t elements B(f) withf 2 D, every said state is uniquely determined by the set of its n-point fun
tions, namely,!n(f1; : : : ; fn) := !(B(f1) : : : B(fn))where, due to the required properties a state, ea
h !n is a distribution on Dn. The bridgebetween the algebrai
 formulation of quantum �eld theory employed in this work and its usualHilbert spa
e des
ription is in the non-trivial dire
tion provided by the Gelfand-Naimark-Segal(GNS) 
onstru
tion (
.f., e.g., [Ha92℄) whi
h yields a representation of an algebrai
 state anda �eld algebra in terms of a Hilbert spa
e state and operator valued distributions on the sameHilbert spa
e respe
tively. Among all possible algebrai
 states, a distinguished role is playedby the so-
alled quasi-free ones, whose n-point fun
tions 
an be determined fully out of !2. Weshall fo
us on these, and, following [Ar70℄, we re
all:De�nition 3.2. A state ! : F(M; g) ! C is 
alled quasi-free if, given any set of fi 2 Dwith i 2 f1; � � � ; ng, ! (B(f1) � � �B(fn)) vanishes for odd n while for even n it holds! (B(f1) � � �B(fn)) = X�n2S0n(�1)j�nj n=2Yi=1!2 �f�n(2i�1); f�n(2i)� :25



Here, S0n denotes the set of ordered permutations of n elements, namely, the following two
onditions are satis�ed for �n 2 S0n:�n(2i � 1) < �n(2i); 1 � i � n=2;�n(2i� 1) < �n(2i+ 1): 1 � i < n=2 :Even though it is in prin
iple possible to state the Hadamard property for general states[StrVeWo02, Sa08℄, we will restri
t our dis
ussion to quasi-free ones and 
an thus state ev-erything on the level of two-point fun
tions. In this 
ontext and on the level of single Dira
�elds, two distinguished distributions appear:!+(f; h) := ! � (h) y(f)� and !�(f; h) := ! � y(f) (h)� ; (20)where f 2 D(DM) whereas h 2 D(D�M) and where both  y(f) and  (h) are parti
ularelements of F(M; g) as explained in subse
tion 3.1. Hen
e, it turns out that both !+ and !�
an be understood as distributions on D(DM �D�M).We 
an now introdu
e the notion of Hadamard state and, as in the s
alar 
ase, it is remarkableand useful that this 
on
ept 
an be illuminated in two equivalent ways. The �rst one has re
ourseto the notion of wavefront sets [DuHo72, Ho90℄, a 
on
ept whi
h enables a re�ned formulationof a singularity stru
ture of a distribution, and, to this avail, one should take into a

ountthat an a priori obsta
le lies in the nature of the ve
tor-valued distributions appearing in the
ontext of Dira
 �elds. Parti
ularly, sin
e wavefront sets are more familiar in the 
ontext ofs
alar distributions, we need to spe
ify how they 
an be de�ned for distributions with values inhigher-dimensional spa
es. To a
hieve this, it appears to be natural to de�ne the wavefront setof a ve
tor valued distribution as the union of the wavefront sets of the 
oeÆ
ients with respe
tto a (possibly lo
al) basis-expansion and indeed this turns out to be an invariant 
on
ept due tothe properties of s
alar wavefront sets [Den82, Kra00, SaVe01℄. Spe
i�
ally, we 
an de�ne thewavefront sets of !�(x; y) = !� B0A (x; y)EA(x)
EB0(y) asWF (!�) := 4[A=1 4[B0=1!� B0A (x; y):By de�ning wavefront sets in this way, we 
ertainly loose information on the most singular \di-re
tions" of a ve
tor-valued distribution. This information 
an be en
oded in so-
alled polarisedwavefront sets, as introdu
ed in [Den82℄ and applied in [Kra00, Hol99℄. Though of high math-emati
al interest, su
h 
on
ept is of no use in our approa
h and we feel safe not to dwell intoit sin
e we would end up providing only shallow ideas. That said, let us state the �rst possiblea

ess to Hadamard states [Rad96a, Kra00, Hol99, SaVe01℄:26



De�nition 3.3. A quasi-free state ! satis�es the mi
rolo
al spe
tral 
ondition (�SC)and is thus 
alled a Hadamard state if only ifWF (!2) = n(x; y; kx;�ky) 2 T �M�2 n 0; j (x; kx) � (y; ky); kx . 0o :Here, (x; kx) � (y; ky) implies that it exists a null geodesi
 
 
onne
ting x to y su
h that kx is
oparallel and 
otangent to 
 at x and ky is the parallel transport of kx from x to y along 
.Finally, kx . 0 means that the 
ove
tor kx is future-dire
ted.Remarks. If a quasi-free state ! ful�ls the �SC, then !� possess the following wavefront sets:WF (!�) = n(x; y; kx;�ky) 2 T �M�2 n 0; j (x; kx) � (y; ky); kx /. 0o ;where kx / 0 states that kx is past-dire
ted.An even stronger relation between the two distributions !� arises if we employ the anti
om-mutation relation sin
e it entails that!+(f; h) + !�(f; h) = �ihh; Sfi :By 
ontrast, the distributions !( (h1) (h2)) and !( y(f1) y(f2)), whi
h, together with !�determine !2, have smooth integral kernels. For !( (h1) (h2)), this 
an be proved employinga symmetry argument already used in a similar way in [Rad96a℄: due to the anti
ommutationrelations, we have ! ( (h1) (h2)) = �! ( (h2) (h1)) :Hen
e, if (x; y; kx; ky) is an element of the wavefront set of the distribution on the right handside of the previous equation, then (y; x; ky ; kx) must lie in the wavefront set of the other one. Atthe same time, on a

ount of the �SC, we know that WF (!( (x) (y))) is not invariant underthe ex
hange of 
oordinates. This entails that WF (!( (x) (y))) = ;, hen
e, !( (h1) (h2)),and analogously !( y(f1) y(f2)), possesses a smooth integral kernel.Although highly elegant from a mathemati
al point of view and thus very helpful in ab-stra
t proofs, the mi
rolo
al de�nition of a Hadamard state is neither the �rst one introdu
ed
hronologi
ally nor the easiest one to 
ope with on the level of expli
it 
al
ulations. In fa
t, asalready promised at the beginning of this se
tion, there is a di�erent, more expli
it de�nitionof a Hadamard state via the so-
alled Hadamard form. For s
alar �elds, this has been rigor-ously introdu
ed in [KaWa91℄, while for Dira
 �elds a similar 
on
ept has been proposed by[K�o95, Ver96℄. To introdu
e it, we need the notion of a 
onvex normal neighbourhood, whi
h isan open subset O ofM su
h that any two points x; y 2 O 
an be 
onne
ted by a unique geodesi
.On any 
onvex normal neighbourhood, we 
an introdu
e the smooth halved squared geodesi
distan
e �(x; y), and, �nally, formulate the following de�nition:De�nition 3.4. A quasi-free state ! is said to be of the Hadamard form if and only if inany 
onvex normal neighbourhood the distributions kernels of !� 
an be written as!�(x; y) = 18�2 �D0y �H�(x; y) +W (x; y)� ;27



where the index �y stresses that the dual Dira
 operator D0y a
ts on the y-variable, and thesingular Hadamard distribution kernels H� 
an be spe
i�ed asH�(x; y) = U(x; y)���(x; y) + V (x; y) ln ���(x;y)�2 : (21)Here, U , V , as well as W are smooth bispinors and V and W 
an be expanded in powers of �,viz., V (x; y) := 1Xn=0Vn(x; y)�(x; y)n; W (x; y) := 1Xn=0Wn(x; y)�(x; y)n;where � is a referen
e length, and ���(x; y) := �(x; y) � 2i� (T (x)� T (y)) + �2 with � > 0. Inthe above formula, T is a time fun
tion, su
h that rT is timelike and future pointing on the fullspa
etime (M; g).We furthermore require H� to be bisolutions of the spinorial Klein-Gordon equations up tosmooth terms, i.e.,PxH�(x; y) 2 E(DM 
D�M); PyH�(x; y) 2 E(DM 
D�M) (22)and demand that their di�eren
e is spe
i�ed by the fundamental solution of P , viz.,H+(f; g)�H�(f; g) = ihg;Efi;where f 2 D(DM) and g 2 D(D�M).Remarks. The existen
e of a time fun
tion T is guaranteed on any globally hyperboli
 manifold[BeSa05, BeSa06℄.Furthermore, a 
ompletely satisfa
tory de�nition of the Hadamard form requires some morework to rule out spa
elike singularities, to 
ir
umvent 
onvergen
e problems of the series Vand W , whi
h are only asymptoti
, and, �nally, to assure that the de�nition does not dependneither on a spe
ial 
hoi
e of the temporal fun
tion T nor on the employed 
onvex normalneighbourhood. For further details and dis
ussions of these aspe
ts and the existen
e of statesof the Hadamard form we refer an interested reader to [FNW81, KaWa91, K�o95, Ver96, SaVe01℄.To determine the so-
alled Hadamard 
oeÆ
ients U , V , and W , one has to exploit the equa-tions (22). At this point, we would like to stress a slight 
on
eptual di�eren
e between Dira
spinors and s
alar �elds: in the 
ase of s
alar �elds, the two-point fun
tion ful�ls the Klein-Gordon equation in both entries, and this property is thus inherited by its singular Hadamardkernel up to smooth terms. Contrariwise, in 
ase of Dira
 spinors, (22) does not follow straight-forwardly from the fa
t that the two-point fun
tions !� ful�l the Dira
 equations. In morespe
i�
 terms, if we re
all the de�nition of !� (20), we know that they ful�lD0x!�(x; y) = Dy!�(x; y) = 0:28



Consequently, D0xD0y �H�(x; y) +W (x; y)� = 0;DyD0y �H�(x; y) +W (x; y)� = �Py �H�(x; y) +W (x; y)� = 0;and, thus, both PyH� and D0xD0yH� are smooth. The smoothness of PxH� does however, notfollow automati
ally from these 
onsiderations, but has to be required or proven in a way similarto the one displayed in lemma 5.4. of [SaVe01℄.We shall expli
itly dis
uss the 
omputation of U , V and W in appendix A.3. To this avail,the following proposition will prove to be very helpful:Proposition 3.2. Let H�(x; y) be the Hadamard distribution kernels of a state introdu
ed inde�nition 3.4. Then (Dx �D0y)H�(x; y) = (Dy �D0x)H�(x; y) are smooth.Proof. The overall strategy 
alls for 
ombining a deformation argument as devised in the ap-pendix C of [FNW81℄ together with the so-
alled theorem of propagation of singularities (
f.theorem 6.1.1 in [DuHo72℄).That said, let us pro
eed in logi
al sequential steps and 
onsider any Cau
hy surfa
e � ,!(M; g��) of the spa
etime we are interested in and let us 
hoose an open neighbourhood of �,say O�, su
h that it is a 
ausal normal neighbourhood of �, i.e., � is a Cau
hy surfa
e for O�and for ea
h p; q 2 O� su
h that p 2 J+(q), it exists a 
onvex normal neighbourhood 
ontainingJ�(p)\J+(q). The existen
e of su
h sets in a globally hyperboli
 spa
etime and for any Cau
hysurfa
e � was �rst proved in [KaWa91℄.The above mentioned deformation argument grants us that it is possible to 
onstru
t anisometri
, orientation and time-orientation-preserving embedding, say �, of O� in 
ausal normalneighbourhood O�0 of a Cau
hy surfa
e �0 of a se
ond globally hyperboli
 spa
etime M 0. Fur-thermore, one 
an engineerM 0 in su
h a way that, in the past of �(O�), it exists another Cau
hysurfa
e �00 with a neighbourhood O�00 whi
h 
ontains the image of a suitable neighbourhood ofa Cau
hy surfa
e �000 in Minkowski spa
etime under an isometri
, orientation preserving, em-bedding e�, and it is straightforward to extend � and e� in su
h a way that they respe
t the spinstru
tures.Sin
e H� on O� � O� are 
onstru
ted only out of the lo
al geometri
 data via (22), itis possible to build a se
ond pair eH� whi
h 
oin
ides with the push-forward under � of H�in �(O�) � �(O�). Furthermore, due to the propagation of the Hadamard form as proved in[FNW81, SaVe01℄, eH� are of the Hadamard form in O�00 � O�00 as well, and their pull-ba
k toO�000 � O�000 thus 
oin
ide with the Hadamard distribution kernels in Minkowski spa
etime.Let us now 
onsider u� := (Dx �D0y)H�and pro
eed to prove that these distributions have empty wavefront set. A

