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Abstra
tThermal leptogenesis explains the observed matter-antimatter asymmetry of the uni-verse in terms of neutrino masses, 
onsistent with neutrino os
illation experiments.We present a full quantum me
hani
al 
al
ulation of the generated lepton asymmetrybased on Kadano�-Baym equations. Origin of the asymmetry is the departure fromequilibrium of the statisti
al propagator of the heavy Majorana neutrino, togetherwith CP violating 
ouplings. The lepton asymmetry is 
al
ulated dire
tly in terms ofGreen's fun
tions without referring to �number densities�. Compared to Boltzmannand quantum Boltzmann equations, the 
ru
ial di�eren
e are memory e�e
ts, rapidos
illations mu
h faster than the heavy neutrino equilibration time. These os
illationsstrongly suppress the generated lepton asymmetry, unless the standard model gaugeintera
tions, whi
h 
ause thermal damping, are properly taken into a

ount. We �ndthat these damping e�e
ts essentially 
ompensate the enhan
ement due to quantumstatisti
al fa
tors, so that �nally the 
onventional Boltzmann equations again providerather a

urate predi
tions for the lepton asymmetry.

http://arxiv.org/abs/1012.5821v2


1 Introdu
tionStandard thermal leptogenesis [1℄ provides a simple and elegant explanation of the originof matter in the universe. Baryogenesis via leptogenesis naturally emerges in grand uni�edextensions of the Standard Model, whi
h in
orporate right-handed neutrinos and the see-saw me
hanism, and the predi
ted 
onne
tion between the 
osmologi
al matter-antimatterasymmetry and neutrino properties is in remarkable agreement with the present eviden
efor neutrino masses [2℄.Leptogenesis is an out-of-equilibrium pro
ess in the high-temperature symmetri
 phaseof the Standard Model. It makes use of nonperturbative properties of the Standard Model,the sphaleron pro
esses whi
h 
hange baryon and lepton number [3℄, and it requires CPviolation in the lepton se
tor and quantum interferen
e in the thermal bath. Almostall quantitative studies of leptogenesis to date are based on Boltzmann's 
lassi
al kineti
equations for the des
ription of the nonequilibrium pro
ess [2℄.In this arti
le, we dis
uss a full quantum me
hani
al 
al
ulation of the generated lep-ton asymmetry based on Kadano�-Baym equations [4℄ and the S
hwinger-Keldysh formal-ism [5�7℄. The main result has previously been reported in [8℄. Here we give a detailedderivation of the result, dis
uss its interpretation and set the stage for future 
omputations.Further work is still needed to obtain a `quantum theory of leptogenesis' that 
an predi
tthe 
osmologi
al matter-antimatter asymmetry in terms of neutrino properties withoutun
ontrolable assumptions.Conventional leptogenesis 
al
ulations based on kineti
 equations su�er from a basi

on
eptual problem: the Boltzmann equations are 
lassi
al equations for the time evolutionof phase spa
e distribution fun
tions; the involved 
ollision terms, however, are obtainedfrom zero-temperature S-matrix elements whi
h involve quantum interferen
es. This isin 
ontrast to other su

essful appli
ations of the Boltzmann equations in 
osmology, likeprimordial nu
leosynthesis, de
oupling of photons or freeze-out of weakly intera
ting darkmatter parti
les, where the 
ollision terms arise from tree-level S-matrix elements. In the
ase of leptogenesis, 
learly a full quantum me
hani
al treatment is ne
essary to understandthe range of validity of the Boltzmann equations and to determine the size of possible
orre
tions [9℄.In re
ent years, various attempts have been made to go beyond Boltzmann equations.In [9℄, a solution of Kadano�-Baym equations for leptogenesis has been found to leadingorder in a derivative expansion in terms of distribution fun
tions satisfying the Boltzmannequations. Various thermal 
orre
tions, in parti
ular quantum statisti
al fa
tors and ther-mal masses, have been in
luded [10�13℄. Quantum Boltzmann equations have been derivedfrom Kadano�-Baym equations for s
alar and Yukawa theories [14, 15℄ and for leptogene-sis [16�19℄. Ex
ept for [16℄, they do not 
ontain memory e�e
ts, but they yield the 
orre
tstatisti
al fa
tors whi
h go beyond the Boltzmann equations [8, 16, 17, 19, 20℄. QuantumBoltzmann equations have important appli
ations for resonant leptogenesis [16℄, �avouredleptogenesis [21, 22℄ and N2-leptogenesis [23℄. Similar te
hniques have been developed for2
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Figure 1: Evolution of heavy neutrino abundan
e NN1 and lepton asymmetry NB�L fortypi
al leptogenesis parameter: M1 = 1010 GeV, em1 = 8��1(vew=M1)2 = 10�3 eV, � =10�6; the inverse temperature z = M1=T is the time variable. The dashed (full) lines
orrespond to thermal (va
uum) initial 
onditions for the heavy neutrino abundan
e; thedotted line represents the equilibrium abundan
e. From [30℄.ele
troweak baryogenesis [24�27℄ and for 
oherent baryogenesis [28℄.The quantum treatment of leptogenesis dis
ussed in this paper is entirely based onGreen's fun
tions, thus avoiding all approximations needed to arrive at Boltzmann equa-tions. Our work is based on [29℄, where the approa
h to thermal equilibrium has beendis
ussed in terms of Green's fun
tions for a toy model, a s
alar �eld 
oupled to a largethermal bath. In leptogenesis it is the heavy neutrino whi
h is weakly 
oupled to the stan-dard model plasma 
ontaining many degrees of freedom. The nonequilibrium propagatorof the heavy neutrino is obtained by solving the Kadano�-Baym equations. The indu
edquantum 
orre
tions of the lepton (and Higgs) propagators then yield the wanted leptonasymmetry.In general baryogenesis requires departure from thermal equilibrium. For the 
osmo-logi
al baryon asymmetry, this is provided by the Hubble expansion of the universe and,possibly, also by initial 
onditions. This 
an be seen in Fig. 1 where the time evolutionof heavy neutrino abundan
e and lepton asymmetry, as predi
ted by the Boltzmann equa-tions, are shown for two di�erent initial 
onditions: thermal and zero heavy neutrino abun-dan
e. In the �rst 
ase, the Hubble expansion leads to an ex
ess of the neutrino abundan
e3



at T ' 0:3 M1; shortly afterwards, washout pro
esses are no longer in equilibrium and thelepton asymmetry is `frozen in'. This is the standard out-of-equilibrium de
ay s
enario ofbaryogenesis. In the se
ond 
ase, intera
tions with the thermal bath �rst bring the heavyneutrino into thermal equilibrium; due to the departure from thermal equilibrium duringthis time, an initial lepton asymmetry is generated. Around T ' 0:3M1, this asymmetry iswashed out and, as in the �rst 
ase, the �nal lepton asymmetry is generated. Remarkably,the initial and the �nal asymmetry have about the same size. For the generation of theinitial asymmetry the 
hange of temperature due to the Hubble expansion is not impor-tant. This allows us to make a signi�
ant te
hni
al simpli�
ation in our analysis. Sin
eour goal is the 
omparison of Boltzmann and Kadano�-Baym equations, we 
on
entrate onthe 
omputation of the initial asymmetry at 
onstant temperature. We expe
t di�eren
esbetween the 
lassi
al and the quantum approa
h to be of similar size in the generation ofthe �nal asymmetry. In our numeri
al analysis we shall 
onsider temperatures T <� M ,where the heavy neutrino produ
tion rate is not strongly a�e
ted by the e�e
t of thermalmasses of lepton and Higgs �elds [11�13℄.We 
onsider an extension of the Standard Model with additional gauge singlet fermions,i.e., right-handed neutrinos, whose masses and 
ouplings are des
ribed by the Lagrangian(sum over i; j),L = LSM + �Rii 6��Ri + lLi ~���ij�Rj + �Rj�ijlLi�� 12Mij ��
Ri�Rj + �Rj�
Ri� : (1.1)Here �
R = C��TR , C is the 
harge 
onjugation matrix and e� = i�2��; SU(2) isospin indi
eshave been omitted. For simpli
ity, we 
onsider the 
ase of hierar
hi
al Majorana masses,Mk>1 � M1 � M , and small Yukawa 
ouplings of the lightest heavy neutrino N1 � N ,�i1 � 1, su
h that the de
ay width is mu
h smaller than the mass. Leptogenesis is thendominated by de
ays and inverse de
ays of N , and it is 
onvenient to integrate out theheavier neutrinos. From Eq. (1.1) one then obtains the e�e
tive LagrangianL =LSM + 12Ni 6�N + lLie���i1N +NT�i1ClLi�� 12MNTCN+ 12�ijlTLi�ClLj�+ 12��ijlLie�ClLTj e� ; (1.2)with N = �R1 + �
R1, and the familiar dimension-5 
oupling�ij =Xk>1 �ik 1Mk�Tkj : (1.3)Using this e�e
tive Lagrangian has the advantage that vertex- and self-energy 
ontributionsto the CP asymmetry in the heavy neutrino de
ay [31�33℄ are obtained from a singlegraph [9℄.The paper is organized as follows. In Se
tion 2 we present solutions of the Boltzmannequations for the heavy neutrino distribution fun
tion and the lepton asymmetry, whi
h4



are useful for later 
omparison with the Kadano�-Baym equations. Some results fromnonequilibrium quantum �eld theory (QFT), in parti
ular equilibrium 
orrelation fun
tionsand Kadano�-Baym equations, are re
alled in Se
tion 3. Se
tion 4 
ontains some of themain results of this paper: analyti
 solutions of spe
tral fun
tion and statisti
al propagatorfor the heavy neutrino. These are needed for the 
omputation of the lepton asymmetry,whi
h is 
arried out in Se
tion 5. A detailed 
omparison of the Boltzmann result andthe Kadano�-Baym result is given in Se
tion 6, and numeri
al results for the generatedlepton asymmetries are 
ompared in Se
tion 7. Summary and 
on
lusions are given inSe
tion 8, and various details, in
luding equilibrium 
orrelation fun
tions, Feynman rules,a dis
ussion of the zero-width limit and the 
omputation of some integrals are 
ontainedin Appendi
es A - D.2 Boltzmann equationsThe Boltzmann equations for the time evolution of the distribution fun
tions of heavyneutrinos, lepton and Higgs doublets are well known [34℄. As dis
ussed in the previousse
tion, we fo
us on the generation of the `initial asymmetry' (
f. Fig. 1), whi
h allowsus to negle
t Hubble expansion and washout terms and to work at 
onstant temperatureT . The distribution fun
tion of the heavy neutrinos is then determined by the �rst-orderdi�erential equation1��tfN (t; !p) =� 2!p Zk;q(2�)4Æ4(k + q � p) ��y��11 p � k� [fN(t; !p)(1� fl(k))(1 + f�(q))� fl(k)f�(q)(1� fN(t; !p))℄ ; (2.1)with va
uum initial 
ondition,fN (0; !p) = 0 ; (2.2)here !p = pM2 + p2, k and q are the energies of N , l and � with equilibrium distribu-tion fun
tions fl and f�, respe
tively; the averaged de
ay matrix element is jM(N(p) !l(k)�(q))j2 = 2 ��y��11 p � k (
f. [9℄). For the momentum integrations we use the notationZp : : : = Z d3p(2�)32! : : : : (2.3)In most leptogenesis 
al
ulations one dire
tly 
omputes the number density,nN (t) = Z d3p(2�)3 fN(t; !p) ; (2.4)1To simplify notation, we use the same symbol for the modulus of 3-momentum and 4-momentum, e.g.,k = jkj and k = (jkj;k). 5



assuming kineti
 equilibrium.The sum of de
ay and inverse de
ay widths, whose inverse is the time needed to rea
hthermal equilibrium [35℄, is given by�p = ��y��11 2!p Zk;q(2�)4Æ4(k + q � p) p � k fl�(k; q) ; (2.5)where we have introdu
ed the statisti
al fa
tor (
f. [35℄)fl�(k; q) = fl(k)f�(q) + (1� fl(k))(1 + f�(q))= 1� fl(k) + f�(q) : (2.6)Negle
ting the momentum dependen
e of the heavy neutrino width (�p � �), one easilyobtains the solution of the Boltzmann equation (2.1) with va
uum initial 
ondition,fN (t; !p) = f eqN (!p) �1� e��t� ; (2.7)where the equilibrium distribution isf eqN (!p) = 1e�!p + 1 ; (2.8)and � = 1=T is the inverse temperature.To 
ompute the lepton asymmetry, we need the Boltzmann equation for the leptondistribution fun
tion,��tfl(t; k) = � 12k Zq;p(2�)4Æ4(k + q � p)� �jM(l�! N)j2fl(k)f�(q)(1� fN (t; !p))� jM(N ! l�)j2fN(t; !p)(1� fl(k))(1 + f�(q))� ; (2.9)where now O(�4) 
orre
tions to the matrix elements have to be kept. Using Eq. (2.7) oneobtains for the lepton asymmetryfLi(t; k) = fli(t; k)� f�li(t; k) ; (2.10)with initial 
ondition fLi(0; k) = 0,fLi(t; k) = ��ii 1k Zq;p(2�)4Æ4(k + q � p) p � k fl�(k; q)f eqN (!p) 1� �1� e��t� ; (2.11)where we have de�ned�ij = 316� Imf��i1(���)j1gM : (2.12)6



