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5 Conlusions and outlook 47A Useful tools and neessary alulations 48A.1 Notations, onventions, identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 48A.2 On the alulus of bispinor-tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 50A.3 On the Hadamard reursion relations and related results . . . . . . . . . . . . . . 52A.4 Conserved loal urvature tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 IntrodutionIn the last few deades we witnessed an amazing leap forward in our understanding of theformulation of quantum �eld theory on urved bakgrounds thanks to the e�orts of many researhgroups whih often takled this topi by means of the algebrai formalism. A areful analysis ofall the related ahievements, though tempting, would require a review on its own and, instead,we shall restrit ourselves to briey mentioning the results of a reent manusript, whih hasprompted our interest towards the topi disussed in this paper. To wit, in [DFP08℄, it wasshown that, in the framework of semilassial Einstein's equations, it is possible to onstrutexpliit solutions for a homogeneous and isotropi Friedmann-Robertson-Walker spaetime withat spatial setions, where the assumption has been made that the matter ontent is desribedby a suitably quantised free massive salar �eld. In order to prove this result, two ingredientshave played a key role, namely, Hadamard states, as the natural andidates for a ground state,and the quantum behaviour of the regularised stress-energy tensor T�� . Partiularly, as endpoint of the above ited paper, a late times stable de Sitter solution has been displayed and,hene, an e�etive osmologial onstant has arisen without inserting it from the very beginningas an input datum. If one tries to seek the origin of this genuine quantum e�et, one an realisethat it is ultimately rooted in the so-alled trae anomaly, i.e., in a few words, the expetationvalue of the regularised trae is not vanishing on Hadamard states, even though this is the aseat a lassial level.Although interesting, the derivation of the aforementioned result rises naturally the questionabout its robustness sine one ould wonder if this behaviour is a feature pertaining only tosalar �elds or if it holds true for any kind of matter onstituent. It thus seems advisable totry to apply the same sheme of reasoning in the ontext of a free Dira �eld. To our utmostsurprise, we have realised that the aomplishment of this goal has not been as easy as one mighta priori believe sine, just by a quik san of the available literature, it is manifest how spinor�elds play a somehow anillary role in the arena of algebrai quantum �eld theory. In fat,there are only few mathematially sound results and many tools and onepts, whih have beenthoroughly disussed for salar �elds, have barely been srathed for spinors. As an example, letus reall that we are mostly onerned with the trae anomaly for Dira �elds and it turns outthat this quantity has indeed been already investigated in the late seventies in [Chr78, ChDu79℄,though by means of the so-alled DeWitt-Shwinger expansion whih laks mathematial rigourand, therefore, we annot all our understanding of this anomaly omplete yet.2



With this in mind, before we an takle any spei� topi in a osmologial senario, our �rstonern must lie in the amendment of the the above mentioned problem. This will indeed be themain point of the paper and we shall disuss it within the framework of the algebrai approah toquantum �eld theory. To this end, we must also take into aount that the sienti� ommunityinterested in this problem might not be aquainted with the formulation of a spinor �eld theoryon a urved bakground, whih, already at a lassial level, turns out to be rather di�erent andmore ompliated than the salar ounterpart. Hene, as a starting point, we shall review theonstrution of a Dira �eld in a lassial framework emphasising the role of the underlyinggeometri strutures whih are needed in order to fully desribe both the kinematially and thedynamially allowed �eld on�gurations. To this e�et, our analysis will bene�t from earlierworks whih have already dwelled on this topi and, most notably, we shall refer to the seminalpaper of Lihnerowiz [Li64℄ as well as to [Dim82, Sa08℄.Subsequently, we shall disuss the quantisation of a Dira �eld on a urved bakground and,in this respet, one should mention that there are several possibilities at our disposal. On the onehand one ould follow the point of view already suggested in [Dim82℄, while, on the other hand,one ould also analyse the problem from the perspetive of Araki [Ar70℄, whose sheme has thepeuliarity of unifying spinors and ospinors in a single body before quantising them. This leadsto a natural de�nition both of a CAR �-algebra of �elds and of a subalgebra of observables,one we require at least that elements whose supports are spaelike separated must ommute.Furthermore, this sheme, also at the heart of [Ver96, K�o95, Kra00, Hol99, FeVe02, Sa08℄, hasthe remarkable advantage of being well suited to reast the quantum theory of Dira �elds inthe language of Loally Covariant Quantum Field Theory [BFV03℄, as we will point out.In order to fully ontrol the mahinery of a quantum �eld, the salar �eld senario alreadythought us that one has to understand well whih algebrai states one should use and, to thisavail, the ones of Hadamard type are the natural hoie in the ontext of Dira �elds, too;these play the role of ground states in a urved bakground and their ultraviolet behaviourlosely mimis that of the Minkowski spaetime vauum state. Consequently, the utuationsof the omponents of the stress-energy tensor on these states are bounded, a property whihis vital in the ontext of semilassial Einstein's equations. Hadamard states for Dira �eldshave already been disussed in [K�o95, Ver96, Hol99, Kra00, SaVe01, DaHo06℄ and we will reviewtheir properties in detail before employing them to ahieve the �rst of our main results, namely,the onstrution of the extended algebra of Wik polynomials in a spinor framework. To thisend, we will follow the path paved in the salar senario in [BFK95, BrFr00, HoWa01, HoWa02℄where it has been displayed that suh polynomials lie at the basis of a sound S-matrix formalismfor interating �eld theories on a globally hyperboli urved bakground.Notwithstanding, Wik polynomials are already valuable in free �eld theories and we will, asalready antiipated, indeed use them to ahieve our seond main result, i.e., the de�nition of awell-behaved quantum stress-energy tensor operator T�� for Dira �elds. To ahieve this goal, weshall follow a proedure similar to that disussed in [Mo03℄ (see also the related work [HoWa05℄)for a free salar �eld, i.e., we shall introdue an improved point-splitting proedure to de�neT�� evaluated on a Hadamard state. This leads to a new overall stress-energy tensor whih doesnot alter lassial dynamis and is ultimately onserved at the quantum level. Furthermore, as3



a by-produt of our analysis, we shall also be able to expliitly ompute the expetation value ofits trae whih will agree, up to terms proportional to �R, with previously found results whilebeing derived in a rigorous framework.2 Dira �elds: a lassial overviewSine, as we have outlined in the introdution, the aim of this paper is to provide an as muhas possible self-ontained approah to some topis related to the quantum desription of Dira�elds in urved bakgrounds, we will start with a desription of Dira spinors in a lassialframework. Although suh topi has been already disussed both from a geometrial and froman analytial point of view by many authors, we rekon the we should try to reall the mainfeatures of the lassial approah in order both to failitate the understanding of the quantumaspets and to �x some subtleties whih ubiquitously arise in these senarios.2.1 On the spin struture and related geometri entitiesBearing in mind this overall philosophy, we shall mainly devote this subsetion to the introdu-tion of spin strutures and of the Dira bundles, in order to haraterise (o)spinors as suitablesetions. We shall not dwell too muh on the geometrial ontents and for the potential readerswho might �nd our approah too shallow we present our apologises and point them to [LaMi89℄for a areful disussion of most of the forthoming onepts and appliations.As a starting point, let us �x that, in this paper, a spaetime is meant to be a four-dimensional, Hausdor�, smooth manifold endowed with a Lorentzian metri, whose signature ishosen as (�;+;+;+). Furthermore, sine it is ommon wisdom to assoiate Dira �elds to thenotion of spin, we need a few de�nitions as a �rst step:De�nition 2.1. We all spin group Spin(p; q) with p; q 2 N the double over of SO(p; q),i.e., it exists the following short exat sequene:feg �! Z2 �! Spin(p; q) �! SO(p; q) �! feg ;where feg stands for the trivial group, whereas Z2 := f�1g is the yli group of order 2. There-fore, any element of Spin(p,q) indues an element of SO(p,q). Suh a surjetive overing will beindiated as � : Spin(p; q)! SO(p; q).Remark. As a onsequene of the above de�nition, it exists an isomorphism between Spin(p; q)and Spin(q; p) for any possible value of both p and q. Furthermore, it is also possible to talkabout the dimension of suh lassial Lie group whih, per diret inspetion, isdim (Spin(p; q)) = 12(p+ q)(p+ q � 1):Furthermore, for all p; q > 0, the spin group has two onneted omponents, where we denote theomponent onneted to the identity as Spin0(q; p). The latter insight entails that the senario4



with p = 3 and q = 1 is of great interest sine, in this ase, Spin0(1; 3) is isomorphi to SL(2; C ).The above de�nition represented only the �rst step toward the de�nition of a Dira �eldsine, in modern lassial �eld theory, the geometri interpretation of a kinematially allowedon�guration is that of a setion of a suitable assoiated bundle. Within this respet, one shouldnotie that, (un)fortunately, in the often analysed ase of a salar �eld, suh nie perspetivedoes not really enter the fray, whereas, in this ase, suh a luxury is not at our disposal, being aspinor intrinsially a vetor-valued �eld. Hene, we shall now show how the notion of spin groupan be intertwined with that of a lassial �eld. As a �rst step we need further de�nitions.De�nition 2.2. Given a vetor bundle E := E[V; �;M ℄ over a Lorentzian manifold M withtypial �bre V and projetion map � : E ! M , we all frame F (x) over the point x theassignment of an ordered basis to the �bre ��1(x) � V , i.e., a map p : K k ! ��1(x), being kthe dimension of V and K 2 fR; C g. Furthermore, we require that the right ation of the groupGL(k;K ) on the �bre is both free and transitive.Remark. Suh a de�nition is at the heart of the widely exploited onept of tetrads in generalrelativity and, on a pratial ground, it is remarkable sine it guarantees us that whenever avetor bundle is assoiated to the underlying spaetime one is free to hoose a basis of suh aspae and that the rules of hanging the basis are left untouhed; this is enoded in the ation ofGL(k;K ), i.e., eah element of this group transforms a basis into another one. Furthermore, therequest of transitivity guarantees us that it is always possible to transform any hosen basis intoany other one, whereas demanding a free ation entails that only the identity element leaves ahosen basis unhanged. The most notable and ubiquitously used appliation of suh a de�nitionis the tangent bundle where V � Rk , being k = dimM . In the following, we shall have this asein mind and hene we shall identify E as E � TM = TM [Rk ; �;M ℄.Therefore, if we all FxM � GL(k;R) the set of all possible frames over a point x 2M , wean gather all this information into a unique objet:De�nition 2.3. A frame bundle FM assoiated to TM is FM := Fx FxM . This is a �brebundle on its own, namely FM = FM [GL(k;R); �0 ;M ℄, with GL(k;R) as typial �bre and theprojetion map �0 : FM !M . Whenever the base spae M is an orientable and time orientablespaetime, hene also endowed with a (loal) non-degenerate metri of signature (p; q), we anhoose a spae and time orientation, and hene redue GL(k;R) to SO0(p; q) with p + q = k.We shall always onsider suh ase in the following.Remark. A �bre bundle as above is an example of a priniple �bre bundle, having the samegroup as both the typial �bre and the struture group. By requiring the right ation of thegroup to leave the base point invariant, e.g., �0ÆRGL(k;R) = �0 for FM , one an straightforwardlyextend it to the full priniple �bre bundle. This extension is independent of loal trivialisations,5



sine these are related by the left ation of the group and the left and right ation of a groupon itself ommute. One an even swith perspetives and de�ne the �bres and base points of apriniple �bre bundle via the orbits of the right ation.We are now in the position to eventually introdue the main geometri struture of thispaper whih lies at the heart of the onstrution and of the analysis of a Dira (o)spinor:De�nition 2.4. Given a manifold M with a non degenerate metri of signature (p; q), a spinstruture is the pair (SM; �) where SM := SM [Spin0(p; q); e�;M ℄ is a priniple �bre bundleover M with the identity omponent of the spin group as typial �bre. Moreover, � is a bundlehomomorphism from SM to FM subjet to the following onditions:1. � is base point preserving, suh that �0 Æ � = e�;2. � must be equivariant, i.e., alling Re� and R� the natural right ations of Spin0(p; q) onSM and of SO0(p; q) on FM respetively, we require that� ÆRe� = R� Æ �; 8� 2 SO0(p; q);where � = �(e�), being � as in de�nition 2.1.Remark. A natural, apparently na��ve, but ultimately rather ompliated question a potentialreader might ask, is why one should ope with suh ompliated geometri strutures to deal witha somehow natural onept suh as that of spin. To answer this question, let us keep in mindthe notion of a Dira �eld in the at senario and try to generalise it to a urved bakgroundwith Oam's razor as a priniple. That said, in four-dimensional Minkowski spaetime, onean employ a standard onstrution, dating from the late thirties and due to Wigner, aordingto whih a spin 12 �eld is nothing but a suitable funtion satisfying the Dira equation andtransforming under a unitary and parity invariant representation of the universal over of thePoinar�e group indued from the j = 12 representation of SU(2) (see hapter 21 of [BaRa86℄for more details). It is remarkable to notie that, one restrited to SL(2; C ), i.e., negletingthe translations, this representation oinides with the D( 12 ;0) � D(0; 12) representation of theaforementioned group. Although there is no translational invariane in a urved bakground,the previous de�nitions grants us that, by means of the spin struture, it is nonetheless possible tode�ne, barring ertain tehnial requirements, a natural notion of an SL(2; C )-group assoiatedto a spaetime. Furthermore, the very absene of translational invariane implies that suh ade�nition of spin in urved bakgrounds seems really the best one an do.Hene, though not suÆient to determine full dynamis of a Dira spinor, our philosophywill be to seek to haraterise the kinematially allowed on�gurations of suh a �eld by means6



of the mentioned D( 12 ;0) � D(0; 12 ) representation, while remembering at the same time that,lassially, �elds should be understood as setions of a suitable vetor bundle. To ombine thesetwo onepts, we proeed in the following way:De�nition 2.5. We all Dira bundle of a four dimensional Lorentzian spaetime M withrespet to the representation T := D( 12 ;0) � D(0; 12) of SL(2; C ) on C 4 the assoiated bundleDM := SM �T C 4 . This is the set of equivalene lasses [(p; z)℄, where p 2 SM , z 2 C 4 andequivalene is de�ned out of the relation(p1; z1) � (p2; z2);if and only if it exists an element A of SL(2; C ) suh that LA(p1) = p2 and T (A�1)z1 = z2,where LA denotes the left ation of A on SM . The global struture of DM is that of a �brebundle over M with typial �bre C 4 , and the projetion map �D is traded from the one of SM ,namely, 8 [(p; z)℄ 2 DM , it holds �D[(p; zi)℄ := e�(p):Furthermore, if we endow C 4 with the standard non degenerate internal produt, we an onstrutthe dual Dira bundle D�M as the C 4� -bundle assoiated to SM requiring that (p1; z�1) and(LA(p1); z�1T (A)) are equivalent, where � denotes the adjoint with respet to the inner produton C 4 and elements of C 4� are understood as row vetors. Consequently, the dual pairing of C 4and C 4� extends in a well-de�ned way to a �brewise dual pairing of DM and D�M .De�nition 2.6. Let E be an arbitrary vetor bundle over M . With E(E) := C1(M;E), wedenote the spae of smooth setions of E, endowed with the topology indued by the familyof seminorms kfkk;C := supfjf (k)(x)j; x 2 Cg ; f 2 E(E) ;where C is an arbitrary ompat set and � (k) denotes a derivative of k-th order. Furthermore,we introdue the spae of smooth setions with ompat support D(E) := C10 (M;E),equipped with the topology indued by the family of seminormskfkk := supfjf (k)(x)jg ; f 2 D(E) :In the ase E = DM , E = D�M , we an de�ne a global pairing of E(D�M) and D(DM)or D(D�M) and E(DM) by integrating the loal pairing indued by the inner produt on C 4 ,e.g., hf; gi := ZM d�(x)f(x) (g(x))for all f 2 E(D�M), g 2 D(DM).We are �nally in the position to de�ne the key objet of our analysis:7



