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Abstract. We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally
hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the
associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for
spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited
for back-reaction computations. We shall explicitly calculate its trace anomaly in particular.
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1 Introduction

In the last few decades we witnessed an amazing leap forward in our understanding of the
formulation of quantum field theory on curved backgrounds thanks to the efforts of many research
groups which often tackled this topic by means of the algebraic formalism. A careful analysis of
all the related achievements, though tempting, would require a review on its own and, instead,
we shall restrict ourselves to briefly mentioning the results of a recent manuscript, which has
prompted our interest towards the topic discussed in this paper. To wit, in [DFP08], it was
shown that, in the framework of semiclassical Einstein’s equations, it is possible to construct
explicit solutions for a homogeneous and isotropic Friedmann-Robertson-Walker spacetime with
flat spatial sections, where the assumption has been made that the matter content is described
by a suitably quantised free massive scalar field. In order to prove this result, two ingredients
have played a key role, namely, Hadamard states, as the natural candidates for a ground state,
and the quantum behaviour of the regularised stress-energy temsor 7j,,. Particularly, as end
point of the above cited paper, a late times stable de Sitter solution has been displayed and,
hence, an effective cosmological constant has arisen without inserting it from the very beginning
as an input datum. If one tries to seek the origin of this genuine quantum effect, one can realise
that it is ultimately rooted in the so-called trace anomaly, i.e., in a few words, the expectation
value of the regularised trace is not vanishing on Hadamard states, even though this is the case
at a classical level.

Although interesting, the derivation of the aforementioned result rises naturally the question
about its robustness since one could wonder if this behaviour is a feature pertaining only to
scalar fields or if it holds true for any kind of matter constituent. It thus seems advisable to
try to apply the same scheme of reasoning in the context of a free Dirac field. To our utmost
surprise, we have realised that the accomplishment of this goal has not been as easy as one might
a priori believe since, just by a quick scan of the available literature, it is manifest how spinor
fields play a somehow ancillary role in the arena of algebraic quantum field theory. In fact,
there are only few mathematically sound results and many tools and concepts, which have been
thoroughly discussed for scalar fields, have barely been scratched for spinors. As an example, let
us recall that we are mostly concerned with the trace anomaly for Dirac fields and it turns out
that this quantity has indeed been already investigated in the late seventies in [Chr78| [ChDu79],
though by means of the so-called De Witt-Schwinger expansion which lacks mathematical rigour
and, therefore, we cannot call our understanding of this anomaly complete yet.



With this in mind, before we can tackle any specific topic in a cosmological scenario, our first
concern must lie in the amendment of the the above mentioned problem. This will indeed be the
main point of the paper and we shall discuss it within the framework of the algebraic approach to
quantum field theory. To this end, we must also take into account that the scientific community
interested in this problem might not be acquainted with the formulation of a spinor field theory
on a curved background, which, already at a classical level, turns out to be rather different and
more complicated than the scalar counterpart. Hence, as a starting point, we shall review the
construction of a Dirac field in a classical framework emphasising the role of the underlying
geometric structures which are needed in order to fully describe both the kinematically and the
dynamically allowed field configurations. To this effect, our analysis will benefit from earlier
works which have already dwelled on this topic and, most notably, we shall refer to the seminal
paper of Lichnerowicz [Lic64] as well as to [Dim82, [Sa0§].

Subsequently, we shall discuss the quantisation of a Dirac field on a curved background and,
in this respect, one should mention that there are several possibilities at our disposal. On the one
hand one could follow the point of view already suggested in [Dim82], while, on the other hand,
one could also analyse the problem from the perspective of Araki [Ar70], whose scheme has the
peculiarity of unifying spinors and cospinors in a single body before quantising them. This leads
to a natural definition both of a CAR x-algebra of fields and of a subalgebra of observables,
once we require at least that elements whose supports are spacelike separated must commute.
Furthermore, this scheme, also at the heart of [Ver96l (K695, [Kra00l Hol99, [FeVe02l [Sa08], has
the remarkable advantage of being well suited to recast the quantum theory of Dirac fields in
the language of Locally Covariant Quantum Field Theory [BEV03], as we will point out.

In order to fully control the machinery of a quantum field, the scalar field scenario already
thought us that one has to understand well which algebraic states one should use and, to this
avail, the ones of Hadamard type are the natural choice in the context of Dirac fields, too;
these play the role of ground states in a curved background and their ultraviolet behaviour
closely mimics that of the Minkowski spacetime vacuum state. Consequently, the fluctuations
of the components of the stress-energy tensor on these states are bounded, a property which
is vital in the context of semiclassical Einstein’s equations. Hadamard states for Dirac fields
have already been discussed in [K695, [Ver96), [Hol99, Kra00l [SaVe01, DaHo06] and we will review
their properties in detail before employing them to achieve the first of our main results, namely,
the construction of the extended algebra of Wick polynomials in a spinor framework. To this
end, we will follow the path paved in the scalar scenario in [BFK95] BrEr00, HoWa01l [HoWa02]
where it has been displayed that such polynomials lie at the basis of a sound S-matrix formalism
for interacting field theories on a globally hyperbolic curved background.

Notwithstanding, Wick polynomials are already valuable in free field theories and we will, as
already anticipated, indeed use them to achieve our second main result, i.e., the definition of a
well-behaved quantum stress-energy tensor operator T}, for Dirac fields. To achieve this goal, we
shall follow a procedure similar to that discussed in [Mo03] (see also the related work [HoWa05])
for a free scalar field, i.e., we shall introduce an improved point-splitting procedure to define
T),» evaluated on a Hadamard state. This leads to a new overall stress-energy tensor which does
not alter classical dynamics and is ultimately conserved at the quantum level. Furthermore, as



a by-product of our analysis, we shall also be able to explicitly compute the expectation value of
its trace which will agree, up to terms proportional to [1R, with previously found results while
being derived in a rigorous framework.

2 Dirac fields: a classical overview

Since, as we have outlined in the introduction, the aim of this paper is to provide an as much
as possible self-contained approach to some topics related to the quantum description of Dirac
fields in curved backgrounds, we will start with a description of Dirac spinors in a classical
framework. Although such topic has been already discussed both from a geometrical and from
an analytical point of view by many authors, we reckon the we should try to recall the main
features of the classical approach in order both to facilitate the understanding of the quantum
aspects and to fix some subtleties which ubiquitously arise in these scenarios.

2.1 On the spin structure and related geometric entities

Bearing in mind this overall philosophy, we shall mainly devote this subsection to the introduc-
tion of spin structures and of the Dirac bundles, in order to characterise (co)spinors as suitable
sections. We shall not dwell too much on the geometrical contents and for the potential readers
who might find our approach too shallow we present our apologises and point them to [LaMi89]
for a careful discussion of most of the forthcoming concepts and applications.

As a starting point, let us fix that, in this paper, a spacetime is meant to be a four-
dimensional, Hausdorff, smooth manifold endowed with a Lorentzian metric, whose signature is
chosen as (—,+, 4+, +). Furthermore, since it is common wisdom to associate Dirac fields to the
notion of spin, we need a few definitions as a first step:

Definition 2.1.  We call spin group Spin(p,q) with p,q € N the double cover of SO(p,q),
i.e., it exists the following short exact sequence:

{e} — Zy — Spin(p,q) — SO(p,q) — {e},

where {e} stands for the trivial group, whereas Zo = {1} is the cyclic group of order 2. There-
fore, any element of Spin(p,q) induces an element of SO(p,q). Such a surjective covering will be
indicated as I1 : Spin(p,q) — SO(p,q).

Remark. As a consequence of the above definition, it exists an isomorphism between Spin(p, q)
and Spin(q,p) for any possible value of both p and ¢. Furthermore, it is also possible to talk
about the dimension of such classical Lie group which, per direct inspection, is

dim (Spin(p, q)) = %(p +q)(p+q-1).

Furthermore, for all p, ¢ > 0, the spin group has two connected components, where we denote the
component connected to the identity as Sping(q,p). The latter insight entails that the scenario



with p = 3 and ¢ = 1 is of great interest since, in this case, Sping(1,3) is isomorphic to SL(2, C).

The above definition represented only the first step toward the definition of a Dirac field
since, in modern classical field theory, the geometric interpretation of a kinematically allowed
configuration is that of a section of a suitable associated bundle. Within this respect, one should
notice that, (un)fortunately, in the often analysed case of a scalar field, such nice perspective
does not really enter the fray, whereas, in this case, such a luxury is not at our disposal, being a
spinor intrinsically a vector-valued field. Hence, we shall now show how the notion of spin group
can be intertwined with that of a classical field. As a first step we need further definitions.

Definition 2.2. Given a vector bundle E = E[V,m, M| over a Lorentzian manifold M with
typical fibre V' and projection map © : E — M, we call frame F(z) over the point x the
assignment of an ordered basis to the fibre 7='(z) =V, i.e., a map p : K¥ — 77 (z), being k
the dimension of V. and K € {R,C}. Furthermore, we require that the right action of the group
GL(k,K) on the fibre is both free and transitive.

Remark. Such a definition is at the heart of the widely exploited concept of tetrads in general
relativity and, on a practical ground, it is remarkable since it guarantees us that whenever a
vector bundle is associated to the underlying spacetime one is free to choose a basis of such a
space and that the rules of changing the basis are left untouched; this is encoded in the action of
GL(k,K), i.e., each element of this group transforms a basis into another one. Furthermore, the
request of transitivity guarantees us that it is always possible to transform any chosen basis into
any other one, whereas demanding a free action entails that only the identity element leaves a
chosen basis unchanged. The most notable and ubiquitously used application of such a definition
is the tangent bundle where V = R*, being k = dimM. In the following, we shall have this case
in mind and hence we shall identify E as E = TM = TM[R¥, «, M].

Therefore, if we call F, M ~ GL(k,R) the set of all possible frames over a point x € M, we
can gather all this information into a unique object:

Definition 2.3. A frame bundle FM associated to TM is FM = ||, FoM. This is a fibre
bundle on its own, namely FM = FM[GL(k,R),n', M], with GL(k,R) as typical fibre and the
projection map © : FM — M. Whenever the base space M is an orientable and time orientable
spacetime, hence also endowed with o (local) non-degenerate metric of signature (p,q), we can
choose a space and time orientation, and hence reduce GL(k,R) to SOy(p,q) with p+q = k.
We shall always consider such case in the following.

Remark. A fibre bundle as above is an example of a principle fibre bundle, having the same
group as both the typical fibre and the structure group. By requiring the right action of the
group to leave the base point invariant, e.g., 7' o R L(kR) = 7! for F'M, one can straightforwardly
extend it to the full principle fibre bundle. This extension is independent of local trivialisations,



since these are related by the left action of the group and the left and right action of a group
on itself commute. One can even switch perspectives and define the fibres and base points of a
principle fibre bundle via the orbits of the right action.

We are now in the position to eventually introduce the main geometric structure of this
paper which lies at the heart of the construction and of the analysis of a Dirac (co)spinor:

Definition 2.4.  Given a manifold M with a non degenerate metric of signature (p,q), a spin
structure is the pair (SM,p) where SM = SM|[Spiny(p,q), 7, M] is a principle fibre bundle
over M with the identity component of the spin group as typical fibre. Moreover, p is a bundle
homomorphism from SM to FM subject to the following conditions:

1. p is base point preserving, such that
, ~
mop=T,

2. p must be equivariant, i.e., calling Ry and Ry the natural right actions of Sping(p,q) on
SM and of SOy(p,q) on FM respectively, we require that

,OORK:RAOPa VA € SOy(p,q),

where A = TI(A), being T1 as in definition 21l

Remark. A natural, apparently naive, but ultimately rather complicated question a potential
reader might ask, is why one should cope with such complicated geometric structures to deal with
a somehow natural concept such as that of spin. To answer this question, let us keep in mind
the notion of a Dirac field in the flat scenario and try to generalise it to a curved background
with Occam’s razor as a principle. That said, in four-dimensional Minkowski spacetime, one
can employ a standard construction, dating from the late thirties and due to Wigner, according
to which a spin % field is nothing but a suitable function satisfying the Dirac equation and
transforming under a unitary and parity invariant representation of the universal cover of the
Poincaré group induced from the j = 1 representation of SU(2) (see chapter 21 of [BaRa86]

for more details). Tt is remarkable to notice that, once restricted to SL(2,C), i.e., neglecting

the translations, this representation coincides with the D) @ p(0:3) representation of the
aforementioned group. Although there is no translational invariance in a curved background,
the previous definitions grants us that, by means of the spin structure, it is nonetheless possible to
define, barring certain technical requirements, a natural notion of an SL(2,C)-group associated
to a spacetime. Furthermore, the very absence of translational invariance implies that such a
definition of spin in curved backgrounds seems really the best one can do.

Hence, though not sufficient to determine full dynamics of a Dirac spinor, our philosophy
will be to seek to characterise the kinematically allowed configurations of such a field by means



of the mentioned D(3:0) S3) p(0:3) representation, while remembering at the same time that,
classically, fields should be understood as sections of a suitable vector bundle. To combine these
two concepts, we proceed in the following way:

Definition 2.5. We call Dirac bundle of a four dimensional Lorentzian spacetime M with

respect to the representation T = p(39) &) p(0:3) of SL(2,C) on C* the associated bundle
DM = SM xp C*. This is the set of equivalence classes [(p,z)], where p € SM, z € C* and
equivalence is defined out of the relation

(p1,21) ~ (p2,22),

if and only if it exists an element A of SL(2,C) such that La(p1) = p2 and T(A 1)z = 2,
where Ly denotes the left action of A on SM. The global structure of DM s that of a fibre
bundle over M with typical fibre C*, and the projection map wp is traded from the one of SM,
namely, V' [(p, z)] € DM, it holds
mo[(p, 2")] = 7 (p).

Furthermore, if we endow C* with the standard non degenerate internal product, we can construct
the dual Dirac bundle D*M as the C**-bundle associated to SM requiring that (py1,2;) and
(La(p1),2iT(A)) are equivalent, where * denotes the adjoint with respect to the inner product

on C* and elements of C** are understood as row vectors. Consequently, the dual pairing of C*
and C* extends in a well-defined way to a fibrewise dual pairing of DM and D*M .

Definition 2.6.  Let E be an arbitrary vector bundle over M. With E(E) = C*(M, E), we
denote the space of smooth sections of F, endowed with the topology induced by the family
of seminorms

Iflle.c = sup{lf B @),z € C}Y,  fee(m),

where C is an arbitrary compact set and -¥) denotes a derivative of k-th order. Furthermore,
we introduce the space of smooth sections with compact support D(E) = C°(M, E),
equipped with the topology induced by the family of seminorms

1f Ik = sup{lfP (@)}, feDE).

In the case E = DM, E = D*M, we can define a global pairing of E(D*M) and D(DM)
or D(D*M) and E(DM) by integrating the local pairing induced by the inner product on C*,
e.g.,
(1.9) = [ (o)1) ()
M
forall fe&D*M), ge DDM).

We are finally in the position to define the key object of our analysis:



Definition 2.7. A Dirac spinor is a smooth global section of the Dirac bundle, i.e., ¢ €
E(DM) or, equivalently, if we consider a local open neighbourhood U of any point © € M, 1 is
(diffeomorphic to) a 4-vector field vy, i.e., Y|y ~ Yy : U — C*, since the bundle trivialises as
DM|y ~ U xC*. Analogously, we call Dirac cospinor a smooth global section of the dual Dirac
bundle, namely, ¢' € E(D*M) or, in a local neighbourhood U, 4/ ~ 4}, : U — C* ~ C.

We would like to stress that our definition of Dirac spinor fields does not include any equation
of motion.

It is quite safe to admit that the introduced geometric objects are rather technically compli-
cated, and one might wonder if the class of spacetimes admitting them is not rather restricted.
Particularly, from a physical point of view, one is interested in introducing spinors and fields
in general as global objects. There is thus a compelling need to understand which is really the
set of backgrounds we can work with, and the answer is surprising and reassuring at the same
time. In fact, the following theorem can be proved (see [BoHi58] for the original proof and also
[Ge68] for a more physically oriented analysis and proof):

Theorem 2.1. A manifold M admits a spin structure if and only if it has a vanishing second
Stiefel-Whitney class or, in other words, if the second de Rha cohomology class H*(M,73)
is trivial. Furthermore, if the manifold is four-dimensional, space and time-oriented, as well as
globally hyperbolic, this requirement is automatically satisfied.

This theorem is rather useful because globally hyperbolic spacetimes are the most interesting
and natural class of manifolds whenever one deals with both classical and quantum field theory
on curved backgrounds. As a matter of fact, each of these spacetimes can be foliated as ¥ x R,
being ¥ a smooth Cauchy surface [BeSa05]. Therefore, on these backgrounds one can state
precisely the notion of initial value problem for the equations of motion, hence determining
the classical dynamically allowed configurations of a field as the solution of a certain partial
differential equation.

The property of globally hyperbolic, four-dimensional spacetimes M which guarantees the
existence of a spin structure is their parallelisability, 7.e., the fact that there always exists a
global orthogonal frame on them. Consequently, F'M is a trivial bundle in that case, and this
property extends to SM, TM, T*M, DM, and D*M as well. We are thus in the position to
introduce global frames of the latter four bundles.

1. Employing a global section F of SM, we can define a spin frame {F4}a=1..4, i.e., a
set of four global sections of DM as E4(z) = [(E(z),z4)], being z4 the standard basis
of C*. Hence, any Dirac spinor ¢ can be decomposed as (z) = ¢ (z)E(z) where now

A € C®(M).

