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Contents1 Introdution 12 Solutions to the bosoni equation of motion 23 Integrated vertex operators in the superstring 54 Solutions in the superstring 85 Superstring �eld theory around the deformed bakground 126 Disussion 146.1 Expliit onstrution for a lass of marginal deformations . . . . . . . . . . . . . . . . 146.2 More spei� assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176.3 Pure-gauge forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18A Assumptions 201 IntrodutionThe purpose of the paper is to extend the general framework for marginal deformations developed in [1℄for open bosoni string �eld theory [2℄ to open superstring �eld theory formulated by Berkovits [3℄.1 Letus briey review reent remarkable progress in analyti methods for open string �eld theory [8℄{[31℄,fousing on marginal deformations. Analyti solutions for marginal deformations were �rst onstrutedin [20, 21℄ for the bosoni string when operator produts of the marginal operator are regular, and thesolutions were extended to the superstring in [22, 23, 25℄. The generalization to marginal deformationswith singular operator produts was initiated in [21℄, and solutions to third order in the deformationparameter were onstruted. For the speial ase of the marginal deformation orresponding to thezero mode of the gauge �eld, solutions to all orders were onstruted for the bosoni string in [24℄ andfor the superstring in [28℄. The solutions in [24, 28℄, however, do not satisfy the reality ondition onthe string �eld, and a strategy for onstruting real solutions was outlined in [28℄. See [32℄{[46℄ forearlier study of marginal deformations in string �eld theory and related work.Analyti solutions for general marginal deformations satisfying the reality ondition were reentlyonstruted in [1℄ for the bosoni string. While previous solutions for marginal deformations in [20,21, 22, 23, 25℄ were built from unintegrated vertex operators and b-ghost insertions, the solutionsin [1℄ were based on integrated vertex operators whih are losely related to �nite deformations ofboundary onformal �eld theory (CFT). A hange of boundary onditions in boundary CFT an beimplemented by properly renormalized exponential operators of an integral of the marginal operator,1 See [4, 5, 6, 7℄ for reviews on string �eld theory. 1



and a systemati proedure to onstrut solutions from suh renormalized operators was presentedin [1℄. The general idea of the onstrution in [1℄ does not depend on the bosoni nature of theproblem, and we expet that the onstrution an be extended to the superstring. We in fat �ndthat the extension is remarkably simple, and we onstrut analyti solutions of open superstring �eldtheory to all orders in the deformation parameter satisfying the reality ondition.The organization of the paper is as follows. In setion 2 we review the onstrution in [1℄ ofsolutions to the equation of motion for the bosoni string. We use this result later and onstrutstring �elds in the superstring satisfying the bosoni equation of motion with the BRST operator inthe bosoni theory replaed by the one in the superstring theory. In setion 3 we disuss propertiesof integrated vertex operators in the superstring. In setion 4 we onstrut solutions to the equationof motion of open superstring �eld theory. This is the main result of the paper. String �eld theoryexpanded around the solution was desribed in [1℄ using a deformed star produt. In setion 5 we showthat the equation of motion of open superstring �eld theory expanded around the solution in setion 4an also be desribed using the deformed star produt in [1℄. Setion 6 is devoted to disussion.2 Solutions to the bosoni equation of motionThe equation of motion of open bosoni string �eld theory [2℄ is given byQB	+	2 = 0 ; (2.1)where 	 is the string �eld of ghost number one and QB is the BRST operator. Here and in whatfollows produts of string �elds are de�ned by the star produt [2℄. In this setion we review theonstrution in [1℄ of solutions to (2.1) for general marginal deformations.A marginal deformation is generated by a marginal operator V1(t) whih is a matter primary �eldof dimension one. The solutions in [1℄ are onstruted from an operator whih implements a hangeof boundary onditions between two points a and b on the boundary. When operator produts of themarginal operator are regular, it is given byexp��Z ba dt V1(t) � = 1 + �Z ba dt V1(t) + �22! Z ba dt1 Z ba dt2 V1(t1)V1(t2) + : : : ; (2.2)where � is the deformation parameter. When operator produts of the marginal operator are singu-lar, we need to renormalize the operator (2.2) properly to make it well de�ned, and we denote therenormalized operator by [ e�V (a;b) ℄r ; (2.3)where V (a; b) � Z ba dt V1(t) : (2.4)2



If the marginal deformation is exatly marginal, there is a one-parameter family of onsistent boundaryonditions labeled by � and we expet to have a orresponding family of solutions in string �eld theory.Sine the new boundary ondition generated by the operator [ e�V (a;b) ℄r is onformal, the operator[ e�V (a;b) ℄r should be invariant under the BRST transformation up to additional ontributions fromthe points a and b where the boundary ondition hanges:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r : (2.5)Here OL(a) and OR(b) are some loal operators at a and b, respetively. See the introdution of [1℄for more detailed disussion. The solutions in [1℄ were onstruted from the operator [ e�V (a;b) ℄r asfollows. The operator [ e�V (a;b) ℄r is given in the form of an expansion in �:[ e�V (a;b) ℄r = 1Xn=0�n [V (n)(a; b) ℄r ; (2.6)where [V (n)(a; b) ℄r � 1n! � �V (a; b)�n �r for n � 1 and [V (0)(a; b) ℄r � 1 : (2.7)We then de�ne a state U by U � 1 + 1Xn=1 �n U (n) ; (2.8)where h' ; U (n) i = h f Æ '(0) [V (n)(1; n) ℄r iWn : (2.9)Here and in what follows we denote a generi state in the Fok spae by ' and its orrespondingoperator in the state-operator mapping by '(0). The onformal transformation f(�) isf(�) = 2� artan � ; (2.10)and we denote the onformal transformation of the operator '(�) under the map f(�) by f Æ '(�).The orrelation funtion is evaluated on the surfae Wn whih is obtained from the upper-half planeof z by the identi�ation z � z+n+1. We represent Wn in the region where �1=2 � Re z � 1=2+n.It follows from (2.5) that the BRST transformation of the operator [V (n)(a; b) ℄r takes the formQB � [V (n)(a; b) ℄r = nXr=1 [V (n�r)(a; b)O(r)R (b) ℄r � nXl=1 [O(l)L (a)V (n�l)(a; b) ℄r ; (2.11)where OL and OR are expanded as follows:OL = 1Xn=1 �nO(n)L ; OR = 1Xn=1 �nO(n)R : (2.12)Thus the BRST transformation of U an be split into two piees:QBU = AR �AL (2.13)3



