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tionThe purpose of the paper is to extend the general framework for marginal deformations developed in [1℄for open bosoni
 string �eld theory [2℄ to open superstring �eld theory formulated by Berkovits [3℄.1 Letus brie
y review re
ent remarkable progress in analyti
 methods for open string �eld theory [8℄{[31℄,fo
using on marginal deformations. Analyti
 solutions for marginal deformations were �rst 
onstru
tedin [20, 21℄ for the bosoni
 string when operator produ
ts of the marginal operator are regular, and thesolutions were extended to the superstring in [22, 23, 25℄. The generalization to marginal deformationswith singular operator produ
ts was initiated in [21℄, and solutions to third order in the deformationparameter were 
onstru
ted. For the spe
ial 
ase of the marginal deformation 
orresponding to thezero mode of the gauge �eld, solutions to all orders were 
onstru
ted for the bosoni
 string in [24℄ andfor the superstring in [28℄. The solutions in [24, 28℄, however, do not satisfy the reality 
ondition onthe string �eld, and a strategy for 
onstru
ting real solutions was outlined in [28℄. See [32℄{[46℄ forearlier study of marginal deformations in string �eld theory and related work.Analyti
 solutions for general marginal deformations satisfying the reality 
ondition were re
ently
onstru
ted in [1℄ for the bosoni
 string. While previous solutions for marginal deformations in [20,21, 22, 23, 25℄ were built from unintegrated vertex operators and b-ghost insertions, the solutionsin [1℄ were based on integrated vertex operators whi
h are 
losely related to �nite deformations ofboundary 
onformal �eld theory (CFT). A 
hange of boundary 
onditions in boundary CFT 
an beimplemented by properly renormalized exponential operators of an integral of the marginal operator,1 See [4, 5, 6, 7℄ for reviews on string �eld theory. 1



and a systemati
 pro
edure to 
onstru
t solutions from su
h renormalized operators was presentedin [1℄. The general idea of the 
onstru
tion in [1℄ does not depend on the bosoni
 nature of theproblem, and we expe
t that the 
onstru
tion 
an be extended to the superstring. We in fa
t �ndthat the extension is remarkably simple, and we 
onstru
t analyti
 solutions of open superstring �eldtheory to all orders in the deformation parameter satisfying the reality 
ondition.The organization of the paper is as follows. In se
tion 2 we review the 
onstru
tion in [1℄ ofsolutions to the equation of motion for the bosoni
 string. We use this result later and 
onstru
tstring �elds in the superstring satisfying the bosoni
 equation of motion with the BRST operator inthe bosoni
 theory repla
ed by the one in the superstring theory. In se
tion 3 we dis
uss propertiesof integrated vertex operators in the superstring. In se
tion 4 we 
onstru
t solutions to the equationof motion of open superstring �eld theory. This is the main result of the paper. String �eld theoryexpanded around the solution was des
ribed in [1℄ using a deformed star produ
t. In se
tion 5 we showthat the equation of motion of open superstring �eld theory expanded around the solution in se
tion 4
an also be des
ribed using the deformed star produ
t in [1℄. Se
tion 6 is devoted to dis
ussion.2 Solutions to the bosoni
 equation of motionThe equation of motion of open bosoni
 string �eld theory [2℄ is given byQB	+	2 = 0 ; (2.1)where 	 is the string �eld of ghost number one and QB is the BRST operator. Here and in whatfollows produ
ts of string �elds are de�ned by the star produ
t [2℄. In this se
tion we review the
onstru
tion in [1℄ of solutions to (2.1) for general marginal deformations.A marginal deformation is generated by a marginal operator V1(t) whi
h is a matter primary �eldof dimension one. The solutions in [1℄ are 
onstru
ted from an operator whi
h implements a 
hangeof boundary 
onditions between two points a and b on the boundary. When operator produ
ts of themarginal operator are regular, it is given byexp��Z ba dt V1(t) � = 1 + �Z ba dt V1(t) + �22! Z ba dt1 Z ba dt2 V1(t1)V1(t2) + : : : ; (2.2)where � is the deformation parameter. When operator produ
ts of the marginal operator are singu-lar, we need to renormalize the operator (2.2) properly to make it well de�ned, and we denote therenormalized operator by [ e�V (a;b) ℄r ; (2.3)where V (a; b) � Z ba dt V1(t) : (2.4)2



If the marginal deformation is exa
tly marginal, there is a one-parameter family of 
onsistent boundary
onditions labeled by � and we expe
t to have a 
orresponding family of solutions in string �eld theory.Sin
e the new boundary 
ondition generated by the operator [ e�V (a;b) ℄r is 
onformal, the operator[ e�V (a;b) ℄r should be invariant under the BRST transformation up to additional 
ontributions fromthe points a and b where the boundary 
ondition 
hanges:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r : (2.5)Here OL(a) and OR(b) are some lo
al operators at a and b, respe
tively. See the introdu
tion of [1℄for more detailed dis
ussion. The solutions in [1℄ were 
onstru
ted from the operator [ e�V (a;b) ℄r asfollows. The operator [ e�V (a;b) ℄r is given in the form of an expansion in �:[ e�V (a;b) ℄r = 1Xn=0�n [V (n)(a; b) ℄r ; (2.6)where [V (n)(a; b) ℄r � 1n! � �V (a; b)�n �r for n � 1 and [V (0)(a; b) ℄r � 1 : (2.7)We then de�ne a state U by U � 1 + 1Xn=1 �n U (n) ; (2.8)where h' ; U (n) i = h f Æ '(0) [V (n)(1; n) ℄r iWn : (2.9)Here and in what follows we denote a generi
 state in the Fo
k spa
e by ' and its 
orrespondingoperator in the state-operator mapping by '(0). The 
onformal transformation f(�) isf(�) = 2� ar
tan � ; (2.10)and we denote the 
onformal transformation of the operator '(�) under the map f(�) by f Æ '(�).The 
orrelation fun
tion is evaluated on the surfa
e Wn whi
h is obtained from the upper-half planeof z by the identi�
ation z � z+n+1. We represent Wn in the region where �1=2 � Re z � 1=2+n.It follows from (2.5) that the BRST transformation of the operator [V (n)(a; b) ℄r takes the formQB � [V (n)(a; b) ℄r = nXr=1 [V (n�r)(a; b)O(r)R (b) ℄r � nXl=1 [O(l)L (a)V (n�l)(a; b) ℄r ; (2.11)where OL and OR are expanded as follows:OL = 1Xn=1 �nO(n)L ; OR = 1Xn=1 �nO(n)R : (2.12)Thus the BRST transformation of U 
an be split into two pie
es:QBU = AR �AL (2.13)3