ording to theabove dis
ussions, we 
an push-forward u� to M 0 and subsequently pull them ba
k to theneighbourhood O�000 in Minkowski spa
e in a well-de�ned way. In the Minkowskian region, thepushed-forward and then pulled-ba
k versions of u� are identi
ally vanishing and thus have29



empty wavefront set, sin
e the 
at spa
etime Hadamard kernel only depends on x � y due totranslational invarian
e. To a

ess the wavefront set of u� in the original spa
etime regionunder interest, let us note that these distributions satisfy PxPyu� = 0 up to smooth terms andthe same holds for their mentioned push-forwards and pull-ba
ks, where the operator PxPy isproperly supported, of real prin
ipal type, and homogeneous of degree 2 sin
e it is the tensorprodu
t of two se
ond order hyperboli
 di�erential operators. From this it follows due to the
ontravariant transformation properties of wavefront sets under di�eomorphisms and the prop-agation of singularities theorem (see [SaVe01℄ or 
hapter 8 of [Ho90℄) that the wavefront set ofu� on O� � O� 
an only 
ontain elements of the form(x; y; kx; 0) or (x; y; 0; ky): (23)Following a line of argument employed in the proof of theorem 5.8 in [SaVe01℄, we 
an infer thatWF (u�) = ; in the following way: sin
e u� are 
onstru
ted as Dira
 derivatives of H� andproperly supported partial di�erential operators like D and D0 do not in
rease the wavefront set,we know that WF (u�) �WF (H�). If we furthermore re
all that H� spe
ify the singular partsof !� and that these kernels have the "antisymmetri
" wavefront set displayed in de�nition 3.3,it follows that WF (u�) 
an not even 
ontain elements of the form (23) end are thus empty. 2As a result of the pro
edures des
ribed in appendix A.3, U and V turn out to depend onlyon the lo
al geometry and the mass m, while the state dependen
e of !� is en
oded in W . This\universality" of the singularity stru
ture of states of the Hadamard form allows for a lo
ally
ovariant de�nition of normal ordering, as we will see in the next subse
tion. To this avail, itwill be useful to 
ompose the Hadamard distributions to a single obje
t living on D
D, viz.,H(f1 � f2; h1 � h2) := �D0yH+� (h1; f2)� �D0yH�� (f1; h2) (24)= H+(h1;Df2)�H�(f1;Dh2);where f1 � f2, h1 � h2 2 D. Before we start working with Hadamard states, let us state thealready anti
ipated and fruitful equivalen
e of the Hadamard form and the �SC, whi
h is aresult due to [Kra00, Hol99, SaVe01℄:Theorem 3.1. Let us 
onsider a state ! on F(M; g) with two-point fun
tion !2. Thissatis�es the mi
rolo
al spe
tral 
ondition, if and only if the distribution on D
D de�ned byf 
 h 7! !2(f; h)� H(f; h); (25)has a smooth integral kernel, and, thus, !� are of Hadamard form.To 
on
lude this se
tion, we would like to mention a most notable property of Hadamardstates: despite the well-known problem to �x a unique va
uum state for a quantum �eld theoryon a generi
 spa
etime, Hadamard states turn out to be \almost" unique sin
e they are all lo
allyquasi-equivalent [Ver94, Ver96, DaHo06℄. This implies that lo
ally the density matrix states onthe Hilbert spa
es obtained from Hadamard states via the GNS 
onstru
tion are all equal, and,30



in more physi
al terms, that any two Hadamard states have a �nite energy density with respe
tto one another. The latter statement is of 
ourse related to the expe
ted stress-energy tensor,the main topi
 of the last se
tion of this work.3.4 On the notion of Wi
k polynomialsIn the development of quantum �eld theory, a well-known obstru
tion arises whenever we 
on-sider the produ
t of two �elds, whi
h, being distributions, 
annot be safely multiplied unlessspe
ial 
onditions are met. Sin
e, as already anti
ipated, our ultimate goal is to enlarge thealgebras under 
onsideration to in
lude observables su
h as the stress-energy tensor for Dira
�elds, we are lead to ta
kle this problem. Like in the 
ase of s
alar �elds, this results in theintrodu
tion of Wi
k polynomials and in the following we shall try to adapt an approa
h similarto the one dis
ussed in the work of Brunetti, Duets
h, and Fredenhagen [BDF09℄ whi
h in turnis related to further earlier works [BrFr00, HoWa01, HoWa02℄.Unsurprisingly, in our s
enario, there are di�eren
es to the above mentioned works due tothe ve
torial nature of our �elds and their anti
ommutativity. This ne
essitates a treatment ofWi
k polynomials of Dira
 �elds on 
urved spa
etimes on its own and we will thus develop themin this subse
tion sin
e they have not been treated in the literature in the past.As already anti
ipated, upon enlargement of the �eld algebra to in
ludeWi
k polynomials wehave to restri
t our state spa
e to Hadamard states, whi
h seems not to be a real loss sin
e theseare already distinguished and presumably the only \physi
al" ones for the algebras dis
ussed insubse
tion 3.1.As a starting point to de�ne the extended algebra of �elds, it will be more 
onvenient notto start dire
tly from F(M; g) or its subalgebras, though we shall 
onsider the setC(M; g) := 1Mn=0DnA;where the subs
ript A indi
ates that, for n > 0, one takes into a

ount only antisymmetri
elements, while D0A = D0 = C . Noti
e that it is required that a generi
 element F 2 C(M; g) isunambiguously determined by a �nite sequen
e fF (n)g of antisymmetri
 elements lying in Dn.This entails that, in a basis expansion with respe
t to E�(x) := EA(x) � EB(x), ea
h elementF (n) = F (n)�1����nE�1 
 � � � 
 E�n has antisymmetri
 
oeÆ
ients, viz.,F (n)�1;:::;�k;�k+1;:::;�n(x1; : : : ; xk; xk+1; : : : ; xn)=� F (n)�1;:::;�k+1;�k;:::;�n(x1; : : : ; xk+1; xk; : : : ; xn) 81 � k � n: (26)The set C(M; g) 
an be promoted to an algebra with respe
t to the following produ
t whi
hwe shall hen
eforth indi
ate as �A; let F := fF (n)g and G := fG(n)g be two generi
 elements inC(M; g), then (F �A G)(n) := Xp+q=n A �F (p) 
G(q)� ; (27)31



where A is the operator of total antisymmetrisation su
h that F �A G is indeed an element ofC(M; g). Spe
i�
ally, A leaves D0 invariant, while, for an arbitrary F (n) := f1 
 � � � 
 fn withfi 2 D and n > 0, the antisymmetrisation readsA (f1 
 � � � 
 fn) = 1n! X�n2Sn(�1)j�njf�n(1) 
 � � � 
 f�n(n);where the sum is taken over all permutations4 �n 2 Sn and A 
an be extended to Dn by linearityand 
ontinuity. The algebra (C(M; g); �A) 
an be interpreted as the algebra of fun
tionals, in thesense of distributions on smooth se
tions, on the 
lassi
al �eld 
on�gurations of Dira
 spinors.The standard quantisation s
heme is eventually realised 
hanging the produ
t �A into asuitable ?-produ
t 
ompatible with the anti
ommutation relations. The overall pro
edure, on
ea fun
tional � : D2 ! C is sele
ted, 
an be realized out of the map �� : Dn ! Dn�2 whosea
tion on a generi
 element F (n) of Dn (noti
e, here taken without antisymmetrisation), isrequired to be trivial if n < 2, whereas, for n � 2,��F (n) := n�1Xi=1 nXj=i+1ZM d�(xi)ZM d�(xj) (�1)j�i+1��i�j (xi; xj)F (n)�1����n(x1; : : : ; xn) �� E�1(x1)
 � � � 
 \E�i(xi)
 � � � 
 \E�j (xj)
 � � � 
 E�n(xn): (28)Here, �(xi; xj) = ��i�j (xi; xj)E�i(xi) 
 E�j (xj), with E�(x) := EA(x) � EB(x), denotesthe integral kernel of �, whereas the symbol \E�i(xi) indi
ates that E�i(xi) must be omitted.On a

ount of the regularity of C(M; g), we 
an safely de�ne a ?-produ
t asF ?S G = A �S (F 
G) ; (29)where �S is de�ned as a formal exponential5�S := exp�i12�eS� ;here, �eS arises from (28) if one inserts for � the fun
tionalD2 3 f1 � f2 
 g1 � g2 7! eS(f1 � f2; g1 � g2) := �hf2; Sg1i+ hS�f y1 ; gy2i;with S and S� being the 
ausal propagators 
onstru
ted in theorem 2.3.Remarks. If we introdu
e a �-operation on (C(M; g); ?S ) via the straightforward tensorialisationof � (16), the result is naturally isomorphi
 to the o�-shell version of F(M; g) with its standard4Of 
ourse not all permutations employed are ne
essary, sin
e in (27) the 
onstituents will already be antisym-metri
. The antisymmetrisation as de�ned here, however, is still valid and it 
onstitutes the easiest way to writeit without unne
essarily getting lost in 
ombinatori
s.5Sin
e C(M; g) 
ontains only �nite sequen
es of test se
tions, the exponential series will always terminate after�nitely many terms. 32



produ
t. Parti
ularly, B(f) 2 F(M; g) 
orresponds to f 2 C(M; g) and the anti
ommutationrelations on F(M; g) 
orrespond tof ?S g + g ?S f = ieS(f; g) = (�f; g);as follows by straightforward 
omputation. The equations of motion 
an then be implementedby dividing out a suitable ideal. Sin
e the Dira
 equations will not be ne
essary in the followingdis
ussion, we will denote both the on-shell and o�-shell algebras with (C(M; g); ?S ) and we shall
onsider them as being isomorphi
 respe
tively to F(M; g) and to its o�-shell version.Up to now we fo
used on rather regular obje
ts 
onstru
ted out of D, but, alas, this doesnot suÆ
e to rea
h our ultimate goals; as a matter of fa
t, we need to 
onsider the spa
es of
ompa
tly supported distributions6 as well:E00 := C ; E0n := E0 �(DM �D�M)�n� ; E0 := E01:The underlying leitmotiv is rooted in our interest in obje
ts like RM d�(x)f(x) : y(x) (x) :whi
h will in the subsequent dis
ussion 
orrespond to distributions like f(x)Æ(x; y), these arenothing but elements of E0n whi
h are supported on the thin diagonalDiagn := f(x1; : : : ; xn) 2Mn jx1 = � � � = xng:Sin
e this amounts to potentially ill-de�ned operations su
h as taking the produ
t of distribu-tions at the same spa
etime point, we 
annot blindly extend (C(M; g); ?S ) (and equivalentlyF(M; g)) to in
orporate these new obje
ts into an enlarged ��algebra, but we have to requiresome suitable regularity 
onditions.De�nition 3.5. We 
all extended set of fun
tionals Cext(M; g) the set 
ontaining �nitelinear 
ombinations of 
ompa
tly supported distributions F (n) 2 E0n whose wave front set satis�esthe following requirement WF (F (n)) \ (Mn � (V n+ [ V n�)) = ;where V + and V � are the 
losure of the future and the past light 
one respe
tively in the �breof the 
otangent bundle at ea
h point of M .In order to adopt this de�nition, we have to make sure that Cext(M; g) 
an be made into analgebra and it is manifest that the produ
t ?S is not up to the task sin
e it would lead us topointwise produ
t of 
ausal propagators, whi
h is ill-de�ned due to their wavefront set. In orderto avoid the aforementioned problem, we 
an repla
e ?S by ?H , whi
h is nothing but (29) with6Noti
e that elements of E0 test 
ompa
tly supported se
tions on D�M �DM and not on DM �D�M . This\dual" notation, as employed, e.g., in [Dim82℄, is used to stress that D ,! E0.33



eS repla
ed by �2iH as de�ned in (24). This new ?-produ
t is equivalent to the old one whenthis is well-de�ned, being F ?H G = �H ���1H (F ) ?S ��1H (G)� ; (30)�H := exp�H ;where �H is de�ned as in (28) upon inserting H � i=2eS for �. If we take into a

