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AbstratThermal leptogenesis explains the observed matter-antimatter asymmetry of the uni-verse in terms of neutrino masses, onsistent with neutrino osillation experiments.We present a full quantum mehanial alulation of the generated lepton asymmetrybased on Kadano�-Baym equations. Origin of the asymmetry is the departure fromequilibrium of the statistial propagator of the heavy Majorana neutrino, togetherwith CP violating ouplings. The lepton asymmetry is alulated diretly in terms ofGreen's funtions without referring to �number densities�. Compared to Boltzmannand quantum Boltzmann equations, the ruial di�erene are memory e�ets, rapidosillations muh faster than the heavy neutrino equilibration time. These osillationsstrongly suppress the generated lepton asymmetry, unless the standard model gaugeinterations, whih ause thermal damping, are properly taken into aount. We �ndthat these damping e�ets essentially ompensate the enhanement due to quantumstatistial fators, so that �nally the onventional Boltzmann equations again providerather aurate preditions for the lepton asymmetry.
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1 IntrodutionStandard thermal leptogenesis [1℄ provides a simple and elegant explanation of the originof matter in the universe. Baryogenesis via leptogenesis naturally emerges in grand uni�edextensions of the Standard Model, whih inorporate right-handed neutrinos and the see-saw mehanism, and the predited onnetion between the osmologial matter-antimatterasymmetry and neutrino properties is in remarkable agreement with the present evidenefor neutrino masses [2℄.Leptogenesis is an out-of-equilibrium proess in the high-temperature symmetri phaseof the Standard Model. It makes use of nonperturbative properties of the Standard Model,the sphaleron proesses whih hange baryon and lepton number [3℄, and it requires CPviolation in the lepton setor and quantum interferene in the thermal bath. Almostall quantitative studies of leptogenesis to date are based on Boltzmann's lassial kinetiequations for the desription of the nonequilibrium proess [2℄.In this artile, we disuss a full quantum mehanial alulation of the generated lep-ton asymmetry based on Kadano�-Baym equations [4℄ and the Shwinger-Keldysh formal-ism [5�7℄. The main result has previously been reported in [8℄. Here we give a detailedderivation of the result, disuss its interpretation and set the stage for future omputations.Further work is still needed to obtain a `quantum theory of leptogenesis' that an preditthe osmologial matter-antimatter asymmetry in terms of neutrino properties withoutunontrolable assumptions.Conventional leptogenesis alulations based on kineti equations su�er from a basioneptual problem: the Boltzmann equations are lassial equations for the time evolutionof phase spae distribution funtions; the involved ollision terms, however, are obtainedfrom zero-temperature S-matrix elements whih involve quantum interferenes. This isin ontrast to other suessful appliations of the Boltzmann equations in osmology, likeprimordial nuleosynthesis, deoupling of photons or freeze-out of weakly interating darkmatter partiles, where the ollision terms arise from tree-level S-matrix elements. In thease of leptogenesis, learly a full quantum mehanial treatment is neessary to understandthe range of validity of the Boltzmann equations and to determine the size of possibleorretions [9℄.In reent years, various attempts have been made to go beyond Boltzmann equations.In [9℄, a solution of Kadano�-Baym equations for leptogenesis has been found to leadingorder in a derivative expansion in terms of distribution funtions satisfying the Boltzmannequations. Various thermal orretions, in partiular quantum statistial fators and ther-mal masses, have been inluded [10�13℄. Quantum Boltzmann equations have been derivedfrom Kadano�-Baym equations for salar and Yukawa theories [14, 15℄ and for leptogene-sis [16�19℄. Exept for [16℄, they do not ontain memory e�ets, but they yield the orretstatistial fators whih go beyond the Boltzmann equations [8, 16, 17, 19, 20℄. QuantumBoltzmann equations have important appliations for resonant leptogenesis [16℄, �avouredleptogenesis [21, 22℄ and N2-leptogenesis [23℄. Similar tehniques have been developed for2
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Figure 1: Evolution of heavy neutrino abundane NN1 and lepton asymmetry NB�L fortypial leptogenesis parameter: M1 = 1010 GeV, em1 = 8��1(vew=M1)2 = 10�3 eV, � =10�6; the inverse temperature z = M1=T is the time variable. The dashed (full) linesorrespond to thermal (vauum) initial onditions for the heavy neutrino abundane; thedotted line represents the equilibrium abundane. From [30℄.eletroweak baryogenesis [24�27℄ and for oherent baryogenesis [28℄.The quantum treatment of leptogenesis disussed in this paper is entirely based onGreen's funtions, thus avoiding all approximations needed to arrive at Boltzmann equa-tions. Our work is based on [29℄, where the approah to thermal equilibrium has beendisussed in terms of Green's funtions for a toy model, a salar �eld oupled to a largethermal bath. In leptogenesis it is the heavy neutrino whih is weakly oupled to the stan-dard model plasma ontaining many degrees of freedom. The nonequilibrium propagatorof the heavy neutrino is obtained by solving the Kadano�-Baym equations. The induedquantum orretions of the lepton (and Higgs) propagators then yield the wanted leptonasymmetry.In general baryogenesis requires departure from thermal equilibrium. For the osmo-logial baryon asymmetry, this is provided by the Hubble expansion of the universe and,possibly, also by initial onditions. This an be seen in Fig. 1 where the time evolutionof heavy neutrino abundane and lepton asymmetry, as predited by the Boltzmann equa-tions, are shown for two di�erent initial onditions: thermal and zero heavy neutrino abun-dane. In the �rst ase, the Hubble expansion leads to an exess of the neutrino abundane3



at T ' 0:3 M1; shortly afterwards, washout proesses are no longer in equilibrium and thelepton asymmetry is `frozen in'. This is the standard out-of-equilibrium deay senario ofbaryogenesis. In the seond ase, interations with the thermal bath �rst bring the heavyneutrino into thermal equilibrium; due to the departure from thermal equilibrium duringthis time, an initial lepton asymmetry is generated. Around T ' 0:3M1, this asymmetry iswashed out and, as in the �rst ase, the �nal lepton asymmetry is generated. Remarkably,the initial and the �nal asymmetry have about the same size. For the generation of theinitial asymmetry the hange of temperature due to the Hubble expansion is not impor-tant. This allows us to make a signi�ant tehnial simpli�ation in our analysis. Sineour goal is the omparison of Boltzmann and Kadano�-Baym equations, we onentrate onthe omputation of the initial asymmetry at onstant temperature. We expet di�erenesbetween the lassial and the quantum approah to be of similar size in the generation ofthe �nal asymmetry. In our numerial analysis we shall onsider temperatures T <� M ,where the heavy neutrino prodution rate is not strongly a�eted by the e�et of thermalmasses of lepton and Higgs �elds [11�13℄.We onsider an extension of the Standard Model with additional gauge singlet fermions,i.e., right-handed neutrinos, whose masses and ouplings are desribed by the Lagrangian(sum over i; j),L = LSM + �Rii 6��Ri + lLi ~���ij�Rj + �Rj�ijlLi�� 12Mij ��Ri�Rj + �Rj�Ri� : (1.1)Here �R = C��TR , C is the harge onjugation matrix and e� = i�2��; SU(2) isospin indieshave been omitted. For simpliity, we onsider the ase of hierarhial Majorana masses,Mk>1 � M1 � M , and small Yukawa ouplings of the lightest heavy neutrino N1 � N ,�i1 � 1, suh that the deay width is muh smaller than the mass. Leptogenesis is thendominated by deays and inverse deays of N , and it is onvenient to integrate out theheavier neutrinos. From Eq. (1.1) one then obtains the e�etive LagrangianL =LSM + 12Ni 6�N + lLie���i1N +NT�i1ClLi�� 12MNTCN+ 12�ijlTLi�ClLj�+ 12��ijlLie�ClLTj e� ; (1.2)with N = �R1 + �R1, and the familiar dimension-5 oupling�ij =Xk>1 �ik 1Mk�Tkj : (1.3)Using this e�etive Lagrangian has the advantage that vertex- and self-energy ontributionsto the CP asymmetry in the heavy neutrino deay [31�33℄ are obtained from a singlegraph [9℄.The paper is organized as follows. In Setion 2 we present solutions of the Boltzmannequations for the heavy neutrino distribution funtion and the lepton asymmetry, whih4



are useful for later omparison with the Kadano�-Baym equations. Some results fromnonequilibrium quantum �eld theory (QFT), in partiular equilibrium orrelation funtionsand Kadano�-Baym equations, are realled in Setion 3. Setion 4 ontains some of themain results of this paper: analyti solutions of spetral funtion and statistial propagatorfor the heavy neutrino. These are needed for the omputation of the lepton asymmetry,whih is arried out in Setion 5. A detailed omparison of the Boltzmann result andthe Kadano�-Baym result is given in Setion 6, and numerial results for the generatedlepton asymmetries are ompared in Setion 7. Summary and onlusions are given inSetion 8, and various details, inluding equilibrium orrelation funtions, Feynman rules,a disussion of the zero-width limit and the omputation of some integrals are ontainedin Appendies A - D.2 Boltzmann equationsThe Boltzmann equations for the time evolution of the distribution funtions of heavyneutrinos, lepton and Higgs doublets are well known [34℄. As disussed in the previoussetion, we fous on the generation of the `initial asymmetry' (f. Fig. 1), whih allowsus to neglet Hubble expansion and washout terms and to work at onstant temperatureT . The distribution funtion of the heavy neutrinos is then determined by the �rst-orderdi�erential equation1��tfN (t; !p) =� 2!p Zk;q(2�)4Æ4(k + q � p) ��y��11 p � k� [fN(t; !p)(1� fl(k))(1 + f�(q))� fl(k)f�(q)(1� fN(t; !p))℄ ; (2.1)with vauum initial ondition,fN (0; !p) = 0 ; (2.2)here !p = pM2 + p2, k and q are the energies of N , l and � with equilibrium distribu-tion funtions fl and f�, respetively; the averaged deay matrix element is jM(N(p) !l(k)�(q))j2 = 2 ��y��11 p � k (f. [9℄). For the momentum integrations we use the notationZp : : : = Z d3p(2�)32! : : : : (2.3)In most leptogenesis alulations one diretly omputes the number density,nN (t) = Z d3p(2�)3 fN(t; !p) ; (2.4)1To simplify notation, we use the same symbol for the modulus of 3-momentum and 4-momentum, e.g.,k = jkj and k = (jkj;k). 5



assuming kineti equilibrium.The sum of deay and inverse deay widths, whose inverse is the time needed to reahthermal equilibrium [35℄, is given by�p = ��y��11 2!p Zk;q(2�)4Æ4(k + q � p) p � k fl�(k; q) ; (2.5)where we have introdued the statistial fator (f. [35℄)fl�(k; q) = fl(k)f�(q) + (1� fl(k))(1 + f�(q))= 1� fl(k) + f�(q) : (2.6)Negleting the momentum dependene of the heavy neutrino width (�p � �), one easilyobtains the solution of the Boltzmann equation (2.1) with vauum initial ondition,fN (t; !p) = f eqN (!p) �1� e��t� ; (2.7)where the equilibrium distribution isf eqN (!p) = 1e�!p + 1 ; (2.8)and � = 1=T is the inverse temperature.To ompute the lepton asymmetry, we need the Boltzmann equation for the leptondistribution funtion,��tfl(t; k) = � 12k Zq;p(2�)4Æ4(k + q � p)� �jM(l�! N)j2fl(k)f�(q)(1� fN (t; !p))� jM(N ! l�)j2fN(t; !p)(1� fl(k))(1 + f�(q))� ; (2.9)where now O(�4) orretions to the matrix elements have to be kept. Using Eq. (2.7) oneobtains for the lepton asymmetryfLi(t; k) = fli(t; k)� f�li(t; k) ; (2.10)with initial ondition fLi(0; k) = 0,fLi(t; k) = ��ii 1k Zq;p(2�)4Æ4(k + q � p) p � k fl�(k; q)f eqN (!p) 1� �1� e��t� ; (2.11)where we have de�ned�ij = 316� Imf��i1(���)j1gM : (2.12)6