De�nition 2.7. A Dira spinor is a smooth global setion of the Dira bundle, i.e.,  2E(DM) or, equivalently, if we onsider a loal open neighbourhood U of any point x 2M ,  is(di�eomorphi to) a 4-vetor �eld  U , i.e.,  jU �  U : U ! C 4 , sine the bundle trivialises asDM jU � U�C 4 . Analogously, we all Dira ospinor a smooth global setion of the dual Dirabundle, namely,  0 2 E(D�M) or, in a loal neighbourhood U ,  0jU �  0U : U ! C 4� � C 4 .We would like to stress that our de�nition of Dira spinor �elds does not inlude any equationof motion.It is quite safe to admit that the introdued geometri objets are rather tehnially ompli-ated, and one might wonder if the lass of spaetimes admitting them is not rather restrited.Partiularly, from a physial point of view, one is interested in introduing spinors and �eldsin general as global objets. There is thus a ompelling need to understand whih is really theset of bakgrounds we an work with, and the answer is surprising and reassuring at the sametime. In fat, the following theorem an be proved (see [BoHi58℄ for the original proof and also[Ge68℄ for a more physially oriented analysis and proof):Theorem 2.1. A manifold M admits a spin struture if and only if it has a vanishing seondStiefel-Whitney lass or, in other words, if the seond de Rham1 ohomology lass H2(M;Z2)is trivial. Furthermore, if the manifold is four-dimensional, spae and time-oriented, as well asglobally hyperboli, this requirement is automatially satis�ed.This theorem is rather useful beause globally hyperboli spaetimes are the most interestingand natural lass of manifolds whenever one deals with both lassial and quantum �eld theoryon urved bakgrounds. As a matter of fat, eah of these spaetimes an be foliated as �� R,being � a smooth Cauhy surfae [BeSa05℄. Therefore, on these bakgrounds one an statepreisely the notion of initial value problem for the equations of motion, hene determiningthe lassial dynamially allowed on�gurations of a �eld as the solution of a ertain partialdi�erential equation.The property of globally hyperboli, four-dimensional spaetimes M whih guarantees theexistene of a spin struture is their parallelisability, i.e., the fat that there always exists aglobal orthogonal frame on them. Consequently, FM is a trivial bundle in that ase, and thisproperty extends to SM , TM , T �M , DM , and D�M as well. We are thus in the position tointrodue global frames of the latter four bundles.1. Employing a global setion E of SM , we an de�ne a spin frame fEAgA=1���4, i.e., aset of four global setions of DM as EA(x) := [(E(x); zA)℄, being zA the standard basisof C 4 . Hene, any Dira spinor  an be deomposed as  (x) =  A(x)EA(x) where now A 2 C1(M).2. A dual spin frame fEBgB=1;��� ;4, i.e., a set of four global setions of D�M an then be1In the most general framework one should onsider the seond �Ceh ohomology lass, but this oinides withthe de Rham one for di�erentiable manifolds. In this paper we deal solely with spaetimes whih, aording tothe de�nition stated at the beginning of the setion, are di�erentiable.8



automatially onstruted out of the frame requiring EA(EB) = ÆBA . From now on apitalletter indies will refer to quantities expressed with respet to these bases.3. Exploiting de�nition 2.4, we an projet E to FM , hene obtaining a global setion e :=� Æ E of FM . Employing this, we an de�ne a Lorentz frame feaga=0;��� ;3, i.e., a setof four global setions of TM , by realising that TM an be understood as the R4 -bundleassoiated to FM . Suh a �brewise basis is orthonormal in the sense that g(ea; eb) = �ab,where �ab is the Minkowski metri, and it is often referred to as the non-holonomi basisof the base manifold; this is in sharp ontrast with the standard (holonomi) oordinatebasis �� whih is related to the basis ea by means of a basis hange or, in other words, bythe matrix e�a denoting the oeÆients of ea in their expansion with respet to ��.4. Analogous to the spin ase, one an now straightforwardly de�ne a dual Lorentz framefebgb=0;��� ;3 onstruted out of ea as ea(eb) = Æba. From now on, lower-ase Roman let-ters will always refer to quantities expressed with respet to the non-holonomi basis,whereas lower-ase Greek ones will indiate those with respet to the holonomi basis.Non-holonomi indies will be \raised" and \lowered" with �ab, while the same operationswill be performed on the holonomi ones using g�� = g(��; ��).The most notable onsequene of this new data is that we an deompose evert spinor-tensorf 2 E(TM 
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EBl :One ould in priniple ertainly hoose a di�erent global setion E0 of SM and thus obtaindi�erent spin and Lorentz frames whih are related to the previous ones by loal spin andLorentz transformations. On the level of oeÆients, suh a hange of frames results inf 0a01;:::;a0i;A01;:::;A0kb01;:::;b0j;B01;:::;B0l = ���1�a01a1 � � � ���1�a0iai �e��1�A01A1 � � � �e��1�A0kAk �b01b1 � � � �b0jbj e�B01B1 � � � e�B0kBl fa1���aiA1���Akb1���bjB1���Bl ;where e� 2 T (SL(2; C )), whereas � = �(e�) 2 SO0(3; 1).2.2 On the dynamis of a lassial Dira �eldSine we have by now assured ourselves of the existene and well-posedness of the global strutureof Dira �elds in a globally hyperboli time and spae-oriented manifold, we shall next proeedto introdue the natural evolution operator out of whih one an desribe the lassial dynamialontent of our theory. It is imperative to stress a sharp di�erene between the previous andthis subsetion; in the preeding disussion, all the introdued geometri strutures have been9



somehow natural and intrinsi, i.e., no speial hoie has been performed with the due exeptionof the D( 12 ;0)�D(0; 12 ) representation to de�ne the Dira bundle. Conversely, in the forthomingdisussion, some arbitrariness appears and we shall try to emphasise it to a potential reader,sine we have to keep trak of it to ensure that it does not play a distinguished role in theforthoming disussion of the quantum �elds. To wit, we are referring to the de�nition of theso-alled -matries. To obtain them, we an proeed as follows:De�nition 2.8. Given Rp;q endowed with the metri � of signature (p; q), we all Cli�ord al-gebra Cl(p; q) of Rp;q the real assoiative algebra generated by the identity I and an orthonormalbasis of Rp;q whose elements a with a = 1; :::; p + q are subjet to the relationsfa; bg := ab + ba = 2�abI: (1)Partiularly, if p = 3 and q = 1 or vie-versa, one an refer to Cl(3; 1) or Cl(1; 3) as Dira-Cli�ord algebra.Remark. It is a diret onsequene of this de�nition that a basis for the Cli�ord algebra is givenby the identity and by all produts a1 ::::an with a1 < ::: < an and n � p + q, whih entailsthat dim(Cl(p; q)) = 2p+q. As a further important datum, we wish to underline that Cl(p; q) isa Z2-graded algebra; this arises if we introdue the automorphism � : Cl(p; q) ! Cl(p; q) suhthat �(a) = �a for all possible a. Sine �2 oinides with the identity map, we an alwaysdeompose: Cl(p; q) = Cl0(p; q)� Cl1(p; q);where Cli(p; q) = �a 2 Cl(p; q) j �(a) = (�)ia	. By diret inspetion, one an realise thatCl0(p; q) is the subalgebra of the full Cli�ord algebra generated by produts of even numbers ofa. The Dira-Cli�ord algebra enjoys many relevant properties of great interest for our dis-ussion. As a �rst step, using the periodiity theorem 4.1 in [LaMi89℄, one an prove perdiret inspetion that Cl(1; 3)C := Cl(1; 3) 
 C is isomorphi to the algebra M(4; C ) of4 � 4 omplex matries. This entails that it is natural to seek for a omplex representationT : Cl(1; 3)C ! Hom(C 4 ; C 4) and, aording to theorem 5.7, still in [LaMi89℄, there is onlyone of these whih is, up to equivalene, irreduible. Its matrix form an be desribed by thematries AaB , whih we hoose in suh a way that (�0)AB = �A0B whereas (�a)AB = AaB fora = 1; 2; 3, i.e., 0 = i� I2 00 �I2 � ; a = i� 0 �a��a 0 � ; (2)where a = 1; :::; 3 and �a is a Pauli matrix, whereas In denotes the n � n-identity matrix.Furthermore, these matries, independently of the hoie in (2), are the so-alled -matries andthey an always be interpreted as the oeÆients of a global tensor  2 E(T �M 
DM 
D�M)10



admitting the following expansion: = AaBea 
EA 
EB : (3)This identity yields that, if we use the tetrad oeÆients ea� to de�ne � := aea�, we reover thestandard antiommutation relations for the -matries in urved bakgroundsf�; �g = 2g��I4 : (4)This is the net e�et of hanging from a non-holonomi to a holonomi basis.Let us stress at this point that we have hosen a spei� representation of the Dira-Cli�ordalgebra out of the possible equivalent ones and indeed this is the arising arbitrariness announedat the beginning of this subsetion. The hoie of di�erent representations of the Dira-Cli�ordalgebra an be shown to lead to quantum �eld theories whih are equivalent up to gauge trans-formations [Sa08℄ and, moreover, if one restrits to the quantum observables, the hoie of arepresentation beomes even irrelevant, as we will disuss in the next setion.A seond interesting property of the Cli�ord algebra arises from the realisation that it on-tains the spin group (see x2 of [LaMi89℄) and, most notably, Spin(3; 1) � Cl0(3; 1). It is thusnatural to wonder how the above introdued representation yielding the -matries restrits tothe spin group, and the answer to this query omes from proposition 5.15, still in [LaMi89℄,whih guarantees us that eah irreduible omplex representation of the Cli�ord algebra on avetor spae an be restrited to the sum of two inequivalent irreduible representations of thespin group. In the ase under analysis, one an by diret inspetion realise that the restritionof T to Spin(3; 1) yields the sum of two non-equivalent irreduible representations, whih, onSL(2; C ) � Spin0(3; 1), oinide with the previously mentioned D( 12 ;0) �D(0; 12) representation.Aording to our analysis, for any vetor �eld v 2 E(TM), we an meaningfully introdue6v := vaa;whih is an element of E(DM
D�M), suh that its oeÆients vAB form a 4�4 omplex matrix.Notie that, from now on, we will not speify expliitly when we shall deal with abstrat Dira-Cli�ord algebra elements a or with their matrix representations. It is understood that, wheneverwe either ontrat -matries with a vetor �eld or these matries are applied to a vetor in C 4 ,we refer to the latter ase.The last ingredient we need to speify the dynamis of Dira �elds is a parallel transporton the Dira bundle. The grand strategy is rather simple, namely, we introdue the standardmetri onnetion, interpret it on the frame bundle and eventually lift it to both the spin andthe Dira bundle:De�nition 2.9. Let ! : FM ! T �FM 
 o(3; 1) denote the onnetion 1-form of the uniqueLevi-Civita onnetion on FM . It indues the standard Levi-Civita onnetion on TM (andvie versa) whih an be expressed as the ovariant derivativer : E(TM)! E(TM 
 T �M); rea = �baeb 
 e;11



where the onnetion oeÆients �ba of the Levi-Civita onnetion are spei�ed by�ba := eb ((! Æ e) [e� Æ ea℄ e) ;with e� : T �M ! T �FM denoting the push-forward of e in the sense of otangent vetors.The pull-bak 
 := (d�)�1 Æ �� Æ ! of ! to SM , with d� : sl(2; C ) ! o(3; 1) denoting thederivative of the overing � at the identity, de�nes the spin onnetion, whih by the de�nitionof DM as a bundle assoiated to SM an be spei�ed as a ovariant derivativer : E(DM)! E(DM 
 T �M); rEA = �BaAea 
EB ;where the spin onnetion oeÆients are given by�BaA := EB ((
 Æ E) [E� Æ ea℄EA) (5)and E� : T �M ! T �SM denotes the push-forward of E in the sense of otangent vetors.We will soon prove that the oeÆients �BaA an be expressed in a simple way by means of boththe oeÆients �ba and the -matries. Before we takle suh task, let us stress that the ovariantderivatives r from de�nition 2.9 an be straightforwardly extended to any spinor-tensorf 2 E(TM 
 � � � 
 TM| {z }i 
T �M 
 � � � 
 T �M| {z }j 
DM 
 � � � 
DM| {z }k 
D�M 
 � � � 
D�M| {z }l )by de�ningr : E(TM 
 � � � 
 TM| {z }i 
T �M 
 � � � 
 T �M| {z }j 
DM 
 � � � 
DM| {z }k 
D�M 
 � � � 
D�M| {z }l )!! E(T �M 
 TM 
 � � � 
 TM| {z }i 
T �M 
 � � � 
 T �M| {z }j 
DM 
 � � � 
DM| {z }k 
D�M 
 � � � 
D�M| {z }l ):(6)At a level of omponents and, for notational simpliity, only in the ase i = j = l = k = 1, (6)reads rf = er �faAbB ea 
 eb 
EA 
EB� =h�faAbB � �dbfaAdB + �adfdAbB � �ACfaCbB + �CBfaAbC i e 
 ea 
 eb 
EA 
EB :As promised, we shall now give an expliit expression for the �-oeÆients. Although ademonstration of the next lemma is already present in [Li64℄ (see also hapter 13 of [Wa84℄),we shall prove it again due to ubiquitous sign subtleties arising from the hoie of the metrisignature and possibly leading to onfusions when omparing with the literature, [Dim82℄ inpartiular. 12



Lemma 2.1. The onnetion oeÆients of the spin onnetion an be expressed as�BaA = 14�badBbCdCA : (7)Proof. The strategy of the proof is the following: we �rst derive an expliit expression for thedouble overing homomorphism � : Spin0(3; 1) � SL(2; C ) � SO0(3; 1). From this we obtainan expression for its derivative at the identity d� : sl(2; C ) ! o(3; 1), whih, inserted in (5),yields the wished-for result.Let us thus reall that Spin0(3; 1) an be understood as a subgroup of Cl(3; 1). This entailsthat, for any e� 2 SL(2; C ), we an de�ne the adjoint ationAde�(a) := e�ae��1:Being SL(2; C ) a �nite over of SO0(3; 1), applying an indution-redution mehanism, we knowit exists a representation T of SO0(3; 1) suh that, setting � := �(e�), we haveT (�)a = Ade�(a): (8)Sine we are dealing with Lie groups, we reall that all �nite-dimensional representations arematrix representations, i.e., we an simply write T (�)a := �bab. Hene, e�ae��1 = �bab,where we notie the invariane of the left hand side under the Z2-ation sending e� ! �e�, asone ould have expeted, being SL(2; C ) the double over of SO0(3; 1).Let us now take an arbitrary di�erentiable path t 7! e�(t) in SL(2; C ) whose projetion onSO0(3; 1) is di�erentiable; the following identity holdse�(t)ae�(t)�1 = �(t)bab:If we derive with respet to t, an identity between algebra representations arises, namely,de�(t)dt ae�(t)�1 + e�(t)a de�(t)�1dt = �d�(t)dt �ba b, de�(t)dt ae�(t)�1 � e�(t)ae�(t)�1 de�(t)dt e�(t)�1 = �d�(t)dt �ba b; (9)where we have exploited that the derivation of e�(t)e�(t)�1 = I yieldsde�(t)dt e�(t)�1 = �e�(t)de�(t)�1dt :Applying the adjoint ation of e�(t)�1 to (9), we end up withe�(t)�1 de�(t)dt a � ae�(t)�1 de�(t)dt = Ade�(t)�1 "�d�(t)dt �ba b# :13



We use (8) as well as the basi property of a representation, namely, Ad(e��1) � Ad(e�)�1, toderive e�(t)�1 de�(t)dt a � ae�(t)�1de�(t)dt = ���1�a�d�(t)dt �b b = ���1d�(t)dt �ba b:If we all � := e�(t)�1 de�(t)dt and � := �(t)�1 d�(t)dt , it holds �a� a� = �bab. Let us multiply thisidentity on the right with a and, if we bear in mind that aa = �abab = �ab�ab = 4, we endup with 4�� a�a = �abab: (10)Taking into aount the antisymmetry of � 2 o(3; 1) and the identity a[b℄a = 0, a possiblesolution of (10) is � = 14�abab:The uniqueness of this solution is not guaranteed, sine, being the left hand side of (10) linearin �, we have merely found a partiular solution, and we are free to add any further solutionof the homogeneous ounterpart, i.e., any � suh that 4� � a�a = 0. This implies that theommutator [a; �℄ = 0, and Shur's lemma (see th. 4.26 in [Ha03℄) entails that � = kI, beingI the identity.The value of k an be unambiguously determined if we notie that, aording to our previousonstrution, � is an element in the algebra of SL(2; C ), whih onsists of matries with vanishingtrae. Therefore, if we impose Tr(�) = Tr(kI) = 0, the only possibility is k = 0.Sine the di�erentiable path hosen in the proof has been arbitrary, we have now proven theexpliit form of d� in terms of its inverse, namely,(d�)�1 : o(3; 1) ! sl(2; C ); (d�)�1(�ab) = 14�abab 8�ab 2 o(3; 1):Remembering the de�nition of 
, realling e = � ÆE, and inserting the expression of (d�)�1into (5), we �nally obtain �BaA = 14�badBbCdCA:2Lemma 2.2. The Dira-Cli�ord -matries are ovariantly onstant, i.e., r = 0.Proof. This is a straightforward alulation, one a subtlety has been lari�ed: the matries are onstruted as the matrix form of an irreduible representation of the Cli�ord algebraand then subsequently glued to eah point of the underlying base manifold M via (3). Thispresription entails that �ab = 0 for any a; b = 0; :::; 3.We an now ompute r = ebrb �AaBea 
EA 
EB� ;14



whih, exploiting de�nition 2.9, beomesr = eb ��bAaBea 
EA 
EB + AaB ��abe 
EA 
EB+��CbAea 
EC 
EB + �BbCea 
EA 
EC�� :If we apply formula (6) to setions of T �M 
DM
D�M and onsider that the matrix elementsare onstant funtions, the lemma is proved out of diret substitution. 2We are ready, at last, to desribe the dynamially allowed on�gurations of a spinor �eld in aurved bakground. Partiularly, if we now understand multipliation with the -matries toat from the left on spinors and from the right on ospinors, we shall all dynamially alloweda Dira (o)spinor  (0) whih satis�es the Dira equation2D := (�6r+m) = 0; (11)D0 0 := (6r+m) 0 = 0; (12)where  2 E(DM), whereas  0 2 E(D�M).2.3 The Cauhy problem and the fundamental solutionsIn this subsetion we shall disuss the lassial initial value problem for Dira �elds. As it iswell-known from at spaetimes, a solution of the Dira equation is usually related to a solutionof a hyperboli di�erential equation.Lemma 2.3. Every solution  of (11) is also a solution of the spinorial Klein-Gordonequation P := �rara � R4 �m2� = 0; (13)where R is the salar urvature of (M; g). A similar statement holds for eah ospinor  0,solution of (12).Proof. Let us take a solution of (11) and let us multiply it with D0. We end up withD0D = (6r+m)(�6r+m) = (�6r6r+m2) = 0;whih means that we need to prove that 6r2 = rara � R4 . To this avail, let us write6r2 = arabrb = abrarb = (ab)rarb + [ab℄rarb;2 In Minkowski spaetime, the Dira equation is most notable for having a purely imaginary oeÆient i infront of the Dira operator. Here, suh a number does not appear and the underlying reason is rooted in theemployed onvention for both the metri signature and the sign of the de�ning antiommutation relations for theCli�ord algebra. To wit, i is absorbed in the de�nition of the -matries, as stated in (2).15



where in the seond equality we have exploited lemma 2.2, whereas in the third one we split theexpression in its symmetri and antisymmetri part. Sine (ab) = 12fa; bg is equal to themetri times the identity, it holds6r2 = rara + [ab℄rarb = rara + abr[arb℄ = rara + 12abCab; (14)with Cab denoting the urvature tensor of the spin onnetion.Let us briey state some properties of Cab, whih are examined in more detail in appendixA.1: �rstly, from lemma 2.1 one an infer thatCab = 14Rabdd:Employing the Cli�ord relations and the symmetry properties of the Riemann tensor Rabd, itis straightforward to show thatabCab = �baCab = �12baRab = �R2 :Inserting this into (14), we �nally obtain6r2 = rara � R4and thus D0D = DD0 = �P = �rara + R4 +m2:2Remarks. One should notie that the above lemma an be seen as a partiular appliation ofWeizenb�ok's formula [LaMi89℄.It is furthermore worth noting that rara in the above expression is not diagonal in thespinor indies, and thus not � times the identity. Its prinipal symbol g��k�k� , however, isindeed diagonal and even of metri type.Let us also stress that, in sharp ontrast to the salar Klein-Gordon equation in four spae-time dimensions, there is no freedom to selet a oupling for Dira �elds to the salar urvaturesine this is universally �xed to 14 . Furthermore, for Dira �elds, suh fator orresponds to theonformal oupling whereas, for the salar ase, the latter is 16 .The introdution of the Dira operator and the disussion of its main properties allow us tostate and to prove the main theorem related to the lassial dynamial behaviour of spinors onurved bakgrounds:Theorem 2.2. Let (M; g) be a four-dimensional globally hyperboli oriented and time orientedspaetime, suh that M is di�eomorphi to � � R, with � a three-dimensional Riemannian16