ount thesingular stru
ture of H and the 
riterion to multiply distributions as devised by H�ormander (
f.,[DuHo72℄ or 
hapter 8 in [Ho90℄), it turns out that the problem with ?S disappears sin
e thepointwise produ
t of the integral kernel of H with itself is a well de�ned distribution.Remark. The out
ome of the pre
eding dis
ussion is the introdu
tion of (Cext(M; g); ?H ).Re
alling that (C(M; g); ?S ) has been isomorphi
 to F(M; g), we 
an reverse this viewpointand just de�ne the extended �-algebra Fext(M; g) := (Cext(M; g); ?H ). Similarly, restri
ting thepossible test se
tions and distributions taken into a

ount, we 
an de�ne the extended algebrasFeven;ext(M; g) and Aext(M; g). That said, following slavishly the analysis of the s
alar 
ase in[HoWa01, HoWa02℄, the produ
t (30) rephrases Wi
k formula in the Dira
 s
enario.As already announ
ed in the prior dis
ussion, due to the form of the wavefront set ofHadamard states, we 
an extend them and only them to genuine states for Fext(M; g). Par-ti
ularly, this entails the standard paradigm a

ording to whi
h the produ
t of two �elds, say y(x) (y), should be regularised as: y(x) (y) : :=  y(x) (y) + 18�2D0yH�(x; y)su
h that, for a Hadamard state !, !(: y(x) (y) :) = (8�2)�1W (x; y). At a level of expe
tationvalues, this 
an be equivalently seen as leaving  y(x) (y) un
hanged while !�(x; y) be
omes!�(x; y) +D0yH�(x; y). This somehow heuristi
 
omment prompts the following:De�nition 3.6. Consider a quasi-free Hadamard state !, whose n-point fun
tion is indi
atedas !n. One 
an de�ne the regularised n-point fun
tion :!n : as:!n : := !n = 0 ; if n is odd:!n : (x1; : : : ; xn) := X�n2S0n(�1)j�nj n=2Yi=1 (!2 �H) �x�n(2i�1); x�n(2i)� if n is even,with H as in (24) whereas the set of ordered permutations S0n � Sn is the one introdu
ed inde�nition 3.2.Remark. As a straightforward 
onsequen
e of the last de�nition, we 
an form expe
tationvalues of all elements in Fext(M; g). Spe
i�
ally, for any F := fF (n)g 2 Fext(M; g),!(F ) :=Xn hF (n); :!b :i34



is well de�ned due to the wavefront set properties of both the state and the allowed F .At this stage we need to point out that there are still some ambiguities in the employedde�nition of H� and thus in the de�nition of both H and : !n :; indeed, the referen
e length� ne
essary to 
onstru
t H� a

ording to de�nition 3.4 is in prin
iple undetermined. Thisfa
t does, however, not hamper our analysis sin
e di�erent 
hoi
es of � and thus of H lead toisomorphi
 algebras.Lemma 3.1. Suppose we 
hoose two di�erent H, say H1 and H2, to 
onstru
t the extendedalgebra (Cext(M; g); ?H ). Then the two resulting algebras (Cext(M; g); ?H1 ) and (Cext(M; g); ?H2 )are isomorphi
.Proof. Due to the properties of the Hadamard distributions H�, one knows that the di�eren
ed := H2 � H1 has a smooth antisymmetri
 integral kernel. The two produ
ts ?H1 and ?H2 arerelated by a deformation. They are thus equivalent and the operator intertwining them 
an berealised as �d := exp (�d) ;where � is taken as in (28) with d being inserted in pla
e of �. Parti
ularly,F ?H2 G = �d ���1d F ?H1 ��1d G�whi
h is well-de�ned and holds true sin
e �H2 Æ��1H1 = �d and d has a smooth integral kernel. 2To �nish the preparations for the �nal se
tion of this work, we have to address a last issue. Atthe moment we are falling one step short from our ultimate goal sin
e, to study the regularisationof the stress-energy tensor, one has to understand the treatment of di�erentiated �elds. Hen
e, asmall addendum to the above analysis is needed and we shall follow the pro
edure employed fors
alar �elds in [Mo03℄, though adapted to our language. Thus, let us take a di�erential operatorK on D(DM) of the form K = a0 +ra1 + :::rRaR ; R <1;where rkak := a�1 :::�kAk Br�1 :::r�kand a�1:::�kAk B for k 2 f0; � � � ; Rg are the 
oeÆ
ients of an element of�(TM 
 � � � 
 TM| {z }k 
DM 
D�M):Noti
e that this 
lass of di�erential operators en
ompasses both the Dira
 operators and thespinorial Klein-Gordon operator whi
h will appear in the expression of the stress-energy tensorand of its tra
e. In an analogous way we 
an 
hoose di�erential operators K 0 on D(D�M)and 
ombine them with a K to operators K � K 0 on D. If we now bear in mind de�nition35



3.5, we realise that the extended set of �elds is de�ned out of a 
ondition on the wavefront setof its elements. Thus, in order to engineer any operator of the form K � K 0 into the abovedis
ussion, we just need to re
all a general result on wavefront sets (
f. Chapter 8 of [Ho90℄or [DuHo72℄) a

ording to whi
h a partial di�erential operator whi
h is properly supported,su
h that it maps 
ompa
tly supported distributions to 
ompa
tly supported ones, does notin
rease the wavefront set of a distribution it is applied on. Sin
e the di�erential operatorswe are 
onsidering are properly supported, we 
an readily 
on
lude that operators of the formK � K 0 map Cext(M; g) to itself and that the previous dis
ussion has already en
ompassedthe treatment of di�erentiated �elds. One 
ould now prove several further properties of Wi
kpolynomials of di�erentiated �elds, but we will not indulge in this task sin
e it will play no rolein the forth
oming dis
ussion and, furthermore, the results are by all means a straightforwardextension, both as 
on
epts and as te
hni
al proofs, of those dis
ussed in [Mo03℄ for the s
alar
ase.Before pro
eeding with the dis
ussion of the stress-energy tensor, let us �nally remark on howthe extended algebra Fext(M; g) �ts into the framework dis
ussed in subse
tion 3.2. Withoutgoing mu
h into details we would like to point out that any 
oin
iding point limits of smooth ob-je
ts 
onstru
ted out of the Hadamard distributions are lo
ally 
ovariant, sin
e the 
onstru
tionof H� depends only on the mass and the lo
al 
urvature. As a result, all elements of Fext(M; g)whi
h 
orrespond to distributions with support on the thin diagonal are lo
ally 
ovariant �elds.4 The stress-energy tensor of Dira
 �eldsThe aim of the se
tion is to fo
us on the stru
ture of the stress-energy tensor and to study itsquantum properties. Parti
ularly, we shall display that it is possible to introdu
e an improvedtensor whi
h is 
onserved also at a quantum level, although its tra
e a
quires new and 
lassi
allyunexpe
ted terms of geometri
 origin whi
h lie at the heart of the so-
alled tra
e anomaly.4.1 The 
lassi
al stress-energy tensorWe start our analysis by revising the form and the properties of the stress-energy tensor forDira
 spinors in a 
lassi
al framework. The Dira
 equations (11) 
an be realised as the extremalof the unique a
tion fun
tionalS := ZM d4xpjgjL := ZM d4xpjgj �12 y (D ) + 12 �D0 y� � :A dire
t inspe
tion of the above a
tion shows us that, up to a total derivative term, it is identi
alto the more 
ommon expressionS = ZM d4xpjgj y (�
� ;� +m ) :36



We de�ne the (Hilbert) stress-energy tensor by the usual pro
edure, i.e.,T�� := 2pjgj ÆSÆg�� :An expli
it realisation of this last identity in the 
ase of spinor �elds is mu
h more involveddue to the underlying orthogonal Lorentz frames whose expli
it dependen
e on the metri
 mustbe a

ounted for. Nonetheless, a lengthy and, to a 
ertain extent, tedious 
al
ulation, fullydeveloped in [FoR�o04℄, yieldsT�� = 12 � y;(�
�) �  y
(� ;�)�� Lg�� ; (31)where () denotes idempotent symmetrisation; one should also noti
e that, being the �eld free,the Lagrangian vanishes on shell.If we 
ontra
t (31) with g�� , we end up with the 
lassi
al tra
eT := g��T�� = 12 � y;�
� �  y
� �; �� 4L = �m y ;where, in the se
ond equality, we have evaluated the left hand side on shell by means of (11).Hen
e, as expe
ted, the tra
e vanishes on shell for 
onformally invariant, i.e., massless, Dira
�elds.If we 
onsider instead the 
ovariant 
onservation, we need to 
al
ulater�T�� = 14 �� y;�D + hD0 yi;�  �D0 y ;� +  y [D ℄;� + P y
� �  y
�P �� L;�;whi
h vanishes on shell.4.2 The quantum stress-energy tensor: the problemIn the next step, we would like to de�ne the quantum version of the stress-energy tensor forDira
 �elds. Sin
e we have a well-de�ned notion of Wi
k polynomials at hand, it would be easyto just take the 
lassi
al expression for the stress-energy tensor and repla
e the o

urring �eldmonomials with their normal ordered quantum 
ounterparts. This way, one would easily get anelement of Aext(M; g) whi
h, GNS-represented with respe
t to a Hadamard state, would be awell-de�ned operator valued smooth fun
tion. As we will shortly see, however, this pro
edurewould not yield a meaningful obje
t. To understand this, let us take a slight detour and thinkabout the properties we would like a quantum stress-energy tensor to have.From the point of view quantum �eld theory over 
urved ba
kground, the most importantentity to take into a

ount as a guide in the sear
h for a good quantum stress-energy tensor isof 
ourse the semi-
lassi
al Einstein's equation, viz.,G��(x) = 8�G!(:T�� (x) :); (32)37



where G�� denotes the Einstein tensor R�� � 12Rg�� , G is the gravitational 
onstant and :T�� :is a suitable regularised expression for the quantum stress-energy tensor; this equation thusdes
ribes the ba
k-rea
tion of the quantum �eld on the ba
kground. The legitimate questionwhi
h now arises, is under whi
h 
ir
umstan
es this equation makes sense at all. Regarding theform of the equation, we will restri
t ourselves to point out that it 
an be derived by formallyexpanding a quantum metri
 and a quantum �eld about any 
lassi
al va
uum solution of theEinstein's equation and 
omputing the equation of motion for the expe
ted metri
 while keepingonly \tree-level" graviton 
ontributions and \loop-level" quantum �eld 
ontributions. Sin
e onedis
ards \loop-level" graviton 
ontributions, the equation derived in this manner 
an only makesense as a model equation, or maybe for spe
ial states. We refer the interested reader to [FlWa96℄and the referen
es 
ited therein for an exhaustive treatment of this topi
 while we shall 
ontinuedwelling upon the properties of the quantities appearing in (32).The �rst, and 
ertainly obvious, observation is that we need a regularised expression of thestress-energy tensor to obtain a �nite expe
tation value, i.e., a �nite right hand side. The nextobservation is that the left hand side of (32) is a 
lassi
al and \sharp" quantity, while the righthand side is a probabilisti
 obje
t. Su
h a situation 
an of 
ourse only be a sensible one ifthe 
u
tuations of the probabilisti
 quantity involved are small in 
omparison to the quantityitself, �nite in parti
ular. These 
onsiderations are exa
tly those whi
h led to 
onsider andsele
t the states of Hadamard type as the physi
al and reasonable ones among the myriad ofstates available in quantum �eld theory on 
urved spa
etimes. As a matter of fa
t, if we de�nenormal ordering by means of the Hadamard singularity and we evaluate the normal-ordered(and smeared) stress-energy tensor on Hadamard states, we automati
ally get a quantity with�nite 
u
tuations. This stems from the fa
t that powers of the Hadamard bidistribution areagain well-de�ned bidistributions, thanks to the spe
ial form of the Hadamard wavefront set.Regarding quantitative statements about the 
u
tuations of the expe
ted stress-energy tensor,it seems that in general a priori statements are not possible and one has to look at solutions ofthe semi
lassi
al Einstein's equations to a posteriori 
ompute the 
u
tuations on these solutionsand inspe
t to what extent these are to be trusted.It will prove helpful to realise that !(: T��(x) :) for a : T��(x) : given as some linear 
ombi-nation of the previously de�ned Wi
k monomials and evaluated on a Hadamard state ! 
an beequivalently expressed as!(:T��(x) :) := 18�2Tr [D��(x; y)W (x; y)℄ ; (33)where D�� is some (bi)di�erential operator spe
i�ed by the 
hoi
e of linear 
ombination of Wi
kmonomials in the de�nition of :T��(x) :, Tr denotes the tra
e over spinor indi
es and we referthe reader to appendix A for the explanation of the possibly unfamiliar notations that arisein the 
ontext of bispinorial entities and will be extensively used in the following. As we havealready remarked, the obvious 
hoi
e of expression for the stress-energy tensor in terms of Wi
kmonomials will not turn out to the best one. In terms of the above de�ned di�erential operator,38