with AL = 1Xn=1 �nA(n)L ; AR = 1Xn=1 �nA(n)R ; (2.14)where h' ;A(n)L i = nXl=1h f Æ '(0) [O(l)L (1)V (n�l)(1; n) ℄r iWn ;h' ;A(n)R i = nXr=1h f Æ '(0) [V (n�r)(1; n)O(r)R (n) ℄r iWn : (2.15)We then de�ne 	L by 	L � AL U�1 ; (2.16)where U�1 is well de�ned perturbatively in � beause U = 1 + O(�). The BRST transformation of	L an be alulated as follows:QB	L = QB (AL U�1)= (QBAL)U�1 +AL U�1 (QBU)U�1= (QBAL)U�1 +AL U�1 (AR �AL)U�1= (QBAL +AL U�1AR)U�1 �AL U�1AL U�1= (QBAL +AL U�1AR)U�1 �	2L : (2.17)
It was shown in [1℄ that the relation QBAL = �AL U�1AR (2.18)holds under a set of assumptions whih were argued to be satis�ed for any exatly marginal defor-mation. The equation (2.5) is in fat the �rst of these assumptions. We list the omplete set ofassumptions in appendix A. The state 	L thus solves the equation of motion:QB	L +	2L = 0 : (2.19)The solution 	L, however, does not satisfy the reality ondition on the string �eld, and a solutionsatisfying the reality ondition was generated in [1℄ from 	L by a gauge transformation. The string�eld 	 must have a de�nite parity under the ombination of the Hermitean onjugation (h) and theinverse BPZ onjugation (bpz�1) to guarantee that the string �eld theory ation is real [47℄. We de�nethe onjugate Xz of a string �eld X byXz � bpz�1 Æ h (X) : (2.20)The onjugation satis�es (QBX)z = � (�1)X QBXz ; (2.21)(X Y )z = Y zXz : (2.22)4



Here and in what follows a string �eld in the exponent of (�1) denotes its Grassmann property: it is 0mod 2 for a Grassmann-even state and 1 mod 2 for a Grassmann-odd state. In order for QB	 and 	2to have the same onjugation property, the Grassmann-odd string �eld 	 must satisfy 	z = 	. Thisis the reality ondition on the string �eld in open bosoni string �eld theory. When the renormalizedoperator [ e�V (a;b) ℄r preserves the invariane under the reetion where V1(t) is replaed by V1(a+b�t)and when V1 is hosen suh that the state orresponding to �V1(0) is even under the onjugation,2we have U z = U ; (U�1)z = U�1 ; AzL = AR : (2.23)Therefore, a state 	R de�ned by 	R � U�1AR (2.24)is the onjugate of 	L and solves the equation of motion. The two solutions 	L and 	R are relatedby the gauge transformation generated by U :	R = U�1	L U + U�1QBU : (2.25)A solution 	 satisfying the reality ondition is obtained from 	L or 	R by gauge transformations asfollows: 	 = 1pU 	LpU + 1pU QBpU= pU 	R 1pU +pU QB 1pU= 12 � 1pU 	LpU +pU 	R 1pU + 1pU QBpU � (QBpU) 1pU � ; (2.26)where pU and 1=pU are de�ned perturbatively in �. It follows from (pU )z = pU , (1=pU )z = 1=pUand 	zL = 	R that the last expression for 	 in (2.26) manifestly satis�es the reality ondition. Thethree expressions are equivalent beause of the relation (2.25).3 Integrated vertex operators in the superstringWe expet that integrated vertex operators play a ruial role in extending the onstrution of so-lutions in [1℄ to the superstring. The marginal operator V1 in the superstring is the supersymmetrytransformation of a superonformal primary �eld bV1=2 in the matter setor of dimension 1=2:V1(t) = G�1=2 � bV1=2(t) � ZC(t)h dz2�i TF (z) � d�z2�i eTF (�z) i bV1=2(t) ; (3.1)where TF (z) and eTF (�z) are the holomorphi and antiholomorphi omponents, respetively, of theworld-sheet superurrent, and C(t) is a ontour in the upper-half plane whih runs from the point t+�2 If the state orresponding to V1(0) is odd under the onjugation, we set � = i ~� and take ~� to be real to satisfy thisonvention. 5



on the real axis to the point t� � on the real axis in the limit �! 0 with � > 0. An integrated vertexoperator in the 0 piture is an integral of V1 on the boundary:V (a; b) = Z ba dt V1(t) = Z ba dtG�1=2 � bV1=2(t) : (3.2)It is invariant under the BRST transformation up to nonvanishing terms from the end points of theintegral region: QB � V (a; b) = Z ba dt �t [ V1(t) + �e� bV1=2(t) ℄= [ V1(b) + �e� bV1=2(b) ℄� [ V1(a) + �e� bV1=2(a) ℄ : (3.3)We use the desription of the superonformal ghosts in terms of �, �, and � [48, 49℄, and the BRSToperator for the superstring is given byQB = Z h dz2�i jB(z) � d�z2�i ~|B(�z) i (3.4)with jB =  TmB +  T ��B +  T �B + �e� TmF + : b� : � b���e2� ;T ��B = ���� ; T �B = �12 ����� �2� ; (3.5)where TmB and TmF are the holomorphi omponents of the energy-momentum tensor and the super-urrent in the matter setor, respetively, and ~|B is the antiholomorphi ounterpart of jB . Theoperator V (a; b) in the matter setor is obviously annihilated by �0, whih is the zero mode of � andplays an important role in open superstring �eld theory [3℄. Sine the BRST operator antiommuteswith �0, the operator QB � V (a; b) is also annihilated by �0. We an expliitly see that the operatorV1(t) + �e� bV1=2(t) whih appeared in (3.3) is annihilated by �0. The operator V1(t) + �e� bV1=2(t)is also annihilated by the BRST operator. This an be seen by ating with QB on (3.3). In thedesription of the superonformal ghosts in terms of �, �, and � inluding the setor generated by �0and �0, any BRST-losed operator an be written as an BRST-exat operator beause of the existeneof a Grassmann-odd operator R(t) satisfyingQB �R(t) = 1 : (3.6)See, for example, footnote 3 of [50℄. We hoose R(t) to beR(t) � � ���e�2�(t) : (3.7)Sine lim�!0R(t� �) [ V1(t) + �e� bV1=2(t) ℄ = �e�� bV1=2(t) ; (3.8)6