manifold. Let us furthermore all � : � ,! M a smooth embedding of � into M , suh that �(�)is a Cauhy surfae of M . If we refer to D� as the bundle onstruted out of the pull-bak ofDM via �, then the following Cauhy problem admits a unique solution� D = 0�� �  0 ; (15)where  2 E(DM) and  0 2 D(D�).Proof. For notational simpliity we will omit the embedding � and just write  j� instead of�� for any  2 E(DM).Aording to lemma 2.3, eah solution of the Dira equation also solves a spinorial oun-terpart of the Klein-Gordon equation, namely, P = ��� R4 �m2� = 0 where P has metriprinipal symbol and is thus a normally hyperboli di�erential operator.Hene, we an invoke the results on hyperboli partial di�erential equations (see [BGP07℄and theorem 3.2.11 in partiular), whih guarantee us that any Cauhy problem for ompatlysupported initial data for the the onsidered partial di�erential equation admits a unique smoothsolution supported in the ausal past and future of the initial datum. The only problem left is togive a presription on how to swith from a Cauhy problem for the Dira equation, hene withonly one given initial datum, to one for a seond order hyperboli partial di�erential equation,where two data on the Cauhy surfae have to be presribed. To solve this dilemma, let us notdeal with (15), but with the following system:� ��� R4 �m2�u = 0uj� = 0; ��u�n j� � 6n 0 ;where u 2 E(DM) and n denotes the vetor �eld normal to � suh that �abnanb = �1. As statedbefore, suh a system admits a unique global smooth solution ~u and, hene, let us introduethe smooth setion e := D0~u. It is immediate to see that e is a solution of the Dira equationD e = 0. Sine e is smooth, it an be diretly evaluated on the Cauhy surfae � wheree j� = D0~uj� = ( 6r+m) ~uj�. Inserting the initial ondition for ~u, the seond term vanishes,whereas the �rst readsara~uj� = ana �~u�n����� = �anabnb 0 = ��abnanb 0 =  0:Hene, the setion e onstitutes a unique solution of the Cauhy problem in the thesis of thetheorem. 2Sine our aim is to deal with quantum �eld theory over urved bakgrounds in the long run,it is more useful to prove not only the existene and uniqueness of the solution of a Cauhyproblem, but also the existene of the so-alled fundamental solution, whih is the last relevanttheorem of the lassial theory that we shall need:17



Theorem 2.3. The Dira operator admits unique advaned (�) and retarded (+) fundamentalsolutions, i.e., ontinuous linear maps S� : D(DM) ! E(DM) ful�lling DS� = I = S�D.These maps are determined by their support propertiessupp(S�f) � J�(supp f); 8f 2 D(DM);with J�(U) denoting the ausal future/past of the set U . Similarly, there exist unique advanedand retarded fundamental solutions S�� : D(D�M)! E(D�M) of D0.Proof. The strategy will be similar to the one employed in the proof of the existene of thesolution of the Cauhy problem. Thus, let us start from P = �D0D = �DD0; sine this is anormally hyperboli di�erential operator, we already know (see [BGP07, Ho94℄) that it exists aunique advaned - say E+ - and a unique retarded - say E� - fundamental solution for P onD(DM). Hene, for any f 2 D(DM), we know thatPE� = I = E�P and supp(E�f) � J�(supp f):We an now de�ne S� := �D0E� whih, per diret inspetion, satis�es DS� = I and is further-more ontinuous and has the orret support properties, sine the appliation of D0 preservesthese features. In the same way, we an onstrut advaned and retarded right fundamentalsolutions for the dual Dira operator as S�� := �DE�� , with E�� being the fundamental solutionsof P on D(D�M).The next step onsists of proving that the right fundamental solution is \also a left one" andwe only show this for S�, sine the proof for S�� is analogous. Consider any h 2 D(D�M) andany f 2 D(DM). Sine Df 2 D(DM), we end up withhh; S�Dfi = hD0S�� h; S�Dfi = hS�� h;DS�Dfi == hS�� h;Dfi = hD0S�� h; fi = hh; fi;where all expressions are well-de�ned sine suppS�f \ suppS�� h is ompat due to global hy-perboliity of M .It remains to be shown that the fundamental solutions are unique and again we only provethis for S� here. To this end, let us take any h 2 D(M;D�M) and any f 2 D(M;DM). Supposetwo di�erent sets of fundamental solutions, say S� and eS�, exist. Starting from0 = hIh� Ih; fi = h(S� � eS�)Dh; fi;uniqueness of the right fundamental solutions follows from the non-degeneray of h ; i, whileuniqueness in the sense of left fundamental solutions an be dedued in a similar way. 2In analogy with the salar ase, we shall from now on all S = S+ � S� the ausal propa-gator for the Dira operator D and S� = S+� � S�� the ausal propagator for D0.To onlude the setion, we wish to underline that, up to this point, we have basiallyonsidered the Dira spinor and ospinor �elds as ompletely distint objets. As it is usually18



done in Minkowski spae, however, we an de�ne a well-behaved Dira onjugation map mappingspinors into ospinors and vie versa. Furthermore, this onjugation turns out to map anydynamially allowed on�gurations into another one.De�nition 2.10. We all Dira onjugation matrix the unique matrix � 2 SL(4; C ) suhthat �� = �; �a = ��a��1 8a = 0; :::; 3;and furthermore i�naa > 0, being n timelike and future-direted.Starting from this objet, we an de�ne Dira onjugation maps:�y : E(DM) �! E(D�M); f y := f��;�y : E(D�M) �! E(DM); hy := ��1h�;where � denotes the adjoint with respet to the Hermitian inner produt on C 4 .Remarks. � is only unique, one a representation of the Dira-Cli�ord algebra has been hosen.A diret inspetion of the above identities shows that, with the de�nition of -matries as in(2), � = �i0 and thus � = ��1.It furthermore follows in general that applying the Dira onjugation twie gives the identityand that, as already antiipated, �y preserves the Dira equations in the sense that D0f y = (Df)y,Dhy = (D0h)y for any f 2 E(DM), h 2 E(D�M).3 Dira �elds: quantum point of viewThe aim of this setion is twofold: on the one hand, we shall disuss the already availableformulation of a quantum theory for Dira �elds on a urved bakground while, on the otherhand, we shall show for the �rst time that the notion of Wik polynomials an be oherentlyintrodued also in this senario, giving rise to an enlarged algebra of observables. Partiularly,we shall point out how all these topis �t into the framework of the loally ovariant formulationof quantum �eld theory.To ahieve our goal, we shall refer to an earlier work due to Araki [Ar70℄, though we shallalso pro�t from [Dim82, K�o95, Hol99, Kra00, SaVe01, Ver01, FeVe02, Sa08℄.3.1 The loal algebras of �elds and observablesAlthough the �rst paper formulating a quantum theory of Dira �elds on urved spaetimes inthe algebrai framework is [Dim82℄, its underlying approah is slightly di�erent from the one weshall employ, albeit it is ultimately fully equivalent. Partiularly, in the aforementioned paper,the quantisation sheme alls for the hoie of both a Cauhy surfae � and initial data on � asbuilding bloks of the quantum theory. We shall not dwell into the details of this method sinewe rekon that, in the spirit of loal ovariane, it is not best suited for our later purposes.19



Although the standard paradigm in partile physis alls for the treatment of partiles andantipartiles as distint, albeit related objets, in this paper we shall, as it has been done bymost of the authors mentioned in the introdution of this setion, bear in mind the lessons from[Ar70℄ and, thus, we shall onsider spinors and ospinors as part of a single entity, sine it willturn out to be more onvenient for our later purposes.On a pratial ground, the building bloks of our disussion will be three. The �rst onearises out of the diret sum DM � D�M , namely, D := D(M) := D(DM � D�M), the spaeof ompatly supported smooth setions of DM �D�M with the usual topology, i.e., the oneindued by the family of seminormskfkk := sup jf (k)(x)j ; f 2 D ;while the seond is the map � : D! D suh that�(f � h) = hy � f y 8f � h 2 D; (16)being �y the Dira onjugation introdued in de�nition 2.10. Furthermore, in order to eventuallyimpose the antiommutation relations, we need a third datum, namely, a sesquilinear form onD2 := D �(DM �D�M)�2�: let f = f1 � f2 and h = h1 � h2 be two elements of D. Then(�; �) : D2 ! C is de�ned as: (f; h) := �ihf y1 ; Sh1i+ ihS�h2; f y2i; (17)whih is positive semide�nite, as one an infer with minor modi�ations either from lemma4.2.4 in [Sa08℄ or, with little more e�ort, from proposition 1.1 in [Dim82℄; let us also notethat (�f;�h) = (h; f). Furthermore, one an straightforwardly show that, using all the aforeintrodued tools, we an de�ne the following algebra:De�nition 3.1. We all algebra of �elds the unital ��algebra F(M; g) generated by theidentity and the abstrat elements B(f) with f 2 D satisfying the following requirements:i) the map f 7! B(f) is linear,ii) B(Df1 �D0f2) = 0 for all f1 � f2 2 D,iii) B(�f) = B(f)�, for all f 2 D and with � de�ned as in (16),iv) fB(f)�; B(h)g := B(f)�B(h) +B(h)B(f)� = (f; h) , where the right hand side is given by(17).In order to onvine a potential reader that we are employing a sensible de�nition, let us�rst disuss some general properties.Remark. It is possible to reover the standard notion of spinor and ospinor quantum �eldstarting from the B-generators as follows: 20



� the spinor arises as  (h) := B(0� h).� the ospinor is given by  y(f) := B(f � 0),Partiularly, to be onvined of the self-onsisteny of suh statement, one should notie thatthe spinor and ospinor �elds are related due to property iii) and they respetively satisfy theDira and the dual Dira equation of motion in the distributional sense thanks to ii). Finally,it is iv) whih orresponds to the usual antiommutation relations between  and  y, namely,f (h);  y(f)g = �ihh; Sfi; f (h1);  (h2)g = f y(f1);  y(f2)g = 0:In order to better grasp the struture of F(M; g), one should realise that it is nothing buta topologial �-algebra; this an be fully understood starting from an a priori di�erent, albeitultimately equivalent, perspetive, namely, the so alled Borhers-Uhlmann algebra for Dira�elds, whih is expliitly disussed in [Sa08℄. It is onstruted as the following quotientF(M; g) :=  1Mn=0Dn! =I (18)where Dn := D �(DM �DM�)�n� denotes the ompatly supported setions of the n-fold outertensor produt of DM �D�M and D0 := C , whereas I is the losed �-ideal whih arises out ofthe relations (ii), (iii), and (iv) in de�nition 3.1. It is hene generated by elements of the formDf1�D0f2 with f1�f2 2 D, by those of the form (f1�f2)���(f1�f2), and �nally by those ofthe form f 
 h+h
 f � (f; h) with f; h 2 D. F(M; g) an be equipped with a natural topologyindued from that onL1n=0Dn. This is tantamount to the request that a sequene fj = �nfj;nis said to onverge to f if and only if1. every fj;n ! fn inDn with respet to the topology of uniform onvergene of all derivativeson a �xed ompat set,2. it exists an N 2 N suh that fj;n vanishes for every n > N and for every j.In the forthoming disussions it will sometimes also be possible to use a weaker version ofF(M; g) whih is de�ned in the same way as F(M; g), but without inluding the Dira equationsin the onstrution of the ideal I; we shall refer to this ase as the o�-shell formalism.As a subsequent natural step, one an realise that the sesquilinear form (�; �) an be promotedto a genuine non-degenerate salar produt on the oset spae D= ker S�S�, whih, in turn, anbe ompleted to a Hilbert spae H with respet to the said salar produt. As a by-produt, thisentails the possibility to extend F(M; g) to a C��algebra F(M; g) representing the elements asbounded operators onH itself. Following [Ar70℄, we shall refer to this senario as the assignmentof the C��algebra of Dira �elds F(M; g) to the pair (H;�).We have explained how to onstrut the loal algebra in the ase of Dira �elds; however,from a physial point of view, observables are required to ommute at spaelike separations and21



the full F(M; g) does not ful�l suh requirement. As a �rst step towards a de�nition of thealgebra of loal observables of a Dira �eld, we an restrit our attention toFeven(M; g) := even subalgebra of F(M; g);whih, e.g., an be de�ned as the subalgebra invariant under B(f) 7! �B(f) [Dim82, Hol99,Sa08℄. The reason to hoose suh a subalgebra stems from the fat that any two elements ofFeven(M; g) indeed ommute for spaelike separations:Proposition 3.1. Let Ai, i 2 f1; 2g be two elements of Feven(M; g) whih arise as �nitelinear ombinations of smeared B(f) generatorsAi :=Xn B(f in;1) � � �B(f in;2kn)suh that [n;j supp f1n;j and [n;j supp f2n;jare spaelike separated. Then [A1; A2℄ = 0 :Proof. The proof desends out of two key observations: on the one hand we know the followingrelation between the ommutator and antiommutator of four operators A;B;C and D:[AB;CD℄ = AfB;CgD �ACfB;Dg � CfA;DgB + fA;CgDB : (19)On the other hand we know that, given two �eld algebra elements B(f) and B(g) with thesupport of f and g spaelike separated, ondition iv) in de�nition 3.1 together with the supportproperties of the ausal propagator, proved in theorem 2.3, entail thatB(f)�B(h) +B(h)B(f)� = 0:To onlude the proof, one needs to notie that, sine only produts of an even number of�elds appear, the properties of the ommutator allow to redue [A1; A2℄ to a linear ombina-tion of ommutators, all of the form (19) with AB and CD of the form B(f1n;j1)B(f1n;j2) andB(f2n;j1)B(f2n;j2) respetively. This operation together with the requirement on the supports ofthe test setions de�ning A1 and A2 onludes the proof. 2With the restrition to Feven(M; g) we have been able to assure loal ommutativity. Thisriterion is, however, not suÆient to extrat the observable elements out of F(M; g) andFeven(M; g) is thus still too large to be a andidate for the algebra of loal observables. To obtainsuh a good andidate, we have to take only so-alled \gauge invariant" elements of Feven(M; g)into aount, f., e.g., [Ar70, Dim82, Hol99, Sa08℄, and we denote the resulting subalgebra with22



A(M; g). Partiularly, if we onsider any A := PnB(fn;1) � � �B(fn;2kn) in Feven(M; g), it is ly-ing in A(M; g) if and only if it is invariant under the ation of any S 2 Spin0(3; 1); suh anation is de�ned by a straightforward extension of the known one on DM and on D�M , �rstto DM �D�M and subsequently to arbitrary outer tensor produts of the latter, suh that wehave a well-de�ned ation on the test setions fn;1
 � � � 
 fn;2kn determining A. This de�nitionof an observable is ompatible with the produt of algebra elements, and thus de�nes a subal-gebra of Feven(M; g) in a well-de�ned way. In the rest of the paper we shall always work withFeven(M; g), though all our results an be applied to A(M; g) (and to the topologial losuresof the mentioned algebras) as well.It is remarkable that, in order to get to the de�nition of the various algebras introduedabove, one a partiular representation of the Cli�ord algebra has been hosen, the only otherneessary datum is the geometry of the underlying manifold. This an be understood realisingthat, beside the Dira bundles DM and D�M themselves, the overall analysis relies on theausal propagators S and S�, whih are unique in a globally hyperboli spaetime with spinstruture. This apparently innouous observation will play an important role in identifying thequantisation of the Dira �eld as a partiular loally ovariant quantum �eld theory, as we willexplain in the next subsetion.3.2 Loality and general ovarianeIn order to establish a onnetion between the previous disussion and the modern interpreta-tion of quantum �eld theory over urved bakgrounds, it is mandatory to address the questionwhether the axioms of a loally ovariant theory, as proposed by Brunetti, Fredenhagen, andVerh in [BFV03℄ are ful�lled for the above displayed algebrai quantisation of Dira �elds, andan aÆrmative answer has indeed been given in [Sa08℄. We shall not dwell on a reapitulation ofthe preise de�nition of all the needed tools, e.g., the involved ategorial notions here: instead,we hoose to provide a short overview and we refer an interested reader to [BFV03, BrFr09, Sa08℄for further details. That said, per diret inspetion of the previous analysis, we an infer thatthe following axioms of a loally ovariant theory are satis�ed:1. It is possible to assoiate to every globally hyperboli spaetime (M; g) with spin struture(SM; �) the orresponding ��algebra F(M; g) of �elds in a unique way, one a globalrepresentation of the Cli�ord algebra has been hosen.2. To every map � whih is an isometri and orientation preserving embedding of (M1; g1) into(M2; g2) and at the same time maps (SM1; �1) to (SM2; �2) in a oherent and equivariantway (f. De�nition 2.3.1 of [Sa08℄), one an assoiate an injetive, unit-preserving �-homomorphism �� between the orresponding �elds algebras F(M1; g1) and F(M2; g2).3. Let us hoose two maps as above, namely, �1 : (M1; g1; SM1; �1)! (M2; g2; SM2; �2) and�2 : (M2; g2; SM2; �2)! (M3; g3; SM3; �3); then the following omposition law is satis�edfor the orresponding algebra morphisms��1Æ�2 = ��1 Æ ��2 :23