this means that the 
anoni
al version derived from the 
lassi
al stress-energy tensor (31),D
an�� := � eD
an�� D0y := �12
(� �r�) � g�0�)r�0�D0y;is not well suited for de�ning a sensible !(:T��(x) :).Sin
e we have assured ourselves that a right hand side of (32) obtained by expressing !(:T��(x) :) as (33) is in prin
iple well de�ned, we 
ould seek for additional physi
al and 
onsisten
yrequirements that lead to a potential re�nement of that pro
edure, i.e., to a sensible 
hoi
e ofD�� . Pursuing a 
omparable aim, Wald [Wa77, Wa78℄ has set up �ve axioms that a meaningfulexpe
ted stress-energy tensor should ful�l. These proved to be a valuable tool in a posteriorilegitimating known stress-energy tensor regularisation s
hemes in 
urved spa
etimes and statingto whi
h extent they may di�er from one another without raising doubts about their validity.For the 
onvenien
e of the reader, we list them in the following.De�nition 4.1. We say that !(: T��(x) :) ful�ls (the strong version of) Wald's axioms if ithas the following �ve properties:1. Given two quasifree states !1 and !2, su
h that !�1 (x; y)� !�2 (x; y) is a smooth bispinor,!1(:T��(x) :)� !2(:T��(x) :) is equal to Tr h eD
an�� �!�1 (x; y)� !�2 (x; y)�i.2. !(:T��(x) :) is lo
ally 
ovariant in the following sense: let� : (M1; g1; SM1; �1) 7! (M2; g2; SM2; �1);�� : F(M1; g1)! F(M2; g2)as in subse
tion 3.2. If two states !1 and !2 on F(M1; g1) and F(M2; g2) are related by!1 = !2 Æ ��, then !2(:T�2�2(x2) :) = �� (!1(:T�1�1(x1) :)) ;where �� denotes the push-forward of � in the sense of 
ovariant tensors.3. r�!(:T��(x) :)=0.4. On Minkowski spa
etime and in the Minkowski va
uum state !Mink, !Mink(: T��(x) :) =0.5. !(:T��(x) :) does not 
ontain derivatives of the metri
 of order higher than 2.!(:T��(x) :) is said to ful�l the redu
ed version of Wald's axioms, if only the �rst four statementshold.Wald has originally stated the axioms for s
alar �elds, while the version we give here ismodi�ed to be suitable for Dira
 �elds. We re
kon that a few 
omments both on the originand on the meaning of the single axioms might be helpful for a potential reader in order tounderstand their relevan
e: 39



1. In a given Fo
k-representation of the quantum �eld, the non-diagonal matrix elements ofthe formal unrenormalised stress-energy tensor operator in the \mode basis" are already �nite,be
ause their 
al
ulation only involves \�nite mode sums", while the 
al
ulation of the diagonalmatrix elements involves \in�nite mode sums" [Wa77, Wa78℄. To regularise the formal stress-energy tensor operator, it is therefore only ne
essary to subtra
t an in�nite part proportionalto the identity operator, thus leaving the non-diagonal matrix elements un
hanged. Axiom 1amounts to require su
h a \minimal" regularisation. This axiom is also related to so-
alled rel-ative Cau
hy evolution of a lo
ally 
ovariant �eld [BFV03, Sa08℄; sin
e the fun
tional derivativeof the relative Cau
hy evolution involves the 
ommutator with the stress-energy tensor oper-ator, one 
ould reformulate this axiom on the operator level requiring that any regularisationpres
ription yields the same relative Cau
hy evolution. If we 
onsider Hadamard states, su
hthat !�i (x; y) is lo
ally given by �D0y(H�(x; y) +Wi(x; y))=(8�2) for i = 1; 2, the requirementis equivalent to demanding that the di�erential operator used in (33) is given by D
an�� plus aterm whi
h does not in
uen
e the state dependen
e of !(:T��(x) :).2. Taking the lo
ality prin
iple of quantum �eld theory and the 
ovarian
e prin
iple of generalrelativity seriously, we would like to have a !(: T��(x) :) whi
h des
ribes the ba
k-rea
tion ofthe quantum �eld on the spa
etime in a lo
al and 
ovariant way. In fa
t, this axiom seems tohave been an inspiration towards the formulation of lo
ally 
ovariant QFT, as des
ribed in theseminal paper [BFV03℄.3. This axiom basi
ally points out a ne
essary 
ondition for the well-posedeness of the semi
las-si
al Einstein's equations; namely, sin
e the geometri
 left hand side of (32) is 
onserved due tothe Bian
hi identities, also the right hand side should vanish under the a
tion of the 
ovariantderivative.4. It is a sensible prerequisite of any regularisation s
heme for a �eld theory on a 
urvedba
kground that it should be possible to read it as an \extension" of the standard normalordering in Minkowski spa
etime, but there are good reasons to skip this axiom, 
f., [Fu89℄ andthe se
ond remark after theorem 4.1.5. Wald originally proposed this axiom in a rather te
hni
al and more stri
t way [Wa77, Wa78℄,essentially requiring that !(:T��(x) :) does not depend on derivatives of the metri
 of order higherthan the �rst. The underlying motivation is rooted, on the one hand, in the request of well-posedness of the Cau
hy problem for the Einstein's equations even with a non vanishing sour
eand, on the other hand, in the need for a sensible \
lassi
al" limit of the semi-
lassi
al Einstein'sequations (see the enlightening dis
ussion in Wald's original paper [Wa77, Wa78℄). Wald himselfhad realised, however, that the stri
t version of this axiom 
ould not even be satis�ed in the
lassi
al theory and has, thus, proposed the weaker one stated here. Unfortunately, furtherexaminations have revealed that even this weaker version does not seem possible to ful�l inmassless theories without introdu
ing an arti�
ial length s
ale into the theory; therefore, theaxiom has been dis
arded. We still believe, however, that it 
ould be ful�lled, though only underspe
ial 
ir
umstan
es. We shall 
omment on this issue at a later stage of the paper.40



Using these axioms, Wald 
ould prove that a uniqueness result for !(: T��(x) :) 
an beobtained. The �rst two axioms already imply that the results from two di�erent sensible regu-larisation s
hemes 
an only di�er by a lo
al 
urvature tensor. The third and fourth axiom thenimply that this lo
al 
urvature tensor is 
onserved and vanishes if the spa
etime is lo
ally 
at.Requiring that this term has the 
orre
t dimension of m4, the possible tensors are presumablyonly the ones obtained by varying a Lagrangian of the formm4�F1� Rm2�+ F2�R��R��m4 �+ F3�R����R����m4 ��with respe
t to the metri
, with some dimensionless fun
tions Fi(x). Requiring suitable analyt-i
ity properties with respe
t to the 
urvature tensors and m, in [HoWa05℄, it has been shownthat the only possibilities are m4g�� (F1 = 1)7, m2G�� (F1 = x) and the three lo
al 
urvaturetensors I�� (F1 = x2), J�� (F2 = x), K�� (F3 = x), 
f. appendix A for their full expression. Infa
t, we will later show that 
hanging the s
ale � in the regularising Hadamard bidistributionH� amounts to 
hanging !(: T��(x) :) exa
tly by a tensor of this form and, furthermore, theattempt to regularise Einstein-Hilbert quantum gravity at one loop order automati
ally yieldsa renormalisation freedom in form of su
h a tensor as well [tHoVe74℄. Having in mind howthe semi
lassi
al Einstein's equation may be derived, these two arguments are of 
ourse relatedby means of internal 
onsisten
y.8 Using the Gauss-Bonnet-Chern theorem in four dimensions,whi
h states that ZM d�(x)R����R���� � 4R��R�� +R2is a topologi
al invariant and, therefore, has a vanishing fun
tional derivative with respe
t tothe metri
 [Al95, tHoVe74℄, one 
an restri
t the freedom even further by removing K�� fromthe list of allowed lo
al 
urvature tensors.4.3 The quantum stress-energy tensor: the solution and its tra
e anomalyWe now seek to exploit the above axioms in order to spe
ify a sensible 
hoi
e of di�erentialoperator D�� . Looking at our proposed regularisation pro
edure (33), the �rst obsta
le to over-
ome seems to be the 
ovariant 
onservation axiom. As we have seen above, 
onservation of thestress-energy tensor in the 
lassi
al 
ase is a dire
t 
onsequen
e of the equation of motion. Sin
ewe are regularising by subtra
ting from the two-point fun
tion the Hadamard bidistribution,7A term proportional to the metri
 is not allowed if one seeks to ful�l the third axiom. As we will see later,however, it does not seem to be possible to �x this term in a way that is 
ompatible with analyti
ity in m.Furthermore, the results of Hollands and Wald regarding the restri
tion of the possible regularisation freedomby demanding analyti
 dependen
e on 
urvature and mass have only been obtained for s
alar �elds. Sin
e thestress-energy tensor for Dira
 �elds is an observable and thus still a \s
alar" �eld, their results 
an be, nonetheless,presumably extended to this 
ase.8In fa
t, at least in the 
ase of s
alar �elds, the 
ombination of the lo
al 
urvature tensors appearing as the �niterenormalisation freedom in [tHoVe74℄ is, up to term whi
h seems to be an artefa
t the dimensional regularisationemployed in that paper, the same that one gets via 
hanging the s
ale in the regularising Hadamard bidistribution.41



whi
h is in general not a solution of the Dira
 equation(s), D
an�� applied to the thereby obtainedsmooth bispinor will in general not yield a 
onserved quantity. A viable solution to su
h prob-lems 
alls for the modi�
ation of the 
lassi
al stress-energy tensor (31) by terms whi
h vanish onshell, while, at the same time, they help restoring 
ovariant 
onservation on the quantum side.As in the 
ase of s
alar �elds [Mo03℄, it seems that the only possible option is to add multiplesof the Lagrangian to the 
lassi
al expression of the stress-energy tensor. We thus propose thefollowing 
lassi
al stress-energy tensor as a starting pointT�� = 12 � y;(�
�) �  y
(� ;�)�+ 
Lg��and we look for a 
 2 R that yields a sensible !(:T��(x) :). This is tantamount to the 
hoi
e ofthe following di�erential operator for the point-splitting pro
ess (33)D
�� := D
an�� � 
2g�� �D0x +Dy�D0y= �12
(� �r�) � g�0�)r�0�D0y � 
2g�� �D0xD0y � Py� : (34)Before pro
eeding to prove that there indeed exists a suitable 
hoi
e of 
, we would liketo anti
ipate another result, whi
h 
an be easily understood from the aforementioned line ofargument. Let us remember that there is another property of the 
lassi
al stress-energy tensorstemming from the equations of motion: it has vanishing tra
e in the massless (and therefore
onformally invariant) 
ase. Following the above dis
ussion, on the one hand, it seems that onemight need to give up this property at a quantum level, while, on the other hand one, one 
ouldstill hope that the 
hoi
e of 
 also provides a vanishing tra
e. Alas, it will turn out that this isnot the 
ase. One 
an only �x 
 in a way su
h that !(:T��(x) :) has vanishing tra
e for m = 0,but 
onservation is inevitably spoilt. Sin
e we have already realised that 
onservation is indeedan essential requirement for the right hand side of the semi
lassi
al Einstein's equations, we willhave to a