with AL = 1Xn=1 �nA(n)L ; AR = 1Xn=1 �nA(n)R ; (2.14)where h' ;A(n)L i = nXl=1h f Æ '(0) [O(l)L (1)V (n�l)(1; n) ℄r iWn ;h' ;A(n)R i = nXr=1h f Æ '(0) [V (n�r)(1; n)O(r)R (n) ℄r iWn : (2.15)We then de�ne 	L by 	L � AL U�1 ; (2.16)where U�1 is well de�ned perturbatively in � be
ause U = 1 + O(�). The BRST transformation of	L 
an be 
al
ulated as follows:QB	L = QB (AL U�1)= (QBAL)U�1 +AL U�1 (QBU)U�1= (QBAL)U�1 +AL U�1 (AR �AL)U�1= (QBAL +AL U�1AR)U�1 �AL U�1AL U�1= (QBAL +AL U�1AR)U�1 �	2L : (2.17)
It was shown in [1℄ that the relation QBAL = �AL U�1AR (2.18)holds under a set of assumptions whi
h were argued to be satis�ed for any exa
tly marginal defor-mation. The equation (2.5) is in fa
t the �rst of these assumptions. We list the 
omplete set ofassumptions in appendix A. The state 	L thus solves the equation of motion:QB	L +	2L = 0 : (2.19)The solution 	L, however, does not satisfy the reality 
ondition on the string �eld, and a solutionsatisfying the reality 
ondition was generated in [1℄ from 	L by a gauge transformation. The string�eld 	 must have a de�nite parity under the 
ombination of the Hermitean 
onjugation (h
) and theinverse BPZ 
onjugation (bpz�1) to guarantee that the string �eld theory a
tion is real [47℄. We de�nethe 
onjugate Xz of a string �eld X byXz � bpz�1 Æ h
 (X) : (2.20)The 
onjugation satis�es (QBX)z = � (�1)X QBXz ; (2.21)(X Y )z = Y zXz : (2.22)4



Here and in what follows a string �eld in the exponent of (�1) denotes its Grassmann property: it is 0mod 2 for a Grassmann-even state and 1 mod 2 for a Grassmann-odd state. In order for QB	 and 	2to have the same 
onjugation property, the Grassmann-odd string �eld 	 must satisfy 	z = 	. Thisis the reality 
ondition on the string �eld in open bosoni
 string �eld theory. When the renormalizedoperator [ e�V (a;b) ℄r preserves the invarian
e under the re
e
tion where V1(t) is repla
ed by V1(a+b�t)and when V1 is 
hosen su
h that the state 
orresponding to �V1(0) is even under the 
onjugation,2we have U z = U ; (U�1)z = U�1 ; AzL = AR : (2.23)Therefore, a state 	R de�ned by 	R � U�1AR (2.24)is the 
onjugate of 	L and solves the equation of motion. The two solutions 	L and 	R are relatedby the gauge transformation generated by U :	R = U�1	L U + U�1QBU : (2.25)A solution 	 satisfying the reality 
ondition is obtained from 	L or 	R by gauge transformations asfollows: 	 = 1pU 	LpU + 1pU QBpU= pU 	R 1pU +pU QB 1pU= 12 � 1pU 	LpU +pU 	R 1pU + 1pU QBpU � (QBpU) 1pU � ; (2.26)where pU and 1=pU are de�ned perturbatively in �. It follows from (pU )z = pU , (1=pU )z = 1=pUand 	zL = 	R that the last expression for 	 in (2.26) manifestly satis�es the reality 
ondition. Thethree expressions are equivalent be
ause of the relation (2.25).3 Integrated vertex operators in the superstringWe expe
t that integrated vertex operators play a 
ru
ial role in extending the 
onstru
tion of so-lutions in [1℄ to the superstring. The marginal operator V1 in the superstring is the supersymmetrytransformation of a super
onformal primary �eld bV1=2 in the matter se
tor of dimension 1=2:V1(t) = G�1=2 � bV1=2(t) � ZC(t)h dz2�i TF (z) � d�z2�i eTF (�z) i bV1=2(t) ; (3.1)where TF (z) and eTF (�z) are the holomorphi
 and antiholomorphi
 
omponents, respe
tively, of theworld-sheet super
urrent, and C(t) is a 
ontour in the upper-half plane whi
h runs from the point t+�2 If the state 
orresponding to V1(0) is odd under the 
onjugation, we set � = i ~� and take ~� to be real to satisfy this
onvention. 5



on the real axis to the point t� � on the real axis in the limit �! 0 with � > 0. An integrated vertexoperator in the 0 pi
ture is an integral of V1 on the boundary:V (a; b) = Z ba dt V1(t) = Z ba dtG�1=2 � bV1=2(t) : (3.2)It is invariant under the BRST transformation up to nonvanishing terms from the end points of theintegral region: QB � V (a; b) = Z ba dt �t [ 
V1(t) + �e� bV1=2(t) ℄= [ 
V1(b) + �e� bV1=2(b) ℄� [ 
V1(a) + �e� bV1=2(a) ℄ : (3.3)We use the des
ription of the super
onformal ghosts in terms of �, �, and � [48, 49℄, and the BRSToperator for the superstring is given byQB = Z h dz2�i jB(z) � d�z2�i ~|B(�z) i (3.4)with jB = 
 TmB + 
 T ��B + 
 T �B + �e� TmF + : b
�
 : � b���e2� ;T ��B = ���� ; T �B = �12 ����� �2� ; (3.5)where TmB and TmF are the holomorphi
 
omponents of the energy-momentum tensor and the super-
urrent in the matter se
tor, respe
tively, and ~|B is the antiholomorphi
 
ounterpart of jB . Theoperator V (a; b) in the matter se
tor is obviously annihilated by �0, whi
h is the zero mode of � andplays an important role in open superstring �eld theory [3℄. Sin
e the BRST operator anti
ommuteswith �0, the operator QB � V (a; b) is also annihilated by �0. We 
an expli
itly see that the operator
V1(t) + �e� bV1=2(t) whi
h appeared in (3.3) is annihilated by �0. The operator 
V1(t) + �e� bV1=2(t)is also annihilated by the BRST operator. This 
an be seen by a
ting with QB on (3.3). In thedes
ription of the super
onformal ghosts in terms of �, �, and � in
luding the se
tor generated by �0and �0, any BRST-
losed operator 
an be written as an BRST-exa
t operator be
ause of the existen
eof a Grassmann-odd operator R(t) satisfyingQB �R(t) = 1 : (3.6)See, for example, footnote 3 of [50℄. We 
hoose R(t) to beR(t) � � 
���e�2�(t) : (3.7)Sin
e lim�!0R(t� �) [ 
V1(t) + �e� bV1=2(t) ℄ = 
�e�� bV1=2(t) ; (3.8)6



