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AbstratIn this ontribution a path integral approah for the quantum motion on three-dimensional spaesaording to Koenigs, for short\Koenigs-Spaes", is disussed. Their onstrution is simple:One takes a Hamiltonian from three-dimensional at spae and divides it by a three-dimensionalsuperintegrable potential. Suh superintegrable potentials will be the isotropi singular osillator,the Holt-potential, the Coulomb potential, or two entrifugal potentials, respetively. In all asesa non-trivial spae of non-onstant urvature is generated. In order to obtain a proper quantumtheory a urvature term has to be inorporated into the quantum Hamiltonian. For possiblebound-state solutions we �nd equations up to twelfth order in the energy E.
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1 IntrodutionIn this ontribution I disuss the quantum motion on three-dimensional spaes of non-onstanturvature aording to Koenigs [24℄, whih I will all for short \Koenigs-spaes". The onstru-tion of suh a spae is simple. One takes a three-dimensional at Hamiltonian, H, inludingsome potential V , and divides H by a funtion f(x; y; z) ((x; y; z) 2 IR3) suh that f takes onthe form of a metri: HKoenigs = Hf(x; y; z) : (1.1)Suh a onstrution leads to a very rih struture, and attempts to lassify suh systems are e.g.due to Kalnins et al. [18, 19℄ and Daskaloyannis and Ypsilantis [2℄.Simpler examples of suh spaes are the two- and three-dimensional Darboux spaes, whereone hooses the funtion f in suh a way that it depends only on one variable [10, 20℄, respetivelytheir three-dimensional analogue [11℄. Another hoie onsists whether one hooses for f somearbitrary potential (or some superintegrable potential) and taking into aount that the Poissonbraket struture of the observables makes up a reasonable simple algebra [2, 6, 20℄.In previous publiations we have analyzed the quantum motion on Darboux spaes by meansof the path integral [10, 14℄ and on two-dimensional Koenigs-spaes [12℄. The path integralapproah [5, 16, 22, 26℄ served as a powerful tool to alulate the propagator, respetively theGreen funtion of the quantum motion in suh spaes. In the present ontribution I applythe path integral tehnique to �ve kinds of Koenigs-spaes, where a spei� three-dimensionalsuperintegrable potential [13℄ for the funtion f is hosen. They are the three-dimensionalTable 1: Coordinates in three-dimensional Eulidean spaeCoordinate System CoordinatesI. Cartesian x = x0, y = y0, z = z0II. Cirular Polar x = % os', y = % sin', z = z0III. Cirular Ellipti x = d osh� os �, y = d sinh� sin �,z = z0IV. Cirular Paraboli x = 12 (�2 � �2), y = ��, z = z0V. Sphero-Conial x = rsn(�; k)dn(�; k0), y = rn(�; k)n(�; k0)z = rdn(�; k)sn(�; k0)VI. Spherial x = r sin# os', y = r sin# sin', z = r os#VII. Paraboli x = �� os', y = �� sin', z = 12 (�2 � �2)VIII. Prolate Spheroidal x = d sinh� sin � os', y = d sinh� sin � sin'z = d osh� os �IX. Oblate Spheroidal x = d osh� sin � sin', y = d osh� sin � sin'z = d sinh� os �X. Ellipsoidal x = k2pa2 � 2 sn�sn�sny = �(k2=k0)pa2 � 2 n�n�nz = (i=k0)pa2 � 2 dn�dn�dnXI. Paraboloidal x = 2d osh� os� sinh , y = 2d sinh� sin� osh z = d(osh2 �+ os2 � � osh2 )1



Table 2: The three-dimensional maximally super-integrable potentialsPotential V (x; y; z), x = (x; y; z) 2 IR3 Coordinate SystemV1 = M2 !2x2 + ~22m k21 � 14x2 + k22 � 14y2 + k23 � 14z2 ! CartesianSpherialCirular PolarCirular ElliptiConialOblate SpheroidalProlate SpheroidalEllipsoidalV2 = M2 !2(x2 + y2 + 4z2) + ~22m k21 � 14x2 + k22 � 14y2 ! CartesianParaboliCirular PolarCirular ElliptiV3 = � �px2 + y2 + z2 + ~22m k21 � 14x2 + k22 � 14y2 ! ConialSpherialParaboliProlate Spheroidal IIV4 = ~22m� k21xy2px2 + y2 + k22 � 14y2 + k23 � 14z2 ! SpherialCirular Ellipti IICirular ParaboliCirular PolarV5 = ~22m� k21xy2px2 + y2 + k22 � 14y2 !� k3z Cirular PolarCirular Ellipti IICirular ParaboliParaboliisotropi singular osillator (Setion II), the Holt-potential (setion III), the three-dimensionalCoulomb-potential (Setion IV), and two entrifugal potentials (Setion V and VI). The lastSetion is devoted to a summary and a disussion of the ahieved results.In Table 1 I have displayed the 11 oordinate systems in IR3. In a previous artile [13℄we have disussed in muh detail the minimally and maximally superintegrable systems in IR3.There are �ve maximally superintegrable and seven minimally superintegrable system. Themaximally superintegrable potentials have the property that these systems have �ve funtionally2



independent integrals of motion (lassial mehanis), respetively �ve observables (quantummehanis). The minimally superintegrable instead have only four funtionally independentintegrals of motion, respetively four observables. In [13℄ we have alled these superintegrablesystems \Smorodinsky-Winternitz potentials". In Table 2 I have indiated the oordinate systemsin whih the �ve maximally superintegrable systems in IR3 are separable. The ases where anexpliit path integration is possible are underlined.2 Koenigs-Spae K I with Isotropi Singular OsillatorWe start with the �rst example, where we take for the metri termsds2 = fI(x; y; z)(dx2 + dy2 + dz2) ; (2.1)fI(x; y; z) = �(x2 + y2 + z2) + �xx2 + �yy2 + �zz2 + Æ ; (2.2)and �; �x; �y; �z ; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR3 with theisotropi singular osillator as the superintegrable potential have the form:L = m2 �( _x2 + _y2 + _z2)� !2(x2 + y2 + z2)�� ~22m�k2x + 12x2 + k2y + 12y2 + k2z + 12z2 � ; (2.3)H = p2x + p2y + p2z2m + m2 !2(x2 + y2 + z2) + ~22m�k2x + 12x2 + k2y + 12y2 + k2z + 12z2 � : (2.4)(The spei� hoie of the onstant +12 has pratial reasons whih will beome lear in thesequel.) Counting onstants, there are nine independent onstants: �; �x;y;z ; Æ, and !; kx;y;z. Atenth onstant an be added by adding a further onstant ~Æ into the potential of the Hamiltonian.It will be omitted in the following. The �rst Koenigs-spae K I is onstruted by onsideringHK I = HfI(x; y; z) ; (2.5)hene for the Lagrangian (with potential)LK I = m2 fI(x; y; z)( _x2 + _y2 + _z2)� 1fI(x; y; z)"m2 !2(x2 + y2 + z2) + ~22m  k2x + 12x2 + k2y + 12y2 !+ k2z + 12z2 # : (2.6)Setting the potential in square-brakets equal to zero yields the Lagrangian for the free motion inK I. With this information we an set up the path integral in K I inluding a potential. Beausethe spae is three-dimensional, the quantum potential / ~2 does not have the simple form as inthe two-dimensional ase [12℄. This is due to the fat that two-dimensional spaes are onformallyat, and has the onsequene that in the path integral the additional quantum potential / ~2an be set to zero by hoosing an appropriate lattie. This lattie orresponds to the produtform path integral, i.e. we have for diagonal metri gab = f2aÆab the quantum potential�V = ~2(D � 2)8m Xa (D � 4)f2a;a + 2fafa;aaf4a : (2.7)3