Summing over all lepton �avours, the generated lepton asymmetry is proportional to thefamiliar CP asymmetry [9℄,� =Xi �ii(�y�)11 = 316� Im ��y����11M(�y�)11 : (2.13)For later omparison with solutions of the Kadano�-Baym equations, it is onvenientto rewrite Eq. (2.11) as a 4-fold integral,fLi(t; k) = ��ii 16�k Zq;p;q0;k0 k � k0 (2�)4Æ4(k + q � p)(2�)4Æ4(k0 + q0 � p)� fl�(k; q)f eqN (!p) 1� �1� e��t� : (2.14)The integrand is now proportional to the averaged matrix element jM(l� ! �l ��)j2 =2k � k0(�y�)11=M2 (f. [9℄), whih involves the produt of the 4-vetors k and k0. At lowtemperatures, T � M , the integrand falls o� like e��!p < e��M , i.e., the generatedasymmetry is strongly suppressed. In standard leptogenesis alulations one onsiders theintegrated lepton asymmetry,nL =Xi Z d3k(2�)3 fLi(t; k) : (2.15)The number densities nN (2.4) and nL orrespond to the omoving number densities NN1and jNB�Lj shown in Fig. 1, in the initial phase of the time evolution, i.e., for T >� 0:3 M .3 Nonequilibrium QFT and Kadano�-Baym equationsIn the following, we brie�y introdue onepts and quantities from nonequilibrium quantum�eld theory that are neessary for our omputation (f. [36,37℄). A thermodynamial systemis represented by a statistial ensemble desribed by a density matrix %. The expetationvalue for an operator A is then given byhAi = Tr (%A) ; (3.1)where we have adopted the usual normalisation Tr% = 1. Solving the initial value problemfor % allows to ompute all observables for all times. Diret omputation of the timeevolution of % is di�ult. Generially, the von Neumann (or quantum Liouville) equationof motion for % an only be solved perturbatively for a redued density matrix with ane�etive Hamiltonian. In most pratial appliations to date, a number of additional7



assumptions are made that lead to e�etive Boltzmann equations, whih an take aountof oherent osillations2, or quantum orreted Boltzmann equations (f. Setion 6)3.Instead of the time evolution of the density matrix, one an also diretly study theequations of motion of the orrelation funtions of the theory. The in�nitely many degreesof freedom of the initial density matrix are then mapped onto their in�nitely many initialonditions. Though a full haraterisation of the system in priniple involves all n-pointfuntions, it is often su�ient to study the one- and two-point funtion. This applies tothe problem onsidered in this work.3.1 Correlation funtions for lepton and Higgs �eldsLeptogenesis ours at temperatures above the eletroweak sale where sphaleron proessesare ative and transfer the generated lepton asymmetry to a baryon asymmetry. Hene,the Standard Model is in the symmetri phase and the four real degrees of freedom of theHiggs doublet orrespond to four massless real salar �elds.The spetral funtion and statistial propagator of a real salar �eld �, �� and �+,respetively, are de�ned as��(x1; x2) = ih[�(x1); �(x2)℄i ; (3.2)�+(x1; x2) = 12hf�(x1); �(x2)gi : (3.3)Here only ontributions from onneted diagrams are to be inluded to ompute the dressedorrelation funtions. These ful�ll the symmetry relations��(x1; x2) = ���(x2; x1) ; (3.4)�+(x1; x2) = �+(x2; x1) ; (3.5)whih follow diretly from the de�nitions.The funtions �� have an intuitive physial interpretation. The spetral funtion ��is the Fourier transform of the spetral density,�q(t; !) = �i Z dy2�ei!y��(t+ y2 ; t� y2) ; (3.6)where we have used the relative and total time oordinates, y = t1� t2 and t = (t1+ t2)=2,respetively.The spetral density �q(t; !) haraterises the density of quantum mehanial states inphase spae. Propagating states, or resonanes, appear as peaks in the spetral funtion.2See [38, 39℄ for an appliation to neutrino osillations.3In [40,41℄ an approah based on �rst priniples has been suggested that is appliable if the oupationnumbers for the out-of-equilibrium �elds are small. 8



The statistial propagator ontains the information about the oupation number of eahstate.In the following we shall also need the Wightman funtions�>(x1; x2) = h�(x1)�(x2)i ; (3.7)�<(x1; x2) = h�(x2)�(x1)i ; (3.8)whih are related to �� by��(x1; x2) = i (�>(x1; x2)��<(x1; x2)) ; (3.9)�+(x1; x2) = 12 (�>(x1; x2) + �<(x1; x2)) : (3.10)Using miroausality and the ondition for anonial quantization,[�(x1); �(x2)℄jt1=t2 = [ _�(x1); _�(x2)℄jt1=t2 = 0 ; (3.11)[�(x1); _�(x2)℄jt1=t2 = iÆ(x1 � x2) ; (3.12)one obtains boundary onditions in y = t1 � t2 for ��,��(x1; x2)jt1=t2 = 0 ; (3.13)�t1��(x1; x2)jt1=t2 = ��t2��(x1; x2)jt1=t2 = Æ(x1 � x2) ; (3.14)�t1�t2��(x1; x2)jt1=t2 = 0 : (3.15)Note that these onditions do not depend on the physial initial onditions of the systemenoded in the initial density matrix. These enter via the initial onditions for the statistialpropagator.Analogous to ��, one an de�ne the spetral funtions and statistial propagators forfermions. The fermioni �elds in the Lagrangian (1.2) are massless left-handed leptons(Weyl �elds lLi) and a massive neutrino (Majorana �eld N). For the massless leptons,spetral funtion and statistial propagator are de�ned as(S�Lij)��(x1; x2) = ihflLi�(x1); �lLj�(x2)gi ; (3.16)(S+Lij)��(x1; x2) = 12h[lLi�(x1); �lLj�(x2)℄i ; (3.17)where � and � are spinor indies, and SU(2) indies were omitted for notational simpliity.The subsript L denotes the projetion to left-handed �elds, i.e., S�L = PLS�, wherePL = (1 � 5)=2 and S� are the propagators for Dira fermions. As for bosons, we shallneed the funtions(S>Lij)��(x1; x2) = hlLi�(x1)�lLj�(x2)i ; (3.18)(S<Lij)��(x1; x2) = �h�lLj�(x2)lLi�(x1)i ; (3.19)9



whih are related to spetral funtion and statistial propagator byS�Lij(x1; x2) = i �S>Lij(x1; x2)� S<Lij(x1; x2)� ; (3.20)S+Lij(x1; x2) = 12 �S>Lij(x1; x2) + S<Lij(x1; x2)� : (3.21)The propagators S� have the symmetry properties0 �S�Lij(x1; x2)�y 0 = �S�Lji(x2; x1) ; (3.22)0 �S+Lij(x1; x2)�y 0 = S+Lji(x2; x1) : (3.23)The anonial quantization ondition,flLi�(x1); lyLj�(x2)g = PL��ÆijÆ(x1 � x2) ; (3.24)implies the boundary ondition for the spetral funtionS�Lij(x1; x2)jt1=t2 = iPLÆijÆ(x1 � x2) : (3.25)Finally, spetral funtion and statistial propagator for the Majorana �eld N readG���(x1; x2) = ihfN�(x1); N�(x2)gi ; (3.26)G+��(x1; x2) = 12h[N�(x1); N�(x2)℄i : (3.27)They have the symmetriesG�(x1; x2) = G�(x2; x1)T ; (3.28)G+(x1; x2) = �G+(x2; x1)T : (3.29)The anonial quantization ondition, together with the Majorana property N = C �NT ,implies the boundary onditionG�(x1; x2)jt1=t2 = i0Æ(x1 � x2)C�1 : (3.30)As for salars, the physial initial onditions enter as boundary onditions for the statistialpropagator. In the following, we will onsider two types of initial onditions, thermalequilibrium and Gaussian initial orrelations, for whih we solve the equations of motionin the following setion. Analogous to real salars, the funtions G? are de�ned asG>��(x1; x2) = hN�(x1)N�(x2)i ; (3.31)G<��(x1; x2) = �hN�(x2)N�(x1)i; (3.32)with the usual relations to spetral funtion and statistial propagator,G�(x1; x2) = i (G>(x1; x2)�G<(x1; x2)) ; (3.33)G+(x1; x2) = 12 (G>(x1; x2) +G<(x1; x2)) : (3.34)10



Figure 2: Path in the omplex time plane for nonequilibrium Green's funtions. Theontour runs from some initial time x0 = ti+i� (ti = 0) parallel to the real axis (x0 = t+i�)up to some �nal time tf+i� and returns to ti�i�. To ompute physial orrelation funtionsfor arbitrary times t > ti, one takes the limits tf !1 and �! 0.3.2 Equations of motionIn thermal leptogenesis, the deviation from thermal equilibrium that is neessary to reatea matter-antimatter asymmetry is due to the heavy Majorana neutrinos whih are out ofequilibrium. The equations of motion for their orrelation funtions G� an be obtainedvia the Shwinger-Keldysh formalism [6℄. The basi quantity is the Green's funtion withtime arguments de�ned on a ontour C in the omplex x0-plane, known as the Keldyshontour (f. Fig.2),GC(x1; x2) = �C(x01; x02)G>(x1; x2) + �C(x02; x01)G<(x1; x2) : (3.35)Here the �-funtions enfore path ordering along the ontour C. The neessity of onsideringGreen's funtions with time arguments on the Keldysh ontour (rather than the real axis)is a onsequene of the fat that nonequilibrium proesses are initial value problems. Thesystem is prepared at initial time ti, its state at later times is unknown. Hene, the usualapproah to de�ne a S-matrix by projetion onto asymptoti `in' and `out' states, sendinginitial and �nal time to in�nity, annot be applied. When using the Keldysh ontour whihstarts and ends at the same time ti4, no knowledge of the system's state at t = �1 isneeded to de�ne a generating funtional for orrelation funtions.The Green's funtion GC satis�es the Shwinger-Dyson equationC(i 6�1 �M)GC(x1; x2)� i ZC d4x0C�C(x1; x0)GC(x0; x2) = iÆC(x1 � x2) ; (3.36)where C�C(x1; x0) is the self-energy5 on the ontour and 6�1 = ��=�x�1 . Like the Green'sfuntion, also the self-energy an be deomposed as�C(x1; x2) = �C(x01; x02)�>(x1; x2) + �C(x02; x01)�<(x1; x2) : (3.37)4Due to this fat this formalism is sometimes alled `in-in' formalism, in ontrast to the `in-out' for-malism used to ompute the S-matrix.5An expliit fator C is fatorized for later onveniene.11



In the Shwinger-Dyson equation (3.36) the time oordinates of GC and �C an lie on theupper or the lower branh of the ontour.The familar time-ordered Feynman propagator is obtained from GC(x1; x2) when bothtime arguments lie on the upper branh, and therefore denoted by G11. Correspondingly,GC(x1; x2) with both time arguments on the lower part of the ontour orresponds to ananti-time-ordered propagator, denoted as G22. For orrelators with one time argument onthe upper and one on the lower part of the ontour, referred to as G12 and G21, the orderof �eld operators is �xed by the path ordering: operators on the upper branh are always`earlier' than those on the lower branh (f. 3.35). Altogether, one hasG12(x1; x2) = G<(x1; x2) ; (3.38)G21(x1; x2) = G>(x1; x2) ; (3.39)G11(x1; x2) = G+(x1; x2)� i2sign(x01 � x02)G�(x1; x2) ; (3.40)G22(x1; x2) = G+(x1; x2) + i2sign(x01 � x02)G�(x1; x2) ; (3.41)the last two relations are easily veri�ed by inserting the de�nitions of G�.In a perturbative expansion of the Shwinger-Dyson equation (3.36) in terms of Feyn-man diagrams, time arguments of internal verties an lie on either branh. Hene, thenumber of ontributing graphs doubles with eah internal vertex sine this an lie on theupper or the lower branh6. Two upper verties are onneted by G11, two lower verties byG22 and verties of di�erent type by G12 and G21. Eah lower vertex leads to an additionalfator �1.Like the Green's funtion, also the self-energy �C , the sum of all one-partile irreduiblegraphs, an be disseted into omponents �kl, with k and l being `ontour indies' as de�nedabove. Analogous to (3.38) and (3.39) one then de�nes self-energies �? and, following(3.33) and (3.34), self-energies �� via the equations��(x1; x2) = i (�>(x1; x2)� �<(x1; x2)) ; (3.42)�+(x1; x2) = 12 (�>(x1; x2) + �<(x1; x2)) : (3.43)Sine the self-energies �kl are diretly related to the full Green's funtions Gkl, they alsosatisfy the relations (3.38) - (3.41).Using the above relations for Gkl and �kl, one obtains, after a straightforward al-ulation, from the Shwinger-Dyson equation (3.36) a system of two oupled di�erentialequations for G�p , the Kadano�-Baym equations. Due to spatial homogeneity, we anonsider the equations for eah Fourier mode separately,C(i0�t1 � p �M)G�p (t1; t2) =� Z t2t1 dt0C��p (t1; t0)G�p (t0; t2) ; (3.44)6This fat is sometimes referred to as `doubling of degrees of freedom'.12