we have V1(t) + �e� bV1=2(t) = QB � � �e�� bV1=2(t) � : (3.9)Note that the unintegrated vertex operator e�� bV1=2 in the �1 piture with an additional fator of �appeared in (3.8). This operator is used in the solution to the linearized equation of motion of opensuperstring �eld theory formulated by Berkovits [3℄, as we will disuss in the next setion.Finite deformations of the boundary CFT are generated by an exponential of V (a; b). Whenoperator produts of V1 are regular, it is given by e�V (a;b), where � is the deformation parameter. ItsBRST transformation isQB � e�V (a;b) = � e�V (a;b) [ V1(b) + �e� bV1=2(b) ℄ � � [ V1(a) + �e� bV1=2(a) ℄ e�V (a;b) (3.10)if operator produts of bV1=2 and an arbitrary number of V1's are also regular so that (3.3) an beapplied even in the presene of further insertions of V1's. The seond term on the right-hand side anbe written as� [ V1(a) + �e� bV1=2(a) ℄ e�V (a;b)= �QB � � �e�� bV1=2(a) � e�V (a;b)= �QB � � �e�� bV1=2(a) e�V (a;b) � � �2 [ �e�� bV1=2(a) ℄ e�V (a;b) [ V1(b) + �e� bV1=2(b) ℄ ; (3.11)where we again used the regularity assumption on the operator produts. We thus �nd that�QB � � �e�� bV1=2(a) e�V (a;b) �= � [ V1(a) + �e� bV1=2(a) ℄ e�V (a;b) + �2 [ �e�� bV1=2(a) ℄ e�V (a;b) [ V1(b) + �e� bV1=2(b) ℄ : (3.12)This relation, being generalized to the singular ase, plays a ruial role in our onstrution of solutionsin open superstring �eld theory.When operator produts of V1 are singular, we need to renormalize the operator e�V (a;b) properlyto make it well de�ned, and we denote the renormalized operator by [ e�V (a;b) ℄r as before. If thedeformation is exatly marginal and preserves superonformal invariane, we assume as in the bosoniase that the BRST transformation of [ e�V (a;b) ℄r takes the following form:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r ; (3.13)where OL(a) and OR(b) are some Grassmann-odd loal operators at a and b, respetively. The opera-tors [OL(a) e�V (a;b) ℄r and [ e�V (a;b)OR(b) ℄r are annihilated by �0 , as we disussed before. To leadingorder in � they are determined from (3.3) and given by[OL(a) e�V (a;b) ℄r = � [ V1(a) + �e� bV1=2(a) ℄ +O(�2) ;[ e�V (a;b) OR(b) ℄r = � [ V1(b) + �e� bV1=2(b) ℄ +O(�2) : (3.14)In the regular ase, we �nd from the exat expression in (3.10) thatOregularL = OregularR = � [ V1 + �e� bV1=2 ℄ ; (3.15)7



and there are no higher-order orretions to the operators OL and OR.Let us introdue the following operators:[ bOL(a) e�V (a;b) ℄r � lim�!0 R(a� �) [OL(a) e�V (a;b) ℄r ;[ e�V (a;b) bOR(b) ℄r � � lim�!0 [ e�V (a;b) OR(b) ℄r R(b+ �) : (3.16)These are generalizations of � �e�� bV1=2(a) e�V (a;b) and � e�V (a;b) �e�� bV1=2(b) in the regular ase.The ghost setor ouples to the matter setor only through  and �e� in the BRST urrent, and theoperator produts of ���e�2� with , �e�, and their derivatives are regular. The limit �! 0 in (3.16)is therefore regular. To leading order in � these operators redue to[ bOL(a) e�V (a;b) ℄r = � �e�� bV1=2(a) +O(�2) ;[ e�V (a;b) bOR(b) ℄r = � �e�� bV1=2(b) +O(�2) : (3.17)The BRST transformation of [ bOL(a) e�V (a;b) ℄r an be alulated from (3.6) and from the BRSTtransformation of [OL(a) e�V (a;b) ℄r. When the deformation is exatly marginal and preserves super-onformal invariane, we assume that the BRST transformation of [OL(a) e�V (a;b) ℄r is given byQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b) OR(b) ℄r : (3.18)See the introdution of [1℄ for more detailed disussion. The BRST transformation of [ bOL(a) e�V (a;b) ℄ris then given byQB � [ bOL(a) e�V (a;b) ℄r = QB � h lim�!0R(a� �) [OL(a) e�V (a;b) ℄r i= [OL(a) e�V (a;b) ℄r + lim�!0R(a� �) [OL(a) e�V (a;b) OR(b) ℄r : (3.19)This is a generalization of (3.12). Similarly, we �ndQB � [ e�V (a;b) bOR(b) ℄r = �QB � h lim�!0 [ e�V (a;b) OR(b) ℄r R(b+ �) i= [ e�V (a;b) OR(b) ℄r + lim�!0 [OL(a) e�V (a;b)OR(b) ℄r R(b+ �) : (3.20)As we mentioned before, the relations (3.19) and (3.20) play a ruial role in the onstrution of thegeneral superstring solutions in the next setion.4 Solutions in the superstringIn this setion we onstrut solutions for general marginal deformations in open superstring �eld theoryformulated by Berkovits [3℄. The equation of motion is�0 ( e��QB e� ) = 0 ; (4.1)8



