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Abstract

Thermal leptogenesis explains the observed matter-antimatter asymmetry of the uni-
verse in terms of neutrino masses, consistent with neutrino oscillation experiments.
We present a full quantum mechanical calculation of the generated lepton asymmetry
based on Kadanoff-Baym equations. Origin of the asymmetry is the departure from
equilibrium of the statistical propagator of the heavy Majorana neutrino, together
with CP violating couplings. The lepton asymmetry is calculated directly in terms of
Green’s functions without referring to “number densities”. Compared to Boltzmann
and quantum Boltzmann equations, the crucial difference are memory effects, rapid
oscillations much faster than the heavy neutrino equilibration time. These oscillations
strongly suppress the generated lepton asymmetry, unless the standard model gauge
interactions, which cause thermal damping, are properly taken into account. We find
that these damping effects essentially compensate the enhancement due to quantum
statistical factors, so that finally the conventional Boltzmann equations again provide
rather accurate predictions for the lepton asymmetry.
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1 Introduction

Standard thermal leptogenesis [I] provides a simple and elegant explanation of the origin
of matter in the universe. Baryogenesis via leptogenesis naturally emerges in grand unified
extensions of the Standard Model, which incorporate right-handed neutrinos and the see-
saw mechanism, and the predicted connection between the cosmological matter-antimatter
asymmetry and neutrino properties is in remarkable agreement with the present evidence
for neutrino masses [2].

Leptogenesis is an out-of-equilibrium process in the high-temperature symmetric phase
of the Standard Model. It makes use of nonperturbative properties of the Standard Model,
the sphaleron processes which change baryon and lepton number [3], and it requires CP
violation in the lepton sector and quantum interference in the thermal bath. Almost
all quantitative studies of leptogenesis to date are based on Boltzmann’s classical kinetic
equations for the description of the nonequilibrium process [2].

In this article, we discuss a full quantum mechanical calculation of the generated lep-
ton asymmetry based on Kadanoff-Baym equations [4] and the Schwinger-Keldysh formal-
ism [5H7]. The main result has previously been reported in [8]. Here we give a detailed
derivation of the result, discuss its interpretation and set the stage for future computations.
Further work is still needed to obtain a ‘quantum theory of leptogenesis’ that can predict
the cosmological matter-antimatter asymmetry in terms of neutrino properties without
uncontrolable assumptions.

Conventional leptogenesis calculations based on kinetic equations suffer from a basic
conceptual problem: the Boltzmann equations are classical equations for the time evolution
of phase space distribution functions; the involved collision terms, however, are obtained
from zero-temperature S-matrix elements which involve quantum interferences. This is
in contrast to other successful applications of the Boltzmann equations in cosmology, like
primordial nucleosynthesis, decoupling of photons or freeze-out of weakly interacting dark
matter particles, where the collision terms arise from tree-level S-matrix elements. In the
case of leptogenesis, clearly a full quantum mechanical treatment is necessary to understand
the range of validity of the Boltzmann equations and to determine the size of possible
corrections [9].

In recent years, various attempts have been made to go beyond Boltzmann equations.
In [9], a solution of Kadanoff-Baym equations for leptogenesis has been found to leading
order in a derivative expansion in terms of distribution functions satisfying the Boltzmann
equations. Various thermal corrections, in particular quantum statistical factors and ther-
mal masses, have been included [T0HI3]. Quantum Boltzmann equations have been derived
from Kadanoff-Baym equations for scalar and Yukawa theories [14,[15] and for leptogene-
sis [I6-19]. Except for [16], they do not contain memory effects, but they yield the correct
statistical factors which go beyond the Boltzmann equations [8,16}[17,19,20]. Quantum
Boltzmann equations have important applications for resonant leptogenesis [16], flavoured
leptogenesis [21,22] and N-leptogenesis [23]. Similar techniques have been developed for
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Figure 1: Evolution of heavy neutrino abundance Ny, and lepton asymmetry Ng_p, for
typical leptogenesis parameter: M; = 10'° GeV, m; = 87 (vew/M1)? = 1073 eV, € =
107% the inverse temperature z = M;/T is the time variable. The dashed (full) lines
correspond to thermal (vacuum) initial conditions for the heavy neutrino abundance; the
dotted line represents the equilibrium abundance. From [30)].

electroweak baryogenesis [24H27] and for coherent baryogenesis [28].

The quantum treatment of leptogenesis discussed in this paper is entirely based on
Green’s functions, thus avoiding all approximations needed to arrive at Boltzmann equa-
tions. Our work is based on [29], where the approach to thermal equilibrium has been
discussed in terms of Green’s functions for a toy model, a scalar field coupled to a large
thermal bath. In leptogenesis it is the heavy neutrino which is weakly coupled to the stan-
dard model plasma containing many degrees of freedom. The nonequilibrium propagator
of the heavy neutrino is obtained by solving the Kadanoff-Baym equations. The induced
quantum corrections of the lepton (and Higgs) propagators then yield the wanted lepton
asymmetry.

In general baryogenesis requires departure from thermal equilibrium. For the cosmo-
logical baryon asymmetry, this is provided by the Hubble expansion of the universe and,
possibly, also by initial conditions. This can be seen in Fig. [l where the time evolution
of heavy neutrino abundance and lepton asymmetry, as predicted by the Boltzmann equa-
tions, are shown for two different initial conditions: thermal and zero heavy neutrino abun-
dance. In the first case, the Hubble expansion leads to an excess of the neutrino abundance



at T ~ 0.3 My; shortly afterwards, washout processes are no longer in equilibrium and the
lepton asymmetry is ‘frozen in’. This is the standard out-of-equilibrium decay scenario of
baryogenesis. In the second case, interactions with the thermal bath first bring the heavy
neutrino into thermal equilibrium; due to the departure from thermal equilibrium during
this time, an initial lepton asymmetry is generated. Around 7" ~ 0.3 M, this asymmetry is
washed out and, as in the first case, the final lepton asymmetry is generated. Remarkably,
the initial and the final asymmetry have about the same size. For the generation of the
initial asymmetry the change of temperature due to the Hubble expansion is not impor-
tant. This allows us to make a significant technical simplification in our analysis. Since
our goal is the comparison of Boltzmann and Kadanoff-Baym equations, we concentrate on
the computation of the initial asymmetry at constant temperature. We expect differences
between the classical and the quantum approach to be of similar size in the generation of
the final asymmetry. In our numerical analysis we shall consider temperatures T' < M,
where the heavy neutrino production rate is not strongly affected by the effect of thermal
masses of lepton and Higgs fields [TTHI3].

We consider an extension of the Standard Model with additional gauge singlet fermions,
i.e., right-handed neutrinos, whose masses and couplings are described by the Lagrangian
(sum over i, ),

. 7 Tk — 1 —c — . C
L= [fSM + ﬁiZaVRi + lLiQS)\ijVRj —+ VRj)\ileiQS — §Mz3 (l/fzil/Rj + VRjVRi) . (11)

Here 1§ = Civk, C is the charge conjugation matrix and 5 = i09¢*; SU(2) isospin indices
have been omitted. For simplicity, we consider the case of hierarchical Majorana masses,
My~1 > M; = M, and small Yukawa couplings of the lightest heavy neutrino Ny = N,
Ai1 < 1, such that the decay width is much smaller than the mass. Leptogenesis is then
dominated by decays and inverse decays of N, and it is convenient to integrate out the
heavier neutrinos. From Eq. (II]) one then obtains the effective Lagrangian

1— — ~ 1
L =Lsy + 5 NigN + ;0NN + NTX Clpip — 5MNTCN

1 1, ~ 7~
+ §nijl€i¢Ole¢ + 5771'le1'¢0le ¢, (1.2)
with N = vpy + 1%, and the familiar dimension-5 coupling
L7
Nij = ; )\ikm)\kj : (1.3)

Using this effective Lagrangian has the advantage that vertex- and self-energy contributions
to the CP asymmetry in the heavy neutrino decay [31H33] are obtained from a single
graph [9].

The paper is organized as follows. In Section 2 we present solutions of the Boltzmann
equations for the heavy neutrino distribution function and the lepton asymmetry, which
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are useful for later comparison with the Kadanoff-Baym equations. Some results from
nonequilibrium quantum field theory (QFT), in particular equilibrium correlation functions
and Kadanoff-Baym equations, are recalled in Section 3. Section 4 contains some of the
main results of this paper: analytic solutions of spectral function and statistical propagator
for the heavy neutrino. These are needed for the computation of the lepton asymmetry,
which is carried out in Section 5. A detailed comparison of the Boltzmann result and
the Kadanoff-Baym result is given in Section 6, and numerical results for the generated
lepton asymmetries are compared in Section 7. Summary and conclusions are given in
Section 8, and various details, including equilibrium correlation functions, Feynman rules,
a discussion of the zero-width limit and the computation of some integrals are contained
in Appendices A - D.

2 Boltzmann equations

The Boltzmann equations for the time evolution of the distribution functions of heavy
neutrinos, lepton and Higgs doublets are well known [34]. As discussed in the previous
section, we focus on the generation of the ‘initial asymmetry’ (cf. Fig. ), which allows
us to neglect Hubble expansion and washout terms and to work at constant temperature
T. The distribution function of the heavy neutrinos is then determined by the first-order
differential equatio

O fultg) === [ (@) (k+q—p) (V)0

ot Wp Jikq

X [fn(t,wp) (X = filk)) (L + fo(q) — filk) fo(q) (1 = fn(t,wp))], (2.1)
with vacuum initial condition,
Sn(0,wp) =0 (2.2)

here w, = \/M? + p?, k and ¢ are the energies of N, [ and ¢ with equilibrium distribu-
tion functions f; and f,, respectively; the averaged decay matrix element is |[M (N (p) —
1(k)o()> =2 (ATA),, p- k (cf. [9]). For the momentum integrations we use the notation

[ -

In most leptogenesis calculations one directly computes the number density,

ny(t) = / (;ij;g fn(t,wp) (2.4)

!To simplify notation, we use the same symbol for the modulus of 3-momentum and 4-momentum, e.g.,
k = |k| and k = (|k|, k).




assuming kinetic equilibrium.
The sum of decay and inverse decay widths, whose inverse is the time needed to reach
thermal equilibrium [35], is given by

P = W) = [ @05k +a =) ook fuslha) (25)

",
where we have introduced the statistical factor (cf. [35])

fiolk.q) = k) fola) + (1 = Fi(R))(1+ ol0))
=1 (k) + fola) - (2.6)

Neglecting the momentum dependence of the heavy neutrino width (I';, = I'), one easily
obtains the solution of the Boltzmann equation (2I]) with vacuum initial condition,

In(twp) = [ (wp) (L —e ™), (2.7)

where the equilibrium distribution is

1

2.8
eﬁwp _|_1 ? ( )

N (wp) =
and 8 =1/T is the inverse temperature.
To compute the lepton asymmetry, we need the Boltzmann equation for the lepton
distribution function,

a 4 ¢4
afz(ta k) = ~55 q,p(%) 0 (k+q—p)
x [|[M(lp — N)|2fi(k) fs(a) (1 — fn(t,wp))
— |M(N = 1) fn(t, wp) (1 = filk))(1+ f4(a))] , (2.9)

where now O(\*) corrections to the matrix elements have to be kept. Using Eq. (Z7) one
obtains for the lepton asymmetry

fLi(ta k) = fli(ta k) - fl_i(ta k) ) (210)
with initial condition fr;(0,%) =0,
1 e 1 _
fri(t k) = —eq/ 2m) ot (k+q—p)p-k fl(b(k:,q)qu(wp)f (1—e™), (211)
q,p
where we have defined
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Summing over all lepton flavours, the generated lepton asymmetry is proportional to the
familiar CP asymmetry [9],

’ Im (AfpA*) M
e=Y = 3 Im ( ? Ju M (2.13)
; (ATA)y; 16w (ATA)14

For later comparison with solutions of the Kadanoff-Baym equations, it is convenient
to rewrite Eq. (2.11]) as a 4-fold integral,

fri(t k) = —GiiIGTF / k- K (2m)*'64(k +q - p)(2m)*6* (K + ¢’ — p)
q,p,q’,k’
1
X fig(k: @) [ (wp) 5 (1 = e ) . (2.14)

The integrand is now proportional to the averaged matrix element |M(lp — [@)|> =
2k - k' (M )11 /M? (cf. [9]), which involves the product of the 4-vectors k and k'. At low
temperatures, T < M, the integrand falls off like e #“r < e #M_ je. the generated
asymmetry is strongly suppressed. In standard leptogenesis calculations one considers the

integrated lepton asymmetry,

ng = Z/ % fri(t, k) . (2.15)

The number densities ny (2.4) and ny correspond to the comoving number densities Ny,
and |Ng_r,| shown in Fig.[I] in the initial phase of the time evolution, i.e., for T' 2 0.3 M.

