
*0
70
8.
23
92
*

Revised Version
ar

X
iv

:0
70

8.
23

92
v2

  [
he

p-
th

] 
 2

8 
A

ug
 2

00
7

arxiv:0708.2392CALT-68-2658DESY 07-127ZMP-HH/07-022
Towards mirror symmetry �a la SYZfor generalized Calabi{Yau manifolds

Pasal Grange � and Sakura Sh�afer-Nameki ℄� II. Institut f�ur theoretishe Physik der Universit�at HamburgLuruper Chaussee 149, 22761 Hamburg, GermanyandZentrum f�ur mathematishe Physik, Universit�at HamburgBundesstrasse 55, 20146 Hamburg, Germany℄ California Institute of Tehnology1200 E California Blvd., Pasadena, CA 91125, USApasal.grange�desy.de, ss299�theory.alteh.eduAbstratFibrations of ux bakgrounds by supersymmetri yles are investigated. For an internal six-manifoldM with stati SU(2) struture and mirror M̂ , it is argued that the produtM�M̂ isdoubly �bered by supersymmetri three-tori, with both sets of �bers transverse to M and M̂ .The mirror map is then realized by T-dualizing the �bers. Mirror-symmetri properties of theuxes, both geometri and non-geometri, are shown to agree with previous onjetures basedon the requirement of mirror symmetry for Killing prepotentials. The �bers are onjeturedto be destabilized by uxes on generi SU(3)�SU(3) bakgrounds, though they may surviveat type-jumping points. T-dualizing the surviving �bers ensures the exhange of pure spinorsunder mirror symmetry.
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SU(3)-strutures form a geometri sublass of SU(3)� SU(3) struture manifolds, wherethe pure spinors are denoted by 
 and eiJ , and there is no type-jumping. These manifoldswere established to be the mirrors of Calabi-Yau with so-alled geometri or eletri H{uxin [18℄, whih in the ase of torus-bundles redues to the statement that T-duality exhangesthe Chern-lass of the bundle with the integral of the H-ux along the T-dualized diretion[1, 19, 20℄.Speial ases of non-geometri bakgrounds have been identi�ed as physial realizations ofthe type-jumping phenomenon previously studied in generalized omplex geometry [11, 6, 21℄.Furthermore, the e�etive ations of string theory on bakgrounds admitting SU(3)� SU(3)struture exhibit symmetry properties under the exhange of �+ and �� [9℄. This exhangeextends the ation of mirror symmetry beyond the realm of Calabi{Yau manifolds, in whihthe pure spinors are �+ = eiJ and �� = 
, where J and 
 denote the K�ahler form andholomorphi three-form, respetively. The generalized alibrations are exhanged in the sameway as the ones governing stability of D-branes of type A and B on Calabi{Yau manifolds[22, 15℄. Fortunately generalized omplex submanifolds share a lot of properties with AbelianD-branes [23, 24, 25℄.Flux bakgrounds, while �xing moduli, have therefore violently shaken the geometri frame-work of Calabi{Yau ompati�ations, but still happen to possess good mirror-symmetri prop-erties. This begs for an explanation in terms of the ation of T-duality on the internal spae inthe presene of uxes. In other words, we would like to know what remains of the Strominger{Yau{Zaslow (SYZ) piture of mirror symmetry [26, 27℄, in the ase of SU(3)�SU(3) struturebakgrounds.The purpose of this paper is therefore to investigate the moduli spae of alibrated ylesin bakgrounds with SU(3)�SU(3) struture, and to formulate the exhange between �+ and�� in terms of T-duality along suh yles, thus extending mirror symmetry to ases wheremuh of the struture available in Calabi{Yau manifolds is missing.1This an be done in several steps. After realling the onnetion between the pure spinorsand the superharges, we speialize to the ase of internal manifolds with a so-alled statiSU(2) struture. The type of the pure spinors are onstant on suh manifolds, but nevermaximal, sine they are equal to one and two, respetively. We shall see that supersymmetritori transverse to the produt of the internal spaeM and its mirror M̂ have the entireM�M̂as moduli spae. In partiular M and M̂ are still �bered by three-tori, but the �bers are notsupersymmetri by themselves. We illustrate this generalized SYZ proposal for stati SU(2)struture manifolds in various speial ases and show that it is ompatible with the mirrormap advoated in [9℄.Then we address the ase of generi SU(3)� SU(3) strutures, that exhibit type-jumpingphenomena, and orrespondingly open-string moduli �xing. We shall see that zeroes or ritialpoints of the oeÆients relating the superharges to eah other ditate the position moduli ofsupersymmetri yles. Finally, we may perform T-duality along the existing supersymmetriyles, and obtain the type-jumping phenomena from the naturality properties of Fourier{Mukai transform with respet to the so-alled B- and �-transforms of generalized omplexgeometry. This will be related to the ovariane properties of the di�erential operators on uxbakgrounds, and on�rm the mirror-symmetri form of the superpotentials for SU(3)�SU(3)1For generalized K�ahler manifolds an argument of mirror symmetry via T-duality for the topologial sigma-models was put forward in [28℄. 2



bakgrounds.2 Review and notations2.1 Supersymmetry, pure spinors and struturesGeneralized omplex geometry ontains both omplex geometry and sympleti geometry.An almost generalized omplex struture on a manifold M is de�ned as an almost omplexstruture on the sum of the tangent and otangent bundles. It is a generalized omplex (GC)struture if its +i-eigenbundle is stable under the ation of the Courant braket [10, 11, 29℄.We will give a more detailed review of the onepts in generalized geometry, inluding GCsubmanifolds, in the next sub-setion. Here we review the de�nition of pure spinors in terms ofsuperharges. There is a one-to-one orrespondene between GC strutures and pure spinors.A pure spinor is a sum of di�erential forms and may loally be written in a unique way as thewedge produt of k omplex one-forms and the exponential of a two-form:�1 ^ � � � ^ �k ^ eB+i!: (2.1)The integer k is alled the type of the pure spinor. From now on we only onsider six-dimensional manifolds. The speial ase k = 0 orresponds to a sympleti struture on themanifold, and the speial ase k = 3 to a omplex struture. Not only an the type assumeother values, but it an also vary on the manifold. This is alled the type-jumping phenomenon[11℄. We will mostly work with the pure spinors as the objets enoding the GC struture.Consider Type II ompati�ations on six-manifolds with SU(3)�SU(3) struture [10, 11,7, 8, 9℄ (for more referenes see [30℄). These are haraterized by a pair of no-where vanishingSU(3)-invariant spinors �1;2, whih arise in the deomposition of the two SO(9; 1) spinors �1;2of Type II under SO(3; 1)� SO(6).Let M and M̂ be a (real) six-dimensional manifold and its mirror, both assumed to haveSU(3)� SU(3) struture. As suh they respetively possess pure spinors ��;�+ and �̂�; �̂+,where the signs denote the parity of the type. The pure spinors on M are onstruted asbilinears of spinors: �+ = �1+ 
 �2y+�� = �1+ 
 �2y� ; (2.2)where �1 and �2 are related to eah other by the equation�2+ = �1+ + (v + iw)mm�1� ; (2.3)de�ning the omplex one-form v + iw and omplex number , whih have to satifsy the nor-malization ondition jj2 + jv + iwj2 = 1 : (2.4)There are analogous objets on M̂ and we shall oasionally refer to them just by putting hatson the symbols we expliitly de�ne on M .At points where jj = 1 (zeroes of v + iw), the two SU(3) spinors �1 and �2 beomeproportional to eah other, and the two SU(3) strutures de�ned by bilinears of �1 and �2agree. At suh points the pure spinors �� and �+ have type three and type zero respetively,3