2. A dual spin frame {EB}B:L...A, i.e., a set of four global sections of D*M can then be

In the most general framework one should consider the second Cech cohomology class, but this coincides with
the de Rham one for differentiable manifolds. In this paper we deal solely with spacetimes which, according to
the definition stated at the beginning of the section, are differentiable.



automatically constructed out of the frame requiring F4(E?P) = (55. From now on capital
letter indices will refer to quantities expressed with respect to these bases.

. Exploiting definition 2.4] we can project E to F M, hence obtaining a global section e =

po E of FM. Employing this, we can define a Lorentz frame {e;},—0,.. 3, i.€., a set
of four global sections of TM, by realising that TM can be understood as the R*-bundle
associated to F'M. Such a fibrewise basis is orthonormal in the sense that g(eq, ) = 7ap,
where 74, is the Minkowski metric, and it is often referred to as the non-holonomic basis
of the base manifold; this is in sharp contrast with the standard (holonomic) coordinate
basis d,, which is related to the basis e, by means of a basis change or, in other words, by
the matrix e denoting the coefficients of e, in their expansion with respect to Op.-

. Analogous to the spin case, one can now straightforwardly define a dual Lorentz frame

{€"}p=0,... 3 constructed out of e, as eq(e’) = 6. From now on, lower-case Roman let-
ters will always refer to quantities expressed with respect to the non-holonomic basis,
whereas lower-case Greek ones will indicate those with respect to the holonomic basis.
Non-holonomic indices will be “raised” and “lowered” with 14y, while the same operations
will be performed on the holonomic ones using g, = g(0y,0,).

The most notable consequence of this new data is that we can decompose evert spinor-tensor

fEETM® - @TMRT'M® - 9T*"M®DM®---® DM®D*M ®---® D*M)

'

i j k !

as follows

f:fb‘];l,::;igll,::ékeal®.“®eai®ebl®'“®ebj®EA1®“.®EA]€®EB1 ®"'®EBI_

One could in principle certainly choose a different global section E' of SM and thus obtain
different spin and Lorentz frames which are related to the previous ones by local spin and
Lorentz transformations. On the level of coefficients, such a change of frames results in

f

!

! !
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where A € T (SL(2,C)), whereas A = II(A) € SO,(3,1).

2.2 On the dynamics of a classical Dirac field

Since we have by now assured ourselves of the existence and well-posedness of the global structure
of Dirac fields in a globally hyperbolic time and space-oriented manifold, we shall next proceed
to introduce the natural evolution operator out of which one can describe the classical dynamical
content of our theory. It is imperative to stress a sharp difference between the previous and
this subsection; in the preceding discussion, all the introduced geometric structures have been



somehow natural and intrinsic, i.e., no special choice has been performed with the due exception
of the D(3:0) @D(O’%) representation to define the Dirac bundle. Conversely, in the forthcoming
discussion, some arbitrariness appears and we shall try to emphasise it to a potential reader,
since we have to keep track of it to ensure that it does not play a distinguished role in the
forthcoming discussion of the quantum fields. To wit, we are referring to the definition of the
so-called y-matrices. To obtain them, we can proceed as follows:

Definition 2.8.  Given RP'? endowed with the metric n of signature (p,q), we call Clifford al-
gebra Cl(p, q) of RP-? the real associative algebra generated by the identity I and an orthonormal
basis of RP'? whose elements v, with a =1,...,p + q are subject to the relations

{Yar 1} = Yav + WYa = 20ap1. (1)

Particularly, if p = 3 and ¢ = 1 or vice-versa, one can refer to CI(3,1) or CI(1,3) as Dirac-
Clifford algebra.

Remark. It is a direct consequence of this definition that a basis for the Clifford algebra is given
by the identity and by all products vg,....7,, with a1 < ... < a, and n < p + ¢, which entails
that dim(Cl(p,q)) = 2P79. As a further important datum, we wish to underline that Cl(p, q) is
a Zo-graded algebra; this arises if we introduce the automorphism « : Cl(p,q) — Cl(p,q) such
that a(y,) = —7, for all possible a. Since o coincides with the identity map, we can always
decompose:

Cl(p,q) = C1°(p,q) ® Cl*(p, q),

where Cli(p,q) = {a € Cl(p,q) | a(a) = (=)'a}. By direct inspection, one can realise that
C1°(p, q) is the subalgebra, of the full Clifford algebra generated by products of even numbers of

Ya-

The Dirac-Clifford algebra enjoys many relevant properties of great interest for our dis-
cussion. As a first step, using the periodicity theorem 4.1 in [LaMi89|], one can prove per
direct inspection  that CI(1,3)c = CI(1,3) ® C is isomorphic to the algebra M (4,C) of
4 x 4 complex matrices. This entails that it is natural to seek for a complex representation
T : Ci(1,3)c — Hom(C*,C*) and, according to theorem 5.7, still in [LaMi89], there is only
one of these which is, up to equivalence, irreducible. Its matrix form can be described by the

matrices 7“5, which we choose in such a way that (’ya‘)AB = —4ls whereas (’)/Z)AB = /4 for

a=1,2,3, i.e.,
(5L 0 (0 o,

where ¢ = 1,...,3 and o0, is a Pauli matrix, whereas I,, denotes the n X n-identity matrix.
Furthermore, these matrices, independently of the choice in (), are the so-called y-matrices and
they can always be interpreted as the coefficients of a global tensor v € E(T*"M ® DM ® D*M)

10



admitting the following expansion:
y=72e'® Es® EB. (3)

This identity yields that, if we use the tetrad coefficients ej; to define y, = y,€j,, we recover the
standard anticommutation relations for the y-matrices in curved backgrounds

{1} = 2914 . (4)

This is the net effect of changing from a non-holonomic to a holonomic basis.

Let us stress at this point that we have chosen a specific representation of the Dirac-Clifford
algebra out of the possible equivalent ones and indeed this is the arising arbitrariness announced
at the beginning of this subsection. The choice of different representations of the Dirac-Clifford
algebra can be shown to lead to quantum field theories which are equivalent up to gauge trans-
formations [Sa08] and, moreover, if one restricts to the quantum observables, the choice of a
representation becomes even irrelevant, as we will discuss in the next section.

A second interesting property of the Clifford algebra arises from the realisation that it con-
tains the spin group (see §2 of [LaMi89]) and, most notably, Spin(3,1) C Cly(3,1). It is thus
natural to wonder how the above introduced representation yielding the «y-matrices restricts to
the spin group, and the answer to this query comes from proposition 5.15, still in [LaMi89],
which guarantees us that each irreducible complex representation of the Clifford algebra on a
vector space can be restricted to the sum of two inequivalent irreducible representations of the
spin group. In the case under analysis, one can by direct inspection realise that the restriction
of T to Spin(3,1) yields the sum of two non-equivalent irreducible representations, which, on
SL(2,C) ~ Sping(3,1), coincide with the previously mentioned D) @ p(0:3) representation.
According to our analysis, for any vector field v € E(T'M), we can meaningfully introduce

V= 0",

which is an element of &(DM ® D* M), such that its coefficients v*4; form a 4 x 4 complex matrix.
Notice that, from now on, we will not specify explicitly when we shall deal with abstract Dirac-
Clifford algebra elements 7y, or with their matrix representations. It is understood that, whenever
we either contract y-matrices with a vector field or these matrices are applied to a vector in C*,
we refer to the latter case.

The last ingredient we need to specify the dynamics of Dirac fields is a parallel transport
on the Dirac bundle. The grand strategy is rather simple, namely, we introduce the standard
metric connection, interpret it on the frame bundle and eventually lift it to both the spin and
the Dirac bundle:

Definition 2.9. Let w: FM — T*FM ® 0(3,1) denote the connection 1-form of the unique
Levi-Civita connection on FM. It induces the standard Levi-Civita connection on TM (and
vice versa) which can be expressed as the covariant derivative

V:E&(TM) = ETMQT*M), Ve, =T".c,®e€",
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where the connection coefficients %, of the Levi-Civita connection are specified by
The = ¢’ ((woe)[esoeale),

with e, : T*M — T*FM denoting the push-forward of e in the sense of cotangent vectors.

The pull-back Q = (dII)~! o p* o w of w to SM, with dII : sl(2,C) — 0(3,1) denoting the
derivative of the covering Il at the identity, defines the spin connection, which by the definition
of DM as a bundle associated to SM can be specified as a covariant derivative

V:&DM)— &DMQT*M), VE,=o0ble"® Ep,
where the spin connection coefficients are given by
0By = BP (@0 B) [B. o c)] Fa) (5)
and E, : T*M — T*SM denotes the push-forward of E in the sense of cotangent vectors.

We will soon prove that the coefficients UfA can be expressed in a simple way by means of both
the coefficients T2, and the y-matrices. Before we tackle such task, let us stress that the covariant
derivatives V from definition 9] can be straightforwardly extended to any spinor-tensor

fEETM® @TMRT'M®--@T*M@DM ® - DM®D*M ®---® D*M)

i j k !

by defining

ViETMQ@ - TMRT*M® - T*"M®DM®--- DM®D*M ®---® D*M) —
b J * b
S ETMITM@-- @TMRT* M@ -+ T*"MRDM®---® DM®D*M ®---® D*M).

i J k l

(6)

At a level of components and, for notational simplicity, only in the case i = j =1 =k = 1, ()
reads

Vf=eV, (ffﬁ‘ea ®e® Es® EB) =
(0cfi — T i + Tealilf — ot fi + 05 fidl]| e @ ea @ e’ © Ba @ BP.
As promised, we shall now give an explicit expression for the o-coefficients. Although a
demonstration of the next lemma is already present in [Lic64] (see also chapter 13 of [Wa84]),
we shall prove it again due to ubiquitous sign subtleties arising from the choice of the metric

signature and possibly leading to confusions when comparing with the literature, [Dim82] in
particular.
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Lemma 2.1.  The connection coefficients of the spin connection can be expressed as

1
UfA = ngﬂé%Vd% . (7)

Proof. The strategy of the proof is the following: we first derive an explicit expression for the
double covering homomorphism IT : Sping(3,1) ~ SL(2,C) — SOy(3,1). From this we obtain
an expression for its derivative at the identity dII : sl(2,C) — 0(3,1), which, inserted in (B,
yields the wished-for result.

Let us thus recall that Sping(3,1) can be understood as a subgroup of CI(3,1). This entails
that, for any A € SL(2,C), we can define the adjoint action

Ady (Va) = K'Yaxil-

Being SL(2,C) a finite cover of SOy(3,1), applying an induction-reduction mechanism, we know

it exists a representation T' of SOg(3,1) such that, setting A = II(A), we have

T(A)'Ya = AdK('Ya)- (8)

Since we are dealing with Lie groups, we recall that all finite-dimensional representations are
matrix representations, i.e., we can simply write T'(A)y, = A®,vy,. Hence, K'yaK*I = Ay,
where we notice the invariance of the left hand side under the Zs-action sending A :l:lNX, as
one could have expected, being SL(2,C) the double cover of SOq(3,1).

Let us now take an arbitrary differentiable path ¢ — INX(t) in SL(2,C) whose projection on
S0y(3,1) is differentiable; the following identity holds

A 1AR) = A0 .

If we derive with respect to ¢, an identity between algebra representations arises, namely,

o b
T+ R == - ()

@%K(t)‘l - K(t)vaﬁ(t)‘lwx(t)‘1 = (dA(t)>b o> ©)

dt dt dt

where we have exploited that the derivation of A(t)A(t)~! = I yields
dAN@t)~, .~ dA()!
——=A(t)" = —A(¢t .
o M) t)—

Applying the adjoint action of INX(t)_1 to (@), we end up with

< dA(t) dA(t)

Al) =Y~ %K(t)flw = Adg )

(4]
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We use (B) as well as the basic property of a representation, namely, Ad(A~!) = Ad(A)~ !, to
derive

If we call A = A() P20 and p = A(#) L0 it holds Myy — vaA = 7. Let us multiply this
identity on the right with 7, and, if we bear in mind that v*y, = 7™,y = n%n. = 4, we end

up with

AN = YAy = vy (10)

Taking into account the antisymmetry of u € 0(3,1) and the identity A0ybACly =0, a possible

solution of (I0) is
1

A= JHa) "Y'

The uniqueness of this solution is not guaranteed, since, being the left hand side of (0] linear
in A\, we have merely found a particular solution, and we are free to add any further solution
of the homogeneous counterpart, i.e., any X such that 4\ — v, Ay® = 0. This implies that the
commutator [y,,A] = 0, and Schur’s lemma (see th. 4.26 in [Ha03]) entails that A = kI, being
I the identity.

The value of k£ can be unambiguously determined if we notice that, according to our previous
construction, A is an element in the algebra of SL(2, C), which consists of matrices with vanishing
trace. Therefore, if we impose Tr(\) = Tr(kI) = 0, the only possibility is k = 0.

Since the differentiable path chosen in the proof has been arbitrary, we have now proven the
explicit form of dII in terms of its inverse, namely,

1
(@)~ :0(3,1) = sl(2,C), (dI)™" (uap) = Zuaw“vb Vitay € 0(3,1).

Remembering the definition of , recalling e = po F, and inserting the expression of (dIT)~!
into (Bl), we finally obtain

1

B b B .dC

Oad = ZFad'YbC'Y A

O

Lemma 2.2.  The Dirac-Clifford v-matrices are covariantly constant, i.e., Vy = 0.

Proof. This is a straightforward calculation, once a subtlety has been clarified: the matrices
~ are constructed as the matrix form of an irreducible representation of the Clifford algebra
and then subsequently glued to each point of the underlying base manifold M via ([B)). This
prescription entails that 9,7, = 0 for any a,b =0, ..., 3.
We can now compute
Vy =V, (1i5e” ® Ex @ EP),
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which, exploiting definition 2.9, becomes
Vy = el [Oyi5e’ ® Ba® EP + 705 (The* @ B4 ® EP+
—0i4e" ® BEc ® BP +ofle® @ B4 ® EY)].

If we apply formula (@]) to sections of T*M ® DM ® D* M and consider that the matrix elements
are constant functions, the lemma is proved out of direct substitution. O

We are ready, at last, to describe the dynamically allowed configurations of a spinor field in a
curved background. Particularly, if we now understand multiplication with the y-matrices to
act from the left on spinors and from the right on cospinors, we shall call dynamically allowed
a Dirac (co)spinor ¢() which satisfies the Dirac equatio

Dip = (=¥ +m)y =0, (11)
D'y = (¥ +m)y’ =0, (12)

where ¢ € E(DM), whereas ' € &(D*M).

2.3 The Cauchy problem and the fundamental solutions

In this subsection we shall discuss the classical initial value problem for Dirac fields. As it is
well-known from flat spacetimes, a solution of the Dirac equation is usually related to a solution
of a hyperbolic differential equation.

Lemma 2.3. Every solution 1 of (II)) is also a solution of the spinorial Klein-Gordon
equation

Py = <vava — % — m2> Y =0, (13)

where R is the scalar curvature of (M,g). A similar statement holds for each cospinor 9/,

solution of (I2).
Proof. Let us take a solution of (II]) and let us multiply it with D'. We end up with

D'Dyp = (Y +m)(-V +m)p = (VY +m?)yp =0,

which means that we need to prove that ¥? = V,V® — % To this avail, let us write

V2 = 4V 1PV, = 429V, V, = 499V, V, 4+ 4148V, v,

2 In Minkowski spacetime, the Dirac equation is most notable for having a purely imaginary coefficient i in
front of the Dirac operator. Here, such a number does not appear and the underlying reason is rooted in the
employed convention for both the metric signature and the sign of the defining anticommutation relations for the
Clifford algebra. To wit, ¢ is absorbed in the definition of the y-matrices, as stated in (2)).
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where in the second equality we have exploited lemma 2.2 whereas in the third one we split the
expression in its symmetric and antisymmetric part. Since (@) = %{fy“,fyb} is equal to the
metric times the identity, it holds

1
V2 = VaV" +9191V,V, = VoV 4999V, Vy = VaV" + 599 Cap, (14)

with Cy, denoting the curvature tensor of the spin connection.
Let us briefly state some properties of Cg, which are examined in more detail in appendix
[A1} firstly, from lemma 2.1 one can infer that

1
Cab = Z Rabcd707d .

Employing the Clifford relations and the symmetry properties of the Riemann tensor Rgpcq, it
is straightforward to show that

1 R
Yy Cop = ="y Copp = _§7b7aRab =-5

Inserting this into (I4]), we finally obtain

R
V2=V -~
4
and thus R
D'D=DD =-P=-V,V*+ 7+ m?2.
O

Remarks. One should notice that the above lemma can be seen as a particular application of
Weizenbéck’s formula [LaMi89).

It is furthermore worth noting that V,V® in the above expression is not diagonal in the
spinor indices, and thus not [J times the identity. Its principal symbol ¢g*”k,k,, however, is
indeed diagonal and even of metric type.

Let us also stress that, in sharp contrast to the scalar Klein-Gordon equation in four space-
time dimensions, there is no freedom to select a coupling for Dirac fields to the scalar curvature
since this is universally fixed to i. Furthermore, for Dirac fields, such factor corresponds to the
conformal coupling whereas, for the scalar case, the latter is %.