3 Nonequilibrium QFT and Kadanoff-Baym equations

In the following, we briefly introduce concepts and quantities from nonequilibrium quantum
field theory that are necessary for our computation (cf. [3637]). A thermodynamical system
is represented by a statistical ensemble described by a density matrix p. The expectation
value for an operator A is then given by

(A) =Tr (0A) , (3.1)

where we have adopted the usual normalisation Trp = 1. Solving the initial value problem
for p allows to compute all observables for all times. Direct computation of the time
evolution of p is difficult. Generically, the von Neumann (or quantum Liouville) equation
of motion for o can only be solved perturbatively for a reduced density matrix with an
effective Hamiltonian. In most practical applications to date, a number of additional



assumptions are made that lead to effective Boltzmann equations, which can take account
of coherent oscillationsﬁ, or quantum corrected Boltzmann equations (cf. Section 6)@

Instead of the time evolution of the density matrix, one can also directly study the
equations of motion of the correlation functions of the theory. The infinitely many degrees
of freedom of the initial density matrix are then mapped onto their infinitely many initial
conditions. Though a full characterisation of the system in principle involves all n-point
functions, it is often sufficient to study the one- and two-point function. This applies to
the problem considered in this work.

3.1 Correlation functions for lepton and Higgs fields

Leptogenesis occurs at temperatures above the electroweak scale where sphaleron processes
are active and transfer the generated lepton asymmetry to a baryon asymmetry. Hence,
the Standard Model is in the symmetric phase and the four real degrees of freedom of the
Higgs doublet correspond to four massless real scalar fields.

The spectral function and statistical propagator of a real scalar field ¢, A~ and AT,
respectively, are defined as

A (1, 2) = il[o(e), o)) (32
A (a4, m) = S ({6(0), 6(22)}) (33

Here only contributions from connected diagrams are to be included to compute the dressed
correlation functions. These fulfill the symmetry relations

A" (xy,29) = —A (29, 11) (3.4)
At (zy,29) = At (w9, 11) (3.5)

which follow directly from the definitions.
The functions A* have an intuitive physical interpretation. The spectral function A~
is the Fourier transform of the spectral density,

[ dy Y Y
t = — —e"YA(t+Z,t— = 3.6
palti) = i [ Slena-e+Le-b), (3.
where we have used the relative and total time coordinates, y = t; —to and t = (¢; +12)/2,
respectively.

The spectral density pq(,w) characterises the density of quantum mechanical states in
phase space. Propagating states, or resonances, appear as peaks in the spectral function.

2See [38,39] for an application to neutrino oscillations.
3In [4041] an approach based on first principles has been suggested that is applicable if the occupation
numbers for the out-of-equilibrium fields are small.



The statistical propagator contains the information about the occupation number of each
state.
In the following we shall also need the Wightman functions

AZ (1, m2) = (p(21)(22)) | (3.7)

A (21, 22) = (d(22)(21)) (3.8)
which are related to A* by

A7 (21, 22) =1 (A7 (21, 0) — AN (21, 22)) (3.9)

A* (21, 1) = % (A> (21, 72) + A< (1, 23)) . (3.10)

Using microcausality and the condition for canonical quantization,

[B(21), ()] |=1, = [9(x1), B(@)] |11, = 0, (3.11)
[B(1), $(22)]]1 =1 = i0(x1 — X2) | (3.12)

one obtains boundary conditions in y = t; — t5 for A™,

A7($1v$2)|t1:t2 =0, (313)
Oy A (21, 22)|6y=t, = =0, A (¥1, 2) |ty=1, = 6(X1 — X2) , (3.14)
atlat2A_(.(E1,l‘2)|t1:t2 =0. (315)

Note that these conditions do not depend on the physical initial conditions of the system
encoded in the initial density matrix. These enter via the initial conditions for the statistical
propagator.

Analogous to A*, one can define the spectral functions and statistical propagators for
fermions. The fermionic fields in the Lagrangian (L2) are massless left-handed leptons
(Weyl fields I;;) and a massive neutrino (Majorana field N). For the massless leptons,
spectral function and statistical propagator are defined as

(Spij)as(@1, 22) = i({lLia(21), la(22)}) (3.16)
(S7i)aso1,2) = 5 lnial). Tga2)) (3.17)

where a and 3 are spinor indices, and SU(2) indices were omitted for notational simplicity.
The subscript L denotes the projection to left-handed fields, i.e., Sf = P.S*, where
Pp, = (1 —+%)/2 and S¥* are the propagators for Dirac fermions. As for bosons, we shall
need the functions

(STij)as (@1, 22) = (lLia(x1)15(22)) (3.18)
(Stij)as(x1,22) = —(lLjp(2)lLia(21)) (3.19)



which are related to spectral function and statistical propagator by

SL’ij(xl, Ty) =i (Sfij(xl, Ty) — Sfij(xl, .ng)) , (3.20)

Syl ) = 5 (S7i(ra,m) + S, 1)) (3.21)
The propagators ST have the symmetry properties

%0 [Szj(@rx2)] 0 = =Sgi(aam) (3.22)

%0 [S5 (@ 22)] 70 = SEi(wa 1) - (3.23)
The canonical quantization condition,

{lpia(x1), lzjﬂ(l'g)} = Prap0ij0(x1 — X2) , (3.24)
implies the boundary condition for the spectral function

Srij (@1, B2) |1y =1, = 1P10i;0(X1 — Xa) (3.25)

Finally, spectral function and statistical propagator for the Majorana field N read

Gop(21,22) = i{({ Na(21), Na(22)}) , (3.26)

Glplrr,m2) = {INalra), No(a)]) (3.27)
They have the symmetries

G (21, 29) = G~ (w9, 21)" (3.28)

Gt (zy,19) = =G (29, 21)7 . (3.29)

The canonical quantization condition, together with the Majorana property N = CNT,
implies the boundary condition

G~ (w1, 79) |1 =t, = i7°0(x; — x2)C " . (3.30)

As for scalars, the physical initial conditions enter as boundary conditions for the statistical
propagator. In the following, we will consider two types of initial conditions, thermal
equilibrium and Gaussian initial correlations, for which we solve the equations of motion
in the following section. Analogous to real scalars, the functions G are defined as

Gos(@1,32) = (Na(21)Np(22)) (3.31)

Gop(@1,32) = —(Ng(@2)Na(21)), (3.32)
with the usual relations to spectral function and statistical propagator,

G (w1,12) =1 (G” (21, 22) — G< (71, 79)) , (3.33)

G* (1, 32) = % (G (21, 23) + G< (21, 7)) . (3.34)
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Figure 2: Path in the complex time plane for nonequilibrium Green’s functions. The
contour runs from some initial time 2° = t;+ie (¢; = 0) parallel to the real axis (z° = t+ie)
up to some final time ¢y +ie and returns to ¢;—ie. To compute physical correlation functions
for arbitrary times ¢ > t;, one takes the limits ¢; — oo and € — 0.

3.2 Equations of motion

In thermal leptogenesis, the deviation from thermal equilibrium that is necessary to create
a matter-antimatter asymmetry is due to the heavy Majorana neutrinos which are out of
equilibrium. The equations of motion for their correlation functions G* can be obtained
via the Schwinger-Keldysh formalism [6]. The basic quantity is the Green’s function with
time arguments defined on a contour C in the complex z°-plane, known as the Keldysh
contour (cf. Fig[2),

Ge(z1,29) = 0c(2%, 29)G™ (21, 13) + Oc (23, D) G= (21, 2) . (3.35)

Here the #-functions enforce path ordering along the contour C. The necessity of considering
Green’s functions with time arguments on the Keldysh contour (rather than the real axis)
is a consequence of the fact that nonequilibrium processes are initial value problems. The
system is prepared at initial time %;, its state at later times is unknown. Hence, the usual
approach to define a S-matrix by projection onto asymptotic ‘in’ and ‘out’ states, sending
initial and final time to infinity, cannot be applied. When using the Keldysh contour which
starts and ends at the same time ¢4, no knowledge of the system’s state at ¢t = 400 is
needed to define a generating functional for correlation functions.
The Green’s function G satisfies the Schwinger-Dyson equation

Cligh — M)Ge(xy, x2) — i / B3OS (. 2) G, ) = ide (21 — 12) | (3.36)
C

where C'3¢(x1,2') is the self—energyﬁ on the contour and @ = v#9/dzY. Like the Green’s
function, also the self-energy can be decomposed as

Se(ry,13) = O (20, 29)57 (21, 13) + Oc (23, 2)) 2 (11, 1) . (3.37)

4Due to this fact this formalism is sometimes called ‘in-in’ formalism, in contrast to the ‘in-out’ for-
malism used to compute the S-matrix.
5 An explicit factor C is factorized for later convenience.
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In the Schwinger-Dyson equation (B.36]) the time coordinates of G¢ and Y. can lie on the
upper or the lower branch of the contour.

The familar time-ordered Feynman propagator is obtained from G¢(x1,z3) when both
time arguments lie on the upper branch, and therefore denoted by G*''. Correspondingly,
Ge(x1,z2) with both time arguments on the lower part of the contour corresponds to an
anti-time-ordered propagator, denoted as G*2. For correlators with one time argument on
the upper and one on the lower part of the contour, referred to as G'? and G?', the order
of field operators is fixed by the path ordering: operators on the upper branch are always
‘earlier’ than those on the lower branch (cf. B:35). Altogether, one has

G12($1,1‘2) == G<(1‘1,1‘2) s (338)
GZI(.fUl,l'Q) = G>(l'1,l'2) s (339)
G (zy,19) = G (zy, 19) — %&gn( —2DG (z1,15) , (3.40)
G**(x1,79) = G (21, 79) + %sign(w? — 129G (21, 79) ; (3.41)

the last two relations are easily verified by inserting the definitions of G*.

In a perturbative expansion of the Schwinger-Dyson equation (8:30]) in terms of Feyn-
man diagrams, time arguments of internal vertices can lie on either branch. Hence, the
number of contributing graphs doubles with each internal vertex since this can lie on the
upper or the lower branchﬁ Two upper vertices are connected by G, two lower vertices by
G?? and vertices of different type by G'? and G?'. Each lower vertex leads to an additional
factor —1.