|v+iw|   =1 
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 |c|   =1 

|v+iw|  + |c|   =1 
2 2

2Figure 1: Moduli spae of spinors for SU(3) � SU(3) struture manifolds (depited one di-mension lower as an S2). The blue and red irles depit the SU(3) and the stati SU(2)strutures, respetively, whih do not interset.just as they do in the ase of manifolds of SU(3) strutures. Up to a B-transform they readat suh points ��jjj=1 = 
�+jjj=1 = eiJ : (2.5)If jj = 1 on the whole of M , then M has an SU(3) struture. Calabi{Yau manifolds formthe sublass of those manifolds for whih both of 
 and eiJ are losed.At generi points though, the spinors �1 and �2 are linearly independent, the two SU(3)strutures onstruted from them do not agree, and their fundamental two-form and omplexthree-form may be written asJ1 = j + v ^ w ; J2 = j � v ^ w
1 = ! ^ (v + iw) ; 
2 = ! ^ (v � iw) : (2.6)The pure spinors in turn are expressed [7℄ in a way that allows to read-o� their types, as�� = �18 (v + iw) ^ ei(j+!)�+ = �18 � e�i(j+v^w+ 1�!) : (2.7)It an be observed that type-jumping (from one to three) ours for �� at points where jj = 1(zeroes of v + iw). The limit where v + iw goes to zero is ill-de�ned in those expressions, andthe pure spinors at suh points are expressed as in formulas (2.5).Another type-jumping phenomenon ours at zeroes of . At these points the two spinors�1 and �2 beome orthogonal, and there is a loal SU(2) struture. The pure spinors thenread: �� = (v + iw) ^ eij�+ = ! ^ eiv^w : (2.8)We notie that due to the normalization onstraint relating  to v + iw, type-jumpingours at ritial points of jj and jv + iwj. The situation is depited in Figure 1. Manifolds4



with v + iw = 0 everywhere form the partiular lass of manifolds with SU(3) struture.Those with  = 0 everywhere form another partiular lass, the one of manifolds with statiSU(2) struture. On suh manifolds the pure spinors �� and �+ have type one and typetwo everywhere. The Euler harateristi of any manifold with stati SU(2) struture is zero,beause otherwise the vetor �eld orresponding to v + iw would have zeroes.In summary the set of manifolds with SU(3) � SU(3) struture has two important sub-lasses:
SU(3)� SU(3) struture :(v + iw; ) 2 S3 � SU(3) struture :v + iw = 0; jj = 1� stati SU(2) struture :jv + iwj = 1;  = 0 (2.9)

2.2 Generalized geometry, generalized submanifolds and D-branesFor the sake of ompleteness, let us reall a few de�nitions from generalized omplex (GC)geometry [11℄. Given an n-dimensional manifoldM , with even n, a generalized almost omplexstruture onM is de�ned as an almost omplex struture on the sum of tangent and otangentbundles TM � T �M . For example, suh a struture an be indued by an ordinary omplexstruture J on M JJ = �J 00 �J�� ; (2.10)in whih ase it will sometimes be termed a diagonal GC struture, or by a sympleti form! on M J! = �0 �!�1! 0 � ; (2.11)where the matries are written in a basis adapted to the diret sum TM � T �M . Hybridexamples, other than these two extreme ones, are lassi�ed by a generalized Darboux theorem[11℄, saying that any GC spae is loally the sum of a omplex spae and a sympleti spae.Hybrid GC strutures with no underlying omplex or sympleti struture do appear in N = 1supersymmetri ompati�ations of string theory [31, 32℄.Around every point p, the sum TpM � T �pM is naturally endowed with an inner produtof signature (n; n), hX + �; Y + �i = 12(�X� + �Y �) : (2.12)It also ats naturally on polyforms on M :(X + �):� = �X�+ � ^ �: (2.13)Ating twie on � yields a Cli�ord algebra, and the +i eigenbundle of a GC struture is an n-dimensional subspae, hene the one-to-one orrespondene between GC strutures and purespinors (polyforms with an n-dimensional annihilator). On a Calabi{Yau manifold, the pure5



spinor assoiated to the diagonal GC struture indued by the ordinary omplex strutureis the holomorphi n-form, while the pure spinor assoiated to the o�-diagonal GC strutureindued by the sympleti struture is ei!, where ! denotes the K�ahler form.The inner produt is onserved by an ation of the group O(n; n), whose generi elementontains o�-diagonal bloks that an be exponentiated into the so-alled B- and �-transformsexpB = � 1 0B 1� : B : X + � 7! X + � + �XBexp � = �1 �0 1� : � : X + � 7! X + ��� + � ; (2.14)where B and � are antisymmetri bloks identi�ed with a two-form B�� and a bivetor ���.The orreponding transforms at by onjugation on the matries of the GC strutures, andby left-multipliation by eB or e� on the orresponding pure spinors. These ations will ourin setion 6.Let H be a losed three-form. A generalized submanifold is de�ned in [11℄ as a submanifoldN endowed with a two-form B suh that HjN = dB. The generalized tangent bundle �BN ofthis generalized submanifold is de�ned as the B-transform of the sum of the tangent bundleTN and onormal bundle (or annihilator) AnnTN , namely:�BN = fX + � 2 TN � T �M jN ; �jN = �XBg ; (2.15)so that � 0N = TN �AnnTN . A generalized tangent bundle is a maximally isotropi subspae(i.e., it is isotropi with respet to natural pairing and it has the maximal possible dimensionfor an isotropi spae in ambient signature (n; n), namely n.) Moreover, all the maximallyisotropi subspaes are of this form, for some submanifold N and two-form B.Given a GC struture J , a generalized omplex brane is de�ned in [11℄ as a generalizedsubmanifold whose generalized tangent bundle is stable under the ation of J . In the ase of adiagonal GC struture, the ompatibility ondition gives rise to the B-branes, as expeted dueto the loalization properties of the B-model on omplex parameters [33℄. The submanifoldN namely has to be a omplex submanifold, and F has to be of type (1; 1) with respet to JJ(TN) � TN ; J�(�XF ) + �JXF = 0 : (2.16)In the other extreme ase of a sympleti struture, the de�nition yields all possible types ofA-branes, inluding the non-Lagrangian ones [34, 35℄. These are two tests of the idea thatD-branes in generalized geometries are generalized submanifolds. This idea has passed furthertests: alibrating forms and pure spinors enoding stability onditions for topologial branes[36℄ are orretly exhanged by mirror symmetry [37, 22, 23, 14℄.3 The SYZ argument for Calabi{Yau manifoldsLet us sketh the SYZ argument [26℄, assuming for a moment that M is an ordinary Calabi{Yau manifold with a Calabi{Yau mirror M̂ . We break the argument up into steps, whih weshall then extend to generalized Calabi{Yau manifolds.6



Step 1: Consider the D0-branes of the B-model on M .As there is an ordinary omplex struture on M , one an always put stable D0-branes on it.In other words, the moduli spae of a D0-brane onsists of the entire manifold M .Step 2: Consider the A-model on the mirror manifold M̂ .As mirror symmetry does not hange moduli spaes, there must be a stable D-brane L onM̂ (a speial Lagrangian submanifold (SLag) of M̂) that has the same moduli spae, namelyM . It is safe to disregard the oisotropi D-branes of the A-model in this ontext [34, 38, 39℄,beause they are �ve-dimensional and one eventually onsiders D-branes that an be obtainedfrom D0-branes by three T-dualities, whih rules out dimension �ve.Step 3: Projet out the gauge-bundle moduli.Moreover, this moduli spae has a �bered struture: it is �bered over the set of geometrimoduli alledMSLag(L), with �ber given by the gauge-bundle moduli (the projetion map �is given by \forgetting the bundle data"):M ��!MSLag(L): (3.1)M is therefore �bered by the gauge bundle data, with �ber given by the set of Wilson linesT b1(L).Step 4: Desribe the loal tangent spae to the moduli spae of supersymmetri three-yles.The tangent spae at L to the moduli spae of SLags [40℄ with at onnetions is given byH1(L;C) ' H1(L)�H1(L); (3.2)with the �rst term orresponding to geometri moduli and the seond one to gauge-bundlemoduli (the Lagrangian and speial ondition are preserved by exatly those deformationsthat are indued by harmoni one-forms, and the at gauge onnetions are desribed by theset of b1 monodromies around the non-trivial homology yles in L).Step 5: Use the result of step 1 to ompute the dimension of the �bers.The moduli spae of SLags with at onnetions on M̂ (ontinuously onneted to L) thereforehas real dimension 2b1(L), half of whih omes from the moduli of at onnetions. But the�ber in the �bration (3.1) is a torus T b1(L). As this moduli spae is M itself, we learn that2b1 = 6, and that M is �bered by three-tori.Step 6: T-dualize along the three-yles.Consider a D3-brane with at onnetion wrapping a T 3 �ber on M . T-dualizing along thethree U(1) diretions produes a D0-brane on a T-dual manifold alled M 0, whose modulispae is the whole of M 0. Consider a D0-brane on M . Its moduli spae is the whole of M .It sits at some point in a T 3 �ber. T-dualizing along the three U(1) diretions of this �berprodues a D3-brane with at onnetion wrapping a three-yle on M 0. This desribes a�bration ofM 0 by three-tori, whose moduli spae isM . This is the same situation as with theouple of branes on M and M̂ desribed above. Therefore M̂ = M 0 and T-duality along thetorus �bers is mirror symmetry. 7