C(i0�t1 � p �M)G+p (t1; t2) =� Z t2ti dt0C�+p (t1; t0)G�p (t0; t2)+ Z t1ti dt0C��p (t1; t0)G+p (t0; t2) : (3.45)For the lepton propagators S�Lk one obtains the same equations, with C��p replaed by thelepton self-energies ��k and no harge onjugation matrix C multiplying the kineti term.The Kadano�-Baym equations (3.44) and (3.45) are exat. They ontain all quantumand non-Markovian e�ets inluding the dependene on the initial time ti. Furthermore,in ontrast to usual linear response tehniques, they do not rely on any assumption re-garding the size of the initial deviation from equilibrium. The equations in this form arevalid for arbitrary nonequilibrium initial states whih an be parameterized by Gaussianinitial orrelations. This overs the ase onsidered in this work sine the generated leptonasymmetry involves to leading order in the Yukawa oupling only the 2-point funtionsof the heavy neutrino. When higher order initial orrelations play a signi�ant role, theKadano�-Baym formalism is still appliable, but the equation for the statistial propagatorontains extra terms at ti [42℄. In [36℄, thermalization has been studied for a salar �eldtheory using the equation of motion for the statistial propagator.In nonequilibrium quantum �eld theory, instead of distribution funtions, quantummehanial orrelation funtions G� haraterise the state of the system. The interationsenter via the self-energies �� whih, via the generalized utting rules, ontain all possibleproesses. Enoding this information in the self-energies avoids potential problems relatedto the de�nition of asymptoti states for unstable partiles as well as the substrationof real intermediate state ontributions in Boltzmann equations. Note, �nally, that theintegro-di�erential equations (3.44), (3.45) do not su�er from the late time unertaintiesor seular terms that perturbative expansions of Boltzmann equations are often plaguedwith when applied to multisale problems (f. [36℄).3.3 Weak oupling to a thermal bathThe Kadano�-Baym equations provide a tool to study the dynamis of arbitrary nonequi-librium systems. Unfortunately, in most ases they an only be solved numerially. Asdisussed in the introdution, in this work we onsider a rather simple system: one �eldthat is out of equilibrium (N) is weakly oupled to a large thermal bath of Standard Model�elds. This leads to a number of simpli�ations ompared to the general ase that allow to�nd analyti solutions. We have previously studied salar �eld models of this type [29,43℄.Here we extend the methods developed therein to the ase of thermal leptogenesis.The Standard Model interations keep the bath in thermal equilibrium. The orre-sponding time sale �SM � 1=(g2T ) at temperature T � M is muh shorter than theequilibration time �N � 1=(�2M) of the heavy neutrino, whih governs the generation ofthe lepton asymmetry: �SM � �N . Lepton number hanging proesses in the thermal bath13
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Figure 3: One- and two-loop ontributions to the lepton self-energy orrespoding towashout terms, a) - d), and CP violating terms whih generate a lepton asymmetry, e)and f).are shown in Fig. 3. As in the ase of Boltzmann equations disussed in Setion 2, wefous on the CP violating interation generating the lepton asymmetry that orrespond toFig. 3 e) and f).To evaluate these graphs we need the orrelation funtions of lepton and Higgs �eldsin the thermal bath. A system in thermal equilibrium is desribed by the density matrix%eq = exp (� (�H + �iQi))Tr exp (� (�H + �iQi)) ; (3.46)where H is the Hamiltonian of the system, � is the inverse temperature, Qi are onservedharges and �i are the orresponding hemial potentials. As expeted for an initial stateafter in�ation, we set all hemial potentials equal to zero.Equilibrium orrelation funtions of a spatially homogeneous system only depend onspae-time di�erenes, and it is onvenient to onsider the Fourier transforms,��q (!) = Z d4xei(!x0�qx)��(x) ; (3.47)S�k (!) = Z d4xei(!x0�kx)S�(x) : (3.48)14



Figure 4: Path C� in the omplex time plane for equilibrium orrelation funtions.The equilibrium density matrix (3.46) then orresponds to a shift in imaginary time. Thisleads to the well-known Kubo-Martin-Shwinger (KMS) relations (f. [44℄)�<q (!) = e��!�>q (!) ; S<k (!) = �e��!S>k (!) ; (3.49)whih imply�+q (!) = �i�12 + f�(!)���q (!) = � i2 oth��!2 ���q (!) ; (3.50)S+k (!) = �i�12 � fl(!)�S�k (!) = � i2 tanh��!2 �S�k (!) ; (3.51)wheref�(!) = 1e�! � 1 ; fl(!) = 1e�! + 1 ; (3.52)are Bose-Einstein and Fermi-Dira distribution funtions, respetively. Note that the en-ergy ! is not on-shell.Equilibrium Green's funtions an be alulated in the real-time formalism using theontour C� in the omplex time plane, whih is shown in Fig. 4. For the free equilibriumpropagators of massless lepton and Higgs �elds one obtains (q = jqj, k = jkj, f. [44℄),��q (y) = 1q sin(qy) ; (3.53)�+q (y) = 12q oth��q2 � os(qy) ; (3.54)S�Lk(y) = PL�i0 os(ky)� kk sin(ky)� ; (3.55)S+Lk(y) = �12PL tanh��k2 ��i0 sin(ky) + kk os(ky)� : (3.56)15



PSfrag replaements � (!p;p)(!p;p) l NNFigure 5: One-loop ontribution to the self-energies C��p of the Majorana neutrino N .All other propagators an be obtained as linear ombinations using the relations desribedin the previous paragraph. A omplete list is given in Appendix A.In the following setions we shall see that the alulation of the lepton asymmetryrepresents an initial value problem whih an be treated based on the real time formalismtogether with the Keldysh ontour Fig. 2. Thermal and nonthermal properties of thesystem are then enoded in the initial values of the various Green's funtions.4 Nonequilibrium orrelation funtionsThe assumption of weak oupling to a large thermal bath with negligible bakreation in theframework of Kadano�-Baym equations implies that self-energies for the heavy neutrinosN are omputed from equilibrium propagators of bath �elds only. This also orrespondsto a leading order perturbative expansion in the oupling onstant.Perturbative expansions of Boltzmann equations in multisale problems are knownto su�er from unertainties, so-alled seular terms, at late times. The Kadano�-Baymequations (3.44) and (3.45) in full generality are free of seular terms and onsistentlyinlude all memory e�ets. Nevertheless, the neglet of bakreation in the omputationof � orresponds to a trunation in the perturbative expansion in the Yukawa ouplings �,whih might introdue similar unertainties related to the multisale nature of the problem.However, in the system of onsideration ontributions of higher order in � are not onlysuppressed by the smallness of the oupling, but also by the number of degrees of freedomin the bath that justify the neglet of bakreation. Hene, we expet potential problemsdue to seular terms not to be relevant.The assumption that the bakground medium equilibrates instantaneously on the timesale of the asymmetry generation leaves open the details of the equilibration proess. Inreality, there are e�ets related to the �nite equilibration time and the �nite size of thequasi-partiles. As we shall see in Setion 5, these quantities play a ruial role in theKadano�-Baym result for the lepton asymmetry.The self-energy for the heavy neutrino N to leading order in � is given by the diagramin Fig. 5. It ontains time-translation invariant propagators of bath �elds only, and heneit is also time-translation invariant. As shown in [29℄, this implies that also the spetral16



funtion is time-translation invariant, G�p (t1; t2) � G�p (y), y = t1 � t2. In this ase we an�nd the general solutions to the Kadano�-Baym equations without further approximations.4.1 Equation for the spetral funtionLet us now onsider the equation for the spetral funtion of the Majorana neutrino. Afteran obvious hange of variables, the Kadano�-Baym equation (3.44) beomes,C(i0�y � p �M)G�p (y)� Z y0 dy0C��p (y � y0)G�p (y0) = 0 : (4.1)De�ning the Laplae transform~G�p (s) = Z 10 dye�syG�p (y) ; ~��p (s) = Z 10 dye�sy��p (y) ; (4.2)one obtains from Eq. (4.1)�i0s� p �M � ~��p (s)� ~G�p (s) = i0G�p (0) : (4.3)Using the boundary ondition (3.30),G�p (0) = i0C�1 ; (4.4)this leads to~G�(s) = ��i0s� p �M � ~��(s)��1C�1 : (4.5)The inverse Laplae transform is given byG�p (y) = ZCB ds2�iesy ~G�p (s) ; (4.6)where CB is the Bromwih ontour (see Fig. 6): The part parallel to the imaginary axisis hosen suh that all singularities of the integrand are to its left; the seond part is thesemiirle at in�nity whih loses the ontour at Re(s) < 0.From the de�nition of the Laplae transform one an see that the self-energy ~��p (s) isanalyti on the real s axis, but has a disontinuity aross the imaginary axis. This givesrise to the spetral representation~��p (s) = i Z 1�1 dp02� ��p (p0)is� p0 : (4.7)Note that the retarded and advaned self-energies are given by~��p (�i! + �) = �Rp (!) ; (4.8)17
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Figure 6: Bromwih ontour~��p (�i! � �) = �Ap (!) : (4.9)These self-energies are determined by the disontinuity of ~��p (s),dis~��p (�i!) = ~��p (�i! + �)� ~��p (�i! � �) = ��p (!) ; (4.10)with the real part given by the prinipal value, i.e.,~��p (�i! � �) = iP Z 1�1 dp02� ��(p0)! � p0 � 12��p (!) : (4.11)This representation of the self-energy is familiar from the theory at zero temperature.We are now ready to alulate the spetral funtion in terms of the self-energy ��p (!).Its Laplae transform has singularities only on the imaginary axis. Hene the Bromwihontour an be deformed as CB ! R i1+��i1+�+ R �i1��i1�� (see Fig. 6), whih yields for the spetralfuntionG�p (y) = ZCB ds2�iesy ~G�p (s)= Z 1�1 d!2� e(i!+�)y ~G�p (i! + �) + Z �11 d!2� e(i!��)y ~G�p (i! � �)= Z 1�1 d!2� e�i!y � ~G�p (�i! + �)� ~G�p (�i! � �)� : (4.12)The Fourier transform of the spetral funtion,�p(!) = �i Z 1�1 dyei!yG�p (y) ; (4.13)18