we have 
V1(t) + �e� bV1=2(t) = QB � � 
�e�� bV1=2(t) � : (3.9)Note that the unintegrated vertex operator 
e�� bV1=2 in the �1 pi
ture with an additional fa
tor of �appeared in (3.8). This operator is used in the solution to the linearized equation of motion of opensuperstring �eld theory formulated by Berkovits [3℄, as we will dis
uss in the next se
tion.Finite deformations of the boundary CFT are generated by an exponential of V (a; b). Whenoperator produ
ts of V1 are regular, it is given by e�V (a;b), where � is the deformation parameter. ItsBRST transformation isQB � e�V (a;b) = � e�V (a;b) [ 
V1(b) + �e� bV1=2(b) ℄ � � [ 
V1(a) + �e� bV1=2(a) ℄ e�V (a;b) (3.10)if operator produ
ts of bV1=2 and an arbitrary number of V1's are also regular so that (3.3) 
an beapplied even in the presen
e of further insertions of V1's. The se
ond term on the right-hand side 
anbe written as� [ 
V1(a) + �e� bV1=2(a) ℄ e�V (a;b)= �QB � � 
�e�� bV1=2(a) � e�V (a;b)= �QB � � 
�e�� bV1=2(a) e�V (a;b) � � �2 [ 
�e�� bV1=2(a) ℄ e�V (a;b) [ 
V1(b) + �e� bV1=2(b) ℄ ; (3.11)where we again used the regularity assumption on the operator produ
ts. We thus �nd that�QB � � 
�e�� bV1=2(a) e�V (a;b) �= � [ 
V1(a) + �e� bV1=2(a) ℄ e�V (a;b) + �2 [ 
�e�� bV1=2(a) ℄ e�V (a;b) [ 
V1(b) + �e� bV1=2(b) ℄ : (3.12)This relation, being generalized to the singular 
ase, plays a 
ru
ial role in our 
onstru
tion of solutionsin open superstring �eld theory.When operator produ
ts of V1 are singular, we need to renormalize the operator e�V (a;b) properlyto make it well de�ned, and we denote the renormalized operator by [ e�V (a;b) ℄r as before. If thedeformation is exa
tly marginal and preserves super
onformal invarian
e, we assume as in the bosoni

ase that the BRST transformation of [ e�V (a;b) ℄r takes the following form:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r ; (3.13)where OL(a) and OR(b) are some Grassmann-odd lo
al operators at a and b, respe
tively. The opera-tors [OL(a) e�V (a;b) ℄r and [ e�V (a;b)OR(b) ℄r are annihilated by �0 , as we dis
ussed before. To leadingorder in � they are determined from (3.3) and given by[OL(a) e�V (a;b) ℄r = � [ 
V1(a) + �e� bV1=2(a) ℄ +O(�2) ;[ e�V (a;b) OR(b) ℄r = � [ 
V1(b) + �e� bV1=2(b) ℄ +O(�2) : (3.14)In the regular 
ase, we �nd from the exa
t expression in (3.10) thatOregularL = OregularR = � [ 
V1 + �e� bV1=2 ℄ ; (3.15)7



and there are no higher-order 
orre
tions to the operators OL and OR.Let us introdu
e the following operators:[ bOL(a) e�V (a;b) ℄r � lim�!0 R(a� �) [OL(a) e�V (a;b) ℄r ;[ e�V (a;b) bOR(b) ℄r � � lim�!0 [ e�V (a;b) OR(b) ℄r R(b+ �) : (3.16)These are generalizations of � 
�e�� bV1=2(a) e�V (a;b) and � e�V (a;b) 
�e�� bV1=2(b) in the regular 
ase.The ghost se
tor 
ouples to the matter se
tor only through 
 and �e� in the BRST 
urrent, and theoperator produ
ts of 
���e�2� with 
, �e�, and their derivatives are regular. The limit �! 0 in (3.16)is therefore regular. To leading order in � these operators redu
e to[ bOL(a) e�V (a;b) ℄r = � 
�e�� bV1=2(a) +O(�2) ;[ e�V (a;b) bOR(b) ℄r = � 
�e�� bV1=2(b) +O(�2) : (3.17)The BRST transformation of [ bOL(a) e�V (a;b) ℄r 
an be 
al
ulated from (3.6) and from the BRSTtransformation of [OL(a) e�V (a;b) ℄r. When the deformation is exa
tly marginal and preserves super-
onformal invarian
e, we assume that the BRST transformation of [OL(a) e�V (a;b) ℄r is given byQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b) OR(b) ℄r : (3.18)See the introdu
tion of [1℄ for more detailed dis
ussion. The BRST transformation of [ bOL(a) e�V (a;b) ℄ris then given byQB � [ bOL(a) e�V (a;b) ℄r = QB � h lim�!0R(a� �) [OL(a) e�V (a;b) ℄r i= [OL(a) e�V (a;b) ℄r + lim�!0R(a� �) [OL(a) e�V (a;b) OR(b) ℄r : (3.19)This is a generalization of (3.12). Similarly, we �ndQB � [ e�V (a;b) bOR(b) ℄r = �QB � h lim�!0 [ e�V (a;b) OR(b) ℄r R(b+ �) i= [ e�V (a;b) OR(b) ℄r + lim�!0 [OL(a) e�V (a;b)OR(b) ℄r R(b+ �) : (3.20)As we mentioned before, the relations (3.19) and (3.20) play a 
ru
ial role in the 
onstru
tion of thegeneral superstring solutions in the next se
tion.4 Solutions in the superstringIn this se
tion we 
onstru
t solutions for general marginal deformations in open superstring �eld theoryformulated by Berkovits [3℄. The equation of motion is�0 ( e��QB e� ) = 0 ; (4.1)8