ept that g��!(:T��(x) :) is not vanishing in the massless 
ase. This goes under thename of tra
e anomaly.Theorem 4.1. Let �m := 2 exp(72 � 2
)m�2 for m 6= 0 and �m arbitrary for m = 0, where 
denotes the Euler-Mas
heroni 
onstant, 
hoose the Hadamard bidistribution to be the one with� = �m and let !(: T��(x) :) be de�ned as in (33), with the di�erential operator D�� = D�1=6��de�ned as in (34). Then !(:T��(x) :) ful�ls the redu
ed version of Wald's axioms. Furthermore,
42



it exhibits the following tra
e (anomaly)g��!(:T��(x) :) =� 1�2 � 11152R2 + 1480�R� 1720R��R�� � 75760R����R����� (35)� 1�2 �m48 + m2R48 �+mTr �D0yW (x; y)� := 12880�2 �72C����C���� + 11�R��R�� � 13R2�� 6�R�� 1�2 �m48 + m2R48 �+mTr �D0yW (x; y)� :Proof. We begin by 
omputing r�!(:T��(x) :) and g��!(:T��(x) :), leaving 
 unspe
i�ed for themoment. Applying Synge's rule and taking into a

ount that [C�� ; 
�℄ = 0 and [g�0� ;�℄ = 0 (
f.,appendix A), we get8�2r�!(:T��(x) :) = r�Tr �D
��(x; y)W (x; y)� = Tr h(r� + g��0r�0)D
��(x; y)W (x; y)i= Tr ��14 �g�0� r�0 �r�� �D0xD0y + Py�+ 14
�D0y(Py � Px)� 
2 �g�0� r�0 +r�� �D0xD0y � Py�oW (x; y)i :Remembering that �D0y(H� +W ) is the lo
al two-point distribution of a state, it follows thatH�+W is subje
t to the distributional di�erential equationsD0xD0y(H�+W ) = 0 = Py(H�+W ).Thus, we 
an safely repla
e W in the above equation by �H�, sin
e every appearing terminvolves one of the two aforementioned di�erential operators. Su
h a pro
edure yields8�2r�!(:T��(x) :) = Tr ��14 �r� � g�0� r�0� �D0xD0y + Py�+ 14
� �
�0r�0 +m� (Px � Py)� 
2 �g�0� r�0 +r�� �Py �D0xD0y�oH�(x; y)i :Now we 
an insert the various 
oin
iden
e point limits of the di�erentiated Hadamard bidistri-bution H� 
omputed in proposition A.1 of appendix A to obtain8�2r�!(:T��(x) :) = �(1 + 6
)Tr[V1(x; y)℄;� :For the tra
e we use both the insights on the parallel transport of gamma matri
es from appendix
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A and the arguments already employed in the 
omputation of the 
onservation to get8�2g��!(:T��(x) :) = g��Tr �D
��(x; y)W (x; y)�= Tr ����2
+ 12��D0xD0y � Py�+mD0y�W (x; y)�= Tr ��2
+ 12��D0xD0y � Py�H�(x; y) +mD0yW (x; y)�= �6(4
+ 1)Tr[V1(x; y)℄ +mTr �D0yW (x; y)� :If we look at the above two results and we use the data from appendix A, we realise that,sin
e Tr[V1(x; y)℄ is in general neither vanishing nor 
onstant, we need to set 
 = �1=6 toassure 
onservation, thus yielding the asserted tra
e and, parti
ularly, the tra
e anomaly in themassless 
ase.Let us now pro
eed to 
he
k the validity of the �rst two axioms. From the above two
al
ulations we 
an extra
t that the term we have added to the 
anoni
al di�erential operatorD
an�� to a
hieve the looked-for di�erential operator D
�� 
ontributes to !(: T��(x) :) a termproportional to g��Tr ��D0xD0y � Py�H�(x; y)� = �12g��Tr[V1(x; y)℄:This term is 
learly independent of the state, i.e., W (x; y), thus, axiom 1 holds for our regu-larisation s
heme and two Hadamard states !1; !2. Furthermore, sin
e the Wi
k monomials arelo
ally 
ovariant quantum �elds as dis
ussed in the previous se
tion, the same holds true for:T��(x) : and axiom 2 is straightforwardly ful�lled.What now remains to be shown is the vanishing of !(:T��(x) :) on Minkowski spa
etime andin the Minkowski va
uum state, provided we 
hoose a suitable s
ale � in the de�nition of H�.In this setting, we have !�Mink(x; y) = �D0y!+2;Mink(x; y)I4, with the s
alar two-point fun
tion!+2;Mink9 [S
ha95℄. The latter 
an be spe
i�ed as!+2;Mink(x; y) = lim�!0+ 4m(4�)2p2��(x; y)K1(mp2��(x; y));where K1 denotes a modi�ed Bessel fun
tion, the expression is to be understood in the sense ofanalyti
 
ontinuation for negative values of the geodesi
 distan
e, and the limit spe
i�es how toapproa
h the bran
h 
ut of the squared root [Mo03℄. Expanding this in terms of � (suppressingthe � for simpli
ity) we have8�2!�2;Mink(x; y) = � 1� +�m22 + m48 � + f1(�)�2� ln�e2
m2�2 �+�m22 �1 + 5m2�8 �+ �2f2(�2)� I4;9Re
all that, a

ording to our de�nition, !� is of \positive frequen
y type".44



where the fi appearing in this paragraph are smooth fun
tions. In Minkowski spa
etime, theDira
 Hadamard bidistributions H� are simply the s
alar ones times the unit matrix. This isnot surprising sin
e, as visible in appendix A, the nontrivial matrix part of the Dira
 Hadamard
oeÆ
ients stems from the 
urvature of the spin 
onne
tion, whi
h vanishes in 
at spa
etimes.We thus have 8�2H�Mink(x; y) = � 1� +�m22 + m48 � + f1(�)�2� ln� ��2�� I4:If we take into a

ount this singular part, a short 
omputation yields8�2WMink(x; y) = �m22 �ln�e2
m2�22 �� 1�+�m48 ln�e2
m2�22 �� 5m416 �� + f3(�)�2� I4and we 
an straightforwardly 
ompute!Mink(:T��(x) :) = �m48 g�� �ln�e2
m2�22 �� 72� ;whi
h vanishes for � = �m = 2 exp(72 � 2
)m�2. In the massless 
ase, both H�Mink and !2;Minkonly 
onsist of the ��1 term, su
h that !Mink(: T��(x) :) is trivially vanishing, independent ofany s
ale �. 2It is interesting to noti
e that the above analysis seems to suggest that the 
ommon ideawhi
h asso
iates the emergen
e of the tra
e anomaly to the 
onservation of the stress-energytensor is somehow inappropriate sin
e su
h anomaly seems rooted in the loss of the equationsof motion at a quantum level alone. As a matter of fa
t the needed modi�
ation of the 
lassi
alstress-energy tensor does not evoke the tra
e anomaly, but it only modi�es it.To 
on
lude the se
tion, a few further remarks are in due 
ourse:Remark. Our result for the tra
e anomaly 
oin
ides with previous ones obtained by meansof gravitational index theorems [ChDu79℄ and point-splitting te
hniques [Chr78℄. Both ap-proa
hes have made use of the DeWitt-S
hwinger expansion, whi
h 
an not be de�ned rigorously[Wa79, BrOt86, Fu89, Mo03℄. Moreover, even if this expansion reprodu
es the Hadamard singu-larity stru
ture, it seems that 
al
ulations are mu
h shorter if one expresses it dire
tly throughthe Hadamard series. The previous attempts had, however, one advantage, namely, they hadexpressed the expe
ted stress-tensor as the fun
tional derivative of a (di�eomorphism-invariant)e�e
tive a
tion, su
h that the result has been manifestly 
onserved. The ni
e dis
ussion whi
hfollows de�nition 2.1 of [Mo03℄ gives an explanation of how the extra term in our derivativeoperator D
�� 
an be understood in this 
ontext.Remark. By 
hanging the s
ale � in the Hadamard bidistribution H� to �0, one modi�esthe (de�nition of the) smooth part W by 2V ln�0=�, su
h that !(:T��(x) :) 
hanges by a termproportional to Tr[D
��V ℄. Sin
e we know from proposition 3.2 that D0yV ful�ls both Dira
equations of motion, we 
an a priori dedu
e that this term is automati
ally 
onserved and45



furthermore tra
eless in the 
onformal 
ase. Thus, it follows that both the determination of the
orre
t 
 to be inserted in D
�� and the tra
e anomaly are independent of the s
ale �. Even if wealready know the properties of Tr[D
��V ℄ beforehand, it is enlightening to 
al
ulate its expli
itform. The result is Tr[D
��V ℄ = m42 g�� � m26 G�� + 160 (I�� � 3J��) ;where the linear 
ombination of I�� and J�� appearing in the above formula is tra
eless, 
f.,appendix A. This term is well within and even exhausts the regularisation freedom dis
ussedafter de�nition 4.1.Furthermore, one should re
all that, in the massive 
ase, � had to be �xed in terms of inversepowers of m to assure vanishing of !(:T��(x) :) in Minkowski spa
etime. Hen
e, if one demands
ontinuous dependen
e of !(:T��(x) :) on m, it does not seem possible to ful�l the third axiomof de�nition 4.1 in this way.Remark. Even if we are able to �x the s
ale �, we 
ould in prin
iple still add multiples ofm2G�� , I�� , and J�� to !(: T��(x) :) without spoiling the validity of the �rst four of Wald'saxioms, though possibly modifying the �R term in the tra
e anomaly. This freedom 
an bederived in a more general sense, by already viewing all Wi
k produ
ts as being uniquely de�nedonly up to terms depending on the mass and the lo
al 
urvature, where the possible regularisationfreedom is partially restri
ted by suitable 
onsisten
y 
onditions, e.g. \Leibnitz rules". Thisapproa
h has been developed and pursued su

essfully by Hollands and Wald in [HoWa05℄ andhas the advantage to also en
ompass intera
ting �elds. A treatment along their lines will, asalready remarked in subse
tion 4.2, presumably yield the same renormalisation freedom for thestress-energy tensor like the one found here, as it happens in the s
alar 
ase [HoWa05℄.Furthermore, the arising of the 
onserved lo
al tensors I�� and J�� puts us in the positionto understand why the �fth of Wald's axioms in de�nition 4.1 is problemati
. Let us 
onsiderthe massive 
ase, where we 
an �x the s
ale �. Sin
e I�� and J�� 
ontain terms involvingfourth order derivatives of the metri
, we may hope to 
an
el terms of that type o

urring in!(: T��(x) :) by adding a �xed linear 
ombination of those two tensors. In the massless 
ase,however, there is, up to our knowledge, no physi
ally sensible way to �x �. Therefore, one hasno 
ontrol on the multiples of I�� and J�� o

urring in !(:T��(x) :) and thus no way to 
an
elthem.Nonetheless, there are s
enarios where the situation with respe
t to the mentioned axiomis not that perni
ious. On 
osmologi
al, i.e., Friedmann-Robertson-Walker ba
kgrounds, thesemi-
lassi
al Einstein's equations (32) 
an be redu
ed to an equation for the tra
es of bothsides plus a 
onservation equation for the right hand side [DFP08℄. Thus, it seems that one hasthe 
han
e to ful�l the �fth axiom for both massive and massless �elds in this simpli�ed setting,sin
e a 
hange of s
ale does not add fourth order derivative terms to the tra
e of the expe
tedstress-energy tensor. In fa
t, as already explained in the introdu
tion, this observation has beenused in [DFP08℄ to obtain stable solutions of the semi-
lassi
al Einstein's equation at late times.46