Let us note that the above axioms are also ful�lled in the o�-shell formalism, i.e., for Diraspinor �elds not subjet to the Dira equations. We an, furthermore, add another two axiomsin speial ases: on the one hand, if we restrit the onstrution to Feven(M; g), the axiom ofEinstein ausality is ful�lled on aount of proposition 3.1:4. Consider two globally hyperboli spaetimes with spin struture (M1; g1; SM1; �1) and(M2; g2; SM2; �2) together with �1 and �2 respetively, two embeddings into a thirdspaetime with spin struture (M3; g3; SM3; �3) of the aforementioned kind. Under theassumption that �1(M1) and �2(M2) are spaelike separated inM3, it holds that for everyA1 2 Feven(M1; g1) and A2 2 Feven(M2; g2), [��1(A1); ��2(A2)℄ = 0.At the same time, in the on-shell formalism - though not slavishly for the extended algebrawe shall later introdue - the Time slie axiom (f., proposition 4.2.22 of [Sa08℄) holds:5. Let � :M1 !M2 be a map between two globally hyperboli spaetimes with spin struturewith the properties already disussed. If a Cauhy surfae of M2 is ontained in �(M1),then �� is an isomorphism.These axioms state properties of the full �eld algebras, but one an re�ne these statementsand identify �elds with a speial behaviour under the maps � and ��, the so-alled loallyovariant �elds [BFV03, HoWa01℄. In fat, as disussed by Sanders in [Sa08℄, the �eld B(�),and, thus, also the single �elds  (�),  y(�), are loally ovariant �elds. This entails that B(�) anbe understood as family of ontinuous maps, indexed by spaetimes with spin struture M3,BM : D(M)! F(M; g);suh that, given two spaetimes with spin struture M1 and M2 and a map � : M1 !M2 withthe properties disussed in axiom 1., one gets the same result by either building a quantum�eld out of a test setion fM1 2 D(M1) and then mapping this �eld to F(M2; g2) via �� or bymapping the test setion fM1 to fM2 := ��(fM1) 2 D(M2) via the push-forward �� of � and thenbuilding BM2(fM2) out of it. On the level of maps, we thus have:�� Æ BM1 = BM2 Æ ��:Similarly, one an identify ertain observable omposite �elds as loally ovariant quantum�elds via spei� hoies of test setion spaes, and, furthermore, the Wik polynomials we shalldisuss later �t into the same framework as well.3.3 Spinors and Hadamard statesThe algebra A(M; g) � Feven(M; g), is, at this point of our disussion, the best andidate toplay the role of an algebra of observables for a free Dira �eld theory. Unfortunately, this status3We omit the other data determining a spaetime with spin struture in the remainder of this paragraph infavour of notational simpliity. 24



is far from being satisfatory beause objets suh as all the Dira bispinors, the urrent inpartiular, and the (omponents of the) stress-energy tensor are not ontained in A(M; g) orFeven(M; g). Sine we want to onsider these as genuine observables, the best option is to solvethis problem along the same lines employed in the salar ase, namely, we shall suitably enlargeFeven(M; g) to inlude all the wanted elements. Although reasonable and, to a ertain extentnatural, suh idea omes with a prie to pay, i.e., not all the well-behaved algebrai states forFeven(M; g) are admissible for the extended algebra; in fat, we have to selet only those withthe suitable ultraviolet behaviour already possessed by the Minkowskian vauum state.This is indeed not a novel problem and it has been takled by several authors; the underlyingphilosophy is to haraterise the admissible states imposing suitable physial onditions, suhas �niteness of quantum utuations, and thus the possibility to employ these states to de�ne asensible expeted stress-energy tensor [Wa77℄. The translation of these ideas in a mathematiallanguage leads to the notion of Hadamard states, whih we shall now disuss in our frame-work. The available literature is immense and we point a reader interested in further details to[KaWa91, Rad96a, Rad96b, K�o95℄ for salar �elds or to [Hol99, Kra00, SaVe01℄ for a disussionrelated to spinors.As a �rst step and as main topi of this setion, we shall proeed introduing the notion ofHadamard states for the whole F(M; g) and only later we shall restrit them to Feven(M; g).The already antiipated enlargement of the algebra to inlude all interesting observables of thefree �eld will then be the ore of a subsequent disussion.That said, heneforth, we shall onsider a state ! to be a ontinuous, positive, and normedlinear funtional on F(M; g), suh that!(A�A) � 0 8A 2 F(M; g); !(1) = 1;sine this algebra is generated, aording to de�nition 3.1, by the abstrat elements B(f) withf 2 D, every said state is uniquely determined by the set of its n-point funtions, namely,!n(f1; : : : ; fn) := !(B(f1) : : : B(fn))where, due to the required properties a state, eah !n is a distribution on Dn. The bridgebetween the algebrai formulation of quantum �eld theory employed in this work and its usualHilbert spae desription is in the non-trivial diretion provided by the Gelfand-Naimark-Segal(GNS) onstrution (.f., e.g., [Ha92℄) whih yields a representation of an algebrai state anda �eld algebra in terms of a Hilbert spae state and operator valued distributions on the sameHilbert spae respetively. Among all possible algebrai states, a distinguished role is playedby the so-alled quasi-free ones, whose n-point funtions an be determined fully out of !2. Weshall fous on these, and, following [Ar70℄, we reall:De�nition 3.2. A state ! : F(M; g) ! C is alled quasi-free if, given any set of fi 2 Dwith i 2 f1; � � � ; ng, ! (B(f1) � � �B(fn)) vanishes for odd n while for even n it holds! (B(f1) � � �B(fn)) = X�n2S0n(�1)j�nj n=2Yi=1!2 �f�n(2i�1); f�n(2i)� :25



Here, S0n denotes the set of ordered permutations of n elements, namely, the following twoonditions are satis�ed for �n 2 S0n:�n(2i � 1) < �n(2i); 1 � i � n=2;�n(2i� 1) < �n(2i+ 1): 1 � i < n=2 :Even though it is in priniple possible to state the Hadamard property for general states[StrVeWo02, Sa08℄, we will restrit our disussion to quasi-free ones and an thus state ev-erything on the level of two-point funtions. In this ontext and on the level of single Dira�elds, two distinguished distributions appear:!+(f; h) := ! � (h) y(f)� and !�(f; h) := ! � y(f) (h)� ; (20)where f 2 D(DM) whereas h 2 D(D�M) and where both  y(f) and  (h) are partiularelements of F(M; g) as explained in subsetion 3.1. Hene, it turns out that both !+ and !�an be understood as distributions on D(DM �D�M).We an now introdue the notion of Hadamard state and, as in the salar ase, it is remarkableand useful that this onept an be illuminated in two equivalent ways. The �rst one has reourseto the notion of wavefront sets [DuHo72, Ho90℄, a onept whih enables a re�ned formulationof a singularity struture of a distribution, and, to this avail, one should take into aountthat an a priori obstale lies in the nature of the vetor-valued distributions appearing in theontext of Dira �elds. Partiularly, sine wavefront sets are more familiar in the ontext ofsalar distributions, we need to speify how they an be de�ned for distributions with values inhigher-dimensional spaes. To ahieve this, it appears to be natural to de�ne the wavefront setof a vetor valued distribution as the union of the wavefront sets of the oeÆients with respetto a (possibly loal) basis-expansion and indeed this turns out to be an invariant onept due tothe properties of salar wavefront sets [Den82, Kra00, SaVe01℄. Spei�ally, we an de�ne thewavefront sets of !�(x; y) = !� B0A (x; y)EA(x)
EB0(y) asWF (!�) := 4[A=1 4[B0=1!� B0A (x; y):By de�ning wavefront sets in this way, we ertainly loose information on the most singular \di-retions" of a vetor-valued distribution. This information an be enoded in so-alled polarisedwavefront sets, as introdued in [Den82℄ and applied in [Kra00, Hol99℄. Though of high math-ematial interest, suh onept is of no use in our approah and we feel safe not to dwell intoit sine we would end up providing only shallow ideas. That said, let us state the �rst possibleaess to Hadamard states [Rad96a, Kra00, Hol99, SaVe01℄:26



De�nition 3.3. A quasi-free state ! satis�es the miroloal spetral ondition (�SC)and is thus alled a Hadamard state if only ifWF (!2) = n(x; y; kx;�ky) 2 T �M�2 n 0; j (x; kx) � (y; ky); kx . 0o :Here, (x; kx) � (y; ky) implies that it exists a null geodesi  onneting x to y suh that kx isoparallel and otangent to  at x and ky is the parallel transport of kx from x to y along .Finally, kx . 0 means that the ovetor kx is future-direted.Remarks. If a quasi-free state ! ful�ls the �SC, then !� possess the following wavefront sets:WF (!�) = n(x; y; kx;�ky) 2 T �M�2 n 0; j (x; kx) � (y; ky); kx /. 0o ;where kx / 0 states that kx is past-direted.An even stronger relation between the two distributions !� arises if we employ the antiom-mutation relation sine it entails that!+(f; h) + !�(f; h) = �ihh; Sfi :By ontrast, the distributions !( (h1) (h2)) and !( y(f1) y(f2)), whih, together with !�determine !2, have smooth integral kernels. For !( (h1) (h2)), this an be proved employinga symmetry argument already used in a similar way in [Rad96a℄: due to the antiommutationrelations, we have ! ( (h1) (h2)) = �! ( (h2) (h1)) :Hene, if (x; y; kx; ky) is an element of the wavefront set of the distribution on the right handside of the previous equation, then (y; x; ky ; kx) must lie in the wavefront set of the other one. Atthe same time, on aount of the �SC, we know that WF (!( (x) (y))) is not invariant underthe exhange of oordinates. This entails that WF (!( (x) (y))) = ;, hene, !( (h1) (h2)),and analogously !( y(f1) y(f2)), possesses a smooth integral kernel.Although highly elegant from a mathematial point of view and thus very helpful in ab-strat proofs, the miroloal de�nition of a Hadamard state is neither the �rst one introduedhronologially nor the easiest one to ope with on the level of expliit alulations. In fat, asalready promised at the beginning of this setion, there is a di�erent, more expliit de�nitionof a Hadamard state via the so-alled Hadamard form. For salar �elds, this has been rigor-ously introdued in [KaWa91℄, while for Dira �elds a similar onept has been proposed by[K�o95, Ver96℄. To introdue it, we need the notion of a onvex normal neighbourhood, whih isan open subset O ofM suh that any two points x; y 2 O an be onneted by a unique geodesi.On any onvex normal neighbourhood, we an introdue the smooth halved squared geodesidistane �(x; y), and, �nally, formulate the following de�nition:De�nition 3.4. A quasi-free state ! is said to be of the Hadamard form if and only if inany onvex normal neighbourhood the distributions kernels of !� an be written as!�(x; y) = 18�2 �D0y �H�(x; y) +W (x; y)� ;27



where the index �y stresses that the dual Dira operator D0y ats on the y-variable, and thesingular Hadamard distribution kernels H� an be spei�ed asH�(x; y) = U(x; y)���(x; y) + V (x; y) ln ���(x;y)�2 : (21)Here, U , V , as well as W are smooth bispinors and V and W an be expanded in powers of �,viz., V (x; y) := 1Xn=0Vn(x; y)�(x; y)n; W (x; y) := 1Xn=0Wn(x; y)�(x; y)n;where � is a referene length, and ���(x; y) := �(x; y) � 2i� (T (x)� T (y)) + �2 with � > 0. Inthe above formula, T is a time funtion, suh that rT is timelike and future pointing on the fullspaetime (M; g).We furthermore require H� to be bisolutions of the spinorial Klein-Gordon equations up tosmooth terms, i.e.,PxH�(x; y) 2 E(DM 
D�M); PyH�(x; y) 2 E(DM 
D�M) (22)and demand that their di�erene is spei�ed by the fundamental solution of P , viz.,H+(f; g)�H�(f; g) = ihg;Efi;where f 2 D(DM) and g 2 D(D�M).Remarks. The existene of a time funtion T is guaranteed on any globally hyperboli manifold[BeSa05, BeSa06℄.Furthermore, a ompletely satisfatory de�nition of the Hadamard form requires some morework to rule out spaelike singularities, to irumvent onvergene problems of the series Vand W , whih are only asymptoti, and, �nally, to assure that the de�nition does not dependneither on a speial hoie of the temporal funtion T nor on the employed onvex normalneighbourhood. For further details and disussions of these aspets and the existene of statesof the Hadamard form we refer an interested reader to [FNW81, KaWa91, K�o95, Ver96, SaVe01℄.To determine the so-alled Hadamard oeÆients U , V , and W , one has to exploit the equa-tions (22). At this point, we would like to stress a slight oneptual di�erene between Diraspinors and salar �elds: in the ase of salar �elds, the two-point funtion ful�ls the Klein-Gordon equation in both entries, and this property is thus inherited by its singular Hadamardkernel up to smooth terms. Contrariwise, in ase of Dira spinors, (22) does not follow straight-forwardly from the fat that the two-point funtions !� ful�l the Dira equations. In morespei� terms, if we reall the de�nition of !� (20), we know that they ful�lD0x!�(x; y) = Dy!�(x; y) = 0:28



Consequently, D0xD0y �H�(x; y) +W (x; y)� = 0;DyD0y �H�(x; y) +W (x; y)� = �Py �H�(x; y) +W (x; y)� = 0;and, thus, both PyH� and D0xD0yH� are smooth. The smoothness of PxH� does however, notfollow automatially from these onsiderations, but has to be required or proven in a way similarto the one displayed in lemma 5.4. of [SaVe01℄.We shall expliitly disuss the omputation of U , V and W in appendix A.3. To this avail,the following proposition will prove to be very helpful:Proposition 3.2. Let H�(x; y) be the Hadamard distribution kernels of a state introdued inde�nition 3.4. Then (Dx �D0y)H�(x; y) = (Dy �D0x)H�(x; y) are smooth.Proof. The overall strategy alls for ombining a deformation argument as devised in the ap-pendix C of [FNW81℄ together with the so-alled theorem of propagation of singularities (f.theorem 6.1.1 in [DuHo72℄).That said, let us proeed in logial sequential steps and onsider any Cauhy surfae � ,!(M; g��) of the spaetime we are interested in and let us hoose an open neighbourhood of �,say O�, suh that it is a ausal normal neighbourhood of �, i.e., � is a Cauhy surfae for O�and for eah p; q 2 O� suh that p 2 J+(q), it exists a onvex normal neighbourhood ontainingJ�(p)\J+(q). The existene of suh sets in a globally hyperboli spaetime and for any Cauhysurfae � was �rst proved in [KaWa91℄.The above mentioned deformation argument grants us that it is possible to onstrut anisometri, orientation and time-orientation-preserving embedding, say �, of O� in ausal normalneighbourhood O�0 of a Cauhy surfae �0 of a seond globally hyperboli spaetime M 0. Fur-thermore, one an engineerM 0 in suh a way that, in the past of �(O�), it exists another Cauhysurfae �00 with a neighbourhood O�00 whih ontains the image of a suitable neighbourhood ofa Cauhy surfae �000 in Minkowski spaetime under an isometri, orientation preserving, em-bedding e�, and it is straightforward to extend � and e� in suh a way that they respet the spinstrutures.Sine H� on O� � O� are onstruted only out of the loal geometri data via (22), itis possible to build a seond pair eH� whih oinides with the push-forward under � of H�in �(O�) � �(O�). Furthermore, due to the propagation of the Hadamard form as proved in[FNW81, SaVe01℄, eH� are of the Hadamard form in O�00 � O�00 as well, and their pull-bak toO�000 � O�000 thus oinide with the Hadamard distribution kernels in Minkowski spaetime.Let us now onsider u� := (Dx �D0y)H�and proeed to prove that these distributions have empty wavefront set. Aording to theabove disussions, we an push-forward u� to M 0 and subsequently pull them bak to theneighbourhood O�000 in Minkowski spae in a well-de�ned way. In the Minkowskian region, thepushed-forward and then pulled-bak versions of u� are identially vanishing and thus have29



empty wavefront set, sine the at spaetime Hadamard kernel only depends on x � y due totranslational invariane. To aess the wavefront set of u� in the original spaetime regionunder interest, let us note that these distributions satisfy PxPyu� = 0 up to smooth terms andthe same holds for their mentioned push-forwards and pull-baks, where the operator PxPy isproperly supported, of real prinipal type, and homogeneous of degree 2 sine it is the tensorprodut of two seond order hyperboli di�erential operators. From this it follows due to theontravariant transformation properties of wavefront sets under di�eomorphisms and the prop-agation of singularities theorem (see [SaVe01℄ or hapter 8 of [Ho90℄) that the wavefront set ofu� on O� � O� an only ontain elements of the form(x; y; kx; 0) or (x; y; 0; ky): (23)Following a line of argument employed in the proof of theorem 5.8 in [SaVe01℄, we an infer thatWF (u�) = ; in the following way: sine u� are onstruted as Dira derivatives of H� andproperly supported partial di�erential operators like D and D0 do not inrease the wavefront set,we know that WF (u�) �WF (H�). If we furthermore reall that H� speify the singular partsof !� and that these kernels have the "antisymmetri" wavefront set displayed in de�nition 3.3,it follows that WF (u�) an not even ontain elements of the form (23) end are thus empty. 2As a result of the proedures desribed in appendix A.3, U and V turn out to depend onlyon the loal geometry and the mass m, while the state dependene of !� is enoded in W . This\universality" of the singularity struture of states of the Hadamard form allows for a loallyovariant de�nition of normal ordering, as we will see in the next subsetion. To this avail, itwill be useful to ompose the Hadamard distributions to a single objet living on D
D, viz.,H(f1 � f2; h1 � h2) := �D0yH+� (h1; f2)� �D0yH�� (f1; h2) (24)= H+(h1;Df2)�H�(f1;Dh2);where f1 � f2, h1 � h2 2 D. Before we start working with Hadamard states, let us state thealready antiipated and fruitful equivalene of the Hadamard form and the �SC, whih is aresult due to [Kra00, Hol99, SaVe01℄:Theorem 3.1. Let us onsider a state ! on F(M; g) with two-point funtion !2. Thissatis�es the miroloal spetral ondition, if and only if the distribution on D
D de�ned byf 
 h 7! !2(f; h)� H(f; h); (25)has a smooth integral kernel, and, thus, !� are of Hadamard form.To onlude this setion, we would like to mention a most notable property of Hadamardstates: despite the well-known problem to �x a unique vauum state for a quantum �eld theoryon a generi spaetime, Hadamard states turn out to be \almost" unique sine they are all loallyquasi-equivalent [Ver94, Ver96, DaHo06℄. This implies that loally the density matrix states onthe Hilbert spaes obtained from Hadamard states via the GNS onstrution are all equal, and,30