Summing over all lepton �avours, the generated lepton asymmetry is proportional to thefamiliar CP asymmetry [9℄,� =Xi �ii(�y�)11 = 316� Im ��y����11M(�y�)11 : (2.13)For later 
omparison with solutions of the Kadano�-Baym equations, it is 
onvenientto rewrite Eq. (2.11) as a 4-fold integral,fLi(t; k) = ��ii 16�k Zq;p;q0;k0 k � k0 (2�)4Æ4(k + q � p)(2�)4Æ4(k0 + q0 � p)� fl�(k; q)f eqN (!p) 1� �1� e��t� : (2.14)The integrand is now proportional to the averaged matrix element jM(l� ! �l ��)j2 =2k � k0(�y�)11=M2 (
f. [9℄), whi
h involves the produ
t of the 4-ve
tors k and k0. At lowtemperatures, T � M , the integrand falls o� like e��!p < e��M , i.e., the generatedasymmetry is strongly suppressed. In standard leptogenesis 
al
ulations one 
onsiders theintegrated lepton asymmetry,nL =Xi Z d3k(2�)3 fLi(t; k) : (2.15)The number densities nN (2.4) and nL 
orrespond to the 
omoving number densities NN1and jNB�Lj shown in Fig. 1, in the initial phase of the time evolution, i.e., for T >� 0:3 M .3 Nonequilibrium QFT and Kadano�-Baym equationsIn the following, we brie�y introdu
e 
on
epts and quantities from nonequilibrium quantum�eld theory that are ne
essary for our 
omputation (
f. [36,37℄). A thermodynami
al systemis represented by a statisti
al ensemble des
ribed by a density matrix %. The expe
tationvalue for an operator A is then given byhAi = Tr (%A) ; (3.1)where we have adopted the usual normalisation Tr% = 1. Solving the initial value problemfor % allows to 
ompute all observables for all times. Dire
t 
omputation of the timeevolution of % is di�
ult. Generi
ally, the von Neumann (or quantum Liouville) equationof motion for % 
an only be solved perturbatively for a redu
ed density matrix with ane�e
tive Hamiltonian. In most pra
ti
al appli
ations to date, a number of additional7



assumptions are made that lead to e�e
tive Boltzmann equations, whi
h 
an take a

ountof 
oherent os
illations2, or quantum 
orre
ted Boltzmann equations (
f. Se
tion 6)3.Instead of the time evolution of the density matrix, one 
an also dire
tly study theequations of motion of the 
orrelation fun
tions of the theory. The in�nitely many degreesof freedom of the initial density matrix are then mapped onto their in�nitely many initial
onditions. Though a full 
hara
terisation of the system in prin
iple involves all n-pointfun
tions, it is often su�
ient to study the one- and two-point fun
tion. This applies tothe problem 
onsidered in this work.3.1 Correlation fun
tions for lepton and Higgs �eldsLeptogenesis o

urs at temperatures above the ele
troweak s
ale where sphaleron pro
essesare a
tive and transfer the generated lepton asymmetry to a baryon asymmetry. Hen
e,the Standard Model is in the symmetri
 phase and the four real degrees of freedom of theHiggs doublet 
orrespond to four massless real s
alar �elds.The spe
tral fun
tion and statisti
al propagator of a real s
alar �eld �, �� and �+,respe
tively, are de�ned as��(x1; x2) = ih[�(x1); �(x2)℄i ; (3.2)�+(x1; x2) = 12hf�(x1); �(x2)gi : (3.3)Here only 
ontributions from 
onne
ted diagrams are to be in
luded to 
ompute the dressed
orrelation fun
tions. These ful�ll the symmetry relations��(x1; x2) = ���(x2; x1) ; (3.4)�+(x1; x2) = �+(x2; x1) ; (3.5)whi
h follow dire
tly from the de�nitions.The fun
tions �� have an intuitive physi
al interpretation. The spe
tral fun
tion ��is the Fourier transform of the spe
tral density,�q(t; !) = �i Z dy2�ei!y��(t+ y2 ; t� y2) ; (3.6)where we have used the relative and total time 
oordinates, y = t1� t2 and t = (t1+ t2)=2,respe
tively.The spe
tral density �q(t; !) 
hara
terises the density of quantum me
hani
al states inphase spa
e. Propagating states, or resonan
es, appear as peaks in the spe
tral fun
tion.2See [38, 39℄ for an appli
ation to neutrino os
illations.3In [40,41℄ an approa
h based on �rst prin
iples has been suggested that is appli
able if the o

upationnumbers for the out-of-equilibrium �elds are small. 8



The statisti
al propagator 
ontains the information about the o

upation number of ea
hstate.In the following we shall also need the Wightman fun
tions�>(x1; x2) = h�(x1)�(x2)i ; (3.7)�<(x1; x2) = h�(x2)�(x1)i ; (3.8)whi
h are related to �� by��(x1; x2) = i (�>(x1; x2)��<(x1; x2)) ; (3.9)�+(x1; x2) = 12 (�>(x1; x2) + �<(x1; x2)) : (3.10)Using mi
ro
ausality and the 
ondition for 
anoni
al quantization,[�(x1); �(x2)℄jt1=t2 = [ _�(x1); _�(x2)℄jt1=t2 = 0 ; (3.11)[�(x1); _�(x2)℄jt1=t2 = iÆ(x1 � x2) ; (3.12)one obtains boundary 
onditions in y = t1 � t2 for ��,��(x1; x2)jt1=t2 = 0 ; (3.13)�t1��(x1; x2)jt1=t2 = ��t2��(x1; x2)jt1=t2 = Æ(x1 � x2) ; (3.14)�t1�t2��(x1; x2)jt1=t2 = 0 : (3.15)Note that these 
onditions do not depend on the physi
al initial 
onditions of the systemen
oded in the initial density matrix. These enter via the initial 
onditions for the statisti
alpropagator.Analogous to ��, one 
an de�ne the spe
tral fun
tions and statisti
al propagators forfermions. The fermioni
 �elds in the Lagrangian (1.2) are massless left-handed leptons(Weyl �elds lLi) and a massive neutrino (Majorana �eld N). For the massless leptons,spe
tral fun
tion and statisti
al propagator are de�ned as(S�Lij)��(x1; x2) = ihflLi�(x1); �lLj�(x2)gi ; (3.16)(S+Lij)��(x1; x2) = 12h[lLi�(x1); �lLj�(x2)℄i ; (3.17)where � and � are spinor indi
es, and SU(2) indi
es were omitted for notational simpli
ity.The subs
ript L denotes the proje
tion to left-handed �elds, i.e., S�L = PLS�, wherePL = (1 � 
5)=2 and S� are the propagators for Dira
 fermions. As for bosons, we shallneed the fun
tions(S>Lij)��(x1; x2) = hlLi�(x1)�lLj�(x2)i ; (3.18)(S<Lij)��(x1; x2) = �h�lLj�(x2)lLi�(x1)i ; (3.19)9



whi
h are related to spe
tral fun
tion and statisti
al propagator byS�Lij(x1; x2) = i �S>Lij(x1; x2)� S<Lij(x1; x2)� ; (3.20)S+Lij(x1; x2) = 12 �S>Lij(x1; x2) + S<Lij(x1; x2)� : (3.21)The propagators S� have the symmetry properties
0 �S�Lij(x1; x2)�y 
0 = �S�Lji(x2; x1) ; (3.22)
0 �S+Lij(x1; x2)�y 
0 = S+Lji(x2; x1) : (3.23)The 
anoni
al quantization 
ondition,flLi�(x1); lyLj�(x2)g = PL��ÆijÆ(x1 � x2) ; (3.24)implies the boundary 
ondition for the spe
tral fun
tionS�Lij(x1; x2)jt1=t2 = iPLÆijÆ(x1 � x2) : (3.25)Finally, spe
tral fun
tion and statisti
al propagator for the Majorana �eld N readG���(x1; x2) = ihfN�(x1); N�(x2)gi ; (3.26)G+��(x1; x2) = 12h[N�(x1); N�(x2)℄i : (3.27)They have the symmetriesG�(x1; x2) = G�(x2; x1)T ; (3.28)G+(x1; x2) = �G+(x2; x1)T : (3.29)The 
anoni
al quantization 
ondition, together with the Majorana property N = C �NT ,implies the boundary 
onditionG�(x1; x2)jt1=t2 = i
0Æ(x1 � x2)C�1 : (3.30)As for s
alars, the physi
al initial 
onditions enter as boundary 
onditions for the statisti
alpropagator. In the following, we will 
onsider two types of initial 
onditions, thermalequilibrium and Gaussian initial 
orrelations, for whi
h we solve the equations of motionin the following se
tion. Analogous to real s
alars, the fun
tions G? are de�ned asG>��(x1; x2) = hN�(x1)N�(x2)i ; (3.31)G<��(x1; x2) = �hN�(x2)N�(x1)i; (3.32)with the usual relations to spe
tral fun
tion and statisti
al propagator,G�(x1; x2) = i (G>(x1; x2)�G<(x1; x2)) ; (3.33)G+(x1; x2) = 12 (G>(x1; x2) +G<(x1; x2)) : (3.34)10



Figure 2: Path in the 
omplex time plane for nonequilibrium Green's fun
tions. The
ontour runs from some initial time x0 = ti+i� (ti = 0) parallel to the real axis (x0 = t+i�)up to some �nal time tf+i� and returns to ti�i�. To 
ompute physi
al 
orrelation fun
tionsfor arbitrary times t > ti, one takes the limits tf !1 and �! 0.3.2 Equations of motionIn thermal leptogenesis, the deviation from thermal equilibrium that is ne
essary to 
reatea matter-antimatter asymmetry is due to the heavy Majorana neutrinos whi
h are out ofequilibrium. The equations of motion for their 
orrelation fun
tions G� 
an be obtainedvia the S
hwinger-Keldysh formalism [6℄. The basi
 quantity is the Green's fun
tion withtime arguments de�ned on a 
ontour C in the 
omplex x0-plane, known as the Keldysh
ontour (
f. Fig.2),GC(x1; x2) = �C(x01; x02)G>(x1; x2) + �C(x02; x01)G<(x1; x2) : (3.35)Here the �-fun
tions enfor
e path ordering along the 
ontour C. The ne
essity of 
onsideringGreen's fun
tions with time arguments on the Keldysh 
ontour (rather than the real axis)is a 
onsequen
e of the fa
t that nonequilibrium pro
esses are initial value problems. Thesystem is prepared at initial time ti, its state at later times is unknown. Hen
e, the usualapproa
h to de�ne a S-matrix by proje
tion onto asymptoti
 `in' and `out' states, sendinginitial and �nal time to in�nity, 
annot be applied. When using the Keldysh 
ontour whi
hstarts and ends at the same time ti4, no knowledge of the system's state at t = �1 isneeded to de�ne a generating fun
tional for 
orrelation fun
tions.The Green's fun
tion GC satis�es the S
hwinger-Dyson equationC(i 6�1 �M)GC(x1; x2)� i ZC d4x0C�C(x1; x0)GC(x0; x2) = iÆC(x1 � x2) ; (3.36)where C�C(x1; x0) is the self-energy5 on the 
ontour and 6�1 = 
��=�x�1 . Like the Green'sfun
tion, also the self-energy 
an be de
omposed as�C(x1; x2) = �C(x01; x02)�>(x1; x2) + �C(x02; x01)�<(x1; x2) : (3.37)4Due to this fa
t this formalism is sometimes 
alled `in-in' formalism, in 
ontrast to the `in-out' for-malism used to 
ompute the S-matrix.5An expli
it fa
tor C is fa
torized for later 
onvenien
e.11



