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tFibrations of 
ux ba
kgrounds by supersymmetri
 
y
les are investigated. For an internal six-manifoldM with stati
 SU(2) stru
ture and mirror M̂ , it is argued that the produ
tM�M̂ isdoubly �bered by supersymmetri
 three-tori, with both sets of �bers transverse to M and M̂ .The mirror map is then realized by T-dualizing the �bers. Mirror-symmetri
 properties of the
uxes, both geometri
 and non-geometri
, are shown to agree with previous 
onje
tures basedon the requirement of mirror symmetry for Killing prepotentials. The �bers are 
onje
turedto be destabilized by 
uxes on generi
 SU(3)�SU(3) ba
kgrounds, though they may surviveat type-jumping points. T-dualizing the surviving �bers ensures the ex
hange of pure spinorsunder mirror symmetry.

http://arxiv.org/abs/0708.2392v2


Contents1 Introdu
tion 12 Review and notations 32.1 Supersymmetry, pure spinors and stru
tures . . . . . . . . . . . . . . . . . . . 32.2 Generalized geometry, generalized submanifolds and D-branes . . . . . . . . . 53 The SYZ argument for Calabi{Yau manifolds 64 Fibrations �a la SYZ for stati
 SU(2) stru
ture manifolds 84.1 Supersymmetri
 
y
les on M � M̂ . . . . . . . . . . . . . . . . . . . . . . . . . 84.2 The �bration of M � M̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Illustrations in 
ux 
ompa
ti�
ations 125.1 Mirror images of the pure spinors . . . . . . . . . . . . . . . . . . . . . . . . . 125.2 The K3� T 2 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125.3 Stati
 SU(2) stru
ture with non-geometri
 
uxes . . . . . . . . . . . . . . . . 135.3.1 Charge matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135.3.2 Geometri
 
uxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155.3.3 Non-geometri
 
uxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165.3.4 Mirror symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Supersymmetri
 
y
les on generi
 SU(3)� SU(3) stru
ture ba
kgrounds 206.1 D3-branes and D0-branes through maximum-type points . . . . . . . . . . . . 206.2 Away from maximum-type points through 
uxes . . . . . . . . . . . . . . . . . 216.3 Moduli spa
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 Con
lusions and outlook 251 Introdu
tionThe study of 
ux 
ompa
ti�
ations is strongly motivated by the ne
essity to �x the moduliof the 
ompa
t spa
e. It leads to the 
onsideration of 
ux ba
kgrounds whi
h la
k 
ertaingeometri
 features of Calabi{Yau manifolds: typi
ally the 
losure of the two- and three-formsof Calabi{Yau manifolds are spoiled by intrinsi
 torsion. Moreover, the duality symmetriesof string theory lead to ba
kgrounds that are non-geometri
 in the sense that the 
losed-string metri
 is not globally de�ned. This 
on
ept appeared �rst in various in
arnations in[1, 2, 3, 4, 5℄ and a unifying pi
ture 
onne
ting these various points of view was proposedusing generalized geometry in [6℄.However, there is still some stru
ture surviving in 
ux ba
kgrounds preserving eight super-
harges in four dimensions: su
h ba
kgrounds have to possess SU(3)�SU(3) stru
ture [7, 8, 9℄.This implies the existen
e of a pair of pure spinors of di�erent parity �+ and ��, one being
losed and indu
ing a generalized 
omplex stru
ture, so that the internal spa
e is a generalizedCalabi{Yau manifold [10, 11℄. The other one is not 
losed in the presen
e of Ramond-Ramond
uxes, but its imaginary part is, and gives rise to 
alibrations [12, 13, 14, 15, 16, 17℄.1



SU(3)-stru
tures form a geometri
 sub
lass of SU(3)� SU(3) stru
ture manifolds, wherethe pure spinors are denoted by 
 and eiJ , and there is no type-jumping. These manifoldswere established to be the mirrors of Calabi-Yau with so-
alled geometri
 or ele
tri
 H{
uxin [18℄, whi
h in the 
ase of torus-bundles redu
es to the statement that T-duality ex
hangesthe Chern-
lass of the bundle with the integral of the H-
ux along the T-dualized dire
tion[1, 19, 20℄.Spe
ial 
ases of non-geometri
 ba
kgrounds have been identi�ed as physi
al realizations ofthe type-jumping phenomenon previously studied in generalized 
omplex geometry [11, 6, 21℄.Furthermore, the e�e
tive a
tions of string theory on ba
kgrounds admitting SU(3)� SU(3)stru
ture exhibit symmetry properties under the ex
hange of �+ and �� [9℄. This ex
hangeextends the a
tion of mirror symmetry beyond the realm of Calabi{Yau manifolds, in whi
hthe pure spinors are �+ = eiJ and �� = 
, where J and 
 denote the K�ahler form andholomorphi
 three-form, respe
tively. The generalized 
alibrations are ex
hanged in the sameway as the ones governing stability of D-branes of type A and B on Calabi{Yau manifolds[22, 15℄. Fortunately generalized 
omplex submanifolds share a lot of properties with AbelianD-branes [23, 24, 25℄.Flux ba
kgrounds, while �xing moduli, have therefore violently shaken the geometri
 frame-work of Calabi{Yau 
ompa
ti�
ations, but still happen to possess good mirror-symmetri
 prop-erties. This begs for an explanation in terms of the a
tion of T-duality on the internal spa
e inthe presen
e of 
uxes. In other words, we would like to know what remains of the Strominger{Yau{Zaslow (SYZ) pi
ture of mirror symmetry [26, 27℄, in the 
ase of SU(3)�SU(3) stru
tureba
kgrounds.The purpose of this paper is therefore to investigate the moduli spa
e of 
alibrated 
y
lesin ba
kgrounds with SU(3)�SU(3) stru
ture, and to formulate the ex
hange between �+ and�� in terms of T-duality along su
h 
y
les, thus extending mirror symmetry to 
ases wheremu
h of the stru
ture available in Calabi{Yau manifolds is missing.1This 
an be done in several steps. After re
alling the 
onne
tion between the pure spinorsand the super
harges, we spe
ialize to the 
ase of internal manifolds with a so-
alled stati
SU(2) stru
ture. The type of the pure spinors are 
onstant on su
h manifolds, but nevermaximal, sin
e they are equal to one and two, respe
tively. We shall see that supersymmetri
tori transverse to the produ
t of the internal spa
eM and its mirror M̂ have the entireM�M̂as moduli spa
e. In parti
ular M and M̂ are still �bered by three-tori, but the �bers are notsupersymmetri
 by themselves. We illustrate this generalized SYZ proposal for stati
 SU(2)stru
ture manifolds in various spe
ial 
ases and show that it is 
ompatible with the mirrormap advo
ated in [9℄.Then we address the 
ase of generi
 SU(3)� SU(3) stru
tures, that exhibit type-jumpingphenomena, and 
orrespondingly open-string moduli �xing. We shall see that zeroes or 
riti
alpoints of the 
oeÆ
ients relating the super
harges to ea
h other di
tate the position moduli ofsupersymmetri
 
y
les. Finally, we may perform T-duality along the existing supersymmetri

y
les, and obtain the type-jumping phenomena from the naturality properties of Fourier{Mukai transform with respe
t to the so-
alled B- and �-transforms of generalized 
omplexgeometry. This will be related to the 
ovarian
e properties of the di�erential operators on 
uxba
kgrounds, and 
on�rm the mirror-symmetri
 form of the superpotentials for SU(3)�SU(3)1For generalized K�ahler manifolds an argument of mirror symmetry via T-duality for the topologi
al sigma-models was put forward in [28℄. 2



ba
kgrounds.2 Review and notations2.1 Supersymmetry, pure spinors and stru
turesGeneralized 
omplex geometry 
ontains both 
omplex geometry and symple
ti
 geometry.An almost generalized 
omplex stru
ture on a manifold M is de�ned as an almost 
omplexstru
ture on the sum of the tangent and 
otangent bundles. It is a generalized 
omplex (GC)stru
ture if its +i-eigenbundle is stable under the a
tion of the Courant bra
ket [10, 11, 29℄.We will give a more detailed review of the 
on
epts in generalized geometry, in
luding GCsubmanifolds, in the next sub-se
tion. Here we review the de�nition of pure spinors in terms ofsuper
harges. There is a one-to-one 
orresponden
e between GC stru
tures and pure spinors.A pure spinor is a sum of di�erential forms and may lo
ally be written in a unique way as thewedge produ
t of k 
omplex one-forms and the exponential of a two-form:�1 ^ � � � ^ �k ^ eB+i!: (2.1)The integer k is 
alled the type of the pure spinor. From now on we only 
onsider six-dimensional manifolds. The spe
ial 
ase k = 0 
orresponds to a symple
ti
 stru
ture on themanifold, and the spe
ial 
ase k = 3 to a 
omplex stru
ture. Not only 
an the type assumeother values, but it 
an also vary on the manifold. This is 
alled the type-jumping phenomenon[11℄. We will mostly work with the pure spinors as the obje
ts en
oding the GC stru
ture.Consider Type II 
ompa
ti�
ations on six-manifolds with SU(3)�SU(3) stru
ture [10, 11,7, 8, 9℄ (for more referen
es see [30℄). These are 
hara
terized by a pair of no-where vanishingSU(3)-invariant spinors �1;2, whi
h arise in the de
omposition of the two SO(9; 1) spinors �1;2of Type II under SO(3; 1)� SO(6).Let M and M̂ be a (real) six-dimensional manifold and its mirror, both assumed to haveSU(3)� SU(3) stru
ture. As su
h they respe
tively possess pure spinors ��;�+ and �̂�; �̂+,where the signs denote the parity of the type. The pure spinors on M are 
onstru
ted asbilinears of spinors: �+ = �1+ 
 �2y+�� = �1+ 
 �2y� ; (2.2)where �1 and �2 are related to ea
h other by the equation�2+ = 
�1+ + (v + iw)m
m�1� ; (2.3)de�ning the 
omplex one-form v + iw and 
omplex number 
, whi
h have to satifsy the nor-malization 
ondition j
j2 + jv + iwj2 = 1 : (2.4)There are analogous obje
ts on M̂ and we shall o