in more physial terms, that any two Hadamard states have a �nite energy density with respetto one another. The latter statement is of ourse related to the expeted stress-energy tensor,the main topi of the last setion of this work.3.4 On the notion of Wik polynomialsIn the development of quantum �eld theory, a well-known obstrution arises whenever we on-sider the produt of two �elds, whih, being distributions, annot be safely multiplied unlessspeial onditions are met. Sine, as already antiipated, our ultimate goal is to enlarge thealgebras under onsideration to inlude observables suh as the stress-energy tensor for Dira�elds, we are lead to takle this problem. Like in the ase of salar �elds, this results in theintrodution of Wik polynomials and in the following we shall try to adapt an approah similarto the one disussed in the work of Brunetti, Duetsh, and Fredenhagen [BDF09℄ whih in turnis related to further earlier works [BrFr00, HoWa01, HoWa02℄.Unsurprisingly, in our senario, there are di�erenes to the above mentioned works due tothe vetorial nature of our �elds and their antiommutativity. This neessitates a treatment ofWik polynomials of Dira �elds on urved spaetimes on its own and we will thus develop themin this subsetion sine they have not been treated in the literature in the past.As already antiipated, upon enlargement of the �eld algebra to inludeWik polynomials wehave to restrit our state spae to Hadamard states, whih seems not to be a real loss sine theseare already distinguished and presumably the only \physial" ones for the algebras disussed insubsetion 3.1.As a starting point to de�ne the extended algebra of �elds, it will be more onvenient notto start diretly from F(M; g) or its subalgebras, though we shall onsider the setC(M; g) := 1Mn=0DnA;where the subsript A indiates that, for n > 0, one takes into aount only antisymmetrielements, while D0A = D0 = C . Notie that it is required that a generi element F 2 C(M; g) isunambiguously determined by a �nite sequene fF (n)g of antisymmetri elements lying in Dn.This entails that, in a basis expansion with respet to E�(x) := EA(x) � EB(x), eah elementF (n) = F (n)�1����nE�1 
 � � � 
 E�n has antisymmetri oeÆients, viz.,F (n)�1;:::;�k;�k+1;:::;�n(x1; : : : ; xk; xk+1; : : : ; xn)=� F (n)�1;:::;�k+1;�k;:::;�n(x1; : : : ; xk+1; xk; : : : ; xn) 81 � k � n: (26)The set C(M; g) an be promoted to an algebra with respet to the following produt whihwe shall heneforth indiate as �A; let F := fF (n)g and G := fG(n)g be two generi elements inC(M; g), then (F �A G)(n) := Xp+q=n A �F (p) 
G(q)� ; (27)31



where A is the operator of total antisymmetrisation suh that F �A G is indeed an element ofC(M; g). Spei�ally, A leaves D0 invariant, while, for an arbitrary F (n) := f1 
 � � � 
 fn withfi 2 D and n > 0, the antisymmetrisation readsA (f1 
 � � � 
 fn) = 1n! X�n2Sn(�1)j�njf�n(1) 
 � � � 
 f�n(n);where the sum is taken over all permutations4 �n 2 Sn and A an be extended to Dn by linearityand ontinuity. The algebra (C(M; g); �A) an be interpreted as the algebra of funtionals, in thesense of distributions on smooth setions, on the lassial �eld on�gurations of Dira spinors.The standard quantisation sheme is eventually realised hanging the produt �A into asuitable ?-produt ompatible with the antiommutation relations. The overall proedure, onea funtional � : D2 ! C is seleted, an be realized out of the map �� : Dn ! Dn�2 whoseation on a generi element F (n) of Dn (notie, here taken without antisymmetrisation), isrequired to be trivial if n < 2, whereas, for n � 2,��F (n) := n�1Xi=1 nXj=i+1ZM d�(xi)ZM d�(xj) (�1)j�i+1��i�j (xi; xj)F (n)�1����n(x1; : : : ; xn) �� E�1(x1)
 � � � 
 \E�i(xi)
 � � � 
 \E�j (xj)
 � � � 
 E�n(xn): (28)Here, �(xi; xj) = ��i�j (xi; xj)E�i(xi) 
 E�j (xj), with E�(x) := EA(x) � EB(x), denotesthe integral kernel of �, whereas the symbol \E�i(xi) indiates that E�i(xi) must be omitted.On aount of the regularity of C(M; g), we an safely de�ne a ?-produt asF ?S G = A �S (F 
G) ; (29)where �S is de�ned as a formal exponential5�S := exp�i12�eS� ;here, �eS arises from (28) if one inserts for � the funtionalD2 3 f1 � f2 
 g1 � g2 7! eS(f1 � f2; g1 � g2) := �hf2; Sg1i+ hS�f y1 ; gy2i;with S and S� being the ausal propagators onstruted in theorem 2.3.Remarks. If we introdue a �-operation on (C(M; g); ?S ) via the straightforward tensorialisationof � (16), the result is naturally isomorphi to the o�-shell version of F(M; g) with its standard4Of ourse not all permutations employed are neessary, sine in (27) the onstituents will already be antisym-metri. The antisymmetrisation as de�ned here, however, is still valid and it onstitutes the easiest way to writeit without unneessarily getting lost in ombinatoris.5Sine C(M; g) ontains only �nite sequenes of test setions, the exponential series will always terminate after�nitely many terms. 32



produt. Partiularly, B(f) 2 F(M; g) orresponds to f 2 C(M; g) and the antiommutationrelations on F(M; g) orrespond tof ?S g + g ?S f = ieS(f; g) = (�f; g);as follows by straightforward omputation. The equations of motion an then be implementedby dividing out a suitable ideal. Sine the Dira equations will not be neessary in the followingdisussion, we will denote both the on-shell and o�-shell algebras with (C(M; g); ?S ) and we shallonsider them as being isomorphi respetively to F(M; g) and to its o�-shell version.Up to now we foused on rather regular objets onstruted out of D, but, alas, this doesnot suÆe to reah our ultimate goals; as a matter of fat, we need to onsider the spaes ofompatly supported distributions6 as well:E00 := C ; E0n := E0 �(DM �D�M)�n� ; E0 := E01:The underlying leitmotiv is rooted in our interest in objets like RM d�(x)f(x) : y(x) (x) :whih will in the subsequent disussion orrespond to distributions like f(x)Æ(x; y), these arenothing but elements of E0n whih are supported on the thin diagonalDiagn := f(x1; : : : ; xn) 2Mn jx1 = � � � = xng:Sine this amounts to potentially ill-de�ned operations suh as taking the produt of distribu-tions at the same spaetime point, we annot blindly extend (C(M; g); ?S ) (and equivalentlyF(M; g)) to inorporate these new objets into an enlarged ��algebra, but we have to requiresome suitable regularity onditions.De�nition 3.5. We all extended set of funtionals Cext(M; g) the set ontaining �nitelinear ombinations of ompatly supported distributions F (n) 2 E0n whose wave front set satis�esthe following requirement WF (F (n)) \ (Mn � (V n+ [ V n�)) = ;where V + and V � are the losure of the future and the past light one respetively in the �breof the otangent bundle at eah point of M .In order to adopt this de�nition, we have to make sure that Cext(M; g) an be made into analgebra and it is manifest that the produt ?S is not up to the task sine it would lead us topointwise produt of ausal propagators, whih is ill-de�ned due to their wavefront set. In orderto avoid the aforementioned problem, we an replae ?S by ?H , whih is nothing but (29) with6Notie that elements of E0 test ompatly supported setions on D�M �DM and not on DM �D�M . This\dual" notation, as employed, e.g., in [Dim82℄, is used to stress that D ,! E0.33



eS replaed by �2iH as de�ned in (24). This new ?-produt is equivalent to the old one whenthis is well-de�ned, being F ?H G = �H ���1H (F ) ?S ��1H (G)� ; (30)�H := exp�H ;where �H is de�ned as in (28) upon inserting H � i=2eS for �. If we take into aount thesingular struture of H and the riterion to multiply distributions as devised by H�ormander (f.,[DuHo72℄ or hapter 8 in [Ho90℄), it turns out that the problem with ?S disappears sine thepointwise produt of the integral kernel of H with itself is a well de�ned distribution.Remark. The outome of the preeding disussion is the introdution of (Cext(M; g); ?H ).Realling that (C(M; g); ?S ) has been isomorphi to F(M; g), we an reverse this viewpointand just de�ne the extended �-algebra Fext(M; g) := (Cext(M; g); ?H ). Similarly, restriting thepossible test setions and distributions taken into aount, we an de�ne the extended algebrasFeven;ext(M; g) and Aext(M; g). That said, following slavishly the analysis of the salar ase in[HoWa01, HoWa02℄, the produt (30) rephrases Wik formula in the Dira senario.As already announed in the prior disussion, due to the form of the wavefront set ofHadamard states, we an extend them and only them to genuine states for Fext(M; g). Par-tiularly, this entails the standard paradigm aording to whih the produt of two �elds, say y(x) (y), should be regularised as: y(x) (y) : :=  y(x) (y) + 18�2D0yH�(x; y)suh that, for a Hadamard state !, !(: y(x) (y) :) = (8�2)�1W (x; y). At a level of expetationvalues, this an be equivalently seen as leaving  y(x) (y) unhanged while !�(x; y) beomes!�(x; y) +D0yH�(x; y). This somehow heuristi omment prompts the following:De�nition 3.6. Consider a quasi-free Hadamard state !, whose n-point funtion is indiatedas !n. One an de�ne the regularised n-point funtion :!n : as:!n : := !n = 0 ; if n is odd:!n : (x1; : : : ; xn) := X�n2S0n(�1)j�nj n=2Yi=1 (!2 �H) �x�n(2i�1); x�n(2i)� if n is even,with H as in (24) whereas the set of ordered permutations S0n � Sn is the one introdued inde�nition 3.2.Remark. As a straightforward onsequene of the last de�nition, we an form expetationvalues of all elements in Fext(M; g). Spei�ally, for any F := fF (n)g 2 Fext(M; g),!(F ) :=Xn hF (n); :!b :i34



is well de�ned due to the wavefront set properties of both the state and the allowed F .At this stage we need to point out that there are still some ambiguities in the employedde�nition of H� and thus in the de�nition of both H and : !n :; indeed, the referene length� neessary to onstrut H� aording to de�nition 3.4 is in priniple undetermined. Thisfat does, however, not hamper our analysis sine di�erent hoies of � and thus of H lead toisomorphi algebras.Lemma 3.1. Suppose we hoose two di�erent H, say H1 and H2, to onstrut the extendedalgebra (Cext(M; g); ?H ). Then the two resulting algebras (Cext(M; g); ?H1 ) and (Cext(M; g); ?H2 )are isomorphi.Proof. Due to the properties of the Hadamard distributions H�, one knows that the di�erened := H2 � H1 has a smooth antisymmetri integral kernel. The two produts ?H1 and ?H2 arerelated by a deformation. They are thus equivalent and the operator intertwining them an berealised as �d := exp (�d) ;where � is taken as in (28) with d being inserted in plae of �. Partiularly,F ?H2 G = �d ���1d F ?H1 ��1d G�whih is well-de�ned and holds true sine �H2 Æ��1H1 = �d and d has a smooth integral kernel. 2To �nish the preparations for the �nal setion of this work, we have to address a last issue. Atthe moment we are falling one step short from our ultimate goal sine, to study the regularisationof the stress-energy tensor, one has to understand the treatment of di�erentiated �elds. Hene, asmall addendum to the above analysis is needed and we shall follow the proedure employed forsalar �elds in [Mo03℄, though adapted to our language. Thus, let us take a di�erential operatorK on D(DM) of the form K = a0 +ra1 + :::rRaR ; R <1;where rkak := a�1 :::�kAk Br�1 :::r�kand a�1:::�kAk B for k 2 f0; � � � ; Rg are the oeÆients of an element of�(TM 
 � � � 
 TM| {z }k 
DM 
D�M):Notie that this lass of di�erential operators enompasses both the Dira operators and thespinorial Klein-Gordon operator whih will appear in the expression of the stress-energy tensorand of its trae. In an analogous way we an hoose di�erential operators K 0 on D(D�M)and ombine them with a K to operators K � K 0 on D. If we now bear in mind de�nition35



3.5, we realise that the extended set of �elds is de�ned out of a ondition on the wavefront setof its elements. Thus, in order to engineer any operator of the form K � K 0 into the abovedisussion, we just need to reall a general result on wavefront sets (f. Chapter 8 of [Ho90℄or [DuHo72℄) aording to whih a partial di�erential operator whih is properly supported,suh that it maps ompatly supported distributions to ompatly supported ones, does notinrease the wavefront set of a distribution it is applied on. Sine the di�erential operatorswe are onsidering are properly supported, we an readily onlude that operators of the formK � K 0 map Cext(M; g) to itself and that the previous disussion has already enompassedthe treatment of di�erentiated �elds. One ould now prove several further properties of Wikpolynomials of di�erentiated �elds, but we will not indulge in this task sine it will play no rolein the forthoming disussion and, furthermore, the results are by all means a straightforwardextension, both as onepts and as tehnial proofs, of those disussed in [Mo03℄ for the salarase.Before proeeding with the disussion of the stress-energy tensor, let us �nally remark on howthe extended algebra Fext(M; g) �ts into the framework disussed in subsetion 3.2. Withoutgoing muh into details we would like to point out that any oiniding point limits of smooth ob-jets onstruted out of the Hadamard distributions are loally ovariant, sine the onstrutionof H� depends only on the mass and the loal urvature. As a result, all elements of Fext(M; g)whih orrespond to distributions with support on the thin diagonal are loally ovariant �elds.4 The stress-energy tensor of Dira �eldsThe aim of the setion is to fous on the struture of the stress-energy tensor and to study itsquantum properties. Partiularly, we shall display that it is possible to introdue an improvedtensor whih is onserved also at a quantum level, although its trae aquires new and lassiallyunexpeted terms of geometri origin whih lie at the heart of the so-alled trae anomaly.4.1 The lassial stress-energy tensorWe start our analysis by revising the form and the properties of the stress-energy tensor forDira spinors in a lassial framework. The Dira equations (11) an be realised as the extremalof the unique ation funtionalS := ZM d4xpjgjL := ZM d4xpjgj �12 y (D ) + 12 �D0 y� � :A diret inspetion of the above ation shows us that, up to a total derivative term, it is identialto the more ommon expressionS = ZM d4xpjgj y (�� ;� +m ) :36



We de�ne the (Hilbert) stress-energy tensor by the usual proedure, i.e.,T�� := 2pjgj ÆSÆg�� :An expliit realisation of this last identity in the ase of spinor �elds is muh more involveddue to the underlying orthogonal Lorentz frames whose expliit dependene on the metri mustbe aounted for. Nonetheless, a lengthy and, to a ertain extent, tedious alulation, fullydeveloped in [FoR�o04℄, yieldsT�� = 12 � y;(��) �  y(� ;�)�� Lg�� ; (31)where () denotes idempotent symmetrisation; one should also notie that, being the �eld free,the Lagrangian vanishes on shell.If we ontrat (31) with g�� , we end up with the lassial traeT := g��T�� = 12 � y;�� �  y� �; �� 4L = �m y ;where, in the seond equality, we have evaluated the left hand side on shell by means of (11).Hene, as expeted, the trae vanishes on shell for onformally invariant, i.e., massless, Dira�elds.If we onsider instead the ovariant onservation, we need to alulater�T�� = 14 �� y;�D + hD0 yi;�  �D0 y ;� +  y [D ℄;� + P y� �  y�P �� L;�;whih vanishes on shell.4.2 The quantum stress-energy tensor: the problemIn the next step, we would like to de�ne the quantum version of the stress-energy tensor forDira �elds. Sine we have a well-de�ned notion of Wik polynomials at hand, it would be easyto just take the lassial expression for the stress-energy tensor and replae the ourring �eldmonomials with their normal ordered quantum ounterparts. This way, one would easily get anelement of Aext(M; g) whih, GNS-represented with respet to a Hadamard state, would be awell-de�ned operator valued smooth funtion. As we will shortly see, however, this proedurewould not yield a meaningful objet. To understand this, let us take a slight detour and thinkabout the properties we would like a quantum stress-energy tensor to have.From the point of view quantum �eld theory over urved bakground, the most importantentity to take into aount as a guide in the searh for a good quantum stress-energy tensor isof ourse the semi-lassial Einstein's equation, viz.,G��(x) = 8�G!(:T�� (x) :); (32)37



where G�� denotes the Einstein tensor R�� � 12Rg�� , G is the gravitational onstant and :T�� :is a suitable regularised expression for the quantum stress-energy tensor; this equation thusdesribes the bak-reation of the quantum �eld on the bakground. The legitimate questionwhih now arises, is under whih irumstanes this equation makes sense at all. Regarding theform of the equation, we will restrit ourselves to point out that it an be derived by formallyexpanding a quantum metri and a quantum �eld about any lassial vauum solution of theEinstein's equation and omputing the equation of motion for the expeted metri while keepingonly \tree-level" graviton ontributions and \loop-level" quantum �eld ontributions. Sine onedisards \loop-level" graviton ontributions, the equation derived in this manner an only makesense as a model equation, or maybe for speial states. We refer the interested reader to [FlWa96℄and the referenes ited therein for an exhaustive treatment of this topi while we shall ontinuedwelling upon the properties of the quantities appearing in (32).The �rst, and ertainly obvious, observation is that we need a regularised expression of thestress-energy tensor to obtain a �nite expetation value, i.e., a �nite right hand side. The nextobservation is that the left hand side of (32) is a lassial and \sharp" quantity, while the righthand side is a probabilisti objet. Suh a situation an of ourse only be a sensible one ifthe utuations of the probabilisti quantity involved are small in omparison to the quantityitself, �nite in partiular. These onsiderations are exatly those whih led to onsider andselet the states of Hadamard type as the physial and reasonable ones among the myriad ofstates available in quantum �eld theory on urved spaetimes. As a matter of fat, if we de�nenormal ordering by means of the Hadamard singularity and we evaluate the normal-ordered(and smeared) stress-energy tensor on Hadamard states, we automatially get a quantity with�nite utuations. This stems from the fat that powers of the Hadamard bidistribution areagain well-de�ned bidistributions, thanks to the speial form of the Hadamard wavefront set.Regarding quantitative statements about the utuations of the expeted stress-energy tensor,it seems that in general a priori statements are not possible and one has to look at solutions ofthe semilassial Einstein's equations to a posteriori ompute the utuations on these solutionsand inspet to what extent these are to be trusted.It will prove helpful to realise that !(: T��(x) :) for a : T��(x) : given as some linear ombi-nation of the previously de�ned Wik monomials and evaluated on a Hadamard state ! an beequivalently expressed as!(:T��(x) :) := 18�2Tr [D��(x; y)W (x; y)℄ ; (33)where D�� is some (bi)di�erential operator spei�ed by the hoie of linear ombination of Wikmonomials in the de�nition of :T��(x) :, Tr denotes the trae over spinor indies and we referthe reader to appendix A for the explanation of the possibly unfamiliar notations that arisein the ontext of bispinorial entities and will be extensively used in the following. As we havealready remarked, the obvious hoie of expression for the stress-energy tensor in terms of Wikmonomials will not turn out to the best one. In terms of the above de�ned di�erential operator,38