Table 3: Some speial ases for the spae K IMetri Spae �VfI(x; y; z) Koenigs spae K I �V1 + 3~28m� 1h2x + 1h2y + 1h2z�bu2 � au2 Three-dimensional Darboux Spae D II �V1 + 3~28m(bu2 � a)1u2 Three-dimensional Hyperboloid 3~28m1 IR3 0Obviously, �V = 0 for D = 2. For our purposes we rewrite the metri term in the following way:fI(x; y; z) = �x2(x2 + y2 + z2) + �x + x2�yy2 + x2�zz2 + Æx2x2 � h2xx2 ; (2.8)and similarly in terms of hy and hz . This gives for the x = x1-part of �V�Vx = �V1;x +�V2;x (2.9)�V1;x = ~28m 2x2hxhx;xx � 2xhxhx;x � x2hxh2x;xh4x ; �V2;x = 3~28mh2x : (2.10)Repeating the proedure for the y = x2- and z = x3-oordinate we get�V = �V1 +�V2 = 3Xi=1�V1;xi +�V2 (2.11)�V2 = 3~28m� 1h2x + 1h2y + 1h2z� = 3~28mfI � 1x2 + 1y2 + 1z2� : (2.12)Note that if we hoose for h � 1 that there is only one summand in the last equation with�V2 = �V = 3~2=8m (this is the ase for the three-dimensional hyperboloid).In Table 3 I have displayed some speial ases of K I. From [10℄ we know that the free motionin the three-dimensional Darboux spae D II is separable in all eleven oordinate systems listedin Table 1.We now repeat our reasoning from [11℄: The part �V1 disturbs a proper quantum treatmentof the three-dimensional Koenigs spae, and we set up our quantum theory with an e�etiveLagrangian Le�K I = LK I +�V1 : (2.13)Atually, our e�etive Lagrangian orresponds to the subtration of a urvature term in H [21℄.The anonial momentum operators are onstruted bypxi = ~i � ��xi + �i2 � ; �i = ��xi lnpg ; (2.14)4



with x1 = x; x2 = y; ; x3 = z and g = det(gab), (gab) the metri tensor. The Hamiltonian thenhas the formHe�K I = � ~22m�LB + 1fI(x; y; z)"m2 !2(x2 + y2 + z2)+ ~22m  k2x + 12x2 + k2y + 12y2 + k2z + 12z2 !#��V1 (2.15)= 12m 1pfI (p2x + p2y + p2z) 1pfI + 1fI "m2 !2(x2 + y2 + z2)+ ~22m  k2x + 12x2 + k2y + 12y2 + k2z + 12z2 !#+�V2 : (2.16)For the path integral in the produt lattie de�nition we obtain by means of a spae-time trans-formation [16, 22℄ (�V2 inserted)K(K I)(x00; x0; y00; y0; z0; z00;T ) = x(t00)=x00Zx(t0)=x0 Dx(t) y(t00)=y00Zy(t0)=y0 Dy(t) z(t00)=z00Zz(t0)=z0 Dz(t)fI(x; y; z)� exp i~ Z t00t0 (m2 fI(x; y; z)( _x2 + _y2 + _z2)� 1fI(x; y; z)"m2 !2(x2 + y2 + z2) + ~22m k2x � 14x2 + k2y � 14y2 + k2z � 14z2 !#)dt! (2.17)G(K I)(x00; x0; y00; y0; z0; z00;E) = i~(f 0If 00I )� 14 Z 10 ds00K(K I)(x00; x0; y00; y0; z0; z00; s00)eiÆ�Es00=~ ; (2.18)(note the hange of onstant to �14) with the time-transformed path integral K(K I)(s00) given by(e!2 = !2 � 2�E=m)K(K I)(x00; x0; y00; y0; z0; z00; s00) = x(s00)=x00Zx(0)=x0 Dx(s) y(s00)=y00Zy(0)=y0 Dy(s) z(s00)=z00Zz(0)=z0 Dz(s)� exp( i~ Z s000 "m2 �( _x2 + _y2 + _z2)� e!2(x2 + y2 + z2)�� ~22m k2x � 2m�xE=~2 � 14x2 + k2y � 2m�yE=~2 � 14y2 + k2z � 2m�zE=~2 � 14z2 !#ds00) :(2.19)The path integrals in the variables x; y; z are path integrals for the radial harmoni osillator,however with energy-dependent oeÆients. We also see that the only e�et of the onstant Æonsists of an additional phase in s00-integral whih has onsequenes for the energy spetrum.2.1 Koenigs-Spae K I with Isotropi Singular Osillator in Polar CoordinatesWe swith in the usual way to three-dimensional polar oordinates (r; #; '), and abbreviate~k2x = k2x � 2m�xE=~2, ~k2y = k2y � 2m�yE=~2 and ~k2z = k2y � 2m�zE=~2, respetively. In the5