4 Fibrations �a la SYZ for stati SU(2) struturemanifoldsManifolds with stati SU(2) struture form an interesting but still tratable sublass of bak-grounds beause they substantially di�er from Calabi{Yau manifolds (in that they admit nolosed type-three pure spinor), and beause they do not exhibit type-jumping phenomena.They are relatively tratable, for the prie of onsidering yles that are transverse to M andits mirror M̂ . Having type-one and type-two losed pure spinors, we �nd it natural to formtheir wedge produt, whih indues a GC struture on the produtM�M̂ , beause the wedgeprodut starts with a omplex three-form and allows for some parallel treatment of the SYZargument.4.1 Supersymmetri yles on M � M̂Consider a generalized Calabi{Yau manifold M and its mirror M̂ , both with stati SU(2)-struture.2 There is a nowhere-vanishing omplex one-form �eld v + iw, induing on everyloal four-dimensional transverse spae a real two-form j and a omplex two-form !. Theorresponding two pure spinors are �� = (v + iw) ^ eij�+ = ! ^ eiv^w : (4.1)They are exhanged under mirror symmetry with analogous objets on the mirror M̂ built froma nowhere-vanishing omplex one-form �eld v̂ + iŵ, induing on every loal four-dimensionaltransverse spae a real two-form ĵ and a omplex two-form !̂:�̂� = (v̂ + iŵ) ^ eiĵ�̂+ = !̂ ^ eiv̂^ŵ : (4.2)This is a ase of the generalized Darboux theorem with types one and two, and we an hooseloal oordinates that are adapted to it:j =: dx3 ^ dx4 + dx5 ^ dx6 ; ĵ =: dx̂3 ^ dx̂4 + dx̂5 ^ dx̂6;! =: d(x3 + ix4) ^ d(x5 + ix6) ; !̂ =: d(x̂3 + ix̂4) ^ d(x̂5 + ix̂6) : (4.3)The pure spinors ��, �+, �̂� and �̂+ indue almost GC strutures on M and M̂ denoted byJ�, J+, Ĵ� and Ĵ+.Step 1. Where an we plae points? In order to parallel the �rst step of the SYZ argumentfor Calabi{Yau manifolds, we need to be able to move points on a six-dimensional spae. Thisannot be M or M̂ , beause the GC struture indued by �� always maps some tangentvetors to some normal vetors. This prevents the generalized tangent bundle to a point frombeing stable under the ation of the GC struture.Consider instead supersymmetri yles on M � M̂ . There are several possible hoies forstrutures and alibrations, and we will be interested in the following ombinations:2For reent developments based on the physis of SU(2) struture manifolds as gravity duals of deformationsof super Yang{Mills theories, see for instane [41℄. 8



� GC branes w.r.t. the GC struture J� � Ĵ+, alibrated by �+ ^ �̂�, whih we all �� GC branes w.r.t. the GC struture J+ � Ĵ�, alibrated by �� ^ �̂+, whih we all �̂.In a basis of the loal tangent spae to M � M̂ adapted to the loal splitting into 2 + 4dimensions, we have the following matrix representation for the GC strutures, where thesymbols J! and J!̂ denote the almost omplex strutures orresponding to ! and !̂ in theloal four-dimensional subspaes, so that we obtainJ� � Ĵ+ = 0BB� Jv+iw 0 0 00 �J�v+iw 0 00 0 0 �j�10 0 j 0 1CCA�0BB� 0 �v̂ ^ ŵ�1 0 0v̂ ^ ŵ 0 0 00 0 J!̂ 00 0 0 �J �̂! 1CCA ;
J+ � Ĵ� = 0BB� 0 �v ^ w�1 0 0v ^ w 0 0 00 0 J! 00 0 0 �J�! 1CCA�0BB� Jv̂+iŵ 0 0 00 �J �̂v+iŵ 0 00 0 0 �ĵ�10 0 ĵ 0 1CCA : (4.4)
Let us desribe the generalized tangent bundle � 0� (with zero �eld strength), of the GCsubmanifold � of M � M̂ . As the two GC strutures we onsider on M � M̂ are blok-diagonal with bloks of the same size , the projetions of the generalized tangent bundle ontothe sums of bloks and dual bloks are separately generalized omplex and alibrated w.r.t.the orresponding bloks.We may hoose � to have zero-dimensional projetions onto Vet(v; w) and Vet(v̂; ŵ)?.hosen to be trivial, the projetions of � 0� onto Vet(v̂; ŵ) and Vet(v; w)? have to be La-grangian w.r.t. v̂ ^ ŵ and j respetively, and alibrated by v̂ + iŵ and !. This gives one-dimensional and two-dimensional projetions on Vet(v̂; ŵ) and Vet(v; w)? respetively forthe world-volume of � j + v̂ ^ ŵj� = 0 (4.5)Im (! ^ (v̂ + iŵ)) j� = 0 : (4.6)They look like the Lagrangian and speial onditions, but live on a six-dimensional subspaeof M � M̂ , transverse to both M and M̂ . To sum up, a possible loal generalized tangentbundle is given in the oordinates hosen above as:� 0� = �v; w; ��x3 + idx4; ��x5 + idx6; v̂� + iŵ�; dx̂3; dx̂4; dx̂5; dx̂6� : (4.7)The supersymmetri yle � is therefore three-dimensional, but neither of its projetions onM or M̂ is (they are two- and one-dimensional respetively). The situation is depited in �g.2. The same linear-algebrai exerise an be repeated with hats exhanged to yield the loalgeneralized tangent bundle of the yle alled �̂ (with a somewhat misleading notation beause�̂ is not mirror to �; both are their own mirror):v ^ w + ĵj�̂ = 0 (4.8)Im ((v + iw) ^ !̂) j�̂ = 0 ; (4.9)9
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ΣFigure 2: Supersymmetri yles � and �̂ and their loation within M � M̂ .with the generalized tangent bundle given by� 0̂� = �v� + iw�; dx3; dx4; dx5; dx6; v̂; ŵ; ��x̂3 + idx̂4; ��x̂5 + idx̂6� : (4.10)We thus obtain the situation in Figure 2. The supersymmetri yles we have just desribedare skethed as submanifolds ofM�M̂ that are transverse to bothM and M̂ , whereas the tree-dimensional supersymmetri yles on a mirror pair of Calabi{Yau manifolds are longitudinaleither to M or to M̂ . If one thinks of a supersymmetri three-yle as a leg, then the SYZpiture of mirror pairs orrespond to standing on M � M̂ with one leg on M and one legon M̂ . What we have just argued is that standing on M � M̂ with M and M̂ generalizedCalabi{Yau manifolds with stati SU(2) struture an be ahieved, but only with the legsrossed.4.2 The �bration of M � M̂We are ready to turn to Step 3 and Step 4. So far we have exhibited two three-dimensionalsupersymmetri yles onM�M̂ , alled � and �̂, eah of whih possesses six position moduligiven by the projetions onto the subspaes of M � M̂ that are omplex w.r.t. (v + iw) ^ !̂and ! ^ (v̂ + iŵ). We want to show that they both have the topology of a three-torus, andthat the moduli spae of �� �̂ on M � M̂ is the whole of M � M̂ �M � M̂ .We have worked out the generalized tangent spaes of both yles � and �̂. This givesonly loal informations, essentially ounting dimensions. For some point p in M � M̂ , on theloal tangent spae Tp(M � M̂) in whih ��, �+, �̂� and �̂+ have the generalized Darbouxexpressions we wrote above, the projetions of � 0� onto the subspae Vet(v; w) and Vet(v̂; ŵ)?have dimension zero. So have the projetions of � 0̂� on Vet(v; w)? and Vet(v̂; ŵ). We havejust desribed a projetor � 0� � � 0̂� ! Tp(M � M̂) : (4.11)This is the tangent appliation to the projetion�� �̂ 7! p 2M � M̂ : (4.12)10