this means that the anonial version derived from the lassial stress-energy tensor (31),Dan�� := � eDan�� D0y := �12(� �r�) � g�0�)r�0�D0y;is not well suited for de�ning a sensible !(:T��(x) :).Sine we have assured ourselves that a right hand side of (32) obtained by expressing !(:T��(x) :) as (33) is in priniple well de�ned, we ould seek for additional physial and onsistenyrequirements that lead to a potential re�nement of that proedure, i.e., to a sensible hoie ofD�� . Pursuing a omparable aim, Wald [Wa77, Wa78℄ has set up �ve axioms that a meaningfulexpeted stress-energy tensor should ful�l. These proved to be a valuable tool in a posteriorilegitimating known stress-energy tensor regularisation shemes in urved spaetimes and statingto whih extent they may di�er from one another without raising doubts about their validity.For the onveniene of the reader, we list them in the following.De�nition 4.1. We say that !(: T��(x) :) ful�ls (the strong version of) Wald's axioms if ithas the following �ve properties:1. Given two quasifree states !1 and !2, suh that !�1 (x; y)� !�2 (x; y) is a smooth bispinor,!1(:T��(x) :)� !2(:T��(x) :) is equal to Tr h eDan�� �!�1 (x; y)� !�2 (x; y)�i.2. !(:T��(x) :) is loally ovariant in the following sense: let� : (M1; g1; SM1; �1) 7! (M2; g2; SM2; �1);�� : F(M1; g1)! F(M2; g2)as in subsetion 3.2. If two states !1 and !2 on F(M1; g1) and F(M2; g2) are related by!1 = !2 Æ ��, then !2(:T�2�2(x2) :) = �� (!1(:T�1�1(x1) :)) ;where �� denotes the push-forward of � in the sense of ovariant tensors.3. r�!(:T��(x) :)=0.4. On Minkowski spaetime and in the Minkowski vauum state !Mink, !Mink(: T��(x) :) =0.5. !(:T��(x) :) does not ontain derivatives of the metri of order higher than 2.!(:T��(x) :) is said to ful�l the redued version of Wald's axioms, if only the �rst four statementshold.Wald has originally stated the axioms for salar �elds, while the version we give here ismodi�ed to be suitable for Dira �elds. We rekon that a few omments both on the originand on the meaning of the single axioms might be helpful for a potential reader in order tounderstand their relevane: 39



1. In a given Fok-representation of the quantum �eld, the non-diagonal matrix elements ofthe formal unrenormalised stress-energy tensor operator in the \mode basis" are already �nite,beause their alulation only involves \�nite mode sums", while the alulation of the diagonalmatrix elements involves \in�nite mode sums" [Wa77, Wa78℄. To regularise the formal stress-energy tensor operator, it is therefore only neessary to subtrat an in�nite part proportionalto the identity operator, thus leaving the non-diagonal matrix elements unhanged. Axiom 1amounts to require suh a \minimal" regularisation. This axiom is also related to so-alled rel-ative Cauhy evolution of a loally ovariant �eld [BFV03, Sa08℄; sine the funtional derivativeof the relative Cauhy evolution involves the ommutator with the stress-energy tensor oper-ator, one ould reformulate this axiom on the operator level requiring that any regularisationpresription yields the same relative Cauhy evolution. If we onsider Hadamard states, suhthat !�i (x; y) is loally given by �D0y(H�(x; y) +Wi(x; y))=(8�2) for i = 1; 2, the requirementis equivalent to demanding that the di�erential operator used in (33) is given by Dan�� plus aterm whih does not inuene the state dependene of !(:T��(x) :).2. Taking the loality priniple of quantum �eld theory and the ovariane priniple of generalrelativity seriously, we would like to have a !(: T��(x) :) whih desribes the bak-reation ofthe quantum �eld on the spaetime in a loal and ovariant way. In fat, this axiom seems tohave been an inspiration towards the formulation of loally ovariant QFT, as desribed in theseminal paper [BFV03℄.3. This axiom basially points out a neessary ondition for the well-posedeness of the semilas-sial Einstein's equations; namely, sine the geometri left hand side of (32) is onserved due tothe Bianhi identities, also the right hand side should vanish under the ation of the ovariantderivative.4. It is a sensible prerequisite of any regularisation sheme for a �eld theory on a urvedbakground that it should be possible to read it as an \extension" of the standard normalordering in Minkowski spaetime, but there are good reasons to skip this axiom, f., [Fu89℄ andthe seond remark after theorem 4.1.5. Wald originally proposed this axiom in a rather tehnial and more strit way [Wa77, Wa78℄,essentially requiring that !(:T��(x) :) does not depend on derivatives of the metri of order higherthan the �rst. The underlying motivation is rooted, on the one hand, in the request of well-posedness of the Cauhy problem for the Einstein's equations even with a non vanishing soureand, on the other hand, in the need for a sensible \lassial" limit of the semi-lassial Einstein'sequations (see the enlightening disussion in Wald's original paper [Wa77, Wa78℄). Wald himselfhad realised, however, that the strit version of this axiom ould not even be satis�ed in thelassial theory and has, thus, proposed the weaker one stated here. Unfortunately, furtherexaminations have revealed that even this weaker version does not seem possible to ful�l inmassless theories without introduing an arti�ial length sale into the theory; therefore, theaxiom has been disarded. We still believe, however, that it ould be ful�lled, though only underspeial irumstanes. We shall omment on this issue at a later stage of the paper.40



Using these axioms, Wald ould prove that a uniqueness result for !(: T��(x) :) an beobtained. The �rst two axioms already imply that the results from two di�erent sensible regu-larisation shemes an only di�er by a loal urvature tensor. The third and fourth axiom thenimply that this loal urvature tensor is onserved and vanishes if the spaetime is loally at.Requiring that this term has the orret dimension of m4, the possible tensors are presumablyonly the ones obtained by varying a Lagrangian of the formm4�F1� Rm2�+ F2�R��R��m4 �+ F3�R����R����m4 ��with respet to the metri, with some dimensionless funtions Fi(x). Requiring suitable analyt-iity properties with respet to the urvature tensors and m, in [HoWa05℄, it has been shownthat the only possibilities are m4g�� (F1 = 1)7, m2G�� (F1 = x) and the three loal urvaturetensors I�� (F1 = x2), J�� (F2 = x), K�� (F3 = x), f. appendix A for their full expression. Infat, we will later show that hanging the sale � in the regularising Hadamard bidistributionH� amounts to hanging !(: T��(x) :) exatly by a tensor of this form and, furthermore, theattempt to regularise Einstein-Hilbert quantum gravity at one loop order automatially yieldsa renormalisation freedom in form of suh a tensor as well [tHoVe74℄. Having in mind howthe semilassial Einstein's equation may be derived, these two arguments are of ourse relatedby means of internal onsisteny.8 Using the Gauss-Bonnet-Chern theorem in four dimensions,whih states that ZM d�(x)R����R���� � 4R��R�� +R2is a topologial invariant and, therefore, has a vanishing funtional derivative with respet tothe metri [Al95, tHoVe74℄, one an restrit the freedom even further by removing K�� fromthe list of allowed loal urvature tensors.4.3 The quantum stress-energy tensor: the solution and its trae anomalyWe now seek to exploit the above axioms in order to speify a sensible hoie of di�erentialoperator D�� . Looking at our proposed regularisation proedure (33), the �rst obstale to over-ome seems to be the ovariant onservation axiom. As we have seen above, onservation of thestress-energy tensor in the lassial ase is a diret onsequene of the equation of motion. Sinewe are regularising by subtrating from the two-point funtion the Hadamard bidistribution,7A term proportional to the metri is not allowed if one seeks to ful�l the third axiom. As we will see later,however, it does not seem to be possible to �x this term in a way that is ompatible with analytiity in m.Furthermore, the results of Hollands and Wald regarding the restrition of the possible regularisation freedomby demanding analyti dependene on urvature and mass have only been obtained for salar �elds. Sine thestress-energy tensor for Dira �elds is an observable and thus still a \salar" �eld, their results an be, nonetheless,presumably extended to this ase.8In fat, at least in the ase of salar �elds, the ombination of the loal urvature tensors appearing as the �niterenormalisation freedom in [tHoVe74℄ is, up to term whih seems to be an artefat the dimensional regularisationemployed in that paper, the same that one gets via hanging the sale in the regularising Hadamard bidistribution.41



whih is in general not a solution of the Dira equation(s), Dan�� applied to the thereby obtainedsmooth bispinor will in general not yield a onserved quantity. A viable solution to suh prob-lems alls for the modi�ation of the lassial stress-energy tensor (31) by terms whih vanish onshell, while, at the same time, they help restoring ovariant onservation on the quantum side.As in the ase of salar �elds [Mo03℄, it seems that the only possible option is to add multiplesof the Lagrangian to the lassial expression of the stress-energy tensor. We thus propose thefollowing lassial stress-energy tensor as a starting pointT�� = 12 � y;(��) �  y(� ;�)�+ Lg��and we look for a  2 R that yields a sensible !(:T��(x) :). This is tantamount to the hoie ofthe following di�erential operator for the point-splitting proess (33)D�� := Dan�� � 2g�� �D0x +Dy�D0y= �12(� �r�) � g�0�)r�0�D0y � 2g�� �D0xD0y � Py� : (34)Before proeeding to prove that there indeed exists a suitable hoie of , we would liketo antiipate another result, whih an be easily understood from the aforementioned line ofargument. Let us remember that there is another property of the lassial stress-energy tensorstemming from the equations of motion: it has vanishing trae in the massless (and thereforeonformally invariant) ase. Following the above disussion, on the one hand, it seems that onemight need to give up this property at a quantum level, while, on the other hand one, one ouldstill hope that the hoie of  also provides a vanishing trae. Alas, it will turn out that this isnot the ase. One an only �x  in a way suh that !(:T��(x) :) has vanishing trae for m = 0,but onservation is inevitably spoilt. Sine we have already realised that onservation is indeedan essential requirement for the right hand side of the semilassial Einstein's equations, we willhave to aept that g��!(:T��(x) :) is not vanishing in the massless ase. This goes under thename of trae anomaly.Theorem 4.1. Let �m := 2 exp(72 � 2)m�2 for m 6= 0 and �m arbitrary for m = 0, where denotes the Euler-Masheroni onstant, hoose the Hadamard bidistribution to be the one with� = �m and let !(: T��(x) :) be de�ned as in (33), with the di�erential operator D�� = D�1=6��de�ned as in (34). Then !(:T��(x) :) ful�ls the redued version of Wald's axioms. Furthermore,
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it exhibits the following trae (anomaly)g��!(:T��(x) :) =� 1�2 � 11152R2 + 1480�R� 1720R��R�� � 75760R����R����� (35)� 1�2 �m48 + m2R48 �+mTr �D0yW (x; y)� := 12880�2 �72C����C���� + 11�R��R�� � 13R2�� 6�R�� 1�2 �m48 + m2R48 �+mTr �D0yW (x; y)� :Proof. We begin by omputing r�!(:T��(x) :) and g��!(:T��(x) :), leaving  unspei�ed for themoment. Applying Synge's rule and taking into aount that [C�� ; �℄ = 0 and [g�0� ;�℄ = 0 (f.,appendix A), we get8�2r�!(:T��(x) :) = r�Tr �D��(x; y)W (x; y)� = Tr h(r� + g��0r�0)D��(x; y)W (x; y)i= Tr ��14 �g�0� r�0 �r�� �D0xD0y + Py�+ 14�D0y(Py � Px)� 2 �g�0� r�0 +r�� �D0xD0y � Py�oW (x; y)i :Remembering that �D0y(H� +W ) is the loal two-point distribution of a state, it follows thatH�+W is subjet to the distributional di�erential equationsD0xD0y(H�+W ) = 0 = Py(H�+W ).Thus, we an safely replae W in the above equation by �H�, sine every appearing terminvolves one of the two aforementioned di�erential operators. Suh a proedure yields8�2r�!(:T��(x) :) = Tr ��14 �r� � g�0� r�0� �D0xD0y + Py�+ 14� ��0r�0 +m� (Px � Py)� 2 �g�0� r�0 +r�� �Py �D0xD0y�oH�(x; y)i :Now we an insert the various oinidene point limits of the di�erentiated Hadamard bidistri-bution H� omputed in proposition A.1 of appendix A to obtain8�2r�!(:T��(x) :) = �(1 + 6)Tr[V1(x; y)℄;� :For the trae we use both the insights on the parallel transport of gamma matries from appendix
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A and the arguments already employed in the omputation of the onservation to get8�2g��!(:T��(x) :) = g��Tr �D��(x; y)W (x; y)�= Tr ����2+ 12��D0xD0y � Py�+mD0y�W (x; y)�= Tr ��2+ 12��D0xD0y � Py�H�(x; y) +mD0yW (x; y)�= �6(4+ 1)Tr[V1(x; y)℄ +mTr �D0yW (x; y)� :If we look at the above two results and we use the data from appendix A, we realise that,sine Tr[V1(x; y)℄ is in general neither vanishing nor onstant, we need to set  = �1=6 toassure onservation, thus yielding the asserted trae and, partiularly, the trae anomaly in themassless ase.Let us now proeed to hek the validity of the �rst two axioms. From the above twoalulations we an extrat that the term we have added to the anonial di�erential operatorDan�� to ahieve the looked-for di�erential operator D�� ontributes to !(: T��(x) :) a termproportional to g��Tr ��D0xD0y � Py�H�(x; y)� = �12g��Tr[V1(x; y)℄:This term is learly independent of the state, i.e., W (x; y), thus, axiom 1 holds for our regu-larisation sheme and two Hadamard states !1; !2. Furthermore, sine the Wik monomials areloally ovariant quantum �elds as disussed in the previous setion, the same holds true for:T��(x) : and axiom 2 is straightforwardly ful�lled.What now remains to be shown is the vanishing of !(:T��(x) :) on Minkowski spaetime andin the Minkowski vauum state, provided we hoose a suitable sale � in the de�nition of H�.In this setting, we have !�Mink(x; y) = �D0y!+2;Mink(x; y)I4, with the salar two-point funtion!+2;Mink9 [Sha95℄. The latter an be spei�ed as!+2;Mink(x; y) = lim�!0+ 4m(4�)2p2��(x; y)K1(mp2��(x; y));where K1 denotes a modi�ed Bessel funtion, the expression is to be understood in the sense ofanalyti ontinuation for negative values of the geodesi distane, and the limit spei�es how toapproah the branh ut of the squared root [Mo03℄. Expanding this in terms of � (suppressingthe � for simpliity) we have8�2!�2;Mink(x; y) = � 1� +�m22 + m48 � + f1(�)�2� ln�e2m2�2 �+�m22 �1 + 5m2�8 �+ �2f2(�2)� I4;9Reall that, aording to our de�nition, !� is of \positive frequeny type".44



where the fi appearing in this paragraph are smooth funtions. In Minkowski spaetime, theDira Hadamard bidistributions H� are simply the salar ones times the unit matrix. This isnot surprising sine, as visible in appendix A, the nontrivial matrix part of the Dira HadamardoeÆients stems from the urvature of the spin onnetion, whih vanishes in at spaetimes.We thus have 8�2H�Mink(x; y) = � 1� +�m22 + m48 � + f1(�)�2� ln� ��2�� I4:If we take into aount this singular part, a short omputation yields8�2WMink(x; y) = �m22 �ln�e2m2�22 �� 1�+�m48 ln�e2m2�22 �� 5m416 �� + f3(�)�2� I4and we an straightforwardly ompute!Mink(:T��(x) :) = �m48 g�� �ln�e2m2�22 �� 72� ;whih vanishes for � = �m = 2 exp(72 � 2)m�2. In the massless ase, both H�Mink and !2;Minkonly onsist of the ��1 term, suh that !Mink(: T��(x) :) is trivially vanishing, independent ofany sale �. 2It is interesting to notie that the above analysis seems to suggest that the ommon ideawhih assoiates the emergene of the trae anomaly to the onservation of the stress-energytensor is somehow inappropriate sine suh anomaly seems rooted in the loss of the equationsof motion at a quantum level alone. As a matter of fat the needed modi�ation of the lassialstress-energy tensor does not evoke the trae anomaly, but it only modi�es it.To onlude the setion, a few further remarks are in due ourse:Remark. Our result for the trae anomaly oinides with previous ones obtained by meansof gravitational index theorems [ChDu79℄ and point-splitting tehniques [Chr78℄. Both ap-proahes have made use of the DeWitt-Shwinger expansion, whih an not be de�ned rigorously[Wa79, BrOt86, Fu89, Mo03℄. Moreover, even if this expansion reprodues the Hadamard singu-larity struture, it seems that alulations are muh shorter if one expresses it diretly throughthe Hadamard series. The previous attempts had, however, one advantage, namely, they hadexpressed the expeted stress-tensor as the funtional derivative of a (di�eomorphism-invariant)e�etive ation, suh that the result has been manifestly onserved. The nie disussion whihfollows de�nition 2.1 of [Mo03℄ gives an explanation of how the extra term in our derivativeoperator D�� an be understood in this ontext.Remark. By hanging the sale � in the Hadamard bidistribution H� to �0, one modi�esthe (de�nition of the) smooth part W by 2V ln�0=�, suh that !(:T��(x) :) hanges by a termproportional to Tr[D��V ℄. Sine we know from proposition 3.2 that D0yV ful�ls both Diraequations of motion, we an a priori dedue that this term is automatially onserved and45



furthermore traeless in the onformal ase. Thus, it follows that both the determination of theorret  to be inserted in D�� and the trae anomaly are independent of the sale �. Even if wealready know the properties of Tr[D��V ℄ beforehand, it is enlightening to alulate its expliitform. The result is Tr[D��V ℄ = m42 g�� � m26 G�� + 160 (I�� � 3J��) ;where the linear ombination of I�� and J�� appearing in the above formula is traeless, f.,appendix A. This term is well within and even exhausts the regularisation freedom disussedafter de�nition 4.1.Furthermore, one should reall that, in the massive ase, � had to be �xed in terms of inversepowers of m to assure vanishing of !(:T��(x) :) in Minkowski spaetime. Hene, if one demandsontinuous dependene of !(:T��(x) :) on m, it does not seem possible to ful�l the third axiomof de�nition 4.1 in this way.Remark. Even if we are able to �x the sale �, we ould in priniple still add multiples ofm2G�� , I�� , and J�� to !(: T��(x) :) without spoiling the validity of the �rst four of Wald'saxioms, though possibly modifying the �R term in the trae anomaly. This freedom an bederived in a more general sense, by already viewing all Wik produts as being uniquely de�nedonly up to terms depending on the mass and the loal urvature, where the possible regularisationfreedom is partially restrited by suitable onsisteny onditions, e.g. \Leibnitz rules". Thisapproah has been developed and pursued suessfully by Hollands and Wald in [HoWa05℄ andhas the advantage to also enompass interating �elds. A treatment along their lines will, asalready remarked in subsetion 4.2, presumably yield the same renormalisation freedom for thestress-energy tensor like the one found here, as it happens in the salar ase [HoWa05℄.Furthermore, the arising of the onserved loal tensors I�� and J�� puts us in the positionto understand why the �fth of Wald's axioms in de�nition 4.1 is problemati. Let us onsiderthe massive ase, where we an �x the sale �. Sine I�� and J�� ontain terms involvingfourth order derivatives of the metri, we may hope to anel terms of that type ourring in!(: T��(x) :) by adding a �xed linear ombination of those two tensors. In the massless ase,however, there is, up to our knowledge, no physially sensible way to �x �. Therefore, one hasno ontrol on the multiples of I�� and J�� ourring in !(:T��(x) :) and thus no way to anelthem.Nonetheless, there are senarios where the situation with respet to the mentioned axiomis not that perniious. On osmologial, i.e., Friedmann-Robertson-Walker bakgrounds, thesemi-lassial Einstein's equations (32) an be redued to an equation for the traes of bothsides plus a onservation equation for the right hand side [DFP08℄. Thus, it seems that one hasthe hane to ful�l the �fth axiom for both massive and massless �elds in this simpli�ed setting,sine a hange of sale does not add fourth order derivative terms to the trae of the expetedstress-energy tensor. In fat, as already explained in the introdution, this observation has beenused in [DFP08℄ to obtain stable solutions of the semi-lassial Einstein's equation at late times.46