variables #; ' we obtain path integrals for the P�oshl{Potential, and in the variable r a radialpath integral. The suessive path integrations therefore yieldK(K I)(r00; r0; #00; #00; '00; '0; s00) =Xn' �(~ky;~kx)n' ('00)�(~ky;~kx)n' ('0)Xn� �(~kz ;�1)n� (�00)�(~kz;�1)n� (�0)�me!pr0r00i~ sin e!s00 exp "� me!2i~ (r02 + r002) ot e!s00#I�2 me!r0r00i~ sin e!s00! : (2.20)Here �1 = 2n' + ~kx + ~ky +1, �2 = 2n#+ ~kz + �1 +1, and the �(~ky ;~kx)n' (') are the wave-funtionsfor the P�oshl-Teller potential, whih are given by [1, 3, 7, 23℄V (PT )(x) = ~22m��2 � 14sin2 x + �2 � 14os2 x � (2.21)�(�;�)n (x) = �2(� + � + 2l + 1) l!�(�+ � + l + 1)�(�+ l + 1)�(� + l + 1)�1=2�(sinx)�+1=2(os x)�+1=2P (�;�)n (os 2x) : (2.22)The P (�;�)n (z) are Gegenbauer polynomials [8℄ and I�(z) is the modi�ed Bessel funtion [8℄.Performing the s00-integration we obtain the Green funtion G(K I)(E) [8, 16℄:G(K I)(r00; r0; #00; #00; '00; '0;E)= (f 0If 00I )� 14 Xn' �(~ky ;~kx)n' ('00)�(~ky;~kx)n' ('0)Xn� �(~kz;�1)n� (�00)�(~kz ;�1)n� (�0)��[12 (1 + �2 � Æ � E=~e!)℄~e!pr0r00 �(1 + �) WÆ�E=2e!;�2=2�me!~ r2>�MÆ�E=2e!;�2=2�me!~ r2<� : (2.23)M�;�(z) and W�;�(z) are Whittaker-funtions [8℄, and r<; r> is the smaller/larger of r0; r00. Thepoles of the �-funtion give the energy-levels of the bound states:12 (1 + �2 � Æ � E=~e!) = �nr ; (2.24)whih is equivalent to (N = nr + n# + n' = 0; 1; 2; : : :):Æ � E = ~e!(2N + ~kx + ~ky + ~kz + 3) (2.25)= ~r!2 � 2�m E0�2N +sk2x � 2m�x~2 E +sk2y � 2m�y~2 E +sk2z � 2m�z~2 E + 31A :In general, this quantization ondition is an equation of twelfth order in E. Suh an equationannot be solved generally, however, we am study some speial ases:1. The ase k1 = k2 = K3 = ! = 0:EN = �2�~2m (2N + 3)2(Æ + 2p�� )2 : (2.26)For � < 0 this gives an in�nite well-de�ned bound state spetrum. For � > 0 the spe-trum is negative in�nite. Usually this means that a partile will fall into the enter and6



the wave-funtions are not well de�ned. However, let us reall that the spetrum on theSU(1,1) hyperboloid gives a positive ontinuous spetrum and a negative in�nite disretespetrum. Hene, unphysial for real partiles suh a spetrum an be given a physialmeaning nevertheless: One has to re-interprete the motion on the hyperboloid (spae withurvature) by dimensional redution to a potential problem in at spae: In the ase of theSU(1,1) hyperboloid the modi�ed P�oshl{Teller potential emerges and the negative in�nitespetrum is gets a ut yielding only �nite number of well-de�ned bound-states [1℄.2. The ase k1 = k2 = k3 = � = 0:EN = ��!22Æ2  1�s1� 2Æ~m�! (2N + 3)!2 : (2.27)This gives for � 6= 0 semi-bound states with positive real part (2.28).3. The ase k1 = k2 = k3 = � = � = 0; Æ > 0:EN = ~!Æ (2N + 3) : (2.28)4. The ase �1 = �2 = �3 = � = 0; Æ > 0:EN = ~!Æ (2N + k1 + k2 + k3 + 3) ; (2.29)and we reover the at spae limit.If we know the bound state energy EN , we an determine the wave-funtions aording to	(K I)N (r; �; ') = NNf�1=4I �(~ky;~kx)n' (')�(~kz ;�1)n� (�)�(RHO;�)nr (r) ; (2.30)with the normalization onstant NN determined by evaluating the residuum in the Green funtion(2.23), and the �(RHO;�)N (r) are the wave-funtions of the radial harmoni osillator [16℄:	(RHO;�)n (r) = s2m~ n!�(n+ �+ 1) r�m!~ r��=2 exp�� m!2~ r2�L(�)n �m!~ r2� : (2.31)We an reover the at spae limit with � = �xi = 0 with the orret spetrum EN = ~!(N +kx + ky + kz + 3)=Æ.2.2 Koenigs-Spae K I with Isotropi Singular Osillator in CartesianCoordinatesInstead of swithing to polar oordinates we keep the Cartesian system and obtainK(K I)(x00; x0; y00; y0; z0; z00; s00)= 3Yi=1 me!qx0ix00ii~ sin e!s00 exp "� me!2i~ (x0i2 + x00i 2) ot e!s00#I~kxi me!x0ix00ii~ sin e!s00!=Xnx �(RHO;~kx)nx (x0)�(RHO;~kx)nx (x00)Xny �(RHO;~ky)ny (y0)�(RHO;~ky)ny (y00)�Xnz �(RHO;~kz)nz (z0)�(RHO;~kz)nz (z00) exp� i~�~e!(2N + ~kx + ~ky + ~kz + 3��s00) : (2.32)7