asionally refer to them just by putting hatson the symbols we expli
itly de�ne on M .At points where j
j = 1 (zeroes of v + iw), the two SU(3) spinors �1 and �2 be
omeproportional to ea
h other, and the two SU(3) stru
tures de�ned by bilinears of �1 and �2agree. At su
h points the pure spinors �� and �+ have type three and type zero respe
tively,3
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2Figure 1: Moduli spa
e of spinors for SU(3) � SU(3) stru
ture manifolds (depi
ted one di-mension lower as an S2). The blue and red 
ir
les depi
t the SU(3) and the stati
 SU(2)stru
tures, respe
tively, whi
h do not interse
t.just as they do in the 
ase of manifolds of SU(3) stru
tures. Up to a B-transform they readat su
h points ��jj
j=1 = 
�+jj
j=1 = eiJ : (2.5)If j
j = 1 on the whole of M , then M has an SU(3) stru
ture. Calabi{Yau manifolds formthe sub
lass of those manifolds for whi
h both of 
 and eiJ are 
losed.At generi
 points though, the spinors �1 and �2 are linearly independent, the two SU(3)stru
tures 
onstru
ted from them do not agree, and their fundamental two-form and 
omplexthree-form may be written asJ1 = j + v ^ w ; J2 = j � v ^ w
1 = ! ^ (v + iw) ; 
2 = ! ^ (v � iw) : (2.6)The pure spinors in turn are expressed [7℄ in a way that allows to read-o� their types, as�� = �18 (v + iw) ^ ei(j+
!)�+ = �18 �
 e�i(j+v^w+ 1�
!) : (2.7)It 
an be observed that type-jumping (from one to three) o

urs for �� at points where j
j = 1(zeroes of v + iw). The limit where v + iw goes to zero is ill-de�ned in those expressions, andthe pure spinors at su
h points are expressed as in formulas (2.5).Another type-jumping phenomenon o

urs at zeroes of 
. At these points the two spinors�1 and �2 be
ome orthogonal, and there is a lo
al SU(2) stru
ture. The pure spinors thenread: �� = (v + iw) ^ eij�+ = ! ^ eiv^w : (2.8)We noti
e that due to the normalization 
onstraint relating 
 to v + iw, type-jumpingo

urs at 
riti
al points of j
j and jv + iwj. The situation is depi
ted in Figure 1. Manifolds4



with v + iw = 0 everywhere form the parti
ular 
lass of manifolds with SU(3) stru
ture.Those with 
 = 0 everywhere form another parti
ular 
lass, the one of manifolds with stati
SU(2) stru
ture. On su
h manifolds the pure spinors �� and �+ have type one and typetwo everywhere. The Euler 
hara
teristi
 of any manifold with stati
 SU(2) stru
ture is zero,be
ause otherwise the ve
tor �eld 
orresponding to v + iw would have zeroes.In summary the set of manifolds with SU(3) � SU(3) stru
ture has two important sub-
lasses:
SU(3)� SU(3) stru
ture :(v + iw; 
) 2 S3 � SU(3) stru
ture :v + iw = 0; j
j = 1� stati
 SU(2) stru
ture :jv + iwj = 1; 
 = 0 (2.9)

2.2 Generalized geometry, generalized submanifolds and D-branesFor the sake of 
ompleteness, let us re
all a few de�nitions from generalized 
omplex (GC)geometry [11℄. Given an n-dimensional manifoldM , with even n, a generalized almost 
omplexstru
ture onM is de�ned as an almost 
omplex stru
ture on the sum of tangent and 
otangentbundles TM � T �M . For example, su
h a stru
ture 
an be indu
ed by an ordinary 
omplexstru
ture J on M JJ = �J 00 �J�� ; (2.10)in whi
h 
ase it will sometimes be termed a diagonal GC stru
ture, or by a symple
ti
 form! on M J! = �0 �!�1! 0 � ; (2.11)where the matri
es are written in a basis adapted to the dire
t sum TM � T �M . Hybridexamples, other than these two extreme ones, are 
lassi�ed by a generalized Darboux theorem[11℄, saying that any GC spa
e is lo
ally the sum of a 
omplex spa
e and a symple
ti
 spa
e.Hybrid GC stru
tures with no underlying 
omplex or symple
ti
 stru
ture do appear in N = 1supersymmetri
 
ompa
ti�
ations of string theory [31, 32℄.Around every point p, the sum TpM � T �pM is naturally endowed with an inner produ
tof signature (n; n), hX + �; Y + �i = 12(�X� + �Y �) : (2.12)It also a
ts naturally on polyforms on M :(X + �):� = �X�+ � ^ �: (2.13)A
ting twi
e on � yields a Cli�ord algebra, and the +i eigenbundle of a GC stru
ture is an n-dimensional subspa
e, hen
e the one-to-one 
orresponden
e between GC stru
tures and purespinors (polyforms with an n-dimensional annihilator). On a Calabi{Yau manifold, the pure5



spinor asso
iated to the diagonal GC stru
ture indu
ed by the ordinary 
omplex stru
tureis the holomorphi
 n-form, while the pure spinor asso
iated to the o�-diagonal GC stru
tureindu
ed by the symple
ti
 stru
ture is ei!, where ! denotes the K�ahler form.The inner produ
t is 
onserved by an a
tion of the group O(n; n), whose generi
 element
ontains o�-diagonal blo
ks that 
an be exponentiated into the so-
alled B- and �-transformsexpB = � 1 0B 1� : B : X + � 7! X + � + �XBexp � = �1 �0 1� : � : X + � 7! X + ��� + � ; (2.14)where B and � are antisymmetri
 blo
ks identi�ed with a two-form B�� and a bive
tor ���.The 
orreponding transforms a
t by 
onjugation on the matri
es of the GC stru
tures, andby left-multipli
ation by eB or e� on the 
orresponding pure spinors. These a
tions will o

urin se
tion 6.Let H be a 
losed three-form. A generalized submanifold is de�ned in [11℄ as a submanifoldN endowed with a two-form B su
h that HjN = dB. The generalized tangent bundle �BN ofthis generalized submanifold is de�ned as the B-transform of the sum of the tangent bundleTN and 
onormal bundle (or annihilator) AnnTN , namely:�BN = fX + � 2 TN � T �M jN ; �jN = �XBg ; (2.15)so that � 0N = TN �AnnTN . A generalized tangent bundle is a maximally isotropi
 subspa
e(i.e., it is isotropi
 with respe
t to natural pairing and it has the maximal possible dimensionfor an isotropi
 spa
e in ambient signature (n; n), namely n.) Moreover, all the maximallyisotropi
 subspa
es are of this form, for some submanifold N and two-form B.Given a GC stru
ture J , a generalized 
omplex brane is de�ned in [11℄ as a generalizedsubmanifold whose generalized tangent bundle is stable under the a
tion of J . In the 
ase of adiagonal GC stru
ture, the 
ompatibility 
ondition gives rise to the B-branes, as expe
ted dueto the lo
alization properties of the B-model on 
omplex parameters [33℄. The submanifoldN namely has to be a 
omplex submanifold, and F has to be of type (1; 1) with respe
t to JJ(TN) � TN ; J�(�XF ) + �JXF = 0 : (2.16)In the other extreme 
ase of a symple
ti
 stru
ture, the de�nition yields all possible types ofA-branes, in
luding the non-Lagrangian ones [34, 35℄. These are two tests of the idea thatD-branes in generalized geometries are generalized submanifolds. This idea has passed furthertests: 
alibrating forms and pure spinors en
oding stability 
onditions for topologi
al branes[36℄ are 
orre
tly ex
hanged by mirror symmetry [37, 22, 23, 14℄.3 The SYZ argument for Calabi{Yau manifoldsLet us sket
h the SYZ argument [26℄, assuming for a moment that M is an ordinary Calabi{Yau manifold with a Calabi{Yau mirror M̂ . We break the argument up into steps, whi
h weshall then extend to generalized Calabi{Yau manifolds.6