where � is the superstring �eld of ghost number zero. The leading term in the expansion of (4.1) in� is given by QB �0 �+O(�2) = 0 ; (4.2)where we have used fQB ; �0g = 0. To leading order in the deformation parameter �, a solution �asso
iated with an exa
tly marginal deformation takes the formh' ;� i = � h f Æ '(0) 
�e�� bV1=2(1) iW1 +O(�2) ; (4.3)where bV1=2 is the super
onformal primary operator 
orresponding to the marginal deformation, asintrodu
ed in se
tion 3. The term of (4.3) at O(�) solves the equation of motion to linear order in� given in (4.2) be
ause �0 eliminates the operator � and the remaining unintegrated vertex operator
e�� bV1=2 in the �1 pi
ture is annihilated by the BRST operator.In [22℄ Erler proposed to solve the following equation:e��QB e� = 	 ; (4.4)where 	 satis�es QB	+	2 = 0 ; �0	 = 0 ; (4.5)and to linear order in � the state 	 redu
es toh' ;	 i = � h f Æ '(0) QB � [ 
�e�� bV1=2(1) ℄ iW1 +O(�2) : (4.6)Namely, the state 	 is a pure-gauge string �eld with respe
t to the gauge transformation of bosoni
string �eld theory, while we use the BRST operator of the superstring. Sin
e the left-hand side of (4.4)also takes a pure-gauge form, we expe
t a solution � to the equation (4.4) of the form (4.3). Sin
e 	is annihilated by �0, the solution of (4.4) also solves the equation of motion (4.1).In [22℄ su
h a pure-gauge string �eld 	 was 
onstru
ted from the solution of open bosoni
 string�eld theory in [20, 21℄ by repla
ing the unintegrated vertex operator 
V1 in the bosoni
 string withQB � [ 
�e�� bV1=2 ℄ in the superstring. Then the equation (4.4) was solved and solutions for marginaldeformations were 
onstru
ted in open superstring �eld theory when operator produ
ts of the marginaloperator are regular [22, 25℄.We 
an also obtain pure-gauge string �elds satisfying (4.5) using the 
onstru
tion of solutionsfor bosoni
 string �eld theory in [1℄, whi
h 
overs the 
ase where operator produ
ts of the marginaloperator are singular. As we reviewed in se
tion 2, the solutions in [1℄ are 
onstru
ted from theoperator [ e�V (a;b) ℄r under the assumptions listed in appendix A. String �elds in the superstringsatisfying (4.5) 
an be 
onstru
ted from the operator [ e�V (a;b) ℄r with V1 = G�1=2 � bV1=2 as introdu
edin (3.1) of se
tion 3 be
ause all the assumptions listed in appendix A are expe
ted to be satis�ed whenthe deformation 
orresponding to bV1=2 is exa
tly marginal and preserves super
onformal invarian
e.All the solutions in se
tion 2 have the same leading term in � given by �A(1)L + O(�2), where A(n)L9



is de�ned in (2.15).3 As A(1)L is determined by the leading term of [OL(a) e�V (a;b) ℄r whi
h is givenin (3.14) for the superstring 
ase, we �ndh' ;A(1)L i = h f Æ '(0) O(1)L (1) iW1= h f Æ '(0) [ 
V1(1) + �e� bV1=2(1) ℄ iW1= h f Æ '(0) QB � [ 
�e�� bV1=2(1) ℄ iW1 ; (4.7)where we have used (3.9). Therefore, the 
ondition (4.6) is satis�ed. The solutions in [1℄ are built fromthe operator [ e�V (a;b) ℄r and its BRST transformation whi
h are both annihilated by �0, and thus these
ond 
ondition in (4.5) is also satis�ed. We 
an thus 
onstru
t superstring solutions for marginaldeformations from the bosoni
 solutions of [1℄ by solving (4.4).The leading term of the superstring solution � in (4.3) is built from the leading term of the operator[ bOL(a) e�V (a;b) ℄r, as 
an be seen from (3.17). We therefore expe
t that the operator [ bOL(a) e�V (a;b) ℄rplays an important role in the 
onstru
tion of superstring solutions. Just as AL and AR are 
onstru
tedfrom the operators [OL(1) e�V (1;n) ℄r and [ e�V (1;n)OR(n) ℄r at O(�n), respe
tively, we introdu
e statesbAL and bAR whi
h are 
onstru
ted from [ bOL(1) e�V (1;n) ℄r and [ e�V (1;n) bOR(n) ℄r at O(�n). We de�nebAL = 1Xn=1 �n bA (n)L ; bAR = 1Xn=1 �n bA (n)R (4.8)with h' ; bA (n)L i = lim�!0 nXl=1h f Æ '(0)R(1 � �)[O(l)L (1)V (n�l)(1; n) ℄r iWn ;h' ; bA (n)R i = � lim�!0 nXr=1h f Æ '(0) [V (n�r)(1; n)O(r)R (n) ℄r R(n+ �) iWn : (4.9)The states bAL and bAR are related by the 
onjugation:� bAL�z = � bAR : (4.10)This 
an be shown as follows. The state R 
orresponding to the operator R(0) satis�es QBR = j0i andthus R z = R , whi
h follows from j0iz = j0i and (2.21). Following the argument in x 2.2.1 of [1℄, theoperator R(1� �) on Wn in the de�nition of bA (n)L is mapped to R(n+ �) under the 
onjugation. Therelation (4.10) then follows from AzL = AR. The BRST transformations of bAL and bAR 
an be derivedfrom those of AL and AR. The BRST transformation of AL is presented in (2.18), and using (2.13)we �nd QBAR = QB (QBU +AL) = QBAL. Thus we haveQBAL = �AL U�1AR ; QBAR = �AL U�1AR : (4.11)3 The leading terms of the bosoni
 solutions 	L, 	R, and 	 are �A(1)L , �A(1)R , and � (A(1)L + A(1)R )=2, respe
tively.Be
ause O(1)R = O(1)L , we have A(1)R = A(1)L and thus all three solutions are equivalent to leading order.10



Using the identities (3.19) and (3.20), the BRST transformations of bAL and bAR are given byQB bAL = AL + bAL U�1AR ; QB bAR = AR �AL U�1 bAR : (4.12)These relations hold when the assumptions in appendix A are satis�ed.We now 
laim that �L and �R de�ned bye�L = 1 + bAL U�1 ; e��R = 1� U�1 bAR (4.13)solve the equation (4.4) with 	 being 	L = AL U�1 and 	R = U�1AR , respe
tively, de�ned inse
tion 2. Using the relations (2.13) and (4.12), we haveQBe�L = �AL + bAL U�1AR�U�1 � bAL U�1 (AR �AL)U�1= �1 + bAL U�1�AL U�1= e�L 	L ; (4.14)and QBe��R = � U�1 �AR �AL U�1 bAR�+ U�1 (AR �AL)U�1 bAR= � U�1AR �1� U�1 bAR�= �	R e��R : (4.15)Therefore, e��L QBe�L = 	L ; e��R QBe�R = � (QBe��R) e�R = 	R : (4.16)Sin
e 	L and 	R are annihilated by �0, the states �L and �R solve the equation of motion (4.1).The reality 
ondition on the superstring �eld � is �z = � �, or�e��z= e�� : (4.17)The solutions �L and �R do not satisfy the reality 
ondition. In fa
t, we �nd�e�L�z = e��R ; (4.18)whi
h follows dire
tly from (4.10) and the de�nitions (4.13). However, we 
an generate a real solutionfrom �L and �R by generalizing the method in appendix B of [22℄. We 
laim that � de�ned bye� = �pe�L U e��R ��1 � e�L pU � (4.19)satis�es the reality 
ondition and solves the equation of motion. The state � is well de�ned to allorders in � be
ause e�L U e��R = 1 +O(�) and U = 1 +O(�). Using the relationse�L U e��R = � e�L pU � � e�L pU �z ; � e�L U e��R �z = e�L U e��R ; (4.20)11