5 Conlusions and outlookWe have extensively disussed the struture of free Dira �elds both at a lassial and at aquantum level. While, in the �rst ase, we have mostly reviewed standard approahes, in thelatter senario we have ahieved a twofold goal. Partiularly, we have started the disussion ofquantised Dira spinors by exploiting the selfdual framework introdued by Araki whih treatsspinor and ospinor �elds as a ombined single objet and allows to formulate the quantisationproedure in a loally ovariant way. This step has been fully undertaken by Sanders for the�rst time and we have realled the essential steps and features of this onstrution. Employingalready available and known properties of Hadamard states, we have subsequently been ableto introdue the extended algebra of Wik polynomials, the topi of setion 3.4 and the �rstof our main results. As a seond one, we have shown that, as in the salar ase, a physiallysensible de�nition of the stress-energy tensor for Dira �elds on a urved bakground in termsof Wik polynomials is indeed possible with just one aveat: one has to add to the lassialexpression a suitable term whih vanishes on-shell and hene does not alter lassial dynamisto obtain a onserved stress-energy tensor on the quantum side. Some new insights on DiraianHadamard forms have onstituted a prerequisite of this result, while one of its onsequenes isthe emergene of a non-vanishing quantum trae of the stress-energy tensor, even if its valueat a lassial level is zero in the onformally invariant ase. This result, whih goes under thename of trae anomaly, has been previously known, but only as a result of formal alulations;it is thus derived here rigorously for the �rst time.On the overall, we rekon that this paper aomplishes also a further task, namely, it addsthe insight that it is possible, interesting, but by no means straightforward to reast many ofthe already known rigorous results for salar �elds also for the spinor ones. Furthermore, ouranalysis opens several interesting questions to be takled in future lines of researh: the �rstone, whih arises out of setion 3.2, onerns the possibility to prove the time slie axiom forthe extended algebra of �elds (as well as for interating �eld theories) in the senario onsideredin the paper. If one follows the path paved in the salar ase in [ChFr08℄, a positive answerseems de�nitively within our grasp. A further interesting problem originates from setion 3.3in whih Hadamard states are introdued and disussed; the Hadamard oeÆients appearingin the singularity struture of suh states are smooth bispinors and the question arises if theirmost remarkable feature in the salar ase, namely, their symmetry as proved in [Mo99, Mo00℄,also appears in the spinor senario. Suh a property would be desirable sine, for example, itwould lead to many simpli�ations in the demanding alulations neessary in the onstrutionof the onserved stress-energy tensor. Although there are hints pointing towards this diretion(see also [SaVe01℄), we are far from a omplete proof of suh a symmetry and we thus feel thiswould be another rather interesting problem to takle in the very next future.Besides these rather formal lines of researh, our results have also some remarkable onse-quenes at a physial level. On the one hand we are now ready to answer the question posed inthe introdution on the robustness of the results in [DFP08℄; preliminary onsiderations seemto point towards this diretion, though we leave a de�nitive answer to a future analysis. Onthe other hand, sine our approah allows us to ontrol the behaviour of free Dira �elds at47



a osmologial level, it is interesting to point out that free or perturbatively self-interating�elds with half-integer spin in osmology arise in many models, suh as baryogenesis throughleptogenesis, where they often play a pivotal role. In these senarios there are still many openquestions to be answered and it seems that, often, the role of spaetime urvature e�ets area priori disarded as negligible. Our experiene suggests that this approximation might be toorude and, therefore, we would like to investigate these models in more detail in the frameworkof quantum �eld theory in urved spaetimes with the hope that suh an analysis might lead tonew and interesting physial onsequenes.Aknowledgements.The work of C.D. is supported by the von Humboldt Foundation, that of T.H. by the GermanDFG Graduate Shool GRK 602, whereas N.P. gratefully aknowledges support by the GermanDFG Researh Program SFB 676. We would like to thank K. Fredenhagen, V. Moretti, and R.Punzi for useful disussions. T.H. is espeially grateful to R. Punzi for suggesting [Rii℄ to him.A Useful tools and neessary alulationsThe aim of the appendix is to reollet, to larify, and, oasionally, to also prove useful formulaswhih are needed in the main body of the paper and whih are subjet to potential ambiguities.These are often perniiously leading to potentially grievous sign mistakes or misunderstandingsof a sort whih we wish to hold o� from a potential reader.A.1 Notations, onventions, identitiesAs a starting point, we would like to reollet our basi onventions regarding some symbols,whose exat de�nition often varies among the literature. In aord with setion 2, we workwith spaetimes thought as four-dimensional, Hausdor�, smooth manifolds10, endowed with aLorentzian metri g�� with signature (�;+;+;+). At the same time, other notable geometriquantities, namely, the Riemann and the Rii tensor as well as the Rii salar, are de�ned viatheir omponents as followsv�;� � v�;� := R �� �v�; R�� := R �� ��; R := R��;where v� are the omponents of an arbitrary ovetor; the extension to vetors and tensors ofhigher rank is then straightforward. As a last remark, we underline that the Riemann tensorpossesses the symmetries R��Æ = �R��Æ = �R��Æ = RÆ��10As proven in [Ge68℄, seond ountability is automatially ful�lled for a four-dimensional, Hausdor�, smoothmanifold of Lorentzian signature. 48



and ful�ls R��Æ +R�Æ� +R�Æ� = 0:Finally, we de�ne the Weyl tensor as it is usually done by the following expressionC��Æ = R��Æ � 16 (g�Æg� + g�g�Æ)R� 12 (g�ÆR� + g�R�Æ + g�ÆR� + g�R�Æ) :Similarly, we need to ope with geometri quantities related to the spin struture, introduedin de�nition 2.4. Most of these are onstruted out of the so-alled -matries whih satisfy thestandard antiommutation relations (4), i.e., f�; �g = 2g�� . Our hoie of the metri signatureentails that the -matries are di�erent from the standard ones employed in quantum �eld theorybooks by an overall multipliative fator �i. Consistently also with (2), we stik to +i and,therefore, the Dira operator appearing in the Dira equation for spinors beomes D := �6r+m,whereas the operator nullifying a dynamially allowed ospinor is D0 := 6r+m.That said, apologising in advane for assigning the letter C to two di�erent objets, we de�nethe omponents of the urvature tensor C of the spin onnetion asVA;� � VA;� := C BA �VB;where VA are the omponents of an arbitrary ospinor; as previously, the extension of thisde�nition to spinors, also of higher rank, as well as of that for the Riemann and the spinurvature tensor in presene of mixed spinor-tensors, is straightforward. It follows from lemma2.1 that the relation between the two urvature tensors isCAB�� = 14R�����AC�CB :Thus, C possesses the symmetriesCAB�� = �CBA�� = �CAB��:We also use the notational onvention that a matrix ats from the left on spinors and fromthe right on ospinors, e.g., we resolve the Dira operators asD0 y =  y;�� +m y; D = �� ;� +m :If one stritly stiks to suh onvention, spinor indies an be safely suppressed, as we havealready done in the main body of the paper and as we will often do in the remainder of thisappendix.To onlude this subsetion, we point out a few useful identities between the objets we havepreviously introdued. Starting from the gamma matries, the produt of an odd number ofthem has a vanishing trae. At the same time, if we onsider an even numberTr �� = 4g�� ; T r ���� = 4(g��g�� � g��g�� + g��g��)Tr [��℄[Æ℄"' = 4(g[�'g�℄[gÆ℄" + g[�"g�℄[Æg℄' + g[�Æg�℄g"');49



where [ ℄ here denotes idempotent antisymmetrisation. Furthermore,�� = 4I4; ��� = �2�; ���� = 4g��I4;���� = �2��; ���Æ� = 2(Æ�� + ��Æ): (36)The last equalities we shall need are�C�� = C��� = 12R���; [C��;  ℄ = R����; T r C��Æ = �2R��Æ ; C ����; = 0;T r C��C�� = �12R��ÆR��Æ; T r C��C���� = Tr C��C��g�� ;where the equalities not involving a trae an be proved by ombining the symmetry propertiesof the Riemann tensor with the antiommutation relations of the -matries, e.g.,C��� = 14R������� = 14(R���� +R����)��� = 14R���� (��� + ��� )= 14R���� ����� + 2g��� � 2g��� � ��� + 2g����= 32R��� � 2C���, C��� = 12R��� :A.2 On the alulus of bispinor-tensorsThe notion of bispinor-tensors heuristially boils down to onsider objets whih ontemporarytransform as spinor-tensors at two spaetime points. In a more sound language, they are setionsof an outer tensor produt VM �WN of two vetor bundles VM , WN respetively over M andN . VM �WN is nothing but a vetor bundle over M �N with, alling V and W the typial�bres of VM and WN , V 
W as a typial �bre. Suh a onstrution may seem awkward,but, in ase M = N , it is indeed more fundamental than the familiar tensor produt bundleVM 
 WM , the latter being onstruted out of VM � WM by pulling bak via the mapM 3 x 7! (x; x) 2M �M .For simpliity we will hoose to ollet all possible (bi)spinor-tensorial objets under thename of (bi)tensor, exept in speial ase where we want to stress the harater of the involvedvetor spaes. The bitensors ourring in this work are all de�ned only on a onvex normalneighbourhood, sine we need a unique geodesi to onnet the two points our bitensors dependon. We use unprimed indies to indiate omponents stemming from tensorial properties atx and primed indies for those rooted in suh properties at y. Furthermore, we shall use thebraket notation introdued by Synge to denote oinidene point limits of bitensors, namely,[B(x; y)℄ := limy!xB(x; y);50



where B is some smooth bitensor, suh that the limit is well de�ned.Let us now reall the bitensors used in this work and examine their properties. We will onlymention the basi points while we refer to the works of DeWitt and Brehme, Fulling, Christensen,and to the review by Poisson for further, more exhaustive, details [DeWBr60, Fu89, Chr76, Po03℄.As a starting point, we onsider the halved squared geodesi distane �(x; y) taken with sign,sometimes also alled Synge's world funtion. Even if the geodesi distane itself might not beglobally smooth, it is suh on geodesially onvex normal neighbourhoods (provided smoothnessof the metri) and it furthermore ful�ls �;��;� = 2�, an identity whih an be either expliitlyomputed or derived from geometri onsiderations. In the following, we will, as it is ustomary,drop the semiolon when indiating ovariant derivatives of �. The aforementioned equationtogether with [�℄ = [��℄ = 0 and [��� ℄ = g�� , two identities arising out of the de�ning propertiesof the geodesi distane, ompletely suÆe to determine �, as well as all the properties we need,namely, the oiniding point limits of its higher derivatives. These an be obtained by means ofan indutive proedure; as an example, in the ase of [����℄, one di�erentiates ���� = 2� threetimes and then takes the oiniding point limit. Together with the already known relations,one obtains [����℄ = 0. At a level of fourth derivative, a new feature enters the fray, namely,one gets a linear ombination of three oiniding fourth derivatives, though with di�erent indexorders. To relate those, one has to ommute derivatives to rearrange the indies in the looked-forfashion, and this ultimately leads to the appearane of Riemann urvature tensors, i.e.,[�℄ = [��℄ = [����℄ = 0; [��� ℄ = g�� ; [���%� ℄ = �13(R�%�� +R���%):We stress that the disussion of these few identities is indeed muh more valuable than justyielding the stated results sine a potential reader is now able to alulate oiniding pointlimits both of derivatives of arbitrarily high order and of any bitensor; this holds true providedhe is given the limits of lower order derivatives, an equation relating them to the higher ones, aswell as the information of appropriate urvature tensors. We would like to remark at this pointthat, sine one is ultimately interested in the oiniding point limits of ertain bitensors mostof the time, the in between omputational steps often only require the knowledge of oinidingpoint limits of hierarhially lower objets, in ontrast to having the neessity to know their fullform.The next interesting bitensor is that of parallel transport along a geodesi, an objet de-pending both on the underlying vetor bundle and on the onsidered linear onnetion. We willdenote the parallel transport relating the tangent spaes at x and y as g��0 , while the one relatingspinors at those same points is denoted as IAB0 . With them at hand, parallel transporting aspinor-tensor T = TA�EA 
 �� along the geodesi onneting y to x amounts to the followingidentity TA� = IAB0g��0TB0�0 ;and a similar rule applies to higher spinor-tensors. One an reverse the role of x and y, introdu-ing the inverses of the above two parallel transports, say g�0� and I�1A0B . On a pratial ground,the onstrution of these two quantities boils down to �nding a solution of the following partial51



di�erential equations:g��0;��� = IAB0;��� = 0 and [g��0 ℄ = g�� ; [IAB0 ℄ = I4AB ;being I4 the 4 � 4 identity matrix. These identities, together with the properties of � and theindutive proedure desribed at the beginning of this paragraph, allow us to expliitly omputethe derivatives of the parallel transports, the lowest ones being[g��0;�℄ = [IAB0;�℄ = 0; [g��0;��℄ = 12R���� ; [IAB0;��℄ = 12CAB�� : (37)We shall heneforth suppress spinor indies, taking are to follow the afore desribed onventions,and, to onlude the setion, we would like to point out the speial parallel transport propertiesof both � and the gamma matries. For the former we have, due to its geometri meaning,g�0� ��0 = ��� ;whereas, for the latter, being ovariantly onstant, we haveI�0I�1g�0� = � :In this paper, we need to ope with the oiniding point limits of bitensors di�erentiated atboth x and y. The �rst, and maybe obvious, related statement is that derivatives at di�erentpoints ommute, so that we an always rearrange derivative indies in suh a way that theunprimed ones are always on the left whereas the primed ones are always on the right. As asubsequent step, one noties that mixed oiniding point limits an be also alulated out ofindutive paths. If one has the knowledge of the oiniding derivatives at the point x, however,one an extend it to those at y by means of Synge's rule:Lemma A.1. Let T be a smooth bitensor of arbitrary order; then its ovariant derivativespossess the following property in the oiniding point limit (here suppressing all unessentialindies): [T;�0 ℄ = [T ℄;� � [T;�℄:This has been proven by Synge for � exlusively, while, for the proof of an extension toarbitrary bitensors, one an refer to setion 2.2 in Poisson [Po03℄ or to Christensen [Chr76℄.A.3 On the Hadamard reursion relations and related resultsAs we have seen in setion 3.3, in order to \onstrut" the two-point funtions !�(x; y) of aHadamard state, we need to speify the distribution kernels H�(x; y) and the smooth bispinorW (x; y), whih must satisfyPxH�(x; y) 2 E(DM 
D�M); PyH�(x; y) 2 E(DM 
D�M)52



and D0xD0y �H�(x; y) +W (x; y)� = Py �H�(x; y) +W (x; y)� = 0:From this it follows that D0xD0yH�(x; y) is a smooth bispinor as well. Furthermore, due toproposition 3.2, there are even more di�erential operators, whih, applied to H�(x; y), yield asmooth bispinor. Let us ollet them all in the following:Px = �D0xDx; Py = �D0yDy; D0xD0y; DxDy and Dx �D0y = Dy �D0x: (38)The aim of this setion is to use these data to determine the Hadamard bidistributionsH�(x; y)and to alulate the various oiniding point limits of their derivatives whih are neessary forthe proof of theorem 4.1. Following the path paved in the preeding setions, let us reall thatthe index struture of !� is!�(x; y) = !�(x; y) B0A EA(x)
EB0(y);and that H� and W inherit this struture, and let us suppress spinor indies in the following.Although H�(x; y) and W (x; y) are bispinors, we reall from the main body of the paperthat their form slavishly mimis that of the kernels speifying the two-point funtion in thetheory of salar �elds, viz.,H�(x; y) = U(x; y)���(x; y) + V (x; y) ln ���(x;y)�2 ; (39)V (x; y) := 1Xn=0Vn(x; y)�(x; y)n; (40)W (x; y) := 1Xn=0Wn(x; y)�(x; y)n; (41)where ���(x; y) := �(x; y)� 2i� (T (x)� T (y)) + �2; with � > 0 and T being a temporal funtionwhose existene is guaranteed sine the bakground is globally hyperboli [BeSa05, BeSa06℄. Asalready ommented in the main text, � is a referene distane employed to make the argumentof the logarithm dimensionless, while the remaining objets, the so-alled Hadamard oeÆientsU and V , are smooth bispinors. As we will see shortly, U as well as V depend only on thegeometry of the underlying bakground and the mass, whereas W fully haraterises the state,namely, the two-point funtions of two Hadamard states di�er only by a smooth funtion andsuh a di�erene is indeed enoded in W .To determine U , V , and W , we need to use the knowledge on the di�erential operators(38) whih, one applied to H�, give smooth bispinors. To make the following formulas morereadable, we hoose to omit the regularising " - and thus the � index of H� -, the referenelength �, and the dependene of the kernels on the spaetime points (x; y). That said, we anin priniple take either of the seond order di�erential operators listed in (38) to reursivelyalulate U and V ; we will employ Px, as this is familiar from the omputations in the salarase. 53