The introduction of the Dirac operator and the discussion of its main properties allow us to
state and to prove the main theorem related to the classical dynamical behaviour of spinors on
curved backgrounds:

Theorem 2.2.  Let (M, g) be a four-dimensional globally hyperbolic oriented and time oriented
spacetime, such that M is diffeomorphic to ¥ x R, with ¥ a three-dimensional Riemannian
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manifold. Let us furthermore call v : ¥ < M a smooth embedding of ¥ into M, such that (%)
is a Cauchy surface of M. If we refer to D3 as the bundle constructed out of the pull-back of
DM wvia v, then the following Cauchy problem admits a unique solution

Dy =0
{ Do (15)

where 1 € E(DM) and 1y € D(DY).

Proof.  For notational simplicity we will omit the embedding ¢ and just write |y instead of
¥ for any ¢ € E(DM).

According to lemma 23] each solution of the Dirac equation also solves a spinorial coun-
terpart of the Klein-Gordon equation, namely, Py = (D — % — m2) 1) = 0 where P has metric
principal symbol and is thus a normally hyperbolic differential operator.

Hence, we can invoke the results on hyperbolic partial differential equations (see [BGP07]
and theorem 3.2.11 in particular), which guarantee us that any Cauchy problem for compactly
supported initial data for the the considered partial differential equation admits a unique smooth
solution supported in the causal past and future of the initial datum. The only problem left is to
give a prescription on how to switch from a Cauchy problem for the Dirac equation, hence with
only one given initial datum, to one for a second order hyperbolic partial differential equation,
where two data on the Cauchy surface have to be prescribed. To solve this dilemma, let us not
deal with (I5)), but with the following system:

{ O-£-m?)u=0
uly =0, —%%|s =1l

where u € £(DM) and n denotes the vector field normal to ¥ such that n%n,n, = —1. As stated
before, such a system admits a unique global smooth solution @ and, hence, let us introduce
the smooth section 1) = D'a. It is immediate to see that v is a solution of the Dirac equation
12{/; = 0. Since 1; is smooth, it can be directly evaluated on the Cauchy surface 3 where
|y, = D'aly, = (¥ + m)aly. Inserting the initial condition for @, the second term vanishes,
whereas the first reads

ot

YV il = 7" nl. = —y ey e = —nnanpto = tbo.
>

Hence, the section {ﬁv constitutes a unique solution of the Cauchy problem in the thesis of the
theorem. O

Since our aim is to deal with quantum field theory over curved backgrounds in the long run,
it is more useful to prove not only the existence and uniqueness of the solution of a Cauchy
problem, but also the existence of the so-called fundamental solution, which is the last relevant
theorem of the classical theory that we shall need:
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Theorem 2.3.  The Dirac operator admits unique advanced (~) and retarded (*) fundamental
solutions, i.e., continuous linear maps ST : D(DM) — &(DM) fulfilling DS* = I = S*D.
These maps are determined by their support properties

supp(SEf) C J=(supp f), Vf € D(DM),

with J*(U) denoting the causal future/past of the set U. Similarly, there exist unique advanced
and retarded fundamental solutions ST : D(D*M) — E(D*M) of D'.

Proof. The strategy will be similar to the one employed in the proof of the existence of the
solution of the Cauchy problem. Thus, let us start from P = —D'D = —DD’; since this is a
normally hyperbolic differential operator, we already know (see [BGP07), [Ho94]) that it exists a
unique advanced - say ET - and a unique retarded - say E~ - fundamental solution for P on
D(DM). Hence, for any f € D(DM), we know that

PE*=T=FE*P and supp(ETf) C J*(supp f).

We can now define S* = —D'E* which, per direct inspection, satisfies DS* = I and is further-
more continuous and has the correct support properties, since the application of D’ preserves
these features. In the same way, we can construct advanced and retarded right fundamental
solutions for the dual Dirac operator as ST = —DEF, with E being the fundamental solutions
of P on D(D*M).

The next step consists of proving that the right fundamental solution is “also a left one” and
we only show this for S*, since the proof for SF is analogous. Consider any h € D(D*M) and
any f € D(DM). Since Df € D(DM), we end up with

(h,STDf) = (D'STh,S*Df) = (STh,DS*Df) =
= (STh,Df) = (D'SFh, f) = (h, [),

where all expressions are well-defined since suppS™ f N suppS7Fh is compact due to global hy-
perbolicity of M.

It remains to be shown that the fundamental solutions are unique and again we only prove
this for S* here. To this end, let us take any h € D(M, D*M) and any f € D(M, DM). Suppose

two different sets of fundamental solutions, say S* and S¥, exist. Starting from
0=(Ih—1Ih,f) = ((5* — §*)Dh, f),
uniqueness of the right fundamental solutions follows from the non-degeneracy of (, ), while

uniqueness in the sense of left fundamental solutions can be deduced in a similar way. O

In analogy with the scalar case, we shall from now on call S = ST — S~ the causal propa-
gator for the Dirac operator D and S, = S} — S, the causal propagator for D'.

To conclude the section, we wish to underline that, up to this point, we have basically
considered the Dirac spinor and cospinor fields as completely distinct objects. As it is usually
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done in Minkowski space, however, we can define a well-behaved Dirac conjugation map mapping
spinors into cospinors and vice versa. Furthermore, this conjugation turns out to map any
dynamically allowed configurations into another one.

Definition 2.10.  We call Dirac conjugation matrix the unique matriz € SL(4,C) such
that

B* =B, vi=—-BrB" Va=0,...,3,

and furthermore iBn%y, > 0, being n timelike and future-directed.
Starting from this object, we can define Dirac conjugation maps:

t.e(DM) — e(D*M), fi=fp,
T.e(D*M) — &(DM), Rl =pg7'h",

where * denotes the adjoint with respect to the Hermitian inner product on C*.

Remarks. f is only unique, once a representation of the Dirac-Clifford algebra has been chosen.
A direct inspection of the above identities shows that, with the definition of y-matrices as in
@), B = —ivo and thus g8 = 71,

It furthermore follows in general that applying the Dirac conjugation twice gives the identity
and that, as already anticipated, - preserves the Dirac equations in the sense that D' fT = (D f),
Dhf = (D'h)t for any f € E&(DM), h € E(D*M).

3 Dirac fields: quantum point of view

The aim of this section is twofold: on the one hand, we shall discuss the already available
formulation of a quantum theory for Dirac fields on a curved background while, on the other
hand, we shall show for the first time that the notion of Wick polynomials can be coherently
introduced also in this scenario, giving rise to an enlarged algebra of observables. Particularly,
we shall point out how all these topics fit into the framework of the locally covariant formulation
of quantum field theory.

To achieve our goal, we shall refer to an earlier work due to Araki [Ar70], though we shall
also profit from [Dim82] (K695l [Hol99, [Kra00l [SaVe01l Ver01l [FeVe02], [Sa08].

3.1 The local algebras of fields and observables

Although the first paper formulating a quantum theory of Dirac fields on curved spacetimes in
the algebraic framework is [Dim82], its underlying approach is slightly different from the one we
shall employ, albeit it is ultimately fully equivalent. Particularly, in the aforementioned paper,
the quantisation scheme calls for the choice of both a Cauchy surface 3 and initial data on 3 as
building blocks of the quantum theory. We shall not dwell into the details of this method since
we reckon that, in the spirit of local covariance, it is not best suited for our later purposes.
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Although the standard paradigm in particle physics calls for the treatment of particles and
antiparticles as distinct, albeit related objects, in this paper we shall, as it has been done by
most of the authors mentioned in the introduction of this section, bear in mind the lessons from
[Ar70] and, thus, we shall consider spinors and cospinors as part of a single entity, since it will
turn out to be more convenient for our later purposes.

On a practical ground, the building blocks of our discussion will be three. The first one
arises out of the direct sum DM & D*M, namely, D = D(M) = D(DM & D*M), the space
of compactly supported smooth sections of DM & D*M with the usual topology, i.e., the one
induced by the family of seminorms

Ifllk = sup |fE (@), feD,
while the second is the map I : D — D such that
T(foh) =htofl VieoheD, (16)

being -t the Dirac conjugation introduced in definition 210l Furthermore, in order to eventually
impose the anticommutation relations, we need a third datum, namely, a sesquilinear form on
D2 =D ((DMGBD*M)m): let f = f1i® fo and h = h; @ hy be two elements of D. Then
(-,+) : D? — C is defined as:

(f,h) = —i(ff, Shy) + i(S.ha, f1), (17)

which is positive semidefinite, as one can infer with minor modifications either from lemma,
4.2.4 in [Sa08§|] or, with little more effort, from proposition 1.1 in [Dim82]; let us also note
that (T'f,Th) = (h, f). Furthermore, one can straightforwardly show that, using all the afore
introduced tools, we can define the following algebra:

Definition 3.1. We call algebra of fields the unital x—algebra F(M, g) generated by the
identity and the abstract elements B(f) with f € D satisfying the following requirements:

i) the map f — B(f) is linear,
ii) B(Df1 ® D'fs) =0 for all f1 ® fa € D,
ii1) B(T'f) = B(f)*, for all f € D and with T defined as in (1G],
w) {B(f)*,B(h)} = B(f)*B(h) + B(h)B(f)* = (f,h) , where the right hand side is given by
@@.
In order to convince a potential reader that we are employing a sensible definition, let us
first discuss some general properties.

Remark. It is possible to recover the standard notion of spinor and cospinor quantum field
starting from the B-generators as follows:
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e the spinor arises as  1¢(h) = B(0 @ h).
e the cospinor is given by  4f(f) = B(f ®0),

Particularly, to be convinced of the self-consistency of such statement, one should notice that
the spinor and cospinor fields are related due to property iii) and they respectively satisfy the
Dirac and the dual Dirac equation of motion in the distributional sense thanks to ii). Finally,
it is iv) which corresponds to the usual anticommutation relations between 1 and 9, namely,

{$(h), 9T ()} = =i(h, SF)y {d(h), d(ha)} = {47 (F1), 97 (f2)} = 0.

In order to better grasp the structure of F(M, g), one should realise that it is nothing but
a topological %-algebra; this can be fully understood starting from an a prior: different, albeit
ultimately equivalent, perspective, namely, the so called Borchers-Uhlmann algebra for Dirac
fields, which is explicitly discussed in [Sa08]. It is constructed as the following quotient

F(M,g) = (EB @"> /I (18)
n=0

where D" =D ((DM @® DM *)gn) denotes the compactly supported sections of the n-fold outer
tensor product of DM @ D*M and DY = C, whereas J is the closed *-ideal which arises out of
the relations (ii), (iii), and (iv) in definition Bl Tt is hence generated by elements of the form
Dfi®D'fy with f1 ® fo € D, by those of the form (f; @ f2)* —T'(f1 ® f2), and finally by those of
the form f@h+h® f —(f,h) with f,h € D. F(M, g) can be equipped with a natural topology
induced from that on @;~ , D™. This is tantamount to the request that a sequence f; = ®, fjn
is said to converge to f if and only if

1. every fjn — fn in D™ with respect to the topology of uniform convergence of all derivatives
on a fixed compact set,

2. it exists an N € N such that f;, vanishes for every n > N and for every j.

In the forthcoming discussions it will sometimes also be possible to use a weaker version of
F(M, g) which is defined in the same way as F(M, g), but without including the Dirac equations
in the construction of the ideal J; we shall refer to this case as the off-shell formalism.

As a subsequent natural step, one can realise that the sesquilinear form (-, -) can be promoted
to a genuine non-degenerate scalar product on the coset space D/ ker S @ S, which, in turn, can
be completed to a Hilbert space H with respect to the said scalar product. As a by-product, this
entails the possibility to extend F(M, g) to a C*—algebra §(M, g) representing the elements as
bounded operators on K itself. Following [Ar70], we shall refer to this scenario as the assignment
of the C*—algebra of Dirac fields §(M, g) to the pair (H,I).

We have explained how to construct the local algebra in the case of Dirac fields; however,
from a physical point of view, observables are required to commute at spacelike separations and

21



the full F(M,g) does not fulfil such requirement. As a first step towards a definition of the
algebra of local observables of a Dirac field, we can restrict our attention to

Feven(M, g) = even subalgebra of F(M,g),

which, e.g., can be defined as the subalgebra invariant under B(f) — —B(f) [Dim82, [Hol99!
Sa08]. The reason to choose such a subalgebra stems from the fact that any two elements of
Feven(M, g) indeed commute for spacelike separations:

Proposition 3.1.  Let A;, i € {1,2} be two elements of Fepen(M,qg) which arise as finite
linear combinations of smeared B(f) generators

A = ZB( 2,1) : "B(ff;gkn)

such that
Usupp fa; and | Jsupp 17,
n,j n,j
are spacelike separated. Then
[A1,A2] =0.

Proof. The proof descends out of two key observations: on the one hand we know the following
relation between the commutator and anticommutator of four operators A, B,C and D:

[AB,CD] = A{B,C}D — AC{B,D} — C{A,D}B + {A,C}DB . (19)

On the other hand we know that, given two field algebra elements B(f) and B(g) with the
support of f and g spacelike separated, condition iv) in definition B.I] together with the support
properties of the causal propagator, proved in theorem 23] entail that

B(f)*B(h) + B(h)B(f)" = 0.

To conclude the proof, one needs to notice that, since only products of an even number of
fields appear, the properties of the commutator allow to reduce [A;, As] to a linear combina-
tion of commutators, all of the form (I9) with AB and CD of the form B( %,jl)B( %,jQ) and

B(f% . )B(f2 . ) respectively. This operation together with the requirement on the supports of

n, n,je
the te];t sectigrzls defining A; and As concludes the proof. O

With the restriction to Feypen (M, g) we have been able to assure local commutativity. This
criterion is, however, not sufficient to extract the observable elements out of F(M,g) and
Feven(M, g) is thus still too large to be a candidate for the algebra of local observables. To obtain
such a good candidate, we have to take only so-called “gauge invariant” elements of Feyen (M, g)
into account, cf., e.g., [Ar70, Dim82l [Hol99, [Sa08], and we denote the resulting subalgebra with

22



A(M,g). Particularly, if we consider any A = >° B(fn,1) - B(fn2k,) in Fepen(M, g), it is ly-
ing in A(M,g) if and only if it is invariant under the action of any S € Sping(3,1); such an
action is defined by a straightforward extension of the known one on DM and on D*M, first
to DM @ D*M and subsequently to arbitrary outer tensor products of the latter, such that we
have a well-defined action on the test sections f, 1 ® --- ® fy ok, determining A. This definition
of an observable is compatible with the product of algebra elements, and thus defines a subal-
gebra of Fepen (M, g) in a well-defined way. In the rest of the paper we shall always work with
Feven(M, g), though all our results can be applied to A(M,g) (and to the topological closures
of the mentioned algebras) as well.

It is remarkable that, in order to get to the definition of the various algebras introduced
above, once a particular representation of the Clifford algebra has been chosen, the only other
necessary datum is the geometry of the underlying manifold. This can be understood realising
that, beside the Dirac bundles DM and D*M themselves, the overall analysis relies on the
causal propagators S and S, which are unique in a globally hyperbolic spacetime with spin
structure. This apparently innocuous observation will play an important role in identifying the
quantisation of the Dirac field as a particular locally covariant quantum field theory, as we will
explain in the next subsection.

3.2 Locality and general covariance

In order to establish a connection between the previous discussion and the modern interpreta-
tion of quantum field theory over curved backgrounds, it is mandatory to address the question
whether the axioms of a locally covariant theory, as proposed by Brunetti, Fredenhagen, and
Verch in [BEFV03] are fulfilled for the above displayed algebraic quantisation of Dirac fields, and
an affirmative answer has indeed been given in [Sa08]. We shall not dwell on a recapitulation of
the precise definition of all the needed tools, e.g., the involved categorical notions here: instead,
we choose to provide a short overview and we refer an interested reader to [BFV03], BrEr09. [Sa08]
for further details. That said, per direct inspection of the previous analysis, we can infer that
the following axioms of a locally covariant theory are satisfied:

1. Tt is possible to associate to every globally hyperbolic spacetime (M, g) with spin structure
(SM, p) the corresponding x—algebra F(M,g) of fields in a unique way, once a global
representation of the Clifford algebra has been chosen.

2. To every map x which is an isometric and orientation preserving embedding of (M1, g1) into
(M2, g2) and at the same time maps (SMy, p1) to (SMa, p2) in a coherent and equivariant
way (cf. Definition 2.3.1 of [Sa08]), one can associate an injective, unit-preserving -
homomorphism «, between the corresponding fields algebras F(Mi, g1) and F(Ma, go).

3. Let us choose two maps as above, namely, x1 : (M1, g1, SMy,p1) = (Ms, g2, SMs, p2) and
X2 : (Ma, g2, SMy, p2) — (M3, g3, SMs, p3); then the following composition law is satisfied
for the corresponding algebra morphisms

Qxioxs = Oy © Oy -
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Let us note that the above axioms are also fulfilled in the off-shell formalism, i.e., for Dirac
spinor fields not subject to the Dirac equations. We can, furthermore, add another two axioms
in special cases: on the one hand, if we restrict the construction to Feyen (M, g), the axiom of
Einstein causality is fulfilled on account of proposition B.1}

4. Consider two globally hyperbolic spacetimes with spin structure (My, g1, SMi,p;) and
(My, g2, SMy, p2) together with x; and x2 respectively, two embeddings into a third
spacetime with spin structure (Ms, g3, SMs, p3) of the aforementioned kind. Under the
assumption that x1(M7) and x2(Ms) are spacelike separated in Ms, it holds that for every
A € Feven(Mlagl) and Ay € ?even(MQ,gg), [aX1 (Al), Qyy (AQ)] = 0.