we have�e��z e� = � e�L pU �z �q� e�L pU � � e�L pU �z ��1 �q� e�L pU � � e�L pU �z ��1 � e�L pU �= � e�L pU �z � � e�L pU � � e�L pU �z ��1 � e�L pU �= 1 : (4.21)Therefore, (e�)z = e�� and the reality 
ondition (4.17) is satis�ed.The state � de�ned in (4.19) is related to the solution �L in the following way:e� = 
 e�L � ; (4.22)where 
 = (pe�L U e��R )�1 and � = pU . If 
 is annihilated by QB and � is annihilated by �0, thestate � is a gauge transformation of �L and thus satis�es the equation of motion. It is obvious thatthe state pU is annihilated by �0. The state (pe�L U e��R )�1 is annihilated by QB if e�L U e��R isannihilated by QB . It 
an be shown as follows:QB � e�L U e��R � = e�L �	L U +QB U � U 	R � e��R= e�L �AL +QB U �AR � e��R= 0 ; (4.23)where we used (2.13) in the last step. This 
ompletes the 
onstru
tion of real solutions in opensuperstring �eld theory for general marginal deformations under the assumptions listed in appendix A.In
identally, the solution � satis�es the equation (4.4) with the real solution 	 of [1℄ given in (2.26):QB e� = �pe�L U e��R ��1QB� e�L pU �= �pe�L U e��R ��1 e�L �	LpU +QBpU �= �pe�L U e��R ��1 e�LpU � 1pU 	LpU + 1pU QBpU �= e�	 : (4.24)Sin
e 	 is annihilated by �0, we have re
on�rmed that � solves the equation of motion (4.1).5 Superstring �eld theory around the deformed ba
kgroundIt was shown in [1℄ that the a
tion of open bosoni
 string �eld theory expanded around the realsolution (2.26) 
an be written in terms of deformed algebrai
 stru
tures de�ned byX ? Y � X U�1 Y ;QX � QBX +AL ? X � (�1)X X ? AR = QBX +	LX � (�1)X X 	R ;hhX;Y ii � hX;U�1 Y U�1 i (5.1)12



for arbitrary string �elds X and Y . When � = 0, the deformed stru
tures redu
e to their undeformed
ounterparts be
ause U = 1 + O(�) and AL, AR, 	L, and 	R are of O(�). The equation of motionderived from the a
tion in terms of the deformed stru
tures isQ Æ	+ Æ	 ? Æ	 = 0 ; (5.2)where Æ	 is related to the original string �eld 	 expanded around the real solution (2.26), whi
h wenow denote by 	0, as follows: 	 = 	0 + 1pU Æ	 1pU : (5.3)The deformed stru
tures obey the expe
ted algebrai
 relationsQ2X = 0 ;Q (X ? Y ) = (QX) ? Y + (�1)X X ? (QY ) ;hhX;Y ii = (�1)XY hhY;X ii ;hhQX;Y ii = �(�1)XhhX;QY ii ;hhX;Y ? Z ii = hhX ? Y;Z ii ; (5.4)whi
h are ne
essary for a 
onsistent formulation of string �eld theory. Sin
e open superstring �eldtheory [3℄ is formulated using the algebrai
 stru
tures of open bosoni
 string �eld theory, the a
tion ofopen superstring �eld theory written in terms of the deformed stru
tures is 
onsistent. It is expe
tedto des
ribe 
u
tuations around the ba
kground 
orresponding to the solution (4.19) in terms of arede�ned string �eld Æ�. We show in this se
tion that this is indeed the 
ase and derive the relationbetween Æ� and the original string �eld � analogous to the relation (5.3) between 	 and Æ	 for thebosoni
 
ase found in [1℄.To formulate superstring �eld theory using the deformed algebrai
 stru
tures, we �rst have tointrodu
e an exponential operator exp?[X ℄ of the deformed star algebra. As 
an be seen from thede�nition (5.1), the state U plays the role of the identity element of the deformed star algebra:X ? U = U ? X = X : (5.5)We thus de�ne exp?[X ℄ byexp?[X ℄ = U +X + 12! X ? X + 13! X ?X ? X + : : : = U + 1Xn=1 1n! X ?X ? : : : ? X| {z }n times : (5.6)The equation of motion derived from the a
tion using the deformed algebrai
 stru
tures is�0 � exp?[�Æ� ℄ ?Q exp?[ Æ� ℄ � = 0 : (5.7)To determine the relation between Æ� and the original string �eld �, let us express (5.7) in terms ofthe undeformed star produ
t and the BRST operator QB . The exponential operator exp?[X ℄ 
an bewritten as exp?[X ℄ = pU e 1pU X 1pU pU : (5.8)13



We thus �nd 1pU h �0 � exp?[�Æ� ℄ ?Q exp?[ Æ� ℄ � i 1pU= �0� e� 1pU Æ� 1pU 1pU Q �pU e 1pU Æ� 1pU pU � 1pU �= �0� e� 1pU Æ� 1pU QB�e 1pU Æ� 1pU � �+ �0� �QBpU �pU 	R � 1pU �+ �0� e� 1pU Æ� 1pU � 1pU QBpU + 1pU 	LpU � e 1pU Æ� 1pU � : (5.9)
The se
ond term on the right-hand side vanishes. Note that the real solution of bosoni
 string �eldtheory in (2.26) appeared in the last line of (5.9). We use the relation (4.4) applied to the real bosoni
and superstring solutions shown in (4.24) and �nd1pU QBpU + 1pU 	LpU = e��0 QB e�0 ; (5.10)where we denoted the real superstring solution (4.19) by �0 . The equation of motion 
an then bewritten as �0 � e� 1pU Æ� 1pU QB� e 1pU Æ� 1pU �+ e� 1pU Æ� 1pU e��0 QB� e�0 � e 1pU Æ� 1pU �= �0 � e� 1pU Æ� 1pU e��0 QB� e�0 e 1pU Æ� 1pU � � = 0 : (5.11)We re
ognize this as the equation of motion for the original string �eld � with the following identi�-
ation: e� = e�0 e 1pU Æ� 1pU : (5.12)This is the relation between Æ� and �, whi
h is a natural extension of (5.3) for the bosoni
 