Like the Green’s function, also the self-energy ¥¢, the sum of all one-particle irreducible
graphs, can be dissected into components ¥ with £ and [ being ‘contour indices’ as defined
above. Analogous to (3.38) and (3.39) one then defines self-energies ¥< and, following
(333) and (B.34), self-energies ©* via the equations

Y7 (21, 20) =1 (27 (21, 02) — X5 (21, 72)) (3.42)
S (@, 1) = % (52 (1, 22) + 5% (31, 72)) - (3.43)

Since the self-energies $* are directly related to the full Green’s functions G*, they also
satisfy the relations (3:38)) -

Using the above relations for le and ¥ one obtains, after a straightforward cal-
culation, from the Schwinger-Dyson equation (B.36]) a system of two coupled differential
equations for G;f, the Kadanoff-Baym equations. Due to spatial homogeneity, we can
consider the equations for each Fourier mode separately,

l2
C(7°0, — py — M)G (1) = _/ dt O, (1, 1) G (', 12) (3-44)

t1

6This fact is sometimes referred to as ‘doubling of degrees of freedom’.
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l2
C(iy° 8, —py — M)G (ty, t2) = — / diC% (0, 1) Gy (1, 1)

t;

t1
+ /1t dt'CSy (b1, t)GE (' t2) (3.45)

i

For the lepton propagators SLik one obtains the same equations, with C’E; replaced by the
lepton self-energies Hf and no charge conjugation matrix C multiplying the kinetic term.

The Kadanoff-Baym equations (3.44) and (3.45) are exact. They contain all quantum
and non-Markovian effects including the dependence on the initial time ¢;. Furthermore,
in contrast to usual linear response techniques, they do not rely on any assumption re-
garding the size of the initial deviation from equilibrium. The equations in this form are
valid for arbitrary nonequilibrium initial states which can be parameterized by Gaussian
initial correlations. This covers the case considered in this work since the generated lepton
asymmetry involves to leading order in the Yukawa coupling only the 2-point functions
of the heavy neutrino. When higher order initial correlations play a significant role, the
Kadanoff-Baym formalism is still applicable, but the equation for the statistical propagator
contains extra terms at ¢; [42]. In [36], thermalization has been studied for a scalar field
theory using the equation of motion for the statistical propagator.

In nonequilibrium quantum field theory, instead of distribution functions, quantum
mechanical correlation functions G* characterise the state of the system. The interactions
enter via the self-energies ¥* which, via the generalized cutting rules, contain all possible
processes. Encoding this information in the self-energies avoids potential problems related
to the definition of asymptotic states for unstable particles as well as the substraction
of real intermediate state contributions in Boltzmann equations. Note, finally, that the
integro-differential equations (3.44)), (3.45]) do not suffer from the late time uncertainties
or secular terms that perturbative expansions of Boltzmann equations are often plagued
with when applied to multiscale problems (cf. [36]).

3.3 Weak coupling to a thermal bath

The Kadanoff-Baym equations provide a tool to study the dynamics of arbitrary nonequi-
librium systems. Unfortunately, in most cases they can only be solved numerically. As
discussed in the introduction, in this work we consider a rather simple system: one field
that is out of equilibrium (NN) is weakly coupled to a large thermal bath of Standard Model
fields. This leads to a number of simplifications compared to the general case that allow to
find analytic solutions. We have previously studied scalar field models of this type [29,/43].
Here we extend the methods developed therein to the case of thermal leptogenesis.

The Standard Model interactions keep the bath in thermal equilibrium. The corre-
sponding time scale 753 ~ 1/(¢*T) at temperature T ~ M is much shorter than the
equilibration time 7y ~ 1/(A\?>M) of the heavy neutrino, which governs the generation of
the lepton asymmetry: 743, < 7n. Lepton number changing processes in the thermal bath
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Figure 3: One- and two-loop contributions to the lepton self-energy correspoding to
washout terms, a) - d), and CP violating terms which generate a lepton asymmetry, e)
and f).

are shown in Fig. Bl As in the case of Boltzmann equations discussed in Section 2, we
focus on the CP violating interaction generating the lepton asymmetry that correspond to
Fig. Bl e) and f).

To evaluate these graphs we need the correlation functions of lepton and Higgs fields
in the thermal bath. A system in thermal equilibrium is described by the density matrix

Doy = exp (B (=H + 1:Q;))
‘T Trexp (B(—H 4 1iQ:))

where H is the Hamiltonian of the system, /3 is the inverse temperature, Q; are conserved
charges and p; are the corresponding chemical potentials. As expected for an initial state
after inflation, we set all chemical potentials equal to zero.

Equilibrium correlation functions of a spatially homogeneous system only depend on
space-time differences, and it is convenient to consider the Fourier transforms,

(3.46)

A(w) = / i pein =) A () (3.47)
SE(w) = /d%e““’mokx)Si(x) : (3.48)
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Figure 4: Path Cs in the complex time plane for equilibrium correlation functions.

The equilibrium density matrix (3.46]) then corresponds to a shift in imaginary time. This
leads to the well-known Kubo-Martin-Schwinger (KMS) relations (cf. [44])

Af(w) =e ™A (w), Sg(w)=-e5(w), (3.49)

which imply

Ag(e) = =i (G4 £u(e) ) Aqle) =~ corh () Ag0). (3.50)

St (w) = —i (% _ fl(w)> S-(w) = —% tanh <%‘"> Sc(w) | (3.51)
where

folw) = eﬁw%l , filw) = ﬁ , (3.52)

are Bose-Einstein and Fermi-Dirac distribution functions, respectively. Note that the en-
ergy w is not on-shell.

Equilibrium Green’s functions can be calculated in the real-time formalism using the
contour Cs in the complex time plane, which is shown in Fig. [d For the free equilibrium
propagators of massless lepton and Higgs fields one obtains (¢ = |q|, k£ = k|, cf. [44]),

A5(0) = sinfay) (3.53)
A5t = 5 cot (51 costan). (3.54)
S3(0) = Pi (o costh) ~ ST sin(in)) | (3.55)
Stly) = —3 Py tanh (%) (m sin(ky) + k% cos(ky)) | (3.56)
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Figure 5: One-loop contribution to the self-energies C’E[i)r of the Majorana neutrino N.

All other propagators can be obtained as linear combinations using the relations described
in the previous paragraph. A complete list is given in Appendix A.

In the following sections we shall see that the calculation of the lepton asymmetry
represents an initial value problem which can be treated based on the real time formalism
together with the Keldysh contour Fig. 2l Thermal and nonthermal properties of the
system are then encoded in the initial values of the various Green’s functions.

4 Nonequilibrium correlation functions

The assumption of weak coupling to a large thermal bath with negligible backreaction in the
framework of Kadanoff-Baym equations implies that self-energies for the heavy neutrinos
N are computed from equilibrium propagators of bath fields only. This also corresponds
to a leading order perturbative expansion in the coupling constant.

Perturbative expansions of Boltzmann equations in multiscale problems are known
to suffer from uncertainties, so-called secular terms, at late times. The Kadanoff-Baym
equations (3.44) and (B45) in full generality are free of secular terms and consistently
include all memory effects. Nevertheless, the neglect of backreaction in the computation
of ¥ corresponds to a truncation in the perturbative expansion in the Yukawa couplings A,
which might introduce similar uncertainties related to the multiscale nature of the problem.
However, in the system of consideration contributions of higher order in A are not only
suppressed by the smallness of the coupling, but also by the number of degrees of freedom
in the bath that justify the neglect of backreaction. Hence, we expect potential problems
due to secular terms not to be relevant.

The assumption that the background medium equilibrates instantaneously on the time
scale of the asymmetry generation leaves open the details of the equilibration process. In
reality, there are effects related to the finite equilibration time and the finite size of the
quasi-particles. As we shall see in Section 5, these quantities play a crucial role in the
Kadanoff-Baym result for the lepton asymmetry.

The self-energy for the heavy neutrino N to leading order in A is given by the diagram
in Fig. Bl Tt contains time-translation invariant propagators of bath fields only, and hence
it is also time-translation invariant. As shown in [29], this implies that also the spectral
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function is time-translation invariant, G, (t1,%2) = G, (y), y = t1 — t2. In this case we can
find the general solutions to the Kadanoff-Baym equations without further approximations.

4.1 Equation for the spectral function

Let us now consider the equation for the spectral function of the Majorana neutrino. After
an obvious change of variables, the Kadanoff-Baym equation (3.44]) becomes,

y
C(iv"0y — py — M)G, (y) — / dy'CEy, (y =3 )Gp () =0 (4.1)
0
Defining the Laplace transform
Golo) = [ e 1Gyte) . S50 = [ due o) (1)
0 0
one obtains from Eq. (4T
(i*yos —-py—M - f];(s)) é;(s) =i7y"G, (0) . (4.3)
Using the boundary condition (330,
G, (0) =in"C ", (4.4)
this leads to
- - -1
G (s)=— (i’yos —-py—M - E’(s)) ct. (4.5)
The inverse Laplace transform is given by
ds ~
— () — 22 sy 4.
Golt) = [ 52l (4.6

where Cp is the Bromwich contour (see Fig. [6): The part parallel to the imaginary axis
is chosen such that all singularities of the integrand are to its left; the second part is the
semicircle at infinity which closes the contour at Re(s) < 0.

From the definition of the Laplace transform one can see that the self-energy fl;(s) is
analytic on the real s axis, but has a discontinuity across the imaginary axis. This gives
rise to the spectral representation

S [ dpy 2 (po)
Y = — P 4.7
S =i [ e (1.7
Note that the retarded and advanced self-energies are given by
-  wnR
Y, (iw +€) =X 5 (w) , (4.8)
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S, (—iw —€) = S (w) (4.9)

p

These self-energies are determined by the discontinuity of f); (s),

discf];(—iw) =Y (—iw+e) = X (—iw —€) =X (w) , (4.10)

with the real part given by the principal value, i.e.,

N dpo po) , 1o
Y (—iw +€) = + =¥ . 4.11
( iw =+ €) P/ o T3 p(w) ( )

This representation of the self-energy is familiar from the theory at zero temperature.

We are now ready to calculate the spectral function in terms of the self-energy 7 (w).
Its Laplace transform has singularities only on the imaginary axis. Hence the Bromwich
contour can be deformed as Cp — fljoo:; + [ . (see Fig.[6), which yields for the spectral
function

~ ds o, =
Gp (y) = c %6 pr (8)
:/ dw WG (iw + € —|—/ dw (WG (iw — €)
© dw . ~
_ G —iwy _
—/_oo 27r6 (Gp( iw+€) — Gp( w e)) ) (4.12)

The Fourier transform of the spectral function,

o) = =i [ dye 16, ) (4.13)

oo

18



is then given by

pp(w) = _il - _il ct. (4.14)
y—AJ—izgw) y—A4+§ng)

Here we have assumed that the divergent contribution of the real part has already been
absorbed into mass and wave function renormalization, so that p,(w) represents the renor-
malized spectral density. The finite part of the self-energy is negligable because of the
small Yukawa coupling.