is then given by�p(!) = 0B� �i6p�M � 12��p (!) � �i6p�M + 12��p (!)1CAC�1 : (4.14)Here we have assumed that the divergent ontribution of the real part has already beenabsorbed into mass and wave funtion renormalization, so that �p(!) represents the renor-malized spetral density. The �nite part of the self-energy is negligable beause of thesmall Yukawa oupling.A straightforward alulation yields for the self-energy (f. [35℄),��p (!) = 2i ��y��11 Zk;q 6k �(p; k; q) ; (4.15)where we have de�ned�(p; k; q) = fl�(k; q)(2�)4 �Æ4(p� k � q) + Æ4(p+ k + q)�+ �fl�(k; q)(2�)4 �Æ4(p+ k � q) + Æ4(p� k + q)� ; (4.16)with the statistial fatorsfl�(k; q) = 1� fl(k) + f�(q) ; �fl�(k; q) = f�(q) + fl(k) : (4.17)Note that k and q are on-shell, i.e., k = (k;k) and q = (q;q), whereas p = (!;p) is o�-shell.The properties of the Dira matries and rotational invariane imply��p (!) = iap(!)0 + ibp(!)p ; (4.18)whereap(!) = 2 ��y��11 Zq;k k �(p; k; q) ; (4.19)bp(!) = �2 ��y��11 1p2 Zq;k pk �(p; k; q) : (4.20)These funtions satisfy the relationsap(�!p) = ap(!p) ; bp(�!p) = �bp(!p) : (4.21)Using Eq. (4.18) and linearising the denominators in Eq. (4.14) in the small quantitiesap(!) and bp(!), one obtains for the spetral density�p(!) = 2!�p(!)�!2 � !2p�+ (!�p(!))2 ( 6p+M)C�1 ; (4.22)19



where!�p(!) = !ap(!) + p2bp(!)= 2 ��y��11 Zq;k p � k �(p; k; q) : (4.23)On-shell, only the �rst of the Æ-funtions in �(p; k; q) ontributes, and one obtains thewidth appearing in the Boltzmann equations,�p(!p) = ��y��11 2!p Zq;k p � k fl�(k; q)(2�)4Æ4(p� k � q) � �p ; (4.24)whih satis�es the relations�p(�!p) = ��p(!p) = �p(!p) : (4.25)In the zero-width limit the spetral funtion (4.22) redues to the familiar expression invauum,�p(!) = 2�sign(!)Æ(p2 �M2)(6p+M)C�1 : (4.26)The spetral propagator is now obtained by evaluating the Fourier transform of thespetral funtion (4.22),G�p (y) = i Z 1�1 d!2� e�i!y�p(!) ; (4.27)whih yields the �nal resultG�p (y) = �i0 os(!py) + M � p!p sin(!py)� e��pjyj=2C�1 : (4.28)Compared to the free spetral funtion only an exponential damping fator appears. Thisis a feature of the narrow-width approximation, analogous to the salar �eld ase disussedin [29℄.4.2 Equation for the statistial propagatorWe now proeed to the solution of the seond Kadano�-Baym equation (3.45) whih,hoosing ti = 0, readsC(i0�t1 � p �M)G+p (t1; t2)� Z t10 dt0C��p (t1 � t0)G+p (t0; t2) = �p(t1 � t2) ; (4.29)20



with the soure term�p(t1 � t2) = � Z t20 dt0�+p (t1 � t0)G�p (t0 � t2) : (4.30)The general solution of (4.29) takes the formG+p (t1; t2) = Ĝ+p (t1; t2) +G+p;mem(t1; t2) ; (4.31)where Ĝ+p (t1; t2) is the general solution of the homogeneous equationC(i0�t1 � p �M)Ĝ+p (t1; t2)� Z t10 dt0C��p (t1 � t0)Ĝ+p (t0; t2) = 0 ; (4.32)and the `memory integral', whih ontains non-Markovian e�ets, is given byG+p;mem(t1; t2) = Z t10 dt0 Z t20 dt00G�p (t1 � t0)�+p (t0 � t00)G�p (t00 � t2) : (4.33)One easily veri�es that the memory integral is a speial solution of the inhomogeneousequation.In order to evaluate the memory integral we perform a Fourier transform of the self-energy (y = t1 � t2),G+p;mem(t1; t2) =Z d!2� �Z t10 dy1G�p (y1)ei!y1��+p (!)�Z t20 dy2G�p (�y2)e�i!y2� e�i!y : (4.34)Sine the self-energy is omputed with �elds in thermal equilibrium, it satis�es the KMSondition (f. (3.51))�+p (!) = � i2 tanh��!2 ���p (!) : (4.35)Using the expressions (4.18) and (4.28) for self-energy and spetral funtion, respe-tively, whih were derived in the previous setion, it is now straightforward to alulatethe memory integral expliitly. Negleting terms O(�p) in the numerator, one �ndsZ t0 dyei!yG�p (y) = 1!2p � (! + i�p=2)2 � (4.36)�i0��!p sin(!pt) + i! os(!pt)�ei(!+i�p=2)t � i!�+ M � p!p �i!� sin(!pt)� !p os(!pt)�ei(!+i�p=2)t + !p��C�1 ;21



Z t0 dye�i!yG�p (�y) = 1!2p � (! � i�p=2)2 � (4.37)�i0��!p sin(!pt)� i! os(!pt)�e�i(!�i�p=2)t � i!�+ M � p!p �i!� sin(!pt)� !p os(!pt)�ei(!+i�p=2)t + !p��C�1 :After inserting these expressions in Eq. (4.34) one an perform the !-integration usingCauhy's theorem. The integrand has two poles7 in the upper-half plane at ! = i�p=2�!p,and two poles in the lower-half plane ! = �i�p=2�!p. The hoie of the ontour dependson the sign of the time variables in the exponent. The result is a sum of the ontributionsfrom all four poles. The expressions appearing in the numerator an be simpli�ed by meansof Eqs. (4.21) and (4.24) for self-energy and equilibration width, respetively,�0 + M � p!p ���p (!p)�0 + M � p!p � = 2i�p�0 + M � p!p � ; (4.38)�0 � M � p!p ���p (�!p)�0 � M � p!p � = 2i�p�0 � M � p!p � : (4.39)Using these expressions one �nally obtains for the memory integral, hanging variablesfrom (t1; t2) to (t; y),G+p;mem(t; y) = (4.40)� 12 tanh��!p2 ��i0 sin(!py)� M � p!p os(!py)��e��qjyj=2 � e��qt�C�1 :Asymptotially, for t!1, the memory integral beomesG+eqp (t; y) = �12 tanh��!p2 ��i0 sin(!py)� M � p!p os(!py)� e��qjyj=2C�1 :(4.41)One easily veri�es that G+eqp (t; y) indeed represents the equilibrium statistial propagator.For the Fourier transform one obtainsG+eqp (!) = Z 1�1 dyei!yG+eqp (y)= 12 tanh��!2 � 2!�p(!)�!2 � !2p�+ (!�p(!))2 ( 6p+M)C�1= 12 tanh��!2 � �p(!) (4.42)7There are further poles at !n = �i�(1 + 2n)=�, n integer. However, their ontribution to G+p;mem isO(�p=M) and therefore negligible. 22



= � i2 tanh��!2 �G�p (!) ; (4.43)i.e., the KMS ondition (f. (3.51)) is indeed satis�ed.In order to obtain the general solution of the inhomogeneous Kadano�-Baym equationwe have to add to the memory integral the general solution of the homogeneous equation(4.32). This equation is idential to the Kadano�-Baym equation for the spetral funtion(4.1) with t2 playing the role of an additional parameter. Hene, the funtional dependeneof Ĝ+p (t1; t2) on the �rst argument t1 an be obtained in the same way as for the spetralfuntion. Applying the Laplae transform to (4.32) one �nds~G+p (s; t2) = 1i0s� p �M � ~��(s) i0Ĝ+p (0; t2) : (4.44)The inverse Laplae transform then givesĜ+p (t1; t2) = �G�p (t1)Ci0Ĝ+p (0; t2) : (4.45)The funtion Ĝ+p (0; t2) an now be determined by the symmetries (3.28) and (3.29) ofĜ�p (t1; t2) , whih implyĜ+p (t1; t2)T = �Ĝ+p (t2; t1) : (4.46)This yields the resultĜ+p (t1; t2) = �G�p (t1)C0G+p (0; 0)0C�1G�p (�t2) ; (4.47)where G+p (0; 0) is an antisymmetri matrix.Let us �rst onsider the ase of thermal initial ondition,G+eqp (0; 0) = M � p2!p tanh��!2 �C�1: (4.48)From Eq. (4.47) one then obtainsĜ+eqp (t1; t2) = �12 �i0 sin(!py)� M � p!p os(!py)� tanh��!p2 � e��q(t1+t2)=2C�1 :(4.49)Adding this expression to the memory integral Ĝ+p;mem one obtains the equilibrium statis-tial propagator Ĝ+eqp whih is independent of t = (t1 + t2)=2. Hene, as expeted, theequilibrium statistial propagator is a solution of the full Kadano�-Baym equation.23



We are partiularly interested in the ase of vauum initial ondition, whih orre-sponds to zero initial abundane for heavy neutrinos in the Boltzmann ase. The vauumpropagators are obtained from the equilibrium ones in the limit � !1. Hene we hooseG+vap (0; 0) = M � p2!p C�1 : (4.50)From Eqs. (4.31), (4.40) and (4.47) one then obtains the full solution for the statistialpropagator, whih interpolates between vauum at t = 0 and equilibrium for t!1,G+p (t; y) = ��i0 sin(!py)� M � p!p os(!py)�� �12 tanh��!p2 � e��pjyj=2 + f eqN (!p)e��pt�C�1: (4.51)This result will be the basis for the alulation of the lepton asymmetry in the next setion.All heavy neutrino propagators an be obtained as linear ombinations of the spetralfuntion G�p (y) and the statistial propagator G+p (t; y). A full list is given in Appendix A.Finally, let us emphasize that the solution of the Kadano�-Baym equation for thestatistial propagator is not related to the equilibrium propagator by a simple hange ofthe distribution funtion from f eqN (!) to some nonequilibrium funtion f eqN (t; !). This is inontrast to the assumption made in the derivation of Quantum Boltzman equations [16,17,19, 21℄. For a system lose to equilibrium this assumption leads to a valid approximationof the Kadano�-Baym equations [9℄, but in general it is not justi�ed.5 Lepton asymmetriesWe are now ready to alulate the lepton asymmetry whih is generated during the ap-proah of the heavy Majorana neutrino N to thermal equilibrium. Our starting point isthe �avour non-diagonal lepton urrent, whih is obtained from the statistial propagator,j�ij(x) = �tr[�S+Lij(x; x0)℄x0!x : (5.1)Sine we onsider a spatially homogeneous system, S+ij (x; x0) only depends on the di�erene~x� ~x0, and it is onvenient to perform a Fourier transform. The zeroth omponent of theurrent, the `lepton number matrix', is given byLkij(t; t0) = �tr[0S+Lkij(t; t0)℄ : (5.2)One easily veri�es that for free �elds in equilibriumLkii(t; t) = fli(k)� f�li(k) ; (5.3)24



PSfrag replaements�
�
�

�
�

kk

kk
q

q

k0

k0
q0

q0

(!p;p)

(!p;p)
t

t

t0

t0

t1

t1

t3

t3
t2

t2
l

l ll

ll

N

N
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S+Lk(t; t0)(�i0  �t0 �k) =� Z t00 dt1S+Lk(t; t1)Π�k (t1; t0)+ Z t0 dt1S�Lk(t; t1)Π+k (t1; t0) : (5.5)One then obtains for the time derivative of the lepton number matrix, dropping �avourindies (f. [18℄),8�tLk(t; t) = itr �(i0�t + i0�t0)S+Lk(t; t0)�t=t0= itr h(i0�t � k)S+Lk(t; t0) + S+Lk(t; t0)(i0  �t0 +k)it=t0= itr� Z t0 dt1Π�k (t; t1)S+Lk(t1; t0)� Z t00 dt1Π+k (t; t1)S�Lk(t1; t0)+ Z t00 dt1S+Lk(t; t1)Π�k (t1; t0)� Z t0 dt1S�Lk(t; t1)Π+k (t1; t0)�t=t0 : (5.6)Using properties of the trae and the identity between integration domainsZ t0 dt1 Z t10 dt2 � � �+ Z t0 dt2 Z t20 dt1 � � � = Z t0 dt1 Z t0 dt2 � � � ; (5.7)one �ndsLk(t; t) = i Z t0 dt1 Z t0 dt2 tr �Π�k (t1; t2)S+Lk(t2; t1)� Π
+k (t1; t2)S�Lk(t2; t1)� : (5.8)Note that Π�k and S�k are self-energies and propagators of the full theory inluding gaugeinterations of lepton and Higgs �elds.Using the relations for propagators and self-energiesS+Lk = 12 (S>Lk + S<Lk) ; S�Lk = i (S>Lk � S<Lk) ; (5.9)