5 Con
lusions and outlookWe have extensively dis
ussed the stru
ture of free Dira
 �elds both at a 
lassi
al and at aquantum level. While, in the �rst 
ase, we have mostly reviewed standard approa
hes, in thelatter s
enario we have a
hieved a twofold goal. Parti
ularly, we have started the dis
ussion ofquantised Dira
 spinors by exploiting the selfdual framework introdu
ed by Araki whi
h treatsspinor and 
ospinor �elds as a 
ombined single obje
t and allows to formulate the quantisationpro
edure in a lo
ally 
ovariant way. This step has been fully undertaken by Sanders for the�rst time and we have re
alled the essential steps and features of this 
onstru
tion. Employingalready available and known properties of Hadamard states, we have subsequently been ableto introdu
e the extended algebra of Wi
k polynomials, the topi
 of se
tion 3.4 and the �rstof our main results. As a se
ond one, we have shown that, as in the s
alar 
ase, a physi
allysensible de�nition of the stress-energy tensor for Dira
 �elds on a 
urved ba
kground in termsof Wi
k polynomials is indeed possible with just one 
aveat: one has to add to the 
lassi
alexpression a suitable term whi
h vanishes on-shell and hen
e does not alter 
lassi
al dynami
sto obtain a 
onserved stress-energy tensor on the quantum side. Some new insights on Dira
ianHadamard forms have 
onstituted a prerequisite of this result, while one of its 
onsequen
es isthe emergen
e of a non-vanishing quantum tra
e of the stress-energy tensor, even if its valueat a 
lassi
al level is zero in the 
onformally invariant 
ase. This result, whi
h goes under thename of tra
e anomaly, has been previously known, but only as a result of formal 
al
ulations;it is thus derived here rigorously for the �rst time.On the overall, we re
kon that this paper a

omplishes also a further task, namely, it addsthe insight that it is possible, interesting, but by no means straightforward to re
ast many ofthe already known rigorous results for s
alar �elds also for the spinor ones. Furthermore, ouranalysis opens several interesting questions to be ta
kled in future lines of resear
h: the �rstone, whi
h arises out of se
tion 3.2, 
on
erns the possibility to prove the time sli
e axiom forthe extended algebra of �elds (as well as for intera
ting �eld theories) in the s
enario 
onsideredin the paper. If one follows the path paved in the s
alar 
ase in [ChFr08℄, a positive answerseems de�nitively within our grasp. A further interesting problem originates from se
tion 3.3in whi
h Hadamard states are introdu
ed and dis
ussed; the Hadamard 
oeÆ
ients appearingin the singularity stru
ture of su
h states are smooth bispinors and the question arises if theirmost remarkable feature in the s
alar 
ase, namely, their symmetry as proved in [Mo99, Mo00℄,also appears in the spinor s
enario. Su
h a property would be desirable sin
e, for example, itwould lead to many simpli�
ations in the demanding 
al
ulations ne
essary in the 
onstru
tionof the 
onserved stress-energy tensor. Although there are hints pointing towards this dire
tion(see also [SaVe01℄), we are far from a 
omplete proof of su
h a symmetry and we thus feel thiswould be another rather interesting problem to ta
kle in the very next future.Besides these rather formal lines of resear
h, our results have also some remarkable 
onse-quen
es at a physi
al level. On the one hand we are now ready to answer the question posed inthe introdu
tion on the robustness of the results in [DFP08℄; preliminary 
onsiderations seemto point towards this dire
tion, though we leave a de�nitive answer to a future analysis. Onthe other hand, sin
e our approa
h allows us to 
ontrol the behaviour of free Dira
 �elds at47



a 
osmologi
al level, it is interesting to point out that free or perturbatively self-intera
ting�elds with half-integer spin in 
osmology arise in many models, su
h as baryogenesis throughleptogenesis, where they often play a pivotal role. In these s
enarios there are still many openquestions to be answered and it seems that, often, the role of spa
etime 
urvature e�e
ts area priori dis
arded as negligible. Our experien
e suggests that this approximation might be too
rude and, therefore, we would like to investigate these models in more detail in the frameworkof quantum �eld theory in 
urved spa
etimes with the hope that su
h an analysis might lead tonew and interesting physi
al 
onsequen
es.A
knowledgements.The work of C.D. is supported by the von Humboldt Foundation, that of T.H. by the GermanDFG Graduate S
hool GRK 602, whereas N.P. gratefully a
knowledges support by the GermanDFG Resear
h Program SFB 676. We would like to thank K. Fredenhagen, V. Moretti, and R.Punzi for useful dis
ussions. T.H. is espe
ially grateful to R. Punzi for suggesting [Ri

i℄ to him.A Useful tools and ne
essary 
al
ulationsThe aim of the appendix is to re
olle
t, to 
larify, and, o

asionally, to also prove useful formulaswhi
h are needed in the main body of the paper and whi
h are subje
t to potential ambiguities.These are often perni
iously leading to potentially grievous sign mistakes or misunderstandingsof a sort whi
h we wish to hold o� from a potential reader.A.1 Notations, 
onventions, identitiesAs a starting point, we would like to re
olle
t our basi
 
onventions regarding some symbols,whose exa
t de�nition often varies among the literature. In a

ord with se
tion 2, we workwith spa
etimes thought as four-dimensional, Hausdor�, smooth manifolds10, endowed with aLorentzian metri
 g�� with signature (�;+;+;+). At the same time, other notable geometri
quantities, namely, the Riemann and the Ri

i tensor as well as the Ri

i s
alar, are de�ned viatheir 
omponents as followsv�;�
 � v�;
� := R �� �
v�; R�� := R �� ��; R := R��;where v� are the 
omponents of an arbitrary 
ove
tor; the extension to ve
tors and tensors ofhigher rank is then straightforward. As a last remark, we underline that the Riemann tensorpossesses the symmetries R��
Æ = �R��
Æ = �R��Æ
 = R
Æ��10As proven in [Ge68℄, se
ond 
ountability is automati
ally ful�lled for a four-dimensional, Hausdor�, smoothmanifold of Lorentzian signature. 48



and ful�ls R��
Æ +R�Æ�
 +R�
Æ� = 0:Finally, we de�ne the Weyl tensor as it is usually done by the following expressionC��
Æ = R��
Æ � 16 (g�Æg�
 + g�
g�Æ)R� 12 (g�ÆR�
 + g�
R�Æ + g�ÆR�
 + g�
R�Æ) :Similarly, we need to 
ope with geometri
 quantities related to the spin stru
ture, introdu
edin de�nition 2.4. Most of these are 
onstru
ted out of the so-
alled 
-matri
es whi
h satisfy thestandard anti
ommutation relations (4), i.e., f
�; 
�g = 2g�� . Our 
hoi
e of the metri
 signatureentails that the 
-matri
es are di�erent from the standard ones employed in quantum �eld theorybooks by an overall multipli
ative fa
tor �i. Consistently also with (2), we sti
k to +i and,therefore, the Dira
 operator appearing in the Dira
 equation for spinors be
omes D := �6r+m,whereas the operator nullifying a dynami
ally allowed 
ospinor is D0 := 6r+m.That said, apologising in advan
e for assigning the letter C to two di�erent obje
ts, we de�nethe 
omponents of the 
urvature tensor C of the spin 
onne
tion asVA;�
 � VA;
� := C BA �
VB;where VA are the 
omponents of an arbitrary 
ospinor; as previously, the extension of thisde�nition to spinors, also of higher rank, as well as of that for the Riemann and the spin
urvature tensor in presen
e of mixed spinor-tensors, is straightforward. It follows from lemma2.1 that the relation between the two 
urvature tensors isCAB�� = 14R����
�AC
�CB :Thus, C possesses the symmetriesCAB�� = �CBA�� = �CAB��:We also use the notational 
onvention that a matrix a
ts from the left on spinors and fromthe right on 
ospinors, e.g., we resolve the Dira
 operators asD0 y =  y;�
� +m y; D = �
� ;� +m :If one stri
tly sti
ks to su
h 
onvention, spinor indi
es 
an be safely suppressed, as we havealready done in the main body of the paper and as we will often do in the remainder of thisappendix.To 
on
lude this subse
tion, we point out a few useful identities between the obje
ts we havepreviously introdu
ed. Starting from the gamma matri
es, the produ
t of an odd number ofthem has a vanishing tra
e. At the same time, if we 
onsider an even numberTr 
�
� = 4g�� ; T r 
�
�
�
� = 4(g��g�� � g��g�� + g��g��)Tr 
[�
�℄
[

Æ℄
"
' = 4(g[�'g�℄[
gÆ℄" + g[�"g�℄[Æg
℄' + g[�Æg�℄
g"');49



where [ ℄ here denotes idempotent antisymmetrisation. Furthermore,
�
� = 4I4; 
�
�
� = �2
�; 
�
�
�
� = 4g��I4;
�
�
�


� = �2


�
�; 
�
�
�


Æ
� = 2(
Æ
�
�

 + 


�
�
Æ): (36)The last equalities we shall need are
�C�� = C��
� = 12R��
�; [C��; 

 ℄ = R���

�; T r C��


Æ = �2R��
Æ ; C ����; = 0;T r C��C�� = �12R��
ÆR��
Æ; T r C��C��
�
� = Tr C��C��g�� ;where the equalities not involving a tra
e 
an be proved by 
ombining the symmetry propertiesof the Riemann tensor with the anti
ommutation relations of the 
-matri
es, e.g.,C��
� = 14R����
�
�
� = 14(R���� +R����)
�
�
� = 14R���� (
�
�
� + 
�
�
� )= 14R���� ��
�
�
� + 2g��
� � 2g��
� � 
�
�
� + 2g��
��= 32R��
� � 2C��
�, C��
� = 12R��
� :A.2 On the 
al
ulus of bispinor-tensorsThe notion of bispinor-tensors heuristi
ally boils down to 
onsider obje
ts whi
h 
ontemporarytransform as spinor-tensors at two spa
etime points. In a more sound language, they are se
tionsof an outer tensor produ
t VM �WN of two ve
tor bundles VM , WN respe
tively over M andN . VM �WN is nothing but a ve
tor bundle over M �N with, 
alling V and W the typi
al�bres of VM and WN , V 
W as a typi
al �bre. Su
h a 
onstru
tion may seem awkward,but, in 
ase M = N , it is indeed more fundamental than the familiar tensor produ
t bundleVM 
 WM , the latter being 
onstru
ted out of VM � WM by pulling ba
k via the mapM 3 x 7! (x; x) 2M �M .For simpli
ity we will 
hoose to 
olle
t all possible (bi)spinor-tensorial obje
ts under thename of (bi)tensor, ex
ept in spe
ial 
ase where we want to stress the 
hara
ter of the involvedve
tor spa
es. The bitensors o

urring in this work are all de�ned only on a 
onvex normalneighbourhood, sin
e we need a unique geodesi
 to 
onne
t the two points our bitensors dependon. We use unprimed indi
es to indi
ate 
omponents stemming from tensorial properties atx and primed indi
es for those rooted in su
h properties at y. Furthermore, we shall use thebra
ket notation introdu
ed by Synge to denote 
oin
iden
e point limits of bitensors, namely,[B(x; y)℄ := limy!xB(x; y);50



where B is some smooth bitensor, su
h that the limit is well de�ned.Let us now re
all the bitensors used in this work and examine their properties. We will onlymention the basi
 points while we refer to the works of DeWitt and Brehme, Fulling, Christensen,and to the review by Poisson for further, more exhaustive, details [DeWBr60, Fu89, Chr76, Po03℄.As a starting point, we 
onsider the halved squared geodesi
 distan
e �(x; y) taken with sign,sometimes also 
alled Synge's world fun
tion. Even if the geodesi
 distan
e itself might not beglobally smooth, it is su
h on geodesi
ally 
onvex normal neighbourhoods (provided smoothnessof the metri
) and it furthermore ful�ls �;��;� = 2�, an identity whi
h 
an be either expli
itly
omputed or derived from geometri
 