There are therefore position moduli for � � �̂ in all the twelve diretions, whih orrespondto moving �� �̂ around p in the oordinate path.Let us allM the moduli spae of supersymmetri yles of M � M̂ that are ontinuouslyonneted to ���̂. We have just argued that there is a twelve-dimensional subspae onsistingof translation moduli, so there must exist other moduli, whih make up some subspae M0onsisting of deformations that leave the projetion of �� �̂ onto the loal omplex subspaesof M � M̂ �xed: T���̂M = Tp(M � M̂)� T���̂M0 : (4.13)Consider now the projetion � that \forgets the gauge bundle" along the two yles � and�̂. It indues a �bration ofM0 over some base B onsisting of the Lagrangian deformationsof �� �̂ w.r.t. v ^ w ^ j ^ v̂ ^ ŵ ^ ĵ: M0 ��! B (4.14)The spaeM0 has the following topologial meaning, as the �berwise projetion of the gener-alized tangent bundle is isomorphi to the omplexi�ed dual of the ordinary tangent spae to�� �̂ as a bundle and as a Lie algebroid (f. setion 7.2 of [17℄) :M0 = H1 �L(�� �̂; 0)jp� = H1dR(�� �̂;C): (4.15)The dimension of the moduli spae M0 is therefore twie the Betti number of the six-dimensional yle �� �̂.In order to ompute this dimension, we are going to perform T-duality along �� �̂, withthe point p still �xed. This implies that gauge onnetions will be �xed on the image of �� �̂,whih will only have translation moduli. The moduli spae is not hanged by T-duality, butit is now desribed as follows. The one-dimensional projetion of � onto TpM , with modulifrom at onnetion and normal deformations (all inM0), is mapped to a point-like projetiononto TpM̂ with two translation moduli. The �xed zero-dimensional projetion of � onto TpM̂ ,is mapped to a one-dimensional projetion onto TpM sitting at some �xed w� = 0, extendedalong v� and with �xed at onnetion. The two-dimensional projetion of � onto TpM̂ ismapped to a point of M with four translation moduli. So � is mapped to itself, but the �bermoduli are traded for translational ones, living in the subspae Vet(v̂�; ŵ�)�Vet(v�; w�)?. ByT-dualizing �̂ along ���̂, one trades in the same way the deformation moduli for translationalones, living in the subspae Vet(v�; w�)� Vet(v̂�; ŵ�)?, so that the tangent spae at � � �̂to the moduli spaeM0 is isomorphi (by dimension ounting) toVet(v̂�; ŵ�)� Vet(v�; w�)? � Vet(v�; w�)� Vet(v̂�; ŵ�)? = Tp(M � M̂) : (4.16)The moduli (sub)-spaeM0 therefore has dimension twelve.Let us move to Step 5. We have just omputed the dimension ofM0, whih is aessibleto our loal omputations, but its T-dual interpretation in homology promotes the result to aBetti number, a global quantity. From this T-duality argument we learn thatdimT���̂M0 = 2b1(�� �̂) = dim(M � M̂) = 12 : (4.17)Hene �� �̂ is a six-torus, the produt of two supersymmetri three-tori, and its moduli spaeis M � M̂ �M � M̂ .Note that � or �̂ by itself does not have M � M̂ as its moduli spae, nor M �M norM̂ � M̂ , as it is only the ase for SU(3) strutures.11



5 Illustrations in ux ompati�ationsSo far we have drawn the onlusions of there being transverse three-dimensional supersym-metri yles on a mirror pair of manifolds with stati SU(2) strutures. This begs for a fewheks. We shall �rst T-dualize the three-tori and hek that the pure spinors are exhangedby this transformation. We shall then turn to the example of K3 � T 2, whih was of ourseavailable in the Calabi{Yau ase, but an also be endowed with a stati SU(2) struture.Finally, in order to make ontat with open problems in ux ompati�ations (where thenature of non-geometri uxes is still under investigation), we shall take the analog of Step 6by turning on all the possible uxes on a six-torus with stati SU(2)-struture, thus puttingour T-duality proposal to the test.5.1 Mirror images of the pure spinorsLet us perform a Fourier{Mukai transform (F:T:) on the pure spinors, by weighting themwith the Poinar�e onnetion on � � �̂ we worked out. As we have established that thethree-dimensional intersetion of � � �̂ and M are the diretions whih are T-dualized, theFourier{Mukai transform of the pure spinors readsF:T: (��) = Z(���̂)\M (v + iw) ^ eij ^ ev^v̂+dx3^dx̂3+dx5^dx̂5 = eiv̂^w ^ ! = �̂+; (5.1)F:T: (�+) = Z(���̂)\M eiv^w ^ ! ^ ev^v̂+dx3^dx̂3+dx5^dx̂5 = (v̂ + iw) ^ eiĵ = �̂�; (5.2)with the value of the base oordinates unhanged, namely provided w = ŵ, whih makes sense,beause the loal oordinates w or ŵ are not T-dualized. The mapping of pure spinors underFourier{Mukai transform oinides with what is expeted from mirror symmetry.5.2 The K3� T 2 exampleAs the Euler harateristi is multipliative, the manifold K3 � T 2 has Euler harateristizero. There may therefore be a nowhere-vanishing vetor �eld on it. Real and imaginary partof the omplex oordinate of T 2 as an ellipti urve indeed serve as v and w vetor �elds.3In the present ase, ! and j are a omplex and a K�ahler form on K3, while !̂ and ĵ are thesame objets on the mirror K3. Of ourse in this ase we have a global piture of the yles:� is a point in T 2 times a speial Lagrangian torus with respet to j, times a Lagrangianirle in the mirror torus times a point in the mirror K3, while �̂ is the mirror irle on the�rst torus times a point in the �rst K3 times a point in the seond T 2 times the dual torusin the seond K3. The projetion is just given by assoiating the points to � � �̂. This isjust the ordinary SYZ ase but with the omplex strutures of the two-tori exhanged. It isa straightforward onsequene of the Calabi{Yau ase beause rossing the legs amounts topermuting the two two-tori.3For a thorough treatment of the redution of IIA supergravity on K3 � T 2 endowed with an SU(2)struture, see [42℄. 12