A straightforward calculation yields for the self-energy (cf. [35]),

S (@) =2 (W), | Kolpika). (4.15)

where we have defined

o(p;k,q) = fis(k,q)2m)* (0 (p—k—q) + ' (p+ k +q))

+ fis(k.q)2m) (' (p+k—q) + 6" (p— k +q)) , (4.16)
with the statistical factors
fio(k,q) =1—= fulk) + fo(q) . fis(k,q) = fola) + fi(k) . (4.17)

Note that k and ¢ are on-shell, i.e., k = (k, k) and ¢ = (¢, q), whereas p = (w, p) is off-shell.
The properties of the Dirac matrices and rotational invariance imply

Y (w) = iap(w)’yo + by (w)pPY (4.18)
where

ap(w) =2 ()\Jr)\)n/kk o(p;k,q), (4.19)

bp(w) = =2 (ATA) é/kpk o(p;k,q) . (4.20)

These functions satisfy the relations

ap(—wp) = ap(wp) ,  bp(—wp) = —bp(wp) - (4.21)

Using Eq. (.18) and linearising the denominators in Eq. (£14) in the small quantities
ap(w) and b, (w), one obtains for the spectral density

2wl (w)
w? — w2) + (Wlp(w))

pp(w) = ( ;(+M)CH, (4.22)
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where
wlp(w) = wap(w) + p2bp (w)
=2 ()\T)\)H/ p-kolpk,q). (4.23)
q.k

On-shell, only the first of the J-functions in o(p;k,q) contributes, and one obtains the
width appearing in the Boltzmann equations,

o) = ), 2 [ 9k k) 20) 60— k= ) = T (4.24)

R
which satisfies the relations
Ip(—wp) =T—p(wp) = Ip(wp) - (4.25)

In the zero-width limit the spectral function (£22]) reduces to the familiar expression in
vacuum,

pp(w) = 2msign(w)d(p®> — M?)(y+ M)C . (4.26)

The spectral propagator is now obtained by evaluating the Fourier transform of the
spectral function (£22),

Goly) =i [~ G2 (), (4.27)

oo 2T

which yields the final result

p

G, (y) = (i*yo cos(wpy) + @ sin(wpy)> e Tell2C—t (4.28)

Compared to the free spectral function only an exponential damping factor appears. This
is a feature of the narrow-width approximation, analogous to the scalar field case discussed
in [29].

4.2 Equation for the statistical propagator

We now proceed to the solution of the second Kadanoff-Baym equation (B.45]) which,
choosing t; = 0, reads

t1
(i — Dy — MG (b1, 1) — / OS5 (1 — )G (E 1) = ot — 1) . (4.29)
0
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with the source term
Cp(ty — 1) = — /t2 dt'Sf (t — )G, (' —ta) . (4.30)
0
The general solution of (A29) takes the form
Gt ts) = Gt 1) + GF em(ti 1) (4.31)

where G;’ (t1,19) is the general solution of the homogeneous equation
~ tl ~
C(iy°0y, — py — M)GY (t, t2) — / dt'C%, (ty —t")GE (' 12) =0, (4.32)
0
and the ‘memory integral’, which contains non-Markovian effects, is given by

t1 to
G mem(t1,12) = /0 dt’/o dt"Go (ty — )5S (1" = t")Go (1" — 1) . (4.33)

One easily verifies that the memory integral is a special solution of the inhomogeneous
equation.

In order to evaluate the memory integral we perform a Fourier transform of the self-
energy (y =t — ta),

Gp mem(tl? t2) =

t1 l2 A .
/d_w / dy G5 (yr)e™¥ | B (w) / dysG5 (—ya)e 2 ) e™¥ . (4.34)
27 \J, P p ; P

Since the self-energy is computed with fields in thermal equilibrium, it satisfies the KMS

condition (cf. (B.5T))

1 Bw _

Using the expressions (£I8) and (£28)]) for self-energy and spectral function, respec-
tively, which were derived in the previous section, it is now straightforward to calculate
the memory integral explicitly. Neglecting terms O(I'p) in the numerator, one finds

1

wg — (w+ Ty 2)

/Ot dye"'G; (y) = (4.36)

( (wp sin(wpt) + iw cos(wpt) ) T Te/2 — ]
_l’_

— Py [iw (sin(wpt) — wp cos(wpt) ) e’ HIP/AE 4 )] ) ct,
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t
. 1
—wy Y—( _ 4.
/0 dye "G, (—y) 52— (w—iTy/2) X (4.37)

( (wp sin(wpt) — iw cos(wpt) )e @ Te/DE ]
+

Py [iw (sin(wpt) — wp cos(wpt))ei(“”rirp/?)t + wp] ) ct.

After inserting these expressions in Eq. (@%one can perform the w-integration using
Cauchy’s theorem. The integrand has two poled] in the upper-half plane at w = il', /2wy,
and two poles in the lower-half plane w = —iI', /2 £ w,. The choice of the contour depends
on the sign of the time variables in the exponent. The result is a sum of the contributions
from all four poles. The expressions appearing in the numerator can be simplified by means
of Eqs. (£21)) and (£24) for self-energy and equilibration width, respectively,

M — M — M —

p Wp Wp

M —P’Y) - M — py . M — py

0 0 0

— )Y (= ( — 7) =20 < — 7) )
(’Y oy p( wp) (7 oo Upl7 o

: (4.38)

(4.39)

Using these expressions one finally obtains for the memory integral, changing variables
from (t1,%2) to (¢, y),

Gy mem(t, ) = (4.40)

1 M —
—5 tanh (%) (i*yo sin(wpy) — a4 cos(wpy)> (e Talvlz _e~Talt) Ot

Wp

Asymptotically, for ¢ — oo, the memory integral becomes

1 M —
G5 (t,y) = —= tanh <%> (i% sin(wpy) — el o cos(wpy)> e~ Talul/2zo-1
> 2 o
(4.41)

One easily verifies that G°I(#,y) indeed represents the equilibrium statistical propagator.
For the Fourier transform one obtains

Ggeq(w) :/_ dyei“yG;eq(y)

oo

Lo (&u) - 2wl (w) Ao

2"\ 7)) @ — et + (@)
1 w
= —tanh P pp (W) (4.42)
2 2
"There are further poles at w, = +in(1 4+ 2n)/3, n integer. However, their contribution to G o, is

O(Tp/M) and therefore negligible.
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= L tanh (%‘") G (w) | (4.43)

i.e., the KMS condition (cf. (3:51])) is indeed satisfied.

In order to obtain the general solution of the inhomogeneous Kadanoff-Baym equation
we have to add to the memory integral the general solution of the homogeneous equation
(£32). This equation is identical to the Kadanoff-Baym equation for the spectral function
(£1)) with ¢, playing the role of an additional parameter. Hence, the functional dependence
of G;(tl, ty) on the first argument ¢, can be obtained in the same way as for the spectral
function. Applying the Laplace transform to (£32) one finds

~+ — 1 SUNARS
Gp (S, tg) = Z.f}/os “py— M — i*(s) Z’}/UGP (0, t2) . (444)

The inverse Laplace transform then gives

The function G’;—(O,tg) can now be determined by the symmetries (8.28) and (B:29) of
G’;:(tl,tQ) , which imply

GA:; (tl, tQ)T - _G’;(tQ, tl) . (446)
This yields the result
GA:; (tl, t2) == —G; (tl)C’YUG;(O, 0)’}/0071G; (_t2) s (447)

where G £(0,0) is an antisymmetric matrix.
Let us first consider the case of thermal initial condition,

G£*(0,0) = @ tanh <%“’> c L (4.48)

Wp

From Eq. (£47) one then obtains

i | M-
G (ty, t2) = -3 (i’yg sin(wpy) — i 04 cos(wpy)> tanh (%) e Talitt2)/20—1
Wp
(4.49)

Adding this expression to the memory integral G’;mem one obtains the equilibrium statis-

tical propagator C?;;eq which is independent of ¢ = (¢; + t3)/2. Hence, as expected, the
equilibrium statistical propagator is a solution of the full Kadanoff-Baym equation.

23



We are particularly interested in the case of vacuum initial condition, which corre-
sponds to zero initial abundance for heavy neutrinos in the Boltzmann case. The vacuum
propagators are obtained from the equilibrium ones in the limit 5 — co. Hence we choose

M—-py_ 4
vaac(0,0) — TC . (450)
P
From Eqs. (4.31)), (4.40) and (4.47) one then obtains the full solution for the statistical
propagator, which interpolates between vacuum at t = 0 and equilibrium for ¢ — oo,

. M—-p
G;“ (t,y) = — (Z’YO sin(wpy) — T’y cos(wpy)>
p
X E tanh (%) e Tell/2 4 fqu(wp)erpt] c (4.51)

This result will be the basis for the calculation of the lepton asymmetry in the next section.
All heavy neutrino propagators can be obtained as linear combinations of the spectral
function G (y) and the statistical propagator G (,y). A full list is given in Appendix A.

Finally, let us emphasize that the solution of the Kadanoff-Baym equation for the
statistical propagator is not related to the equilibrium propagator by a simple change of
the distribution function from fy'(w) to some nonequilibrium function fy'(¢,w). This is in
contrast to the assumption made in the derivation of Quantum Boltzman equations [16117,
19,21]. For a system close to equilibrium this assumption leads to a valid approximation
of the Kadanoff-Baym equations [9], but in general it is not justified.

5 Lepton asymmetries

We are now ready to calculate the lepton asymmetry which is generated during the ap-
proach of the heavy Majorana neutrino N to thermal equilibrium. Our starting point is
the flavour non-diagonal lepton current, which is obtained from the statistical propagator,

Jii(@) = —tfh"sﬂj(fv,fﬂ')]x'% . (5.1)

Since we consider a spatially homogeneous system, S;]r- (x,2") only depends on the difference
7 — ', and it is convenient to perform a Fourier transform. The zeroth component of the
current, the ‘lepton number matrix’, is given by

Loy (8, 1') = —t1130S s (1, )] (5.2)
One easily verifies that for free fields in equilibrium

Lyii(t, t) = fu(k) — fu(k) , (5.3)
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Figure 7: Two-loop contributions to the lepton self-energies Hf, which lead to a nonzero
lepton number densities.

where fj; and f;; are the distribution functions of leptons and anti-leptons, respectively.

The lepton number matrix Ly;;(t,t') can be directly computed from the self-energy cor-
rections to the statistical propagator shown in Fig. Bt the external lepton couples to Majo-
rana neutrino and Higgs boson, and also to Higgs boson and Higgs-lepton pair. Complex
Yukawa couplings and quantum interference then lead to a non-vanishing lepton asymme-
try.