Step 1: Consider the D0-branes of the B-model on M .As there is an ordinary 
omplex stru
ture on M , one 
an always put stable D0-branes on it.In other words, the moduli spa
e of a D0-brane 
onsists of the entire manifold M .Step 2: Consider the A-model on the mirror manifold M̂ .As mirror symmetry does not 
hange moduli spa
es, there must be a stable D-brane L onM̂ (a spe
ial Lagrangian submanifold (SLag) of M̂) that has the same moduli spa
e, namelyM . It is safe to disregard the 
oisotropi
 D-branes of the A-model in this 
ontext [34, 38, 39℄,be
ause they are �ve-dimensional and one eventually 
onsiders D-branes that 
an be obtainedfrom D0-branes by three T-dualities, whi
h rules out dimension �ve.Step 3: Proje
t out the gauge-bundle moduli.Moreover, this moduli spa
e has a �bered stru
ture: it is �bered over the set of geometri
moduli 
alledMSLag(L), with �ber given by the gauge-bundle moduli (the proje
tion map �is given by \forgetting the bundle data"):M ��!MSLag(L): (3.1)M is therefore �bered by the gauge bundle data, with �ber given by the set of Wilson linesT b1(L).Step 4: Des
ribe the lo
al tangent spa
e to the moduli spa
e of supersymmetri
 three-
y
les.The tangent spa
e at L to the moduli spa
e of SLags [40℄ with 
at 
onne
tions is given byH1(L;C) ' H1(L)�H1(L); (3.2)with the �rst term 
orresponding to geometri
 moduli and the se
ond one to gauge-bundlemoduli (the Lagrangian and spe
ial 
ondition are preserved by exa
tly those deformationsthat are indu
ed by harmoni
 one-forms, and the 
at gauge 
onne
tions are des
ribed by theset of b1 monodromies around the non-trivial homology 
y
les in L).Step 5: Use the result of step 1 to 
ompute the dimension of the �bers.The moduli spa
e of SLags with 
at 
onne
tions on M̂ (
ontinuously 
onne
ted to L) thereforehas real dimension 2b1(L), half of whi
h 
omes from the moduli of 
at 
onne
tions. But the�ber in the �bration (3.1) is a torus T b1(L). As this moduli spa
e is M itself, we learn that2b1 = 6, and that M is �bered by three-tori.Step 6: T-dualize along the three-
y
les.Consider a D3-brane with 
at 
onne
tion wrapping a T 3 �ber on M . T-dualizing along thethree U(1) dire
tions produ
es a D0-brane on a T-dual manifold 
alled M 0, whose modulispa
e is the whole of M 0. Consider a D0-brane on M . Its moduli spa
e is the whole of M .It sits at some point in a T 3 �ber. T-dualizing along the three U(1) dire
tions of this �berprodu
es a D3-brane with 
at 
onne
tion wrapping a three-
y
le on M 0. This des
ribes a�bration ofM 0 by three-tori, whose moduli spa
e isM . This is the same situation as with the
ouple of branes on M and M̂ des
ribed above. Therefore M̂ = M 0 and T-duality along thetorus �bers is mirror symmetry. 7



4 Fibrations �a la SYZ for stati
 SU(2) stru
turemanifoldsManifolds with stati
 SU(2) stru
ture form an interesting but still tra
table sub
lass of ba
k-grounds be
ause they substantially di�er from Calabi{Yau manifolds (in that they admit no
losed type-three pure spinor), and be
ause they do not exhibit type-jumping phenomena.They are relatively tra
table, for the pri
e of 
onsidering 
y
les that are transverse to M andits mirror M̂ . Having type-one and type-two 
losed pure spinors, we �nd it natural to formtheir wedge produ
t, whi
h indu
es a GC stru
ture on the produ
tM�M̂ , be
ause the wedgeprodu
t starts with a 
omplex three-form and allows for some parallel treatment of the SYZargument.4.1 Supersymmetri
 
y
les on M � M̂Consider a generalized Calabi{Yau manifold M and its mirror M̂ , both with stati
 SU(2)-stru
ture.2 There is a nowhere-vanishing 
omplex one-form �eld v + iw, indu
ing on everylo
al four-dimensional transverse spa
e a real two-form j and a 
omplex two-form !. The
orresponding two pure spinors are �� = (v + iw) ^ eij�+ = ! ^ eiv^w : (4.1)They are ex
hanged under mirror symmetry with analogous obje
ts on the mirror M̂ built froma nowhere-vanishing 
omplex one-form �eld v̂ + iŵ, indu
ing on every lo
al four-dimensionaltransverse spa
e a real two-form ĵ and a 
omplex two-form !̂:�̂� = (v̂ + iŵ) ^ eiĵ�̂+ = !̂ ^ eiv̂^ŵ : (4.2)This is a 
ase of the generalized Darboux theorem with types one and two, and we 
an 
hooselo
al 
oordinates that are adapted to it:j =: dx3 ^ dx4 + dx5 ^ dx6 ; ĵ =: dx̂3 ^ dx̂4 + dx̂5 ^ dx̂6;! =: d(x3 + ix4) ^ d(x5 + ix6) ; !̂ =: d(x̂3 + ix̂4) ^ d(x̂5 + ix̂6) : (4.3)The pure spinors ��, �+, �̂� and �̂+ indu
e almost GC stru
tures on M and M̂ denoted byJ�, J+, Ĵ� and Ĵ+.Step 1. Where 
an we pla
e points? In order to parallel the �rst step of the SYZ argumentfor Calabi{Yau manifolds, we need to be able to move points on a six-dimensional spa
e. This
annot be M or M̂ , be
ause the GC stru
ture indu
ed by �� always maps some tangentve
tors to some normal ve
tors. This prevents the generalized tangent bundle to a point frombeing stable under the a
tion of the GC stru
ture.Consider instead supersymmetri
 
y
les on M � M̂ . There are several possible 
hoi
es forstru
tures and 
alibrations, and we will be interested in the following 
ombinations:2For re
ent developments based on the physi
s of SU(2) stru
ture manifolds as gravity duals of deformationsof super Yang{Mills theories, see for instan
e [41℄. 8



� GC branes w.r.t. the GC stru
ture J� � Ĵ+, 
alibrated by �+ ^ �̂�, whi
h we 
all �� GC branes w.r.t. the GC stru
ture J+ � Ĵ�, 
alibrated by �� ^ �̂+, whi
h we 
all �̂.In a basis of the lo
al tangent spa
e to M � M̂ adapted to the lo
al splitting into 2 + 4dimensions, we have the following matrix representation for the GC stru
tures, where thesymbols J! and J!̂ denote the almost 
omplex stru
tures 
orresponding to ! and !̂ in thelo
al four-dimensional subspa
es, so that we obtainJ� � Ĵ+ = 0BB� Jv+iw 0 0 00 �J�v+iw 0 00 0 0 �j�10 0 j 0 1CCA�0BB� 0 �v̂ ^ ŵ�1 0 0v̂ ^ ŵ 0 0 00 0 J!̂ 00 0 0 �J �̂! 1CCA ;
J+ � Ĵ� = 0BB� 0 �v ^ w�1 0 0v ^ w 0 0 00 0 J! 00 0 0 �J�! 1CCA�0BB� Jv̂+iŵ 0 0 00 �J �̂v+iŵ 0 00 0 0 �ĵ�10 0 ĵ 0 1CCA : (4.4)
Let us des
ribe the generalized tangent bundle � 0� (with zero �eld strength), of the GCsubmanifold � of M � M̂ . As the two GC stru
tures we 
onsider on M � M̂ are blo
k-diagonal with blo
ks of the same size , the proje
tions of the generalized tangent bundle ontothe sums of blo
ks and dual blo
ks are separately generalized 
omplex and 
alibrated w.r.t.the 
orresponding blo
ks.We may 
hoose � to have zero-dimensional proje
tions onto Ve
t(v; w) and Ve
t(v̂; ŵ)?.
hosen to be trivial, the proje
tions of � 0� onto Ve
t(v̂; ŵ) and Ve
t(v; w)? have to be La-grangian w.r.t. v̂ ^ ŵ and j respe
tively, and 
alibrated by v̂ + iŵ and !. This gives one-dimensional and two-dimensional proje
tions on Ve
t(v̂; ŵ) and Ve
t(v; w)? respe
tively forthe world-volume of � j + v̂ ^ ŵj� = 0 (4.5)Im (! ^ (v̂ + iŵ)) j� = 0 : (4.6)They look like the Lagrangian and spe
ial 
onditions, but live on a six-dimensional subspa
eof M � M̂ , transverse to both M and M̂ . To sum up, a possible lo
al generalized tangentbundle is given in the 
oordinates 
hosen above as:� 0� = �v; w; ��x3 + idx4; ��x5 + idx6; v̂� + iŵ�; dx̂3; dx̂4; dx̂5; dx̂6� : (4.7)The supersymmetri
 
y
le � is therefore three-dimensional, but neither of its proje
tions onM or M̂ is (they are two- and one-dimensional respe
tively). The situation is depi
ted in �g.2. The same linear-algebrai
 exer
ise 
an be repeated with hats ex
hanged to yield the lo
algeneralized tangent bundle of the 
y
le 
alled �̂ (with a somewhat misleading notation be
ause�̂ is not mirror to �; both are their own mirror):v ^ w + ĵj�̂ = 0 (4.8)Im ((v + iw) ^ !̂) j�̂ = 0 ; (4.9)9
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ΣFigure 2: Supersymmetri
 