where � is the superstring �eld of ghost number zero. The leading term in the expansion of (4.1) in� is given by QB �0 �+O(�2) = 0 ; (4.2)where we have used fQB ; �0g = 0. To leading order in the deformation parameter �, a solution �assoiated with an exatly marginal deformation takes the formh' ;� i = � h f Æ '(0) �e�� bV1=2(1) iW1 +O(�2) ; (4.3)where bV1=2 is the superonformal primary operator orresponding to the marginal deformation, asintrodued in setion 3. The term of (4.3) at O(�) solves the equation of motion to linear order in� given in (4.2) beause �0 eliminates the operator � and the remaining unintegrated vertex operatore�� bV1=2 in the �1 piture is annihilated by the BRST operator.In [22℄ Erler proposed to solve the following equation:e��QB e� = 	 ; (4.4)where 	 satis�es QB	+	2 = 0 ; �0	 = 0 ; (4.5)and to linear order in � the state 	 redues toh' ;	 i = � h f Æ '(0) QB � [ �e�� bV1=2(1) ℄ iW1 +O(�2) : (4.6)Namely, the state 	 is a pure-gauge string �eld with respet to the gauge transformation of bosonistring �eld theory, while we use the BRST operator of the superstring. Sine the left-hand side of (4.4)also takes a pure-gauge form, we expet a solution � to the equation (4.4) of the form (4.3). Sine 	is annihilated by �0, the solution of (4.4) also solves the equation of motion (4.1).In [22℄ suh a pure-gauge string �eld 	 was onstruted from the solution of open bosoni string�eld theory in [20, 21℄ by replaing the unintegrated vertex operator V1 in the bosoni string withQB � [ �e�� bV1=2 ℄ in the superstring. Then the equation (4.4) was solved and solutions for marginaldeformations were onstruted in open superstring �eld theory when operator produts of the marginaloperator are regular [22, 25℄.We an also obtain pure-gauge string �elds satisfying (4.5) using the onstrution of solutionsfor bosoni string �eld theory in [1℄, whih overs the ase where operator produts of the marginaloperator are singular. As we reviewed in setion 2, the solutions in [1℄ are onstruted from theoperator [ e�V (a;b) ℄r under the assumptions listed in appendix A. String �elds in the superstringsatisfying (4.5) an be onstruted from the operator [ e�V (a;b) ℄r with V1 = G�1=2 � bV1=2 as introduedin (3.1) of setion 3 beause all the assumptions listed in appendix A are expeted to be satis�ed whenthe deformation orresponding to bV1=2 is exatly marginal and preserves superonformal invariane.All the solutions in setion 2 have the same leading term in � given by �A(1)L + O(�2), where A(n)L9



is de�ned in (2.15).3 As A(1)L is determined by the leading term of [OL(a) e�V (a;b) ℄r whih is givenin (3.14) for the superstring ase, we �ndh' ;A(1)L i = h f Æ '(0) O(1)L (1) iW1= h f Æ '(0) [ V1(1) + �e� bV1=2(1) ℄ iW1= h f Æ '(0) QB � [ �e�� bV1=2(1) ℄ iW1 ; (4.7)where we have used (3.9). Therefore, the ondition (4.6) is satis�ed. The solutions in [1℄ are built fromthe operator [ e�V (a;b) ℄r and its BRST transformation whih are both annihilated by �0, and thus theseond ondition in (4.5) is also satis�ed. We an thus onstrut superstring solutions for marginaldeformations from the bosoni solutions of [1℄ by solving (4.4).The leading term of the superstring solution � in (4.3) is built from the leading term of the operator[ bOL(a) e�V (a;b) ℄r, as an be seen from (3.17). We therefore expet that the operator [ bOL(a) e�V (a;b) ℄rplays an important role in the onstrution of superstring solutions. Just as AL and AR are onstrutedfrom the operators [OL(1) e�V (1;n) ℄r and [ e�V (1;n)OR(n) ℄r at O(�n), respetively, we introdue statesbAL and bAR whih are onstruted from [ bOL(1) e�V (1;n) ℄r and [ e�V (1;n) bOR(n) ℄r at O(�n). We de�nebAL = 1Xn=1 �n bA (n)L ; bAR = 1Xn=1 �n bA (n)R (4.8)with h' ; bA (n)L i = lim�!0 nXl=1h f Æ '(0)R(1 � �)[O(l)L (1)V (n�l)(1; n) ℄r iWn ;h' ; bA (n)R i = � lim�!0 nXr=1h f Æ '(0) [V (n�r)(1; n)O(r)R (n) ℄r R(n+ �) iWn : (4.9)The states bAL and bAR are related by the onjugation:� bAL�z = � bAR : (4.10)This an be shown as follows. The state R orresponding to the operator R(0) satis�es QBR = j0i andthus R z = R , whih follows from j0iz = j0i and (2.21). Following the argument in x 2.2.1 of [1℄, theoperator R(1� �) on Wn in the de�nition of bA (n)L is mapped to R(n+ �) under the onjugation. Therelation (4.10) then follows from AzL = AR. The BRST transformations of bAL and bAR an be derivedfrom those of AL and AR. The BRST transformation of AL is presented in (2.18), and using (2.13)we �nd QBAR = QB (QBU +AL) = QBAL. Thus we haveQBAL = �AL U�1AR ; QBAR = �AL U�1AR : (4.11)3 The leading terms of the bosoni solutions 	L, 	R, and 	 are �A(1)L , �A(1)R , and � (A(1)L + A(1)R )=2, respetively.Beause O(1)R = O(1)L , we have A(1)R = A(1)L and thus all three solutions are equivalent to leading order.10



Using the identities (3.19) and (3.20), the BRST transformations of bAL and bAR are given byQB bAL = AL + bAL U�1AR ; QB bAR = AR �AL U�1 bAR : (4.12)These relations hold when the assumptions in appendix A are satis�ed.We now laim that �L and �R de�ned bye�L = 1 + bAL U�1 ; e��R = 1� U�1 bAR (4.13)solve the equation (4.4) with 	 being 	L = AL U�1 and 	R = U�1AR , respetively, de�ned insetion 2. Using the relations (2.13) and (4.12), we haveQBe�L = �AL + bAL U�1AR�U�1 � bAL U�1 (AR �AL)U�1= �1 + bAL U�1�AL U�1= e�L 	L ; (4.14)and QBe��R = � U�1 �AR �AL U�1 bAR�+ U�1 (AR �AL)U�1 bAR= � U�1AR �1� U�1 bAR�= �	R e��R : (4.15)Therefore, e��L QBe�L = 	L ; e��R QBe�R = � (QBe��R) e�R = 	R : (4.16)Sine 	L and 	R are annihilated by �0, the states �L and �R solve the equation of motion (4.1).The reality ondition on the superstring �eld � is �z = � �, or�e��z= e�� : (4.17)The solutions �L and �R do not satisfy the reality ondition. In fat, we �nd�e�L�z = e��R ; (4.18)whih follows diretly from (4.10) and the de�nitions (4.13). However, we an generate a real solutionfrom �L and �R by generalizing the method in appendix B of [22℄. We laim that � de�ned bye� = �pe�L U e��R ��1 � e�L pU � (4.19)satis�es the reality ondition and solves the equation of motion. The state � is well de�ned to allorders in � beause e�L U e��R = 1 +O(�) and U = 1 +O(�). Using the relationse�L U e��R = � e�L pU � � e�L pU �z ; � e�L U e��R �z = e�L U e��R ; (4.20)11