ase.6 Dis
ussion6.1 Expli
it 
onstru
tion for a 
lass of marginal deformationsWe followed the strategy adopted in [1℄, and we have presented a pro
edure to 
onstru
t solutionsfor general marginal deformations in the superstring from properly renormalized operator produ
tsof the marginal operator V1 satisfying the set of assumptions listed in appendix A. In se
tion 4of [1℄, su
h renormalized operator produ
ts in the bosoni
 string were expli
itly 
onstru
ted for a 
lassof marginal deformations satisfying a �niteness 
ondition. To state it, we de�ne operator produ
tsÆÆ V1(t1)V1(t2) : : : V1(tn) ÆÆ for arbitrary n with ti 6= tj re
ursively as follows:ÆÆ V1(t1) ÆÆ � V1(t1) ;ÆÆ V1(t1)V1(t2) : : : V1(tn) ÆÆ � V1(t1) ÆÆ V1(t2) : : : V1(tn) ÆÆ� nXi=2 hV1(t1)V1(ti) i ÆÆ V1(t2) : : : V1(ti�1)V1(ti+1) : : : V1(tn) ÆÆ (6.1)14



for n > 1 and ti 6= tj. The �niteness 
ondition of [1℄ then demands that the limitlimt!t0 ÆÆ V1(t)V1(t0)n ÆÆ (6.2)is �nite for any positive integer n.In the superstring 
ase, we furthermore de�ne operator produ
ts involving the operator bV1=2. Forarbitrary n with ti 6= tj, we de�ne ÆÆ bV1=2(t1)V1(t2) : : : V1(tn) ÆÆ byÆÆ bV1=2(t1)V1(t2) : : : V1(tn) ÆÆ � bV1=2(t1) ÆÆ V1(t2) : : : V1(tn) ÆÆ (6.3)and ÆÆ bV1=2(t1) bV1=2(t2)V1(t3) : : : V1(tn) ÆÆ byÆÆ bV1=2(t1) bV1=2(t2)V1(t3) : : : V1(tn) ÆÆ � bV1=2(t1) ÆÆ bV1=2(t2)V1(t3) : : : V1(tn) ÆÆ� h bV1=2(t1) bV1=2(t2) i ÆÆ V1(t3) : : : V1(tn) ÆÆ : (6.4)Note that the 
orrelation fun
tion h bV1=2(t)V1(t0) i vanishes be
ause the 
onformal dimensions of theoperators do not mat
h so that it does not appear in the de�nitions (6.3) and (6.4). Then the bosoni
�niteness 
ondition (6.2) 
an be generalized to the following superstring �niteness 
onditions.The superstring �niteness 
onditions. The operatorslimt!t0 ÆÆ V1(t)V1(t0)n ÆÆ ; limt!t0 ÆÆ bV1=2(t)V1(t0)n ÆÆ (6.5)are �nite for any positive integer n and the operatorlimt!t0 ÆÆ bV1=2(t) bV1=2(t0)V1(t0)n ÆÆ (6.6)vanishes for any non-negative integer n.We now 
onstru
t expli
it solutions of superstring �eld theory for the 
lass of marginal deforma-tions satisfying the superstring �niteness 
onditions. The operators [ e�V (a;b) ℄r, [V1(a) e�V (a;b) ℄r, and[ e�V (a;b) V1(b) ℄r were expli
itly 
onstru
ted in x 4.3 of [1℄. When the superstring �niteness 
onditionsare satis�ed, we have QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r (6.7)with4[OL(a) e�V (a;b) ℄r = � 
(a) [V1(a) e�V (a;b) ℄r + � �e� bV1=2(a) [ e�V (a;b) ℄r � �22 �
(a) [ e�V (a;b) ℄r ;[ e�V (a;b) OR(b) ℄r = � [ e�V (a;b) V1(b) ℄r 
(b) + � [ e�V (a;b) ℄r �e� bV1=2(b) + �22 [ e�V (a;b) ℄r �
(b) : (6.8)4 When the double-pole term 1=t2 in the operator produ
t expansion of V1(t)V1(0) is nonvanishing, we normalizeV1(t) su
h that the 
oeÆ
ient of the double-pole term is unity. If this 
onvention 
on
i
ts with the reality 
ondition onthe string �eld, we set � = i ~� and take ~� to be real when 
onstru
ting the real solution.15



It then follows that[ bOL(a) e�V (a;b) ℄r = � 
�e�� bV1=2(a) [ e�V (a;b) ℄r + �22 
�
���e�2�(a) [ e�V (a;b) ℄r ;[ e�V (a;b) bOR(b) ℄r = � [ e�V (a;b) ℄r 
�e�� bV1=2(b) � �22 [ e�V (a;b) ℄r 
�
���e�2�(b) : (6.9)We 
an expli
itly 
onstru
t superstring solutions from these operators. By generalizing the 
al
ulationin appendix B.2 of [1℄, we 
an show thatQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b)OR(b) ℄r (6.10)with[OL(a) e�V (a;b) OL(b) ℄r = �2 
(a) [V1(a) e�V (a;b) V1(b) ℄r 
(b) + �2 �e� bV1=2(a) [ e�V (a;b) V1(b) ℄r 
(b)� �32 �
(a) [ e�V (a;b) V1(b) ℄r 
(b) + �2 
(a) [V1(a) e�V (a;b) ℄r �e� bV1=2(b)+ �2 �e� bV1=2(a) [ e�V (a;b) ℄r �e� bV1=2(b)� �32 �
(a) [ e�V (a;b) ℄r �e� bV1=2(b)+ �32 
(a) [V1(a) e�V (a;b) ℄r �
(b) + �32 �e� bV1=2(a) [ e�V (a;b) ℄r �
(b)� �44 �
(a) [ e�V (a;b) ℄r �
(b) ; (6.11)when the superstring �niteness 
onditions are satis�ed. Here the operator [V1(a) e�V (a;b) V1(b) ℄r isde�ned as in appendix B.1 of [1℄. This proves the assumption (II) stated in appendix A. The remainingassumptions (III){(VI) 
an be shown just as in [1℄ for the bosoni
 
ase. Thus the superstring solutions
onstru
ted from the operators [ bOL(a) e�V (a;b) ℄r and [ e�V (a;b) bOR(b) ℄r given in (6.9) using [ e�V (a;b) ℄rde�ned in se
tion 4 of [1℄ satisfy the equation of motion.The simplest example of a deformation satisfying the superstring �niteness 
onditions is the defor-mation asso
iated with the 
onstant mode of the gauge �eld on a D-brane in 
at spa
e. If we denotea spa
e-like 
oordinate along the D-brane by X� and its fermioni
 partner by  �, the super
onformalprimary �eld bV1=2 asso
iated with the marginal deformation is given by  �, and V1 isV1(t) = G�1=2 �  �(t) = ip2�0 �tX�(t) (6.12)as in the bosoni
 
ase. In this example, the operator produ
ts (6.1), (6.3), and (6.4) are those de�nedby the standard normal ordering and the superstring �niteness 
onditions are satis�ed. In x 4.2of [1℄, several examples of marginal deformations satisfying the �niteness 
ondition in the bosoni
 
asewere presented. It is easy to see by generalizing the argument in x 4.2 of [1℄ that the superstring�niteness 
onditions are satis�ed for the supersymmetri
 extensions of these examples, whi
h in
ludedeformations of 
at D-branes in 
at ba
kgrounds by 
onstant massless modes of the gauge �eld and ofthe s
alar �elds on the D-branes, the 
osine potential for a spa
e-like 
oordinate, and the hyperboli

osine potential for the time-like 
oordinate. Therefore, we have expli
itly 
onstru
ted superstringsolutions for these marginal deformations. 16