In the S
hwinger-Dyson equation (3.36) the time 
oordinates of GC and �C 
an lie on theupper or the lower bran
h of the 
ontour.The familar time-ordered Feynman propagator is obtained from GC(x1; x2) when bothtime arguments lie on the upper bran
h, and therefore denoted by G11. Correspondingly,GC(x1; x2) with both time arguments on the lower part of the 
ontour 
orresponds to ananti-time-ordered propagator, denoted as G22. For 
orrelators with one time argument onthe upper and one on the lower part of the 
ontour, referred to as G12 and G21, the orderof �eld operators is �xed by the path ordering: operators on the upper bran
h are always`earlier' than those on the lower bran
h (
f. 3.35). Altogether, one hasG12(x1; x2) = G<(x1; x2) ; (3.38)G21(x1; x2) = G>(x1; x2) ; (3.39)G11(x1; x2) = G+(x1; x2)� i2sign(x01 � x02)G�(x1; x2) ; (3.40)G22(x1; x2) = G+(x1; x2) + i2sign(x01 � x02)G�(x1; x2) ; (3.41)the last two relations are easily veri�ed by inserting the de�nitions of G�.In a perturbative expansion of the S
hwinger-Dyson equation (3.36) in terms of Feyn-man diagrams, time arguments of internal verti
es 
an lie on either bran
h. Hen
e, thenumber of 
ontributing graphs doubles with ea
h internal vertex sin
e this 
an lie on theupper or the lower bran
h6. Two upper verti
es are 
onne
ted by G11, two lower verti
es byG22 and verti
es of di�erent type by G12 and G21. Ea
h lower vertex leads to an additionalfa
tor �1.Like the Green's fun
tion, also the self-energy �C , the sum of all one-parti
le irredu
iblegraphs, 
an be disse
ted into 
omponents �kl, with k and l being `
ontour indi
es' as de�nedabove. Analogous to (3.38) and (3.39) one then de�nes self-energies �? and, following(3.33) and (3.34), self-energies �� via the equations��(x1; x2) = i (�>(x1; x2)� �<(x1; x2)) ; (3.42)�+(x1; x2) = 12 (�>(x1; x2) + �<(x1; x2)) : (3.43)Sin
e the self-energies �kl are dire
tly related to the full Green's fun
tions Gkl, they alsosatisfy the relations (3.38) - (3.41).Using the above relations for Gkl and �kl, one obtains, after a straightforward 
al-
ulation, from the S
hwinger-Dyson equation (3.36) a system of two 
oupled di�erentialequations for G�p , the Kadano�-Baym equations. Due to spatial homogeneity, we 
an
onsider the equations for ea
h Fourier mode separately,C(i
0�t1 � p


 �M)G�p (t1; t2) =� Z t2t1 dt0C��p (t1; t0)G�p (t0; t2) ; (3.44)6This fa
t is sometimes referred to as `doubling of degrees of freedom'.12



C(i
0�t1 � p


 �M)G+p (t1; t2) =� Z t2ti dt0C�+p (t1; t0)G�p (t0; t2)+ Z t1ti dt0C��p (t1; t0)G+p (t0; t2) : (3.45)For the lepton propagators S�Lk one obtains the same equations, with C��p repla
ed by thelepton self-energies ��k and no 
harge 
onjugation matrix C multiplying the kineti
 term.The Kadano�-Baym equations (3.44) and (3.45) are exa
t. They 
ontain all quantumand non-Markovian e�e
ts in
luding the dependen
e on the initial time ti. Furthermore,in 
ontrast to usual linear response te
hniques, they do not rely on any assumption re-garding the size of the initial deviation from equilibrium. The equations in this form arevalid for arbitrary nonequilibrium initial states whi
h 
an be parameterized by Gaussianinitial 
orrelations. This 
overs the 
ase 
onsidered in this work sin
e the generated leptonasymmetry involves to leading order in the Yukawa 
oupling only the 2-point fun
tionsof the heavy neutrino. When higher order initial 
orrelations play a signi�
ant role, theKadano�-Baym formalism is still appli
able, but the equation for the statisti
al propagator
ontains extra terms at ti [42℄. In [36℄, thermalization has been studied for a s
alar �eldtheory using the equation of motion for the statisti
al propagator.In nonequilibrium quantum �eld theory, instead of distribution fun
tions, quantumme
hani
al 
orrelation fun
tions G� 
hara
terise the state of the system. The intera
tionsenter via the self-energies �� whi
h, via the generalized 
utting rules, 
ontain all possiblepro
esses. En
oding this information in the self-energies avoids potential problems relatedto the de�nition of asymptoti
 states for unstable parti
les as well as the substra
tionof real intermediate state 
ontributions in Boltzmann equations. Note, �nally, that theintegro-di�erential equations (3.44), (3.45) do not su�er from the late time un
ertaintiesor se
ular terms that perturbative expansions of Boltzmann equations are often plaguedwith when applied to multis
ale problems (
f. [36℄).3.3 Weak 
oupling to a thermal bathThe Kadano�-Baym equations provide a tool to study the dynami
s of arbitrary nonequi-librium systems. Unfortunately, in most 
ases they 
an only be solved numeri
ally. Asdis
ussed in the introdu
tion, in this work we 
onsider a rather simple system: one �eldthat is out of equilibrium (N) is weakly 
oupled to a large thermal bath of Standard Model�elds. This leads to a number of simpli�
ations 
ompared to the general 
ase that allow to�nd analyti
 solutions. We have previously studied s
alar �eld models of this type [29,43℄.Here we extend the methods developed therein to the 
ase of thermal leptogenesis.The Standard Model intera
tions keep the bath in thermal equilibrium. The 
orre-sponding time s
ale �SM � 1=(g2T ) at temperature T � M is mu
h shorter than theequilibration time �N � 1=(�2M) of the heavy neutrino, whi
h governs the generation ofthe lepton asymmetry: �SM � �N . Lepton number 
hanging pro
esses in the thermal bath13
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Figure 3: One- and two-loop 
ontributions to the lepton self-energy 
orrespoding towashout terms, a) - d), and CP violating terms whi
h generate a lepton asymmetry, e)and f).are shown in Fig. 3. As in the 
ase of Boltzmann equations dis
ussed in Se
tion 2, wefo
us on the CP violating intera
tion generating the lepton asymmetry that 
orrespond toFig. 3 e) and f).To evaluate these graphs we need the 
orrelation fun
tions of lepton and Higgs �eldsin the thermal bath. A system in thermal equilibrium is des
ribed by the density matrix%eq = exp (� (�H + �iQi))Tr exp (� (�H + �iQi)) ; (3.46)where H is the Hamiltonian of the system, � is the inverse temperature, Qi are 
onserved
harges and �i are the 
orresponding 
hemi
al potentials. As expe
ted for an initial stateafter in�ation, we set all 
hemi
al potentials equal to zero.Equilibrium 
orrelation fun
tions of a spatially homogeneous system only depend onspa
e-time di�eren
es, and it is 
onvenient to 
onsider the Fourier transforms,��q (!) = Z d4xei(!x0�qx)��(x) ; (3.47)S�k (!) = Z d4xei(!x0�kx)S�(x) : (3.48)14



Figure 4: Path C� in the 
omplex time plane for equilibrium 
orrelation fun
tions.The equilibrium density matrix (3.46) then 
orresponds to a shift in imaginary time. Thisleads to the well-known Kubo-Martin-S
hwinger (KMS) relations (
f. [44℄)�<q (!) = e��!�>q (!) ; S<k (!) = �e��!S>k (!) ; (3.49)whi
h imply�+q (!) = �i�12 + f�(!)���q (!) = � i2 
oth��!2 ���q (!) ; (3.50)S+k (!) = �i�12 � fl(!)�S�k (!) = � i2 tanh��!2 �S�k (!) ; (3.51)wheref�(!) = 1e�! � 1 ; fl(!) = 1e�! + 1 ; (3.52)are Bose-Einstein and Fermi-Dira
 distribution fun
tions, respe
tively. Note that the en-ergy ! is not on-shell.Equilibrium Green's fun
tions 
an be 
al
ulated in the real-time formalism using the
ontour C� in the 
omplex time plane, whi
h is shown in Fig. 4. For the free equilibriumpropagators of massless lepton and Higgs �elds one obtains (q = jqj, k = jkj, 
f. [44℄),��q (y) = 1q sin(qy) ; (3.53)�+q (y) = 12q 
oth��q2 � 
os(qy) ; (3.54)S�Lk(y) = PL�i
0 
os(ky)� k


k sin(ky)� ; (3.55)S+Lk(y) = �12PL tanh��k2 ��i
0 sin(ky) + k


k 
os(ky)� : (3.56)15



PSfrag repla
ements � (!p;p)(!p;p) l NNFigure 5: One-loop 
ontribution to the self-energies C��p of the Majorana neutrino N .All other propagators 
an be obtained as linear 
ombinations using the relations des
ribedin the previous paragraph. A 
omplete list is given in Appendix A.In the following se
tions we shall see that the 
al
ulation of the lepton asymmetryrepresents an initial value problem whi
h 
an be treated based on the real time formalismtogether with the Keldysh 
ontour Fig. 2. Thermal and nonthermal properties of thesystem are then en
oded in the initial values of the various Green's fun
tions.4 Nonequilibrium 
orrelation fun
tionsThe assumption of weak 
oupling to a large thermal bath with negligible ba
krea
tion in theframework of Kadano�-Baym equations implies that self-energies for the heavy neutrinosN are 
omputed from equilibrium propagators of bath �elds only. This also 
orrespondsto a leading order perturbative expansion in the 
oupling 
onstant.Perturbative expansions of Boltzmann equations in multis
ale problems are knownto su�er from un
ertainties, so-
alled se
ular terms, at late times. The Kadano�-Baymequations (3.44) and (3.45) in full generality are free of se
ular terms and 
onsistentlyin
lude all memory e�e
ts. Nevertheless, the negle
t of ba
krea
tion in the 
omputationof � 
orresponds to a trun
ation in the perturbative expansion in the Yukawa 
ouplings �,whi
h might introdu
e similar un
ertainties related to the multis
ale nature of the problem.However, in the system of 
onsideration 
ontributions of higher order in � are not onlysuppressed by the smallness of the 
oupling, but also by the number of degrees of freedomin the bath that justify the negle
t of ba
krea
tion. Hen
e, we expe
t potential problemsdue to se
ular terms not to be relevant.The assumption that the ba
kground medium equilibrates instantaneously on the times
ale of the asymmetry generation leaves open the details of the equilibration pro
ess. Inreality, there are e�e
ts related to the �nite equilibration time and the �nite size of thequasi-parti
les. As we shall see in Se
tion 5, these quantities play a 
ru
ial role in theKadano�-Baym result for the lepton asymmetry.The self-energy for the heavy neutrino N to leading order in � is given by the diagramin Fig. 5. It 
ontains time-translation invariant propagators of bath �elds only, and hen
eit is also time-translation invariant. As shown in [29℄, this implies that also the spe
tral16



fun
tion is time-translation invariant, G�p (t1; t2) � G�p (y), y = t1 � t2. In this 
ase we 
an�nd the general solutions to the Kadano�-Baym equations without further approximations.4.1 Equation for the spe
tral fun
tionLet us now 
onsider the equation for the spe
tral fun
tion of the Majorana neutrino. Afteran obvious 
hange of variables, the Kadano�-Baym equation (3.44) be
omes,C(i
0�y � p


 �M)G�p (y)� Z y0 dy0C��p (y � y0)G�p (y0) = 0 : (4.1)De�ning the Lapla
e transform~G�p (s) = Z 10 dye�syG�p (y) ; ~��p (s) = Z 10 dye�sy��p (y) ; (4.2)one obtains from Eq. (4.1)�i
0s� p


 �M � ~��p (s)� ~G�p (s) = i
0G�p (0) : (4.3)Using the boundary 
ondition (3.30),G�p (0) = i
0C�1 ; (4.4)this leads to~G�(s) = ��i
0s� p


 �M � ~��(s)��1C�1 : (4.5)The inverse Lapla
e transform is given byG�p (y) = ZCB ds2�iesy ~G�p (s) ; (4.6)where CB is the Bromwi
h 
ontour (see Fig. 6): The part parallel to the imaginary axisis 
hosen su
h that all singularities of the integrand are to its left; the se
ond part is thesemi
ir
le at in�nity whi
h 
loses the 
ontour at Re(s) < 0.From the de�nition of the Lapla
e transform one 
an see that the self-energy ~��p (s) isanalyti
 on the real s axis, but has a dis
ontinuity a
ross the imaginary axis. This givesrise to the spe
tral representation~��p (s) = i Z 1�1 dp02� ��p (p0)is� p0 : (4.7)Note that the retarded and advan
ed self-energies are given by~��p (�i! + �) = �Rp (!) ; (4.8)17
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Figure 6: Bromwi
h 
ontour~��p (�i! � �) = �Ap (!) : (4.9)These self-energies are determined by the dis
ontinuity of ~��p (s),dis
~��p (�i!) = ~��p (�i! + �)� ~��p (�i! � �) = ��p (!) ; (4.10)with the real part given by the prin
ipal value, i.e.,~��p (�i! � �) = iP Z 1�1 dp02� ��(p0)! � p0 � 12��p (!) : (4.11)This representation of the self-energy is familiar from the theory at zero temperature.We are now ready to 
al
ulate the spe
tral fun
tion in terms of the self-energy ��p (!).Its Lapla
e transform has singularities only on the imaginary axis. Hen
e the Bromwi
h
ontour 
an be deformed as CB ! R i1+��i1+�+ R �i1��i1�� (see Fig. 6), whi
h yields for the spe
tralfun
tionG�p (y) = ZCB ds2�iesy ~G�p (s)= Z 1�1 d!2� e(i!+�)y ~G�p (i! + �) + Z �11 d!2� e(i!��)y ~G�p (i! � �)= Z 1�1 d!2� e�i!y � ~G�p (�i! + �)� ~G�p (�i! � �)� : (4.12)The Fourier transform of the spe
tral fun
tion,�p(!) = �i Z 1�1 dyei!yG�p (y) ; (4.13)18



is then given by�p(!) = 0B� �i6p�M � 12��p (!) � �i6p�M + 12��p (!)1CAC�1 : (4.14)Here we have assumed that the divergent 
ontribution of the real part has already beenabsorbed into mass and wave fun
tion renormalization, so that �p(!) represents the renor-malized spe
tral density. The �nite part of the self-energy is negligable be
ause of thesmall Yukawa 
oupling.A straightforward 
al
ulation yields for the self-energy (
f. [35℄),��p (!) = 2i ��y��11 Zk;q 6k �(p; k; q) ; (4.15)where we have de�ned�(p; k; q) = fl�(k; q)(2�)4 �Æ4(p� k � q) + Æ4(p+ k + q)�+ �fl�(k; q)(2�)4 �Æ4(p+ k � q) + Æ4(p� k + q)� ; (4.16)with the statisti
al fa
torsfl�(k; q) = 1� fl(k) + f�(q) ; �fl�(k; q) = f�(q) + fl(k) : (4.17)Note that k and q are on-shell, i.e., k = (k;k) and q = (q;q), whereas p = (!;p) is o�-shell.The properties of the Dira
 matri
es and rotational invarian
e imply��p (!) = iap(!)
0 + ibp(!)p