we have�e��z e� = � e�L pU �z �q� e�L pU � � e�L pU �z ��1 �q� e�L pU � � e�L pU �z ��1 � e�L pU �= � e�L pU �z � � e�L pU � � e�L pU �z ��1 � e�L pU �= 1 : (4.21)Therefore, (e�)z = e�� and the reality ondition (4.17) is satis�ed.The state � de�ned in (4.19) is related to the solution �L in the following way:e� = 
 e�L � ; (4.22)where 
 = (pe�L U e��R )�1 and � = pU . If 
 is annihilated by QB and � is annihilated by �0, thestate � is a gauge transformation of �L and thus satis�es the equation of motion. It is obvious thatthe state pU is annihilated by �0. The state (pe�L U e��R )�1 is annihilated by QB if e�L U e��R isannihilated by QB . It an be shown as follows:QB � e�L U e��R � = e�L �	L U +QB U � U 	R � e��R= e�L �AL +QB U �AR � e��R= 0 ; (4.23)where we used (2.13) in the last step. This ompletes the onstrution of real solutions in opensuperstring �eld theory for general marginal deformations under the assumptions listed in appendix A.Inidentally, the solution � satis�es the equation (4.4) with the real solution 	 of [1℄ given in (2.26):QB e� = �pe�L U e��R ��1QB� e�L pU �= �pe�L U e��R ��1 e�L �	LpU +QBpU �= �pe�L U e��R ��1 e�LpU � 1pU 	LpU + 1pU QBpU �= e�	 : (4.24)Sine 	 is annihilated by �0, we have reon�rmed that � solves the equation of motion (4.1).5 Superstring �eld theory around the deformed bakgroundIt was shown in [1℄ that the ation of open bosoni string �eld theory expanded around the realsolution (2.26) an be written in terms of deformed algebrai strutures de�ned byX ? Y � X U�1 Y ;QX � QBX +AL ? X � (�1)X X ? AR = QBX +	LX � (�1)X X 	R ;hhX;Y ii � hX;U�1 Y U�1 i (5.1)12



for arbitrary string �elds X and Y . When � = 0, the deformed strutures redue to their undeformedounterparts beause U = 1 + O(�) and AL, AR, 	L, and 	R are of O(�). The equation of motionderived from the ation in terms of the deformed strutures isQ Æ	+ Æ	 ? Æ	 = 0 ; (5.2)where Æ	 is related to the original string �eld 	 expanded around the real solution (2.26), whih wenow denote by 	0, as follows: 	 = 	0 + 1pU Æ	 1pU : (5.3)The deformed strutures obey the expeted algebrai relationsQ2X = 0 ;Q (X ? Y ) = (QX) ? Y + (�1)X X ? (QY ) ;hhX;Y ii = (�1)XY hhY;X ii ;hhQX;Y ii = �(�1)XhhX;QY ii ;hhX;Y ? Z ii = hhX ? Y;Z ii ; (5.4)whih are neessary for a onsistent formulation of string �eld theory. Sine open superstring �eldtheory [3℄ is formulated using the algebrai strutures of open bosoni string �eld theory, the ation ofopen superstring �eld theory written in terms of the deformed strutures is onsistent. It is expetedto desribe utuations around the bakground orresponding to the solution (4.19) in terms of arede�ned string �eld Æ�. We show in this setion that this is indeed the ase and derive the relationbetween Æ� and the original string �eld � analogous to the relation (5.3) between 	 and Æ	 for thebosoni ase found in [1℄.To formulate superstring �eld theory using the deformed algebrai strutures, we �rst have tointrodue an exponential operator exp?[X ℄ of the deformed star algebra. As an be seen from thede�nition (5.1), the state U plays the role of the identity element of the deformed star algebra:X ? U = U ? X = X : (5.5)We thus de�ne exp?[X ℄ byexp?[X ℄ = U +X + 12! X ? X + 13! X ?X ? X + : : : = U + 1Xn=1 1n! X ?X ? : : : ? X| {z }n times : (5.6)The equation of motion derived from the ation using the deformed algebrai strutures is�0 � exp?[�Æ� ℄ ?Q exp?[ Æ� ℄ � = 0 : (5.7)To determine the relation between Æ� and the original string �eld �, let us express (5.7) in terms ofthe undeformed star produt and the BRST operator QB . The exponential operator exp?[X ℄ an bewritten as exp?[X ℄ = pU e 1pU X 1pU pU : (5.8)13



We thus �nd 1pU h �0 � exp?[�Æ� ℄ ?Q exp?[ Æ� ℄ � i 1pU= �0� e� 1pU Æ� 1pU 1pU Q �pU e 1pU Æ� 1pU pU � 1pU �= �0� e� 1pU Æ� 1pU QB�e 1pU Æ� 1pU � �+ �0� �QBpU �pU 	R � 1pU �+ �0� e� 1pU Æ� 1pU � 1pU QBpU + 1pU 	LpU � e 1pU Æ� 1pU � : (5.9)
The seond term on the right-hand side vanishes. Note that the real solution of bosoni string �eldtheory in (2.26) appeared in the last line of (5.9). We use the relation (4.4) applied to the real bosoniand superstring solutions shown in (4.24) and �nd1pU QBpU + 1pU 	LpU = e��0 QB e�0 ; (5.10)where we denoted the real superstring solution (4.19) by �0 . The equation of motion an then bewritten as �0 � e� 1pU Æ� 1pU QB� e 1pU Æ� 1pU �+ e� 1pU Æ� 1pU e��0 QB� e�0 � e 1pU Æ� 1pU �= �0 � e� 1pU Æ� 1pU e��0 QB� e�0 e 1pU Æ� 1pU � � = 0 : (5.11)We reognize this as the equation of motion for the original string �eld � with the following identi�-ation: e� = e�0 e 1pU Æ� 1pU : (5.12)This is the relation between Æ� and �, whih is a natural extension of (5.3) for the bosoni ase.6 Disussion6.1 Expliit onstrution for a lass of marginal deformationsWe followed the strategy adopted in [1℄, and we have presented a proedure to onstrut solutionsfor general marginal deformations in the superstring from properly renormalized operator produtsof the marginal operator V1 satisfying the set of assumptions listed in appendix A. In setion 4of [1℄, suh renormalized operator produts in the bosoni string were expliitly onstruted for a lassof marginal deformations satisfying a �niteness ondition. To state it, we de�ne operator produtsÆÆ V1(t1)V1(t2) : : : V1(tn) ÆÆ for arbitrary n with ti 6= tj reursively as follows:ÆÆ V1(t1) ÆÆ � V1(t1) ;ÆÆ V1(t1)V1(t2) : : : V1(tn) ÆÆ � V1(t1) ÆÆ V1(t2) : : : V1(tn) ÆÆ� nXi=2 hV1(t1)V1(ti) i ÆÆ V1(t2) : : : V1(ti�1)V1(ti+1) : : : V1(tn) ÆÆ (6.1)14