At the same time, in the on-shell formalism - though not slavishly for the extended algebra
we shall later introduce - the Time slice aziom (cf., proposition 4.2.22 of [Sa08]) holds:

5. Let x : M7y — M5 be a map between two globally hyperbolic spacetimes with spin structure
with the properties already discussed. If a Cauchy surface of Ms is contained in x (M),
then «, is an isomorphism.

These axioms state properties of the full field algebras, but one can refine these statements
and identify fields with a special behaviour under the maps x and «y, the so-called locally
covariant fields [BFV03, [HoWa01]. In fact, as discussed by Sanders in [Sa08], the field B(-),
and, thus, also the single fields (), 9 (-), are locally covariant fields. This entails that B(-) can
be understood as family of continuous maps, indexed by spacetimes with spin structure ,

BM : @(M) — ?(M,g),

such that, given two spacetimes with spin structure M; and M> and a map x : M; — Ms with
the properties discussed in axiom 1., one gets the same result by either building a quantum
field out of a test section far, € D(M;) and then mapping this field to F(My, g2) via «, or by
mapping the test section far, to far, = x«(far,) € D(Mz) via the push-forward x, of x and then
building By, (far,) out of it. On the level of maps, we thus have:

ay © Bary = B, 0 X

Similarly, one can identify certain observable composite fields as locally covariant quantum
fields via specific choices of test section spaces, and, furthermore, the Wick polynomials we shall
discuss later fit into the same framework as well.

3.3 Spinors and Hadamard states

The algebra A(M,g) C Fepen(M,g), is, at this point of our discussion, the best candidate to
play the role of an algebra of observables for a free Dirac field theory. Unfortunately, this status

3We omit the other data determining a spacetime with spin structure in the remainder of this paragraph in
favour of notational simplicity.

24



is far from being satisfactory because objects such as all the Dirac bispinors, the current in
particular, and the (components of the) stress-energy tensor are not contained in A(M,g) or
Feven(M, g). Since we want to consider these as genuine observables, the best option is to solve
this problem along the same lines employed in the scalar case, namely, we shall suitably enlarge
Feven(M, g) to include all the wanted elements. Although reasonable and, to a certain extent
natural, such idea comes with a price to pay, i.e., not all the well-behaved algebraic states for
Feven(M, g) are admissible for the extended algebra; in fact, we have to select only those with
the suitable ultraviolet behaviour already possessed by the Minkowskian vacuum state.

This is indeed not a novel problem and it has been tackled by several authors; the underlying
philosophy is to characterise the admissible states imposing suitable physical conditions, such
as finiteness of quantum fluctuations, and thus the possibility to employ these states to define a
sensible expected stress-energy tensor [Wa77]. The translation of these ideas in a mathematical
language leads to the notion of Hadamard states, which we shall now discuss in our frame-
work. The available literature is immense and we point a reader interested in further details to
[KaWa91l Rad96al, Rad96bl [KG95] for scalar fields or to [Hol99, [Kra00, [SaVe01] for a discussion
related to spinors.

As a first step and as main topic of this section, we shall proceed introducing the notion of
Hadamard states for the whole F(M,g) and only later we shall restrict them to Feypen(M,g).
The already anticipated enlargement of the algebra to include all interesting observables of the
free field will then be the core of a subsequent discussion.

That said, henceforth, we shall consider a state w to be a continuous, positive, and normed
linear functional on F(M, g), such that

w(A*A) >0 VAeF(M,g), w(l)=1;

since this algebra is generated, according to definition B} by the abstract elements B(f) with
f € D, every said state is uniquely determined by the set of its n-point functions, namely,

wn(fla---afn) iw(B(fl)---B(fn))

where, due to the required properties a state, each w, is a distribution on D™. The bridge
between the algebraic formulation of quantum field theory employed in this work and its usual
Hilbert space description is in the non-trivial direction provided by the Gelfand-Naimark-Segal
(GNS) construction (c.f., e.g., [Ha92]) which yields a representation of an algebraic state and
a field algebra in terms of a Hilbert space state and operator valued distributions on the same
Hilbert space respectively. Among all possible algebraic states, a distinguished role is played
by the so-called quasi-free ones, whose n-point functions can be determined fully out of wy. We
shall focus on these, and, following [Ar70], we recall:

Definition 3.2. A state w : F(M,g) — C is called quasi-free if, given any set of f; € D
with 1 € {1,--- ,n}, w(B(f1) - B(fn)) vanishes for odd n while for even n it holds

n/2
w(B(f) - B(fa)) = Y (D™ [T we (frui1ys frnien) -
TnE€S) i=1
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Here, S| denotes the set of ordered permutations of n elements, namely, the following two
conditions are satisfied for m, € S :

(20 — 1) < mp(2i),  1<i<mn/2

(2 — 1) < m, (24 4+ 1). 1<i<n/2.

Even though it is in principle possible to state the Hadamard property for general states
[StrVeWo02] [Sa08], we will restrict our discussion to quasi-free ones and can thus state ev-
erything on the level of two-point functions. In this context and on the level of single Dirac
fields, two distinguished distributions appear:

() =0 (P () and W (fh) = w (¥ (Hun), (20)

where f € D(DM) whereas h € D(D*M) and where both ¢f(f) and (h) are particular
elements of F(M, g) as explained in subsection B.Il Hence, it turns out that both w™ and w™
can be understood as distributions on D(DM X D*M).

We can now introduce the notion of Hadamard state and, as in the scalar case, it is remarkable
and useful that this concept can be illuminated in two equivalent ways. The first one has recourse
to the notion of wavefront sets [DuHo72l, [Ho90], a concept which enables a refined formulation
of a singularity structure of a distribution, and, to this avail, one should take into account
that an a priori obstacle lies in the nature of the vector-valued distributions appearing in the
context of Dirac fields. Particularly, since wavefront sets are more familiar in the context of
scalar distributions, we need to specify how they can be defined for distributions with values in
higher-dimensional spaces. To achieve this, it appears to be natural to define the wavefront set
of a vector valued distribution as the union of the wavefront sets of the coefficients with respect
to a (possibly local) basis-expansion and indeed this turns out to be an invariant concept due to

the properties of scalar wavefront sets [Den82l [Kra00l [SaVeO1]. Specifically, we can define the

wavefront sets of w™ (x,y) = wiABI (z,y) EA(7) ® Ep (y) as

4 4
BI

wre) = |J U *4” @),

A=1B'=1

By defining wavefront sets in this way, we certainly loose information on the most singular “di-
rections” of a vector-valued distribution. This information can be encoded in so-called polarised
wavefront sets, as introduced in [Den82] and applied in [Kra00, [Hol99]. Though of high math-
ematical interest, such concept is of no use in our approach and we feel safe not to dwell into
it since we would end up providing only shallow ideas. That said, let us state the first possible
access to Hadamard states [Rad96al [Kra00, [Hol99l [SaVe(1]:
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Definition 3.3. A quasi-free state w satisfies the microlocal spectral condition (uSC)
and is thus called o Hadamard state if only if

WF(ws) = { (2,9, ko, —hy) € T"MZ\0, | (@, k) ~ (5, ky), k>0

Here, (z,k;) ~ (y,ky) implies that it exists a null geodesic v connecting x to y such that ky is
coparallel and cotangent to v at x and ky s the parallel transport of ky from x to y along 7.
Finally, k; >0 means that the covector k, is future-directed.

Remarks. If a quasi-free state w fulfils the 4SC, then w* possess the following wavefront sets:
WF(wi) = {(q’"y’kﬂ“ _ky) € T*Mg2 \ 0, | (xakév) ~ (yaky)a ky ; 0} >

where k, < 0 states that k, is past-directed.
An even stronger relation between the two distributions w
mutation relation since it entails that

wh(f,h) +w (f,h) = —i(h,Sf) .

By contrast, the distributions w(1 (k1)1 (he)) and w(T(f1)9T(f2)), which, together with w™
determine wq, have smooth integral kernels. For w(v(hy)1(hs2)), this can be proved employing
a symmetry argument already used in a similar way in [Rad96al: due to the anticommutation
relations, we have

+ arises if we employ the anticom-

w (P(h1)(h2)) = —w (Y(h2)p(h1)) .

Hence, if (z,y, ks, ky) is an element of the wavefront set of the distribution on the right hand
side of the previous equation, then (y, z, ky, k,) must lie in the wavefront set of the other one. At
the same time, on account of the uSC, we know that WF (w(1 ()1 (y))) is not invariant under
the exchange of coordinates. This entails that W F (w(v(z)9(y))) = 0, hence, w(vp(h1)p(hsa)),
and analogously w(9f(f1)9T(f2)), possesses a smooth integral kernel.

Although highly elegant from a mathematical point of view and thus very helpful in ab-
stract proofs, the microlocal definition of a Hadamard state is neither the first one introduced
chronologically nor the easiest one to cope with on the level of explicit calculations. In fact, as
already promised at the beginning of this section, there is a different, more explicit definition
of a Hadamard state via the so-called Hadamard form. For scalar fields, this has been rigor-
ously introduced in [KaWa91], while for Dirac fields a similar concept has been proposed by
[K695, [Ver96]. To introduce it, we need the notion of a convex normal neighbourhood, which is
an open subset O of M such that any two points z,y € O can be connected by a unique geodesic.
On any convex normal neighbourhood, we can introduce the smooth halved squared geodesic
distance o(z,y), and, finally, formulate the following definition:

Definition 3.4. A quasi-free state w is said to be of the Hadamard form if and only if in

any convex normal neighbourhood the distributions kernels of w* can be written as
1

W (@,y) = 5 + Dl (H=(w,) + W(z,y))
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where the index -, stresses that the dual Dirac operator D;/ acts on the y-variable, and the
singular Hadamard distribution kernels HE can be specified as

U(z,y)
Uie(xay)

Ote(z,y)

+ V(z,y)In (21)
Here, U, V, as well as W are smooth bispinors and V and W can be expanded in powers of o,

viZ.,

V(z,y) =Y Valzyo(,y)"s Wz,y) =D Walz,y)o(z,y)",
n=0 n=0

where X is a reference length, and ov.(z,y) = o(z,y) £ 2ie (T(z) — T(y)) + € with ¢ > 0. In
the above formula, T is a time function, such that VT is timelike and future pointing on the full
spacetime (M, g).

We furthermore require H* to be bisolutions of the spinorial Klein-Gordon equations up to
smooth terms, i.e.,

P,H*(z,y) € &DM ® D*M), P,H*(z,y) € E(DM ® D*M) (22)
and demand that their difference is specified by the fundamental solution of P, viz.,

H+(fag) _H_(fag) :Z<97Ef>7

where f € D(DM) and g € D(D*M).

Remarks. The existence of a time function 7" is guaranteed on any globally hyperbolic manifold
[BeSa05l, BeSa06].

Furthermore, a completely satisfactory definition of the Hadamard form requires some more
work to rule out spacelike singularities, to circumvent convergence problems of the series V'
and W, which are only asymptotic, and, finally, to assure that the definition does not depend
neither on a special choice of the temporal function 7' nor on the employed convex normal
neighbourhood. For further details and discussions of these aspects and the existence of states
of the Hadamard form we refer an interested reader to [FNW81], KaWa91l, K695, [Ver96, [SaVe01].

To determine the so-called Hadamard coefficients U, V, and W, one has to exploit the equa-
tions (22). At this point, we would like to stress a slight conceptual difference between Dirac
spinors and scalar fields: in the case of scalar fields, the two-point function fulfils the Klein-
Gordon equation in both entries, and this property is thus inherited by its singular Hadamard
kernel up to smooth terms. Contrariwise, in case of Dirac spinors, ([22)) does not follow straight-
forwardly from the fact that the two-point functions w* fulfil the Dirac equations. In more
specific terms, if we recall the definition of w® ([20), we know that they fulfil

D;wi(x,y) = Dywi(x,y) =0.
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Consequently,

DDy, (H*(z,y) + W (z,y)) =0,
D?JD],J (Hi(x,y) + W(H?,y)) = _Py (Hi(gj,y) + W($7y)) = 07

and, thus, both P H + and D;D’yH * are smooth. The smoothness of P, H* does however, not
follow automatically from these considerations, but has to be required or proven in a way similar
to the one displayed in lemma 5.4. of [SaVe0I].

We shall explicitly discuss the computation of U, V and W in appendix [A3l To this avail,
the following proposition will prove to be very helpful:

Proposition 3.2.  Let H*(x,y) be the Hadamard distribution kernels of a state introduced in
definition[3.4). Then (Dy — D})H*(z,y) = (Dy — D})H*(z,y) are smooth.

Proof. The overall strategy calls for combining a deformation argument as devised in the ap-
pendix C of [FNW8I] together with the so-called theorem of propagation of singularities (cf.
theorem 6.1.1 in [DuHo72]).

That said, let us proceed in logical sequential steps and consider any Cauchy surface % —
(M, g,v) of the spacetime we are interested in and let us choose an open neighbourhood of 3,
say Ox, such that it is a causal normal neighbourhood of ¥, i.e., ¥ is a Cauchy surface for Oy
and for each p,q € Oy, such that p € J*(q), it exists a convex normal neighbourhood containing
J~(p)NJ*(q). The existence of such sets in a globally hyperbolic spacetime and for any Cauchy
surface ¥ was first proved in [KaWa91].

The above mentioned deformation argument grants us that it is possible to construct an
isometric, orientation and time-orientation-preserving embedding, say x, of Oy, in causal normal
neighbourhood Oy of a Cauchy surface X' of a second globally hyperbolic spacetime M’. Fur-
thermore, one can engineer M’ in such a way that, in the past of x(Ox), it exists another Cauchy
surface X" with a neighbourhood Oy;» which contains the image of a suitable neighbourhood of
a Cauchy surface X" in Minkowski spacetime under an isometric, orientation preserving, em-
bedding y, and it is straightforward to extend y and X in such a way that they respect the spin
structures.

Since H* on Oy x Oy are constructed only out of the local geometric data via 22), it
is possible to build a second pair H* which coincides with the push-forward under y of H*
in x(Ox) x x(Ox). Furthermore, due to the propagation of the Hadamard form as proved in
[FNWSI, SaVe0l], H* are of the Hadamard form in Oy x Oy as well, and their pull-back to
Osm x Qs thus coincide with the Hadamard distribution kernels in Minkowski spacetime.

Let us now consider

u* = (D, — D})H*

and proceed to prove that these distributions have empty wavefront set. According to the
above discussions, we can push-forward u® to M’ and subsequently pull them back to the
neighbourhood Oxy in Minkowski space in a well-defined way. In the Minkowskian region, the
pushed-forward and then pulled-back versions of u* are identically vanishing and thus have
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empty wavefront set, since the flat spacetime Hadamard kernel only depends on z — y due to
translational invariance. To access the wavefront set of u® in the original spacetime region
under interest, let us note that these distributions satisfy PIPyui = 0 up to smooth terms and
the same holds for their mentioned push-forwards and pull-backs, where the operator P, P, is
properly supported, of real principal type, and homogeneous of degree 2 since it is the tensor
product of two second order hyperbolic differential operators. From this it follows due to the
contravariant transformation properties of wavefront sets under diffeomorphisms and the prop-
agation of singularities theorem (see [SaVeOI] or chapter 8 of [Ho90]) that the wavefront set of

uF on Oy X Oy can only contain elements of the form

($7y7 ka’ao) or ($7y70, ky) (23)

Following a line of argument employed in the proof of theorem 5.8 in [SaVe(0l], we can infer that
WF(ut) = 0 in the following way: since u™ are constructed as Dirac derivatives of H* and
properly supported partial differential operators like D and D’ do not increase the wavefront set,
we know that WF(u™) ¢ WF(H®). If we furthermore recall that H* specify the singular parts
of w* and that these kernels have the ”antisymmetric” wavefront set displayed in definition 3.3
it follows that W F(u™) can not even contain elements of the form (23) end are thus empty. O

As a result of the procedures described in appendix [A.3] U and V turn out to depend only
on the local geometry and the mass m, while the state dependence of w™ is encoded in W. This
“universality” of the singularity structure of states of the Hadamard form allows for a locally
covariant definition of normal ordering, as we will see in the next subsection. To this avail, it
will be useful to compose the Hadamard distributions to a single object living on D ® D, wviz.,

O(f1 ® fo, 1 ® ho) = (DyH") (b1, f2) — (DyH™) (f1, h2) (24)
= H*(h1,Df2) — H™(f1, Dhy),

where f1 @ fa, h1 ® ho € D. Before we start working with Hadamard states, let us state the
already anticipated and fruitful equivalence of the Hadamard form and the puSC, which is a
result due to [Kra00, [Hol99, [SaVe01]:

Theorem 3.1. Let us consider a state w on F(M,g) with two-point function ws. This
satisfies the microlocal spectral condition, if and only if the distribution on D ® D defined by

f®h = wy(f,h) —H(f,h), (25)

+

has a smooth integral kernel, and, thus, w™ are of Hadamard form.

To conclude this section, we would like to mention a most notable property of Hadamard
states: despite the well-known problem to fix a unique vacuum state for a quantum field theory
on a generic spacetime, Hadamard states turn out to be “almost” unique since they are all locally
quasi-equivalent [Ver94l Ver96, [DaHo06]. This implies that locally the density matrix states on
the Hilbert spaces obtained from Hadamard states via the GNS construction are all equal, and,
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in more physical terms, that any two Hadamard states have a finite energy density with respect
to one another. The latter statement is of course related to the expected stress-energy tensor,
the main topic of the last section of this work.