y
les � and �̂ and their lo
ation within M � M̂ .with the generalized tangent bundle given by� 0̂� = �v� + iw�; dx3; dx4; dx5; dx6; v̂; ŵ; ��x̂3 + idx̂4; ��x̂5 + idx̂6� : (4.10)We thus obtain the situation in Figure 2. The supersymmetri
 
y
les we have just des
ribedare sket
hed as submanifolds ofM�M̂ that are transverse to bothM and M̂ , whereas the tree-dimensional supersymmetri
 
y
les on a mirror pair of Calabi{Yau manifolds are longitudinaleither to M or to M̂ . If one thinks of a supersymmetri
 three-
y
le as a leg, then the SYZpi
ture of mirror pairs 
orrespond to standing on M � M̂ with one leg on M and one legon M̂ . What we have just argued is that standing on M � M̂ with M and M̂ generalizedCalabi{Yau manifolds with stati
 SU(2) stru
ture 
an be a
hieved, but only with the legs
rossed.4.2 The �bration of M � M̂We are ready to turn to Step 3 and Step 4. So far we have exhibited two three-dimensionalsupersymmetri
 
y
les onM�M̂ , 
alled � and �̂, ea
h of whi
h possesses six position moduligiven by the proje
tions onto the subspa
es of M � M̂ that are 
omplex w.r.t. (v + iw) ^ !̂and ! ^ (v̂ + iŵ). We want to show that they both have the topology of a three-torus, andthat the moduli spa
e of �� �̂ on M � M̂ is the whole of M � M̂ �M � M̂ .We have worked out the generalized tangent spa
es of both 
y
les � and �̂. This givesonly lo
al informations, essentially 
ounting dimensions. For some point p in M � M̂ , on thelo
al tangent spa
e Tp(M � M̂) in whi
h ��, �+, �̂� and �̂+ have the generalized Darbouxexpressions we wrote above, the proje
tions of � 0� onto the subspa
e Ve
t(v; w) and Ve
t(v̂; ŵ)?have dimension zero. So have the proje
tions of � 0̂� on Ve
t(v; w)? and Ve
t(v̂; ŵ). We havejust des
ribed a proje
tor � 0� � � 0̂� ! Tp(M � M̂) : (4.11)This is the tangent appli
ation to the proje
tion�� �̂ 7! p 2M � M̂ : (4.12)10



There are therefore position moduli for � � �̂ in all the twelve dire
tions, whi
h 
orrespondto moving �� �̂ around p in the 
oordinate pat
h.Let us 
allM the moduli spa
e of supersymmetri
 
y
les of M � M̂ that are 
ontinuously
onne
ted to ���̂. We have just argued that there is a twelve-dimensional subspa
e 
onsistingof translation moduli, so there must exist other moduli, whi
h make up some subspa
e M0
onsisting of deformations that leave the proje
tion of �� �̂ onto the lo
al 
omplex subspa
esof M � M̂ �xed: T���̂M = Tp(M � M̂)� T���̂M0 : (4.13)Consider now the proje
tion � that \forgets the gauge bundle" along the two 
y
les � and�̂. It indu
es a �bration ofM0 over some base B 
onsisting of the Lagrangian deformationsof �� �̂ w.r.t. v ^ w ^ j ^ v̂ ^ ŵ ^ ĵ: M0 ��! B (4.14)The spa
eM0 has the following topologi
al meaning, as the �berwise proje
tion of the gener-alized tangent bundle is isomorphi
 to the 
omplexi�ed dual of the ordinary tangent spa
e to�� �̂ as a bundle and as a Lie algebroid (
f. se
tion 7.2 of [17℄) :M0 = H1 �L(�� �̂; 0)jp� = H1dR(�� �̂;C): (4.15)The dimension of the moduli spa
e M0 is therefore twi
e the Betti number of the six-dimensional 
y
le �� �̂.In order to 
ompute this dimension, we are going to perform T-duality along �� �̂, withthe point p still �xed. This implies that gauge 
onne
tions will be �xed on the image of �� �̂,whi
h will only have translation moduli. The moduli spa
e is not 
hanged by T-duality, butit is now des
ribed as follows. The one-dimensional proje
tion of � onto TpM , with modulifrom 
at 
onne
tion and normal deformations (all inM0), is mapped to a point-like proje
tiononto TpM̂ with two translation moduli. The �xed zero-dimensional proje
tion of � onto TpM̂ ,is mapped to a one-dimensional proje
tion onto TpM sitting at some �xed w� = 0, extendedalong v� and with �xed 
at 
onne
tion. The two-dimensional proje
tion of � onto TpM̂ ismapped to a point of M with four translation moduli. So � is mapped to itself, but the �bermoduli are traded for translational ones, living in the subspa
e Ve
t(v̂�; ŵ�)�Ve
t(v�; w�)?. ByT-dualizing �̂ along ���̂, one trades in the same way the deformation moduli for translationalones, living in the subspa
e Ve
t(v�; w�)� Ve
t(v̂�; ŵ�)?, so that the tangent spa
e at � � �̂to the moduli spa
eM0 is isomorphi
 (by dimension 
ounting) toVe
t(v̂�; ŵ�)� Ve
t(v�; w�)? � Ve
t(v�; w�)� Ve
t(v̂�; ŵ�)? = Tp(M � M̂) : (4.16)The moduli (sub)-spa
eM0 therefore has dimension twelve.Let us move to Step 5. We have just 
omputed the dimension ofM0, whi
h is a

essibleto our lo
al 
omputations, but its T-dual interpretation in homology promotes the result to aBetti number, a global quantity. From this T-duality argument we learn thatdimT���̂M0 = 2b1(�� �̂) = dim(M � M̂) = 12 : (4.17)Hen
e �� �̂ is a six-torus, the produ
t of two supersymmetri
 three-tori, and its moduli spa
eis M � M̂ �M � M̂ .Note that � or �̂ by itself does not have M � M̂ as its moduli spa
e, nor M �M norM̂ � M̂ , as it is only the 
ase for SU(3) stru
tures.11



5 Illustrations in 
ux 
ompa
ti�
ationsSo far we have drawn the 
on
lusions of there being transverse three-dimensional supersym-metri
 
y
les on a mirror pair of manifolds with stati
 SU(2) stru
tures. This begs for a few
he
ks. We shall �rst T-dualize the three-tori and 
he
k that the pure spinors are ex
hangedby this transformation. We shall then turn to the example of K3 � T 2, whi
h was of 
ourseavailable in the Calabi{Yau 
ase, but 
an also be endowed with a stati
 SU(2) stru
ture.Finally, in order to make 
onta
t with open problems in 
ux 
ompa
ti�
ations (where thenature of non-geometri
 
uxes is still under investigation), we shall take the analog of Step 6by turning on all the possible 
uxes on a six-torus with stati
 SU(2)-stru
ture, thus puttingour T-duality proposal to the test.5.1 Mirror images of the pure spinorsLet us perform a Fourier{Mukai transform (F:T:) on the pure spinors, by weighting themwith the Poin
ar�e 
onne
tion on � � �̂ we worked out. As we have established that thethree-dimensional interse
tion of � � �̂ and M are the dire
tions whi
h are T-dualized, theFourier{Mukai transform of the pure spinors readsF:T: (��) = Z(���̂)\M (v + iw) ^ eij ^ ev^v̂+dx3^dx̂3+dx5^dx̂5 = eiv̂^w ^ ! = �̂+; (5.1)F:T: (�+) = Z(���̂)\M eiv^w ^ ! ^ ev^v̂+dx3^dx̂3+dx5^dx̂5 = (v̂ + iw) ^ eiĵ = �̂�; (5.2)with the value of the base 
oordinates un
hanged, namely provided w = ŵ, whi
h makes sense,be
ause the lo
al 
oordinates w or ŵ are not T-dualized. The mapping of pure spinors underFourier{Mukai transform 
oin
ides with what is expe
ted from mirror symmetry.5.2 The K3� T 2 exampleAs the Euler 
hara
teristi
 is multipli
ative, the manifold K3 � T 2 has Euler 
hara
teristi
zero. There may therefore be a nowhere-vanishing ve
tor �eld on it. Real and imaginary partof the 
omplex 
oordinate of T 2 as an ellipti
 
urve indeed serve as v and w ve
tor �elds.3In the present 
ase, ! and j are a 
omplex and a K�ahler form on K3, while !̂ and ĵ are thesame obje
ts on the mirror K3. Of 
ourse in this 
ase we have a global pi
ture of the 
y
les:� is a point in T 2 times a spe
ial Lagrangian torus with respe
t to j, times a Lagrangian
ir
le in the mirror torus times a point in the mirror K3, while �̂ is the mirror 
ir
le on the�rst torus times a point in the �rst K3 times a point in the se
ond T 2 times the dual torusin the se
ond K3. The proje
tion is just given by asso
iating the points to � � �̂. This isjust the ordinary SYZ 
ase but with the 
omplex stru
tures of the two-tori ex
hanged. It isa straightforward 
onsequen
e of the Calabi{Yau 
ase be
ause 
rossing the legs amounts topermuting the two two-tori.3For a thorough treatment of the redu
tion of IIA supergravity on K3 � T 2 endowed with an SU(2)stru
ture, see [42℄. 12