onsiderations. In the following, we will, as it is 
ustomary,drop the semi
olon when indi
ating 
ovariant derivatives of �. The aforementioned equationtogether with [�℄ = [��℄ = 0 and [��� ℄ = g�� , two identities arising out of the de�ning propertiesof the geodesi
 distan
e, 
ompletely suÆ
e to determine �, as well as all the properties we need,namely, the 
oin
iding point limits of its higher derivatives. These 
an be obtained by means ofan indu
tive pro
edure; as an example, in the 
ase of [����℄, one di�erentiates ���� = 2� threetimes and then takes the 
oin
iding point limit. Together with the already known relations,one obtains [����℄ = 0. At a level of fourth derivative, a new feature enters the fray, namely,one gets a linear 
ombination of three 
oin
iding fourth derivatives, though with di�erent indexorders. To relate those, one has to 
ommute derivatives to rearrange the indi
es in the looked-forfashion, and this ultimately leads to the appearan
e of Riemann 
urvature tensors, i.e.,[�℄ = [��℄ = [����℄ = 0; [��� ℄ = g�� ; [���%� ℄ = �13(R�%�� +R���%):We stress that the dis
ussion of these few identities is indeed mu
h more valuable than justyielding the stated results sin
e a potential reader is now able to 
al
ulate 
oin
iding pointlimits both of derivatives of arbitrarily high order and of any bitensor; this holds true providedhe is given the limits of lower order derivatives, an equation relating them to the higher ones, aswell as the information of appropriate 
urvature tensors. We would like to remark at this pointthat, sin
e one is ultimately interested in the 
oin
iding point limits of 
ertain bitensors mostof the time, the in between 
omputational steps often only require the knowledge of 
oin
idingpoint limits of hierar
hi
ally lower obje
ts, in 
ontrast to having the ne
essity to know their fullform.The next interesting bitensor is that of parallel transport along a geodesi
, an obje
t de-pending both on the underlying ve
tor bundle and on the 
onsidered linear 
onne
tion. We willdenote the parallel transport relating the tangent spa
es at x and y as g��0 , while the one relatingspinors at those same points is denoted as IAB0 . With them at hand, parallel transporting aspinor-tensor T = TA�EA 
 �� along the geodesi
 
onne
ting y to x amounts to the followingidentity TA� = IAB0g��0TB0�0 ;and a similar rule applies to higher spinor-tensors. One 
an reverse the role of x and y, introdu
-ing the inverses of the above two parallel transports, say g�0� and I�1A0B . On a pra
ti
al ground,the 
onstru
tion of these two quantities boils down to �nding a solution of the following partial51



di�erential equations:g��0;��� = IAB0;��� = 0 and [g��0 ℄ = g�� ; [IAB0 ℄ = I4AB ;being I4 the 4 � 4 identity matrix. These identities, together with the properties of � and theindu
tive pro
edure des
ribed at the beginning of this paragraph, allow us to expli
itly 
omputethe derivatives of the parallel transports, the lowest ones being[g��0;�℄ = [IAB0;�℄ = 0; [g��0;��℄ = 12R���� ; [IAB0;��℄ = 12CAB�� : (37)We shall hen
eforth suppress spinor indi
es, taking 
are to follow the afore des
ribed 
onventions,and, to 
on
lude the se
tion, we would like to point out the spe
ial parallel transport propertiesof both � and the gamma matri
es. For the former we have, due to its geometri
 meaning,g�0� ��0 = ��� ;whereas, for the latter, being 
ovariantly 
onstant, we haveI
�0I�1g�0� = 
� :In this paper, we need to 
ope with the 
oin
iding point limits of bitensors di�erentiated atboth x and y. The �rst, and maybe obvious, related statement is that derivatives at di�erentpoints 
ommute, so that we 
an always rearrange derivative indi
es in su
h a way that theunprimed ones are always on the left whereas the primed ones are always on the right. As asubsequent step, one noti
es that mixed 
oin
iding point limits 
an be also 
al
ulated out ofindu
tive paths. If one has the knowledge of the 
oin
iding derivatives at the point x, however,one 
an extend it to those at y by means of Synge's rule:Lemma A.1. Let T be a smooth bitensor of arbitrary order; then its 
ovariant derivativespossess the following property in the 
oin
iding point limit (here suppressing all unessentialindi
es): [T;�0 ℄ = [T ℄;� � [T;�℄:This has been proven by Synge for � ex
lusively, while, for the proof of an extension toarbitrary bitensors, one 
an refer to se
tion 2.2 in Poisson [Po03℄ or to Christensen [Chr76℄.A.3 On the Hadamard re
ursion relations and related resultsAs we have seen in se
tion 3.3, in order to \
onstru
t" the two-point fun
tions !�(x; y) of aHadamard state, we need to spe
ify the distribution kernels H�(x; y) and the smooth bispinorW (x; y), whi
h must satisfyPxH�(x; y) 2 E(DM 
D�M); PyH�(x; y) 2 E(DM 
D�M)52



and D0xD0y �H�(x; y) +W (x; y)� = Py �H�(x; y) +W (x; y)� = 0:From this it follows that D0xD0yH�(x; y) is a smooth bispinor as well. Furthermore, due toproposition 3.2, there are even more di�erential operators, whi
h, applied to H�(x; y), yield asmooth bispinor. Let us 
olle
t them all in the following:Px = �D0xDx; Py = �D0yDy; D0xD0y; DxDy and Dx �D0y = Dy �D0x: (38)The aim of this se
tion is to use these data to determine the Hadamard bidistributionsH�(x; y)and to 
al
ulate the various 
oin
iding point limits of their derivatives whi
h are ne
essary forthe proof of theorem 4.1. Following the path paved in the pre
eding se
tions, let us re
all thatthe index stru
ture of !� is!�(x; y) = !�(x; y) B0A EA(x)
EB0(y);and that H� and W inherit this stru
ture, and let us suppress spinor indi
es in the following.Although H�(x; y) and W (x; y) are bispinors, we re
all from the main body of the paperthat their form slavishly mimi
s that of the kernels spe
ifying the two-point fun
tion in thetheory of s
alar �elds, viz.,H�(x; y) = U(x; y)���(x; y) + V (x; y) ln ���(x;y)�2 ; (39)V (x; y) := 1Xn=0Vn(x; y)�(x; y)n; (40)W (x; y) := 1Xn=0Wn(x; y)�(x; y)n; (41)where ���(x; y) := �(x; y)� 2i� (T (x)� T (y)) + �2; with � > 0 and T being a temporal fun
tionwhose existen
e is guaranteed sin
e the ba
kground is globally hyperboli
 [BeSa05, BeSa06℄. Asalready 
ommented in the main text, � is a referen
e distan
e employed to make the argumentof the logarithm dimensionless, while the remaining obje
ts, the so-
alled Hadamard 
oeÆ
ientsU and V , are smooth bispinors. As we will see shortly, U as well as V depend only on thegeometry of the underlying ba
kground and the mass, whereas W fully 
hara
terises the state,namely, the two-point fun
tions of two Hadamard states di�er only by a smooth fun
tion andsu
h a di�eren
e is indeed en
oded in W .To determine U , V , and W , we need to use the knowledge on the di�erential operators(38) whi
h, on
e applied to H�, give smooth bispinors. To make the following formulas morereadable, we 
hoose to omit the regularising " - and thus the � index of H� -, the referen
elength �, and the dependen
e of the kernels on the spa
etime points (x; y). That said, we 
anin prin
iple take either of the se
ond order di�erential operators listed in (38) to re
ursively
al
ulate U and V ; we will employ Px, as this is familiar from the 
omputations in the s
alar
ase. 53



Applying Px to H, we obtain potentially singular terms proportional to ��n for n = 1; 2; 3and to ln� as well as smooth terms proportional to positive powers of �. We know, however,that the total result is smooth and one possible way to a
hieve this is to demand that the
oeÆ
ients of the potentially singular terms are identi
ally vanishing. Let us stress that, sin
ewe do a priori not know if U 
ontains positive powers of �, the terms proportional to negativepowers of � 
ould in prin
iple 
an
el ea
h other to yield a smooth result. It is therefore a 
hoi
eand not a ne
essity to require the 
oeÆ
ients of the inverse powers of � to vanish, and it is,furthermore, not guaranteed that the result of this pro
edure does not depend on the 
hoi
e ofthe se
ond order di�erential operator out of the possible ones listed in (38). The afore laid downline of argument does, however, not hold for the 
oeÆ
ients of PxH proportional to ln�; sin
eU and V are required to be smooth, they 
an not 
ontain a logarithmi
 dependen
e on � andthe terms proportional to ln� have to vanish ne
essarily.The result of the previously des
ribed pro
edure are the so-
alled Hadamard re
ursive rela-tions, whi
h, in the s
alar 
ase, have been studied by several authors (see for example [Mo00℄).In the 
ase of Dira
 �elds, there are results on the 
oin
iding point limits of the Hadamard 
o-eÆ
ients up to V1 
omputed in [Chr78℄; the form of the Hadamard singularity employed in thiswork is, however, a di�erent one related to the non-rigorous DeWitt-S
hwinger expansion, butformally, the relation between the di�erent re
ursion relations arising in the two 
onstru
tionsis well-known.After having dis
ussed the Hadamard re
ursion relations, we shall show how they ariseexpli
itly. Let us thus examine the terms U=� and V ln� individually. Starting with the latter,we have Px(V ln�) = (PxV ) ln� + 1Xn=0 (Vn(�x� � 2 + 4n) + 2��Vn;�) �n�1;where we have employed the identity ���� = 2�. Remembering our previous dis
ussion, we 
annow extra
t our �rst di�erential equation by requiring the 
oeÆ
ient of ln� to vanish. Sin
ethis requirement has to hold independently of the di�erential operator 
hosen out of (38), wehave PxV = PyV = D0xD0yV = (D0x �Dy)V = (D0y �Dx)V = 0: (42)To obtain further di�erential equations, we need to look at the terms involving U , viz.,Px�U� � = (PxU)� + 2��U� + (�x� � 4)U�2 ;whi
h, 
ombined with the ��1 
oeÆ
ient 
oming from the series obtained out of di�erentiatingV ln�, leads us to the following two identities:PxU + 2V0;��� + (�x� � 2)V0 = 0; (43)2U;��� + (�x� � 4)U = 0; (44)54



referring to the ��1 and ��2 
oeÆ
ients, respe
tively.Let us now fo
us on (44); one 
an infer that U is subje
t to a linear partial di�erentialequation whi
h, a

ording to standard theorems, provides a unique solution on
e a suitableinitial 
ondition is given. The latter is usually 
hosen in su
h a way that[U ℄ = I4;and, hen
e, the Cau
hy problem asso
iated to the U -bispinor strongly suggests us to hypothesiseU to be of the form U = uI, with a smooth bis
alar u satisfying [u℄ = 1. Plugging in this ansatzin (44) and re
alling the properties of I, it holds that uI is the solution we are seeking if andonly if u satis�es the partial di�erential equation2u;��� + (�x� � 4)u = 0:Hen
e, it turns out that u ful�ls the same transport equation as the ��1 
oeÆ
ients of theHadamard bidistribution en
oding the singularity of the two-point fun
tion for a s
alar quantum�eld and is thus given by the square root of the so-
alled V anV le
k �Morette determinant. Itwould be tempting to think that a similar result and interpretation holds for V , but, alas, this isfar from being the truth as one 
an realise by dire
t inspe
tion of (43) sin
e spin 
urvature termsnot proportional to the identity enter the arena via derivatives of I. The enlarged 
omplexityof the Dira
ian Hadamard 
oeÆ
ient V , however, is 
ompensated by the in
reased number ofdi�erential equations ful�lled by V (42). Of 
ourse, any of them is enough to determine V , but
omputations are still 
onsiderably easier if one employs all.To obtain di�erential equations for the Vn, one has to 
ombine (40) with (42). After a fewformal manipulations, one gets to1Xn=0 (PxVn) �n + 1Xl=1 (2lVl;��� + (l�� + 2l (l � 1)) Vl)�l�1 = 0;and, if we require this identity to hold true at ea
h order in �, toPxV0 + 2V1;��� + (�x�)V1 = 0; (45)PxVn + 2(n+ 1)Vn+1;��� + ((n+ 1)�x� + 2n (n+ 1)) (Vn+1) = 0: 8n � 1 (46)At this point it is 
lear how to determine U , V and W expli
itly: the starting point is (44),whi
h, as we have explained above, gives us U on
e an initial 
ondition has been assigned.Afterwards one 
an plug the result in (43) in order to obtain V0, though one needs to spe
ifyan initial 
ondition. This is already in
luded in (43), however, sin
e, if we take the 
oin
iden
epoint limit of (43) and re
all the properties of �, we end up with[V0℄ = �12[PxU ℄:Hen
e, we 
an now pro
eed iteratively, namely, we exploit (45) to 
onstru
t V1 on
e we havespe
i�ed the initial 
ondition taking the 
oin
iden
e point limit, i.e.,[V1℄ = �14[PxV0℄:55