3.4 On the notion of Wick polynomials

In the development of quantum field theory, a well-known obstruction arises whenever we con-
sider the product of two fields, which, being distributions, cannot be safely multiplied unless
special conditions are met. Since, as already anticipated, our ultimate goal is to enlarge the
algebras under consideration to include observables such as the stress-energy tensor for Dirac
fields, we are lead to tackle this problem. Like in the case of scalar fields, this results in the
introduction of Wick polynomials and in the following we shall try to adapt an approach similar
to the one discussed in the work of Brunetti, Duetsch, and Fredenhagen [BDF09] which in turn
is related to further earlier works [BrFr00, [HoWa01l, HoWa02].

Unsurprisingly, in our scenario, there are differences to the above mentioned works due to
the vectorial nature of our fields and their anticommutativity. This necessitates a treatment of
Wick polynomials of Dirac fields on curved spacetimes on its own and we will thus develop them
in this subsection since they have not been treated in the literature in the past.

As already anticipated, upon enlargement of the field algebra to include Wick polynomials we
have to restrict our state space to Hadamard states, which seems not to be a real loss since these
are already distinguished and presumably the only “physical” ones for the algebras discussed in
subsection B.11

As a starting point to define the extended algebra of fields, it will be more convenient not
to start directly from F(M, g) or its subalgebras, though we shall consider the set

C(M,g) = P D%,
n=0

where the subscript A indicates that, for n > 0, one takes into account only antisymmetric
elements, while DY = D = C. Notice that it is required that a generic element F' € C(M, g) is
unambiguously determined by a finite sequence {F("} of antisymmetric elements lying in D".
This entails that, in a basis expansion with respect to £°(z) = Ea(z) @ EB(x), each element
F) = ng)___@ngel ® --- ® 9 has antisymmetric coefficients, viz.,
ng),---,@k,e)kﬂ,...,@n (T1ye ooy Thy a1y Tp)
=— ng),~~~,@k+1,®k,---,®n (T1yee oy g1, Thy ooy Tp) V1 <k < m. (26)
The set C(M, g) can be promoted to an algebra with respect to the following product which
we shall henceforth indicate as -4; let F = {F(™} and G = {G(™} be two generic elements in
C(M,g), then

(F-aG)m = Y A(F(p) 2 G(tz)) : (27)
ptHa=n

31



where A is the operator of total antisymmetrisation such that F' -4 G is indeed an element of
C(M,g). Specifically, A leaves D° invariant, while, for an arbitrary F(" = f; ® --- ® f, with
fi € D and n > 0, the antisymmetrisation reads

A(fl - ®fn) = % Z (_1)‘7rn|f7rn(1) Q- ®f7rn(n)a

Tn€Sn

where the sum is taken over all permutationsH m, € S, and A can be extended to D™ by linearity
and continuity. The algebra (C(M,g),-4) can be interpreted as the algebra of functionals, in the
sense of distributions on smooth sections, on the classical field configurations of Dirac spinors.

The standard quantisation scheme is eventually realised changing the product -4 into a
suitable x-product compatible with the anticommutation relations. The overall procedure, once
a functional A : D? — C is selected, can be realized out of the map I'a : D® — D"2 whose
action on a generic element F(™ of D" (notice, here taken without antisymmetrisation), is
required to be trivial if n < 2, whereas, for n > 2,

CaF® Z Z /du T; /dﬂ( i) (—1)7- i+1 A\ ©:0; (xi@j)ng).n@n(xl,...,xn) X

i=1 j= z+1M
X €9 (2)) ® - ®EOi(z;) ® -+ ® Sef(g;j) ®- ®E (). (28)

Here, A(z;,z;) = A®9i(z;,1;) o, (z;) ® €o,(z;), with Eg(z) = EA(z) ® Ep(x), denotes

the integral kernel of A, whereas the symbol £9:(z;) indicates that £®i(z;) must be omitted.
On account of the regularity of C(M,g), we can safely define a x-product as

FxsG=Aag(F®Q), (29)

where ag is defined as a formal exponentiaﬁ

1
ag = exp <Z§F§> ;

here, I'z arises from (28) if one inserts for A the functional
25/ 0@ @0 — S(fi® forq ®g2) = —(f2. Sg1) + (S f], gb),
with S and S, being the causal propagators constructed in theorem 231

Remarks. If we introduce a x-operation on (C(M, g),*g) via the straightforward tensorialisation
of T ([I6]), the result is naturally isomorphic to the off-shell version of F(M, g) with its standard

*Of course not all permutations employed are necessary, since in () the constituents will already be antisym-
metric. The antisymmetrisation as defined here, however, is still valid and it constitutes the easiest way to write
it without unnecessarily getting lost in combinatorics.

%Since C(M, g) contains only finite sequences of test sections, the exponential series will always terminate after
finitely many terms.
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product. Particularly, B(f) € F(M,g) corresponds to f € C(M,g) and the anticommutation
relations on F(M, g) correspond to

fxsg+g*s f=iS(f,9) = (Uf,9),

as follows by straightforward computation. The equations of motion can then be implemented
by dividing out a suitable ideal. Since the Dirac equations will not be necessary in the following
discussion, we will denote both the on-shell and off-shell algebras with (C(M, g),*s) and we shall
consider them as being isomorphic respectively to F(M, g) and to its off-shell version.

Up to now we focused on rather regular objects constructed out of D, but, alas, this does
not suffice to reach our ultimate %oals; as a matter of fact, we need to consider the spaces of

compactly supported distributiond! as well:

go=c, en=¢ ((DM @ D*M)@") ez gh,

The underlying leitmotiv is rooted in our interest in objects like [, du(z) f(z) 9" (z)y(z):
which will in the subsequent discussion correspond to distributions like f(x)d(z,y), these are
nothing but elements of €'" which are supported on the thin diagonal

Diag, = {(z1,...,2p) € M" |21 = --- =z, }.

Since this amounts to potentially ill-defined operations such as taking the product of distribu-
tions at the same spacetime point, we cannot blindly extend (C(M,g),*s) (and equivalently
F(M,g)) to incorporate these new objects into an enlarged x—algebra, but we have to require
some suitable regularity conditions.

Definition 3.5.  We call extended set of functionals C.,(M, g) the set containing finite
linear combinations of compactly supported distributions F(™ ¢ &' whose wave front set satisfies
the following requirement

WFFM) N (M™% (VEUV)) =0

where V. and V _ are the closure of the future and the past light cone respectively in the fibre
of the cotangent bundle at each point of M.

In order to adopt this definition, we have to make sure that C..; (M, g) can be made into an
algebra and it is manifest that the product *g is not up to the task since it would lead us to
pointwise product of causal propagators, which is ill-defined due to their wavefront set. In order
to avoid the aforementioned problem, we can replace xg by %z, which is nothing but (29]) with

SNotice that elements of &' test compactly supported sections on D*M @& DM and not on DM @ D*M. This
“dual” notation, as employed, e.g., in [Dim82], is used to stress that D < &’.
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S replaced by —2i$) as defined in (24]). This new x-product is equivalent to the old one when
this is well-defined, being

Fxg G=ag (a;ll(F) *g a;{l(G)) , (30)
ag =exply,

where 'y is defined as in (28) upon inserting 9 — i/ 25 for A. If we take into account the
singular structure of §) and the criterion to multiply distributions as devised by Hérmander (cf.,
[DuHo72] or chapter 8 in [Ho90]), it turns out that the problem with xg disappears since the
pointwise product of the integral kernel of §) with itself is a well defined distribution.

Remark. The outcome of the preceding discussion is the introduction of (Ceyt(M,g),*fr).
Recalling that (C(M,g),*s) has been isomorphic to F(M,g), we can reverse this viewpoint
and just define the extended *-algebra Fepi (M, g) = (Cext(M,g), *r). Similarly, restricting the
possible test sections and distributions taken into account, we can define the extended algebras
Fevenext(M, g) and Ay (M, g). That said, following slavishly the analysis of the scalar case in
[HoWa01l, HoWa02], the product (B0) rephrases Wick formula in the Dirac scenario.

As already announced in the prior discussion, due to the form of the wavefront set of
Hadamard states, we can extend them and only them to genuine states for Fop(M,g). Par-
ticularly, this entails the standard paradigm according to which the product of two fields, say
T () (y), should be regularised as

@) = P @) + 5y DYH ()

such that, for a Hadamard state w, w(:¢f(z)y(y):) = (872) " W (z,y). At a level of expectation
values, this can be equivalently seen as leaving ()9 (y) unchanged while w™ (z,y) becomes
w™(z,y) + Dy H ™ (x,y). This somehow heuristic comment prompts the following:

Definition 3.6.  Consider a quasi-free Hadamard state w, whose n-point function is indicated
as wy. One can define the regularised n-point function :w,: as

Wpt= wy, =0, if n is odd
n/2
wnt (T1,. 0, Ty) = Z (—1)lm=l H (w2 = 9) (Zrp(2i-1) Trp2i))  if 0 is even,
€S, i=1

with $ as in [24) whereas the set of ordered permutations S}, C S, is the one introduced in

definition [3.2.

Remark. As a straightforward consequence of the last definition, we can form expectation
values of all elements in Fepy(M, g). Specifically, for any F = {F(™M} € Fopy (M, g),

w(F) = Z(F(n), Wy )

n
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is well defined due to the wavefront set properties of both the state and the allowed F'.

At this stage we need to point out that there are still some ambiguities in the employed
definition of H* and thus in the definition of both $ and :wy, :; indeed, the reference length
A necessary to construct H* according to definition [34 is in principle undetermined. This
fact does, however, not hamper our analysis since different choices of A and thus of §) lead to
isomorphic algebras.

Lemma 3.1.  Suppose we choose two different $), say H1 and $Ha, to construct the extended
algebra (Cext(M, g),xmr). Then the two resulting algebras (Cept(M, g),x,) and (Cezt(M, g), *m1,)
are isomorphic.

Proof. Due to the properties of the Hadamard distributions H*, one knows that the difference
d = $2 — $H1 has a smooth antisymmetric integral kernel. The two products xp, and *p, are
related by a deformation. They are thus equivalent and the operator intertwining them can be
realised as

ag = exp (I'q)

where I' is taken as in (28] with d being inserted in place of A. Particularly,
F*H2 G = (0%] (a;lF *Hy a;lG)

which is well-defined and holds true since ay, © a;ﬁ = ag and d has a smooth integral kernel. O

To finish the preparations for the final section of this work, we have to address a last issue. At
the moment we are falling one step short from our ultimate goal since, to study the regularisation
of the stress-energy tensor, one has to understand the treatment of differentiated fields. Hence, a
small addendum to the above analysis is needed and we shall follow the procedure employed for
scalar fields in [Mo03], though adapted to our language. Thus, let us take a differential operator
K on D(DM) of the form

K =ay+V, + ...VfR, R < o0,
where
ko A
Vo, = a’gl e BV Vi
and agl“'“’“AB for k € {0,---, R} are the coefficients of an element of

I(TM®-- @ TM®DM © D*M).

k

Notice that this class of differential operators encompasses both the Dirac operators and the
spinorial Klein-Gordon operator which will appear in the expression of the stress-energy tensor
and of its trace. In an analogous way we can choose differential operators K’ on D(D*M)
and combine them with a K to operators K @& K’ on D. If we now bear in mind definition
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B8l we realise that the extended set of fields is defined out of a condition on the wavefront set
of its elements. Thus, in order to engineer any operator of the form K & K’ into the above
discussion, we just need to recall a general result on wavefront sets (cf. Chapter 8 of [Ho90]
or [DuHo72]) according to which a partial differential operator which is properly supported,
such that it maps compactly supported distributions to compactly supported ones, does not
increase the wavefront set of a distribution it is applied on. Since the differential operators
we are considering are properly supported, we can readily conclude that operators of the form
K ® K' map Cey(M,g) to itself and that the previous discussion has already encompassed
the treatment of differentiated fields. One could now prove several further properties of Wick
polynomials of differentiated fields, but we will not indulge in this task since it will play no role
in the forthcoming discussion and, furthermore, the results are by all means a straightforward
extension, both as concepts and as technical proofs, of those discussed in [Mo03] for the scalar
case.

Before proceeding with the discussion of the stress-energy tensor, let us finally remark on how
the extended algebra Fe (M, g) fits into the framework discussed in subsection Without
going much into details we would like to point out that any coinciding point limits of smooth ob-
jects constructed out of the Hadamard distributions are locally covariant, since the construction
of H* depends only on the mass and the local curvature. As a result, all elements of Fo.¢(M, g)
which correspond to distributions with support on the thin diagonal are locally covariant fields.

4 The stress-energy tensor of Dirac fields

The aim of the section is to focus on the structure of the stress-energy tensor and to study its
quantum properties. Particularly, we shall display that it is possible to introduce an improved
tensor which is conserved also at a quantum level, although its trace acquires new and classically
unexpected terms of geometric origin which lie at the heart of the so-called trace anomaly.

4.1 The classical stress-energy tensor

We start our analysis by revising the form and the properties of the stress-energy tensor for
Dirac spinors in a classical framework. The Dirac equations (II)) can be realised as the extremal
of the unique action functional

s= [aoviin= [a Vi [;w (D) + L (D) w].
M M

A direct inspection of the above action shows us that, up to a total derivative term, it is identical
to the more common expression

5= / o /Iglt (—yPab + )

M
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We define the (Hilbert) stress-energy tensor by the usual procedure, i.e.,
2 68

Ty = ————.
Vgl o9

An explicit realisation of this last identity in the case of spinor fields is much more involved
due to the underlying orthogonal Lorentz frames whose explicit dependence on the metric must
be accounted for. Nonetheless, a lengthy and, to a certain extent, tedious calculation, fully
developed in [FoR604], yields

1
T;w = 5 (d’:r(u'Yll)d) - ¢T7(ﬂ¢,y)) - Lg;u/a (31)

where () denotes idempotent symmetrisation; one should also notice that, being the field free,
the Lagrangian vanishes on shell.
If we contract ([BI) with g"”, we end up with the classical trace

o 1
T = g T = 5 (V)" — W1t ) — 4L = —my'y,

where, in the second equality, we have evaluated the left hand side on shell by means of (ITI).
Hence, as expected, the trace vanishes on shell for conformally invariant, i.e., massless, Dirac
fields.

If we consider instead the covariant conservation, we need to calculate

VAT = {—wLDw + DY) 4 — Dyt + 4T D], + Pty -y 7VP¢} ~ Ly,

which vanishes on shell.

4.2 The quantum stress-energy tensor: the problem

In the next step, we would like to define the quantum version of the stress-energy tensor for
Dirac fields. Since we have a well-defined notion of Wick polynomials at hand, it would be easy
to just take the classical expression for the stress-energy tensor and replace the occurring field
monomials with their normal ordered quantum counterparts. This way, one would easily get an
element of Ac,i(M,g) which, GNS-represented with respect to a Hadamard state, would be a
well-defined operator valued smooth function. As we will shortly see, however, this procedure
would not yield a meaningful object. To understand this, let us take a slight detour and think
about the properties we would like a quantum stress-energy tensor to have.

From the point of view quantum field theory over curved background, the most important
entity to take into account as a guide in the search for a good quantum stress-energy tensor is
of course the semi-classical Einstein’s equation, viz.,

Gu(z) =81Guw(: Ty (x):), (32)

37



where G, denotes the Einstein tensor R, — %Rg,w, G is the gravitational constant and :7),, :
is a suitable regularised expression for the quantum stress-energy tensor; this equation thus
describes the back-reaction of the quantum field on the background. The legitimate question
which now arises, is under which circumstances this equation makes sense at all. Regarding the
form of the equation, we will restrict ourselves to point out that it can be derived by formally
expanding a quantum metric and a quantum field about any classical vacuum solution of the
Einstein’s equation and computing the equation of motion for the expected metric while keeping
only “tree-level” graviton contributions and “loop-level” quantum field contributions. Since one
discards “loop-level” graviton contributions, the equation derived in this manner can only make
sense as a model equation, or maybe for special states. We refer the interested reader to [F1Wa96]
and the references cited therein for an exhaustive treatment of this topic while we shall continue
dwelling upon the properties of the quantities appearing in (32)).

The first, and certainly obvious, observation is that we need a regularised expression of the
stress-energy tensor to obtain a finite expectation value, i.e., a finite right hand side. The next
observation is that the left hand side of (32]) is a classical and “sharp” quantity, while the right
hand side is a probabilistic object. Such a situation can of course only be a sensible one if
the fluctuations of the probabilistic quantity involved are small in comparison to the quantity
itself, finite in particular. These considerations are exactly those which led to consider and
select the states of Hadamard type as the physical and reasonable ones among the myriad of
states available in quantum field theory on curved spacetimes. As a matter of fact, if we define
normal ordering by means of the Hadamard singularity and we evaluate the normal-ordered
(and smeared) stress-energy tensor on Hadamard states, we automatically get a quantity with
finite fluctuations. This stems from the fact that powers of the Hadamard bidistribution are
again well-defined bidistributions, thanks to the special form of the Hadamard wavefront set.
Regarding quantitative statements about the fluctuations of the expected stress-energy tensor,
it seems that in general a priori statements are not possible and one has to look at solutions of
the semiclassical Einstein’s equations to a posteriori compute the fluctuations on these solutions
and inspect to what extent these are to be trusted.