5.3 Stati SU(2) struture with non-geometri uxesLet us apply this analysis to the ase of a six-torus endowed with a stati SU(2) struture.This seems of ourse to be an over-simpli�ation, as many torus �brations an be expliitlyfound in suh a geometry. However, T-duality leads from geometri to non-geometri uxes,whih in the terminology [5℄ are alled Q- and R-uxes aording to the number of T-dualizeddiretions supporting a B-�eld. With eah double arrow symbolizing one T-duality, thesenotations are summarized in the following way:Hab $ fab $ Qab $ Rab: (5.3)The embedding of three-tori intoM�M̂ along whih T-duality is performed is key to the mapbetween geometri and non-geometri uxes. Finding the mirror of a generi ux on�gurationis therefore a non-trivial hek of our proposal4. We are going to omplete the study of uxeson the SU(2) struture bakground of [9℄, �rst inluding all the non-geometri uxes (whihindeed �ll all the entries of the harge matrix), and then to obtain the mirror on�gurationby T-duality along the transverse supersymmetri �bers.5.3.1 Charge matrixWe onsider a six-torus endowed with a stati SU(2) struture. The holomorphi vetore3 = v + iw is ompleted to a basis by (e1; e2; e3), and likewise for the mirror the basis isdenoted by (ê1; ê2; ê3). The GC submanifolds � and �̂ solving the struture and stabilityequations (4.5)-(4.9) are hosen as � �̂<(e1) <(ê1)<(e2) <(ê2)<(ê3) <(e3) ; (5.4)whih have trivial projetion onto the base spanned by (=(e1);=(e2);=(e3)) and � projetstrivially upon e3 = v + iw et. as required.The generi SU(3) � SU(3) struture is desribed by a sympleti basis with forms thatare not neessarily losed. Denote the two bases by�� = � �I�I � ; �+ = � !A~!B � ; (5.5)where the entries of �� are odd/even formal sums of forms. In partiular d�� 6= 0 and antherefore be expanded in ��, i.e. d�� = Q�+ : (5.6)The matrix Q is alled the harge matrix. In the present ase it is a four-by-four matrix.4Choosing a stati SU(2) struture protets us against type-jumping phenomena; those will of ourse beruial in the generi SU(3) � SU(3) ase, whih will be elaborated on in the next setion, in a muh lessthorough way though. 13



Furthermore de�ne the generalized sympleti basis �� in terms of the basis ei as follows�� = 0BB� 2<(e3)�2=(e3) + <(e3)j�=(e3)j213<(e3)j2 + 43=(e3)j 1CCA ; (5.7)and�+ = 0BB� 4<(e1) ^ <(e2)8 (=(e1) ^ <(e2) + <(e1) ^ =(e2))� 16<(e1) ^ <(e2) ^ <(e3) ^ =(e3)16=(e1) ^ =(e2) ^ <(e3) ^ =(e3)43=(e1) ^ =(e2) + 43(=(e1) ^ <(e2) + <(e1) ^ =(e2)) ^ <(e3) ^ =(e3) 1CCA ; (5.8)where we de�nedj = 2i(e1 ^ e�1 + e2 ^ e�2) = 4 �<(e1) ^ =(e1) + <(e2) ^ =(e2)� : (5.9)As disussed earlier, the standard relation between the two sympleti basis vetors is(5.6). Turning on uxes { both geometri H-ux and non-geometri Q- and R-uxes { hasthe e�et of twisting the the di�erential operator d(d+H ^+Q �+R�)�� � Q�+ : (5.10)Here we denote by � equality up to terms that are perpendiular to all elements in thesympleti basis with respet to the sympleti pairingZMh�; �i = ZM  Xp (�1)[ p+12 ℄�p ^ �6�p! ; (5.11)where � = Pp �p is a polyform (the sum runs over the degrees) and h; i denotes the Mukaipairing. In partiular the sympleti basis obeysZMh�I ; �Ji = ÆJI ; ZMh!A; ~!Bi = ÆBA : (5.12)Note that the ation on ohomologies is as followsd : Hp ! Hp+1H : Hp ! Hp+3Q� : Hp ! Hp�1R� : Hp ! Hp�3 ; (5.13)in agreement with Q having two vetor and one form index and R being a tri-vetor. Notethat d ats on the one-forms as dei = f ijkej ^ ek. The mapping of the various degrees underthe uxes (5.13) an be depited as in Fig. 3. Here [p℄, with p = 1; 2; � � � denotes the degreeof the forms.The various ux omponents then follow by noting that�� = 0BB� [1℄[1℄ + [3℄[5℄[3℄ + [5℄ 1CCA ; �+ = 0BB� [2℄[2℄ + [4℄[4℄[2℄ + [4℄ 1CCA ; (5.14)and further allowing additional terms ompatible with the equivalene relation �.14



[ 1 ] [3] [5]
H Q f QRf

[2] [4]Figure 3: Mapping of ohomology degrees under the uxes f , H, Q and R.5.3.2 Geometri uxesThe e�et of the geometri uxes (both H and f) was already disussed in [9℄. There it wasfound that with the geometri ux parameters one an swith on the following entries in theharge matrix (d+H^)�� � 0BB� F11 F12 + H 12 H 13 F14 + H 14F21 F22 + H 22 F23 + H 23 F24 + H 240 0 0 00 F42 F43 F44 1CCA�+ : (5.15)The geometri ux harges (a.k.a. torsion harges) Fi follow from the relationdeI = f IJKeJ ^ eK ; (5.16)where eI = <(ei) for I = i and eI = =(ei) for I = �i.To sum up, the f -ux we have to turn on in order to generate the above harge entries aref =+ 2F11<(�3) ^ <(e1) ^ <(e2)+ 8F12 �<(�3) ^ =(e1) ^ <(e2) + <(�3) ^ <(e1) ^ =(e2)�+ 43F14<(�3) ^ =(e1) ^ =(e2)� 2F21=(�3) ^ <(e1) ^ <(e2)� 4F22(=(�3) ^ =(e1) ^ <(e2) + =(�3) ^ <(e1) ^ =(e2))� 2F22(=(�1) ^ <(e2) ^ =(e3) + =(�2) ^ =(e3) ^ <(e1))+ 2F23(<(�1) ^ =(e3) ^ =(e2) + <(�2) ^ =(e1) ^ =(e3))� 13F24 �2=(�3) ^ =(e1) ^ =(e2) + <(�1) ^ <(e2) ^ =(e3) + <(�2) ^ =(e3) ^ <(e1)�+ 3F42(�<(e2) ^ =(�1) + <(e1) ^ =(�2)) ^ <(e3)+ 32F43(<(�1) ^ =(e2) ^ <(e3) + <(�2) ^ <(e3) ^ =(e1))+ 12F44(=(e2) ^ =(�1) + =(�2) ^ =(e1)) ^ <(e3) : (5.17)We should perhaps add a word of explanation. Reall that the relations between the twosympleti basis is only up to the equivalene w.r.t. �. This in partiular allows one to swith15



on f -ux to generate the Q12 harge entry, without turning on H-ux simultaneously. To bemore expliit f = 8F12 �<(�3) ^ =(e1) ^ <(e2) + <(�3) ^ <(e1) ^ =(e2)� (5.18)ating upon ��1 = 2<(e3) will only generate the two-form part of �+2 , denoted by �+2 ��[2℄f��1 = 2F12 �+2 ��[2℄ : (5.19)However, this an be written as f��1 = F12�+2 + 
 ; (5.20)where 
 = F12 ��+2 ��[2℄ � �+2 ��[4℄� ; (5.21)whih is perpendiular to all other basis elementsh
;��i i = 0 ; (5.22)and thus f��1 � F12�+2 : (5.23)Likewise the H-ux an be determined asH =+ 16H 12<(e1) ^ <(e2) ^ =(e3)� 8H 13=(e1) ^ =(e2) ^ =(e3)+ 43H 14 �<(e2) ^ =(e1)� <(e1) ^ =(e2)� ^ =(e3)+ 16H 22<(e1) ^ <(e2) ^ <(e3)� 8H 23=(e1) ^ =(e2) ^ <(e3)� 43H 24 �=(e1) ^ <(e2) ^ <(e3) + <(e1) ^ =(e2) ^ <(e3)� : (5.24)
The resulting harge matrix entries are as we indiated in (5.15).5.3.3 Non-geometri uxesHere we wish to study the e�et of the Q- and R-uxes, whih an be done by linear super-position with the results from [9℄. We �nd by simple dimensional analysis that the e�et ofthese non-geometri uxes on the harge matrix an be only of the following type:(Q+R)�� � 0BB� 0 0 0 0Q 21 Q 22 0 Q 24R31 Q 32 + R32 Q 33 Q 34 + R34R41 Q 42 + R42 Q 43 Q 44 + R44 1CCA�+ : (5.25)We an determine the orresponding non-geometri uxes whih will turn on these hargeentries by analyzing the struture of the linear equations and keeping in mind the liberty to16