For a homogeneous system, the Kadanoff-Baym equation for the statistical propagator
(cf. (3:40))) yields for each Fourier mode the equations

t
(i1, — k) S (t,1') = / AT (1 1) S (11, 1)
0

t/
_ / 4T (5,450 (11, 1) | (5.4)
0
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- 4
St () (—in® Dy —Ky) = — / dt S (8, 0T (11, )
0

t
+/ dt; Spy (8, )T (8, 1) . (5.5)
0

One then obtains for the time derivative of the lepton number matrix, dropping flavour
indices (cf. [18])
Oy Lac(t, 1) = itr [(i700, + i700y ) S (t,1)] ,_,

= itr [ iv00r — k) ST (t, ) + Sh () (iv° Oy +k'y)]

t=t'

tl
_ztr{ dtl () S () — /dtlﬂ;(t,tl)SLk(tl,t’)
0

t
+ / dt, S (8, )T (1, 1) — / dtlst(t,tl)n;(tl,t')] . (5.6)
0 0

t=t'

Using properties of the trace and the identity between integration domains

t t1 t to t t
0 0 0 0 0 0

one finds
k(t,1) —z/ dtI/ dty tr [T (t1, t2) St (ta, t1) — T (81, 2) iy (2, 11)] (5.8)

Note that ﬂff and Slf are self-energies and propagators of the full theory including gauge
interactions of lepton and Higgs fields.
Using the relations for propagators and self-energies

Szrk: (S +S5) 5 S =1(S0 — Srk) (5.9)
M= 5 (T +T) L T =i (T — 1) | (5.10)

one obtains from Eq. (5.8]) an equivalent useful expression for the lepton number matrix,
Lu(t, ) / dt1/ ot 112 (b1, 1) S5 (b 1) — TS (b, 1) 2 (far )] - (5.11)

We want to calculate the lepton asymmetry to leading order in the small Yukawa cou-

pling A\, which can be achieved in a perturbative expansion. For the heavy neutrino propa-
gator appearing in the loop, the departure from the equilibrium propagator is important

8We thank C. Weniger for helpful discussions.
9We show in Appendix D that the equilibrium part of the propagator does indeed not contribute to
the asymmetry.
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which has been evaluated in the previous section,
Gp(tl,tQ) - Gepq(tl - t2) + Gp(tl,tQ) . (512)

Lepton propagators and self-energies have large equilibrium contributions dominated by
gauge interaction, with small corrections O()\?),

SLk(tla tg) - Sz(il((tl - t2) —+ 65Lk(t1, tg) 3 (513)
ﬂk(tl, tg) - ﬂiq(tl - t2) + (Sﬂk(tl, tg) , (514)

which include CP-violating source terms and washout terms. Clearly, inserting TT;" and
Sitin Eq. must yield Ly*(¢,¢) = 0, since no asymmetry is generated in thermal
equilibrium ™l As discussed in Section 2, we also neglect washout terms for simplicity. One
then obtains for the lepton number matrix Ly (¢,t) to leading order in A,

t t
Lk(t, t) = Z/ dtl / dtgtr [(Sﬂlz (tl, tg)Sz?j (tg — tl)
0 0
—OTT (t1, 82) STie (b2 — t1)] (5.15)

Here 0TTy is given by the two-loop graphs shown in Fig. [, which have to be evaluated
with equilibrium propagators for lepton and Higgs fields and the nonequilibrium Majorana
neutrino propagator.

The equilibrium propagators with standard model gauge interactions remain to be
evaluated. In the quasi-particle approximation one simply replaces energies k£ by complex
quasi-particle energies Q = (k2 4+ m2)"/2 + iy(k). In the following we shall consider
two approximations: free equilibrium propagators with zero chemical potential as given in

Eqs. (A1), (A.2) and (A7), (A.8),
AP W) = ALW) s ST (W) = Sii) (5.16)

and, as a rough approximation to full thermal propagators, free equilibrium propagators
modified by thermal damping rates,

AP (y) = A (y)e W S5 (y) = Shc(y)e (5.17)

Remarkably, thermal widths turn out to be qualitatively more important than thermal
masses, as we shall explain in Section 6.
The two contributions to the self-energy dTTy;; (cf. Fig. [),

OThhas (t1,12) = Ty (t1,12) + Ty (1, £2) (5.18)

ONote that thermal equilibrium does not correspond to a Gaussian state [42]. Therefore one has to
include contributions from n-point functions which are not determined by equilibrium 2-point functions.
However, such terms do not contribute to leading order in the Yukawa coupling A.

27



factorize into a product of Yukawa couplings, which contains the flavour dependence, and
a trace of thermal propagators,

M (f1,12) = —3i\, (nA*)Jlﬂ Dt t) (5.19)
n1(<2z')j(t1a ty) = 3i(n* )‘)il )\jlﬂk (t1,t2) . (5.20)

In the case of free equ1hbr1um propagators for lepton and Higgs fields, we obtain for the
self-energies ﬂf( and ﬂ (1.2)<

d3 i
]T tl,tg / dt?)/

x [G5 (t, tg)sk, (t2 — tg)A}; (t2 — t3) A5 (t2 — 1)

— G”(tl,tg)sk, (tz — t3) Ag (2 — t3) A5 (t2 — 11)] Pp (5.21)
3/
<G~ [ [0
x Gl (h, t3)Sk’( 2 — t3)A;, (ta — t3)Ag (t2 — 1)
— G5 (t1,t3)Spr (s — t3) AZ (s — t3) A7 (t2 — 11)] Pp (5.22)

3/
> (¢, 1) / /qd

x [G5 (t2 t3)Spi (5 — 1) AL (ts — 1) AL (t2 — 1)
— G (ta,t3) S (ts — 1)) AS (ts — 1)) A5 (ta — 01)]1 Py, (5.23)

3 3/
< (¢, 1) / /dqd

X [G2(ts, t3)Sg(ts — t1) AL (B — )AL (B — 1)
— G2 (b, t3) St (83 — 1) AY (B — 1) AL (t2 — )] P (5.24)

Due to the chiral projections at the vertices, only the scalar parts of the nonequilibrium
Majorana propagators contribute, which are the same for G, G5, G}' and G2 (cf. Egs.

(A19) - (A24)),
PLGy(t,t)CPL = Gp(t, 1) Pr, Gplt,t) = M cos(wp (t — 1)) f1l (wp)e P2
Wp
(5.25)

The number of terms which contribute to the asymmetry Ly (¢,t) can be significantly
reduced by means of the following symmetry properties of the massless propagators:

Se(y) = CSey)C™, Sk (y)" = CSE(y)Ct, (5.26)
Aq(y)' =A5) , Ag () = A (~y) , (5.27)
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S (W) = 1557k (=y)7s 5 Sk () = 1551 (=y)7s (5.28)
As(y) = A7 (—y) , Ad (y) =AY (—y) . (5.29)

Employing these transformation properties one can derive the following useful relations
among different contributions to the integrand of Eq. (5.11)):

*

tr [ﬂ( D> (1, ) SE (8 —tl)] = —tr [ﬂ( <ty ) ST (¢ —tl)] , (5.30)
tr [ﬂfj”(tl,h)sﬁ (ty — tl)] = —tr [ﬂf)<(t2,t1)sg(t1 - t2)] . (5.31)

Using these relations one obtains from Eq. (5I1]) the compact expression for the lepton
asymmetry

Lyi(t,t) = 12 Im{X}; (nA*),,}
/ dt, / dts Re tr (tl,tg)Slf(tQ—tl)D . (5.32)

Since Im{\}; (nA*),, } = 167e;;/(3M) (cf. Eq. (2.12)), the leading dependence of the flavour-
diagonal lepton asymmetry Ly;;(¢,t) on the Yukawa couplings is identical to the dependence
of the difference fi;(¢, k) of lepton and anti-lepton distribution functions appearing in the
Boltzmann equations.

To proceed further in the evaluation of Ly;;(t,t), the following relation can be used to
simplify the integrand,

) = Sc(W)Ag(y) =
(coth (%) cos(ky) cos(qy) — tanh (%) sin(ky) Siﬂ(qy)>

M —ky (tanh <%> cos(ky) sin(qy) + coth (%) sin(ky) COS(qy)> } - (5:33)

S (y) A2 (y
@(_?J) {,yo
q

(
2

One then obtains for the real part of the sum of products of thermal lepton and Higgs
propagators (y;; = t; —t;),

Re(tr[(S (y31)A2 (y31) — S (y31)Ag (931))5<(y21)}A;(y21)) -
_@(y13 [ ( ( ) cos((k + q)y21) + cos((k — Q)y21))

1644’
+ tanh ( ) cos((k +q y21)—COS((k—Q)?J21))>

(coth< ) cos((k" + ¢")ys1) + cos((k' — Q)y:n))
+ tanh (52 ) (cos((k' +q')ys1) — cos((k' — ¢ )?J31))>
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!

+kk'klf (coth (5 ) (sm((k + q)y=1) + sin((k — q)yzl))

+ tanh ) sin((k + q)y21) — sin((k — Q)ym)))
X <coth <5—> (sm((k' +q")yz1) + sin((k' — ¢ )y31))
+ tanh (%’“) (sin((k’ 4 q')ys1) — sin((k' — q')ygl))> } L (5.34)

Defining the linear combinations of lepton and Higgs distribution functions (cf. (2:6])),

fio(k,q) = 1= fik) + fola) »  fo(k,q) = filk) + fo(a) , (5.35)

and using the relations

coth (62 ) + tanh (ék> =2fis(k,q) , (5.36)
coth (62(]> — tanh (%) =2fis(k,q) , (5.37)
one finds

Lyii(t, 1) = —€y 327r/ dtl/ dtg/ dt3/ — [ (wp)e —5(t+s) cos(wpya1)

x {(fw(ka oo+ ) + T ) os(h - )
(s K cos((k' + ) + o k', ) cos((K' = ¢)yn)

() snCs-+ ) + ol ) sin( (5~ )

kE'

_|_

X (fms(k’, q')sin((K' + ¢')yas) + fis(K', ¢') sin((k" — q')yzg)) )] , (5.38)

where we have again used the notation

/ /27r32q B

The functions f;, and fi4 are well known from Weldon’s analysis of discontinuities in
finite-temperature field theory [35]. The sum of statistical factors

fis(ky @) = (L= fulk)) (1 + fo(q)) + fi(F) fo(q) (5-39)
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corresponds to decays and inverse decays of the massive Majorana neutrinos whereas

fio(k,q) = fola)(1 = fi(k)) + fulk) (1 + fo(a)) (5.40)

accounts for their disappearance or appearance where a single quant, lepton or Higgs, is
absorbed from or emitted into the thermal bath. The function f;; contains the vacuum
contribution, i.e., fjy — 1 as 3 — 00, whereas ﬁ¢ — 0.

We now have to perform the three time integrations in Eq. (5.38). It is convenient
to express the products of cosine’s and sine’s as sum of products of exponentials. Each
term then becomes a sum of four exponentials, where the energies w, k + ¢ and k' + ¢
appear in different linear combinations, and the four complex conjugate exponentials. As
an example, consider the integral

t t to
:/0 dtl/o dt2/0 dt?’efiﬂltl+iQQt2+iQ3t36*g(t1+t3), (541)

with Q) = wp—k—q, Q3 =wp—¢' —k', and Qy = Q —Q3 = k' +¢'—k—q. A straightforward
calculation yields

-r (e’” + cos(Qat) — e 2 (cos(t) + COS(Q3t))) + O(t)

I(t) + (1) = T ,

(5.42)

where

20, + T

o(t) =~

(sin(92t) — e (sin(Q,) — sin(Qgt))) (5.43)
is of higher order in I' at ;3 = 0. Hence, this term does not contribute to the lepton
asymmetry at leading order in I', i.e., in the Yukawa couplings.

The two contributions in Eq. (5:38]), without and with the prefactor k-k'/(kk'), add up
to a single term proportional to k - k'/(kk') where k - k" denotes the product of 4-vectors.
This is a consequence of Lorentz invariance of the vacuum contribution. The full result is
now easily obtained from Eqgs. (2.38) and (5.42) by adding the contributions with reversed
sign of ¢ and/or ¢', accompanied by the corresponding substitution fis — fio. Omitting
the subleading terms O (cf. (5.43)), one finally obtains

Lyij(t,1) ZL,{” (5.44)

where

kK
falth) = e 87 | ) o8 Y Lgq (e (5.49
’6 :':

31



and

Sis(k, @) fis (K, ¢')
(wp — ek + )2+ 5) ((wp — B + ¢)) + )

X (e‘” + cos[(a(k + q) — B(K' + ¢'))t]
— 77 (cos[(wp — alk + )] + cos[(wp — Bk + ql))t])> ; (5.46)

flﬁb(kaq)fld?(k,aql)
(wp — alk — ) + L) ((wp — B + ) + )
x (7 + cosl(a(k — q) = B(K + ')

IA’llc,q,q’ (e, B) =

Ly qq(to, B) =

— 77 ((cos|(wp — a(k — 9))1] + cos|(wp — BK + q'))t])) . (547)
B lt:0,6) = fw(’f’zf) ot d) :
e (wp =k +9)* + T)((wp = BF =)+ )
x (e ™+ cosl(a(k + q) = B(K — ¢'))1
— ™% (cos[(wp — alk + q))t] + cos[(wp — B — q'))t])) : (5.48)

Jio(k, @) fis(K', ¢)
(wp — ek — @))> + ) ((wp — B — )2+ )

x (e + cosl(alk — ) = B0 = )1
— ™% (cos[(wp — a(k — q))t] + cos|(wp — B(K — q'))t])) L (5.49)

This expression contains off-shell and memory effects which are not contained in Boltzmann
equations. A detailed comparison will be given in the following section.