Performing the s00-integration yields for the energy-spetrum the same result as before. Thewave-funtions are given by	(K I)N (x; y; z) = NNf�1=4I �(RHO;~kx)nx (x)�(RHO;~ky)nx (y)�(RHO;~kz)nz (z) ; (2.33)with the normalization onstant NN determined by evaluating the residuum in the Green fun-tion for the energy-levels determined by (2.25). Note that all oeÆients ~kx; ~ky; ~kz are energy-dependent.As it is well-known [13℄, the singular isotropi is separable also in irular polar, irularellipti, onial, oblate and prolate spheroidal and ellipsoidal oordinates, from whih only theirular polar oordinate system (%; '; z) allows an expliit solution whih is very easily obtained:The prinipal di�erene just onsists of replaing the produt of the two radial osillator wave-funtions in x and y by a produt of a P�oshl{Teller wave-funtion in ' and radial osillator wave-funtion in % [13℄. The energy-spetrum, of ourse, remains the same and is again determinedby (2.25). We omit further details beause this ase does not give anything new.2.3 Koenigs-Spae K I with Zero ConstantsWe now onsider the Koenigs spae K I with onstants set to zero, denoted by K(0)I . This givesfor the orresponding spae-time transformed path integral (2.19)K(K(0)I )(x00; x0; y00; y0; z0; z00; s00) = x(s00)=x00Zx(0)=x0 Dx(s) y(s00)=y00Zy(0)=y0 Dy(s) z(s00)=z00Zz(0)=z0 Dz(s)� exp( i~ Z s000 "m2 ( _x2 + _y2 + _z2) + �E(x2 + y2 + z2)+ ~22m 2m�xE=~2 + 3=4x2 + 2m�yE=~2 + 3=4y2 + 2m�zE=~2 + 3=4z2 !#ds00) : (2.34)Obviously, this path integral an be separated in all the oordinate systems in whih the singularisotropi osillator is separable.Let us investigate the ase for the Cartesian oordinates. We onsider the quantizationondition (2.25). We have to set ! = kx = ky = kz = 0� 6= 0, whih yields:Æ �EN = ~r�2�m EN  2N + 3 + ~�r�2m~2 EN ! ; (2.35)with ~� = p�x +p�y +p�z. This quantization ondition is a quadrati equation in the energyE and has the solutionEN = � 8�2 ~�2m(Æ2 + 4~�2 (2N + 3)20�1�vuut1� ~2(Æ2 + 4~�2)4�~�2 1A2 : (2.36)As an easy speial ase we onsider ~� = 0, thenEN = 2�~2mÆ2 (2N + 3)2 : (2.37)8



Therefore we obtain an in�nite disrete spetrum for Æ 6= 0. The spetrum an either be positive(� > 0), or negative (� < 0). Suh in�nite negative energy spetra are well-known for spaeswith inde�nite metri, for instane for the SU(1; 1)-manifold [1, 7, 23℄. Suh spetra an be usedby dimensional redution for potential problems in at spae yielding �nite negative disretespetra. For the ase of the in�nite positive spetrum we are done with the orrespondingwave-funtions:	(K(0)I )N (nx; ny; nz) = NNf�1=4I �(RHO;~kx)nx (x)�(RHO;~ky)nx (y)�(RHO;~kz)nz (z) ; (2.38)with the normalization onstant NN determined by evaluating the residuum in the Green funtionfor the energy-levels (2.35). Note that all oeÆients ~kx; ~ky; ~kz are energy-dependent. We omitthe path integral representations in the other oordinate systems.3 Koenigs-Spae K II with Holt-PotentialNext we onsider for the metri termsds2 = fII(x; y; z)(dx2 + dy2 + dz2) ; (3.1)fII(x; y; z) = �(x2 + y2 + 4z2) + �xx2 + �yxy + Æ ; (3.2)and �; �x; �y; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR3 with the Holt-potential as the superintegrable potential have the form:L = m2 �( _x2 + _y2 + _z2)� !2(x2 + y2 + 4z2)�� ~22m�k2x + 12x2 + k2y + 12y2 � ; (3.3)H = p2x + p2y + p2z2m + m2 !2(x2 + y2 + 4z2) + ~22m�k2x + 12x2 + k2y + 12y2 � : (3.4)Counting onstants, there are seven independent onstants: �; �x; �y; Æ, and !; kx; ky. An eighthonstant an be added by adding a further onstant ~Æ into the potential of the Hamiltonian, whihis omitted. The seond Koenigs-spae K II with potential is now onstruted by onsideringHK II = HfII(x; y; z) : (3.5)From the disussion in the Setion II it is obvious how to onstrut the path integral on K II.Again, we introdue the funtions h similar as in (2.8), but, there is now a new feature. Fromthe onstrution of �V2 aording to (2.8) we obtain also a z-dependent term / 3~2=8mh2z . Forthe three-dimensional Holt-potential there is, however, no suh term / 1=z2. In fat, the samesituation ours also for the Coulomb potential, see the next Setion. Suh a term / 3~2=8mh2zwould not spoil the separability in the Cartesian oordinate system and the two irular systems(polar and paraboli), but it spoils the separability in paraboli oordinates.Similarly, as in the previous Setion we make the hoie of symmetry preservation and addthe ritial term / 3~2=8mh2z into the Lagrangian suh that it is aneled after quantization, i.e.Le�K II = LK II +�V1 +�V2(z) : (3.6)9



Table 4: Some speial ases for the spae K IIMetri Spae �VfII(x; y; z) Koenigs spae K II �V1 + 3~28m� 1h2x + 1h2y + 1h2z�bu2 � au2 Three-dimensional Darboux Spae D II �V1 + 3~28m(bu2 � a)1u2 Three-dimensional Hyperboloid 3~28m1 IR3 0In Table 4 I have listed some speial ases of the Koenigs spae K II. It is in fat the same,up to saling, as for K I.We proeed straightforward to the time-transformed path integral K(K II)(s00) whih has theform K(K II)(x00; x0; y00; y0; z0; z0; s00) = x(s00)=x00Zx(0)=x0 Dx(s) y(s00)=y00Zy(0)=y0 Dy(s) z(s00)=z00Zz(0)=z0 Dz(s)� exp( i~ Z s000 "m2 �( _x2 + _y2 + _z2)� e!2(x2 + y2 + 4z2)�� ~22m�~k2x � 14x2 + ~k2y � 14y2 �#ds00) : (3.7)Again, e!2 = !2 � 2�E=m, ~k2x1;2 = k2x1;2 � 2m�x1;2E=~2. We have in the variables x; y a singularosillator with frequeny e!, and in the variable z an osillator with frequeny 2e!.Form [13℄ we know that the Holt-potential is separable in four oordinate systems: Cartesian,paraboli irular polar and irular ellipti oordinates, respetively. Only in Cartesian andirular polar oordinates a losed solution is possible. In Cartesian oordinates we take therespetive solution as expanded into the wave-funtions and getK(K II)(x00; x0; y00; y0; z0; z0; s00)=Xnx 	(RHO;~kx)nx (x00)	(RHO;~kx)�nx (x0)Xny 	(RHO;~ky)ny (x00)	(RHO;~ky)�ny (y0)Xnz 	(HO)nz (z00)	(HO)�nz (z0)�e�is00e!(2nx+2ny+nz+5=2)+~kx+~ky) : (3.8)Here, the 	(HO)nz (z) denote the wave-funtions of the harmoni osillator with its Hermite poly-nomials. Performing the s00-integration similarly as in (2.18) we get the quantization ondition(N = 2(nx + ny) + nz)Æ �EN = ~�!2 � 2�m EN�1=20�N +sk2x � 2m�x~2 EN +sk2y � 2m�y~2 EN + 521A : (3.9)10