for n > 1 and ti 6= tj. The �niteness ondition of [1℄ then demands that the limitlimt!t0 ÆÆ V1(t)V1(t0)n ÆÆ (6.2)is �nite for any positive integer n.In the superstring ase, we furthermore de�ne operator produts involving the operator bV1=2. Forarbitrary n with ti 6= tj, we de�ne ÆÆ bV1=2(t1)V1(t2) : : : V1(tn) ÆÆ byÆÆ bV1=2(t1)V1(t2) : : : V1(tn) ÆÆ � bV1=2(t1) ÆÆ V1(t2) : : : V1(tn) ÆÆ (6.3)and ÆÆ bV1=2(t1) bV1=2(t2)V1(t3) : : : V1(tn) ÆÆ byÆÆ bV1=2(t1) bV1=2(t2)V1(t3) : : : V1(tn) ÆÆ � bV1=2(t1) ÆÆ bV1=2(t2)V1(t3) : : : V1(tn) ÆÆ� h bV1=2(t1) bV1=2(t2) i ÆÆ V1(t3) : : : V1(tn) ÆÆ : (6.4)Note that the orrelation funtion h bV1=2(t)V1(t0) i vanishes beause the onformal dimensions of theoperators do not math so that it does not appear in the de�nitions (6.3) and (6.4). Then the bosoni�niteness ondition (6.2) an be generalized to the following superstring �niteness onditions.The superstring �niteness onditions. The operatorslimt!t0 ÆÆ V1(t)V1(t0)n ÆÆ ; limt!t0 ÆÆ bV1=2(t)V1(t0)n ÆÆ (6.5)are �nite for any positive integer n and the operatorlimt!t0 ÆÆ bV1=2(t) bV1=2(t0)V1(t0)n ÆÆ (6.6)vanishes for any non-negative integer n.We now onstrut expliit solutions of superstring �eld theory for the lass of marginal deforma-tions satisfying the superstring �niteness onditions. The operators [ e�V (a;b) ℄r, [V1(a) e�V (a;b) ℄r, and[ e�V (a;b) V1(b) ℄r were expliitly onstruted in x 4.3 of [1℄. When the superstring �niteness onditionsare satis�ed, we have QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r (6.7)with4[OL(a) e�V (a;b) ℄r = � (a) [V1(a) e�V (a;b) ℄r + � �e� bV1=2(a) [ e�V (a;b) ℄r � �22 �(a) [ e�V (a;b) ℄r ;[ e�V (a;b) OR(b) ℄r = � [ e�V (a;b) V1(b) ℄r (b) + � [ e�V (a;b) ℄r �e� bV1=2(b) + �22 [ e�V (a;b) ℄r �(b) : (6.8)4 When the double-pole term 1=t2 in the operator produt expansion of V1(t)V1(0) is nonvanishing, we normalizeV1(t) suh that the oeÆient of the double-pole term is unity. If this onvention onits with the reality ondition onthe string �eld, we set � = i ~� and take ~� to be real when onstruting the real solution.15



It then follows that[ bOL(a) e�V (a;b) ℄r = � �e�� bV1=2(a) [ e�V (a;b) ℄r + �22 ����e�2�(a) [ e�V (a;b) ℄r ;[ e�V (a;b) bOR(b) ℄r = � [ e�V (a;b) ℄r �e�� bV1=2(b) � �22 [ e�V (a;b) ℄r ����e�2�(b) : (6.9)We an expliitly onstrut superstring solutions from these operators. By generalizing the alulationin appendix B.2 of [1℄, we an show thatQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b)OR(b) ℄r (6.10)with[OL(a) e�V (a;b) OL(b) ℄r = �2 (a) [V1(a) e�V (a;b) V1(b) ℄r (b) + �2 �e� bV1=2(a) [ e�V (a;b) V1(b) ℄r (b)� �32 �(a) [ e�V (a;b) V1(b) ℄r (b) + �2 (a) [V1(a) e�V (a;b) ℄r �e� bV1=2(b)+ �2 �e� bV1=2(a) [ e�V (a;b) ℄r �e� bV1=2(b)� �32 �(a) [ e�V (a;b) ℄r �e� bV1=2(b)+ �32 (a) [V1(a) e�V (a;b) ℄r �(b) + �32 �e� bV1=2(a) [ e�V (a;b) ℄r �(b)� �44 �(a) [ e�V (a;b) ℄r �(b) ; (6.11)when the superstring �niteness onditions are satis�ed. Here the operator [V1(a) e�V (a;b) V1(b) ℄r isde�ned as in appendix B.1 of [1℄. This proves the assumption (II) stated in appendix A. The remainingassumptions (III){(VI) an be shown just as in [1℄ for the bosoni ase. Thus the superstring solutionsonstruted from the operators [ bOL(a) e�V (a;b) ℄r and [ e�V (a;b) bOR(b) ℄r given in (6.9) using [ e�V (a;b) ℄rde�ned in setion 4 of [1℄ satisfy the equation of motion.The simplest example of a deformation satisfying the superstring �niteness onditions is the defor-mation assoiated with the onstant mode of the gauge �eld on a D-brane in at spae. If we denotea spae-like oordinate along the D-brane by X� and its fermioni partner by  �, the superonformalprimary �eld bV1=2 assoiated with the marginal deformation is given by  �, and V1 isV1(t) = G�1=2 �  �(t) = ip2�0 �tX�(t) (6.12)as in the bosoni ase. In this example, the operator produts (6.1), (6.3), and (6.4) are those de�nedby the standard normal ordering and the superstring �niteness onditions are satis�ed. In x 4.2of [1℄, several examples of marginal deformations satisfying the �niteness ondition in the bosoni asewere presented. It is easy to see by generalizing the argument in x 4.2 of [1℄ that the superstring�niteness onditions are satis�ed for the supersymmetri extensions of these examples, whih inludedeformations of at D-branes in at bakgrounds by onstant massless modes of the gauge �eld and ofthe salar �elds on the D-branes, the osine potential for a spae-like oordinate, and the hyperboliosine potential for the time-like oordinate. Therefore, we have expliitly onstruted superstringsolutions for these marginal deformations. 16