It will prove helpful to realise that w(: T}, (z):) for a : T}, (z): given as some linear combi-
nation of the previously defined Wick monomials and evaluated on a Hadamard state w can be
equivalently expressed as

W Tl0)?) = 5T Dy, )W (5,9)] (33)
where D,,, is some (bi)differential operator specified by the choice of linear combination of Wick
monomials in the definition of : T, () :, Tr denotes the trace over spinor indices and we refer
the reader to appendix [A] for the explanation of the possibly unfamiliar notations that arise
in the context of bispinorial entities and will be extensively used in the following. As we have
already remarked, the obvious choice of expression for the stress-energy tensor in terms of Wick
monomials will not turn out to the best one. In terms of the above defined differential operator,

38



this means that the canonical version derived from the classical stress-energy tensor (3II),
~ 1 '
. ! . !

is not well suited for defining a sensible w(: T}, (z):).

Since we have assured ourselves that a right hand side of (82)) obtained by expressing w(:
Ty (z):) as (33) is in principle well defined, we could seek for additional physical and consistency
requirements that lead to a potential refinement of that procedure, i.e., to a sensible choice of
D,,,. Pursuing a comparable aim, Wald [Wa77, Wa78] has set up five axioms that a meaningful
expected stress-energy tensor should fulfil. These proved to be a valuable tool in a posteriori
legitimating known stress-energy tensor regularisation schemes in curved spacetimes and stating
to which extent they may differ from one another without raising doubts about their validity.
For the convenience of the reader, we list them in the following.

Definition 4.1.  We say that w(: Ty, () :) fulfils (the strong version of) Wald’s azioms if it
has the following five properties:
1. Given two quasifree states wy and wy, such that wy (z,y) — wy (z,y) is a smooth bispinor,
wi(: Ty () 1) — wa: Ty () :) is equal to Tr [DZ‘},” (wl_(x,y) — w;(x,y))].
2. w(:Tyu(x):) is locally covariant in the following sense: let
X+ (M1, 91, SMy, p1) = (Ma, g2, SM2, p1),

ay : F(Mi,g1) = F(Ma, g2)
as in subsection [32. If two states wy and wy on F(My,g1) and F(Ms, go) are related by
w1 = w2 0 ay, then
w2 (: Tpovs (2) 1) = X (W1 (: Ty (21) 1))
where . denotes the push-forward of x in the sense of covariant tensors.

3. Viw(: Ty (x):)=0.

4. On Minkowski spacetime and in the Minkowski vacuum state wirink, Warink(: Ty () 1) =
0.

5. w(:Ty(x):) does not contain derivatives of the metric of order higher than 2.

w(: Ty (x):) is said to fulfil the reduced version of Wald’s azioms, if only the first four statements
hold.

Wald has originally stated the axioms for scalar fields, while the version we give here is
modified to be suitable for Dirac fields. We reckon that a few comments both on the origin
and on the meaning of the single axioms might be helpful for a potential reader in order to
understand their relevance:
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1. In a given Fock-representation of the quantum field, the non-diagonal matrix elements of
the formal unrenormalised stress-energy tensor operator in the “mode basis” are already finite,
because their calculation only involves “finite mode sums”, while the calculation of the diagonal
matrix elements involves “infinite mode sums” [Wa77), WaT78]. To regularise the formal stress-
energy tensor operator, it is therefore only necessary to subtract an infinite part proportional
to the identity operator, thus leaving the non-diagonal matrix elements unchanged. Axiom 1
amounts to require such a “minimal” regularisation. This axiom is also related to so-called rel-
ative Cauchy evolution of a locally covariant field [BEV03] [Sa08]; since the functional derivative
of the relative Cauchy evolution involves the commutator with the stress-energy tensor oper-
ator, one could reformulate this axiom on the operator level requiring that any regularisation
prescription yields the same relative Cauchy evolution. If we consider Hadamard states, such
that w; (z,y) is locally given by —Dj (H ™ (z,y) + Wi(z,y))/(87*) for i = 1,2, the requirement
is equivalent to demanding that the differential operator used in (B3] is given by D3 plus a
term which does not influence the state dependence of w(:7T),,(z):).

2. Taking the locality principle of quantum field theory and the covariance principle of general
relativity seriously, we would like to have a w(: T, () :) which describes the back-reaction of
the quantum field on the spacetime in a local and covariant way. In fact, this axiom seems to
have been an inspiration towards the formulation of locally covariant QFT, as described in the
seminal paper [BEVO03].

3. This axiom basically points out a necessary condition for the well-posedeness of the semiclas-
sical Einstein’s equations; namely, since the geometric left hand side of (32)) is conserved due to
the Bianchi identities, also the right hand side should vanish under the action of the covariant
derivative.

4. Tt is a sensible prerequisite of any regularisation scheme for a field theory on a curved
background that it should be possible to read it as an “extension” of the standard normal
ordering in Minkowski spacetime, but there are good reasons to skip this axiom, cf., [Fu89] and
the second remark after theorem [4.11

5. Wald originally proposed this axiom in a rather technical and more strict way [Wa77, [Wa78],
essentially requiring that w(:T},, () :) does not depend on derivatives of the metric of order higher
than the first. The underlying motivation is rooted, on the one hand, in the request of well-
posedness of the Cauchy problem for the Einstein’s equations even with a non vanishing source
and, on the other hand, in the need for a sensible “classical” limit of the semi-classical Einstein’s
equations (see the enlightening discussion in Wald’s original paper [Wa77, [Wa78]). Wald himself
had realised, however, that the strict version of this axiom could not even be satisfied in the
classical theory and has, thus, proposed the weaker one stated here. Unfortunately, further
examinations have revealed that even this weaker version does not seem possible to fulfil in
massless theories without introducing an artificial length scale into the theory; therefore, the
axiom has been discarded. We still believe, however, that it could be fulfilled, though only under
special circumstances. We shall comment on this issue at a later stage of the paper.
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Using these axioms, Wald could prove that a uniqueness result for w(: T, (z) :) can be
obtained. The first two axioms already imply that the results from two different sensible regu-
larisation schemes can only differ by a local curvature tensor. The third and fourth axiom then
imply that this local curvature tensor is conserved and vanishes if the spacetime is locally flat.
Requiring that this term has the correct dimension of m?, the possible tensors are presumably
only the ones obtained by varying a Lagrangian of the form

ny uypT
o (5 Ge) 2 (P ) o8 ()
m m m

with respect to the metric, with some dimensionless functions F;(z). Requiring suitable analyt-
icity properties with respect to the curvature tensors and m, in [HoWa05], it has been shown
that the only possibilities are m'g,, (F; = 1)@, m?G, (Fi = ) and the three local curvature
tensors I, (Fi = 2?), Jy, (Fo» = ), K, (F3 = z), cf. appendix [A] for their full expression. In
fact, we will later show that changing the scale A in the regularising Hadamard bidistribution
H~ amounts to changing w(: T}, () :) exactly by a tensor of this form and, furthermore, the
attempt to regularise Einstein-Hilbert quantum gravity at one loop order automatically yields
a renormalisation freedom in form of such a tensor as well [{HoVe74]. Having in mind how
the semiclassical Einstein’s equation may be derived, these two arguments are of course related
by means of internal consistencyﬁ Using the Gauss-Bonnet-Chern theorem in four dimensions,
which states that

/ dp(2) Rywpr R*PT — 4R, R™ + R?
M
is a topological invariant and, therefore, has a vanishing functional derivative with respect to

the metric [AI95), £HoVe74], one can restrict the freedom even further by removing K, from
the list of allowed local curvature tensors.

4.3 The quantum stress-energy tensor: the solution and its trace anomaly

We now seek to exploit the above axioms in order to specify a sensible choice of differential
operator D,,. Looking at our proposed regularisation procedure (33]), the first obstacle to over-
come seems to be the covariant conservation axiom. As we have seen above, conservation of the
stress-energy tensor in the classical case is a direct consequence of the equation of motion. Since
we are regularising by subtracting from the two-point function the Hadamard bidistribution,

"A term proportional to the metric is not allowed if one seeks to fulfil the third axiom. As we will see later,
however, it does not seem to be possible to fix this term in a way that is compatible with analyticity in m.
Furthermore, the results of Hollands and Wald regarding the restriction of the possible regularisation freedom
by demanding analytic dependence on curvature and mass have only been obtained for scalar fields. Since the
stress-energy tensor for Dirac fields is an observable and thus still a “scalar” field, their results can be, nonetheless,
presumably extended to this case.

8In fact, at least in the case of scalar fields, the combination of the local curvature tensors appearing as the finite
renormalisation freedom in [tHoVeT74] is, up to term which seems to be an artefact the dimensional regularisation
employed in that paper, the same that one gets via changing the scale in the regularising Hadamard bidistribution.
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which is in general not a solution of the Dirac equation(s), Djg" applied to the thereby obtained
smooth bispinor will in general not yield a conserved quantity. A viable solution to such prob-
lems calls for the modification of the classical stress-energy tensor (BI)) by terms which vanish on
shell, while, at the same time, they help restoring covariant conservation on the quantum side.
As in the case of scalar fields [Mo03], it seems that the only possible option is to add multiples
of the Lagrangian to the classical expression of the stress-energy tensor. We thus propose the
following classical stress-energy tensor as a starting point

1
Ty = 5 (1&:[(”71/)1/} - 7:[’T’Y(u¢;u)) + cLguw

and we look for a ¢ € R that yields a sensible w(:7),, () :). This is tantamount to the choice of
the following differential operator for the point-splitting process (33)

. C
DS, = D — 5w (D, + D,) D),
1 N e (34)
= _5’7(;1 (VI/) - gy)vl/’) Dy - Eguu (D:pr - Py) .

Before proceeding to prove that there indeed exists a suitable choice of ¢, we would like
to anticipate another result, which can be easily understood from the aforementioned line of
argument. Let us remember that there is another property of the classical stress-energy tensor
stemming from the equations of motion: it has vanishing trace in the massless (and therefore
conformally invariant) case. Following the above discussion, on the one hand, it seems that one
might need to give up this property at a quantum level, while, on the other hand one, one could
still hope that the choice of ¢ also provides a vanishing trace. Alas, it will turn out that this is
not the case. One can only fix ¢ in a way such that w(:7T),, (z):) has vanishing trace for m =0,
but conservation is inevitably spoilt. Since we have already realised that conservation is indeed
an essential requirement for the right hand side of the semiclassical Einstein’s equations, we will
have to accept that ¢g"’w(: Ty, () :) is not vanishing in the massless case. This goes under the
name of trace anomaly.

Theorem 4.1. Let A\, = Zexp(% —2y)m =2 for m # 0 and Ay, arbitrary for m = 0, where y
denotes the Euler-Mascheroni constant, choose the Hadamard bidistribution to be the one with
A=Ay and let w(: Ty (x):) be defined as in (33), with the differential operator D, = D;,,l/ﬁ
defined as in ([34]). Then w(:T,,(z):) fulfils the reduced version of Wald’s azioms. Furthermore,
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it exhibits the following trace (anomaly)

1 1 1 1 7
m :T,, )= — — _— _R? — [OR — — VIW_ VT/pr
g Tw(@):) 72 <1152R T 1m0 B T ggp T BB g e B ) (35)

1 /m* m’R ,

= <? + 18 ) + mTr [DyW(x,y)] .

:# ZC cHPT 411 R,,,R*Y — 1R2 — 600R

288072 \ 2 M7 v 3
1 /m* m’R ,

= <? + 18 ) + mTr [DyW(x,y)] .

Proof. We begin by computing V#w(: T, (z):) and ¢"'w(: Ty (x):), leaving ¢ unspecified for the
moment. Applying Synge’s rule and taking into account that [C),,v*] = 0 and [gl’j'm] =0 (cf.,
appendix [A]), we get

872 VFw(: Ty (2):) = VFTr (D5, (z, )W (z,y)] = Tr [(V“ + gZ,V“’)DzV(x,y)W(w,y)

1 / 1
=Tr [{Z (gz Vo — V,,) (D:'ED;/ + Py) + Zv,,D;/(Py - P)

Cc

5 (90/V0 +9,) (DD = ) W (rp)].

Remembering that —D;(H ~ + W) is the local two-point distribution of a state, it follows that
H~+W is subject to the distributional differential equations D} D, (H~+W) = 0 = P,(H~+W).
Thus, we can safely replace W in the above equation by —H ~, since every appearing term
involves one of the two aforementioned differential operators. Such a procedure yields

4
c

2

87r2V#w(:TW(x):) =Tr [{1 (Vu _ gz’vy,) (D;,D'y + py) + %% (’Y“IV;/ + m) (P, — P,)
(gZ’V,/ + Vl,> (P, — D;D;) } H (z, y)} .

Now we can insert the various coincidence point limits of the differentiated Hadamard bidistri-
bution H~ computed in proposition of appendix [A] to obtain

872 VFw(: Ty (2):) = —(1 + 6¢)Tr[Vi(z,y)].0-

For the trace we use both the insights on the parallel transport of gamma matrices from appendix
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[Al and the arguments already employed in the computation of the conservation to get
8 g w(: Ty (z):) = g Tr D5, (z,y)W (z,y)]
1
=Tr H— (20 + 5) (DD, — P,) + mD;} W(x,y)]

=Tr [(20 + %) (DD, — P,) H (z,y) + mD, W (z, y)]

= —6(4c + )Tr[Vi(z,y)] + mTr [D,W (z,y)] .

If we look at the above two results and we use the data from appendix [Al we realise that,
since Tr[Vi(z,y)] is in general neither vanishing nor constant, we need to set ¢ = —1/6 to
assure conservation, thus yielding the asserted trace and, particularly, the trace anomaly in the
massless case.

Let us now proceed to check the validity of the first two axioms. From the above two
calculations we can extract that the term we have added to the canonical differential operator
Dy to achieve the looked-for differential operator Dy, contributes to w(: Tp,(z) :) a term
proportional to

guwTr [(DyD, — Py) H™ (z,y)] = —12g,, Tr[Vi(z,y)].

This term is clearly independent of the state, i.e., W(z,y), thus, axiom 1 holds for our regu-
larisation scheme and two Hadamard states wi,ws. Furthermore, since the Wick monomials are
locally covariant quantum fields as discussed in the previous section, the same holds true for
:T () : and axiom 2 is straightforwardly fulfilled.

What now remains to be shown is the vanishing of w(:7),,(z):) on Minkowski spacetime and
in the Minkowski vacuum state, provided we choose a suitable scale A in the definition of H~.
In this setting, we have w,, . (z,y) = —D;}wZMink(x,y)Ll, with the scalar two-point function

w;:Mm,ﬁ [Scha95]. The latter can be specified as

. 4m
w;—,Mlnk(x’y) = lim Kl(m\/ 206(x7y))?

e—0t (4m)24/20(x,y)

where K7 denotes a modified Bessel function, the expression is to be understood in the sense of
analytic continuation for negative values of the geodesic distance, and the limit specifies how to
approach the branch cut of the squared root [Mo03]. Expanding this in terms of o (suppressing
the e for simplicity) we have

1 m?  m? e2Ym2a
207 2
87wy nrink (%5 Y) = {;JF ( 5 + g o+ fi(o)o >ln( 5 >+
2

2
—mT <1 + 5”; U) +02f2(a2)}14,

®Recall that, according to our definition, w™ is of “positive frequency type”.
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where the f; appearing in this paragraph are smooth functions. In Minkowski spacetime, the
Dirac Hadamard bidistributions H* are simply the scalar ones times the unit matrix. This is
not surprising since, as visible in appendix [Al the nontrivial matrix part of the Dirac Hadamard
coefficients stems from the curvature of the spin connection, which vanishes in flat spacetimes.
We thus have

1 m?2  m? o
2 77— _ 2
8w H 0 (4,y) = {; + (—2 + < ° + fi(o)o ) In (—)\2> } 1.

If we take into account this singular part, a short computation yields

2 2y 2)\2 4 2y 2)\2 4
S W g (.) = {% <1n <%> _ 1) + <% In ( " ) o )a+ f3(0)02}14

and we can straightforwardly compute
m? e2Ym2)\2 7
i Tywla)) = =g (10 (S57) - ).

which vanishes for A = \,,, = 2exp(% — 2y)m~2. In the massless case, both H,y,. . and wo vink
only consist of the o~ term, such that wsink(: Ty () @) is trivially vanishing, independent of
any scale A. O

It is interesting to notice that the above analysis seems to suggest that the common idea
which associates the emergence of the trace anomaly to the conservation of the stress-energy
tensor is somehow inappropriate since such anomaly seems rooted in the loss of the equations
of motion at a quantum level alone. As a matter of fact the needed modification of the classical
stress-energy tensor does not evoke the trace anomaly, but it only modifies it.

To conclude the section, a few further remarks are in due course:

Remark. Our result for the trace anomaly coincides with previous ones obtained by means
of gravitational index theorems [ChDu79] and point-splitting techniques [Chr78]. Both ap-
proaches have made use of the De Witt-Schwinger expansion, which can not be defined rigorously
[Wa79l, BrOt86l Fu89l [Mo03]. Moreover, even if this expansion reproduces the Hadamard singu-
larity structure, it seems that calculations are much shorter if one expresses it directly through
the Hadamard series. The previous attempts had, however, one advantage, namely, they had
expressed the expected stress-tensor as the functional derivative of a (diffeomorphism-invariant)
effective action, such that the result has been manifestly conserved. The nice discussion which
follows definition 2.1 of [Mo03] gives an explanation of how the extra term in our derivative
operator Dy, can be understood in this context.