In general, this is an equation of eighth order in EN . The solution in terms of the wave-funtionsthen has the form	(K II)N (x; y; z) = NNf�1=4II 	(RHO;~kx)nx (x)	(RHO;~ky)ny (y)	(HO)nz (z) ; (3.10)and the normalization onstant NN is determined by the residuum of the orresponding Greenfuntion at the energy EN from (3.9). The orret at spae limit with � = �x = �y = 0 is easilyreovered with spetrum EN = ~!(2N + 52 + kx+ ky), and similarly other speial ases as in theprevious Setion.The ase of the irular polar oordinate system is very easily obtained. The prinipaldi�erene just onsists of replaing the produt of the two radial osillator wave-funtions in xand y by a produt of a P�oshl{Teller wave-funtion in ' and radial osillator wave-funtion in% [13℄. The energy-spetrum, of ourse, remains the same and is again determined by (3.9).Similarly as in K I, we an also onsider the ase of all onstants set to zero in the spaeK II, denoted by K(0)II . The alulations are very similar to the previous setion, yielding thequantization ondition ( ~� = p�x +p�y)EN (Æ2 + 4~�2)� 2�~2m (N + 52)2 = �4�~�m (N + 52)p�2mEN : (3.11)As an easy speial ase we onsider ~� = 0, thenEN = 2�~2mÆ2 (N + 52)2 ; (3.12)whih yields for Æ 6= 0 either a positive disrete spetrum (� > 0) or negative disrete spetrum(� < 0), these ase have been already disussed in the previous setion.4 Koenigs-Spae K III with Coulomb-PotentialIn the next example we onsider a metri whih orresponds to the three-dimensional Coulombpotential (r2 = x2 + y2 + z2) ds2 = fIII(x; y; z)(dx2 + dy2 + dz2) ; (4.1)fIII(x; y; z) = � �1px2 + y2 + z2 + �x2 + y2 + Æ (4.2)and �1; �; ; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR3 with the Coulombpotential as the superintegrable potential have the form:L = m2 ( _x2 + _y2 + _z2) + �2r � ~22mr2 sin2 # k21 � 14os2 ' + k22 � 14sin2 ' ! (4.3)H = p2x + p2y + p2z2m � �2r + ~22mr2 sin2 # k21 � 14os2 ' + k22 � 14sin2 ' ! : (4.4)Counting onstants, there are seven independent onstants: �1; �; ; Æ, and �2; k1; k2. An eightonstants an be added by adding a further onstant ~Æ into the potential of the Hamiltonian,whih is again omitted. The third Koenigs-spae K III is onstruted by onsideringHK III = HfIII(x; y; z) : (4.5)11



Table 5: Some speial ases for the spae K IIIMetri Spae �VfIII(x; y; z) Koenigs spae K III �V1 + 3~28m� 1h2x + 1h2y + 1h2z��1r Speial Koenigs spae K�1III �V1 + 3~28m� 1h2x + 1h2y + 1h2z�bu2 � au2 Three-dimensional Darboux Spae D II �V1 + 3~28m(bu2 � a)1u2 Three-dimensional Hyperboloid 3~28m1 IR3 0In Table 5 I have displayed some speial ases for K III. Again, the speial ases are verysimilar as in the two previous ases, exept for only �1 6= 0, and �1; Æ 6= 0.We proeed to the time-transformed path integral K(K III)(s00) whih has the formK(K III)(r00; r0; #00; #0; '00; '0; s00) = r(s00)=r00Zr(0)=r0 Dr(s) #(s00)=#00Z#(0)=#0 D#(s) '(s00)='00Z'(0)='0 D'(s)r2 sin#� exp( i~ Z s000 "m2 � _r2+r2( _#2+sin2 # _'2)�+ ~�r � ~22mr2 sin2 # ~k21� 14os2 '+~k22� 14sin2 '!#ds00) : (4.6)Here, ~k21 = k21 � 2m�E=~2, ~k22 = k22 � 2mE=~2, ~� = �2 � �1E. This path integral for theCoulomb potential has been disussed extensively in literature and the solution in terms of theGreen funtion has been obtained by many authors, e.g.[4, 16, 9, 17, 27℄. We obtain for the Greenfuntion in polar oordinates (�1 = 2n' � ~k1 � ~k2 + 1, �2 = l + �1 + 12 , � = ~�p�m=2Æ �E=~)G(K III)(r00; r0; #00; #0; '00; '0;E) = (f 0IIIf 00III)� 14 1Xn'=0�(�~k2;�~k1)n ('00)�(�~k2;�~k1)n ('0)� 1Xl=0(l + �1 + 12)�(l + �1 + 1)l! P��1�1+l(os#00)P��1�1+l(os#0)� 1r0r00 1~r� m2E �(12 + �2 � �)�(2�2 + 1) W�;�2�p�8mE r>~ �M�;�2�p�8mE r<~ � : (4.7)Bound states are determined by the poles of the Green funtion, respetively by the poles of the�-funtion, i.e. 12 + �2 � � = �nr ; (4.8)12



or more expliitly2 + 2n' + l + nr +sk21 � 2m�EN~2 +sk22 � 2mEN~2 � �2 � �1EN~ r� m2Æ �EN = 0 : (4.9)This is again an equation of twelfth order in the energy E.We onsider some speial ases of (4.9):1. For � =  = �1 = 0 we obtain the usual Coulomb potential energy spetrum (N =2 + 2n� + l + nr): EN = � m�222Æ~2(N + k1 + k2)2 : (4.10)2. For k1 = k2 = �2 = 0 we obtain the speial spae K�1III ( ~� = p� +p):EN = � ~2N22m( ~� + 12�1=pÆ)2 : (4.11)3. For k1 = k2 = 0 we obtain the speial spae K�1III with an additional Coulomb potential( ~N2 = N2 + 2m�2�̂=(pÆ~2), �̂ = ~� + �1=(2pÆ)):EN = � ~2 ~N24m�̂2 0�1�s1� 4m2�22�̂2Æ~4 ~N4 1A : (4.12)Note that for the upper-sign in the square-root term we get well-de�ned bound states forN !1: EN = � m�222Æ~2 ~N2 ; (4.13)i.e. a Coulomb spetrum. However, note the ompliated involvement of the variousonstants, in partiular the shift N2 ! ~N2.In either ase the wave-funtions are given by	nr;l;nphi(r; �; �) = f�1=4III �(�~k2;�~k1)n (')s(l + �1 + 12 )�(l + �1 + 1)l! P��1�1+l(os#00)�NN 2(n+ �1 + 12)2 � 2l!a3(l + �2 + 12 )�(l + 2�2 + 1)�1=2� 2ra(l + �2 + 12)��2� exp�� ra(l + �2 + 12)�L(2�2)l � 2ra(l + �2 + 12 )� ; (4.14)provided the spetrum is bounded from below and the additional normalization onstant NN isdetermined by the poles of the Green funtion (4.7) at the energy-levels determined by (4.9).As it is well-known, the Coulomb potential is also separable in onial, paraboli and and pro-late spheroidal oordinates [13℄. In onial and prolate spheroidal oordinates no losed solutionsin terms of well-known higher transendental funtions an be found. In paraboli oordinates,we have the same dependene in the variable ' as for polar oordinates, and in the variables� and � we get for the disrete spetrum a produt of Laguerre polynomials and exponentials,13