Applying Px to H, we obtain potentially singular terms proportional to ��n for n = 1; 2; 3and to ln� as well as smooth terms proportional to positive powers of �. We know, however,that the total result is smooth and one possible way to ahieve this is to demand that theoeÆients of the potentially singular terms are identially vanishing. Let us stress that, sinewe do a priori not know if U ontains positive powers of �, the terms proportional to negativepowers of � ould in priniple anel eah other to yield a smooth result. It is therefore a hoieand not a neessity to require the oeÆients of the inverse powers of � to vanish, and it is,furthermore, not guaranteed that the result of this proedure does not depend on the hoie ofthe seond order di�erential operator out of the possible ones listed in (38). The afore laid downline of argument does, however, not hold for the oeÆients of PxH proportional to ln�; sineU and V are required to be smooth, they an not ontain a logarithmi dependene on � andthe terms proportional to ln� have to vanish neessarily.The result of the previously desribed proedure are the so-alled Hadamard reursive rela-tions, whih, in the salar ase, have been studied by several authors (see for example [Mo00℄).In the ase of Dira �elds, there are results on the oiniding point limits of the Hadamard o-eÆients up to V1 omputed in [Chr78℄; the form of the Hadamard singularity employed in thiswork is, however, a di�erent one related to the non-rigorous DeWitt-Shwinger expansion, butformally, the relation between the di�erent reursion relations arising in the two onstrutionsis well-known.After having disussed the Hadamard reursion relations, we shall show how they ariseexpliitly. Let us thus examine the terms U=� and V ln� individually. Starting with the latter,we have Px(V ln�) = (PxV ) ln� + 1Xn=0 (Vn(�x� � 2 + 4n) + 2��Vn;�) �n�1;where we have employed the identity ���� = 2�. Remembering our previous disussion, we annow extrat our �rst di�erential equation by requiring the oeÆient of ln� to vanish. Sinethis requirement has to hold independently of the di�erential operator hosen out of (38), wehave PxV = PyV = D0xD0yV = (D0x �Dy)V = (D0y �Dx)V = 0: (42)To obtain further di�erential equations, we need to look at the terms involving U , viz.,Px�U� � = (PxU)� + 2��U� + (�x� � 4)U�2 ;whih, ombined with the ��1 oeÆient oming from the series obtained out of di�erentiatingV ln�, leads us to the following two identities:PxU + 2V0;��� + (�x� � 2)V0 = 0; (43)2U;��� + (�x� � 4)U = 0; (44)54



referring to the ��1 and ��2 oeÆients, respetively.Let us now fous on (44); one an infer that U is subjet to a linear partial di�erentialequation whih, aording to standard theorems, provides a unique solution one a suitableinitial ondition is given. The latter is usually hosen in suh a way that[U ℄ = I4;and, hene, the Cauhy problem assoiated to the U -bispinor strongly suggests us to hypothesiseU to be of the form U = uI, with a smooth bisalar u satisfying [u℄ = 1. Plugging in this ansatzin (44) and realling the properties of I, it holds that uI is the solution we are seeking if andonly if u satis�es the partial di�erential equation2u;��� + (�x� � 4)u = 0:Hene, it turns out that u ful�ls the same transport equation as the ��1 oeÆients of theHadamard bidistribution enoding the singularity of the two-point funtion for a salar quantum�eld and is thus given by the square root of the so-alled V anV lek �Morette determinant. Itwould be tempting to think that a similar result and interpretation holds for V , but, alas, this isfar from being the truth as one an realise by diret inspetion of (43) sine spin urvature termsnot proportional to the identity enter the arena via derivatives of I. The enlarged omplexityof the Diraian Hadamard oeÆient V , however, is ompensated by the inreased number ofdi�erential equations ful�lled by V (42). Of ourse, any of them is enough to determine V , butomputations are still onsiderably easier if one employs all.To obtain di�erential equations for the Vn, one has to ombine (40) with (42). After a fewformal manipulations, one gets to1Xn=0 (PxVn) �n + 1Xl=1 (2lVl;��� + (l�� + 2l (l � 1)) Vl)�l�1 = 0;and, if we require this identity to hold true at eah order in �, toPxV0 + 2V1;��� + (�x�)V1 = 0; (45)PxVn + 2(n+ 1)Vn+1;��� + ((n+ 1)�x� + 2n (n+ 1)) (Vn+1) = 0: 8n � 1 (46)At this point it is lear how to determine U , V and W expliitly: the starting point is (44),whih, as we have explained above, gives us U one an initial ondition has been assigned.Afterwards one an plug the result in (43) in order to obtain V0, though one needs to speifyan initial ondition. This is already inluded in (43), however, sine, if we take the oinidenepoint limit of (43) and reall the properties of �, we end up with[V0℄ = �12[PxU ℄:Hene, we an now proeed iteratively, namely, we exploit (45) to onstrut V1 one we havespei�ed the initial ondition taking the oinidene point limit, i.e.,[V1℄ = �14[PxV0℄:55



Similarly, (46) grants us that the same proedure allows us to express Vn+1 out of the preedingterm Vn together with the initial ondition[Vn+1℄ = � 12(n+ 1)(n+ 2) [PxVn℄:Let us remember that all these results an be obtained starting from [U ℄ = I4 and employingdi�erential equations whih only involve loal urvature terms and the mass m. Thus, both Uand V indeed only depend on these data and are independent from the state under onsideration.This of ourse hanges one we want to determine the �nal unknown quantity W . Starting from(41) and realling the di�erential equationPx(H +W ) = 0, PxW = �PxH;it is lear how to get reursive di�erential equations for theWn. This time two initial onditions,namely, [W0℄ and [W0;�℄, however, have to be spei�ed by hand, whih is of ourse not surprisingsine we expet some indeterminateness whih has to be �xed by seleting a spei� state.It seems that we �nally have all ingredients neessary to alulate the sought oinidingpoint limits used in theorem 4.1. There is one potential feature of the Hadamard oeÆients,however, whih helps a lot simplifying alulations and should therefore be disussed beforestarting alulations, namely, their symmetry. Indeed, suh a property has been proven in[Mo00℄ for the salar ase, but, unfortunately, a similar result does not exist for Dira �elds andeven understanding the orret notion of \symmetry" in our framework is a rather hallengingtask. We shall leave the tantalising endeavour to prove the symmetry of the Diraian HadamardoeÆients for possible future work and irumvent, for the time being, this gap with moreexpliit alulations. The following lemma will turn out to be rather useful in general and inthe ontext of oping with the lak of (proven) symmetry in partiular:Lemma A.2. Given a smooth bitensor B(x; y) and a smooth bisalar f(x; y) suh that B(x;y)f(x;y)is a smooth bitensor and[B℄ = [B;�0 ℄ = [f ℄ = [f;�0 ℄ = 0; as well as [�yf ℄ 6= 0;it holds �Bf � = [�B℄[�f ℄ :Proof. We only sketh the proof here. Sine B, f and B=f are smooth, their oiniding pointlimits do not depend neither on y nor on the path along whih one approahes x. Thus, wean apply de l'Hospital's rule to our smooth bitensors restrited to arbitrary smooth urves i,thereby expressing oiniding point limits of frations as those of diretional derivatives, e.g.,�B(x; y)f(x; y) � = " _1(y)�0B(x; y);�0_1(y)�0f(x; y);�0 # = " _1(y)�0 _2(y)�0B(x; y);�0�0_1(y)�0 _2(y)�0f(x; y);�0�0 # = [ _1(y)�0 _2(y)�0B(x; y);�0�0 ℄[ _1(y)�0 _2(y)�0f(x; y);�0�0 ℄ ;56



where we assume that [ _1(y)�0 _2(y)�0f(x; y);�0�0 ℄ is non-vanishing. This holds due to the hy-potheses of the lemma one we �nd two smooth urves 1, 2 suh that _1�0 _2�0 = g�0�0 .Going to normal oordinates at x, it is always possible to �nd 1, 2 joining x and y suhthat _1(x) = (1; 1; 1; 1) and _2(x) = (�1; 1; 1; 1); thus _1� _2� = ��� , where � denotes the met-ri in normal oordinates, � = diag(�1; 1; 1; 1). Sine [ _1(y)�0 _2(y)�0f(x; y);�0�0 ℄ is oordinate-independent, the statement of the lemma holds as a onsequene due to Synge's rule. 2The last worthy of mention tool to perform the alulations whose results we will displayshortly is the omputer. It should be lear at this point that there are lot of reursion relationsto solve to ahieve the wished-for results. Thus, at the least as a means of baking up manualalulations, omputer algebra systems are a valuable instrument. To this avail, we have hosento work with Mathematia and the free pakage [Rii℄, suitable for performing alulations withvetor bundles. The odes we have used to implement the reursive proedures and oinidingpoint limits are available upon request from t.p.hak�gmx.de.We an now �nally state the main proposition of the appendix:Proposition A.1. The Hadamard bidistribution H ful�ls1. [PxH℄ = 6[V1℄; [(PxH);�℄ = 8[V1;�℄; [(PxH);�0 ℄ = �8[V1;�℄ + 6[V1℄;�;2. [PyH℄ = 6[V1℄; [(PyH);�℄ = 8[V1;�℄� 2[V1℄;�; [(PyH);�0 ℄ = �8[V1;�℄ + 8[V1℄;�;3. Tr[D0xD0yH℄ = �Tr[PxH℄; T r[(D0xD0yH);�℄ = �Tr[(PxH);�℄ + [V1℄;�;T r[(D0xD0yH);�0 ℄ = �Tr[(PxH);�0 ℄� [V1℄;�;4. Tr[(PyH � PxH);�0 ℄�� = 2Tr[V1℄;� :Proof.1. We shall employ (42), (43), and (44). These data entailPxH = 2V1;%�% + V1(�x� + 2) + O(�); (47)and thus, taking the oiniding point limit and remembering those of � omputed in theprevious setion, [PxH℄ = 6[V1℄. Similarly, one gets, deriving (47) one and performingthe limit, [(PxH);�℄ = 8[V1;�℄. By means of Synge's rule we �nally have [(PxH);�0 ℄ =�8[V1;�℄ + 6[V1℄;�.2. We would of ourse like to ompute PyH, but without any knowledge on the symmetriesof the Diraian Hadamard oeÆients, we have to verify the transport equations for Py,whih otherwise would follow automatially from those for Px as it happens in the salarase for the salar Hadamard oeÆients u and v [Mo00℄. To wit,2U;�0��0 + U(�y� � 4) = I �2u;�0��0 + u(�y� � 4)� = 0;57



where the �rst equality holds sine the derivative of I vanishes along the geodesi onnet-ing x and y and the seond one holds sine u(x; y) = u(y; x)11 and u is thus subjet totransport equations for both Px and Py. Sine PyH is smooth, we now know thatZ1 := Y1� := PyU + 2V0;��� + V0(�y� � 2)� ;must be smooth too. Alas, it does not fatorise into a term only involving the salaroeÆients u and v times I and, up to now, we are unaware of a way to prove that it isidentially vanishing. But we an try to ompute whether it vanishes up to the derivativeorder we need for our purposes. To this end, it helps to split V into vI + ~V , where ~Vis the non-trivial matrix part of V stemming from the spin urvature. This way one anseparate from Y1 a term whih vanishes due to the transport equation for v and has toope with the remainder only. Involved alulations yield[Y1℄ = [Y1;�℄ = [�Y1℄ = [(�Y1);�℄ = 0;and thus, employing lemma A.2, [Z1℄ = [Z1;�℄ = 0. Consequently,PyH = 2V1;%0�%0 + V1(�y� + 2) + terms vanishing in the limitand (PyH);� = 2V1;%0�%0;� + V1;�(�y� + 2) + terms vanishing in the limit:One an now straightforwardly obtain [PyH℄ = 6[V1℄, [(PyH);�℄ = 8[V1;�℄ � 2[V1℄;�, and[(PyH);�0 ℄ = 8[V1;�℄� 8[V1℄;�.3. Let us de�ne Z2 := (Dx �D0y)H = (Dy �D0x)H:By diret inspetion, D0xD0yH = �PxH �D0xZ2:Again we know that Z2 is smooth and, alas, neither this quantity nor D0xZ2 turns outto be vanishing. Lukily enough, we an still extrat some useful results at the level oftraed oiniding point limits, at an order of derivatives high enough for our purposes.One omputesZ2 = �U(Dx �D0y)��2 + (Dx �D0y)U � V (Dx �D0y)�� + ln(�)(Dx �D0y)V:= �U(Dx �D0y)��2 + Y2� + ln(�)(Dx �D0y)V: (48)11The symmetry of u does not have to be proved in the same long way as that of v (see [Mo00℄), but it followsautomatially by its expliit form u(x; y) =rdet(���0(x; y))qjg(x)j�1qjg(y)j�1.58



As already disussed, the last term vanishes identially and so does the �rst term onaount of U(Dx �D0y)� = u(I��� + �0I��0) = u(I��� + I�g�0� ��0) = 0:This leaves us with Z2 = Y2=�. Involved omputations, employing (Dx�D0y)V = PxV = 0to exhange higher derivative terms with terms of lower derivative order in the appearingommutators with -matries, yield[Y2℄ = [Y2;�℄ = [�Y2℄ = 0; [(�Y2);�℄ = 6 [[V1℄; �℄ :After a few rearrangements and out of lemma A.2, one gets[Z2℄ = 0; [Z2;�℄ = [[V1℄; �℄ :Hene, [Z2;�℄ is traeless due to the antisymmetry of the ommutator. By means of formula(36), one an show per diret inspetion that Tr[V1℄�� = Tr[V1℄g�� whih entails thateven D0xZ2 is traeless and, thus,Tr[D0xD0yH℄ = �Tr[PxH℄:In order to ompute Tr[(D0xD0yH);�℄ and Tr[(D0xD0yH);�0 ℄, let us onsider that D0yZ2 =D0xZ2 + PxH � PyH. Employing this as well as the previous results and triks we havedisussed in this proof, one obtains the following hain of identitiesTr[(D0xZ2);�℄ = �Tr� [Z2;��℄ = Tr� [Z2;�0�℄� Tr� [Z2;�℄�= �Tr[(D0yZ2);�℄ = �Tr[(D0xZ2);�℄ + Tr[(PyH � PxH);�℄= 12Tr[(PyH � PxH);�℄ = �Tr[V1℄;�= �Tr[(D0yZ2);�0 ℄: (49)We an �nally use this last alulation to obtainTr[(D0xD0yH);�℄ = �Tr[(PxH);�℄ + [V1℄;�; T r[(D0xD0yH);�0 ℄ = �Tr[(PxH);�0 ℄� [V1℄;�:4. Inserting the previous results, we have [(PyH � PxH);�0 ℄ = 2[V1℄;� : As already disussed,due to -matrix identities, traing [V1℄ with two -matries amounts to a multipliationwith the metri. Sine the operations of trae and ovariant derivation ommute, we haveTr[V1℄;��� = Tr[V1℄;� and thusTr[(PyH � PxH);�0 ℄�� = 2[V1℄;�:2We would like to onlude this setion by stating the last ingredient neessary for provingtheorem 4.1, the oiniding point limit of V1, viz.,[V1℄ = �m48 + m2R48 + R21152 + �R480 � R��R��720 + R��ÆR��Æ720 � I4 + C��C��48 :59



A.4 Conserved loal urvature tensorsThe expliit form of the onserved loal urvature tensors spanning the regularisation freedomof the expeted stress-energy tensor is:I�� := 1pjgj ÆÆg�� ZM R2d�g = g�� �12R2 + 2�R�� 2R;�� � 2RR�� ;J�� := 1pjgj ÆÆg�� ZM R��R��d�g = 12g��(R��R�� +�R)�R;�� +�R�� � 2R��R� �� � ;K�� := 1pjgj ÆÆg�� ZM R��ÆR��Æd�g= �12g��R��ÆR��Æ + 2R���R��� + 4R��R� �� � � 4R��R�� � 4�R�� + 2R;�� :As already stated, in four spaetime dimensions, these are related as K�� = I�� � 4J�� viathe generalised Gauss-Bonnet-Chern theorem [Al95, tHoVe74℄. Furthermore, in this ase, theyall have a trae proportional to �R and, thus, the linear ombination I�� � 3J�� is traeless.Referenes[Al95℄ L. J. Alty, \The generalized Gauss-Bonnet-Chern theorem," J. Math. Phys., 36 (1995),pp. 3094-3105.[Ar70℄ H. Araki, \On Quasifree States of CAR and Bogoliubov Automorphisms," Publ. RIMSKyoto Univ. 6 (1970/71), 385-442.[Ar99℄ H. Araki, \Mathematial theory of quantum �elds," Oxford, UK: Univ. Pr. (1999) 236pg.,[BGP07℄ C. B�ar, N. Ginoux and F. Pf�a�e, \Wave Equations on Lorentzian Manifolds andQuantization" (2007) European Mathematial Soiety.[BaRa86℄ A. O. Barut, R. Razka, \Theory of group representations and appliations" (1986)World Sienti�.[BeSa05℄ A. N. Bernal and M. Sanhez, \Smoothness of time funtions and the metrisplitting of globally hyperboli spaetimes," Commun. Math. Phys. 257 (2005) 43[arXiv:gr-q/0401112℄.[BeSa06℄ A. N. Bernal and M. Sanhez, \Further results on the smoothability of Cauhyhypersurfaes and Cauhy time funtions," Lett. Math. Phys. 77 (2006) 183[arXiv:gr-q/0512095℄. 60
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