Π
+k = 12 (Π>k + Π

<k ) ; Π
�k = i (Π>k � Π

<k ) ; (5.10)one obtains from Eq. (5.8) an equivalent useful expression for the lepton number matrix,Lk(t; t) = � Z t0 dt1 Z t0 dt2tr [Π>k (t1; t2)S<Lk(t2; t1)� Π
<k (t1; t2)S>Lk(t2; t1)℄ : (5.11)We want to alulate the lepton asymmetry to leading order in the small Yukawa ou-pling �, whih an be ahieved in a perturbative expansion. For the heavy neutrino propa-gator appearing in the loop, the departure from the equilibrium propagator is important,98We thank C. Weniger for helpful disussions.9We show in Appendix D that the equilibrium part of the propagator does indeed not ontribute tothe asymmetry. 26



whih has been evaluated in the previous setion,Gp(t1; t2) = Geqp (t1 � t2) + �Gp(t1; t2) : (5.12)Lepton propagators and self-energies have large equilibrium ontributions dominated bygauge interation, with small orretions O(�2),SLk(t1; t2) = SeqLk(t1 � t2) + ÆSLk(t1; t2) ; (5.13)
Πk(t1; t2) = Π

eqk (t1 � t2) + ÆΠk(t1; t2) ; (5.14)whih inlude CP-violating soure terms and washout terms. Clearly, inserting Π
eqk andSeqk in Eq. (5.8) must yield Leqk (t; t) = 0, sine no asymmetry is generated in thermalequilibrium.10 As disussed in Setion 2, we also neglet washout terms for simpliity. Onethen obtains for the lepton number matrix Lk(t; t) to leading order in �,Lk(t; t) = i Z t0 dt1 Z t0 dt2tr�ÆΠ�k (t1; t2)Seq+Lk (t2 � t1)�ÆΠ+k (t1; t2)Seq�Lk (t2 � t1)� : (5.15)Here ÆΠk is given by the two-loop graphs shown in Fig. 7, whih have to be evaluatedwith equilibrium propagators for lepton and Higgs �elds and the nonequilibrium Majorananeutrino propagator.The equilibrium propagators with standard model gauge interations remain to beevaluated. In the quasi-partile approximation one simply replaes energies k by omplexquasi-partile energies 
k = (k2 + m2th)1=2 + i(k). In the following we shall onsidertwo approximations: free equilibrium propagators with zero hemial potential as given inEqs. (A.1), (A.2) and (A.7), (A.8),�eq�k (y) = ��k (y) ; Seq�Lk (y) = S�Lk(y) ; (5.16)and, as a rough approximation to full thermal propagators, free equilibrium propagatorsmodi�ed by thermal damping rates,�eq�k (y) = ��k (y)e��jyj ; Seq�Lk (y) = S�Lk(y)e�ljyj : (5.17)Remarkably, thermal widths turn out to be qualitatively more important than thermalmasses, as we shall explain in Setion 6.The two ontributions to the self-energy ÆΠkij (f. Fig. 7),ÆΠkij(t1; t2) = Π

(1)kij(t1; t2) + Π
(2)kij(t1; t2) ; (5.18)10Note that thermal equilibrium does not orrespond to a Gaussian state [42℄. Therefore one has toinlude ontributions from n-point funtions whih are not determined by equilibrium 2-point funtions.However, suh terms do not ontribute to leading order in the Yukawa oupling �.27



fatorize into a produt of Yukawa ouplings, whih ontains the �avour dependene, anda trae of thermal propagators,
Π
(1)kij(t1; t2) = �3i��i1 (���)j1Π(1)k (t1; t2) ; (5.19)

Π
(2)kij(t1; t2) = 3i (���)i1 �j1Π(2)k (t1; t2) : (5.20)In the ase of free equilibrium propagators for lepton and Higgs �elds, we obtain for theself-energies Π(1;2)>k and Π

(1;2)<k :
Π
(1)>k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G>p (t1; t3)S11k0 (t2 � t3)�11q0 (t2 � t3)�<q (t2 � t1)� ~G22p (t1; t3)S<k0(t2 � t3)�<q0(t2 � t3)�<q (t2 � t1)℄PL ; (5.21)

Π
(1)<k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G11p (t1; t3)S>k0(t2 � t3)�>q0(t2 � t3)�>q (t2 � t1)� ~G<p (t1; t3)S22k0 (t2 � t3)�22q0 (t2 � t3)�>q (t2 � t1)℄PL ; (5.22)

Π
(2)>k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G<p (t2; t3)S22k0 (t3 � t1)�22q0 (t3 � t1)�<q (t2 � t1)� ~G11p (t2; t3)S<k0(t3 � t1)�<q0(t3 � t1)�<q (t2 � t1)℄PL ; (5.23)

Π
(2)<k (t1; t2) = Z 10 dt3 Z d3q(2�)3 d3q0(2�)3� [ ~G22p (t2; t3)S>k0(t3 � t1)�>q0(t3 � t1)�>q (t2 � t1)� ~G>p (t2; t3)S11k0 (t3 � t1)�11q0 (t3 � t1)�>q (t2 � t1)℄PL : (5.24)Due to the hiral projetions at the verties, only the salar parts of the nonequilibriumMajorana propagators ontribute, whih are the same for ~G>p , ~G<p , ~G11p and ~G22p (f. Eqs.(A.19) - (A.24)),PL �Gp(t; t0)CPL = ~Gp(t; t0)PL ; ~Gp(t; t0) = M!p os(!p(t� t0))f eqN (!p)e��p(t+t0)=2 :(5.25)The number of terms whih ontribute to the asymmetry Lk(t; t) an be signi�antlyredued by means of the following symmetry properties of the massless propagators:S>k (y)� = CS<k (y)C�1 ; S11k (y)� = CS22k (y)C�1 ; (5.26)�>q (y)� = �<q (y) ; �11q (y)� = �22q (�y) ; (5.27)28



S<k (y) = 5S>�k(�y)5 ; S11k (y) = 5S11�k(�y)5 ; (5.28)�<q (y) = �>q (�y) ; �11q (y) = �11q (�y) : (5.29)Employing these transformation properties one an derive the following useful relationsamong di�erent ontributions to the integrand of Eq. (5.11):tr hΠ(1;2)>k (t1; t2)S<k (t2 � t1)i = �tr hΠ(1;2)<k (t1; t2)S>k (t2 � t1)i� ; (5.30)tr hΠ(1)>k (t1; t2)S<k (t2 � t1)i = �tr hΠ(2)<k (t2; t1)S>k (t1 � t2)i : (5.31)Using these relations one obtains from Eq. (5.11) the ompat expression for the leptonasymmetryLkii(t; t) = 12 Imf��i1 (���)i1g� Z t0 dt1 Z t0 dt2 Re�tr hΠ(2)>k (t1; t2)S<k (t2 � t1)i� : (5.32)Sine Imf��i1 (���)j1g = 16��ij=(3M) (f. Eq. (2.12)), the leading dependene of the �avour-diagonal lepton asymmetry Lkii(t; t) on the Yukawa ouplings is idential to the dependeneof the di�erene fLi(t; k) of lepton and anti-lepton distribution funtions appearing in theBoltzmann equations.To proeed further in the evaluation of Lkii(t; t), the following relation an be used tosimplify the integrand,S22k (y)�22q (y)� S<k (y)�<q (y) =�(�y)2q �0�oth��q2 � os(ky) os(qy)� tanh��k2 � sin(ky) sin(qy)�� iM � kk �tanh��k2 � os(ky) sin(qy) + oth��q2 � sin(ky) os(qy)�� : (5.33)One then obtains for the real part of the sum of produts of thermal lepton and Higgspropagators (yij = ti � tj),Re�tr��S22k0 (y31)�22q0 (y31)� S<k0(y31)�<q0(y31)�S<k (y21)��<q (y21)� =��(y13)16qq0 ��oth��q2 �� os((k + q)y21) + os((k � q)y21)�+tanh��k2 �� os((k + q)y21)� os((k � q)y21)����oth��q02 �� os((k0 + q0)y31) + os((k0 � q0)y31)�+ tanh��k02 �� os((k0 + q0)y31)� os((k0 � q0)y31)��29



+k � k0kk0 �oth��q2 �� sin((k + q)y21) + sin((k � q)y21)�+tanh��k2 �� sin((k + q)y21)� sin((k � q)y21)����oth��q02 �� sin((k0 + q0)y31) + sin((k0 � q0)y31)�+ tanh��k02 �� sin((k0 + q0)y31)� sin((k0 � q0)y31)��� : (5.34)De�ning the linear ombinations of lepton and Higgs distribution funtions (f. (2.6)),fl�(k; q) = 1� fl(k) + f�(q) ; �fl�(k; q) = fl(k) + f�(q) ; (5.35)and using the relationsoth��q2 �+ tanh��k2 � = 2fl�(k; q) ; (5.36)oth��q2 �� tanh��k2 � = 2 �fl�(k; q) ; (5.37)one �ndsLkii(t; t) = ��ii 32� Z t0 dt1 Z t0 dt2 Z t20 dt3 Zq;q0 1!pf eqN (!p)e��2 (t1+t3) os(!py31)���fl�(k; q) os((k + q)y21) + �fl�(k; q) os((k � q)y21)���fl�(k0; q0) os((k0 + q0)y23) + �fl�(k0; q0) os((k0 � q0)y23)�+k � k0kk0 ��fl�(k; q) sin((k + q)y21) + �fl�(k; q) sin((k � q)y21)���fl�(k0; q0) sin((k0 + q0)y23) + �fl�(k0; q0) sin((k0 � q0)y23)��� ; (5.38)where we have again used the notationZq � � � = Z d3q(2�)32q � � � :The funtions fl� and �fl� are well known from Weldon's analysis of disontinuities in�nite-temperature �eld theory [35℄. The sum of statistial fatorsfl�(k; q) = (1� fl(k))(1 + f�(q)) + fl(k)f�(q) (5.39)30



orresponds to deays and inverse deays of the massive Majorana neutrinos whereas�fl�(k; q) = f�(q)(1� fl(k)) + fl(k)(1 + f�(q)) (5.40)aounts for their disappearane or appearane where a single quant, lepton or Higgs, isabsorbed from or emitted into the thermal bath. The funtion fl� ontains the vauumontribution, i.e., fl� ! 1 as � !1, whereas �fl� ! 0.We now have to perform the three time integrations in Eq. (5.38). It is onvenientto express the produts of osine's and sine's as sum of produts of exponentials. Eahterm then beomes a sum of four exponentials, where the energies !, k � q and k0 � q0appear in di�erent linear ombinations, and the four omplex onjugate exponentials. Asan example, onsider the integralI(t) = Z t0 dt1 Z t0 dt2 Z t20 dt3e�i
1t1+i
2t2+i
3t3e��2 (t1+t3) ; (5.41)with 
1 = !p�k�q, 
3 = !p�q0�k0, and 
2 = 
1�
3 = k0+q0�k�q. A straightforwardalulation yieldsI(t) + I�(t) = ���e��t + os(
2t)� e��t2 (os(
1t) + os(
3t))�+O(t)(
21 + �24 )(
23 + �24 ) ; (5.42)whereO(t) = 2
1
3 + �22
2 �sin(
2t)� e��t2 (sin(
1t)� sin(
3t))� (5.43)is of higher order in � at 
1;3 = 0. Hene, this term does not ontribute to the leptonasymmetry at leading order in �, i.e., in the Yukawa ouplings.The two ontributions in Eq. (5.38), without and with the prefator k �k0=(kk0), add upto a single term proportional to k � k0=(kk0) where k � k0 denotes the produt of 4-vetors.This is a onsequene of Lorentz invariane of the vauum ontribution. The full result isnow easily obtained from Eqs. (5.38) and (5.42) by adding the ontributions with reversedsign of q and/or q0, aompanied by the orresponding substitution fl� ! �fl�. Omittingthe subleading terms O (f. (5.43)), one �nally obtainsLkij(t; t) = 4Xa=1 Lakij(t; t) ; (5.44)whereLakii(t; t) = ��ii 8� Zq;q0 k � k0kk0!p f eqN (!p) 12� X�;�=� L̂ak;q;q0(t;�; �) (5.45)31