 ; (4.18)whereap(!) = 2 ��y��11 Zq;k k �(p; k; q) ; (4.19)bp(!) = �2 ��y��11 1p2 Zq;k pk �(p; k; q) : (4.20)These fun
tions satisfy the relationsap(�!p) = ap(!p) ; bp(�!p) = �bp(!p) : (4.21)Using Eq. (4.18) and linearising the denominators in Eq. (4.14) in the small quantitiesap(!) and bp(!), one obtains for the spe
tral density�p(!) = 2!�p(!)�!2 � !2p�+ (!�p(!))2 ( 6p+M)C�1 ; (4.22)19



where!�p(!) = !ap(!) + p2bp(!)= 2 ��y��11 Zq;k p � k �(p; k; q) : (4.23)On-shell, only the �rst of the Æ-fun
tions in �(p; k; q) 
ontributes, and one obtains thewidth appearing in the Boltzmann equations,�p(!p) = ��y��11 2!p Zq;k p � k fl�(k; q)(2�)4Æ4(p� k � q) � �p ; (4.24)whi
h satis�es the relations�p(�!p) = ��p(!p) = �p(!p) : (4.25)In the zero-width limit the spe
tral fun
tion (4.22) redu
es to the familiar expression inva
uum,�p(!) = 2�sign(!)Æ(p2 �M2)(6p+M)C�1 : (4.26)The spe
tral propagator is now obtained by evaluating the Fourier transform of thespe
tral fun
tion (4.22),G�p (y) = i Z 1�1 d!2� e�i!y�p(!) ; (4.27)whi
h yields the �nal resultG�p (y) = �i
0 
os(!py) + M � p


!p sin(!py)� e��pjyj=2C�1 : (4.28)Compared to the free spe
tral fun
tion only an exponential damping fa
tor appears. Thisis a feature of the narrow-width approximation, analogous to the s
alar �eld 
ase dis
ussedin [29℄.4.2 Equation for the statisti
al propagatorWe now pro
eed to the solution of the se
ond Kadano�-Baym equation (3.45) whi
h,
hoosing ti = 0, readsC(i
0�t1 � p


 �M)G+p (t1; t2)� Z t10 dt0C��p (t1 � t0)G+p (t0; t2) = �p(t1 � t2) ; (4.29)20



with the sour
e term�p(t1 � t2) = � Z t20 dt0�+p (t1 � t0)G�p (t0 � t2) : (4.30)The general solution of (4.29) takes the formG+p (t1; t2) = Ĝ+p (t1; t2) +G+p;mem(t1; t2) ; (4.31)where Ĝ+p (t1; t2) is the general solution of the homogeneous equationC(i
0�t1 � p


 �M)Ĝ+p (t1; t2)� Z t10 dt0C��p (t1 � t0)Ĝ+p (t0; t2) = 0 ; (4.32)and the `memory integral', whi
h 
ontains non-Markovian e�e
ts, is given byG+p;mem(t1; t2) = Z t10 dt0 Z t20 dt00G�p (t1 � t0)�+p (t0 � t00)G�p (t00 � t2) : (4.33)One easily veri�es that the memory integral is a spe
ial solution of the inhomogeneousequation.In order to evaluate the memory integral we perform a Fourier transform of the self-energy (y = t1 � t2),G+p;mem(t1; t2) =Z d!2� �Z t10 dy1G�p (y1)ei!y1��+p (!)�Z t20 dy2G�p (�y2)e�i!y2� e�i!y : (4.34)Sin
e the self-energy is 
omputed with �elds in thermal equilibrium, it satis�es the KMS
ondition (
f. (3.51))�+p (!) = � i2 tanh��!2 ���p (!) : (4.35)Using the expressions (4.18) and (4.28) for self-energy and spe
tral fun
tion, respe
-tively, whi
h were derived in the previous se
tion, it is now straightforward to 
al
ulatethe memory integral expli
itly. Negle
ting terms O(�p) in the numerator, one �ndsZ t0 dyei!yG�p (y) = 1!2p � (! + i�p=2)2 � (4.36)�i
0��!p sin(!pt) + i! 
os(!pt)�ei(!+i�p=2)t � i!�+ M � p


!p �i!� sin(!pt)� !p 
os(!pt)�ei(!+i�p=2)t + !p��C�1 ;21



Z t0 dye�i!yG�p (�y) = 1!2p � (! � i�p=2)2 � (4.37)�i
0��!p sin(!pt)� i! 
os(!pt)�e�i(!�i�p=2)t � i!�+ M � p


!p �i!� sin(!pt)� !p 
os(!pt)�ei(!+i�p=2)t + !p��C�1 :After inserting these expressions in Eq. (4.34) one 
an perform the !-integration usingCau
hy's theorem. The integrand has two poles7 in the upper-half plane at ! = i�p=2�!p,and two poles in the lower-half plane ! = �i�p=2�!p. The 
hoi
e of the 
ontour dependson the sign of the time variables in the exponent. The result is a sum of the 
ontributionsfrom all four poles. The expressions appearing in the numerator 
an be simpli�ed by meansof Eqs. (4.21) and (4.24) for self-energy and equilibration width, respe
tively,�
0 + M � p


!p ���p (!p)�
0 + M � p


!p � = 2i�p�
0 + M � p


!p � ; (4.38)�
0 � M � p


!p ���p (�!p)�
0 � M � p


!p � = 2i�p�
0 � M � p


!p � : (4.39)Using these expressions one �nally obtains for the memory integral, 
hanging variablesfrom (t1; t2) to (t; y),G+p;mem(t; y) = (4.40)� 12 tanh��!p2 ��i
0 sin(!py)� M � p


!p 
os(!py)��e��qjyj=2 � e��qt�C�1 :Asymptoti
ally, for t!1, the memory integral be
omesG+eqp (t; y) = �12 tanh��!p2 ��i
0 sin(!py)� M � p


!p 
os(!py)� e��qjyj=2C�1 :(4.41)One easily veri�es that G+eqp (t; y) indeed represents the equilibrium statisti
al propagator.For the Fourier transform one obtainsG+eqp (!) = Z 1�1 dyei!yG+eqp (y)= 12 tanh��!2 � 2!�p(!)�!2 � !2p�+ (!�p(!))2 ( 6p+M)C�1= 12 tanh��!2 � �p(!) (4.42)7There are further poles at !n = �i�(1 + 2n)=�, n integer. However, their 
ontribution to G+p;mem isO(�p=M) and therefore negligible. 22



= � i2 tanh��!2 �G�p (!) ; (4.43)i.e., the KMS 
ondition (
f. (3.51)) is indeed satis�ed.In order to obtain the general solution of the inhomogeneous Kadano�-Baym equationwe have to add to the memory integral the general solution of the homogeneous equation(4.32). This equation is identi
al to the Kadano�-Baym equation for the spe
tral fun
tion(4.1) with t2 playing the role of an additional parameter. Hen
e, the fun
tional dependen
eof Ĝ+p (t1; t2) on the �rst argument t1 
an be obtained in the same way as for the spe
tralfun
tion. Applying the Lapla
e transform to (4.32) one �nds~G+p (s; t2) = 1i
0s� p
 �M � ~��(s) i
0Ĝ+p (0; t2) : (4.44)The inverse Lapla
e transform then givesĜ+p (t1; t2) = �G�p (t1)Ci
0Ĝ+p (0; t2) : (4.45)The fun
tion Ĝ+p (0; t2) 
an now be determined by the symmetries (3.28) and (3.29) ofĜ�p (t1; t2) , whi
h implyĜ+p (t1; t2)T = �Ĝ+p (t2; t1) : (4.46)This yields the resultĜ+p (t1; t2) = �G�p (t1)C
0G+p (0; 0)
0C�1G�p (�t2) ; (4.47)where G+p (0; 0) is an antisymmetri
 matrix.Let us �rst 
onsider the 
ase of thermal initial 
ondition,G+eqp (0; 0) = M � p


2!p tanh��!2 �C�1: (4.48)From Eq. (4.47) one then obtainsĜ+eqp (t1; t2) = �12 �i
0 sin(!py)� M � p


!p 
os(!py)� tanh��!p2 � e��q(t1+t2)=2C�1 :(4.49)Adding this expression to the memory integral Ĝ+p;mem one obtains the equilibrium statis-ti
al propagator Ĝ+eqp whi
h is independent of t = (t1 + t2)=2. Hen
e, as expe
ted, theequilibrium statisti
al propagator is a solution of the full Kadano�-Baym equation.23



We are parti
ularly interested in the 
ase of va
uum initial 
ondition, whi
h 
orre-sponds to zero initial abundan
e for heavy neutrinos in the Boltzmann 
ase. The va
uumpropagators are obtained from the equilibrium ones in the limit � !1. Hen
e we 
hooseG+va
p (0; 0) = M � p


2!p C�1 : (4.50)From Eqs. (4.31), (4.40) and (4.47) one then obtains the full solution for the statisti
alpropagator, whi
h interpolates between va
uum at t = 0 and equilibrium for t!1,G+p (t; y) = ��i
0 sin(!py)� M � p


!p 
os(!py)�� �12 tanh��!p2 � e��pjyj=2 + f eqN (!p)e��pt�C�1: (4.51)This result will be the basis for the 
al
ulation of the lepton asymmetry in the next se
tion.All heavy neutrino propagators 
an be obtained as linear 
ombinations of the spe
tralfun
tion G�p (y) and the statisti
al propagator G+p (t; y). A full list is given in Appendix A.Finally, let us emphasize that the solution of the Kadano�-Baym equation for thestatisti
al propagator is not related to the equilibrium propagator by a simple 
hange ofthe distribution fun
tion from f eqN (!) to some nonequilibrium fun
tion f eqN (t; !). This is in
ontrast to the assumption made in the derivation of Quantum Boltzman equations [16,17,19, 21℄. For a system 
lose to equilibrium this assumption leads to a valid approximationof the Kadano�-Baym equations [9℄, but in general it is not justi�ed.5 Lepton asymmetriesWe are now ready to 
al
ulate the lepton asymmetry whi
h is generated during the ap-proa
h of the heavy Majorana neutrino N to thermal equilibrium. Our starting point isthe �avour non-diagonal lepton 
urrent, whi
h is obtained from the statisti
al propagator,j�ij(x) = �tr[
�S+Lij(x; x0)℄x0!x : (5.1)Sin
e we 
onsider a spatially homogeneous system, S+ij (x; x0) only depends on the di�eren
e~x� ~x0, and it is 
onvenient to perform a Fourier transform. The zeroth 
omponent of the
urrent, the `lepton number matrix', is given byLkij(t; t0) = �tr[
0S+Lkij(t; t0)℄ : (5.2)One easily veri�es that for free �elds in equilibriumLkii(t; t) = fli(k)� f�li(k) ; (5.3)24
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+Figure 7: Two-loop 
ontributions to the lepton self-energies ��k , whi
h lead to a nonzerolepton number densities.where fli and f�li are the distribution fun
tions of leptons and anti-leptons, respe
tively.The lepton number matrix Lkij(t; t0) 
an be dire
tly 
omputed from the self-energy 
or-re
tions to the statisti
al propagator shown in Fig. 3: the external lepton 
ouples to Majo-rana neutrino and Higgs boson, and also to Higgs boson and Higgs-lepton pair. ComplexYukawa 
ouplings and quantum interferen
e then lead to a non-vanishing lepton asymme-try.For a homogeneous system, the Kadano�-Baym equation for the statisti
al propagator(
f. (3.45)) yields for ea
h Fourier mode the equations(i
0�t � k


)S+Lk(t; t0) = Z t0 dt1Π�k (t; t1)S+Lk(t1; t0)� Z t00 dt1Π+k (t; t1)S�Lk(t1; t0) ; (5.4)
25



S+Lk(t; t0)(�i
0  �t0 �k


) =� Z t00 dt1S+Lk(t; t1)Π�k (t1; t0)+ Z t0 dt1S�Lk(t; t1)Π+k (t1; t0) : (5.5)One then obtains for the time derivative of the lepton number matrix, dropping �avourindi
es (
f. [18℄),8�tLk(t; t) = itr �(i
0�t + i
0�t0)S+Lk(t; t0)�t=t0= itr h(i
0�t � k