5.3 Stati
 SU(2) stru
ture with non-geometri
 
uxesLet us apply this analysis to the 
ase of a six-torus endowed with a stati
 SU(2) stru
ture.This seems of 
ourse to be an over-simpli�
ation, as many torus �brations 
an be expli
itlyfound in su
h a geometry. However, T-duality leads from geometri
 to non-geometri
 
uxes,whi
h in the terminology [5℄ are 
alled Q- and R-
uxes a

ording to the number of T-dualizeddire
tions supporting a B-�eld. With ea
h double arrow symbolizing one T-duality, thesenotations are summarized in the following way:Hab
 $ fab
 $ Qab
 $ Rab
: (5.3)The embedding of three-tori intoM�M̂ along whi
h T-duality is performed is key to the mapbetween geometri
 and non-geometri
 
uxes. Finding the mirror of a generi
 
ux 
on�gurationis therefore a non-trivial 
he
k of our proposal4. We are going to 
omplete the study of 
uxeson the SU(2) stru
ture ba
kground of [9℄, �rst in
luding all the non-geometri
 
uxes (whi
hindeed �ll all the entries of the 
harge matrix), and then to obtain the mirror 
on�gurationby T-duality along the transverse supersymmetri
 �bers.5.3.1 Charge matrixWe 
onsider a six-torus endowed with a stati
 SU(2) stru
ture. The holomorphi
 ve
tore3 = v + iw is 
ompleted to a basis by (e1; e2; e3), and likewise for the mirror the basis isdenoted by (ê1; ê2; ê3). The GC submanifolds � and �̂ solving the stru
ture and stabilityequations (4.5)-(4.9) are 
hosen as � �̂<(e1) <(ê1)<(e2) <(ê2)<(ê3) <(e3) ; (5.4)whi
h have trivial proje
tion onto the base spanned by (=(e1);=(e2);=(e3)) and � proje
tstrivially upon e3 = v + iw et
. as required.The generi
 SU(3) � SU(3) stru
ture is des
ribed by a symple
ti
 basis with forms thatare not ne
essarily 
losed. Denote the two bases by�� = � �I�I � ; �+ = � !A~!B � ; (5.5)where the entries of �� are odd/even formal sums of forms. In parti
ular d�� 6= 0 and 
antherefore be expanded in ��, i.e. d�� = Q�+ : (5.6)The matrix Q is 
alled the 
harge matrix. In the present 
ase it is a four-by-four matrix.4Choosing a stati
 SU(2) stru
ture prote
ts us against type-jumping phenomena; those will of 
ourse be
ru
ial in the generi
 SU(3) � SU(3) 
ase, whi
h will be elaborated on in the next se
tion, in a mu
h lessthorough way though. 13



Furthermore de�ne the generalized symple
ti
 basis �� in terms of the basis ei as follows�� = 0BB� 2<(e3)�2=(e3) + <(e3)j�=(e3)j213<(e3)j2 + 43=(e3)j 1CCA ; (5.7)and�+ = 0BB� 4<(e1) ^ <(e2)8 (=(e1) ^ <(e2) + <(e1) ^ =(e2))� 16<(e1) ^ <(e2) ^ <(e3) ^ =(e3)16=(e1) ^ =(e2) ^ <(e3) ^ =(e3)43=(e1) ^ =(e2) + 43(=(e1) ^ <(e2) + <(e1) ^ =(e2)) ^ <(e3) ^ =(e3) 1CCA ; (5.8)where we de�nedj = 2i(e1 ^ e�1 + e2 ^ e�2) = 4 �<(e1) ^ =(e1) + <(e2) ^ =(e2)� : (5.9)As dis
ussed earlier, the standard relation between the two symple
ti
 basis ve
tors is(5.6). Turning on 
uxes { both geometri
 H-
ux and non-geometri
 Q- and R-
uxes { hasthe e�e
t of twisting the the di�erential operator d(d+H ^+Q �+R�)�� � Q�+ : (5.10)Here we denote by � equality up to terms that are perpendi
ular to all elements in thesymple
ti
 basis with respe
t to the symple
ti
 pairingZMh�; �i = ZM  Xp (�1)[ p+12 ℄�p ^ �6�p! ; (5.11)where � = Pp �p is a polyform (the sum runs over the degrees) and h; i denotes the Mukaipairing. In parti
ular the symple
ti
 basis obeysZMh�I ; �Ji = ÆJI ; ZMh!A; ~!Bi = ÆBA : (5.12)Note that the a
tion on 
ohomologies is as followsd : Hp ! Hp+1H : Hp ! Hp+3Q� : Hp ! Hp�1R� : Hp ! Hp�3 ; (5.13)in agreement with Q having two ve
tor and one form index and R being a tri-ve
tor. Notethat d a
ts on the one-forms as dei = f ijkej ^ ek. The mapping of the various degrees underthe 
uxes (5.13) 
an be depi
ted as in Fig. 3. Here [p℄, with p = 1; 2; � � � denotes the degreeof the forms.The various 
ux 
omponents then follow by noting that�� = 0BB� [1℄[1℄ + [3℄[5℄[3℄ + [5℄ 1CCA ; �+ = 0BB� [2℄[2℄ + [4℄[4℄[2℄ + [4℄ 1CCA ; (5.14)and further allowing additional terms 
ompatible with the equivalen
e relation �.14



[ 1 ] [3] [5]
H Q f QRf

[2] [4]Figure 3: Mapping of 
ohomology degrees under the 
uxes f , H, Q and R.5.3.2 Geometri
 
uxesThe e�e
t of the geometri
 
uxes (both H and f) was already dis
ussed in [9℄. There it wasfound that with the geometri
 
ux parameters one 
an swit
h on the following entries in the
harge matrix (d+H^)�� � 0BB� F11 F12 + H 12 H 13 F14 + H 14F21 F22 + H 22 F23 + H 23 F24 + H 240 0 0 00 F42 F43 F44 1CCA�+ : (5.15)The geometri
 
ux 
harges (a.k.a. torsion 
harges) Fi follow from the relationdeI = f IJKeJ ^ eK ; (5.16)where eI = <(ei) for I = i and eI = =(ei) for I = �i.To sum up, the f -
ux we have to turn on in order to generate the above 
harge entries aref =+ 2F11<(�3) ^ <(e1) ^ <(e2)+ 8F12 �<(�3) ^ =(e1) ^ <(e2) + <(�3) ^ <(e1) ^ =(e2)�+ 43F14<(�3) ^ =(e1) ^ =(e2)� 2F21=(�3) ^ <(e1) ^ <(e2)� 4F22(=(�3) ^ =(e1) ^ <(e2) + =(�3) ^ <(e1) ^ =(e2))� 2F22(=(�1) ^ <(e2) ^ =(e3) + =(�2) ^ =(e3) ^ <(e1))+ 2F23(<(�1) ^ =(e3) ^ =(e2) + <(�2) ^ =(e1) ^ =(e3))� 13F24 �2=(�3) ^ =(e1) ^ =(e2) + <(�1) ^ <(e2) ^ =(e3) + <(�2) ^ =(e3) ^ <(e1)�+ 3F42(�<(e2) ^ =(�1) + <(e1) ^ =(�2)) ^ <(e3)+ 32F43(<(�1) ^ =(e2) ^ <(e3) + <(�2) ^ <(e3) ^ =(e1))+ 12F44(=(e2) ^ =(�1) + =(�2) ^ =(e1)) ^ <(e3) : (5.17)We should perhaps add a word of explanation. Re
all that the relations between the twosymple
ti
 basis is only up to the equivalen
e w.r.t. �. This in parti
ular allows one to swit
h15



on f -
ux to generate the Q12 
harge entry, without turning on H-
ux simultaneously. To bemore expli
it f = 8F12 �<(�3) ^ =(e1) ^ <(e2) + <(�3) ^ <(e1) ^ =(e2)� (5.18)a
ting upon ��1 = 2<(e3) will only generate the two-form part of �+2 , denoted by �+2 ��[2℄f��1 = 2F12 �+2 ��[2℄ : (5.19)However, this 
an be written as f��1 = F12�+2 + 
 ; (5.20)where 
 = F12 ��+2 ��[2℄ � �+2 ��[4℄� ; (5.21)whi
h is perpendi
ular to all other basis elementsh
;��i i = 0 ; (5.22)and thus f��1 � F12�+2 : (5.23)Likewise the H-
ux 
an be determined asH =+ 16H 12<(e1) ^ <(e2) ^ =(e3)� 8H 13=(e1) ^ =(e2) ^ =(e3)+ 43H 14 �<(e2) ^ =(e1)� <(e1) ^ =(e2)� ^ =(e3)+ 16H 22<(e1) ^ <(e2) ^ <(e3)� 8H 23=(e1) ^ =(e2) ^ <(e3)� 43H 24 �=(e1) ^ <(e2) ^ <(e3) + <(e1) ^ =(e2) ^ <(e3)� : (5.24)
The resulting 
harge matrix entries are as we indi
ated in (5.15).5.3.3 Non-geometri
 