6.2 More spe
i�
 assumptionsA point where the boundary 
ondition is 
hanged behaves as a primary �eld in the bosoni
 
ase and asa super
onformal primary �eld in the superstring 
ase and is often des
ribed in terms of a boundary-
ondition 
hanging operator. If we assume this property, we 
an derive more spe
i�
 forms of theoperators [OL(a) e�V (a;b) ℄r and [ e�V (a;b) OR(b) ℄r both in the bosoni
 and superstring 
ases.In the bosoni
 
ase, the BRST transformation of a primary �eld Vh(t) of dimension h isQB � Vh(t) = 
 �tVh(t) + h (�
)Vh(t) : (6.13)We thus expe
t that[ e�V (a;b)OR(b) ℄r = 
(b) �b [ e�V (a;b) ℄r + h(�) �
(b) [ e�V (a;b) ℄r ;[OL(a) e�V (a;b) ℄r = � 
(a) �a [ e�V (a;b) ℄r � h(�) �
(a) [ e�V (a;b) ℄r ; (6.14)where h(�) is a fun
tion of �, whi
h 
an be interpreted as the 
onformal dimension of the boundary-
ondition 
hanging operator. Therefore, on
e the operator [ e�V (a;b) ℄r for arbitrary a and b is given,the solution is determined up to one unknown fun
tion h(�). The assumption (II) in appendix A 
annow be derived from (6.14). We haveQB � [OL(a) e�V (a;b) ℄r =� lim�!0 QB � �
(a� �) �a + h(�) �
(a � �)� [ e�V (a;b) ℄r=� �
�
(a) �a + h(�) 
�2
� [ e�V (a;b) ℄r+ �
(a) �a + h(�) �
(a)� �
(a) �a + h(�) �
(a)� [ e�V (a;b) ℄r+ �
(a) �a + h(�) �
(a)� �
(b) �b + h(�) �
(b)� [ e�V (a;b) ℄r : (6.15)The se
ond line on the right-hand side pre
isely 
an
els the �rst line. We �ndQB � [OL(a) e�V (a;b) ℄r = �
(a) �a + h(�) �
(a)� �
(b) �b + h(�) �
(b)� [ e�V (a;b) ℄r= � [OL(a) e�V (a;b)OR(b) ℄r ; (6.16)and thus we have derived the assumption (II). The assumptions (III){(V) in appendix A with addi-tional operator insertions 
an also be derived from those without operator insertions.If the 
onformal dimension of the boundary-
ondition 
hanging operator 
orresponding to a de-formed ba
kground is known and the fun
tion h(�) is determined from the BRST transformation of[ e�V (a;b) ℄r, we 
an identify the value of � whi
h des
ribes the deformed ba
kground. As we dis
ussedin x 6.1, renormalized operators satisfying the assumptions of appendix A were 
onstru
ted in [1℄ fora spe
i�
 
lass of marginal deformations, and the fun
tion h(�) was determined as h(�) = �2=2 forthis 
lass of deformations. The simplest example in this 
lass is the deformation asso
iated with thezero mode of the gauge �eld (6.12), and in this 
ase the boundary-
ondition 
hanging operators atthe end points a and b are given by : e� i�p2�0X�(a) : and : e i�p2�0X�(b) :, respe
tively. They are primary�elds of dimension �2=2, and this is 
onsistent with the general result h(�) = �2=2 for the 
lass17



of deformations. The deformation by the 
osine potential [51, 52, 53, 54℄ whi
h interpolates Neu-mann and Diri
hlet boundary 
onditions is also in
luded in the 
lass, and the 
onformal dimensionof the boundary-
ondition 
hanging operator between Neumann and Diri
hlet boundary 
onditions isknown to be 1=16. Thus a natural 
onje
ture is that a periodi
 array of lower-dimensional D-branesis des
ribed by the solution presented in se
tion 4 of [1℄ with � = 1=( 2p2 ).5If the renormalized operator [ e�V (a;b) ℄r obeys the relations�a [ e�V (a;b) ℄r = [ �a e�V (a;b) ℄r = � � [V1(a) e�V (a;b) ℄r ;�b [ e�V (a;b) ℄r = [ �b e�V (a;b) ℄r = � [ e�V (a;b) V1(b) ℄r ; (6.17)then (6.14) 
an also be expressed as[ e�V (a;b)OR(b) ℄r = � e�V (a;b) �� 
V1(b) + h(�) �
(b)� �r ;[OL(a) e�V (a;b) ℄r = [ �� 
V1(a)� h(�) �
(a)� e�V (a;b) ℄r : (6.18)It is easy to verify that the renormalized operators 
onstru
ted in se
tion 4 of [1℄ satisfy (6.17).In the superstring 
ase, the BRST transformation of a super
onformal primary �eld bVh(t) ofdimension h is QB � bVh(t) = 
 �t bVh(t) + h (�
)bVh(t) + �e�G�1=2 � bVh(t) : (6.19)Sin
elim�!0R(t� �) 
(t) = 0 ; lim�!0R(t� �) �
(t) = � 
�
���e�2�(t) ; lim�!0R(t� �) �e�(t) = 
�e��(t) ;(6.20)the ghost se
tors of the operators [ bOL(a) e�V (a;b) ℄r and [ e�V (a;b) bOR(b) ℄r and 
onsequently of thesuperstring solutions are highly 
onstrained and written in terms of 
�e�� and 
�
���e�2�. We 
anagain read o� the unknown fun
tion h(�) from the BRST transformation of [ e�V (a;b) ℄r and use it toidentify the value of � whi
h des
ribes a deformed ba
kground when the 
onformal dimension of the
orresponding boundary-
ondition 
hanging operator is known.6.3 Pure-gauge formsAs was dis
ussed in appendix C of [1℄, the bosoni
 solutions in se
tion 2 
an be formally written aspure-gauge string �elds if we use boundary-
ondition 
hanging operators expanded in �. Similarly,the superstring solutions in this paper 
an also be formally written as pure-gauge string �elds ofsuperstring �eld theory. Let us write the operator [ e�V (a;b) ℄r as[ e�V (a;b) ℄r = �L(a)�R(b) ; (6.21)5 The solution, however, is not dire
tly 
onstru
ted from [ e�V (a;b) ℄r but from its expansion in � with di�erent valuesof a and b for di�erent terms in the expansion. Furthermore, the radius of 
onvergen
e in � of this solution is not known,so there 
ould be possible loopholes in our argument. 18