6.2 More spei� assumptionsA point where the boundary ondition is hanged behaves as a primary �eld in the bosoni ase and asa superonformal primary �eld in the superstring ase and is often desribed in terms of a boundary-ondition hanging operator. If we assume this property, we an derive more spei� forms of theoperators [OL(a) e�V (a;b) ℄r and [ e�V (a;b) OR(b) ℄r both in the bosoni and superstring ases.In the bosoni ase, the BRST transformation of a primary �eld Vh(t) of dimension h isQB � Vh(t) =  �tVh(t) + h (�)Vh(t) : (6.13)We thus expet that[ e�V (a;b)OR(b) ℄r = (b) �b [ e�V (a;b) ℄r + h(�) �(b) [ e�V (a;b) ℄r ;[OL(a) e�V (a;b) ℄r = � (a) �a [ e�V (a;b) ℄r � h(�) �(a) [ e�V (a;b) ℄r ; (6.14)where h(�) is a funtion of �, whih an be interpreted as the onformal dimension of the boundary-ondition hanging operator. Therefore, one the operator [ e�V (a;b) ℄r for arbitrary a and b is given,the solution is determined up to one unknown funtion h(�). The assumption (II) in appendix A annow be derived from (6.14). We haveQB � [OL(a) e�V (a;b) ℄r =� lim�!0 QB � �(a� �) �a + h(�) �(a � �)� [ e�V (a;b) ℄r=� ��(a) �a + h(�) �2� [ e�V (a;b) ℄r+ �(a) �a + h(�) �(a)� �(a) �a + h(�) �(a)� [ e�V (a;b) ℄r+ �(a) �a + h(�) �(a)� �(b) �b + h(�) �(b)� [ e�V (a;b) ℄r : (6.15)The seond line on the right-hand side preisely anels the �rst line. We �ndQB � [OL(a) e�V (a;b) ℄r = �(a) �a + h(�) �(a)� �(b) �b + h(�) �(b)� [ e�V (a;b) ℄r= � [OL(a) e�V (a;b)OR(b) ℄r ; (6.16)and thus we have derived the assumption (II). The assumptions (III){(V) in appendix A with addi-tional operator insertions an also be derived from those without operator insertions.If the onformal dimension of the boundary-ondition hanging operator orresponding to a de-formed bakground is known and the funtion h(�) is determined from the BRST transformation of[ e�V (a;b) ℄r, we an identify the value of � whih desribes the deformed bakground. As we disussedin x 6.1, renormalized operators satisfying the assumptions of appendix A were onstruted in [1℄ fora spei� lass of marginal deformations, and the funtion h(�) was determined as h(�) = �2=2 forthis lass of deformations. The simplest example in this lass is the deformation assoiated with thezero mode of the gauge �eld (6.12), and in this ase the boundary-ondition hanging operators atthe end points a and b are given by : e� i�p2�0X�(a) : and : e i�p2�0X�(b) :, respetively. They are primary�elds of dimension �2=2, and this is onsistent with the general result h(�) = �2=2 for the lass17



of deformations. The deformation by the osine potential [51, 52, 53, 54℄ whih interpolates Neu-mann and Dirihlet boundary onditions is also inluded in the lass, and the onformal dimensionof the boundary-ondition hanging operator between Neumann and Dirihlet boundary onditions isknown to be 1=16. Thus a natural onjeture is that a periodi array of lower-dimensional D-branesis desribed by the solution presented in setion 4 of [1℄ with � = 1=( 2p2 ).5If the renormalized operator [ e�V (a;b) ℄r obeys the relations�a [ e�V (a;b) ℄r = [ �a e�V (a;b) ℄r = � � [V1(a) e�V (a;b) ℄r ;�b [ e�V (a;b) ℄r = [ �b e�V (a;b) ℄r = � [ e�V (a;b) V1(b) ℄r ; (6.17)then (6.14) an also be expressed as[ e�V (a;b)OR(b) ℄r = � e�V (a;b) �� V1(b) + h(�) �(b)� �r ;[OL(a) e�V (a;b) ℄r = [ �� V1(a)� h(�) �(a)� e�V (a;b) ℄r : (6.18)It is easy to verify that the renormalized operators onstruted in setion 4 of [1℄ satisfy (6.17).In the superstring ase, the BRST transformation of a superonformal primary �eld bVh(t) ofdimension h is QB � bVh(t) =  �t bVh(t) + h (�)bVh(t) + �e�G�1=2 � bVh(t) : (6.19)Sinelim�!0R(t� �) (t) = 0 ; lim�!0R(t� �) �(t) = � ����e�2�(t) ; lim�!0R(t� �) �e�(t) = �e��(t) ;(6.20)the ghost setors of the operators [ bOL(a) e�V (a;b) ℄r and [ e�V (a;b) bOR(b) ℄r and onsequently of thesuperstring solutions are highly onstrained and written in terms of �e�� and ����e�2�. We anagain read o� the unknown funtion h(�) from the BRST transformation of [ e�V (a;b) ℄r and use it toidentify the value of � whih desribes a deformed bakground when the onformal dimension of theorresponding boundary-ondition hanging operator is known.6.3 Pure-gauge formsAs was disussed in appendix C of [1℄, the bosoni solutions in setion 2 an be formally written aspure-gauge string �elds if we use boundary-ondition hanging operators expanded in �. Similarly,the superstring solutions in this paper an also be formally written as pure-gauge string �elds ofsuperstring �eld theory. Let us write the operator [ e�V (a;b) ℄r as[ e�V (a;b) ℄r = �L(a)�R(b) ; (6.21)5 The solution, however, is not diretly onstruted from [ e�V (a;b) ℄r but from its expansion in � with di�erent valuesof a and b for di�erent terms in the expansion. Furthermore, the radius of onvergene in � of this solution is not known,so there ould be possible loopholes in our argument. 18