uxesHere we wish to study the e�e
t of the Q- and R-
uxes, whi
h 
an be done by linear super-position with the results from [9℄. We �nd by simple dimensional analysis that the e�e
t ofthese non-geometri
 
uxes on the 
harge matrix 
an be only of the following type:(Q+R)�� � 0BB� 0 0 0 0Q 21 Q 22 0 Q 24R31 Q 32 + R32 Q 33 Q 34 + R34R41 Q 42 + R42 Q 43 Q 44 + R44 1CCA�+ : (5.25)We 
an determine the 
orresponding non-geometri
 
uxes whi
h will turn on these 
hargeentries by analyzing the stru
ture of the linear equations and keeping in mind the liberty to16



add terms perpendi
ular to all basis elements in the symple
ti
 basis. We �nd the followingQ-
uxes (are one-forms and bi-ve
tors)Q =+ 12Q 21 �<(e2) ^ =(�1)� <(e1) ^ =(�2)� ^ <(�3)+ Q 22 ��<(e2) ^ <(�1) + =(e2) ^ =(�1)� =(e1) ^ =(�2) + <(e1) ^ <(�2)� ^ <(�3)+ 13Q 24 �=(e1) ^ <(�2)� =(e2) ^ <(�1)� ^ <(�3)+ Q 32=(�1) ^ =(�2) ^ <(e3)� 12Q 33<(�1) ^ <(�2) ^ <(e3)� 112Q 34(=(�2) ^ <(�1) + <(�2) ^ =(�1)) ^ <(e3)+ 3Q 42=(�1) ^ =(�2) ^ =(e3)� 32Q 43<(�1) ^ <(�2) ^ =(e3)� 14Q 44(=(�2) ^ <(�1) + <(�2) ^ =(�1)) ^ =(e3) ; (5.26)as well as R-
uxes of the typeR =� 18R31=(�1) ^ =(�2) ^ =(�3)� 12R32(<(�1) ^ =(�2)�<(�2) ^ =(�1)) ^ =(�3)� 112R34<(�1) ^ <(�2) ^ =(�3)+ 38R41=(�1) ^ =(�2) ^ <(�3)� 32R42(<(�1) ^ =(�2)�<(�2) ^ =(�1)) ^ <(�3)+ 14R44<(�1) ^ <(�2) ^ <(�3) :
(5.27)

In summary we have shown that the full 
harge matrix 
an be 
onstru
ted by swit
hingon geometri
 as well as non-geometri
 
uxes:Q = 0BB� F11 F12 + H 12 H 13 F14 + H 14F21 + Q 21 F22 + H 22 + Q 22 F23 + H 23 F24 + H 24 + Q 24R31 Q 32 + R32 Q 33 Q 34 + R34R41 F42 + Q 42 + R42 F43 + Q 43 F44 + Q 44 + R44 1CCA : (5.28)5.3.4 Mirror symmetryWe now wish to test out generalized SYZ proposal in this setup. This should in parti
ularbe 
ompatible with the proposed mirror map of [9℄. The mirror 
uxes are obtained by �rstre
alling that we dualize along <(e1), <(e2) and <(e3) and that thereby the mirror map isrealized as <(ei)  ! <(�i) : (5.29)17



The mirror 
uxes are determined straight-forwardly from our expressions for the 
uxes. Themirrors of the geometri
 
uxes arebf =+ 2F11<(e3) ^ <(�1) ^ <(�2)+ 8F12 �<(e3) ^ =(e1) ^ <(�2) + <(e3) ^ <(�1) ^ =(e2)�+ 43F14<(e3) ^ =(e1) ^ =(e2)� 2F21=(�3) ^ <(�1) ^ <(�2)� 4F22(=(�3) ^ =(e1) ^ <(�2) + =(�3) ^ <(�1) ^ =(e2))� 2F22(=(�1) ^ <(�2) ^ =(e3) + =(�2) ^ =(e3) ^ <(�1))+ 2F23(<(e1) ^ =(e3) ^ =(e2) + <(e2) ^ =(e1) ^ =(e3))� 13F24 �2=(�3) ^ =(e1) ^ =(e2) + <(e1) ^ <(�2) ^ =(e3) + <(e2) ^ =(e3) ^ <(�1)�+ 3F42(�<(�2) ^ =(�1) + <(�1) ^ =(�2)) ^ <(�3)+ 32F43(<(e1) ^ =(e2) ^ <(�3) + <(e2) ^ <(�3) ^ =(e1))+ 12F44(=(e2) ^ =(�1) + =(�2) ^ =(e1)) ^ <(�3) ; (5.30)and bH =+ 16H 12<(�1) ^ <(�2) ^ =(e3)� 8H 13=(e1) ^ =(e2) ^ =(e3)+ 43H 14 �<(�2) ^ =(e1)�<(�1) ^ =(e2)� ^ =(e3)+ 16H 22<(�1) ^ <(�2) ^ <(�3)� 8H 23=(e1) ^ =(e2) ^ <(�3)� 43H 24 �=(e1) ^ <(�2) ^ <(�3) + <(�1) ^ =(e2) ^ <(�3)� : (5.31)
These in
lude of 
ourse both geometri
 and non-geometri
 
uxes.

18



Likewise the non-geometri
 mirrors arebQ =+ 12Q 21 (<(�2) ^ =(�1)� <(�1) ^ =(�2)) ^ <(e3)+ Q 22 ��<(�2) ^ <(e1) + =(e2) ^ =(�1)� =(e1) ^ =(�2) + <(�1) ^ <(e2)� ^ <(e3)+ 13Q 24 �=(e1) ^ <(e2)� =(e2) ^ <(e1)� ^ <(e3)+ Q 32=(�1) ^ =(�2) ^ <(�3)� 12Q 33<(e1) ^ <(e2) ^ <(�3)� 112Q 34(=(�2) ^ <(e1) + <(e2) ^ =(�1)) ^ <(�3)+ 3Q 42=(�1) ^ =(�2) ^ =(e3)� 32Q 43<(e1) ^ <(e2) ^ =(e3)� 14Q 44(=(�2) ^ <(e1) + <(e2) ^ =(�1)) ^ =(e3) ; (5.32)and bR =� 18R31=(�1) ^ =(�2) ^ =(�3)� 12R32(<(e1) ^ =(�2)�<(e2) ^ =(�1)) ^ =(�3)� 112R34<(e1) ^ <(e2) ^ =(�3)+ 38R41=(�1) ^ =(�2) ^ <(e3)� 32R42(<(e1) ^ =(�2)�<(e2) ^ =(�1)) ^ <(e3)+ 14R44<(e1) ^ <(e2) ^ <(e3) :
(5.33)

A
ting with the mirror 
uxes on the basis yields the mirror 
harge matrix bQ to bebQ = 0BB� �14Q 33 316F43 � 332Q 43 H 13 �6F23 � 6H 23�16Q 34 + 124R34 18F44 + 18Q 44 + 116R44 �16F14 + 23H 14 �F24 � 2H 24 + 14Q 24R31 38R41 �4F11 �24F21 � 6Q 2183Q 32 + 23R32 �2F42 + Q 42 + 12R42 163 F12 � 323 H 12 16F22 � 64H 22 + 2Q 22 1CCA :(5.34)Note this is ni
ely 
on�rming the 
onje
tured mirror map on the 
harge matrix as of [9℄ whereit was 
onje
tured that the 
harge entries appear asQ = � pIA eIBqIA mIB � ! bQ = � mIA eBIqAI �pIB � : (5.35)Re
all that this was derived by 
omparing the Killing prepotentials, and thus does not �xthe mapping of the 
harges up to linear transformations that leave the blo
ks invariant. We
on�rmed the mapping of the 
harges and expli
itly worked out the 
harge entries of bQ.19