Table 6: Some speial ases for the spae K IVMetri Spae �VfIV (x; y; z) Koenigs spae K IV �V1 + 3~28m� 1h2x + 1h2y + 1h2z�bu2 � au2 Three-dimensional Darboux Spae D II �V1 + 3~28m(bu2 � a)1u2 Three-dimensional Hyperboloid 3~28m1 IR3 0atually wave-funtions very similar as in the polar variable r. The disrete spetrum, of ourse,remains the same. In [13℄ this has been disussed in great detail and will not be repeated here.The ontinuous spetrum is usually given in terms of M -Whittaker funtions. In the presentase, this is quite an involved problem due to the ompliated struture of the indies. Bothindies � and �2 are omplex valued. This, in general leads to an energy spetrum Ep >  withsome onstant  > 0. For instane, in the ase of the three-dimensional hyperboloid the onstantis given by  = ~2=2m, whereas in the ase of the Coulomb potential in at spae  = 0.5 Koenigs-Spae K IV with Centrifugal Potential IIn the next example we onsider a metri whih orresponds to the three-dimensional entrifugalpotential ds2 = fIV (x; y; z)(dx2 + dy2 + dz2) ; (5.1)fIV (x; y) = ~22m  �xy2px2 + y2 + �y2 + z2!+ Æ (5.2)and �1; �; ; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR3 with this potentialin spherial oordinates have the formL = m2 ( _x2 + _y2 + _z2)� ~22mr2  1sin2 #�k21 + k22 � 144 sin2 '2 + k22 � k21 � 144 os2 '2 �+ k23 � 14os2 # ! ; (5.3)H = p2x + p2y + p2z2m + ~22mr2  1sin2 #�k21 + k22 � 144 sin2 '2 + k22 � k21 � 144 os2 '2 �+ k23 � 14os2 # ! : (5.4)Counting onstants, there are seven independent onstants: �; �; ; Æ, and k1; k2; k3. An eightonstants an be added by adding a further onstant ~Æ into the potential of the Hamiltonian,whih is omitted.In Table 6 I have displayed some speial ases for the spae K IV. Again, the speial asesare very similar as in the previous ases. 14



The fourth Koenigs-spae K IV is onstruted by onsideringHK IV = HfIV (x; y; z) : (5.5)We write down the path integral formulation for K(K IV)(s00)K(K IV)(r00; r0; #00; #0; '00; '0; s00) = r(s00)=r00Zr(0)=r0 Dr(s) #(s00)=#00Z#(0)=#0 D#(s) '(s00)='00Z'(0)='0 D'(s)r2 sin#� exp( i~ Z s000 "m2 � _r2 + r2( _#2 + sin2 # _'2)�� ~22mr2  1sin2 #�~k21 + ~k22 � 144 sin2 '2 + ~k22 � ~k21 � 144 os2 '2 �+ ~k23 � 14os2 # !#ds00) : (5.6)Here, ~k21 = k22 + k21 � 2m(� + �)E=~2, ~k22 = k22 � k21 + 2m(� � �)E=~2, ~k23 = k23 � 2mE=~. Weobtain for the path integral K(K IV)(s00) (�1 = n+ (~k1 + ~k2 + 1)=2, �2 = 2m+ �1 � ~k3 + 1)K(K IV)(r00; r0; #00; #0; '00; '0; s00)= (r0r00 sin �0 sin �00)�1=22 1Xn=0	(~k1;~k2)n �'02 �	(~k1;~k2)n �'002 � 1Xm=0�(�1;�~k3)m (#0)�(�1;�~k3)m (#00)� mi~s00 exp � im2~s00 (r02 + r002)�I�2�mr0r00i~s00 � : (5.7)Therefore the Green funtion G(K IV)(E) has the form ( ~E = E � Æ)G(K IV)(r00; r0; #00; #0; '00; '0;E) = (f 0IV f 00IV )� 14 (r0r00 sin �0 sin �00)�1=22� 1Xn=0	(~k1;~k2)n �'02 �	(~k1;~k2)n �'002 � 1Xm=0�(�1;�~k3)m (#0)�(�1;�~k3)m (#00)�2m~2 I�2�q�2m ~E r<~ �K�2�q�2m ~E r>~ � : (5.8)The analysis of this Green funtion is ompliated due to the ompliated index whih hasimaginary parts for 2mE=~2 > k23 et. This, in general leads to modi�ed K-Bessel-funtionsas wave-funtions (.f. Liouville quantum mehanis [16℄) with a ontinuous energy spetrumEp >  with some onstant  > 0. For instane, in the ase of the three-dimensional hyperboloidthe onstant is given by  = ~2=2m. We do not disuss these issues any further.6 Koenigs-Spae KV with Centrifugal Potential IIIn the last example we onsider a metri whih orresponds to the three-dimensional linear-entrifugal potential ds2 = fV (x; y; z)(dx2 + dy2 + dz2) ; (6.1)fV (x; y) = ~22m  �xy2px2 + y2 + �y2!+ z + Æ (6.2)15