add terms perpendiular to all basis elements in the sympleti basis. We �nd the followingQ-uxes (are one-forms and bi-vetors)Q =+ 12Q 21 �<(e2) ^ =(�1)� <(e1) ^ =(�2)� ^ <(�3)+ Q 22 ��<(e2) ^ <(�1) + =(e2) ^ =(�1)� =(e1) ^ =(�2) + <(e1) ^ <(�2)� ^ <(�3)+ 13Q 24 �=(e1) ^ <(�2)� =(e2) ^ <(�1)� ^ <(�3)+ Q 32=(�1) ^ =(�2) ^ <(e3)� 12Q 33<(�1) ^ <(�2) ^ <(e3)� 112Q 34(=(�2) ^ <(�1) + <(�2) ^ =(�1)) ^ <(e3)+ 3Q 42=(�1) ^ =(�2) ^ =(e3)� 32Q 43<(�1) ^ <(�2) ^ =(e3)� 14Q 44(=(�2) ^ <(�1) + <(�2) ^ =(�1)) ^ =(e3) ; (5.26)as well as R-uxes of the typeR =� 18R31=(�1) ^ =(�2) ^ =(�3)� 12R32(<(�1) ^ =(�2)�<(�2) ^ =(�1)) ^ =(�3)� 112R34<(�1) ^ <(�2) ^ =(�3)+ 38R41=(�1) ^ =(�2) ^ <(�3)� 32R42(<(�1) ^ =(�2)�<(�2) ^ =(�1)) ^ <(�3)+ 14R44<(�1) ^ <(�2) ^ <(�3) :
(5.27)

In summary we have shown that the full harge matrix an be onstruted by swithingon geometri as well as non-geometri uxes:Q = 0BB� F11 F12 + H 12 H 13 F14 + H 14F21 + Q 21 F22 + H 22 + Q 22 F23 + H 23 F24 + H 24 + Q 24R31 Q 32 + R32 Q 33 Q 34 + R34R41 F42 + Q 42 + R42 F43 + Q 43 F44 + Q 44 + R44 1CCA : (5.28)5.3.4 Mirror symmetryWe now wish to test out generalized SYZ proposal in this setup. This should in partiularbe ompatible with the proposed mirror map of [9℄. The mirror uxes are obtained by �rstrealling that we dualize along <(e1), <(e2) and <(e3) and that thereby the mirror map isrealized as <(ei)  ! <(�i) : (5.29)17



The mirror uxes are determined straight-forwardly from our expressions for the uxes. Themirrors of the geometri uxes arebf =+ 2F11<(e3) ^ <(�1) ^ <(�2)+ 8F12 �<(e3) ^ =(e1) ^ <(�2) + <(e3) ^ <(�1) ^ =(e2)�+ 43F14<(e3) ^ =(e1) ^ =(e2)� 2F21=(�3) ^ <(�1) ^ <(�2)� 4F22(=(�3) ^ =(e1) ^ <(�2) + =(�3) ^ <(�1) ^ =(e2))� 2F22(=(�1) ^ <(�2) ^ =(e3) + =(�2) ^ =(e3) ^ <(�1))+ 2F23(<(e1) ^ =(e3) ^ =(e2) + <(e2) ^ =(e1) ^ =(e3))� 13F24 �2=(�3) ^ =(e1) ^ =(e2) + <(e1) ^ <(�2) ^ =(e3) + <(e2) ^ =(e3) ^ <(�1)�+ 3F42(�<(�2) ^ =(�1) + <(�1) ^ =(�2)) ^ <(�3)+ 32F43(<(e1) ^ =(e2) ^ <(�3) + <(e2) ^ <(�3) ^ =(e1))+ 12F44(=(e2) ^ =(�1) + =(�2) ^ =(e1)) ^ <(�3) ; (5.30)and bH =+ 16H 12<(�1) ^ <(�2) ^ =(e3)� 8H 13=(e1) ^ =(e2) ^ =(e3)+ 43H 14 �<(�2) ^ =(e1)�<(�1) ^ =(e2)� ^ =(e3)+ 16H 22<(�1) ^ <(�2) ^ <(�3)� 8H 23=(e1) ^ =(e2) ^ <(�3)� 43H 24 �=(e1) ^ <(�2) ^ <(�3) + <(�1) ^ =(e2) ^ <(�3)� : (5.31)
These inlude of ourse both geometri and non-geometri uxes.
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Likewise the non-geometri mirrors arebQ =+ 12Q 21 (<(�2) ^ =(�1)� <(�1) ^ =(�2)) ^ <(e3)+ Q 22 ��<(�2) ^ <(e1) + =(e2) ^ =(�1)� =(e1) ^ =(�2) + <(�1) ^ <(e2)� ^ <(e3)+ 13Q 24 �=(e1) ^ <(e2)� =(e2) ^ <(e1)� ^ <(e3)+ Q 32=(�1) ^ =(�2) ^ <(�3)� 12Q 33<(e1) ^ <(e2) ^ <(�3)� 112Q 34(=(�2) ^ <(e1) + <(e2) ^ =(�1)) ^ <(�3)+ 3Q 42=(�1) ^ =(�2) ^ =(e3)� 32Q 43<(e1) ^ <(e2) ^ =(e3)� 14Q 44(=(�2) ^ <(e1) + <(e2) ^ =(�1)) ^ =(e3) ; (5.32)and bR =� 18R31=(�1) ^ =(�2) ^ =(�3)� 12R32(<(e1) ^ =(�2)�<(e2) ^ =(�1)) ^ =(�3)� 112R34<(e1) ^ <(e2) ^ =(�3)+ 38R41=(�1) ^ =(�2) ^ <(e3)� 32R42(<(e1) ^ =(�2)�<(e2) ^ =(�1)) ^ <(e3)+ 14R44<(e1) ^ <(e2) ^ <(e3) :
(5.33)

Ating with the mirror uxes on the basis yields the mirror harge matrix bQ to bebQ = 0BB� �14Q 33 316F43 � 332Q 43 H 13 �6F23 � 6H 23�16Q 34 + 124R34 18F44 + 18Q 44 + 116R44 �16F14 + 23H 14 �F24 � 2H 24 + 14Q 24R31 38R41 �4F11 �24F21 � 6Q 2183Q 32 + 23R32 �2F42 + Q 42 + 12R42 163 F12 � 323 H 12 16F22 � 64H 22 + 2Q 22 1CCA :(5.34)Note this is niely on�rming the onjetured mirror map on the harge matrix as of [9℄ whereit was onjetured that the harge entries appear asQ = � pIA eIBqIA mIB � ! bQ = � mIA eBIqAI �pIB � : (5.35)Reall that this was derived by omparing the Killing prepotentials, and thus does not �xthe mapping of the harges up to linear transformations that leave the bloks invariant. Weon�rmed the mapping of the harges and expliitly worked out the harge entries of bQ.19