Remark. By changing the scale A in the Hadamard bidistribution H~ to X', one modifies
the (definition of the) smooth part W by 2V In X' /A, such that w(: T, (z):) changes by a term
proportional to T'r[Dj,,V]. Since we know from proposition that D,V fulfils both Dirac
equations of motion, we can a priori deduce that this term is automatically conserved and
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furthermore traceless in the conformal case. Thus, it follows that both the determination of the
correct ¢ to be inserted in Dj,, and the trace anomaly are independent of the scale A. Even if we
already know the properties of Tr[DfWV] beforehand, it is enlightening to calculate its explicit
form. The result is

4 2

m m 1
TT[DZI/V] = 79;11/ - _G;w + % (I;w - 3J;w) )

6
where the linear combination of I, and J,, appearing in the above formula is traceless, cf.,
appendix [Al This term is well within and even exhausts the regularisation freedom discussed
after definition .11

Furthermore, one should recall that, in the massive case, A had to be fixed in terms of inverse
powers of m to assure vanishing of w(:7),,(z):) in Minkowski spacetime. Hence, if one demands
continuous dependence of w(:T,,():) on m, it does not seem possible to fulfil the third axiom
of definition 1] in this way.

Remark. Even if we are able to fix the scale A\, we could in principle still add multiples of
m?Gy, L, and Jy, to w(: Ty, (z) ) without spoiling the validity of the first four of Wald’s
axioms, though possibly modifying the R term in the trace anomaly. This freedom can be
derived in a more general sense, by already viewing all Wick products as being uniquely defined
only up to terms depending on the mass and the local curvature, where the possible regularisation
freedom is partially restricted by suitable consistency conditions, e.g. “Leibnitz rules”. This
approach has been developed and pursued successfully by Hollands and Wald in [HoWa05] and
has the advantage to also encompass interacting fields. A treatment along their lines will, as
already remarked in subsection [£.2] presumably yield the same renormalisation freedom for the
stress-energy tensor like the one found here, as it happens in the scalar case [HoWa05].

Furthermore, the arising of the conserved local tensors I, and J,, puts us in the position
to understand why the fifth of Wald’s axioms in definition [£1] is problematic. Let us consider
the massive case, where we can fix the scale A\. Since I,, and J,, contain terms involving
fourth order derivatives of the metric, we may hope to cancel terms of that type occurring in
w(: Ty () :) by adding a fixed linear combination of those two tensors. In the massless case,
however, there is, up to our knowledge, no physically sensible way to fix A\. Therefore, one has
no control on the multiples of I, and J,, occurring in w(:7},,():) and thus no way to cancel
them.

Nonetheless, there are scenarios where the situation with respect to the mentioned axiom
is not that pernicious. On cosmological, i.e., Friedmann-Robertson-Walker backgrounds, the
semi-classical Einstein’s equations (32)) can be reduced to an equation for the traces of both
sides plus a conservation equation for the right hand side [DEP0S8]. Thus, it seems that one has
the chance to fulfil the fifth axiom for both massive and massless fields in this simplified setting,
since a change of scale does not add fourth order derivative terms to the trace of the expected
stress-energy tensor. In fact, as already explained in the introduction, this observation has been
used in [DEFP08] to obtain stable solutions of the semi-classical Einstein’s equation at late times.
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5 Conclusions and outlook

We have extensively discussed the structure of free Dirac fields both at a classical and at a
quantum level. While, in the first case, we have mostly reviewed standard approaches, in the
latter scenario we have achieved a twofold goal. Particularly, we have started the discussion of
quantised Dirac spinors by exploiting the selfdual framework introduced by Araki which treats
spinor and cospinor fields as a combined single object and allows to formulate the quantisation
procedure in a locally covariant way. This step has been fully undertaken by Sanders for the
first time and we have recalled the essential steps and features of this construction. Employing
already available and known properties of Hadamard states, we have subsequently been able
to introduce the extended algebra of Wick polynomials, the topic of section [3.4] and the first
of our main results. As a second one, we have shown that, as in the scalar case, a physically
sensible definition of the stress-energy tensor for Dirac fields on a curved background in terms
of Wick polynomials is indeed possible with just one caveat: one has to add to the classical
expression a suitable term which vanishes on-shell and hence does not alter classical dynamics
to obtain a conserved stress-energy tensor on the quantum side. Some new insights on Diracian
Hadamard forms have constituted a prerequisite of this result, while one of its consequences is
the emergence of a non-vanishing quantum trace of the stress-energy tensor, even if its value
at a classical level is zero in the conformally invariant case. This result, which goes under the
name of trace anomaly, has been previously known, but only as a result of formal calculations;
it is thus derived here rigorously for the first time.

On the overall, we reckon that this paper accomplishes also a further task, namely, it adds
the insight that it is possible, interesting, but by no means straightforward to recast many of
the already known rigorous results for scalar fields also for the spinor ones. Furthermore, our
analysis opens several interesting questions to be tackled in future lines of research: the first
one, which arises out of section 3.2 concerns the possibility to prove the time slice axiom for
the extended algebra of fields (as well as for interacting field theories) in the scenario considered
in the paper. If one follows the path paved in the scalar case in [ChFr08], a positive answer
seems definitively within our grasp. A further interesting problem originates from section B3]
in which Hadamard states are introduced and discussed; the Hadamard coefficients appearing
in the singularity structure of such states are smooth bispinors and the question arises if their
most remarkable feature in the scalar case, namely, their symmetry as proved in [M099, [Mo00],
also appears in the spinor scenario. Such a property would be desirable since, for example, it
would lead to many simplifications in the demanding calculations necessary in the construction
of the conserved stress-energy tensor. Although there are hints pointing towards this direction
(see also [SaVe0l]), we are far from a complete proof of such a symmetry and we thus feel this
would be another rather interesting problem to tackle in the very next future.

Besides these rather formal lines of research, our results have also some remarkable conse-
quences at a physical level. On the one hand we are now ready to answer the question posed in
the introduction on the robustness of the results in [DFPOS|; preliminary considerations seem
to point towards this direction, though we leave a definitive answer to a future analysis. On
the other hand, since our approach allows us to control the behaviour of free Dirac fields at
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a cosmological level, it is interesting to point out that free or perturbatively self-interacting
fields with half-integer spin in cosmology arise in many models, such as baryogenesis through
leptogenesis, where they often play a pivotal role. In these scenarios there are still many open
questions to be answered and it seems that, often, the role of spacetime curvature effects are
a priori discarded as negligible. Our experience suggests that this approximation might be too
crude and, therefore, we would like to investigate these models in more detail in the framework
of quantum field theory in curved spacetimes with the hope that such an analysis might lead to
new and interesting physical consequences.
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A Useful tools and necessary calculations

The aim of the appendix is to recollect, to clarify, and, occasionally, to also prove useful formulas
which are needed in the main body of the paper and which are subject to potential ambiguities.
These are often perniciously leading to potentially grievous sign mistakes or misunderstandings
of a sort which we wish to hold off from a potential reader.

A.1 Notations, conventions, identities

As a starting point, we would like to recollect our basic conventions regarding some symbols,
whose exact definition often varies among the literature. In accord with section 2l we work
with spacetimes thought as four-dimensional, Hausdorff, smooth manifold@, endowed with a
Lorentzian metric g, with signature (—,+,+,+). At the same time, other notable geometric
quantities, namely, the Riemann and the Ricci tensor as well as the Ricci scalar, are defined via
their components as follows

Va;By — Vayyp = Ra/\ﬁ'yv)\’ Raﬁ = Ra/\ﬁ/\’ R = Raou

where v, are the components of an arbitrary covector; the extension to vectors and tensors of
higher rank is then straightforward. As a last remark, we underline that the Riemann tensor
possesses the symmetries

Ra675 = _Rﬂa75 = _Raﬂ&y = R'y5a[3

19As proven in [Ge68], second countability is automatically fulfilled for a four-dimensional, Hausdorff, smooth
manifold of Lorentzian signature.
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and fulfils
Rogys + Raspy + Raysg = 0.

Finally, we define the Weyl tensor as it is usually done by the following expression

Capys = Rapys — % (92598~ + 9ar9ss) R — % (985 Rary + 98y Ras + 9as Ry + gayR3s) -

Similarly, we need to cope with geometric quantities related to the spin structure, introduced
in definition 2.4l Most of these are constructed out of the so-called y-matrices which satisfy the
standard anticommutation relations @), i.e., {4, 7} = 2gu . Our choice of the metric signature
entails that the y-matrices are different from the standard ones employed in quantum field theory
books by an overall multiplicative factor +i. Consistently also with (2]), we stick to +i and,
therefore, the Dirac operator appearing in the Dirac equation for spinors becomes D = —Y +m,
whereas the operator nullifying a dynamically allowed cospinor is D' = ¥ + m.

That said, apologising in advance for assigning the letter C' to two different objects, we define

the components of the curvature tensor C of the spin connection as
- ~ B
Vaigy = Vays = Ca'py Vb,

where V4 are the components of an arbitrary cospinor; as previously, the extension of this
definition to spinors, also of higher rank, as well as of that for the Riemann and the spin
curvature tensor in presence of mixed spinor-tensors, is straightforward. It follows from lemma
2T that the relation between the two curvature tensors is

1
A A C
C Buv — ZRuua,@'ya C”Y/B B-

Thus, C possesses the symmetries

CAB;U/ = _CBA;U/ = _CABII;L'

We also use the notational convention that a matrix acts from the left on spinors and from
the right on cospinors, e.g., we resolve the Dirac operators as

DUl =gl +mapt, Db =~y + my.

If one strictly sticks to such convention, spinor indices can be safely suppressed, as we have
already done in the main body of the paper and as we will often do in the remainder of this
appendix.

To conclude this subsection, we point out a few useful identities between the objects we have
previously introduced. Starting from the gamma matrices, the product of an odd number of
them has a vanishing trace. At the same time, if we consider an even number

Tr YuYv = 4gulla Tr YuVvYa VB = 4(guugaﬁ — Juagvp + guﬁgua)
T Y Y81 Yy Y8 YeYe = HY[apIBI9s)e T Glac9B)697)p T T[as98]1yIe0)s
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where [ ] here denotes idempotent antisymmetrisation. Furthermore,

07

Vi = ALy, A= =20 Ay, = 49 I,

Yy Py Ty, = =297y, PPy, = 2( Py TPy, (36)

The last equalities we shall need are
7a0a6 = Caﬁ'y = _Raﬁ'}’ ) [Caﬁa’)/'y] = Raﬁp'y'}’pa Tr Ca[37775 = _2Ro¢675a Cago;éﬂ = Oa

1
Tr Caﬁcaﬁ = —§Ra375Raﬁ75, Tr Caﬁcaﬁfyp% =Tr Cagcaﬁgm,

where the equalities not involving a trace can be proved by combining the symmetry properties
of the Riemann tensor with the anticommutation relations of the y-matrices, e.g.,

1
P = (RapﬁT + Rarpﬁ)'yp’YT'yﬁ = ZRaﬁpT (7/877'7p + ,yp,y 77)

Hkl’—‘

1
Caﬁ'y = ZRaﬁp‘r'}/ '}’ Yy
1
= 7 Rappr (—7”777/3 +29"79" = 29°777 — 47"y + 2gﬁT7”)
3
= ERap’)’p - 2Caﬁ7ﬁ

1
& Cap?’ = §Ra,375-

A.2 On the calculus of bispinor-tensors

The notion of bispinor-tensors heuristically boils down to consider objects which contemporary
transform as spinor-tensors at two spacetime points. In a more sound language, they are sections
of an outer tensor product VM KXW N of two vector bundles VM, W N respectively over M and
N. VM X WN is nothing but a vector bundle over M x N with, calling V and W the typical
fibres of VM and WN, V ® W as a typical fibre. Such a construction may seem awkward,
but, in case M = N, it is indeed more fundamental than the familiar tensor product bundle
VM ® WM, the latter being constructed out of VM X WM by pulling back via the map
M>zw (r,z) e M x M.

For simplicity we will choose to collect all possible (bi)spinor-tensorial objects under the
name of (bi)tensor, except in special case where we want to stress the character of the involved
vector spaces. The bitensors occurring in this work are all defined only on a convex normal
neighbourhood, since we need a unique geodesic to connect the two points our bitensors depend
on. We use unprimed indices to indicate components stemming from tensorial properties at
z and primed indices for those rooted in such properties at y. Furthermore, we shall use the
bracket notation introduced by Synge to denote coincidence point limits of bitensors, namely,

[B(z,y)] = lim B(z,y),

Yy—T
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where B is some smooth bitensor, such that the limit is well defined.

Let us now recall the bitensors used in this work and examine their properties. We will only
mention the basic points while we refer to the works of DeWitt and Brehme, Fulling, Christensen,
and to the review by Poisson for further, more exhaustive, details [DeWBr60}, [Fu89, [Chr76, [Po03)].

As a starting point, we consider the halved squared geodesic distance o(z,y) taken with sign,
sometimes also called Synge’s world function. Even if the geodesic distance itself might not be
globally smooth, it is such on geodesically convex normal neighbourhoods (provided smoothness
of the metric) and it furthermore fulfils 0,,0'* = 20, an identity which can be either explicitly
computed or derived from geometric considerations. In the following, we will, as it is customary,
drop the semicolon when indicating covariant derivatives of o. The aforementioned equation
together with [o] = [0,] = 0 and [0,,] = g, two identities arising out of the defining properties
of the geodesic distance, completely suffice to determine o, as well as all the properties we need,
namely, the coinciding point limits of its higher derivatives. These can be obtained by means of
an inductive procedure; as an example, in the case of [0,,,], one differentiates o,0" = 20 three
times and then takes the coinciding point limit. Together with the already known relations,
one obtains [0,,,] = 0. At a level of fourth derivative, a new feature enters the fray, namely,
one gets a linear combination of three coinciding fourth derivatives, though with different index
orders. To relate those, one has to commute derivatives to rearrange the indices in the looked-for
fashion, and this ultimately leads to the appearance of Riemann curvature tensors, i.e.,

[o] = [Uu] = [Uuup] =0, [Uuu] = Guv, [Uuugr] = _%(Rugw + Ruﬂ/g)-

We stress that the discussion of these few identities is indeed much more valuable than just
yielding the stated results since a potential reader is now able to calculate coinciding point
limits both of derivatives of arbitrarily high order and of any bitensor; this holds true provided
he is given the limits of lower order derivatives, an equation relating them to the higher ones, as
well as the information of appropriate curvature tensors. We would like to remark at this point
that, since one is ultimately interested in the coinciding point limits of certain bitensors most
of the time, the in between computational steps often only require the knowledge of coinciding
point limits of hierarchically lower objects, in contrast to having the necessity to know their full
form.

The next interesting bitensor is that of parallel transport along a geodesic, an object de-
pending both on the underlying vector bundle and on the considered linear connection. We will
denote the parallel transport relating the tangent spaces at = and y as gff,, while the one relating
spinors at those same points is denoted as [ g,. With them at hand, parallel transporting a
spinor-tensor T' = TA* B4 ® 0, along the geodesic connecting y to # amounts to the following
identity

TAM = Ig’gﬁ’TBlula

and a similar rule applies to higher spinor-tensors. One can reverse the role of z and y, introduc-

ing the inverses of the above two parallel transports, say g,’fl and [ *12 . On a practical ground,
the construction of these two quantities boils down to finding a solution of the following partial
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differential equations:
gﬁ’;aaa = Ig’;aa.a =0 and [gzlj’] = gllj’ [Ig’] = I4g7

being I the 4 x 4 identity matrix. These identities, together with the properties of ¢ and the
inductive procedure described at the beginning of this paragraph, allow us to explicitly compute
the derivatives of the parallel transports, the lowest ones being

1 1
[gs’;a] = [Ig’;a] = 0’ [gg’;aﬁ] = §R“uaﬂ’ [Ig’;aﬂ] = §CABO¢6' (37)

We shall henceforth suppress spinor indices, taking care to follow the afore described conventions,
and, to conclude the section, we would like to point out the special parallel transport properties
of both ¢ and the gamma matrices. For the former we have, due to its geometric meaning,

gy Ou' = —Ov,
whereas, for the latter, being covariantly constant, we have

Iy, I gl =,

In this paper, we need to cope with the coinciding point limits of bitensors differentiated at
both x and y. The first, and maybe obvious, related statement is that derivatives at different
points commute, so that we can always rearrange derivative indices in such a way that the
unprimed ones are always on the left whereas the primed ones are always on the right. As a
subsequent step, one notices that mixed coinciding point limits can be also calculated out of
inductive paths. If one has the knowledge of the coinciding derivatives at the point z, however,
one can extend it to those at y by means of Synge’s rule:

Lemma A.1. Let T be a smooth bitensor of arbitrary order; then its covariant derivatives
possess the following property in the coinciding point limit (here suppressing all unessential
indices):

[Tw] = [Ty — [Tiul-

This has been proven by Synge for o exclusively, while, for the proof of an extension to
arbitrary bitensors, one can refer to section 2.2 in Poisson [Po03] or to Christensen [Chr76].

A.3 On the Hadamard recursion relations and related results
As we have seen in section B3] in order to “construct” the two-point functions w®(z,y) of a
Hadamard state, we need to specify the distribution kernels H*(z,y) and the smooth bispinor

W (z,y), which must satisfy
P,H*(z,y) € &DM ® D*M), P,H*(z,y) € &(DM ® D*M)
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and
DD, (H*(z,y) + W(z,y)) = P, (H (z,) + W (z,y)) = 0.