Table 7: Some speial ases for the spae KVMetri Spae �VfV (x; y; z) Koenigs spae KV �V1 + 3~28m� 1h2x + 1h2y + 1h2z�u Three-dimensional Darboux spae D I 0bu2 � au2 Three-dimensional Darboux Spae D II �V1 + 3~28m(bu2 � a)1u2 Three-dimensional Hyperboloid 3~28m1 IR3 0and �1; �; ; Æ are onstants. The lassial Hamiltonian and Lagrangian in IR3 with this potentialhave the form L = m2 ( _x2 + _y2 + _z2)� ~22m  k21xy2px2 + y2 + k22 � 14y2 !� k3z ; (6.3)H = p2x + p2y + p2z2m + ~22m  k21xy2px2 + y2 + k22 � 14y2 !+ k3z : (6.4)Counting onstants, there are seven independent onstants: �; �; ; Æ, and k1; k2; k3. An eightonstants an be added by adding a further onstant ~Æ into the potential of the Hamiltonian,whih is omitted. The �fth Koenigs-spae KV is onstruted by onsideringHKV = HfV (x; y; z) : (6.5)In Table 7 I have displayed some speial ases for KV. Again, the speial ases are verysimilar as in the previous ases. However, the new speial ase whih appears is the threedimensional Darboux spae D I from [11℄. From [11℄ we know that the free motion separatesin seven oordinate systems, i.e. in Cartesian, the three irular systems, the paraboli, theparaboloidal system, and a rotated Cartesian system.We write down the path integral formulation for K(KV)(s00) in irular polar oordinatesK(KV)(%00; %0; '00; '0; z00; z0; s00) = %(s00)=%00Z%(0)=%0 D%(s)% '(s00)='00Z'(0)='0 D'(s) z(s00)=z00Zz(0)=z0 Dz(s)� exp( i~Z s000 "m2 � _%2+%2 _'2+ _z2)�� ~22m%2  ~k21 � 144 os2 '2 + ~k22 � 144 sin2 '2 � 14!�~k3z# ds00) : (6.6)Here, ~k21 = k22 + k21 � 2m(� + �)E=~2, ~k22 = k22 � k21 + 2m(� � �)E=~2, ~k3 = k3 � 2mE=~. Thispath integral has the solution (�1 = n+ 12 (~k1 + ~k2 + 1)):16



K(KV)(%00; %0; '00; '0; z00; z0; s00)= � m2�i~s00�1=2 exp " i~ m2s00 (z00 � z0)2 � k3T2 (z0 + z00)� k23s00324m !#� m2i~s00 1Xn=0�(~k1;~k2)n ��02 ��(~k1;~k2)n ��002 � exp �� m2i~s00 (�02 + �002)�I�1�m�0�00i~s00 � : (6.7)The analysis of this Green funtion is again very ompliated due to the ompliated index whihhas imaginary parts for 2mE=~2 > k23 et. yielding a ontinuous spetrum. As in the previoussetion, these issues will not be disussed further.7 Summary and DisussionIn this ontribution I have disussed a path integral approah for spaes of non-onstant urvatureaording to Koenigs, whih I have for short alled \Koenigs-spaes"K I{KV, respetively. I havefound a very rih struture of the spetral properties of the quantum motion on Koenigs-spaes.In the general ase with potential, in three spaes the quantization ondition is determined byan equation up to twelfth order in the energy E. Suh an equation annot be solved expliitly,however speial ases an be studied. We found also onstraints on the parameters for the well-de�nedness on the wave-funtions. For the remaining two spaes no quantization ondition wasformulated, beause it is known that in the orresponding ases of superintegrable potentials inIR3 only a ontinuous spetrum exists.Let us note a further feature of these spaes. It is obvious that our solutions remain on aformal level. Neither have we spei�ed an embedding spae, nor have we spei�ed boundaryonditions on our spaes. Let us onsider the spae KV: We set � = � = Æ = 0 and  = 1.In this ase we obtain a metri whih orresponds to the three-dimensional Darboux spae D I(modulo hange of variables), as disussed in [11℄. In D I boundary onditions and the signatureof the ambient spae is very important, beause hoosing a positive or a negative signature of theambient spae hanges the boundary onditions, and hene the quantization onditions [14, 20℄.Inluding an appropriate potential, bound states de�ned by a transendental equation an befound.Furthermore, we an reover the three-dimensional Darboux spae D II [11, 20℄ by setting inour examples in the potential funtion f all onstant to zero exept those orresponding to the1=x2-singularity and the onstant Æ = 1. However, we did not disuss these ases in detail.In our approah we have hosen examples of superintegrable potentials in three-dimensionalspae, i.e. the isotropi singular osillator, the Holt potential, the Coulomb potential, and twoentrifugal potentials, respetively. I did not onsider the minimally superintegrable potentials.There are eight of them [13℄, however they ontain always an unspei�ed funtion F dependingon the radial variable r, say, leading to some unspei�ed spetrum.I have omitted the disussion of the ontinuous spetrum. This is mostly due to lak ofthe spei�ation of the ambient spae. For instane, in the Darboux spae D II we know thatthe ontinuous spetrum has the form of Ep / (~2=2m)p2 + onstant. The wave-funtions areproportional to K-Bessel funtions [10℄. However, in Darboux spae D I there is no suh onstant,and the wave-funtions have a di�erent form. Furthermore, D II ontains as speial ases thethree-dimensional Eulidean plane and the Hyperboli spae, respetively.17