where �L(a) and �R(b) are the boundary-ondition hanging operators, and expand them as follows:�L(a) = 1 + 1Xn=1 �n �(n)L (a) ; �R(b) = 1 + 1Xn=1 �n �(n)R (b) : (6.22)These are formal expansions and we do not expet the operators �(n)L and �(n)R to belong to the ompleteset of loal operators of the boundary CFT. Then the state U an be formally fatorized as follows:U = �L �R ; (6.23)where �L = 1 + 1Xn=1�n �(n)L ; �R = 1 + 1Xn=1�n �(n)R (6.24)with h' ;�(n)L i = h f Æ '(0)�(n)L (1) iWn ; h' ;�(n)R i = h f Æ '(0)�(n)R (n) iWn : (6.25)The states AL and AR an be written asAL = � (QB�L) �R ; AR = �L (QB�R) : (6.26)Let us introdue states 
L and 
R de�ned by
L = 1 + 1Xn=1�n
(n)L ; 
R = 1 + 1Xn=1 �n
(n)R (6.27)withh' ;
(n)L i = h f Æ '(0) QB � [R�(n)L (1) ℄ iWn ; h' ;
(n)R i = h f Æ '(0) QB � [R�(n)R (n) ℄ iWn : (6.28)They are obviously annihilated by the BRST operator: QB
L = 0 , QB
R = 0 . Sinelim�!0 R(a� �)QB � �(n)L (a) = � lim�!0 QB � �R(a� �)�(n)L (a) �+ �(n)L (a)= �QB � �R�(n)L (a) �+ �(n)L (a) ; (6.29)the state bAL an be written as bAL = 
L �R � U : (6.30)Similarly, we have bAR = U � �L 
R : (6.31)Thus the solutions e�L and e��R an be written ase�L = 1 + (
L �R � U )U�1 = 
L ��1L ;e��R = 1� U�1 (U � �L 
R ) = ��1R 
R : (6.32)19



The left fator 
L of e�L and the right fator 
R of e��R are annihilated by QB. Furthermore, theright fator ��1L of e�L and the left fator ��1R of e��R are annihilated by �0 so that both �L and �Rare formally written as pure-gauge string �elds of superstring �eld theory. For the partiular marginaldeformation (6.12) assoiated with turning on the zero mode of the gauge �eld, �L orresponds to thesolution onstruted in [28℄.We an also express the real solution � in (4.19) in terms of �L, �R, 
L, and 
R. Sinee�L U e��R = 
L
R ; (6.33)we have e� = �pe�L U e��R ��1 �e�L pU � = h �p
L 
R ��1
L i h��1L p�L �R i : (6.34)This expression for e� is again formally in a pure-gauge form beause the left fator is annihilated byQB and the right fator is annihilated by �0. Thus we have also solved the problem of �nding a realsuperstring solution in a pure-gauge form raised in [28℄.AknowledgmentsWe would like to thank Volker Shomerus and Barton Zwiebah for useful disussions. The work ofM.K. is supported in part by the U.S. DOE grant DE-FG02-05ER41360 and by an MIT PresidentialFellowship.A AssumptionsIn this appendix we present a list of the assumptions introdued in [1℄ on the renormalized opera-tor [ e�V (a;b) ℄r for onstruting solutions orresponding to general marginal deformations. See x 1.1of [1℄ for more detailed disussion. While the disussion in [1℄ was for the bosoni string, it an beextended to the superstring if the marginal operator V1 is the supersymmetry transformation of asuperonformal primary �eld bV1=2 of dimension 1=2 as stated in (3.1) and if the BRST operator (3.4)for the superstring is used. We believe that all the assumptions are satis�ed for any exatly marginaldeformation preserving superonformal invariane.1. The BRST transformation of the operator [ e�V (a;b) ℄r takes the following form:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r ; (I)where OL(a) and OR(b) are some loal operators at a and b, respetively.
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2. The BRST transformation of the operator [OL(a) e�V (a;b) ℄r is given byQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b) OR(b) ℄r : (II)The operator [ e�V (a;b) ℄r generalizes to [ nYi=1 e�iV (ai;ai+1) ℄r (A.1)with ai < ai+1 for i = 1; 2; : : : ; n when di�erent boundary onditions on di�erent segments on theboundary are introdued. Two assumptions on this operator were made in [1℄.3. Replaement. When �i+1 = �i, the produt e�iV (ai ;ai+1) e�i+1V (ai+1 ;ai+2) inside the operator (A.1)an be replaed by e�iV (ai;ai+2):[ : : : e�iV (ai ;ai+1) e�iV (ai+1 ;ai+2) : : : ℄r = [ : : : e�iV (ai;ai+2) : : : ℄r : (III)4. Fatorization. When �j vanishes, the renormalized produt (A.1) fatorizes as follows:[ : : : e�j�1V (aj�1;aj) e�j+1V (aj+1;aj+2) : : : ℄r = [ : : : e�j�1V (aj�1;aj) ℄r [ e�j+1V (aj+1;aj+2) : : : ℄r : (IV)It was also assumed that (III) and (IV) hold when OL(a1), OR(an+1) or both are inserted into theoperator (A.1). The next assumption is for operators on the family of surfaes Wn.5. Loality. The operators [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r de�ned on Wn oinide with those de�nedon Wm with m > n: [ e�V (a;b) ℄r on Wn = [ e�V (a;b) ℄r on Wm ;[OL(a) e�V (a;b) ℄r on Wn = [OL(a) e�V (a;b) ℄r on Wm : (V)Finally, e�V (a;b) is lassially invariant under the reetion where V1(t) is replaed by V1(a + b � t),and it was assumed that [ e�V (a;b) ℄r preserves this symmetry.6. Reetion. The operator [ e�V (a;b) ℄r is invariant under the reetion where V1(t) is replaed byV1(a+ b� t): � exp��Z ba dt V1(a+ b� t)��r = � exp��Z ba dt V1(t)��r : (VI)
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