We should note that in addition to the linear 
onditions that arise from the a
tion of the
uxes on the basis, there are also quadrati
 
onstraints, whi
h arise from the 
ondition thatthe di�erential has to be nilpotent, upon the entries of the 
harge matrix. These will haveto be taken into a

ount, in order to dis
uss physi
al 
ux 
on�gurations. The fa
tors in theabove matrix 
ould then be taken 
are of by allowing only 
uxes that solve the quadrati

onstraints.6 Supersymmetri
 
y
les on generi
 SU(3)� SU(3)stru
ture ba
kgroundsIn this se
tion we want to investigate the generi
 
ase of SU(3)�SU(3) stru
ture ba
kgrounds,where the underlying manifold (in some duality frame) has non-zero Euler number. Relaxingthe topologi
al 
ondition �(M) = 0 implies that there is no stati
 SU(2) stru
ture at all. Notonly do we have to fa
e the loss of ordinary 
omplex stru
ture on M , but we are going toen
ounter type-jumping phenomena. The following two 
losed subsets are indeed going to beof spe
ial interest: f
�1(1)g : type-three and type-zero pure spinors ; (6.1)as in the 
ase of SU(3) stru
tures (this set was empty in the previous part of our analysis),and f
�1(0)g : type-one and type-two pure spinors ; (6.2)as in the 
ase of SU(2) stru
tures. They 
orrespond to the two big 
ir
les we have depi
tedon �gure (1). So far we have been 
on�ned to only one of them, be
ause of the topologi
alassumption we have made.Some three-tori will be supersymmetri
 on M � M̂ , either in transverse or longitudinalposition, but they will always be situated above points of these two spe
ial subsets. Away fromthose subsets, types of pure spinors are too low to allow for stable D0-branes. This is T-dualto the disappearan
e of most of the supersymmetri
 three-torus �bers. We shall des
ribe thisin terms of mass generation for moduli through 
uxes.Motivated by this observation 
on
erning D0-branes, we want to address the existen
e,stability and moduli spa
e of three-dimensional supersymmetri
 
y
les. We shall see thatfor SU(3) � SU(3) stru
tures that are not stati
 SU(2) stru
tures, su
h 
y
les still exist attype-jumping points. As T-duality does not 
hange moduli spa
es, we expe
t some moduli ofthose 
y
les to be �xed. In parti
ular, three-dimensional supersymmetri
 
y
les are not likelyto give rise to a �bered stru
ture of a whole manifold with generi
 SU(3)� SU(3) stru
ture.But they 
an still allow for the ex
hange of pure spinors �� and �+ by mirror symmetry asa T-duality along a three-dimensional supersymmetri
 
y
le.6.1 D3-branes and D0-branes through maximum-type pointsConsider a mirror pair of manifoldsM and M̂ with SU(3)�SU(3) stru
tures, that do not fallinto the 
lass of stati
 SU(2) stru
tures (as they have opposite Euler 
hara
teristi
s, assumingthat one has non-zero Euler 
hara
teristi
 is suÆ
ient to ensure the 
ondition). We assumeboth sides of the mirror 
orresponden
e to have a geometri
 des
ription in the sense of a sigma20



model. Consider some point p on M at whi
h the 
omplex one-form v+ iw vanishes. At thatpoint the pure spinors assume the same forms as in the Calabi{Yau 
ase. We may write forsome 
omplex 
oordinates X; Y; Z��jp = 
jp = dX ^ dY ^ dZ�+jp = eiJ jp = e i2 (dX^d �X+dY ^d �Y+dZ^d �Z) ; (6.3)and one may put a D0-brane of the B-model, that is generalized 
omplex w.r.t. to 
, or aD3-brane of the A-model, i.e. a Lagrangian D-brane whi
h will be denoted by L.Let us T-dualize along L, whi
h we assume to have the topology of a torus, 
orrespondingto the three isometries we need to perform T-duality5. Let there be lo
al 
oordinates x0,y0 andz0 on L (that are imaginary parts of 
omplex 
oordinates X = x+ ix0, Y = y+ iy0, Z = z+ iz0de�ned on the lo
us with equation v + iw = 0), so that Fourier{Mukai transform yieldsF:T: ���jF:T:(L)� = ZL ei(dx0^dx̂0+dy0^dŷ0+dz0^dẑ0)dX ^ dY ^ dZ= exp�i(dx̂0 ^ dx+ dŷ0 ^ dy + dẑ0 ^ dz)�= �̂+jp̂ =: eiĴ jp̂F:T: ��+jF:T:(L)� = �̂�jp̂ =: 
̂jp̂ ; (6.4)
whi
h are the expressions of the pure spinors on the T-dual point p̂ on whi
h a supersymmetri
D0-brane sits. Of 
ourse p̂ has to be in the set of zeroes of v̂ + iŵ, or 
̂�1(1), whi
h is notempty sin
e the mirror manifold M̂ also has non-zero Euler number.6.2 Away from maximum-type points through 
uxesIt has long been appre
iated that the behaviour of pure spinors under mirror symmetry istransparent to B-transforms by a two-form whose 
omponents are extended in dire
tionstransverse to the T-dualized dire
tions, while non-geometry o

urs when the two-form has
omponents that are longitudinal. In terms of the previous lo
al 
omplex 
oordinates, B-transforms by two-forms of type (1; 1) are still B-transforms on the mirror, while those oftype (0; 2) or (2; 0) are �-transforms on the mirror. This 
an be seen in lo
al 
harts bywedging together pairs of the following naturality properties derived in lemma 6.2 of these
ond referen
e in [23℄, where v and � denote a longitudinal ve
tor and one-form, and w and denote a transverse ve
tor and one-form:i) F:T:(�v ^ �) = v̂ ^ (F:T:(�))ii) F:T:(�w ^ �) = �w(F:T:(�))iii) F:T:(� ^ �) = ��̂(F:T:(�))iv) F:T:( ^ �) =  ^ F:T:(�) :In other words 
ovariant and 
ontravariant tensors stay so under T-duality if their 
omponentsare transverse to the dualized dire
tions, while they are 
ipped if they are longitudinal.5The assumption is reasonable be
ause we have two SU(3) stru
tures, ea
h of whi
h gives rise to a �brationby three-tori, and at points the two �bers are the same, the �ber is supersymmetri
; but su
h points are exa
tlythe zeroes of v + iw. 21



So far we have seen how T-duality maps pure spinors �+ and �� to ea
h other along themaximum-type lo
us of equation v + iw = 0. It looked formally the same as in the Calabi{Yau or SU(3) stru
ture 
ase. Suppose an H-
ux is turned on on both sides of the mirror
orresponden
e. Choosing a gauge for the lo
al B-�eld from whi
h the 
ux derives indu
esvarious B- and �-transforms on M and M̂ , a

ording to the way the support of the B-�eldinterse
ts with the T-dualized dire
tions. Generi
ally, going away from the maximum-typelo
us should indu
e a �-transform that will lower the type of �� to one, whi
h is the mostgeneri
 type for an odd pure spinor (i.e. the lowest type allowed by parity).Thanks to property iv), B-�elds of type (1; 1) in the 
omplex stru
ture des
ribed abovepull ba
k to zero on the three-
y
le L. They a
t as B-transforms on both sides of the mirror
orresponden
e and do not lower the type of the pure spinorseB ^ ��  ! eB ^ �̂� : (6.5)We have to take into a

ount possible B-transforms by longitudinal B-�elds, that give riseto non-geometri
 
uxes on the mirror (we will restri
t to the 
ase of Q-
uxes on the mirror,with two indi
es of the B-�eld along T-dualized dire
tions). Consider an H-
ux on the spa
eM , with one unit of 
ux along a three-
y
le C:ZC H = 1 : (6.6)In order for L to be a supersymmetri
 three-
y
le, the lo
al B-�eld, whi
h gives rise to the
ux, has to pull-ba
k to zero on L.We are interested in the appli
ation of T-duality in two dire
tions 
arrying indi
es of non-zero 
omponents of the H-
ux. These dire
tions, denoted by y and z, are two U(1) isometries,spanning a two-torus. Consider the one-form valued integral of H along this torus. It is 
losedbe
ause the three-form H is: d ZT 2 H = 0: (6.7)One 
an lo
ally integrate the one-form, so that there exists (lo
ally) a s
alar fun
tion X su
hthat ZT 2 H = dX ; (6.8)whi
h amounts to a gauge 
hoi
e, be
ause the B-�eldB := XvolT 2 ; (6.9)where volT 2 is the volume form of T 2, is 
ompatible with the quantization of H. Upon T-duality along the two U(1) isometry dire
tions y and z, this B-�eld is mapped to a bive
torliving on the T -dual manifoldF:T:(ei(J+Xdy^dz)) = X��ŷ��ẑ �F:T:(eiJ)�+ F:T:(eiJ) : (6.10)This way the lowest 
omponent of the odd pure spinor we read-o� from the RHS is theone-form X��ŷ��ẑ
, that appears to be weighted by the lo
al 
oordinate X. We may thusidentify the �rst term in the expansion of the polyform on the RHS with the mirror of the�berwise 
omponents of the H-�eld. It should also be equal to the one-form v+ iw. Thus, we22



have seen that the (0; 2) part of the argument of the exponential in the expression of �+ ismirror to the 
omplex ve
tor v+iw. We 
an rewrite this mapping in a 
oordinate-independentway as �+ = eB(0;2) ^ eiJ �! e�
̂ = ��; (6.11)where the RHS has now type one and 
ontains an overall fa
tor of v̂ + iŵ.Likewise we 
an start with ��. Again H 
an be lo
ally written as H = d(Xdy ^ dz) andthus F:T:(eXdy^dz ^ 
) = eX�y^�zF:T:(
) : (6.12)Furthermore F:T:(
) = eiJ with J = J1;2 = j � v ^ w being one of the two-forms of the twoSU(3) stru
tures (2.6). We have thus established thateB(0;2) ^ 
 �! e�eiJ ; (6.13)with � = X�y ^ �z. Apart from this we know that the 
ontra
tion between � and j vanishes,just as ! ^ j vanishes for SU(2) stru
tures. Hen
e 
ontra
tions between the bive
tor � andthe polyform eiJ only involve j and is therefore unambiguous. So the 
ontra
tion between �and the higher powers of J just sele
ts the square of j, and gives rise to a (2; 0) form 
alledB0, whi
h squares to zero. Using the expansion (6.3) we �nd:e�(eiJ) = 1 + iJ + � ��J22 �� J22 + � ��iJ36 �� iJ36 : (6.14)De�ning B0 := � ��J22 � ; (6.15)this 
an be rewritten in the following waye� �eiJ� = 1 + iJ +B0 + B0 ^ iJ � J22 � iJ36 = eB0 ^ eiJ : (6.16)Thus, one may say that the �-transform of the type-zero pure spinors assumes the same formas a B-transform for a