)S+Lk(t; t0) + S+Lk(t; t0)(i
0  �t0 +k


)it=t0= itr� Z t0 dt1Π�k (t; t1)S+Lk(t1; t0)� Z t00 dt1Π+k (t; t1)S�Lk(t1; t0)+ Z t00 dt1S+Lk(t; t1)Π�k (t1; t0)� Z t0 dt1S�Lk(t; t1)Π+k (t1; t0)�t=t0 : (5.6)Using properties of the tra
e and the identity between integration domainsZ t0 dt1 Z t10 dt2 � � �+ Z t0 dt2 Z t20 dt1 � � � = Z t0 dt1 Z t0 dt2 � � � ; (5.7)one �ndsLk(t; t) = i Z t0 dt1 Z t0 dt2 tr �Π�k (t1; t2)S+Lk(t2; t1)� Π
+k (t1; t2)S�Lk(t2; t1)� : (5.8)Note that Π�k and S�k are self-energies and propagators of the full theory in
luding gaugeintera
tions of lepton and Higgs �elds.Using the relations for propagators and self-energiesS+Lk = 12 (S>Lk + S<Lk) ; S�Lk = i (S>Lk � S<Lk) ; (5.9)

Π
+k = 12 (Π>k + Π

<k ) ; Π
�k = i (Π>k � Π

<k ) ; (5.10)one obtains from Eq. (5.8) an equivalent useful expression for the lepton number matrix,Lk(t; t) = � Z t0 dt1 Z t0 dt2tr [Π>k (t1; t2)S<Lk(t2; t1)� Π
<k (t1; t2)S>Lk(t2; t1)℄ : (5.11)We want to 
al
ulate the lepton asymmetry to leading order in the small Yukawa 
ou-pling �, whi
h 
an be a
hieved in a perturbative expansion. For the heavy neutrino propa-gator appearing in the loop, the departure from the equilibrium propagator is important,98We thank C. Weniger for helpful dis
ussions.9We show in Appendix D that the equilibrium part of the propagator does indeed not 
ontribute tothe asymmetry. 26



whi
h has been evaluated in the previous se
tion,Gp(t1; t2) = Geqp (t1 � t2) + �Gp(t1; t2) : (5.12)Lepton propagators and self-energies have large equilibrium 
ontributions dominated bygauge intera
tion, with small 
orre
tions O(�2),SLk(t1; t2) = SeqLk(t1 � t2) + ÆSLk(t1; t2) ; (5.13)
Πk(t1; t2) = Π

eqk (t1 � t2) + ÆΠk(t1; t2) ; (5.14)whi
h in
lude CP-violating sour
e terms and washout terms. Clearly, inserting Π
eqk andSeqk in Eq. (5.8) must yield Leqk (t; t) = 0, sin
e no asymmetry is generated in thermalequilibrium.10 As dis
ussed in Se
tion 2, we also negle
t washout terms for simpli
ity. Onethen obtains for the lepton number matrix Lk(t; t) to leading order in �,Lk(t; t) = i Z t0 dt1 Z t0 dt2tr�ÆΠ�k (t1; t2)Seq+Lk (t2 � t1)�ÆΠ+k (t1; t2)Seq�Lk (t2 � t1)� : (5.15)Here ÆΠk is given by the two-loop graphs shown in Fig. 7, whi
h have to be evaluatedwith equilibrium propagators for lepton and Higgs �elds and the nonequilibrium Majorananeutrino propagator.The equilibrium propagators with standard model gauge intera
tions remain to beevaluated. In the quasi-parti
le approximation one simply repla
es energies k by 
omplexquasi-parti
le energies 
k = (k2 + m2th)1=2 + i
(k). In the following we shall 
onsidertwo approximations: free equilibrium propagators with zero 
hemi
al potential as given inEqs. (A.1), (A.2) and (A.7), (A.8),�eq�k (y) = ��k (y) ; Seq�Lk (y) = S�Lk(y) ; (5.16)and, as a rough approximation to full thermal propagators, free equilibrium propagatorsmodi�ed by thermal damping rates,�eq�k (y) = ��k (y)e�
�jyj ; Seq�Lk (y) = S�Lk(y)e�
ljyj : (5.17)Remarkably, thermal widths turn out to be qualitatively more important than thermalmasses, as we shall explain in Se
tion 6.The two 
ontributions to the self-energy ÆΠkij (
f. Fig. 7),ÆΠkij(t1; t2) = Π

(1)kij(t1; t2) + Π
(2)kij(t1; t2) ; (5.18)10Note that thermal equilibrium does not 
orrespond to a Gaussian state [42℄. Therefore one has toin
lude 
ontributions from n-point fun
tions whi
h are not determined by equilibrium 2-point fun
tions.However, su
h terms do not 
ontribute to leading order in the Yukawa 
oupling �.27



fa
torize into a produ
t of Yukawa 
ouplings, whi
h 
ontains the �avour dependen
e, anda tra
e of thermal propagators,
Π
(1)kij(t1; t2) = �3i��i1 (���)j1Π(1)k (t1; t2) ; (5.19)

Π
(2)kij(t1; t2) = 3i (���)i1 �j1Π(2)k (t1; t2) : (5.20)In the 
ase of free equilibrium propagators for lepton and Higgs �elds, we obtain for theself-energies Π(1;2)>k and Π

(1;2)<k :
Π
(1)>k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G>p (t1; t3)S11k0 (t2 � t3)�11q0 (t2 � t3)�<q (t2 � t1)� ~G22p (t1; t3)S<k0(t2 � t3)�<q0(t2 � t3)�<q (t2 � t1)℄PL ; (5.21)

Π
(1)<k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G11p (t1; t3)S>k0(t2 � t3)�>q0(t2 � t3)�>q (t2 � t1)� ~G<p (t1; t3)S22k0 (t2 � t3)�22q0 (t2 � t3)�>q (t2 � t1)℄PL ; (5.22)

Π
(2)>k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G<p (t2; t3)S22k0 (t3 � t1)�22q0 (t3 � t1)�<q (t2 � t1)� ~G11p (t2; t3)S<k0(t3 � t1)�<q0(t3 � t1)�<q (t2 � t1)℄PL ; (5.23)

Π
(2)<k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G22p (t2; t3)S>k0(t3 � t1)�>q0(t3 � t1)�>q (t2 � t1)� ~G>p (t2; t3)S11k0 (t3 � t1)�11q0 (t3 � t1)�>q (t2 � t1)℄PL : (5.24)Due to the 
hiral proje
tions at the verti
es, only the s
alar parts of the nonequilibriumMajorana propagators 
ontribute, whi
h are the same for ~G>p , ~G<p , ~G11p and ~G22p (
f. Eqs.(A.19) - (A.24)),PL �Gp(t; t0)CPL = ~Gp(t; t0)PL ; ~Gp(t; t0) = M!p 
os(!p(t� t0))f eqN (!p)e��p(t+t0)=2 :(5.25)The number of terms whi
h 
ontribute to the asymmetry Lk(t; t) 
an be signi�
antlyredu
ed by means of the following symmetry properties of the massless propagators:S>k (y)� = CS<k (y)C�1 ; S11k (y)� = CS22k (y)C�1 ; (5.26)�>q (y)� = �<q (y) ; �11q (y)� = �22q (�y) ; (5.27)28



S<k (y) = 
5S>�k(�y)
5 ; S11k (y) = 
5S11�k(�y)
5 ; (5.28)�<q (y) = �>q (�y) ; �11q (y) = �11q (�y) : (5.29)Employing these transformation properties one 
an derive the following useful relationsamong di�erent 
ontributions to the integrand of Eq. (5.11):tr hΠ(1;2)>k (t1; t2)S<k (t2 � t1)i = �tr hΠ(1;2)<k (t1; t2)S>k (t2 � t1)i� ; (5.30)tr hΠ(1)>k (t1; t2)S<k (t2 � t1)i = �tr hΠ(2)<k (t2; t1)S>k (t1 � t2)i : (5.31)Using these relations one obtains from Eq. (5.11) the 
ompa
t expression for the leptonasymmetryLkii(t; t) = 12 Imf��i1 (���)i1g� Z t0 dt1 Z t0 dt2 Re�tr hΠ(2)>k (t1; t2)S<k (t2 � t1)i� : (5.32)Sin
e Imf��i1 (���)j1g = 16��ij=(3M) (
f. Eq. (2.12)), the leading dependen
e of the �avour-diagonal lepton asymmetry Lkii(t; t) on the Yukawa 
ouplings is identi
al to the dependen
eof the di�eren
e fLi(t; k) of lepton and anti-lepton distribution fun
tions appearing in theBoltzmann equations.To pro
eed further in the evaluation of Lkii(t; t), the following relation 
an be used tosimplify the integrand,S22k (y)�22q (y)� S<k (y)�<q (y) =�(�y)2q �
0�
oth��q2 � 
os(ky) 
os(qy)� tanh��k2 � sin(ky) sin(qy)�� iM � k
k �tanh��k2 � 
os(ky) sin(qy) + 
oth��q2 � sin(ky) 
os(qy)�� : (5.33)One then obtains for the real part of the sum of produ
ts of thermal lepton and Higgspropagators (yij = ti � tj),Re�tr��S22k0 (y31)�22q0 (y31)� S<k0(y31)�<q0(y31)�S<k (y21)��<q (y21)� =��(y13)16qq0 ��
oth��q2 �� 
os((k + q)y21) + 
os((k � q)y21)�+tanh��k2 �� 
os((k + q)y21)� 
os((k � q)y21)����
oth��q02 �� 
os((k0 + q0)y31) + 
os((k0 � q0)y31)�+ tanh��k02 �� 
os((k0 + q0)y31)� 
os((k0 � q0)y31)��29



+k � k0kk0 �
oth��q2 �� sin((k + q)y21) + sin((k � q)y21)�+tanh��k2 �� sin((k + q)y21)� sin((k � q)y21)����
oth��q02 �� sin((k0 + q0)y31) + sin((k0 � q0)y31)�+ tanh��k02 �� sin((k0 + q0)y31)� sin((k0 � q0)y31)��� : (5.34)De�ning the linear 
ombinations of lepton and Higgs distribution fun
tions (
f. (2.6)),fl�(k; q) = 1� fl(k) + f�(q) ; �fl�(k; q) = fl(k) + f�(q) ; (5.35)and using the relations
oth��q2 �+ tanh��k2 � = 2fl�(k; q) ; (5.36)
oth��q2 �� tanh��k2 � = 2 �fl�(k; q) ; (5.37)one �ndsLkii(t; t) = ��ii 32� Z t0 dt1 Z t0 dt2 Z t20 dt3 Zq;q0 1!pf eqN (!p)e��2 (t1+t3) 
os(!py31)���fl�(k; q) 
os((k + q)y21) + �fl�(k; q) 
os((k � q)y21)���fl�(k0; q0) 
os((k0 + q0)y23) + �fl�(k0; q0) 
os((k0 � q0)y23)�+k � k0kk0 ��fl�(k; q) sin((k + q)y21) + �fl�(k; q) sin((k � q)y21)���fl�(k0; q0) sin((k0 + q0)y23) + �fl�(k0; q0) sin((k0 � q0)y23)��� ; (5.38)where we have again used the notationZq � � � = Z d3q(2�)32q � � � :The fun
tions fl� and �fl� are well known from Weldon's analysis of dis
ontinuities in�nite-temperature �eld theory [35℄. The sum of statisti
al fa
torsfl�(k; q) = (1� fl(k))(1 + f�(q)) + fl(k)f�(q) (5.39)30




orresponds to de
ays and inverse de
ays of the massive Majorana neutrinos whereas�fl�(k; q) = f�(q)(1� fl(k)) + fl(k)(1 + f�(q)) (5.40)a

ounts for their disappearan
e or appearan
e where a single quant, lepton or Higgs, isabsorbed from or emitted into the thermal bath. The fun
tion fl� 
ontains the va
uum
ontribution, i.e., fl� ! 1 as � !1, whereas �fl� ! 0.We now have to perform the three time integrations in Eq. (5.38). It is 
onvenientto express the produ
ts of 
osine's and sine's as sum of produ
ts of exponentials. Ea
hterm then be
omes a sum of four exponentials, where the energies !, k � q and k0 � q0appear in di�erent linear 
ombinations, and the four 
omplex 
onjugate exponentials. Asan example, 
onsider the integralI(t) = Z t0 dt1 Z t0 dt2 Z t20 dt3e�i
1t1+i
2t2+i
3t3e��2 (t1+t3) ; (5.41)with 
1 = !p�k�q, 
3 = !p�q0�k0, and 
2 = 
1�
3 = k0+q0�k�q. A straightforward
al
ulation yieldsI(t) + I�(t) = ���e��t + 
os(
2t)� e��t2 (
os(
1t) + 
os(
3t))�+O(t)(
21 + �24 )(
23 + �24 ) ; (5.42)whereO(t) = 2
1
3 + �22
2 �sin(
2t)� e��t2 (sin(
1t)� sin(
3t))� (5.43)is of higher order in � at 
1;3 = 0. Hen
e, this term does not 
ontribute to the leptonasymmetry at leading order in �, i.e., in the Yukawa 
ouplings.The two 
ontributions in Eq. (5.38), without and with the prefa
tor k �k0=(kk0), add upto a single term proportional to k � k0=(kk0) where k � k0 denotes the produ
t of 4-ve
tors.This is a 
onsequen
e of Lorentz invarian
e of the va
uum 
ontribution. The full result isnow easily obtained from Eqs. (5.38) and (5.42) by adding the 
ontributions with reversedsign of q and/or q0, a