So far we have neglected the thermal damping widths of lepton and Higgs fields due
to gauge interactions, which are known to be much larger than the width of the heavy
Majorana neutrino, v; ~ vg ~ ¢°T > N2M ~ T, for M < T. To estimate their effect we
replace the free equilibrium propagators by

AP (y) = A (y)e @M SpF(y) = SiE(y)e MM (5.50)

i’i,q,q’ (h e, B) =

This has a drastic effect on the calculation described above. For the dominant term in
Eq. (5:45), Ly oq With a = 8 = 1, where the energy dominators can be O(I'?), one now
finds (v =% +7s),

_ k- K
Lkii(ta t) = —€4; ].671'/ ;
a9’ kk Wp

!/

gl
(wp =k = @) +7*)((wp = K = ¢')? +7?)
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X fio(k, @) fio (K, ') ¥ (wp)

1 —I't
X5 (1—e", (5.51)

where v = v(k, q) and 7' = +/(k',¢'). Note that now all memory effects have disappeared.

6 Boltzmann vs Kadanoff-Baym

Let us now consider in detail the relation between the two results obtained for the lepton

asymmetry: Eq. (2Z11)) from the Boltzmann equations and Eqs. (5.44) - (5.49)) and (5.51)
from the Kadanoff-Baym equations.

Clearly, the overall CP asymmetry is identical in both cases and also the momentum
integrations are very similar. Compared to the Boltzmann result the Kadanoff-Baym result
has an additional statistical lepton-Higgs factor and expected off-shell energy denominators.
Furthermore, there are 16 different terms corresponding to the various combinations of
decay and inverse decay, appearance and dissappearance. The most striking difference
is the time dependence of the integrand: the Boltzmann result has a simple exponential
behaviour whereas the Kadanoff-Baym result has terms rapidly oscillating with time with
frequencies O(M) > I', a manifestation of memory effects.

The time-dependence is contained in the integral Z(t) given in Eq. (.41)). Defining

912914—%1—‘, 932934—%1—‘, (61)

and using the identities t3 = t; + (to —t1) + (t3 — t2) and Qy = Q; — Q3, one has (cf. (&41])),

t t—t1 0 L -
I(t) :/ dtle_rtl/ dtgl/ dtgg 6191t21+293t32 s (62)
0

—t1 —ta

where ¢;; =t; —t;. After performing the time-integrations, one obtains the result

I(t) = ﬁ [@ (e = 1) (e®i—1) - %Ql (72 1) (et - 1)} . (6.3)

which satisfies
Z(0)=7'(0)=Z"(0) =0, Z"(0)#0. (6.4)
For large times, ¢t > 1/T", there remains a term oscillating with time,

L1 1,
I(t) ~ — |—= G
O~ lar o © )
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This is in contrast to the Boltzmann result whose time-dependence is given by

1— 6—Ft

T5(t) T (6.6)

with
Ip(0) =0, Zp(0)#0, (6.7)

and Zg(t) ~ 1/T = const for large times ¢ > 1/T.

Where is the Boltzmann result hidden in the Kadanoff-Baym result, and in which limit
is it recovered? To answer this question it is instructive to consider a modified integral
Z(t), where thermal damping rates y ~ ¥ ~ ¢*T are included, which affect the dependence
on the time differences |ty — t1| and |t3 — to| (cf. Fig. [D),

t t—t 0 ) - ,
_’Z'(t) :/ dtle—rtl/ dtm/ dtzo 6191t21—’Y|1521| oS2ataz— [t32] ) (68)
0

—t1 —ta

Compared to Eq. (5.41)) the main difference is that the damping term in the ¢5;-integration
changes sign at 5y = 0. This is in contrast to the damping due to the Majorana neutrino
decay width T'.

Carrying out the time-integrations one now obtains the result

_ 1 1
T(t) = — _ _
=55 [(ml (i )
1

it (6(*i91‘+7)t _ 1)

_ _ (it _ q
(i€ + ) (=82} — ) <6 )

_ L C Y (e(*ifl{ﬂ)t _ 1)

(i — v — ) (=iS2 + )

]_ SO *

+— — (e(*ZQ1*’Y)t _ 1)

(i€ + v — ) (=i — )

2%y 1—e Tt 9 B

+72 ! 2 - eY / ; J 12 2 (6(2937)t_1):| '

B+ T (1% + ) (122 — )% = 7?)

(6.9)

The first four terms reduce to Eq. (63) for v = v/ = 0. Particularly interesting is the
last line in Eq. (6.9), which is a contribution from the point to; = to — t; = 0, where
the damping term changes sign. This local contribution contains the only term which is
enhanced by 1/T" and has Boltzmann-like time-dependence,

_ 2,)/ 1— e—Ft
7 Tp(t) = — _ _
0280 G @A T

(6.10)
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Note that as consequence of thermal damping all oscillatory terms are exponentially sup-
pressed for times ¢t > 1/7,

Tt 1 2y 1—e Mt N 2
Qs+ [Qf+9* T (1% +7)((1Q — ) = 7?2)
+ ! - ! (6.11)
(i + ) (=i —7) (€ +v—) (=i =) ] '

The Boltzmann-like term (6.I0), which originates from the point ¢, = ¢;, vanishes for
v=0.

What is the order of magnitude of the lepton asymmetry (5.44) relative to the Boltz-
mann result in the case v = 4/ = 0?7 The Kadanoff-Baym result depends on 7 = T't,
like the Boltzmann result, and in addition on the dimensionless parameter I'/M < 1. In
appendix C we shown that

Ly (t, 1) r

ot F) — 0, for 7
Hence, in this zero-width limit, due to rapid oscillations of the integrand, the lepton asym-
metry obtained from the Kadanoff-Baym equation is at least O(I'/M) relative to the Boltz-
mann lepton asymmetry.

We are thus led to the conclusion that the lepton asymmetry obtained from the
Kadanoff-Baym equations does not contain the Boltzmann result as limiting case as long
as free equilibrium propagators are used for lepton and Higgs fields. This may not be too
surprising. After all, the underlying assumption in our calculation has been that (gauge)
interactions, much faster than heavy neutrino decay, establish kinetic equilibrium for lep-
tons and Higgs particles. These interactions will unavoidably lead to thermal damping
widths much larger than I'. If these interactions are not taken into account in the calcula-
tion of the lepton asymmetry, one misses the main contribution and obtains a misleading
result. This means that at present the best estimate for the full quantum mechanical lep-
ton asymmetry is given by Eq. (5:51]), which leads to a temperature dependent suppression
compared to the Boltzmann result.

Note that the proposed incorporation of thermal damping rates leads to a Boltzmann-
like result, Eq. (5.21]), which is valid for ¢ 2 1/T". For ¢t < 1/T, all terms have to be kept,
and one has 0; Ly (t,t)|1—o = 0, which is a property of the exact result (5.8), contrary to the
Boltzmann approximation.

— 0, 7=TI¢ fixed . (6.12)

7 Numerical analysis

Let us now quantitatively compare the Boltzmann result (2Z.14]) for the lepton asymmetry
fLi(ta k) = fli(ta k) - f[i(ta k)
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with the Kadanoff-Baym result for the lepton asymmetry
Lyi (t, 1) = —tr[v0S) 1 (6, 1)] - (7.1)

For free fields in thermal equilibrium both expressions are identical. For the Kadanoff-
Baym result we use Eq. (5.51) which includes the estimated effect of thermal widths for
lepton and Higgs fields.

As shown in Appendix C, the Boltzmann result (2I4) can be reduced to a two-
dimensional momentum integral (cf. (C.13)),

€ii 1 ,
fuilt, k) = == Fa(k, 8) 5 (1—e ") (7.2)
where we have defined

dp / ! kdk’

Lo

2w k ml}\ﬂ 2w k’—M2 .
. (1 B p2pk pzpk/ ) fis(k,wp = k) f5! (wp) 5 (7.3)

here w, = /M?+ p?, the bracket represents the product of 4-vectors divided by the
corresponding energies, k - k'/(kk'), and the integration boundaries are

|M2 — 4k2| / !
min(k) = ————, kmln - ) kmax
Prmin (k) P (p) =
The dependence on temperature (5 = 1/T') enters through the equilibrium distribution
functions of Higgs particles and leptons,

wp — P
2

Wp TP
—

(7.4)

fio(k,q) =1— filk) + fo(q) , qa=wp—Fk, (7.5)
AR = s fola) = s i) = (7.6)

efk +17 efor +1 7

The Kadanoff-Baym result (5.51]) for the lepton asymmetry, which includes effects of
thermal damping, takes the same form as the Boltzmann result

Ekii(t; t) = —4—“ FKB(k 5) (1 — e*Ft) . (77)

Since the integrand of the momentum integrations contains two delta-functions less than
the expression for the Boltzmann result, the function Fxg(k, $) can only be written as a
four-dimensional integral (cf. (C.19)),

11 max(
Fxn(k :—2%/ dp/ kdk/ dq/ dq—
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2 2 2 92 2 2
PPHE ¢+ —q ¢
X (1 - 2pk 2pk’ ) fio(k, @) fio(K', ¢) ¥ (wp)

7Y
' (wp =k —@)2 +9?)((wp — K — ¢')? ++2) (7.8)

with the integration boundaries

@ =ppxkl, d.=Iptk|. (7.9)

For the thermal widths we use the estimate v ~ ' ~ %T ~ 0.1 T (cf. [44]). Note that
the damping in a non-Abelian plasma is considerably stronger than in an electromagnetic
plasma at the same temperature.

It is instructive to compare the Boltzmann and Kadanoff-Baym results with the pre-
diction of quantum Boltzmann equations. As shown in [19,20], these equations lead to
an additional statistical factor compared to Boltzmann equations, which implies for the
lepton asymmetry

Fon(k, B) = / dp / el kdk’ (7.10)

mln mln

. (1 - 2wpk - M2 2wk’ —

M2
2pk 2pk’ ) fio(kywp — k) fio(K',wp — E') f (wp) -

In [19,20], this enhancement has been included in an effective, temperature-dependent CP
asymmetry.

In Fig. 8 Boltzmann and Kadanoff-Baym results for the lepton asymmetry are com-
pared. At momenta k ~ 0.2, where both distributions peak, the differences are less than
20%, at larger momenta they reach at most 50% (cf. Fig. [0). At temperatures 7" ~ 0.3,
where leptogenesis takes place for typical neutrino parameters [30,45], differences are es-
sentially negligible.

Boltzmann and quantum Boltzmann results for the lepton asymmetry are compared
in Fig. @ At momenta k ~ 0.2, where both distributions are maximal, the differences
can exceed 100%, and they remain large also at larger momenta (cf. Fig[I(). An enhance-
ment O(100%) at T' ~ 1 is qualitatively consistent with the enhancement found for the
temperature-dependent CP asymmetries in [19]20].