Similarly, (46) grants us that the same pro
edure allows us to express Vn+1 out of the pre
edingterm Vn together with the initial 
ondition[Vn+1℄ = � 12(n+ 1)(n+ 2) [PxVn℄:Let us remember that all these results 
an be obtained starting from [U ℄ = I4 and employingdi�erential equations whi
h only involve lo
al 
urvature terms and the mass m. Thus, both Uand V indeed only depend on these data and are independent from the state under 
onsideration.This of 
ourse 
hanges on
e we want to determine the �nal unknown quantity W . Starting from(41) and re
alling the di�erential equationPx(H +W ) = 0, PxW = �PxH;it is 
lear how to get re
ursive di�erential equations for theWn. This time two initial 
onditions,namely, [W0℄ and [W0;�℄, however, have to be spe
i�ed by hand, whi
h is of 
ourse not surprisingsin
e we expe
t some indeterminateness whi
h has to be �xed by sele
ting a spe
i�
 state.It seems that we �nally have all ingredients ne
essary to 
al
ulate the sought 
oin
idingpoint limits used in theorem 4.1. There is one potential feature of the Hadamard 
oeÆ
ients,however, whi
h helps a lot simplifying 
al
ulations and should therefore be dis
ussed beforestarting 
al
ulations, namely, their symmetry. Indeed, su
h a property has been proven in[Mo00℄ for the s
alar 
ase, but, unfortunately, a similar result does not exist for Dira
 �elds andeven understanding the 
orre
t notion of \symmetry" in our framework is a rather 
hallengingtask. We shall leave the tantalising endeavour to prove the symmetry of the Dira
ian Hadamard
oeÆ
ients for possible future work and 
ir
umvent, for the time being, this gap with moreexpli
it 
al
ulations. The following lemma will turn out to be rather useful in general and inthe 
ontext of 
oping with the la
k of (proven) symmetry in parti
ular:Lemma A.2. Given a smooth bitensor B(x; y) and a smooth bis
alar f(x; y) su
h that B(x;y)f(x;y)is a smooth bitensor and[B℄ = [B;�0 ℄ = [f ℄ = [f;�0 ℄ = 0; as well as [�yf ℄ 6= 0;it holds �Bf � = [�B℄[�f ℄ :Proof. We only sket
h the proof here. Sin
e B, f and B=f are smooth, their 
oin
iding pointlimits do not depend neither on y nor on the path along whi
h one approa
hes x. Thus, we
an apply de l'Hospital's rule to our smooth bitensors restri
ted to arbitrary smooth 
urves 
i,thereby expressing 
oin
iding point limits of fra
tions as those of dire
tional derivatives, e.g.,�B(x; y)f(x; y) � = " _
1(y)�0B(x; y);�0_
1(y)�0f(x; y);�0 # = " _
1(y)�0 _
2(y)�0B(x; y);�0�0_
1(y)�0 _
2(y)�0f(x; y);�0�0 # = [ _
1(y)�0 _
2(y)�0B(x; y);�0�0 ℄[ _
1(y)�0 _
2(y)�0f(x; y);�0�0 ℄ ;56



where we assume that [ _
1(y)�0 _
2(y)�0f(x; y);�0�0 ℄ is non-vanishing. This holds due to the hy-potheses of the lemma on
e we �nd two smooth 
urves 
1, 
2 su
h that _
1�0 _
2�0 = g�0�0 .Going to normal 
oordinates at x, it is always possible to �nd 
1, 
2 joining x and y su
hthat _
1(x) = (1; 1; 1; 1) and _
2(x) = (�1; 1; 1; 1); thus _
1� _
2� = ��� , where � denotes the met-ri
 in normal 
oordinates, � = diag(�1; 1; 1; 1). Sin
e [ _
1(y)�0 _
2(y)�0f(x; y);�0�0 ℄ is 
oordinate-independent, the statement of the lemma holds as a 
onsequen
e due to Synge's rule. 2The last worthy of mention tool to perform the 
al
ulations whose results we will displayshortly is the 
omputer. It should be 
lear at this point that there are lot of re
ursion relationsto solve to a
hieve the wished-for results. Thus, at the least as a means of ba
king up manual
al
ulations, 
omputer algebra systems are a valuable instrument. To this avail, we have 
hosento work with Mathemati
a and the free pa
kage [Ri

i℄, suitable for performing 
al
ulations withve
tor bundles. The 
odes we have used to implement the re
ursive pro
edures and 
oin
idingpoint limits are available upon request from t.p.ha
k�gmx.de.We 
an now �nally state the main proposition of the appendix:Proposition A.1. The Hadamard bidistribution H ful�ls1. [PxH℄ = 6[V1℄; [(PxH);�℄ = 8[V1;�℄; [(PxH);�0 ℄ = �8[V1;�℄ + 6[V1℄;�;2. [PyH℄ = 6[V1℄; [(PyH);�℄ = 8[V1;�℄� 2[V1℄;�; [(PyH);�0 ℄ = �8[V1;�℄ + 8[V1℄;�;3. Tr[D0xD0yH℄ = �Tr[PxH℄; T r[(D0xD0yH);�℄ = �Tr[(PxH);�℄ + [V1℄;�;T r[(D0xD0yH);�0 ℄ = �Tr[(PxH);�0 ℄� [V1℄;�;4. Tr[(PyH � PxH);�0 ℄
�
� = 2Tr[V1℄;� :Proof.1. We shall employ (42), (43), and (44). These data entailPxH = 2V1;%�% + V1(�x� + 2) + O(�); (47)and thus, taking the 
oin
iding point limit and remembering those of � 
omputed in theprevious se
tion, [PxH℄ = 6[V1℄. Similarly, one gets, deriving (47) on
e and performingthe limit, [(PxH);�℄ = 8[V1;�℄. By means of Synge's rule we �nally have [(PxH);�0 ℄ =�8[V1;�℄ + 6[V1℄;�.2. We would of 
ourse like to 
ompute PyH, but without any knowledge on the symmetriesof the Dira
ian Hadamard 
oeÆ
ients, we have to verify the transport equations for Py,whi
h otherwise would follow automati
ally from those for Px as it happens in the s
alar
ase for the s
alar Hadamard 
oeÆ
ients u and v [Mo00℄. To wit,2U;�0��0 + U(�y� � 4) = I �2u;�0��0 + u(�y� � 4)� = 0;57



where the �rst equality holds sin
e the derivative of I vanishes along the geodesi
 
onne
t-ing x and y and the se
ond one holds sin
e u(x; y) = u(y; x)11 and u is thus subje
t totransport equations for both Px and Py. Sin
e PyH is smooth, we now know thatZ1 := Y1� := PyU + 2V0;��� + V0(�y� � 2)� ;must be smooth too. Alas, it does not fa
torise into a term only involving the s
alar
oeÆ
ients u and v times I and, up to now, we are unaware of a way to prove that it isidenti
ally vanishing. But we 
an try to 
ompute whether it vanishes up to the derivativeorder we need for our purposes. To this end, it helps to split V into vI + ~V , where ~Vis the non-trivial matrix part of V stemming from the spin 
urvature. This way one 
anseparate from Y1 a term whi
h vanishes due to the transport equation for v and has to
ope with the remainder only. Involved 
al
ulations yield[Y1℄ = [Y1;�℄ = [�Y1℄ = [(�Y1);�℄ = 0;and thus, employing lemma A.2, [Z1℄ = [Z1;�℄ = 0. Consequently,PyH = 2V1;%0�%0 + V1(�y� + 2) + terms vanishing in the limitand (PyH);� = 2V1;%0�%0;� + V1;�(�y� + 2) + terms vanishing in the limit:One 
an now straightforwardly obtain [PyH℄ = 6[V1℄, [(PyH);�℄ = 8[V1;�℄ � 2[V1℄;�, and[(PyH);�0 ℄ = 8[V1;�℄� 8[V1℄;�.3. Let us de�ne Z2 := (Dx �D0y)H = (Dy �D0x)H:By dire
t inspe
tion, D0xD0yH = �PxH �D0xZ2:Again we know that Z2 is smooth and, alas, neither this quantity nor D0xZ2 turns outto be vanishing. Lu
kily enough, we 
an still extra
t some useful results at the level oftra
ed 
oin
iding point limits, at an order of derivatives high enough for our purposes.One 
omputesZ2 = �U(Dx �D0y)��2 + (Dx �D0y)U � V (Dx �D0y)�� + ln(�)(Dx �D0y)V:= �U(Dx �D0y)��2 + Y2� + ln(�)(Dx �D0y)V: (48)11The symmetry of u does not have to be proved in the same long way as that of v (see [Mo00℄), but it followsautomati
ally by its expli
it form u(x; y) =rdet(���0(x; y))qjg(x)j�1qjg(y)j�1.58



As already dis
ussed, the last term vanishes identi
ally and so does the �rst term ona

ount of U(Dx �D0y)� = u(I
��� + 
�0I��0) = u(I
��� + I
�g�0� ��0) = 0:This leaves us with Z2 = Y2=�. Involved 
omputations, employing (Dx�D0y)V = PxV = 0to ex
hange higher derivative terms with terms of lower derivative order in the appearing
ommutators with 
-matri
es, yield[Y2℄ = [Y2;�℄ = [�Y2℄ = 0; [(�Y2);�℄ = 6 [[V1℄; 
�℄ :After a few rearrangements and out of lemma A.2, one gets[Z2℄ = 0; [Z2;�℄ = [[V1℄; 
�℄ :Hen
e, [Z2;�℄ is tra
eless due to the antisymmetry of the 
ommutator. By means of formula(36), one 
an show per dire
t inspe
tion that Tr[V1℄
�
� = Tr[V1℄g�� whi
h entails thateven D0xZ2 is tra
eless and, thus,Tr[D0xD0yH℄ = �Tr[PxH℄:In order to 
ompute Tr[(D0xD0yH);�℄ and Tr[(D0xD0yH);�0 ℄, let us 
onsider that D0yZ2 =D0xZ2 + PxH � PyH. Employing this as well as the previous results and tri
ks we havedis
ussed in this proof, one obtains the following 
hain of identitiesTr[(D0xZ2);�℄ = �Tr
� [Z2;��℄ = Tr
� [Z2;�0�℄� Tr
� [Z2;�℄�= �Tr[(D0yZ2);�℄ = �Tr[(D0xZ2);�℄ + Tr[(PyH � PxH);�℄= 12Tr[(PyH � PxH);�℄ = �Tr[V1℄;�= �Tr[(D0yZ2);�0 ℄: (49)We 
an �nally use this last 
al
ulation to obtainTr[(D0xD0yH);�℄ = �Tr[(PxH);�℄ + [V1℄;�; T r[(D0xD0yH);�0 ℄ = �Tr[(PxH);�0 ℄� [V1℄;�:4. Inserting the previous results, we have [(PyH � PxH);�0 ℄ = 2[V1℄;� : As already dis
ussed,due to 
-matrix identities, tra
ing [V1℄ with two 
-matri
es amounts to a multipli
ationwith the metri
. Sin
e the operations of tra
e and 
ovariant derivation 
ommute, we haveTr[V1℄;�
�
� = Tr[V1℄;� and thusTr[(PyH � PxH);�0 ℄
�
� = 2[V1℄;�:2We would like to 
on
lude this se
tion by stating the last ingredient ne
essary for provingtheorem 4.1, the 
oin
iding point limit of V1, viz.,[V1℄ = �m48 + m2R48 + R21152 + �R480 � R��R��720 + R��
ÆR��
Æ720 � I4 + C��C��48 :59



A.4 Conserved lo
al 
urvature tensorsThe expli
it form of the 
onserved lo
al 
urvature tensors spanning the regularisation freedomof the expe
ted stress-energy tensor is:I�� := 1pjgj ÆÆg�� ZM R2d�g = g�� �12R2 + 2�R�� 2R;�� � 2RR�� ;J�� := 1pjgj ÆÆg�� ZM R��R��d�g = 12g��(R��R�� +�R)�R;�� +�R�� � 2R��R� �� � ;K�� := 1pjgj ÆÆg�� ZM R��
ÆR��
Æd�g= �12g��R��
ÆR��
Æ + 2R��
�R��
� + 4R��R� �� � � 4R��R�� � 4�R�� + 2R;�� :As already stated, in four spa
etime dimensions, these are related as K�� = I�� � 4J�� viathe generalised Gauss-Bonnet-Chern theorem [Al95, tHoVe74℄. Furthermore, in this 
ase, theyall have a tra
e proportional to �R and, thus, the linear 
ombination I�� � 3J�� is tra
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