ompanied by the 
orresponding substitution fl� ! �fl�. Omittingthe subleading terms O (
f. (5.43)), one �nally obtainsLkij(t; t) = 4Xa=1 Lakij(t; t) ; (5.44)whereLakii(t; t) = ��ii 8� Zq;q0 k � k0kk0!p f eqN (!p) 12� X�;�=� L̂ak;q;q0(t;�; �) (5.45)31



and L̂1k;q;q0(t;�; �) = fl�(k; q)fl�(k0; q0)((!p � �(k + q))2 + �24 )((!p � �(k0 + q0))2 + �24 )� �e��t + 
os[(�(k + q)� �(k0 + q0))t℄� e��t2 � 
os[(!p � �(k + q))t℄ + 
os[(!p � �(k0 + q0))t℄�� ; (5.46)L̂2k;q;q0(t;�; �) = �fl�(k; q)fl�(k0; q0)((!p � �(k � q))2 + �24 )((!p � �(k0 + q0))2 + �24 )� �e��t + 
os[(�(k � q)� �(k0 + q0))t℄� e��t2 � 
os[(!p � �(k � q))t℄ + 
os[(!p � �(k0 + q0))t℄�� ; (5.47)L̂3k;q;q0(t;�; �) = fl�(k; q) �fl�(k0; q0)((!p � �(k + q))2 + �24 )((!p � �(k0 � q0))2 + �24 )� �e��t + 
os[(�(k + q)� �(k0 � q0))t℄� e��t2 � 
os[(!p � �(k + q))t℄ + 
os[(!p � �(k0 � q0))t℄�� ; (5.48)L̂4k;q;q0(t;�; �) = fl�(k; q)fl�(k0; q0)((!p � �(k � q))2 + �24 )((!p � �(k0 � q0))2 + �24 )� �e��t + 
os[(�(k � q)� �(k0 � q0))t℄� e��t2 � 
os[(!p � �(k � q))t℄ + 
os[(!p � �(k0 � q0))t℄�� : (5.49)This expression 
ontains o�-shell and memory e�e
ts whi
h are not 
ontained in Boltzmannequations. A detailed 
omparison will be given in the following se
tion.So far we have negle
ted the thermal damping widths of lepton and Higgs �elds dueto gauge intera
tions, whi
h are known to be mu
h larger than the width of the heavyMajorana neutrino, 
l � 
� � g2T � �2M � �, for M <� T . To estimate their e�e
t werepla
e the free equilibrium propagators by�eq�k (y) = ��k (y)e�
�jyj ; Seq�k (y) = S�k (y)e�
ljyj : (5.50)This has a drasti
 e�e
t on the 
al
ulation des
ribed above. For the dominant term inEq. (5.45), L̂1k;q;q0 with � = � = 1, where the energy dominators 
an be O(�2), one now�nds (
 = 
l + 
�),�Lkii(t; t) = ��ii 16� Zq;q0 k � k0kk0!p� 

0((!p � k � q)2 + 
2)((!p � k0 � q0)2 + 
02)32



�fl�(k; q)fl�(k0; q0)f eqN (!p)� 1� �1� e��t� ; (5.51)where 
 = 
(k; q) and 
0 = 
0(k0; q0). Note that now all memory e�e
ts have disappeared.6 Boltzmann vs Kadano�-BaymLet us now 
onsider in detail the relation between the two results obtained for the leptonasymmetry: Eq. (2.11) from the Boltzmann equations and Eqs. (5.44) - (5.49) and (5.51)from the Kadano�-Baym equations.Clearly, the overall CP asymmetry is identi
al in both 
ases and also the momentumintegrations are very similar. Compared to the Boltzmann result the Kadano�-Baym resulthas an additional statisti
al lepton-Higgs fa
tor and expe
ted o�-shell energy denominators.Furthermore, there are 16 di�erent terms 
orresponding to the various 
ombinations ofde
ay and inverse de
ay, appearan
e and dissappearan
e. The most striking di�eren
eis the time dependen
e of the integrand: the Boltzmann result has a simple exponentialbehaviour whereas the Kadano�-Baym result has terms rapidly os
illating with time withfrequen
ies O(M)� �, a manifestation of memory e�e
ts.The time-dependen
e is 
ontained in the integral I(t) given in Eq. (5.41). De�ning�
1 = 
1 + i2� ; �
3 = 
3 + i2� ; (6.1)and using the identities t3 = t1+(t2� t1)+(t3� t2) and 
2 = 
1�
3, one has (
f. (5.41)),I(t) = Z t0 dt1e��t1 Z t�t1�t1 dt21 Z 0�t2 dt32 ei�
1t21+i�
3t32 ; (6.2)where tij = ti � tj. After performing the time-integrations, one obtains the resultI(t) = 1i�
3 � 1j�
1j2 �ei�
1t � 1��e�i�
�1t � 1�� 1
2 �
�1 �ei
2t � 1� �e�i�
�1t � 1�� ; (6.3)whi
h satis�esI(0) = I 0(0) = I 00(0) = 0 ; I 000(0) 6= 0 : (6.4)For large times, t� 1=�, there remains a term os
illating with time,I(t) � 1i�
3 � 1j�
1j2 + 1
2 �
�1 �ei
2t � 1�� : (6.5)33



This is in 
ontrast to the Boltzmann result whose time-dependen
e is given byIB(t) = 1� e��t� ; (6.6)with IB(0) = 0 ; I 0B(0) 6= 0 ; (6.7)and IB(t) � 1=� = 
onst for large times t� 1=�.Where is the Boltzmann result hidden in the Kadano�-Baym result, and in whi
h limitis it re
overed? To answer this question it is instru
tive to 
onsider a modi�ed integral�I(t), where thermal damping rates 
 � 
0 � g2T are in
luded, whi
h a�e
t the dependen
eon the time di�eren
es jt2 � t1j and jt3 � t2j (
f. Fig. 7),�I(t) = Z t0 dt1e��t1 Z t�t1�t1 dt21 Z 0�t2 dt32 ei�
1t21�
jt21j ei�
3t32�
0jt32j : (6.8)Compared to Eq. (5.41) the main di�eren
e is that the damping term in the t21-integration
hanges sign at t21 = 0. This is in 
ontrast to the damping due to the Majorana neutrinode
ay width �.Carrying out the time-integrations one now obtains the result�I(t) = 1i�
3 + 
0� 1(i�
1 � 
)(�i�
�1 + 
)e(i�
1�
)t �e(�i�
�1+
)t � 1�� 1(i�
1 + 
)(�i�
�1 � 
) �e(�i�
�1�
)t � 1�� 1(i
2 � 
 � 
0)(�i�
�1 + 
)e(i
2�
�
0)t �e(�i�
�1+
)t � 1�+ 1(i
2 + 
 � 
0)(�i�
�1 � 
) �e(�i�
�1�
)t � 1�+ 2
�
21 + 
2 1� e��t� � 2
(i�
�3 + 
0)((i
2 � 
0)2 � 
2) �e(�i�
�3�
0)t � 1� � :(6.9)The �rst four terms redu
e to Eq. (6.3) for 
 = 
0 = 0. Parti
ularly interesting is thelast line in Eq. (6.9), whi
h is a 
ontribution from the point t21 = t2 � t1 = 0, wherethe damping term 
hanges sign. This lo
al 
ontribution 
ontains the only term whi
h isenhan
ed by 1=� and has Boltzmann-like time-dependen
e,�I(t) � IB(t) = 2
(i�
3 + 
0)(�
21 + 
2) 1� e��t� : (6.10)34



Note that as 
onsequen
e of thermal damping all os
illatory terms are exponentially sup-pressed for times t > 1=
,�I(t) � 1i�
3 + 
0� 2
�
21 + 
2 1� e��t� + 2
(i�
�3 + 
0)((i
2 � 
0)2 � 
2)+ 1(i�
1 + 
)(�i�
�1 � 
) � 1(i
2 + 
 � 
0)(�i�
�1 � 
)� : (6.11)The Boltzmann-like term (6.10), whi
h originates from the point t2 = t1, vanishes for
 = 0.What is the order of magnitude of the lepton asymmetry (5.44) relative to the Boltz-mann result in the 
ase 
 = 
0 = 0? The Kadano�-Baym result depends on � = �t,like the Boltzmann result, and in addition on the dimensionless parameter �=M � 1. Inappendix C we shown thatLk(t; t)fL(t; k) ! 0 ; for �M ! 0 ; � = �t �xed : (6.12)Hen
e, in this zero-width limit, due to rapid os
illations of the integrand, the lepton asym-metry obtained from the Kadano�-Baym equation is at least O(�=M) relative to the Boltz-mann lepton asymmetry.We are thus led to the 
on
lusion that the lepton asymmetry obtained from theKadano�-Baym equations does not 
ontain the Boltzmann result as limiting 
ase as longas free equilibrium propagators are used for lepton and Higgs �elds. This may not be toosurprising. After all, the underlying assumption in our 
al
ulation has been that (gauge)intera
tions, mu
h faster than heavy neutrino de
ay, establish kineti
 equilibrium for lep-tons and Higgs parti
les. These intera
tions will unavoidably lead to thermal dampingwidths mu
h larger than �. If these intera
tions are not taken into a

ount in the 
al
ula-tion of the lepton asymmetry, one misses the main 
ontribution and obtains a misleadingresult. This means that at present the best estimate for the full quantum me
hani
al lep-ton asymmetry is given by Eq. (5.51), whi
h leads to a temperature dependent suppression
ompared to the Boltzmann result.Note that the proposed in
orporation of thermal damping rates leads to a Boltzmann-like result, Eq. (5.51), whi
h is valid for t >� 1=�. For t < 1=�, all terms have to be kept,and one has �t �Lk(t; t)jt=0 = 0, whi
h is a property of the exa
t result (5.8), 
ontrary to theBoltzmann approximation.7 Numeri
al analysisLet us now quantitatively 
ompare the Boltzmann result (2.14) for the lepton asymmetryfLi(t; k) = fli(t; k)� f�li(t; k) 35



with the Kadano�-Baym result for the lepton asymmetryLkii(t; t) = �tr[
0S+Lkii(t; t)℄ : (7.1)For free �elds in thermal equilibrium both expressions are identi
al. For the Kadano�-Baym result we use Eq. (5.51) whi
h in
ludes the estimated e�e
t of thermal widths forlepton and Higgs �elds.As shown in Appendix C, the Boltzmann result (2.14) 
an be redu
ed to a two-dimensional momentum integral (
f. (C.15)),fLi(t; k) = � �ii4� FB(k; �) 1� �1� e��t� ; (7.2)where we have de�nedFB(k; �) = 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 1!p��1� 2!pk �M22pk 2!pk0 �M22pk0 � fl�(k; !p � k)f eqN (!p) ; (7.3)here !p = pM2 + p2, the bra
ket represents the produ
t of 4-ve
tors divided by the
orresponding energies, k � k0=(kk0), and the integration boundaries arepmin(k) = jM2 � 4k2j4k ; k0min = !p � p2 ; k0max(p) = !p + p2 : (7.4)The dependen
e on temperature (� = 1=T ) enters through the equilibrium distributionfun
tions of Higgs parti
les and leptons,fl�(k; q) = 1� fl(k) + f�(q) ; q = !p � k ; (7.5)fl(k) = 1e�k + 1 ; f�(q) = 1e�q � 1 ; f eqN (!p) = 1e�!p + 1 : (7.6)The Kadano�-Baym result (5.51) for the lepton asymmetry, whi
h in
ludes e�e
ts ofthermal damping, takes the same form as the Boltzmann result�Lkii(t; t) = � �ii4� FKB(k; �) 1� �1� e��t� : (7.7)Sin
e the integrand of the momentum integrations 
ontains two delta-fun
tions less thanthe expression for the Boltzmann result, the fun
tion FKB(k; �) 
an only be written as afour-dimensional integral (
f. (C.19)),FKB(k; �) = 1�2 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk Z q+q� dq Z q0+q0� dq0 1!p36