and L̂1k;q;q0(t;�; �) = fl�(k; q)fl�(k0; q0)((!p � �(k + q))2 + �24 )((!p � �(k0 + q0))2 + �24 )� �e��t + os[(�(k + q)� �(k0 + q0))t℄� e��t2 � os[(!p � �(k + q))t℄ + os[(!p � �(k0 + q0))t℄�� ; (5.46)L̂2k;q;q0(t;�; �) = �fl�(k; q)fl�(k0; q0)((!p � �(k � q))2 + �24 )((!p � �(k0 + q0))2 + �24 )� �e��t + os[(�(k � q)� �(k0 + q0))t℄� e��t2 � os[(!p � �(k � q))t℄ + os[(!p � �(k0 + q0))t℄�� ; (5.47)L̂3k;q;q0(t;�; �) = fl�(k; q) �fl�(k0; q0)((!p � �(k + q))2 + �24 )((!p � �(k0 � q0))2 + �24 )� �e��t + os[(�(k + q)� �(k0 � q0))t℄� e��t2 � os[(!p � �(k + q))t℄ + os[(!p � �(k0 � q0))t℄�� ; (5.48)L̂4k;q;q0(t;�; �) = fl�(k; q)fl�(k0; q0)((!p � �(k � q))2 + �24 )((!p � �(k0 � q0))2 + �24 )� �e��t + os[(�(k � q)� �(k0 � q0))t℄� e��t2 � os[(!p � �(k � q))t℄ + os[(!p � �(k0 � q0))t℄�� : (5.49)This expression ontains o�-shell and memory e�ets whih are not ontained in Boltzmannequations. A detailed omparison will be given in the following setion.So far we have negleted the thermal damping widths of lepton and Higgs �elds dueto gauge interations, whih are known to be muh larger than the width of the heavyMajorana neutrino, l � � � g2T � �2M � �, for M <� T . To estimate their e�et wereplae the free equilibrium propagators by�eq�k (y) = ��k (y)e��jyj ; Seq�k (y) = S�k (y)e�ljyj : (5.50)This has a drasti e�et on the alulation desribed above. For the dominant term inEq. (5.45), L̂1k;q;q0 with � = � = 1, where the energy dominators an be O(�2), one now�nds ( = l + �),�Lkii(t; t) = ��ii 16� Zq;q0 k � k0kk0!p� 0((!p � k � q)2 + 2)((!p � k0 � q0)2 + 02)32



�fl�(k; q)fl�(k0; q0)f eqN (!p)� 1� �1� e��t� ; (5.51)where  = (k; q) and 0 = 0(k0; q0). Note that now all memory e�ets have disappeared.6 Boltzmann vs Kadano�-BaymLet us now onsider in detail the relation between the two results obtained for the leptonasymmetry: Eq. (2.11) from the Boltzmann equations and Eqs. (5.44) - (5.49) and (5.51)from the Kadano�-Baym equations.Clearly, the overall CP asymmetry is idential in both ases and also the momentumintegrations are very similar. Compared to the Boltzmann result the Kadano�-Baym resulthas an additional statistial lepton-Higgs fator and expeted o�-shell energy denominators.Furthermore, there are 16 di�erent terms orresponding to the various ombinations ofdeay and inverse deay, appearane and dissappearane. The most striking di�ereneis the time dependene of the integrand: the Boltzmann result has a simple exponentialbehaviour whereas the Kadano�-Baym result has terms rapidly osillating with time withfrequenies O(M)� �, a manifestation of memory e�ets.The time-dependene is ontained in the integral I(t) given in Eq. (5.41). De�ning�
1 = 
1 + i2� ; �
3 = 
3 + i2� ; (6.1)and using the identities t3 = t1+(t2� t1)+(t3� t2) and 
2 = 
1�
3, one has (f. (5.41)),I(t) = Z t0 dt1e��t1 Z t�t1�t1 dt21 Z 0�t2 dt32 ei�
1t21+i�
3t32 ; (6.2)where tij = ti � tj. After performing the time-integrations, one obtains the resultI(t) = 1i�
3 � 1j�
1j2 �ei�
1t � 1��e�i�
�1t � 1�� 1
2 �
�1 �ei
2t � 1� �e�i�
�1t � 1�� ; (6.3)whih satis�esI(0) = I 0(0) = I 00(0) = 0 ; I 000(0) 6= 0 : (6.4)For large times, t� 1=�, there remains a term osillating with time,I(t) � 1i�
3 � 1j�
1j2 + 1
2 �
�1 �ei
2t � 1�� : (6.5)33



This is in ontrast to the Boltzmann result whose time-dependene is given byIB(t) = 1� e��t� ; (6.6)with IB(0) = 0 ; I 0B(0) 6= 0 ; (6.7)and IB(t) � 1=� = onst for large times t� 1=�.Where is the Boltzmann result hidden in the Kadano�-Baym result, and in whih limitis it reovered? To answer this question it is instrutive to onsider a modi�ed integral�I(t), where thermal damping rates  � 0 � g2T are inluded, whih a�et the dependeneon the time di�erenes jt2 � t1j and jt3 � t2j (f. Fig. 7),�I(t) = Z t0 dt1e��t1 Z t�t1�t1 dt21 Z 0�t2 dt32 ei�
1t21�jt21j ei�
3t32�0jt32j : (6.8)Compared to Eq. (5.41) the main di�erene is that the damping term in the t21-integrationhanges sign at t21 = 0. This is in ontrast to the damping due to the Majorana neutrinodeay width �.Carrying out the time-integrations one now obtains the result�I(t) = 1i�
3 + 0� 1(i�
1 � )(�i�
�1 + )e(i�
1�)t �e(�i�
�1+)t � 1�� 1(i�
1 + )(�i�
�1 � ) �e(�i�
�1�)t � 1�� 1(i
2 �  � 0)(�i�
�1 + )e(i
2��0)t �e(�i�
�1+)t � 1�+ 1(i
2 +  � 0)(�i�
�1 � ) �e(�i�
�1�)t � 1�+ 2�
21 + 2 1� e��t� � 2(i�
�3 + 0)((i
2 � 0)2 � 2) �e(�i�
�3�0)t � 1� � :(6.9)The �rst four terms redue to Eq. (6.3) for  = 0 = 0. Partiularly interesting is thelast line in Eq. (6.9), whih is a ontribution from the point t21 = t2 � t1 = 0, wherethe damping term hanges sign. This loal ontribution ontains the only term whih isenhaned by 1=� and has Boltzmann-like time-dependene,�I(t) � IB(t) = 2(i�
3 + 0)(�
21 + 2) 1� e��t� : (6.10)34



Note that as onsequene of thermal damping all osillatory terms are exponentially sup-pressed for times t > 1=,�I(t) � 1i�
3 + 0� 2�
21 + 2 1� e��t� + 2(i�
�3 + 0)((i
2 � 0)2 � 2)+ 1(i�
1 + )(�i�
�1 � ) � 1(i
2 +  � 0)(�i�
�1 � )� : (6.11)The Boltzmann-like term (6.10), whih originates from the point t2 = t1, vanishes for = 0.What is the order of magnitude of the lepton asymmetry (5.44) relative to the Boltz-mann result in the ase  = 0 = 0? The Kadano�-Baym result depends on � = �t,like the Boltzmann result, and in addition on the dimensionless parameter �=M � 1. Inappendix C we shown thatLk(t; t)fL(t; k) ! 0 ; for �M ! 0 ; � = �t �xed : (6.12)Hene, in this zero-width limit, due to rapid osillations of the integrand, the lepton asym-metry obtained from the Kadano�-Baym equation is at least O(�=M) relative to the Boltz-mann lepton asymmetry.We are thus led to the onlusion that the lepton asymmetry obtained from theKadano�-Baym equations does not ontain the Boltzmann result as limiting ase as longas free equilibrium propagators are used for lepton and Higgs �elds. This may not be toosurprising. After all, the underlying assumption in our alulation has been that (gauge)interations, muh faster than heavy neutrino deay, establish kineti equilibrium for lep-tons and Higgs partiles. These interations will unavoidably lead to thermal dampingwidths muh larger than �. If these interations are not taken into aount in the alula-tion of the lepton asymmetry, one misses the main ontribution and obtains a misleadingresult. This means that at present the best estimate for the full quantum mehanial lep-ton asymmetry is given by Eq. (5.51), whih leads to a temperature dependent suppressionompared to the Boltzmann result.Note that the proposed inorporation of thermal damping rates leads to a Boltzmann-like result, Eq. (5.51), whih is valid for t >� 1=�. For t < 1=�, all terms have to be kept,and one has �t �Lk(t; t)jt=0 = 0, whih is a property of the exat result (5.8), ontrary to theBoltzmann approximation.7 Numerial analysisLet us now quantitatively ompare the Boltzmann result (2.14) for the lepton asymmetryfLi(t; k) = fli(t; k)� f�li(t; k) 35



with the Kadano�-Baym result for the lepton asymmetryLkii(t; t) = �tr[0S+Lkii(t; t)℄ : (7.1)For free �elds in thermal equilibrium both expressions are idential. For the Kadano�-Baym result we use Eq. (5.51) whih inludes the estimated e�et of thermal widths forlepton and Higgs �elds.As shown in Appendix C, the Boltzmann result (2.14) an be redued to a two-dimensional momentum integral (f. (C.15)),fLi(t; k) = � �ii4� FB(k; �) 1� �1� e��t� ; (7.2)where we have de�nedFB(k; �) = 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 1!p��1� 2!pk �M22pk 2!pk0 �M22pk0 � fl�(k; !p � k)f eqN (!p) ; (7.3)here !p = pM2 + p2, the braket represents the produt of 4-vetors divided by theorresponding energies, k � k0=(kk0), and the integration boundaries arepmin(k) = jM2 � 4k2j4k ; k0min = !p � p2 ; k0max(p) = !p + p2 : (7.4)The dependene on temperature (� = 1=T ) enters through the equilibrium distributionfuntions of Higgs partiles and leptons,fl�(k; q) = 1� fl(k) + f�(q) ; q = !p � k ; (7.5)fl(k) = 1e�k + 1 ; f�(q) = 1e�q � 1 ; f eqN (!p) = 1e�!p + 1 : (7.6)The Kadano�-Baym result (5.51) for the lepton asymmetry, whih inludes e�ets ofthermal damping, takes the same form as the Boltzmann result�Lkii(t; t) = � �ii4� FKB(k; �) 1� �1� e��t� : (7.7)Sine the integrand of the momentum integrations ontains two delta-funtions less thanthe expression for the Boltzmann result, the funtion FKB(k; �) an only be written as afour-dimensional integral (f. (C.19)),FKB(k; �) = 1�2 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk Z q+q� dq Z q0+q0� dq0 1!p36