However, a more detailed study of these speial ase would require some additional inputfrom a physis point of view: Can a spae of non-onstant urvature (Koenigs or Darbouxspae) model atually urved spae-time? And how suh a global or loal model an give riseto observable physial e�ets? These issues are beyond the sope of this artile and will not bedisussed here any further.AknowledgmentsThis work was supported by the Heisenberg{Landau program. I would like to thank G.Pogosyan,for the warm hospitality during my stay in Yerevan, Armenia. The author is grateful to ErnieKalnins for fruitful and pleasant disussions on superintegrability and separating oordinatesystems.Referenes[1℄ B�ohm, M., Junker, G.: Path Integration Over Compat and Nonompat Rotation Groups. J.Math. Phys.28 (1987) 1978{1994.[2℄ Daskaloyannis, C., Ypsilantis, K.: Uni�ed Treatment and Classi�ation of Superintegrable Systems withIntegrals Quadrati in Momenta on a Two Dimensional Manifold. J.Math. Phys. 45 (2006) 042904.[3℄ Duru, I.H.: Path Integrals Over SU(2) Manifold and Related Potentials. Phys. Rev. D 30 (1984) 2121{2127.[4℄ Duru, I.H., Kleinert, H.: Solution of the Path Integral for the H-Atom. Phys. Lett. B 84 (1979) 185{188.Quantum Mehanis of H-Atoms from Path Integrals. Fortshr.Phys. 30 (1982) 401{435.[5℄ Feynman, R.P., Hibbs, A.: Quantum Mehanis and Path Integrals. MGraw Hill, New York, 1965.[6℄ Fri�s, J., Mandrosov, V., Smorodinsky, Ya.A., Uhlir, M., Winternitz, P.: On Higher Symmetries in QuantumMehanis; Phys.Lett. 16 (1965) 354,Fri�s, J.; Smorodinski��, Ya.A., Uhl���r, M., Winternitz, P.: Symmetry Groups in Classial and Quantum Me-hanis; Sov.J.Nul.Phys. 4 (1967) 444Winternitz, P., Smorodinski��, Ya.A., Uhlir, M., Fris, I.: Symmetry Groups in Classial and Quantum Me-hanis. Sov. J.Nul. Phys. 4 (1967) 444{450.[7℄ Fisher, W,, Leshke, H., and M�uller, P.: Changing Dimension and Time: Two Well-Founded and PratialTehniques for Path Integration in Quantum Physis; J.Phys.A: Math.Gen. 25 (1992) 3835Fisher, W,, Leshke, H., and M�uller, P.: Path Integration in Quantum Physis by Changing the Drift ofthe Underlying Di�usion Proess: Appliation of Legendre Proesses; Ann.Phys.(N.Y.) 227 (1993) 206[8℄ Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Produts. Aademi Press, New York, 1980.[9℄ Groshe, C.: Coulomb Potentials by Path-Integration; Fortshr.Phys. 40 (1992) 695[10℄ Groshe, C.: Path Integration on Darboux Spaes. Phys. Part. Nul. 37 (2006) 368{389.[11℄ Groshe, C.: Path Integral Approah for Spaes of Nononstant Curvature in Three Dimensions. Proeedingsof the \II. International Workshop on Superintegrable Systems in Classial and Quantum Mehanis", Dubna,Russia, June 27{July 1, 2005. Physis Atomi Nulei 70 (2007) 537{544.[12℄ Groshe, C.: Path Integral Approah for for Quantum Motion on Spaes of Non-onstant Curvature A-ording to Koenigs. DESY Report, DESY 06{140, quant-ph/0608231, to appear Proeedings of the \XII.International Conferene on Symmetry Methods in Physis", July 3{8, 2006, Yerevan, Armenia.[13℄ Groshe, C., Pogosyan, G.S., Sissakian, A.N.: Path Integral Disussion for Smorodinsky-Winternitz Poten-tials: I. Two- and Three-Dimensional Eulidean Spae. Fortshr. Phys. 43 (1995) 453{521.18



[14℄ Groshe, C., Pogosyan, G.S., Sissakian, A.N.: Path Integral Approah for Superintegrable Potentials onSpaes of Non-onstant Curvature: I. Darboux Spaes D I and D II. Phys. Part. Nul. 38 (2007) 299{325.[15℄ Groshe, C., Pogosyan, G.S., Sissakian, A.N.: Path Integral Approah for Superintegrable Potentials onSpaes of Non-onstant Curvature: II. Darboux Spaes D III and D IV. DESY preprint DESY 06-149, August2006. Phys. Part. Nul., to appear.[16℄ Groshe, C., Steiner, F.: Handbook of Feynman Path Integrals. Springer Trats in Modern Physis 145.Springer, Berlin, Heidelberg, 1998.[17℄ Inomata, A.: Alternative Exat-Path-Integral-Treatment of the Hydrogen Atom; Phys.Lett. A 101 (1984)253[18℄ Kalnins, E.G., Kress, J.M., Pogosyan, G., Miller, W.Jr.: Complete Sets of Invariants for Dynamial Systemsthat Admit a Separation of Variables. J.Math. Phys. 43 (2002) 3592{3609.In�nite-Order Symmetries for Quantum Separable Systems. Phys. Atom.Nul. 68 (2005) 1756-1763.[19℄ Kalnins, E.G., Kress, J.M., Miller, W.Jr.: Seond Order Superintegrable Systems in Conformally Flat Spaes.I. 2D Classial Struture Theory. J.Math. Phys. 46 (2005) 053509.Seond Order Superintegrable Systems in Conformally Flat Spaes. II. The Classial Two-DimensionalSt�akel Transform. J.Math. Phys. 46 (2005) 053510.[20℄ Kalnins, E.G., Kress, J.M., Miller, W.Jr., Winternitz, P.: Superintegrable Systems in Darboux Spaes.J.Math. Phys. 44 (2003) 5811{5848.Kalnins, E.G., Kress, J.M., Winternitz, P.: Superintegrability in a Two-Dimensional Spae of Non-onstantCurvature. J.Math. Phys. 43 (2002) 970{983.[21℄ Kalnins, E.G., Krees, J.R., Miller Jr., W.: Seond Order Superintegrable Systems in Conformally FlatSpaes. V. 2D and 3D Quantum Systems. June 2006.[22℄ Kleinert, H.: Path Integrals in Quantum Mehanis, Statistis and Polymer Physis. World Sienti�, Sin-gapore, 1990.[23℄ Kleinert, H., Mustapi, I.: Summing the Spetral Representations of P�oshl{Teller and Rosen{Morse Fixed-Energy Amplitudes. J.Math. Phys. 33 (1992) 643{662.[24℄ Koenigs, G.: Sur les g�eod�esiques a int�egrales quadratiques. A note appearing in \Leons sur la th�eorieg�en�erale des surfae". Darboux, G., Vol.4, 368{404, Chelsea Publishing, 1972.[25℄ MLaughlin, D.W.: Complex Time, Contour Independent Path Integrals, and Barrier Penetration.J.Math. Phys. 13 (1972) 1099{1108.[26℄ Shulman, L.S.: Tehniques and Appliations of Path Integration. John Wiley & Sons, New York, 1981.[27℄ Steiner, F.: Exat Path Integral Treatment of the Hydrogen Atom; Phys.Lett. A 106 (1984) 363{367.

19


	Introduction
	Koenigs-Space KI with Isotropic Singular Oscillator
	Koenigs-Space KI with Isotropic Singular Oscillator in Polar Coordinates
	Koenigs-Space KI with Isotropic Singular Oscillator in Cartesian Coordinates
	Koenigs-Space KI with Zero Constants

	Koenigs-Space KII with Holt-Potential
	Koenigs-Space KIII with Coulomb-Potential
	Koenigs-Space KIV with Centrifugal Potential I
	Koenigs-Space KV with Centrifugal Potential II
	Summary and Discussion
	References