where �L(a) and �R(b) are the boundary-
ondition 
hanging operators, and expand them as follows:�L(a) = 1 + 1Xn=1 �n �(n)L (a) ; �R(b) = 1 + 1Xn=1 �n �(n)R (b) : (6.22)These are formal expansions and we do not expe
t the operators �(n)L and �(n)R to belong to the 
ompleteset of lo
al operators of the boundary CFT. Then the state U 
an be formally fa
torized as follows:U = �L �R ; (6.23)where �L = 1 + 1Xn=1�n �(n)L ; �R = 1 + 1Xn=1�n �(n)R (6.24)with h' ;�(n)L i = h f Æ '(0)�(n)L (1) iWn ; h' ;�(n)R i = h f Æ '(0)�(n)R (n) iWn : (6.25)The states AL and AR 
an be written asAL = � (QB�L) �R ; AR = �L (QB�R) : (6.26)Let us introdu
e states 
L and 
R de�ned by
L = 1 + 1Xn=1�n
(n)L ; 
R = 1 + 1Xn=1 �n
(n)R (6.27)withh' ;
(n)L i = h f Æ '(0) QB � [R�(n)L (1) ℄ iWn ; h' ;
(n)R i = h f Æ '(0) QB � [R�(n)R (n) ℄ iWn : (6.28)They are obviously annihilated by the BRST operator: QB
L = 0 , QB
R = 0 . Sin
elim�!0 R(a� �)QB � �(n)L (a) = � lim�!0 QB � �R(a� �)�(n)L (a) �+ �(n)L (a)= �QB � �R�(n)L (a) �+ �(n)L (a) ; (6.29)the state bAL 
an be written as bAL = 
L �R � U : (6.30)Similarly, we have bAR = U � �L 
R : (6.31)Thus the solutions e�L and e��R 
an be written ase�L = 1 + (
L �R � U )U�1 = 
L ��1L ;e��R = 1� U�1 (U � �L 
R ) = ��1R 
R : (6.32)19



The left fa
tor 
L of e�L and the right fa
tor 
R of e��R are annihilated by QB. Furthermore, theright fa
tor ��1L of e�L and the left fa
tor ��1R of e��R are annihilated by �0 so that both �L and �Rare formally written as pure-gauge string �elds of superstring �eld theory. For the parti
ular marginaldeformation (6.12) asso
iated with turning on the zero mode of the gauge �eld, �L 
orresponds to thesolution 
onstru
ted in [28℄.We 
an also express the real solution � in (4.19) in terms of �L, �R, 
L, and 
R. Sin
ee�L U e��R = 
L
R ; (6.33)we have e� = �pe�L U e��R ��1 �e�L pU � = h �p
L 
R ��1
L i h��1L p�L �R i : (6.34)This expression for e� is again formally in a pure-gauge form be
ause the left fa
tor is annihilated byQB and the right fa
tor is annihilated by �0. Thus we have also solved the problem of �nding a realsuperstring solution in a pure-gauge form raised in [28℄.A
knowledgmentsWe would like to thank Volker S
homerus and Barton Zwieba
h for useful dis
ussions. The work ofM.K. is supported in part by the U.S. DOE grant DE-FG02-05ER41360 and by an MIT PresidentialFellowship.A AssumptionsIn this appendix we present a list of the assumptions introdu
ed in [1℄ on the renormalized opera-tor [ e�V (a;b) ℄r for 
onstru
ting solutions 
orresponding to general marginal deformations. See x 1.1of [1℄ for more detailed dis
ussion. While the dis
ussion in [1℄ was for the bosoni
 string, it 
an beextended to the superstring if the marginal operator V1 is the supersymmetry transformation of asuper
onformal primary �eld bV1=2 of dimension 1=2 as stated in (3.1) and if the BRST operator (3.4)for the superstring is used. We believe that all the assumptions are satis�ed for any exa
tly marginaldeformation preserving super
onformal invarian
e.1. The BRST transformation of the operator [ e�V (a;b) ℄r takes the following form:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r ; (I)where OL(a) and OR(b) are some lo
al operators at a and b, respe
tively.
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2. The BRST transformation of the operator [OL(a) e�V (a;b) ℄r is given byQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b) OR(b) ℄r : (II)The operator [ e�V (a;b) ℄r generalizes to [ nYi=1 e�iV (ai;ai+1) ℄r (A.1)with ai < ai+1 for i = 1; 2; : : : ; n when di�erent boundary 
onditions on di�erent segments on theboundary are introdu
ed. Two assumptions on this operator were made in [1℄.3. Repla
ement. When �i+1 = �i, the produ
t e�iV (ai ;ai+1) e�i+1V (ai+1 ;ai+2) inside the operator (A.1)
an be repla
ed by e�iV (ai;ai+2):[ : : : e�iV (ai ;ai+1) e�iV (ai+1 ;ai+2) : : : ℄r = [ : : : e�iV (ai;ai+2) : : : ℄r : (III)4. Fa
torization. When �j vanishes, the renormalized produ
t (A.1) fa
torizes as follows:[ : : : e�j�1V (aj�1;aj) e�j+1V (aj+1;aj+2) : : : ℄r = [ : : : e�j�1V (aj�1;aj) ℄r [ e�j+1V (aj+1;aj+2) : : : ℄r : (IV)It was also assumed that (III) and (IV) hold when OL(a1), OR(an+1) or both are inserted into theoperator (A.1). The next assumption is for operators on the family of surfa
es Wn.5. Lo
ality. The operators [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r de�ned on Wn 
oin
ide with those de�nedon Wm with m > n: [ e�V (a;b) ℄r on Wn = [ e�V (a;b) ℄r on Wm ;[OL(a) e�V (a;b) ℄r on Wn = [OL(a) e�V (a;b) ℄r on Wm : (V)Finally, e�V (a;b) is 
lassi
ally invariant under the re
e
tion where V1(t) is repla
ed by V1(a + b � t),and it was assumed that [ e�V (a;b) ℄r preserves this symmetry.6. Re
e
tion. The operator [ e�V (a;b) ℄r is invariant under the re
e
tion where V1(t) is repla
ed byV1(a+ b� t): � exp��Z ba dt V1(a+ b� t)��r = � exp��Z ba dt V1(t)��r : (VI)
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