��1� p2 + k2 � q22pk p2 + k02 � q022pk0 � fl�(k; q)fl�(k0; q0)f eqN (!p)� 0((!p � k � q)2 + 2)((!p � k0 � q0)2 + 02) ; (7.8)with the integration boundariesq� = jp� kj ; q0� = jp� k0j : (7.9)For the thermal widths we use the estimate  ' 0 � 6g28� T � 0:1 T (f. [44℄). Note thatthe damping in a non-Abelian plasma is onsiderably stronger than in an eletromagnetiplasma at the same temperature.It is instrutive to ompare the Boltzmann and Kadano�-Baym results with the pre-dition of quantum Boltzmann equations. As shown in [19, 20℄, these equations lead toan additional statistial fator ompared to Boltzmann equations, whih implies for thelepton asymmetryFQB(k; �) = 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 1!p (7.10)��1� 2!pk �M22pk 2!pk0 �M22pk0 � fl�(k; !p � k)fl�(k0; !p � k0)f eqN (!p) :In [19,20℄, this enhanement has been inluded in an e�etive, temperature-dependent CPasymmetry.In Fig. 8 Boltzmann and Kadano�-Baym results for the lepton asymmetry are om-pared. At momenta k � 0:2, where both distributions peak, the di�erenes are less than20%, at larger momenta they reah at most 50% (f. Fig. 10). At temperatures T � 0:3,where leptogenesis takes plae for typial neutrino parameters [30, 45℄, di�erenes are es-sentially negligible.Boltzmann and quantum Boltzmann results for the lepton asymmetry are omparedin Fig. 9. At momenta k � 0:2, where both distributions are maximal, the di�erenesan exeed 100%, and they remain large also at larger momenta (f. Fig.10). An enhane-ment O(100%) at T � 1 is qualitatively onsistent with the enhanement found for thetemperature-dependent CP asymmetries in [19, 20℄.The Kadano�-Baym result strongly depends on the size of the thermal damping rates.For ; 0 ! 0, o�-shell e�ets dissappear, and the Kadano�-Baym result approahes thequantum Boltzmann result. Numerially, already for  ' 0 � 0:01 T the di�erenesare negligible. However, in a non-Abelian plasma, damping rates are large and, as aonsequene, they almost ompensate the enhanement due to the additional statistialfator ontained in the quantum Boltzmann as well as the Kadano�-Baym result. Weonlude that, aording to our estimates, the onventional Boltzmann equations providerather aurate preditions for the lepton asymmetry.37
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8 Summary and onlusionsThe goal of leptogenesis is the predition of the osmologial baryon asymmetry, givenneutrino masses an mixings. In a `theory of leptogenesis', it must be possible to quantifythe theoretial error on this predition. This requires to go beyond Boltzmann as well asquantum Boltzmann equations, suh that the size of memory and o�-shell e�ets an besystematially omputed.In the present paper we have shown how to alulate the lepton asymmetry from �rstpriniples, i.e., in the framework of nonequilibrium quantum �eld theory. Our alulationis entirely based on Green's funtions, and it therefore avoids all assumptions whih areneeded to arrive at Boltzmann equations.Two key ingredients make the problem solvable. First, the thermal bath has a largenumber of degrees of freedom, all standard model partiles, ompared to only one parti-le out of equilibrium, the heavy neutrino. Hene, the bakreation of its equilibrationon the temperature of the thermal bath an be negleted. Seond, the heavy neutrinois only weakly oupled to the thermal bath and we an use perturbation theory in theorresponding Yukawa oupling �.The weak oupling of the heavy neutrino to the bath allowed us to obtain analytiexpressions for the spetral funtion, whih do not depend on initial onditions, and for thestatistial propagator. In Setion 4 we have disussed two solutions of the Kadano�-Baymequations, whih orrespond to thermal and vauum initial onditions. The statistialpropagator whih interpolates between vauum at t = 0 and thermal equilibrium at largetimes an then be used in the omputation of the lepton asymmetry.Thermal leptogenesis has two vastly di�erent sales, the width � of the heavy neutrinoon one side, and its mass M , temperature T of the bath and thermal damping widths on the other side,� � �2M �  � g2T < T <�M :Typial leptogenesis parameters (f. [2℄) are � � 10�7 M ,  � 0:1 T , T � 0:3 M , M �1010 GeV. The existene of interations in the plasma, whih are fast ompared to theequilibration time �N = 1=� of the heavy neutrino, is always impliitly assumed to justifythe use of Boltzmann equations for the alulation of the asymmetry, but their e�ets areusually not expliitly taken into aount.The main result of this paper is the omputation of the lepton asymmetry in Setion 5,where the nonequilibrium propagators of the heavy neutrino and free equilibrium propaga-tors for massless lepton and Higgs �elds are used. Compared to Boltzmann and quantumBoltzmann equations, the ruial di�erene of the result (5.44) - (5.49) are the memorye�ets, osillations with frequenies O(M), muh faster than the heavy neutrino equilibra-tion time �N = 1=�. These osillations strongly suppress the generated lepton asymmetryLk(t; t) ompared to the Boltzmann result fL(t; k). In fat, as shown in appendix C, theratio Lk(t; t)=fL(t; k) vanishes in the `zero-width' limit �=M ! 0, with � = �t �xed.41



This situation hanges when the interations, whih in the Boltzmann approah areassumed to establish kineti equilibrium, are expliitly inluded in the alulation. Leptonand Higgs �elds in the thermal bath then aquire large thermal damping widths  � g2T ,whih ut o� the osillations. As a onsequene, the predited lepton asymmetry is similarto the quantum Boltzmann result, exept for o�-shell e�ets whih are now inluded. Forsmall damping widths,  � T , the o�-shell e�ets are negligible. They are large, however,in the standard model plasma. Aording to our alulation, using  � 0:1 T , the dampinge�ets essentially ompensate the enhanement due to the additional statistial fator ofthe quantum Boltzmann equations. We onlude that, after all orretions are taken intoaount, the onventional Boltzmann equations again provide rather aurate preditionsfor the lepton asymmetry. Note that the lassial Boltzmann behaviour emerges at largetimes, t >� 1=� > 1=, while at early times all terms are of similar magnitude, and allquantum e�ets have to be kept.As already emphasized in [8℄, it is of ruial importane to inlude gauge interations inthe Kadano�-Baym approah to make further progress towards a `theory of leptogenesis'.It remains to be seen whether the qualitative e�ets of thermal damping, as disussed inthis paper, will then be on�rmed or whether new surprises are enountered.AknowlegementsWe would like to thank D. Bödeker, O. Philipsen, M. Shaposhnikov and C. Weniger forhelpful disussions, and J. Shmidt for sharing his expertise. This work was supportedby the German Siene Foundation (DFG) within the Collaborative Researh Center 676�Partiles, Strings and the Early Universe� and by the Swiss National Siene Foundation.
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A Thermal propagatorsIn the following we list all propagators, whih are needed in the alulation desribed inSetion 5, as funtions of relative time y = t1 � t2 and total time t = (t1 + t2)=2.� Free massive salar (!q =pm2 + q2)��q (y) = 1!q sin(!qy) ; (A.1)�+q (y) = 12!q oth��!q2 � os(!qy) ; (A.2)�11q (y) = 12!q �oth��!q2 � os(!qy)� i sin(!qjyj)� (A.3)= �+q (y)� i2sign(y)��q (y) ;�22q (y) = 12!q �oth��!q2 � os(!qy) + i sin(!qjyj)� (A.4)= �+q (y) + i2sign(y)��q (y) ;�>q (y) = 12!q �oth��!q2 � os(!qy)� i sin(!qy)� ; (A.5)�<q (y) = 12!q �oth��!q2 � os(!qy) + i sin(!qy)� : (A.6)� Free massive Dira fermion (!k =pm2 + k2)S�k (y) = i0 os(!ky) + m� k!k sin(!ky) ; (A.7)S+k (y) = �12 tanh��!k2 ��i0 sin(!ky)� m� k!k os(!ky)� ; (A.8)S11k (y) = 02 �os(!ky)sign(y)� i tanh��!k2 � sin(!ky)�+ m� k2!k �tanh��!k2 � os(!ky)� i sin(!kjyj)� (A.9)= S+k (y)� i2sign(y)S�k (y) ;S22k (y) = 02 �� os(!ky)sign(y)� i tanh��!k2 � sin(!ky)�+ m� k2!k �tanh��!k2 � os(!ky) + i sin(!kjyj)� (A.10)43



= S+k (y) + i2sign(y)S�k (y) ;S>k (y) = 02 �os(!ky)� i tanh��!k2 � sin(!ky)�+ m� k2!k �tanh��!k2 � os(!ky)� i sin(!ky)� ; (A.11)S<k (y) = 02 �� os(!ky)� i tanh��!k2 � sin(!ky)�+ m� k2!k �tanh��!k2 � os(!ky) + i sin(!ky)� : (A.12)The propagators for a massless left-handed fermion are obtained by the substitutions!k ! k = jkj, S:::k ! PLS :::k , where PL = (1� 5)=2.� Free massive Majorana fermion (!p =pM2 + p2)G�p (y) = �i0 os(!py) + M � p!p sin(!py)�C�1 ; (A.13)G+p (y) = �12 tanh��!p2 ��i0 sin(!py)� M � p!p os(!py)�C�1 ; (A.14)G11p (y) = �02 �os(!py)sign(y)� i tanh��!p2 � sin(!py)�+M � p2!p �tanh��!p2 � os(!py)� i sin(!pjyj)��C�1 ; (A.15)G22p (y) = �02 �� os(!py)sign(y)� i tanh��!p2 � sin(!py)�+M � p2!p �tanh��!p2 � os(!py) + i sin(!pjyj)��C�1 ; (A.16)G>p (y) = �02 �os(!py)� i tanh��!p2 � sin(!py)�+M � p2!p �tanh��!p2 � os(!py)� i sin(!py)��C�1 ; (A.17)G<p (y) = �02 �� os(!py)� i tanh��!p2 � sin(!py)�+M � p2!p �tanh��!p2 � os(!py) + i sin(!py)��C�1 : (A.18)
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� Nonequilibrium massive Majorana fermion (interpolation between vauum at t =y = 0 and thermal equilibrium at t =1, and memory integral)G�p (y) = �i0 os(!py) + M � p!p sin(!py)� e��pjyj=2C�1 ; (A.19)G+p (t; y) = ��i0 sin(!py)� M � p!p os(!py)�� �12 tanh��!p2 � e��pjyj=2 + f eqN (!p)e��pt�C�1 ; (A.20)G11p (t; y) = G+p (t; y)� i2sign(y)G�p (y) ; (A.21)G22p (t; y) = G+p (t; y) + i2sign(y)G�p (y) ; (A.22)G>p (t; y) = G+p (t; y)� i2G�p (y) ; (A.23)G<p (t; y) = G+p (t; y) + i2G+p (y) ; (A.24)G+p;mem(t; y) = �12 tanh��!p2 ��i0 sin(!py)� M � p!p os(!py)�� �e��pjyj=2 � e��pt�C�1 : (A.25)B Feynman rulesFor ompleteness, we list in the following the Feynman rules for the Standard ModelLagrangian with right-handed neutrinos given in Eq. (1.2); �; � are spinor indies anda; b; : : : are SU(2) indies.� Majorana neutrinoPSfrag replaementsx2;� x1;�N G��(x1; x2)� Lepton doubletPSfrag replaements l x1;�;a;ix2;�;b;j ÆijÆabS��(x1; x2)
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� Higgs doubletPSfrag replaements � x1;ax2;b Æab�(x1; x2)� VertiesPSfrag replaementsN � i; �; a l
b � i��i1�ab(PR)��PSfrag replaementsN � i; �; a l
b � i�i1(CPL)���ab