From this it follows that D; Dy H *(x,7) is a smooth bispinor as well. Furthermore, due to
proposition 3.2}, there are even more differential operators, which, applied to H* (x,y), yield a
smooth bispinor. Let us collect them all in the following:

P,=-D,D,, P,=-D\D,, D.,D, D,D, and D,— D! =D,—D.. (38)

The aim of this section is to use these data to determine the Hadamard bidistributions H* (z, 1)
and to calculate the various coinciding point limits of their derivatives which are necessary for
the proof of theorem Il Following the path paved in the preceding sections, let us recall that
the index structure of w* is

wE(@,y) = wh(z,9) 47 E*(2) ® Ep (y),

and that H* and W inherit this structure, and let us suppress spinor indices in the following.

Although H*(z,y) and W (z,y) are bispinors, we recall from the main body of the paper
that their form slavishly mimics that of the kernels specifying the two-point function in the
theory of scalar fields, wviz.,

HE(z,y) = % +V(z,y)In % (39)
Viz,y) =Y Valz,y)o(z,y)", (40)

n=0
W(z,y) = Walz,y)o(z,y)", (41)

n=0

where o1.(z,y) = o(z,y) & 2ie (T(z) — T(y)) + €2, with € > 0 and T being a temporal function
whose existence is guaranteed since the background is globally hyperbolic [BeSa05, [BeSa06]. As
already commented in the main text, A is a reference distance employed to make the argument
of the logarithm dimensionless, while the remaining objects, the so-called Hadamard coefficients
U and V, are smooth bispinors. As we will see shortly, U as well as V' depend only on the
geometry of the underlying background and the mass, whereas W fully characterises the state,
namely, the two-point functions of two Hadamard states differ only by a smooth function and
such a difference is indeed encoded in W.

To determine U, V, and W, we need to use the knowledge on the differential operators
([B8) which, once applied to HT, give smooth bispinors. To make the following formulas more
readable, we choose to omit the regularising e - and thus the + index of H* -, the reference
length A, and the dependence of the kernels on the spacetime points (x,y). That said, we can
in principle take either of the second order differential operators listed in (B8] to recursively
calculate U and V; we will employ P, as this is familiar from the computations in the scalar
case.
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Applying P, to H, we obtain potentially singular terms proportional to ¢~ for n = 1,2,3
and to Ino as well as smooth terms proportional to positive powers of . We know, however,
that the total result is smooth and one possible way to achieve this is to demand that the
coefficients of the potentially singular terms are identically vanishing. Let us stress that, since
we do a priori not know if U contains positive powers of o, the terms proportional to negative
powers of ¢ could in principle cancel each other to yield a smooth result. It is therefore a choice
and not a necessity to require the coefficients of the inverse powers of ¢ to vanish, and it is,
furthermore, not guaranteed that the result of this procedure does not depend on the choice of
the second order differential operator out of the possible ones listed in ([38]). The afore laid down
line of argument does, however, not hold for the coefficients of P,H proportional to Ino; since
U and V are required to be smooth, they can not contain a logarithmic dependence on ¢ and
the terms proportional to Ino have to vanish necessarily.

The result of the previously described procedure are the so-called Hadamard recursive rela-
tions, which, in the scalar case, have been studied by several authors (see for example [Mo00]).
In the case of Dirac fields, there are results on the coinciding point limits of the Hadamard co-
efficients up to V; computed in [Chr78|; the form of the Hadamard singularity employed in this
work is, however, a different one related to the non-rigorous DeWitt-Schwinger expansion, but
formally, the relation between the different recursion relations arising in the two constructions
is well-known.

After having discussed the Hadamard recursion relations, we shall show how they arise
explicitly. Let us thus examine the terms U/o and V Ino individually. Starting with the latter,
we have

o
P(Vino) = (PV)Ino + Y V(0o — 2+ 4n) + 20 Vp,) 0™,

n=0

where we have employed the identity oo, = 20. Remembering our previous discussion, we can
now extract our first differential equation by requiring the coefficient of Ino to vanish. Since
this requirement has to hold independently of the differential operator chosen out of (B8], we
have

P,V =PV = D.D!V = (D}, - D,)V = (D!, — D,)V =0. (42)

To obtain further differential equations, we need to look at the terms involving U, wviz.,

P <g> _ (PU) | 20,U% + (Cpo - AU

o 02 ’

which, combined with the o~ ! coefficient coming from the series obtained out of differentiating
Vlno, leads us to the following two identities:

P,U + 2Vy 0 + (Opo — 2)Vo = 0, (43)
2U,,0" 4+ (0,0 — 4)U =0, (44)
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referring to the 0! and 02 coefficients, respectively.

Let us now focus on (44)); one can infer that U is subject to a linear partial differential
equation which, according to standard theorems, provides a unique solution once a suitable
initial condition is given. The latter is usually chosen in such a way that

[U] = Iy,

and, hence, the Cauchy problem associated to the U-bispinor strongly suggests us to hypothesise
U to be of the form U = uI, with a smooth biscalar u satisfying [u] = 1. Plugging in this ansatz
in (44)) and recalling the properties of I, it holds that ul is the solution we are seeking if and
only if u satisfies the partial differential equation

2u,, 0t 4+ (00 —4)u = 0.

Hence, it turns out that w fulfils the same transport equation as the o' coefficients of the
Hadamard bidistribution encoding the singularity of the two-point function for a scalar quantum
field and is thus given by the square root of the so-called VanVlieck — Morette determinant. It
would be tempting to think that a similar result and interpretation holds for V', but, alas, this is
far from being the truth as one can realise by direct inspection of (43]) since spin curvature terms
not proportional to the identity enter the arena via derivatives of I. The enlarged complexity
of the Diracian Hadamard coefficient V', however, is compensated by the increased number of
differential equations fulfilled by V' ([@2). Of course, any of them is enough to determine V', but
computations are still considerably easier if one employs all.

To obtain differential equations for the V;,, one has to combine ([@0) with (42). After a few
formal manipulations, one gets to

o o0
> (P Z 20V, 0" + (100 + 21 (1 - 1)) V) o' =0,
n=0 :

and, if we require this identity to hold true at each order in o, to

PV + 2Vt + (Ogo)Vi = 0, (45)
PV +2(n 4+ 1)Voiiuo” + (n+1)0g0 +2n (n+ 1)) (Vay1) =0. Vo >1 (46)

At this point it is clear how to determine U, V' and W explicitly: the starting point is (44]),
which, as we have explained above, gives us U once an initial condition has been assigned.
Afterwards one can plug the result in (43]) in order to obtain Vj, though one needs to specify
an initial condition. This is already included in ([@3]), however, since, if we take the coincidence
point limit of (43) and recall the properties of o, we end up with

Vel = —3[P.U).

Hence, we can now proceed iteratively, namely, we exploit (45]) to construct Vi once we have
specified the initial condition taking the coincidence point limit, i.e.,

Vi) = 7P YG)
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Similarly, (46)) grants us that the same procedure allows us to express V;,11 out of the preceding
term V,, together with the initial condition

1
2(n+1)(n +2)

Vo] = — [Py V).

Let us remember that all these results can be obtained starting from [U] = I4 and employing
differential equations which only involve local curvature terms and the mass m. Thus, both U
and V indeed only depend on these data and are independent from the state under consideration.
This of course changes once we want to determine the final unknown quantity W. Starting from
(1) and recalling the differential equation

P,(H+W)=0« P,W = —P,H,

it is clear how to get recursive differential equations for the W,,. This time two initial conditions,
namely, [Wy] and [Wy,,], however, have to be specified by hand, which is of course not surprising
since we expect some indeterminateness which has to be fixed by selecting a specific state.

It seems that we finally have all ingredients necessary to calculate the sought coinciding
point limits used in theorem Il There is one potential feature of the Hadamard coefficients,
however, which helps a lot simplifying calculations and should therefore be discussed before
starting calculations, namely, their symmetry. Indeed, such a property has been proven in
[Mo00] for the scalar case, but, unfortunately, a similar result does not exist for Dirac fields and
even understanding the correct notion of “symmetry” in our framework is a rather challenging
task. We shall leave the tantalising endeavour to prove the symmetry of the Diracian Hadamard
coefficients for possible future work and circumvent, for the time being, this gap with more
explicit calculations. The following lemma will turn out to be rather useful in general and in
the context of coping with the lack of (proven) symmetry in particular:

B(z,y)
f(z,y)

Lemma A.2.  Given a smooth bitensor B(xz,y) and a smooth biscalar f(x,y) such that
s a smooth bitensor and

(Bl = Byl = [f] = [fw] =0, as well as [Oyf] #0,

it holds
[E] _ 0B8]
f1 o

Proof. We only sketch the proof here. Since B, f and B/f are smooth, their coinciding point
limits do not depend neither on y nor on the path along which one approaches . Thus, we
can apply de I’Hospital’s rule to our smooth bitensors restricted to arbitrary smooth curves +;,
thereby expressing coinciding point limits of fractions as those of directional derivatives, e.g.,

|:B($,y):| — 7l(y)“’B($7y);H'
flz,y) ViW)H f(,y)

! ’ !

Y1 ()" 2 (9)” Bz y)ywr | _ () 42 (y)” B, y) ]
N A2 (9)" (@ y)er | @7 V) f (2, y) ]
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where we assume that [y1(y)" 72(y)" f(2,9),w] is non-vanishing. This holds due to the hy-
potheses of the lemma once we find two smooth curves 7, 72 such that ,};1;/,);21/ e gh'v.
Going to normal coordinates at z, it is always possible to find 1, 72 joining z and y such
that v1(z) = (1,1,1,1) and vo(z) = (—1,1,1,1); thus y1#2” = n**, where 1 denotes the met-
ric in normal coordinates, n = diag(—1,1,1,1). Since [y1(y)* ¥2(y)" f(,).s,/] is coordinate-
independent, the statement of the lemma holds as a consequence due to Synge’s rule. O

The last worthy of mention tool to perform the calculations whose results we will display
shortly is the computer. It should be clear at this point that there are lot of recursion relations
to solve to achieve the wished-for results. Thus, at the least as a means of backing up manual
calculations, computer algebra systems are a valuable instrument. To this avail, we have chosen
to work with Mathematica and the free package [Ricci], suitable for performing calculations with
vector bundles. The codes we have used to implement the recursive procedures and coinciding
point limits are available upon request from t.p.hack@gmx.de.

We can now finally state the main proposition of the appendix:

Proposition A.1.  The Hadamard bidistribution H fulfils
LPH = 6] ((PaH)u] = 8Vigl,  [(PeH)y] = ~8Vig] + 6[Vil,,
2 [PH =6Vl [(PH)) =8Viy] — 2Vl [(PH)e] = —8[Viy] 48[Vl
9. TrlD,DyH) = ~Tr[P,H], Tr[(D,D}H),] = ~Trl(PoH) ) + [Vily.
Tr{(D} D}y H) ] = ~Tr((PH) ] — Vil

4. Tr((PyH — PpH), vy, = 2Tr[Vi],.

Proof.
1. We shall employ ([@2]), (43]), and ([@4]). These data entail
P,H = 2V,,0° + V(00 +2) + O(0), (47)

and thus, taking the coinciding point limit and remembering those of ¢ computed in the
previous section, [P, H] = 6[V;]. Similarly, one gets, deriving (47) once and performing
the limit, [(P,H),,] = 8[Vi,,]. By means of Synge’s rule we finally have [(P,H), ]| =
—8[Vi] + 6[Vi]u.

2. We would of course like to compute Py H, but without any knowledge on the symmetries
of the Diracian Hadamard coefficients, we have to verify the transport equations for P,
which otherwise would follow automatically from those for P, as it happens in the scalar
case for the scalar Hadamard coefficients v and v [Mo00]. To wit,

2, 0" +U(Oyo —4) =1 (2%,0/’ + (0o — 4)) —0,
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where the first equality holds since the derivative of I vanishes along the geodesic connect-
ing = and y and the second one holds since u(z,y) = u(y,m) and v is thus subject to
transport equations for both P, and P,. Since Py H is smooth, we now know that

Y, . PyU + 2V0;MUM + VO(DyO' - 2)

Zy = — 5
o o

must be smooth too. Alas, it does not factorise into a term only involving the scalar
coefficients 4 and v times I and, up to now, we are unaware of a way to prove that it is
identically vanishing. But we can try to compute whether it vanishes up to the derivative
order we need for our purposes. To this end, it helps to split V' into vI + 17, where V
is the non-trivial matrix part of V' stemming from the spin curvature. This way one can
separate from Y7 a term which vanishes due to the transport equation for v and has to
cope with the remainder only. Involved calculations yield

V1] = [Y1;4] = [OY1] = [(OY1);,] = 0,
and thus, employing lemma[A2] [Z;] = [Z,,] = 0. Consequently,
P,H = 21/1;9/09’ + Vi(Oyo + 2) + terms vanishing in the limit

and
(PyH)s, = 2Vi;0 09, + Vi;u(0y0 + 2) + terms vanishing in the limit.

One can now straightforwardly obtain [P, H| = 6[Vi], [(P,H).,] = 8[Vi,u] — 2[Vi],, and
[(PyH)yw] = 8[Viyu] — 8[Vi]ip

3. Let us define
Zy = (Dy — D;)H = (Dy — D!)H.

By direct inspection,
D;D;H = —P,H — D! Z,.

Again we know that Z; is smooth and, alas, neither this quantity nor D’ Zs turns out
to be vanishing. Luckily enough, we can still extract some useful results at the level of
traced coinciding point limits, at an order of derivatives high enough for our purposes.
One computes

U(D, - D! D, — D\)U —V(D, — D!
Zy=— ( — W7, Doz D) - (De y)a+ln(0)(Dm—D;)V
48
. UMDy - Do Y, , (48)
:—T"‘;"FID(U)(DI—Dy)V-

""The symmetry of u does not have to be proved in the same long way as that of v (see [Mo00]), but it follows

automatically by its explicit form u(z,y) = \/det(aw,/ (z, y))\/|g(m)|_l\/|g(y)|_l.
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As already discussed, the last term vanishes identically and so does the first term on
account of

U(D, — D;)a =u(Iy'o, + ’}/MIIO'#/) =u(Iy'o, + I’Y“gﬁ,(j#/) = 0.

This leaves us with Z; = Y5/0. Involved computations, employing (D, — D;)V = P,V =0
to exchange higher derivative terms with terms of lower derivative order in the appearing
commutators with y-matrices, yield

[Yo] = [¥o,,] = [OY2] = 0, [(OY2);,] = 6[[Vi], 7]
After a few rearrangements and out of lemma [A.2] one gets

[Z2] =0, [ZZ;;L] = [[Vl]a'Yu]-
Hence, [Z5;,] is traceless due to the antisymmetry of the commutator. By means of formula
([38)), one can show per direct inspection that Tr[Vi]y,vy, = Tr[Vi]g. which entails that
even D! 7, is traceless and, thus,
Tr[D;D;H] = —Tr[P,H].

In order to compute Tr[(D; Dy H).,] and Tr[(D;D,H),], let us consider that D} Z, =
D! Zy + P,H — P,H. Employing this as well as the previous results and tricks we have
discussed in this proof, one obtains the following chain of identities
Tr((D}Zs).u) = =Try" [ Zowy) = Try" [ Zow ) — Try" [ Zoyu)v
= _TT[(D;ZZ)W] = _TT[(D;aZ2);u] + Tr((PyH — Py H),

1 (49)
= §T7"[(PyH = PpH)yl = =Tr[Vi];,
= —Tr[(DyZ2) ).
We can finally use this last calculation to obtain
T’r[(D;“D;j‘H);ﬂ] = _TT[(PIH);M] + [VI];ua TT[(DQD;H);M’] = _TT[(PmH);u’] - [Vl];u-

4. Inserting the previous results, we have [(PyH — P,H),, ] = 2[Vi],,. As already discussed,
due to y-matrix identities, tracing [V;] with two y-matrices amounts to a multiplication
with the metric. Since the operations of trace and covariant derivation commute, we have
TrVil,,y’y* = TrVi],, and thus

Tr{(PyH — PpH),]y"v" = 2[Vi;p.

|

We would like to conclude this section by stating the last ingredient necessary for proving
theorem [4.1] the coinciding point limit of Vi, viz.,
4 2 2 af afyd af
R R OR RupgR RopvsR CopC
[V1] = (m m af + afyd >I4 L_

s vt s "1 10 T 0 720 48
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A.4 Conserved local curvature tensors

The explicit form of the conserved local curvature tensors spanning the regularisation freedom
of the expected stress-energy tensor is:

1
(§R2 + 2EIR> — 2R, — 2RR,,,

o1 ) / 9
I, = — Rdpg, = gun
8 \/|9|59WM ! g

14 1
Ty = ———> | RagRPdpy = =g (RuwB" + OR) — R + OR, — 2RagR%5
L \/gagw/ B g 29u( i + ) suv T " BV v

/ Rus,s R dy,

K
uy = ,—|g (591“/

1
= —igu,,z%aw}zaﬁ7 + 2R3y, R, + 4R0sR*,%, — 4Ry R®, — 40R,, + 2R .

As already stated, in four spacetime dimensions, these are related as K, = I, —4J,, via
the generalised Gauss-Bonnet-Chern theorem [AI95, tHoVe74]. Furthermore, in this case, they
all have a trace proportional to IR and, thus, the linear combination I, — 3.J,, is traceless.
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