idental dimensional reasons. We therefore write the �-transform ofthe type-zero spinor as a B-transform by B0, whi
h of 
ourse is still of the most generi
 typezero: eB(0;2) ^ 
 �! eB0+iv^w+ij : (6.17)This formula was already derived assuming a T 3-�bration in [32℄ as a 
lue that SU(3) �SU(3) stru
tures 
ould a

ount for non-geometri
 situations involving T-dualizing with aB-�eld extended along two �berwise dire
tions. Here we see that it a
tually holds for amere topologi
al reason on spa
es with non-zero Euler number and SU(3)�SU(3) stru
ture.On su
h spa
es v + iw have zeroes on whi
h odd pure spinors have type three, thus givingrise to supersymmetri
 three-
y
les; the mirror formula between �� and �+ follows from thenaturality properties of B- and �-transforms w.r.t. T-duality along the three-
y
les, even if theSYZ argument is spoiled away from the zeroes of v+ iw due to the absen
e of supersymmetri
D0-branes. Moreover, T-dualizing along L and exploiting properties of the Fourier{Mukaitransform allowed us to go the other way around, whi
h lowers the type of ��. To sum up,23



putting all the possible B- and �-transforms on both sides, we have argued that the followingT-duality holds in an open neighborhood of type-jumping point:�+ = e~�+B0(0;2)+B(1;1) exp(iJ)  ! e�0+ ~B(0;2)+B(1;1)
̂ = �̂�~�  ! ~B(0;2)B0(0;2)  ! � 0B(1;1)  ! B(1;1) ; (6.18)where the odd pure spinor has type one as � 0 (or equivalently B0(0;2)) is non-zero.6.3 Moduli spa
esAs D0-branes 
an only be stable at points where the odd pure spinors has type three, theirmoduli spa
e must be evaluated by looking at massless in�nitesimal deformations at su
hex
eptional points. Going away from su
h a point involves a �-transform. If one goes along thesubset 
�1(1) the �-transform is trivial and we have found a translation modulus; otherwisethe dire
tion along whi
h we are going is a �xed modulus. On the other hand, the �rst
ohomology of the Lie algebroid of a D0-brane was evaluated in [17℄ as the set of ve
tors X lsu
h that the �-transform that a
ts on the pure spinor satis�es�l���X l�� ^ �� = 0 : (6.19)This makes for a �ve-dimensional moduli spa
e, as a gauge may be 
hosen in whi
h � onlydepends on one 
oordinate, the one along the dire
tion v. Consider the three-dimenionalD-brane going through su
h a point. It also has a �ve-dimensional moduli spa
e, sin
e thenormal deformation in the dire
tion v is not allowed anymore, and it is exa
tly the modulusthat has disappeared for D0-branes.In the more generi
 
ases we want to investigate here, we have to 
ompute the mass matrixof the deformations of our three-dimensional supersymmetri
 tori. Moduli that are �xed bythe 
ux should get a mass.One 
an make an observation in lo
al 
oordinates around a point where the pure spinorshave type zero and type three. The fundamental two-form J takes the expressionJ = i2 �dX ^ d �X + dY ^ d �Y + dZ ^ d �Z� ; (6.20)and imagine we start with a supersymmetri
 three-torus extended along the dire
tions x, yand Z and the T-dual of an H-
ux deriving from the 
oordinate x is a �-transform with� = X�y ^ �z, so that it is easy to repeat the argument of the previous subse
tion for the
omputation of B0. In a neighborhood of the point we 
onsidered, �+ assumes the form:e�eiJ = eXd �Y d �ZeiJ ; (6.21)so that a four-
hain B that is bounded by the supersymmetri
 three-
y
le and some generalized
y
le (�; F ) at the other end will go (along the X dire
tion) through 
y
les 
arrying non-zero�eld strength F = P�(Xd �Y d �Z); (6.22)24



where P� denotes the pull-ba
k to �. Hen
e the three-
y
le (�; F ) 
annot be generalized
omplex if it goes into the X dire
tion. This loss of stru
ture �xes the position moduli Xfor the three-
y
le, whi
h fa
t is mirror to X a
quiring a mass as a translation modulus for aD0-brane.7 Con
lusions and outlookThe SYZ argument has been shown to extend to a 
lass of generalized Calabi-Yau spa
es,namely so-
alled stati
 SU(2) stru
ture manifolds. We have shown that there are no super-symmetri
 three-tori on M or its mirror M̂ , but the produ
t M � M̂ is doubly �bered bythree-tori, both families of �bers are transverse to M and M̂ , and the resulting six-tori are
alibrated generalized submanifolds of M � M̂ . Moreover mirror symmetry is performed byT-dualizing the three-dimensional interse
tion of su
h generalized submanifold with M . Thistransversality property is reminis
ent of the (mu
h more general) 
onje
tures formulated byGualtieri in the �nal 
hapter of [11℄.It is somewhat surprising that this argument is appli
able also when in
luding non-geometri

uxes, in parti
ular R-
uxes. These non-geometri
 
uxes are expe
ted to spoil the geometri
des
ription of the ba
kground even lo
ally. In the R-
ux 
ase, the geometry is expe
ted to berepla
ed by some non-asso
iative algebra [43℄. However we did not en
ounter su
h a ne
essity.We suspe
t that the 
ase of stati
 SU(2) stru
ture, whi
h prevents the type of the pure spinorsfrom jumping, guards us against the destabilizing e�e
ts of non-geometri
 
uxes on D-branes.The large-volume limit whi
h was assumed in the SYZ argument for Calabi{Yau manifoldsis also highly questionable in generi
 
ux ba
kgrounds. Again the topologi
al 
ondition of astati
 SU(2) with a non-vanishing ve
tor �eld allows for more globally well-de�ned quantitiesthan the ordinary 
omplex torus studied in [44, 6℄. This is 
onsistent with the observationmade in [9℄ that more 
harges 
an be turned on geometri
ally on SU(2) stru
ture ba
kgroundsthan on generi
 ones.The 
ase of generi
 SU(3)�SU(3) stru
tures is mu
h less transparent.6 We have identi�eda set of three-
y
les, T-dual to type-jumping points on the mirror. They 
annot �ber themanifold or even its produ
t with its mirror. This fa
t is mirror to the mass that 
uxes giveto the translation moduli of D0-branes, spoiling the very �rst step of the SYZ argument.T-dualizing the surviving three-tori and asking for fun
torial properties w.r.t. B- and �-transforms of generalized geometry gives however a 
orre
t mirror ex
hange between type-zeroand type-one pure spinors. Our argument was limited to the use of 
lassi
al geometry.In order to formulate an SYZ argument for the generi
 
ase, it seems natural to 
onsidernon-
ommutative �brations. It has been observed that T-dualizing dire
tions that supportmore than one index of a non-zero 
omponent of a B-�eld leads to non-
ommutative �brationsthrough an un
ertainty prin
iple for D-branes [46, 47℄. Of 
ourse allowing non-
ommutative�bers, with non-
ommutativity s
ale proportional to the quanta of 
uxes and to the dis
rep-an
y between the pair of SU(3) � SU(3) stru
tures, would be a way of �bering generalizedba
kgrounds by (further) generalized submanifolds. The only �bers we are able to see in the6We have disregarded Ramond{Ramond 
uxes, in the presen
e of whi
h a one of the two pure spinors
annot be 
losed [13℄. Bian
hi identity in the presen
e of Ramond{Ramond 
uxes requires an orientifoldproje
tion, see [45℄. 25



present approa
h are the ones along whi
h the two stru
tures agree, whi
h results in type-jumping and in a 
ommutative �ber. It might be that non-
ommutative �brations on moregeneral bases than a torus will be equivalent to �brations by T-folds [4℄, and that going awayfrom type jumping points will require a
ting on the �bers with transition fun
tions involvingT-dualities.We hope to gain more insight into these issues by studying the proper redu
tion on generi
SU(3)�SU(3) stru
ture manifolds. Initial results have appeared in [9℄ and the 
ase of SU(3)stru
tures was dis
ussed in [48℄. We trust that the analog of harmoni
 forms will be generalizedor twisted harmoni
 forms, i.e. forms that are harmoni
 w.r.t. the Lapla
ian twisted by all
uxes (geometri
 and non-geometri
). This should in parti
ular allow one to determine themass terms that we dis
ussed in at the end of this paper, and thus the disappearan
e ofgeometri
 moduli will be
ome more transparent. We shall 
ome ba
k to these points in duetime.A
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