We should note that in addition to the linear onditions that arise from the ation of theuxes on the basis, there are also quadrati onstraints, whih arise from the ondition thatthe di�erential has to be nilpotent, upon the entries of the harge matrix. These will haveto be taken into aount, in order to disuss physial ux on�gurations. The fators in theabove matrix ould then be taken are of by allowing only uxes that solve the quadrationstraints.6 Supersymmetri yles on generi SU(3)� SU(3)struture bakgroundsIn this setion we want to investigate the generi ase of SU(3)�SU(3) struture bakgrounds,where the underlying manifold (in some duality frame) has non-zero Euler number. Relaxingthe topologial ondition �(M) = 0 implies that there is no stati SU(2) struture at all. Notonly do we have to fae the loss of ordinary omplex struture on M , but we are going toenounter type-jumping phenomena. The following two losed subsets are indeed going to beof speial interest: f�1(1)g : type-three and type-zero pure spinors ; (6.1)as in the ase of SU(3) strutures (this set was empty in the previous part of our analysis),and f�1(0)g : type-one and type-two pure spinors ; (6.2)as in the ase of SU(2) strutures. They orrespond to the two big irles we have depitedon �gure (1). So far we have been on�ned to only one of them, beause of the topologialassumption we have made.Some three-tori will be supersymmetri on M � M̂ , either in transverse or longitudinalposition, but they will always be situated above points of these two speial subsets. Away fromthose subsets, types of pure spinors are too low to allow for stable D0-branes. This is T-dualto the disappearane of most of the supersymmetri three-torus �bers. We shall desribe thisin terms of mass generation for moduli through uxes.Motivated by this observation onerning D0-branes, we want to address the existene,stability and moduli spae of three-dimensional supersymmetri yles. We shall see thatfor SU(3) � SU(3) strutures that are not stati SU(2) strutures, suh yles still exist attype-jumping points. As T-duality does not hange moduli spaes, we expet some moduli ofthose yles to be �xed. In partiular, three-dimensional supersymmetri yles are not likelyto give rise to a �bered struture of a whole manifold with generi SU(3)� SU(3) struture.But they an still allow for the exhange of pure spinors �� and �+ by mirror symmetry asa T-duality along a three-dimensional supersymmetri yle.6.1 D3-branes and D0-branes through maximum-type pointsConsider a mirror pair of manifoldsM and M̂ with SU(3)�SU(3) strutures, that do not fallinto the lass of stati SU(2) strutures (as they have opposite Euler harateristis, assumingthat one has non-zero Euler harateristi is suÆient to ensure the ondition). We assumeboth sides of the mirror orrespondene to have a geometri desription in the sense of a sigma20



model. Consider some point p on M at whih the omplex one-form v+ iw vanishes. At thatpoint the pure spinors assume the same forms as in the Calabi{Yau ase. We may write forsome omplex oordinates X; Y; Z��jp = 
jp = dX ^ dY ^ dZ�+jp = eiJ jp = e i2 (dX^d �X+dY ^d �Y+dZ^d �Z) ; (6.3)and one may put a D0-brane of the B-model, that is generalized omplex w.r.t. to 
, or aD3-brane of the A-model, i.e. a Lagrangian D-brane whih will be denoted by L.Let us T-dualize along L, whih we assume to have the topology of a torus, orrespondingto the three isometries we need to perform T-duality5. Let there be loal oordinates x0,y0 andz0 on L (that are imaginary parts of omplex oordinates X = x+ ix0, Y = y+ iy0, Z = z+ iz0de�ned on the lous with equation v + iw = 0), so that Fourier{Mukai transform yieldsF:T: ���jF:T:(L)� = ZL ei(dx0^dx̂0+dy0^dŷ0+dz0^dẑ0)dX ^ dY ^ dZ= exp�i(dx̂0 ^ dx+ dŷ0 ^ dy + dẑ0 ^ dz)�= �̂+jp̂ =: eiĴ jp̂F:T: ��+jF:T:(L)� = �̂�jp̂ =: 
̂jp̂ ; (6.4)
whih are the expressions of the pure spinors on the T-dual point p̂ on whih a supersymmetriD0-brane sits. Of ourse p̂ has to be in the set of zeroes of v̂ + iŵ, or ̂�1(1), whih is notempty sine the mirror manifold M̂ also has non-zero Euler number.6.2 Away from maximum-type points through uxesIt has long been appreiated that the behaviour of pure spinors under mirror symmetry istransparent to B-transforms by a two-form whose omponents are extended in diretionstransverse to the T-dualized diretions, while non-geometry ours when the two-form hasomponents that are longitudinal. In terms of the previous loal omplex oordinates, B-transforms by two-forms of type (1; 1) are still B-transforms on the mirror, while those oftype (0; 2) or (2; 0) are �-transforms on the mirror. This an be seen in loal harts bywedging together pairs of the following naturality properties derived in lemma 6.2 of theseond referene in [23℄, where v and � denote a longitudinal vetor and one-form, and w and denote a transverse vetor and one-form:i) F:T:(�v ^ �) = v̂ ^ (F:T:(�))ii) F:T:(�w ^ �) = �w(F:T:(�))iii) F:T:(� ^ �) = ��̂(F:T:(�))iv) F:T:( ^ �) =  ^ F:T:(�) :In other words ovariant and ontravariant tensors stay so under T-duality if their omponentsare transverse to the dualized diretions, while they are ipped if they are longitudinal.5The assumption is reasonable beause we have two SU(3) strutures, eah of whih gives rise to a �brationby three-tori, and at points the two �bers are the same, the �ber is supersymmetri; but suh points are exatlythe zeroes of v + iw. 21



So far we have seen how T-duality maps pure spinors �+ and �� to eah other along themaximum-type lous of equation v + iw = 0. It looked formally the same as in the Calabi{Yau or SU(3) struture ase. Suppose an H-ux is turned on on both sides of the mirrororrespondene. Choosing a gauge for the loal B-�eld from whih the ux derives induesvarious B- and �-transforms on M and M̂ , aording to the way the support of the B-�eldintersets with the T-dualized diretions. Generially, going away from the maximum-typelous should indue a �-transform that will lower the type of �� to one, whih is the mostgeneri type for an odd pure spinor (i.e. the lowest type allowed by parity).Thanks to property iv), B-�elds of type (1; 1) in the omplex struture desribed abovepull bak to zero on the three-yle L. They at as B-transforms on both sides of the mirrororrespondene and do not lower the type of the pure spinorseB ^ ��  ! eB ^ �̂� : (6.5)We have to take into aount possible B-transforms by longitudinal B-�elds, that give riseto non-geometri uxes on the mirror (we will restrit to the ase of Q-uxes on the mirror,with two indies of the B-�eld along T-dualized diretions). Consider an H-ux on the spaeM , with one unit of ux along a three-yle C:ZC H = 1 : (6.6)In order for L to be a supersymmetri three-yle, the loal B-�eld, whih gives rise to theux, has to pull-bak to zero on L.We are interested in the appliation of T-duality in two diretions arrying indies of non-zero omponents of the H-ux. These diretions, denoted by y and z, are two U(1) isometries,spanning a two-torus. Consider the one-form valued integral of H along this torus. It is losedbeause the three-form H is: d ZT 2 H = 0: (6.7)One an loally integrate the one-form, so that there exists (loally) a salar funtion X suhthat ZT 2 H = dX ; (6.8)whih amounts to a gauge hoie, beause the B-�eldB := XvolT 2 ; (6.9)where volT 2 is the volume form of T 2, is ompatible with the quantization of H. Upon T-duality along the two U(1) isometry diretions y and z, this B-�eld is mapped to a bivetorliving on the T -dual manifoldF:T:(ei(J+Xdy^dz)) = X��ŷ��ẑ �F:T:(eiJ)�+ F:T:(eiJ) : (6.10)This way the lowest omponent of the odd pure spinor we read-o� from the RHS is theone-form X��ŷ��ẑ
, that appears to be weighted by the loal oordinate X. We may thusidentify the �rst term in the expansion of the polyform on the RHS with the mirror of the�berwise omponents of the H-�eld. It should also be equal to the one-form v+ iw. Thus, we22