The Kadanoff-Baym result strongly depends on the size of the thermal damping rates.
For v,v" — 0, off-shell effects dissappear, and the Kadanoff-Baym result approaches the
quantum Boltzmann result. Numerically, already for v ~ 4" ~ 0.01 T the differences
are negligible. However, in a non-Abelian plasma, damping rates are large and, as a
consequence, they almost compensate the enhancement due to the additional statistical
factor contained in the quantum Boltzmann as well as the Kadanoff-Baym result. We
conclude that, according to our estimates, the conventional Boltzmann equations provide
rather accurate predictions for the lepton asymmetry.
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Figure 8: Comparison of the lepton asymmetry distribution functions obtained from Boltz-
mann equations (B, dot-dashed line) and Kadanoff-Baym equations (KB, full line) for three
different temperatures; temperature and momentum are given in units of M.

38



T=1
25F A T T
[ (N ]
[ / \
20F / \\\ --B 1
t I
L \
L \ — B
o) 15: // \\ Q -
= R
X L AN
L 1.0; ,’ P N \\\ q
L /' ~ N \\\
Lo . A
05F ~el el ]
[ T »\:\T:\\‘~
Y| S C ‘ ]
0.0 0.2 04 0.6 0.8 1.0
k
T=05
i / \\\
0.15} / . ]
L , \\ _ . B
L ) .
/ AN o QB
& o1of P 1
QT s ~ AN
I ! AN
r / SN
0.05+ I 0 i
L ) N
n S~ T~ ]
i IS
I -
0007 '// 1
A el 0
0.0 0.2 0.4 0.6 0.8 1.0
k
T=0.3
L // \\\
0015 S _.B ]
// K \\ \\
- L /( ,/' » \\\ T QB
& o010¢ /! 1
; ! NN
E/ [ ///v .\\\
L 1 NN
0.005- U AN |
r 1 RN
I / RN
[ / o
0.000 - ‘ ‘ ‘ ]
0.0 0.2 04 0.6 0.8 1.0
k

Figure 9: Comparison of the lepton asymmetry distribution functions obtained from Boltz-
mann equations (B, dot-dashed line) and quantum Boltzmann equations (QB, dashed line)

for three different temperatures; temperature and momentum are given in units of M.
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Figure 10: Ratio of Kadanoff-Baym and Boltzmann lepton asymmetries (upper panel) and
ratio of quantum Boltzmann and Boltzmann lepton asymmetries (lower panel) for three
different temperatures; temperature and momentum are given in units of M.
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8 Summary and conclusions

The goal of leptogenesis is the prediction of the cosmological baryon asymmetry, given
neutrino masses an mixings. In a ‘theory of leptogenesis’, it must be possible to quantify
the theoretical error on this prediction. This requires to go beyond Boltzmann as well as
quantum Boltzmann equations, such that the size of memory and off-shell effects can be
systematically computed.

In the present paper we have shown how to calculate the lepton asymmetry from first
principles, i.e., in the framework of nonequilibrium quantum field theory. Our calculation
is entirely based on Green’s functions, and it therefore avoids all assumptions which are
needed to arrive at Boltzmann equations.

Two key ingredients make the problem solvable. First, the thermal bath has a large
number of degrees of freedom, all standard model particles, compared to only one parti-
cle out of equilibrium, the heavy neutrino. Hence, the backreaction of its equilibration
on the temperature of the thermal bath can be neglected. Second, the heavy neutrino
is only weakly coupled to the thermal bath and we can use perturbation theory in the
corresponding Yukawa coupling .

The weak coupling of the heavy neutrino to the bath allowed us to obtain analytic
expressions for the spectral function, which do not depend on initial conditions, and for the
statistical propagator. In Section 4 we have discussed two solutions of the Kadanoff-Baym
equations, which correspond to thermal and vacuum initial conditions. The statistical
propagator which interpolates between vacuum at ¢ = 0 and thermal equilibrium at large
times can then be used in the computation of the lepton asymmetry.

Thermal leptogenesis has two vastly different scales, the width I' of the heavy neutrino
on one side, and its mass M, temperature 7" of the bath and thermal damping widths v
on the other side,

I~ MM < y~g*T < T <M.

~J

Typical leptogenesis parameters (cf. [2]) are I' ~ 107 M, v ~ 0.1 T, T ~ 0.3 M, M ~
10'9 GeV. The existence of interactions in the plasma, which are fast compared to the
equilibration time 7y = 1/I" of the heavy neutrino, is always implicitly assumed to justify
the use of Boltzmann equations for the calculation of the asymmetry, but their effects are
usually not explicitly taken into account.

The main result of this paper is the computation of the lepton asymmetry in Section 5,
where the nonequilibrium propagators of the heavy neutrino and free equilibrium propaga-
tors for massless lepton and Higgs fields are used. Compared to Boltzmann and quantum
Boltzmann equations, the crucial difference of the result (5.44) - (549) are the memory
effects, oscillations with frequencies O (M), much faster than the heavy neutrino equilibra-
tion time 7y = 1/T". These oscillations strongly suppress the generated lepton asymmetry
Ly(t,t) compared to the Boltzmann result fr (¢, k). In fact, as shown in appendix C, the
ratio Ly(t,t)/ fr(t, k) vanishes in the ‘zero-width’ limit I'/M — 0, with 7 = I't fixed.
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This situation changes when the interactions, which in the Boltzmann approach are
assumed to establish kinetic equilibrium, are explicitly included in the calculation. Lepton
and Higgs fields in the thermal bath then acquire large thermal damping widths v ~ ¢*T,
which cut off the oscillations. As a consequence, the predicted lepton asymmetry is similar
to the quantum Boltzmann result, except for off-shell effects which are now included. For
small damping widths, v < T, the off-shell effects are negligible. They are large, however,
in the standard model plasma. According to our calculation, using v ~ 0.1 T', the damping
effects essentially compensate the enhancement due to the additional statistical factor of
the quantum Boltzmann equations. We conclude that, after all corrections are taken into
account, the conventional Boltzmann equations again provide rather accurate predictions
for the lepton asymmetry. Note that the classical Boltzmann behaviour emerges at large
times, ¢ 2 1/T" > 1/7, while at early times all terms are of similar magnitude, and all
quantum effects have to be kept.

As already emphasized in [§], it is of crucial importance to include gauge interactions in
the Kadanoff-Baym approach to make further progress towards a ‘theory of leptogenesis’.
It remains to be seen whether the qualitative effects of thermal damping, as discussed in
this paper, will then be confirmed or whether new surprises are encountered.
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A Thermal propagators

In the following we list all propagators, which are needed in the calculation described in
Section 5, as functions of relative time y = ¢, — ¢, and total time ¢ = (¢; + t2)/2.

e Free massive scalar (wq = /m? + q?)

Ay) = - sin(eay). (A1)
2400) = g corh (52 ) costean) (4.2)
A = 51 (coth (%52 costny) — sinegl) ) (43)
— AL(y) - Lsign()A; (1) |
22(0) = g (ot (5 ) costean) + fsinfnl) (A.4)
= AJ() + o)A, (1)
25000 = g (oot (%5 ) cosr) — isintean) ) (A.5)
25000 = g (oot (%5 ) ot + isintean)) (A.6)
o Free massive Dirac fermion (wy = v/m? + k)
S () = im0 cos(wicy) + T sin(wiy) | (A7)
S (y) = —% tanh (%) (i% sin(wiy) — m;:w COS(wky)> , (A.8)
Sw="2 <Cos(wky)sign(y) _ i tanh (%) sin(wky)>
# 2 (i () cos(ins) — isinfeal) (A.9)
=Sy (y) - %Sign(y)sﬁ (v)
Se'ly) = % (— cos(wiy)sign(y) — i tanh (%) Sin(wky)>
+ m2;:‘7 <tanh (%) cos(wicy) + isin(wk|y|)> (A.10)
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= 57 () + gsign(y)Sic(v)

5¢0) = 2 (costeaa) — sty (22 sinfe)

+ m2;i<’y (tanh <%> cos(wyy) — isin(wky)> , (A.11)
Se(y) = % <— cos(wxy) — i tanh <%> sin(wky)>
+ m2;i<’)’ (tanh <%> cos(wyy) + isin(wky)> : (A.12)

The propagators for a massless left-handed fermion are obtained by the substitutions
wk — k = |k|, Si- — PrSy, where P, = (1 —v;5)/2.

e Free massive Majorana fermion (w, = y/M? + p?)
M—p

Go(y) = (i% cos(wpy) + J sin(wpy)>C’_1 , (A.13)

1 Bw .
Goy) = ~3 tanh <7p> (l% sin(wpy) — o

Gll(y) = [% (Cos(wpy)sign(y) — itanh (%) sin(wpy)>

Wp

M —

DY Cos(wpy)> C', (A14)

+M2;pp7 (tanh <%> cos(wpy) — Z'Sin(wp|y|)>] o (A.15)
G2(y) = [% <_ cos(wpy)sign(y) — i tanh (%) sin(wpy)>

# T (v (%52 ) o)+ sinteph) )| 07 (o)
G2 (y) = [% (Cos(wpy) — itanh <%> sin(wpy)>

2 (i (222 ) costp) — isinten) )| (A17)
GS(y) = [? <_ cos(wpy) — i tanh <%> sin(wpy)>

2 (222 ) costn) + isintenn ) (A18)
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e Nonequilibrium massive Majorana fermion (interpolation between vacuum at ¢t =
y = 0 and thermal equilibrium at ¢ = oo, and memory integral)

M—-p

Go(y) = <i70 cos(wpy) + 7 sin(wpy)> e~telvl2o-t (A.19)

Wp

. M -
Gi(t,y) = — <Wo sin(wpy) — A-py cos(wpy)>

wp

X Gtanh (%) e~Telvl/2 4 f;q(wp)e—w) ct, (A.20)

GY(ty) = G (ty) — ssiEn(y)Cy (1) (A21)
G2 (ty) = G (ty) + sim(y) Gy (1) (A.22)
G5 (t0) = Gy (ty) — 2G4 (). (A.23)
Gy (ty) = G () + G ) (A24)

Gt ) =~ s (%52 (innsinton) = =P cos(i)

x (e7Tell/2 — =Tty 01, (A.25)

B Feynman rules

For completeness, we list in the following the Feynman rules for the Standard Model
Lagrangian with right-handed neutrinos given in Eq. (L2); «, are spinor indices and
a,b,...are SU(2) indices.

e Majorana neutrino

N

Ta.p T1,a

Gaﬁ (xla 1'2)

e Lepton doublet

[
A
[

5ij5absa,8 (‘Tla 1‘2)

x27ﬂ’b’j w]"a7a’i
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e Higgs doublet
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C Zero-width limit

In this section we consider the Kadanoff-Baym result for the lepton asymmetry normalised

to the Boltzmann result, Ly (¢,t)/f1(, k), in the zero-width limit as defined in Eq. (612),
ie.,

r
M—M), T =Tt fixed .

To this end we have to evaluate the corresponding momentum integral (£.43)) in this limit.