��1� p2 + k2 � q22pk p2 + k02 � q022pk0 � fl�(k; q)fl�(k0; q0)f eqN (!p)� 

0((!p � k � q)2 + 
2)((!p � k0 � q0)2 + 
02) ; (7.8)with the integration boundariesq� = jp� kj ; q0� = jp� k0j : (7.9)For the thermal widths we use the estimate 
 ' 
0 � 6g28� T � 0:1 T (
f. [44℄). Note thatthe damping in a non-Abelian plasma is 
onsiderably stronger than in an ele
tromagneti
plasma at the same temperature.It is instru
tive to 
ompare the Boltzmann and Kadano�-Baym results with the pre-di
tion of quantum Boltzmann equations. As shown in [19, 20℄, these equations lead toan additional statisti
al fa
tor 
ompared to Boltzmann equations, whi
h implies for thelepton asymmetryFQB(k; �) = 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 1!p (7.10)��1� 2!pk �M22pk 2!pk0 �M22pk0 � fl�(k; !p � k)fl�(k0; !p � k0)f eqN (!p) :In [19,20℄, this enhan
ement has been in
luded in an e�e
tive, temperature-dependent CPasymmetry.In Fig. 8 Boltzmann and Kadano�-Baym results for the lepton asymmetry are 
om-pared. At momenta k � 0:2, where both distributions peak, the di�eren
es are less than20%, at larger momenta they rea
h at most 50% (
f. Fig. 10). At temperatures T � 0:3,where leptogenesis takes pla
e for typi
al neutrino parameters [30, 45℄, di�eren
es are es-sentially negligible.Boltzmann and quantum Boltzmann results for the lepton asymmetry are 
omparedin Fig. 9. At momenta k � 0:2, where both distributions are maximal, the di�eren
es
an ex
eed 100%, and they remain large also at larger momenta (
f. Fig.10). An enhan
e-ment O(100%) at T � 1 is qualitatively 
onsistent with the enhan
ement found for thetemperature-dependent CP asymmetries in [19, 20℄.The Kadano�-Baym result strongly depends on the size of the thermal damping rates.For 
; 
0 ! 0, o�-shell e�e
ts dissappear, and the Kadano�-Baym result approa
hes thequantum Boltzmann result. Numeri
ally, already for 
 ' 
0 � 0:01 T the di�eren
esare negligible. However, in a non-Abelian plasma, damping rates are large and, as a
onsequen
e, they almost 
ompensate the enhan
ement due to the additional statisti
alfa
tor 
ontained in the quantum Boltzmann as well as the Kadano�-Baym result. We
on
lude that, a

ording to our estimates, the 
onventional Boltzmann equations providerather a

urate predi
tions for the lepton asymmetry.37
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8 Summary and 
on
lusionsThe goal of leptogenesis is the predi
tion of the 
osmologi
al baryon asymmetry, givenneutrino masses an mixings. In a `theory of leptogenesis', it must be possible to quantifythe theoreti
al error on this predi
tion. This requires to go beyond Boltzmann as well asquantum Boltzmann equations, su
h that the size of memory and o�-shell e�e
ts 
an besystemati
ally 
omputed.In the present paper we have shown how to 
al
ulate the lepton asymmetry from �rstprin
iples, i.e., in the framework of nonequilibrium quantum �eld theory. Our 
al
ulationis entirely based on Green's fun
tions, and it therefore avoids all assumptions whi
h areneeded to arrive at Boltzmann equations.Two key ingredients make the problem solvable. First, the thermal bath has a largenumber of degrees of freedom, all standard model parti
les, 
ompared to only one parti-
le out of equilibrium, the heavy neutrino. Hen
e, the ba
krea
tion of its equilibrationon the temperature of the thermal bath 
an be negle
ted. Se
ond, the heavy neutrinois only weakly 
oupled to the thermal bath and we 
an use perturbation theory in the
orresponding Yukawa 
oupling �.The weak 
oupling of the heavy neutrino to the bath allowed us to obtain analyti
expressions for the spe
tral fun
tion, whi
h do not depend on initial 
onditions, and for thestatisti
al propagator. In Se
tion 4 we have dis
ussed two solutions of the Kadano�-Baymequations, whi
h 
orrespond to thermal and va
uum initial 
onditions. The statisti
alpropagator whi
h interpolates between va
uum at t = 0 and thermal equilibrium at largetimes 
an then be used in the 
omputation of the lepton asymmetry.Thermal leptogenesis has two vastly di�erent s
ales, the width � of the heavy neutrinoon one side, and its mass M , temperature T of the bath and thermal damping widths 
on the other side,� � �2M � 
 � g2T < T <�M :Typi
al leptogenesis parameters (
f. [2℄) are � � 10�7 M , 
 � 0:1 T , T � 0:3 M , M �1010 GeV. The existen
e of intera
tions in the plasma, whi
h are fast 
ompared to theequilibration time �N = 1=� of the heavy neutrino, is always impli
itly assumed to justifythe use of Boltzmann equations for the 
al
ulation of the asymmetry, but their e�e
ts areusually not expli
itly taken into a

ount.The main result of this paper is the 
omputation of the lepton asymmetry in Se
tion 5,where the nonequilibrium propagators of the heavy neutrino and free equilibrium propaga-tors for massless lepton and Higgs �elds are used. Compared to Boltzmann and quantumBoltzmann equations, the 
ru
ial di�eren
e of the result (5.44) - (5.49) are the memorye�e
ts, os
illations with frequen
ies O(M), mu
h faster than the heavy neutrino equilibra-tion time �N = 1=�. These os
illations strongly suppress the generated lepton asymmetryLk(t; t) 
ompared to the Boltzmann result fL(t; k). In fa
t, as shown in appendix C, theratio Lk(t; t)=fL(t; k) vanishes in the `zero-width' limit �=M ! 0, with � = �t �xed.41



This situation 
hanges when the intera
tions, whi
h in the Boltzmann approa
h areassumed to establish kineti
 equilibrium, are expli
itly in
luded in the 
al
ulation. Leptonand Higgs �elds in the thermal bath then a
quire large thermal damping widths 
 � g2T ,whi
h 
ut o� the os
illations. As a 
onsequen
e, the predi
ted lepton asymmetry is similarto the quantum Boltzmann result, ex
ept for o�-shell e�e
ts whi
h are now in
luded. Forsmall damping widths, 
 � T , the o�-shell e�e
ts are negligible. They are large, however,in the standard model plasma. A

ording to our 
al
ulation, using 
 � 0:1 T , the dampinge�e
ts essentially 
ompensate the enhan
ement due to the additional statisti
al fa
tor ofthe quantum Boltzmann equations. We 
on
lude that, after all 
orre
tions are taken intoa

ount, the 
onventional Boltzmann equations again provide rather a

urate predi
tionsfor the lepton asymmetry. Note that the 
lassi
al Boltzmann behaviour emerges at largetimes, t >� 1=� > 1=
, while at early times all terms are of similar magnitude, and allquantum e�e
ts have to be kept.As already emphasized in [8℄, it is of 
ru
ial importan
e to in
lude gauge intera
tions inthe Kadano�-Baym approa
h to make further progress towards a `theory of leptogenesis'.It remains to be seen whether the qualitative e�e
ts of thermal damping, as dis
ussed inthis paper, will then be 
on�rmed or whether new surprises are en
ountered.A
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A Thermal propagatorsIn the following we list all propagators, whi
h are needed in the 
al
ulation des
ribed inSe
tion 5, as fun
tions of relative time y = t1 � t2 and total time t = (t1 + t2)=2.� Free massive s
alar (!q =pm2 + q2)��q (y) = 1!q sin(!qy) ; (A.1)�+q (y) = 12!q 
oth��!q2 � 
os(!qy) ; (A.2)�11q (y) = 12!q �
oth��!q2 � 
os(!qy)� i sin(!qjyj)� (A.3)= �+q (y)� i2sign(y)��q (y) ;�22q (y) = 12!q �
oth��!q2 � 
os(!qy) + i sin(!qjyj)� (A.4)= �+q (y) + i2sign(y)��q (y) ;�>q (y) = 12!q �
oth��!q2 � 
os(!qy)� i sin(!qy)� ; (A.5)�<q (y) = 12!q �
oth��!q2 � 
os(!qy) + i sin(!qy)� : (A.6)� Free massive Dira
 fermion (!k =pm2 + k2)S�k (y) = i
0 
os(!ky) + m� k


!k sin(!ky) ; (A.7)S+k (y) = �12 tanh��!k2 ��i
0 sin(!ky)� m� k


!k 
os(!ky)� ; (A.8)S11k (y) = 
02 �
os(!ky)sign(y)� i tanh��!k2 � sin(!ky)�+ m� k


2!k �tanh��!k2 � 
os(!ky)� i sin(!kjyj)� (A.9)= S+k (y)� i2sign(y)S�k (y) ;S22k (y) = 
02 �� 
os(!ky)sign(y)� i tanh��!k2 � sin(!ky)�+ m� k


2!k �tanh��!k2 � 
os(!ky) + i sin(!kjyj)� (A.10)43



= S+k (y) + i2sign(y)S�k (y) ;S>k (y) = 
02 �
os(!ky)� i tanh��!k2 � sin(!ky)�+ m� k


2!k �tanh��!k2 � 
os(!ky)� i sin(!ky)� ; (A.11)S<k (y) = 
02 �� 
os(!ky)� i tanh��!k2 � sin(!ky)�+ m� k


2!k �tanh��!k2 � 
os(!ky) + i sin(!ky)� : (A.12)The propagators for a massless left-handed fermion are obtained by the substitutions!k ! k = jkj, S:::k ! PLS :::k , where PL = (1� 
5)=2.� Free massive Majorana fermion (!p =pM2 + p2)G�p (y) = �i
0 
os(!py) + M � p
!p sin(!py)�C�1 ; (A.13)G+p (y) = �12 tanh��!p2 ��i
0 sin(!py)� M � p


!p 
os(!py)�C�1 ; (A.14)G11p (y) = �
02 �
os(!py)sign(y)� i tanh��!p2 � sin(!py)�+M � p


2!p �tanh��!p2 � 
os(!py)� i sin(!pjyj)��C�1 ; (A.15)G22p (y) = �
02 �� 
os(!py)sign(y)� i tanh��!p2 � sin(!py)�+M � p


2!p �tanh��!p2 � 
os(!py) + i sin(!pjyj)��C�1 ; (A.16)G>p (y) = �
02 �
os(!py)� i tanh��!p2 � sin(!py)�+M � p


2!p �tanh��!p2 � 
os(!py)� i sin(!py)��C�1 ; (A.17)G<p (y) = �
02 �� 
os(!py)� i tanh��!p2 � sin(!py)�+M � p


2!p �tanh��!p2 � 
os(!py) + i sin(!py)��C�1 : (A.18)
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� Nonequilibrium massive Majorana fermion (interpolation between va
uum at t =y = 0 and thermal equilibrium at t =1, and memory integral)G�p (y) = �i
0 
os(!py) + M � p


!p sin(!py)� e��pjyj=2C�1 ; (A.19)G+p (t; y) = ��i
0 sin(!py)� M � p


!p 
os(!py)�� �12 tanh��!p2 � e��pjyj=2 + f eqN (!p)e��pt�C�1 ; (A.20)G11p (t; y) = G+p (t; y)� i2sign(y)G�p (y) ; (A.21)G22p (t; y) = G+p (t; y) + i2sign(y)G�p (y) ; (A.22)G>p (t; y) = G+p (t; y)� i2G�p (y) ; (A.23)G<p (t; y) = G+p (t; y) + i2G+p (y) ; (A.24)G+p;mem(t; y) = �12 tanh��!p2 ��i
0 sin(!py)� M � p


!p 
os(!py)�� �e��pjyj=2 � e��pt�C�1 : (A.25)B Feynman rulesFor 
ompleteness, we list in the following the Feynman rules for the Standard ModelLagrangian with right-handed neutrinos given in Eq. (1.2); �; � are spinor indi
es anda; b; : : : are SU(2) indi
es.� Majorana neutrinoPSfrag repla
ementsx2;� x1;�N G��(x1; x2)� Lepton doubletPSfrag repla
ements l x1;�;a;ix2;�;b;j ÆijÆabS��(x1; x2)
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� Higgs doubletPSfrag repla
ements � x1;ax2;b Æab�(x1; x2)� Verti
esPSfrag repla
ementsN � i; �; a l
b � i��i1�ab(PR)��PSfrag repla
ementsN � i; �; a l
b � i�i1(CPL)���ab