have seen that the (0; 2) part of the argument of the exponential in the expression of �+ ismirror to the omplex vetor v+iw. We an rewrite this mapping in a oordinate-independentway as �+ = eB(0;2) ^ eiJ �! e�
̂ = ��; (6.11)where the RHS has now type one and ontains an overall fator of v̂ + iŵ.Likewise we an start with ��. Again H an be loally written as H = d(Xdy ^ dz) andthus F:T:(eXdy^dz ^ 
) = eX�y^�zF:T:(
) : (6.12)Furthermore F:T:(
) = eiJ with J = J1;2 = j � v ^ w being one of the two-forms of the twoSU(3) strutures (2.6). We have thus established thateB(0;2) ^ 
 �! e�eiJ ; (6.13)with � = X�y ^ �z. Apart from this we know that the ontration between � and j vanishes,just as ! ^ j vanishes for SU(2) strutures. Hene ontrations between the bivetor � andthe polyform eiJ only involve j and is therefore unambiguous. So the ontration between �and the higher powers of J just selets the square of j, and gives rise to a (2; 0) form alledB0, whih squares to zero. Using the expansion (6.3) we �nd:e�(eiJ) = 1 + iJ + � ��J22 �� J22 + � ��iJ36 �� iJ36 : (6.14)De�ning B0 := � ��J22 � ; (6.15)this an be rewritten in the following waye� �eiJ� = 1 + iJ +B0 + B0 ^ iJ � J22 � iJ36 = eB0 ^ eiJ : (6.16)Thus, one may say that the �-transform of the type-zero pure spinors assumes the same formas a B-transform for aidental dimensional reasons. We therefore write the �-transform ofthe type-zero spinor as a B-transform by B0, whih of ourse is still of the most generi typezero: eB(0;2) ^ 
 �! eB0+iv^w+ij : (6.17)This formula was already derived assuming a T 3-�bration in [32℄ as a lue that SU(3) �SU(3) strutures ould aount for non-geometri situations involving T-dualizing with aB-�eld extended along two �berwise diretions. Here we see that it atually holds for amere topologial reason on spaes with non-zero Euler number and SU(3)�SU(3) struture.On suh spaes v + iw have zeroes on whih odd pure spinors have type three, thus givingrise to supersymmetri three-yles; the mirror formula between �� and �+ follows from thenaturality properties of B- and �-transforms w.r.t. T-duality along the three-yles, even if theSYZ argument is spoiled away from the zeroes of v+ iw due to the absene of supersymmetriD0-branes. Moreover, T-dualizing along L and exploiting properties of the Fourier{Mukaitransform allowed us to go the other way around, whih lowers the type of ��. To sum up,23



putting all the possible B- and �-transforms on both sides, we have argued that the followingT-duality holds in an open neighborhood of type-jumping point:�+ = e~�+B0(0;2)+B(1;1) exp(iJ)  ! e�0+ ~B(0;2)+B(1;1)
̂ = �̂�~�  ! ~B(0;2)B0(0;2)  ! � 0B(1;1)  ! B(1;1) ; (6.18)where the odd pure spinor has type one as � 0 (or equivalently B0(0;2)) is non-zero.6.3 Moduli spaesAs D0-branes an only be stable at points where the odd pure spinors has type three, theirmoduli spae must be evaluated by looking at massless in�nitesimal deformations at suhexeptional points. Going away from suh a point involves a �-transform. If one goes along thesubset �1(1) the �-transform is trivial and we have found a translation modulus; otherwisethe diretion along whih we are going is a �xed modulus. On the other hand, the �rstohomology of the Lie algebroid of a D0-brane was evaluated in [17℄ as the set of vetors X lsuh that the �-transform that ats on the pure spinor satis�es�l���X l�� ^ �� = 0 : (6.19)This makes for a �ve-dimensional moduli spae, as a gauge may be hosen in whih � onlydepends on one oordinate, the one along the diretion v. Consider the three-dimenionalD-brane going through suh a point. It also has a �ve-dimensional moduli spae, sine thenormal deformation in the diretion v is not allowed anymore, and it is exatly the modulusthat has disappeared for D0-branes.In the more generi ases we want to investigate here, we have to ompute the mass matrixof the deformations of our three-dimensional supersymmetri tori. Moduli that are �xed bythe ux should get a mass.One an make an observation in loal oordinates around a point where the pure spinorshave type zero and type three. The fundamental two-form J takes the expressionJ = i2 �dX ^ d �X + dY ^ d �Y + dZ ^ d �Z� ; (6.20)and imagine we start with a supersymmetri three-torus extended along the diretions x, yand Z and the T-dual of an H-ux deriving from the oordinate x is a �-transform with� = X�y ^ �z, so that it is easy to repeat the argument of the previous subsetion for theomputation of B0. In a neighborhood of the point we onsidered, �+ assumes the form:e�eiJ = eXd �Y d �ZeiJ ; (6.21)so that a four-hain B that is bounded by the supersymmetri three-yle and some generalizedyle (�; F ) at the other end will go (along the X diretion) through yles arrying non-zero�eld strength F = P�(Xd �Y d �Z); (6.22)24



where P� denotes the pull-bak to �. Hene the three-yle (�; F ) annot be generalizedomplex if it goes into the X diretion. This loss of struture �xes the position moduli Xfor the three-yle, whih fat is mirror to X aquiring a mass as a translation modulus for aD0-brane.7 Conlusions and outlookThe SYZ argument has been shown to extend to a lass of generalized Calabi-Yau spaes,namely so-alled stati SU(2) struture manifolds. We have shown that there are no super-symmetri three-tori on M or its mirror M̂ , but the produt M � M̂ is doubly �bered bythree-tori, both families of �bers are transverse to M and M̂ , and the resulting six-tori arealibrated generalized submanifolds of M � M̂ . Moreover mirror symmetry is performed byT-dualizing the three-dimensional intersetion of suh generalized submanifold with M . Thistransversality property is reminisent of the (muh more general) onjetures formulated byGualtieri in the �nal hapter of [11℄.It is somewhat surprising that this argument is appliable also when inluding non-geometriuxes, in partiular R-uxes. These non-geometri uxes are expeted to spoil the geometridesription of the bakground even loally. In the R-ux ase, the geometry is expeted to bereplaed by some non-assoiative algebra [43℄. However we did not enounter suh a neessity.We suspet that the ase of stati SU(2) struture, whih prevents the type of the pure spinorsfrom jumping, guards us against the destabilizing e�ets of non-geometri uxes on D-branes.The large-volume limit whih was assumed in the SYZ argument for Calabi{Yau manifoldsis also highly questionable in generi ux bakgrounds. Again the topologial ondition of astati SU(2) with a non-vanishing vetor �eld allows for more globally well-de�ned quantitiesthan the ordinary omplex torus studied in [44, 6℄. This is onsistent with the observationmade in [9℄ that more harges an be turned on geometrially on SU(2) struture bakgroundsthan on generi ones.The ase of generi SU(3)�SU(3) strutures is muh less transparent.6 We have identi�eda set of three-yles, T-dual to type-jumping points on the mirror. They annot �ber themanifold or even its produt with its mirror. This fat is mirror to the mass that uxes giveto the translation moduli of D0-branes, spoiling the very �rst step of the SYZ argument.T-dualizing the surviving three-tori and asking for funtorial properties w.r.t. B- and �-transforms of generalized geometry gives however a orret mirror exhange between type-zeroand type-one pure spinors. Our argument was limited to the use of lassial geometry.In order to formulate an SYZ argument for the generi ase, it seems natural to onsidernon-ommutative �brations. It has been observed that T-dualizing diretions that supportmore than one index of a non-zero omponent of a B-�eld leads to non-ommutative �brationsthrough an unertainty priniple for D-branes [46, 47℄. Of ourse allowing non-ommutative�bers, with non-ommutativity sale proportional to the quanta of uxes and to the disrep-any between the pair of SU(3) � SU(3) strutures, would be a way of �bering generalizedbakgrounds by (further) generalized submanifolds. The only �bers we are able to see in the6We have disregarded Ramond{Ramond uxes, in the presene of whih a one of the two pure spinorsannot be losed [13℄. Bianhi identity in the presene of Ramond{Ramond uxes requires an orientifoldprojetion, see [45℄. 25
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