C.1 Boltzmann equation
Consider first the Boltzmann result for the lepton asymmetry given in Eq. (2.14),

167

fri(t k) = —€ii—— / k- K (2m)'64(k +q— p)(2m)*6 (K + ¢' — p)
k aq,p,q’ Kk’

X fuglh,0) o) (1) (1)

The integration over q and q' can be performed using the §-functions, which leads to

fri(t, k)

k-k 1
167 3/d3 /dSk, kk' wpqq' kg =)+ = )

X fugllk,0) o) (1—T) | (€.2)

where ¢ = |q| and ¢’ = |q'|. The product of 4-vectors, k - k' = kk'(1 — k- R’), depends
on the angles between the different momenta. It is convenient to define the angles with
respect to the momentum p: 6 = Z(k,p), ¢ = Z(k',p) and ¢' = Z(k,, k| ); here k; and
k' are perpendicular to the vector p, i.e., k =k +k; and k' = kH +k',. In terms of these

angles the unit vectors k and k' are given by (see Fig. [77)

X cos 6 X cos ¢
k= sinf | , k"= sinf'cos¢’ | , (C.3)
0 sin ' sin ¢’

with k - k' = cos 0 cos 0 + sin fsin @’ cos ¢'. We then obtain

I T A A
——— [ d’p k™= dk dcosf dy -
167 0 -1 0 Wpdq

X (1 —cosfcos® —sinfsin@’ cos ') (C.4)

X Bk -+ — wp)0(K + 0’ — wp) figlh, ) P op) s (1= ™)

fri(t k) =
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K

6,

Figure 11: Integration angles

Momentum conservation relates the energies ¢ and ¢’ to p, k, k' and the angles 6 and ¢’,

¢=|p—k|= (0" +} —2pkcos0)'?,
¢ =|p—-X|=@*+k?* - 2pkcosd)/* .

We can now make use of rotational invariance of the distribution function,

1

fri(t, k) = E/ko fri(t, k) .

Changing variables,
!

k k
dg = P2 gcosh , dq = —p—,dcos 9,
q q

one arrives at

(C.5)
(C.6)

| 00 q- q PPk —@2p 4+ k?—
i(tk)y=—=—[4d k'dk' d dg' (1—

X 3k + g — wp 6+ — wp) ok ) 5 () (1)
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where the limits of integration are given by the maximal and minimal value of ¢ and ¢/,
respectively,

e =lktp|, . =|K=*pl. (C.10)

Consider now the argument of one §-function, Q; = w, —k — ¢, with Q" = w, —k —q,
and Q" = w, — k — q_ (cf. Eq.(B40)). Obviously, the conditions Q"™ < 0 and Q& > (
limit the integration range in p for given momentum £,

|M? — 4K%

Similarly, the constraint p > (M? — 4k')/(4k') restricts the integration range in &' for
given p,

Fee Loy ), W< og ). (C.12)
Changing again variables from ¢ and ¢' to 2, and €23, respectively, and using
d(p, k', 2,92
(pa 7, 1 ,3) — : (013)
d(p, k', q.q)
the integral can now be written as
e 1 [ Fimax (P) Qpex Qe
fri(t k) = —i—/ dp/ dk’/ dQl/ dQs
ATE S pintt) ) opi» e
1 PP AR @k 2
—0(£21)0(Q23) [ 1 —
% Wp (E21)0( 3)< 2pk 2pk!
e 1 -
X fio(k, @) fat(wp)= (L —e ™) . (C.14)

r

The limits of integration have been chosen such that they contain the points 2; = 0 and
23 = 0, which correspond to energy conservation, ¢ = wp, —k and ¢’ = wp — k', respectively.
Hence, the integration on €2y and €23 can trivially be carried out, and we obtain the final
result

al [~ Kinax(P) 1 Qwk — M22w k' — M2
ATk Jpsatt) S @ 2pk opk

X fugllstop — K3 (p) i (1 =) (C.15)
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C.2 Kadanoff-Baym equation

We are now ready to evaluate the leading contribution of the Kadanoff-Baym result for
the lepton asymmetry. It is given by Eq. (5.46]) with o = = 1, and it can be written in
the form

kK
Bt ) = ~eu 87 | Stk )oK, )3 )
X 2%1—‘ 2

(o — k= 0+ D) — K = P+ 1)

x{@J¥—mqu—k—@n)@J¥—mq@p—y—¢n»

— sin((wp — k — ¢)t) sin((wp — k' — q')t)] : (C.16)

We first change variables, (q,q') — (p, k'), with p =q+k = q’' + k', and use rotational
invariance,

1
L (t,t) = E/ko Lyii(t, 1) - (C.17)

Choosing again angles according to Fig. [7Z] the integral (C.I6) becomes

2T k. k'
Batot) o [ [[aone [ T F0.0 )

:/ dcosﬁ/ dcosH'/ dy' (1 — cosfcosb'
-1 —1 0

—sinfsin @' cos¢’) F(0,0',---)

1 1
= (27r)2/ dcos9/ dcos@ (1 —cosOcos@)F(6,6,---), (C.18)

1 1

where we have used that the function F'(0,6',---) does not depend on the angle ¢'. As
in the previous section, we now change the integration variables from (6,6’) to (¢, ¢’), and

using Eq. (C.8)) we obtain
dp/m kdk’/ dq/ dq—

GZZ
L
il £) 83k / min
p + k2 — + kl? - I e
X <1 — Ji6(k, q) fis(K', ¢') [ (wp)

2pk 2pk!




r't

X [ (e’% —cos((wp — k — q)t)) (e’7 — cos((wp — k' — q')t))
—sin((wp — k — q)t) sin((wp — k' — q')t)] : (C.19)

where the limits of integration are given in Eqs. (CI0) - (CI2). We have restricted the
integration over p and k to the range for which the intervals [¢_, ¢] and [¢" , ¢ ] contain
points satisfying wp, —k — ¢ = 0 and wp — k' — ¢’ = 0, respectively. This finite part of the
integral could then be O(1/I'), which is required to match the Boltzmann result for the
lepton asymmetry. The remaining part is O(1) and therefore suppressed compared to the
Boltzmann result.

Remarkably, the integral (C.19) is a sum of terms each of which factorizes into a product
where one factor depends on ¢ but not on ¢, whereas the other factor depends on ¢’ but
not on ¢. Hence one obtains

0o Fimax(P)
Luii(t, 1) o / dp / Kdk' > Pila-,q0)Qild  d) (C.20)
(k) ;nln(p) 7

Pmin

where we have dropped the dependence of the factors P; and Q; on k, p and £’ for simplicity.
Because of the factorization, we can now perform the integrations on ¢ and ¢’ separately.

Naively, one may think that in the zero-width limit I'/M — 0 the cosine terms can
be set to one. But for large time ¢, they oscillate fast, which leads to a different result.
Consider the following contribution to the integral (C.19),

F(g)
wp —k—q)? + L cos((wp — k —q)t) , (C.21)

Plg,q4) = — /qq+ dq(

where F'(¢q) has no poles. Changing the integration variable from ¢ to z = 20, /T, with
)y = wp — k — ¢, one obtains

y Zmax P
P(Zminazmax) = %/ dz Fz (wp — k- 52)

Zmin

><< 1 )(eizgt+e—iz%t> ’ (C.22)

z—1 z+1
where 2y = 20™/T and 2pa = 273 /T, with zpiyn < 0 and 2gmax > 0. In the limit

['/M — 0 with 7 = I't fixed, the integration limits approach zp;, — —00 and zyax — +00,
respectively. The integral is now easily evaluated by means of the residue theorem leading

to the result
T\ - A
Fﬁoz—ﬂ<F<wP—k—z§>e 2+F<wp—k+z§>e 2)

ol

FP (Zmin ) Zmax)

I'—0



= 21 F(wp — k)e™2 . (C.23)

In Eq. (C19) the term P appears together with a second term,

! T+ F(q) -z
P'(q-,q )=/ dg ;e 2, (C.24)
Tl T we—k—a?+ T

which can be evaluated in the same way as P in the zero-width limit, yielding

r r
:ﬂ(p(w,,_k_i_)+F(wp_k+i_))
I'—0 2 2 '—0

= 2mF (wp — k) e 2 . (C.25)

e

(M}

FPI (Zmin ) Zmax)

Clearly, the two terms P and P’ add up to zero. The same result is obtained for the second
factor Q after the ¢’ integration, as well as for the product of two sinus functions.

We conclude that the integral (C.16) does not contain a contribution O(1/T"). Hence,
the ratio of Kadanoff-Baym result and Boltzmann result, Ly(¢,t)/f1(t, k), approaches zero
in the limit I'/M — 0, 7 = I't fixed.

D Equilibrium contribution

In Section 5 we argued that the equilibrium part of the heavy neutrino propagator does
not contribute to the lepton asymmetry. In this section we verify this claim.
The heavy neutrino propagator has an equilibrium and a nonequilibrium part,

Gp(ti,t3) = GX(t — t3) + Gpl(ti,13) (D.1)
whose main difference lies in the time dependence,
GRl(t — t3) e 2Tl Gyt t) oc e 20t (D.2)

The computation of the lepton asymmetry in Section 5 was based on the nonequilbrium
part, and it involved the time integral Z (cf. Eq. (5.41))). Because of the different time
dependence given in Eq. (D.2)), the contribution of the equilibrium part to the asymmetry
involves instead the integral

t t to
0 0 0

which differs from Z only with respect to the damping factor. €2y, {2y and 3 are different
linear combinations of energies, which satisfy Q; = Qs + (3.
In order to evaluate the integral 7, we have to split the time integration,

t t t
70 = / i, {/ 1 it / 2 dts o~ Ut +iQtr+iQsts ,— 5 (11 —t3)
0 0 0
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t t1
+/ dt2</ dts 6fi91t1+i92t2+i93t3efg(tlft‘%)
t1 0

t
+ / 2dt3 e‘i”1t1+i”2t2+i93t3e—5“3—“))] . (D.4)

t1
Note the change of sign in the damping factor of the last two terms. As in Section 5, it

is convenient to use the variables Q; = Q; — %F and Q3 = Q3 — %F, for which the integral
simplifies to

t t1 to ~ . B
J(t) :/ dt [/ dtg/ dts e~ 8htitiatz+illats (D.5)
0 0 0
t t1 B ) t ) )
+/ dtg(/ dtze= Mt itz +iQats +/ dts e—iQ’{t1+ngtz+iQ§t3>] .
t1 0 t

Performing the 3 integral and using the relation Q; = 5 + 3, we obtain

t t1 1 .
t) = dt dt €_Zﬂlt1 _ <eiﬂltz . 6m2t2)
T /0 1 Uo i,
! 1/ .
+/ dt2< —ihity — <6193t1 . 1) €ZQ2t2
t1 ZQ3

1 05t Q%1 iQat )
[ etz _ il priiale . D.6
i€ (6 € € (D-6)

It is now straightforward to carry out the integrations over ¢; and 9, which leads to

2
T+ T = Ty Ty —ay)

+ efithl

(D.7)
L+ (COS((Ql Q3)t) — 1+ (cos(Q4t) — Cos(Qgt))e*%)

+ (29 Oy — —> (sin((sz1 —Qu)t) — (sin(ut) — sin(Qgt))erzt)} .

Note that the expression has no pole at 2; = ;3.
As in appendix C we now have to evaluate the momentum integral

max max
Qr Qp

s=[" dQl/ a0, (74T (D.8)
Qi 3"
with the integration limits given below Eq. (C.I0). To perform the zero-width limit, we
again introduce the variables z; 3 = 202 3/I". For I — 0, the limits of integration me and
25™ approach —oo and 400, respectively. The zz-integration can now be carried out by
means of the residue theorem. The integrand of the remaining z;-integration has a double
pole. The integration can again be performed using the residue theorem, and we find that
['S approaches zero in the limit I'/M — 0, 7 = T't fixed. Hence, the equilibrium part of

the heavy neutrino propagator does not contribute at leading order in T'/M.
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