PSfrag repla
ements 
i; �; a
l
l

j; �; b
�
�d i�ij(�a
�bd + �ad�b
)(CPL)��

PSfrag repla
ements 
i; �; a
l
l

j; �; b
�
�d i��ij(�a
�bd + �ad�b
)(PRC)��
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C Zero-width limitIn this se
tion we 
onsider the Kadano�-Baym result for the lepton asymmetry normalisedto the Boltzmann result, Lk(t; t)=fL(t; k), in the zero-width limit as de�ned in Eq. (6.12),i.e., �M ! 0 ; � = �t �xed :To this end we have to evaluate the 
orresponding momentum integral (5.45) in this limit.C.1 Boltzmann equationConsider �rst the Boltzmann result for the lepton asymmetry given in Eq. (2.14),fLi(t; k) = ��ii 16�k Zq;p;q0;k0 k � k0 (2�)4Æ4(k + q � p)(2�)4Æ4(k0 + q0 � p)� fl�(k; q)f eqN (!p) 1� �1� e��t� : (C.1)The integration over q and q0 
an be performed using the Æ-fun
tions, whi
h leads tofLi(t; k) = � �ii16�3 Z d3p Z d3k0 k � k0kk0 1!pqq0 Æ(k + q � !p)Æ(k0 + q0 � !p)� fl�(k; q)f eqN (!p) 1� �1� e��t� ; (C.2)where q = jqj and q0 = jq0j. The produ
t of 4-ve
tors, k � k0 = kk0(1 � k̂ � k̂0), dependson the angles between the di�erent momenta. It is 
onvenient to de�ne the angles withrespe
t to the momentum p: � = \(k;p), �0 = \(k0;p) and '0 = \(k?;k0?); here k? andk0? are perpendi
ular to the ve
tor p, i.e., k = kk+k? and k0 = k0k+k0?. In terms of theseangles the unit ve
tors k̂ and k̂0 are given by (see Fig. ??)k̂ = 0� 
os �sin �0 1A ; k̂0 = 0� 
os �0sin �0 
os'0sin �0 sin'0 1A ; (C.3)with k̂ � k̂0 = 
os � 
os �0 + sin � sin �0 
os'0. We then obtainfLi(t;k) = � �ii16�3 Z d3p Z 10 k02dk0 Z 1�1 d 
os �0 Z 2�0 d'0 1!pqq0� (1� 
os � 
os �0 � sin � sin �0 
os'0) (C.4)� Æ(k + q � !p)Æ(k0 + q0 � !p)fl�(k; q)f eqN (!p) 1� �1� e��t� :47
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Figure 11: Integration anglesMomentum 
onservation relates the energies q and q0 to p, k, k0 and the angles � and �0,q = jp� kj = (p2 + k2 � 2pk 
os �)1=2 ; (C.5)q0 = jp� k0j = (p2 + k02 � 2pk 
os �0)1=2 : (C.6)We 
an now make use of rotational invarian
e of the distribution fun
tion,fLi(t; k) = 14� Z d
k fLi(t; k) : (C.7)Changing variables,dq = �pkq d 
os � ; dq0 = �pk0q0 d 
os �0 ; (C.8)one arrives atfLi(t; k) = � �ii4� 1k Z dp Z 10 k0dk0 Z q�q+ dq Z q0�q0+ dq0 �1� p2 + k2 � q22pk p2 + k02 � q022pk0 �� 1!p Æ(k + q � !p)Æ(k0 + q0 � !p)fl�(k; q)f eqN (!p) 1� �1� e��t� ; (C.9)48



where the limits of integration are given by the maximal and minimal value of q and q0,respe
tively,q� = jk � pj ; q0� = jk0 � pj : (C.10)Consider now the argument of one Æ-fun
tion, 
1 = !p�k�q, with 
min1 = !p�k�q+and 
max1 = !p � k � q� (
f. Eq.(5.41)). Obviously, the 
onditions 
min1 < 0 and 
max1 > 0limit the integration range in p for given momentum k,p > jM2 � 4k2j4k � pmin(k) : (C.11)Similarly, the 
onstraint p > (M2 � 4k02)=(4k0) restri
ts the integration range in k0 forgiven p,k0 > !p � p2 � k0min(p) ; k0 < !p + p2 � k0max(p) : (C.12)Changing again variables from q and q0 to 
1 and 
3, respe
tively, and using�(p; k0;
1;
3)�(p; k0; q; q0) = 1 ; (C.13)the integral 
an now be written asfLi(t; k) = � �ii4� 1k Z 1pmin(k) dp Z k0max(p)k0min(p) dk0 Z 
max1
min1 d
1 Z 
max3
min3 d
3� 1!p Æ(
1)Æ(
3)�1� p2 + k2 � q22pk p2 + k02 � q022pk0 �� fl�(k; q)f eqN (!p) 1� �1� e��t� : (C.14)The limits of integration have been 
hosen su
h that they 
ontain the points 
1 = 0 and
3 = 0, whi
h 
orrespond to energy 
onservation, q = !p�k and q0 = !p�k0, respe
tively.Hen
e, the integration on 
1 and 
3 
an trivially be 
arried out, and we obtain the �nalresultfLi(t; k) = � �ii4� 1k Z 1pmin(k) dp Z k0max(p)k0min(p) dk0 1!p �1� 2!pk �M22pk 2!pk0 �M22pk0 �� fl�(k; !p � k)f eqN (!p) 1� �1� e��t� : (C.15)
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C.2 Kadano�-Baym equationWe are now ready to evaluate the leading 
ontribution of the Kadano�-Baym result forthe lepton asymmetry. It is given by Eq. (5.46) with � = � = 1, and it 
an be written inthe formLkii(t; t) = ��ii 8� Zq;q0 k � k0kk0!p fl�(k; q)fl�(k0; q0)f eqN (!p)� 12�((!p � k � q)2 + �24 )((!p � k0 � q0)2 + �24 )� � �e��t2 � 
os((!p � k � q)t)��e��t2 � 
os((!p � k0 � q0)t)�� sin((!p � k � q)t) sin((!p � k0 � q0)t)� : (C.16)We �rst 
hange variables, (q;q0)! (p;k0), with p = q+ k = q0 + k0, and use rotationalinvarian
e,Lkii(t; t) = 14� Z d
k Lkii(t; t) : (C.17)Choosing again angles a

ording to Fig. ??, the integral (C.16) be
omesLkii(t; t) / Z d
k Z d
k0 Z 2�0 d'0 k � k0kk0 F (�; �0; � � � )= Z 1�1 d 
os � Z 1�1 d 
os �0 Z 2�0 d'0 (1� 
os � 
os �0� sin � sin �0 
os'0) F (�; �0; � � � )= (2�)2 Z 1�1 d 
os � Z 1�1 d 
os �0 (1� 
os � 
os �0)F (�; �0; � � � ) ; (C.18)where we have used that the fun
tion F (�; �0; � � � ) does not depend on the angle '0. Asin the previous se
tion, we now 
hange the integration variables from (�; �0) to (q; q0), andusing Eq. (C.8) we obtainLkii(t; k) =� �ii8�3 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 Z q+q� dq Z q0+q0� dq0 1!p� �1� p2 + k2 � q22pk p2 + k02 � q022pk0 � fl�(k; q)fl�(k0; q0)f eqN (!p)� 12�((!p � k � q)2 + �24 )((!p � k0 � q0)2 + �24 )50



� ��e��t2 � 
os((!p � k � q)t)��e��t2 � 
os((!p � k0 � q0)t)�� sin((!p � k � q)t) sin((!p � k0 � q0)t)� ; (C.19)where the limits of integration are given in Eqs. (C.10) - (C.12). We have restri
ted theintegration over p and k to the range for whi
h the intervals [q�; q+℄ and [q0�; q0+℄ 
ontainpoints satisfying !p � k � q = 0 and !p � k0 � q0 = 0, respe
tively. This �nite part of theintegral 
ould then be O(1=�), whi
h is required to mat
h the Boltzmann result for thelepton asymmetry. The remaining part is O(1) and therefore suppressed 
ompared to theBoltzmann result.Remarkably, the integral (C.19) is a sum of terms ea
h of whi
h fa
torizes into a produ
twhere one fa
tor depends on q but not on q0, whereas the other fa
tor depends on q0 butnot on q. Hen
e one obtainsLkii(t; t) / Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 Xi Pi(q�; q+)Qi(q0�; q0+) ; (C.20)where we have dropped the dependen
e of the fa
tors Pi andQi on k, p and k0 for simpli
ity.Be
ause of the fa
torization, we 
an now perform the integrations on q and q0 separately.Naively, one may think that in the zero-width limit �=M ! 0 the 
osine terms 
anbe set to one. But for large time t, they os
illate fast, whi
h leads to a di�erent result.Consider the following 
ontribution to the integral (C.19),P(q�; q+) = � Z q+q� dq F (q)(!p � k � q)2 + �24 
os((!p � k � q)t) ; (C.21)where F (q) has no poles. Changing the integration variable from q to z = 2
1=�, with
1 = !p � k � q, one obtainsP(zmin; zmax) = i2� Z zmaxzmin dz Fi�!p � k � �2 z�� � 1z � i � 1z + 1��eiz �2 t + e�iz �2 t� ; (C.22)where zmin = 2
min1 =� and zmax = 2
max1 =�, with zmin < 0 and zmax > 0. In the limit�=M ! 0 with � = �t �xed, the integration limits approa
h zmin ! �1 and zmax ! +1,respe
tively. The integral is now easily evaluated by means of the residue theorem leadingto the result�P(zmin; zmax)����!0 = ���F �!p � k � i�2� e� �2 + F �!p � k + i�2� e� �2� �����!051



= �2�F (!p � k)e� �2 : (C.23)In Eq. (C.19) the term P appears together with a se
ond term,P 0(q�; q+) = Z q+q� dq F (q)(!p � k � q)2 + �24 e� �2 ; (C.24)whi
h 
an be evaluated in the same way as P in the zero-width limit, yielding�P 0(zmin; zmax)����!0 = ��F �!p � k � i�2� + F �!p � k + i�2�� �����!0 e� �2= 2�F (!p � k) e� �2 : (C.25)Clearly, the two terms P and P 0 add up to zero. The same result is obtained for the se
ondfa
tor Q after the q0 integration, as well as for the produ
t of two sinus fun
tions.We 
on
lude that the integral (C.16) does not 
ontain a 
ontribution O(1=�). Hen
e,the ratio of Kadano�-Baym result and Boltzmann result, Lk(t; t)=fL(t; k), approa
hes zeroin the limit �=M ! 0, � = �t �xed.D Equilibrium 
ontributionIn Se
tion 5 we argued that the equilibrium part of the heavy neutrino propagator doesnot 
ontribute to the lepton asymmetry. In this se
tion we verify this 
laim.The heavy neutrino propagator has an equilibrium and a nonequilibrium part,Gp(t1; t3) = Geqp (t1 � t3) + ~Gp(t1; t3) ; (D.1)whose main di�eren
e lies in the time dependen
e,Geqp (t1 � t3) / e��2 jt1�t3j ; ~Gp(t1; t3) / e��2 (t1+t3) : (D.2)The 
omputation of the lepton asymmetry in Se
tion 5 was based on the nonequilbriumpart, and it involved the time integral I (
f. Eq. (5.41)). Be
ause of the di�erent timedependen
e given in Eq. (D.2), the 
ontribution of the equilibrium part to the asymmetryinvolves instead the integralJ (t) = Z t0 dt1 Z t0 dt2 Z t20 dt3 e�i
1t1+i
2t2+i
3t3e��2 jt1�t3j ; (D.3)whi
h di�ers from I only with respe
t to the damping fa
tor. 
1, 
2 and 
3 are di�erentlinear 
ombinations of energies, whi
h satisfy 
1 = 
2 + 
3.In order to evaluate the integral J , we have to split the time integration,J (t) = Z t0 dt1�Z t10 dt2 Z t20 dt3 e�i
1t1+i
2t2+i
3t3e��2 (t1�t3)52



+Z tt1 dt2�Z t10 dt3 e�i
1t1+i
2t2+i
3t3e��2 (t1�t3)+ Z t2t1 dt3 e�i
1t1+i
2t2+i
3t3e��2 (t3�t1)�� : (D.4)Note the 
hange of sign in the damping fa
tor of the last two terms. As in Se
tion 5, itis 
onvenient to use the variables �
1 = 
1 � i2� and �
3 = 
3 � i2�, for whi
h the integralsimpli�es toJ (t) = Z t0 dt1�Z t10 dt2 Z t20 dt3 e�i�
1t1+i
2t2+i�
3t3 (D.5)+Z tt1 dt2�Z t10 dt3e�i�
1t1+i
2t2+i�
3t3 + Z t2t1 dt3 e�i�
�1t1+i
2t2+i�
�3t3�� :Performing the t3 integral and using the relation 
1 = 
2 + 
3, we obtainJ (t) = Z t0 dt1�Z t10 dt2 e�i�
1t1 1i�
3 �ei�
1t2 � ei
2t2�+Z tt1 dt2�e�i�
1t1 1i�
3 �ei�
3t1 � 1� ei
2t2+ e�i�
�1t1 1i�
�3 �ei�
�1t2 � ei�
�3t1ei
2t2��� : (D.6)It is now straightforward to 
arry out the integrations over t1 and t2, whi
h leads toJ (t) + J �(t) = 2(
21 + �24 )(
23 + �24 )(
1 � 
3) � (D.7)�� (
1 + 
3)�
os((
1 � 
3)t)� 1 + (
os(
1t)� 
os(
3t))e��t2 �+ �2
1
3 � �22 ��sin((
1 � 
3)t)� (sin(
1t)� sin(
3t))e��t2 � � :Note that the expression has no pole at 
1 = 
3.As in appendix C we now have to evaluate the momentum integralS = Z 
max1
min1 d
1 Z 
max3
min3 d
3 (J + J �) ; (D.8)with the integration limits given below Eq. (C.10). To perform the zero-width limit, weagain introdu
e the variables z1;3 = 2
1;3=�. For �! 0, the limits of integration zmin1;3 andzmax1;3 approa
h �1 and +1, respe
tively. The z3-integration 
an now be 
arried out bymeans of the residue theorem. The integrand of the remaining z1-integration has a doublepole. The integration 
an again be performed using the residue theorem, and we �nd that�S approa
hes zero in the limit �=M ! 0, � = �t �xed. Hen
e, the equilibrium part ofthe heavy neutrino propagator does not 
ontribute at leading order in �=M .53
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