PSfrag replaements i; �; a
l
l

j; �; b
�
�d i�ij(�a�bd + �ad�b)(CPL)��

PSfrag replaements i; �; a
l
l

j; �; b
�
�d i��ij(�a�bd + �ad�b)(PRC)��
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C Zero-width limitIn this setion we onsider the Kadano�-Baym result for the lepton asymmetry normalisedto the Boltzmann result, Lk(t; t)=fL(t; k), in the zero-width limit as de�ned in Eq. (6.12),i.e., �M ! 0 ; � = �t �xed :To this end we have to evaluate the orresponding momentum integral (5.45) in this limit.C.1 Boltzmann equationConsider �rst the Boltzmann result for the lepton asymmetry given in Eq. (2.14),fLi(t; k) = ��ii 16�k Zq;p;q0;k0 k � k0 (2�)4Æ4(k + q � p)(2�)4Æ4(k0 + q0 � p)� fl�(k; q)f eqN (!p) 1� �1� e��t� : (C.1)The integration over q and q0 an be performed using the Æ-funtions, whih leads tofLi(t; k) = � �ii16�3 Z d3p Z d3k0 k � k0kk0 1!pqq0 Æ(k + q � !p)Æ(k0 + q0 � !p)� fl�(k; q)f eqN (!p) 1� �1� e��t� ; (C.2)where q = jqj and q0 = jq0j. The produt of 4-vetors, k � k0 = kk0(1 � k̂ � k̂0), dependson the angles between the di�erent momenta. It is onvenient to de�ne the angles withrespet to the momentum p: � = \(k;p), �0 = \(k0;p) and '0 = \(k?;k0?); here k? andk0? are perpendiular to the vetor p, i.e., k = kk+k? and k0 = k0k+k0?. In terms of theseangles the unit vetors k̂ and k̂0 are given by (see Fig. ??)k̂ = 0� os �sin �0 1A ; k̂0 = 0� os �0sin �0 os'0sin �0 sin'0 1A ; (C.3)with k̂ � k̂0 = os � os �0 + sin � sin �0 os'0. We then obtainfLi(t;k) = � �ii16�3 Z d3p Z 10 k02dk0 Z 1�1 d os �0 Z 2�0 d'0 1!pqq0� (1� os � os �0 � sin � sin �0 os'0) (C.4)� Æ(k + q � !p)Æ(k0 + q0 � !p)fl�(k; q)f eqN (!p) 1� �1� e��t� :47
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where the limits of integration are given by the maximal and minimal value of q and q0,respetively,q� = jk � pj ; q0� = jk0 � pj : (C.10)Consider now the argument of one Æ-funtion, 
1 = !p�k�q, with 
min1 = !p�k�q+and 
max1 = !p � k � q� (f. Eq.(5.41)). Obviously, the onditions 
min1 < 0 and 
max1 > 0limit the integration range in p for given momentum k,p > jM2 � 4k2j4k � pmin(k) : (C.11)Similarly, the onstraint p > (M2 � 4k02)=(4k0) restrits the integration range in k0 forgiven p,k0 > !p � p2 � k0min(p) ; k0 < !p + p2 � k0max(p) : (C.12)Changing again variables from q and q0 to 
1 and 
3, respetively, and using�(p; k0;
1;
3)�(p; k0; q; q0) = 1 ; (C.13)the integral an now be written asfLi(t; k) = � �ii4� 1k Z 1pmin(k) dp Z k0max(p)k0min(p) dk0 Z 
max1
min1 d
1 Z 
max3
min3 d
3� 1!p Æ(
1)Æ(
3)�1� p2 + k2 � q22pk p2 + k02 � q022pk0 �� fl�(k; q)f eqN (!p) 1� �1� e��t� : (C.14)The limits of integration have been hosen suh that they ontain the points 
1 = 0 and
3 = 0, whih orrespond to energy onservation, q = !p�k and q0 = !p�k0, respetively.Hene, the integration on 
1 and 
3 an trivially be arried out, and we obtain the �nalresultfLi(t; k) = � �ii4� 1k Z 1pmin(k) dp Z k0max(p)k0min(p) dk0 1!p �1� 2!pk �M22pk 2!pk0 �M22pk0 �� fl�(k; !p � k)f eqN (!p) 1� �1� e��t� : (C.15)
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C.2 Kadano�-Baym equationWe are now ready to evaluate the leading ontribution of the Kadano�-Baym result forthe lepton asymmetry. It is given by Eq. (5.46) with � = � = 1, and it an be written inthe formLkii(t; t) = ��ii 8� Zq;q0 k � k0kk0!p fl�(k; q)fl�(k0; q0)f eqN (!p)� 12�((!p � k � q)2 + �24 )((!p � k0 � q0)2 + �24 )� � �e��t2 � os((!p � k � q)t)��e��t2 � os((!p � k0 � q0)t)�� sin((!p � k � q)t) sin((!p � k0 � q0)t)� : (C.16)We �rst hange variables, (q;q0)! (p;k0), with p = q+ k = q0 + k0, and use rotationalinvariane,Lkii(t; t) = 14� Z d
k Lkii(t; t) : (C.17)Choosing again angles aording to Fig. ??, the integral (C.16) beomesLkii(t; t) / Z d
k Z d
k0 Z 2�0 d'0 k � k0kk0 F (�; �0; � � � )= Z 1�1 d os � Z 1�1 d os �0 Z 2�0 d'0 (1� os � os �0� sin � sin �0 os'0) F (�; �0; � � � )= (2�)2 Z 1�1 d os � Z 1�1 d os �0 (1� os � os �0)F (�; �0; � � � ) ; (C.18)where we have used that the funtion F (�; �0; � � � ) does not depend on the angle '0. Asin the previous setion, we now hange the integration variables from (�; �0) to (q; q0), andusing Eq. (C.8) we obtainLkii(t; k) =� �ii8�3 1k Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 Z q+q� dq Z q0+q0� dq0 1!p� �1� p2 + k2 � q22pk p2 + k02 � q022pk0 � fl�(k; q)fl�(k0; q0)f eqN (!p)� 12�((!p � k � q)2 + �24 )((!p � k0 � q0)2 + �24 )50



� ��e��t2 � os((!p � k � q)t)��e��t2 � os((!p � k0 � q0)t)�� sin((!p � k � q)t) sin((!p � k0 � q0)t)� ; (C.19)where the limits of integration are given in Eqs. (C.10) - (C.12). We have restrited theintegration over p and k to the range for whih the intervals [q�; q+℄ and [q0�; q0+℄ ontainpoints satisfying !p � k � q = 0 and !p � k0 � q0 = 0, respetively. This �nite part of theintegral ould then be O(1=�), whih is required to math the Boltzmann result for thelepton asymmetry. The remaining part is O(1) and therefore suppressed ompared to theBoltzmann result.Remarkably, the integral (C.19) is a sum of terms eah of whih fatorizes into a produtwhere one fator depends on q but not on q0, whereas the other fator depends on q0 butnot on q. Hene one obtainsLkii(t; t) / Z 1pmin(k) dp Z k0max(p)k0min(p) k0dk0 Xi Pi(q�; q+)Qi(q0�; q0+) ; (C.20)where we have dropped the dependene of the fators Pi andQi on k, p and k0 for simpliity.Beause of the fatorization, we an now perform the integrations on q and q0 separately.Naively, one may think that in the zero-width limit �=M ! 0 the osine terms anbe set to one. But for large time t, they osillate fast, whih leads to a di�erent result.Consider the following ontribution to the integral (C.19),P(q�; q+) = � Z q+q� dq F (q)(!p � k � q)2 + �24 os((!p � k � q)t) ; (C.21)where F (q) has no poles. Changing the integration variable from q to z = 2
1=�, with
1 = !p � k � q, one obtainsP(zmin; zmax) = i2� Z zmaxzmin dz Fi�!p � k � �2 z�� � 1z � i � 1z + 1��eiz �2 t + e�iz �2 t� ; (C.22)where zmin = 2
min1 =� and zmax = 2
max1 =�, with zmin < 0 and zmax > 0. In the limit�=M ! 0 with � = �t �xed, the integration limits approah zmin ! �1 and zmax ! +1,respetively. The integral is now easily evaluated by means of the residue theorem leadingto the result�P(zmin; zmax)����!0 = ���F �!p � k � i�2� e� �2 + F �!p � k + i�2� e� �2� �����!051



= �2�F (!p � k)e� �2 : (C.23)In Eq. (C.19) the term P appears together with a seond term,P 0(q�; q+) = Z q+q� dq F (q)(!p � k � q)2 + �24 e� �2 ; (C.24)whih an be evaluated in the same way as P in the zero-width limit, yielding�P 0(zmin; zmax)����!0 = ��F �!p � k � i�2� + F �!p � k + i�2�� �����!0 e� �2= 2�F (!p � k) e� �2 : (C.25)Clearly, the two terms P and P 0 add up to zero. The same result is obtained for the seondfator Q after the q0 integration, as well as for the produt of two sinus funtions.We onlude that the integral (C.16) does not ontain a ontribution O(1=�). Hene,the ratio of Kadano�-Baym result and Boltzmann result, Lk(t; t)=fL(t; k), approahes zeroin the limit �=M ! 0, � = �t �xed.D Equilibrium ontributionIn Setion 5 we argued that the equilibrium part of the heavy neutrino propagator doesnot ontribute to the lepton asymmetry. In this setion we verify this laim.The heavy neutrino propagator has an equilibrium and a nonequilibrium part,Gp(t1; t3) = Geqp (t1 � t3) + ~Gp(t1; t3) ; (D.1)whose main di�erene lies in the time dependene,Geqp (t1 � t3) / e��2 jt1�t3j ; ~Gp(t1; t3) / e��2 (t1+t3) : (D.2)The omputation of the lepton asymmetry in Setion 5 was based on the nonequilbriumpart, and it involved the time integral I (f. Eq. (5.41)). Beause of the di�erent timedependene given in Eq. (D.2), the ontribution of the equilibrium part to the asymmetryinvolves instead the integralJ (t) = Z t0 dt1 Z t0 dt2 Z t20 dt3 e�i
1t1+i
2t2+i
3t3e��2 jt1�t3j ; (D.3)whih di�ers from I only with respet to the damping fator. 
1, 
2 and 
3 are di�erentlinear ombinations of energies, whih satisfy 
1 = 
2 + 
3.In order to evaluate the integral J , we have to split the time integration,J (t) = Z t0 dt1�Z t10 dt2 Z t20 dt3 e�i
1t1+i
2t2+i
3t3e��2 (t1�t3)52



+Z tt1 dt2�Z t10 dt3 e�i
1t1+i
2t2+i
3t3e��2 (t1�t3)+ Z t2t1 dt3 e�i
1t1+i
2t2+i
3t3e��2 (t3�t1)�� : (D.4)Note the hange of sign in the damping fator of the last two terms. As in Setion 5, itis onvenient to use the variables �
1 = 
1 � i2� and �
3 = 
3 � i2�, for whih the integralsimpli�es toJ (t) = Z t0 dt1�Z t10 dt2 Z t20 dt3 e�i�
1t1+i
2t2+i�
3t3 (D.5)+Z tt1 dt2�Z t10 dt3e�i�
1t1+i
2t2+i�
3t3 + Z t2t1 dt3 e�i�
�1t1+i
2t2+i�
�3t3�� :Performing the t3 integral and using the relation 
1 = 
2 + 
3, we obtainJ (t) = Z t0 dt1�Z t10 dt2 e�i�
1t1 1i�
3 �ei�
1t2 � ei
2t2�+Z tt1 dt2�e�i�
1t1 1i�
3 �ei�
3t1 � 1� ei
2t2+ e�i�
�1t1 1i�
�3 �ei�
�1t2 � ei�
�3t1ei
2t2��� : (D.6)It is now straightforward to arry out the integrations over t1 and t2, whih leads toJ (t) + J �(t) = 2(
21 + �24 )(
23 + �24 )(
1 � 
3) � (D.7)�� (
1 + 
3)�os((
1 � 
3)t)� 1 + (os(
1t)� os(
3t))e��t2 �+ �2
1
3 � �22 ��sin((
1 � 
3)t)� (sin(
1t)� sin(
3t))e��t2 � � :Note that the expression has no pole at 
1 = 
3.As in appendix C we now have to evaluate the momentum integralS = Z 
max1
min1 d
1 Z 
max3
min3 d
3 (J + J �) ; (D.8)with the integration limits given below Eq. (C.10). To perform the zero-width limit, weagain introdue the variables z1;3 = 2
1;3=�. For �! 0, the limits of integration zmin1;3 andzmax1;3 approah �1 and +1, respetively. The z3-integration an now be arried out bymeans of the residue theorem. The integrand of the remaining z1-integration has a doublepole. The integration an again be performed using the residue theorem, and we �nd that�S approahes zero in the limit �=M ! 0, � = �t �xed. Hene, the equilibrium part ofthe heavy neutrino propagator does not ontribute at leading order in �=M .53
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