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1 IntrodutionRadiative B ! V  deays, where V is a light vetor meson, are proesses of partiularinterest in avor physis whih are already aessible at the B-meson fatories at SLACand KEK; urrent measurements [1{7℄ yield the branhing frations presented in Table 1.These deays provide independent onstraints on the shape of the unitarity triangle,determining the side Rt of this triangle through the ratio of branhing frations for B !(�; !) and B ! K� deays. This information is omplementary to the onstraints onthe ratio of CKM matrix elements jVtd=Vtsj obtained from the reent CDF measurementof the mass di�erene �Ms in the Bs � �Bs system [8℄ and the already preise knowledgeof the Bd� �Bd mass di�erene �Md [7℄. Moreover, measurements of the CP-asymmetriesin B ! (�; !) deays and the isospin-violating ratio of the harged and neutral B ! �modes would determine the inner angle � of the unitarity triangle.The alulation of the branhing frations for B ! V  deays requires the evaluationof the hadroni matrix elements of the operators in the e�etive weak Hamiltonian. ForB ! V  deays the weak Hamiltonian is [9, 10℄:He� = GFp2 Xp=u;�(q)p "C1Qp1 + C2Qp2 + 8Xi=3 CiQi# ; (1)where �(q)p = V �pqVpb (unitarity of the CKM matrix implies that �(q)t = �(�(q)u +�(q) ) and soontributions from diagrams with top-quark loops are inluded impliitly). The relevantfour-quark operators Q1 and Q2 areQp1 = (�q p)V�A (�p b)V�A; Qp2 = (�qipj)V�A (�pjbi)V�A; (2)and the eletromagneti and hromomagneti penguin operators Q7 and Q8 areQ7 = �emb(�)8�2 �q ��� [1 + 5℄ bF�� ; Q8 = �g mb(�)8�2 �q ��� [1 + 5℄T a bGa�� : (3)Here q = d or s, and the onvention for the sign of the ouplings orresponds to theovariant derivative iD� = i�� + eQfA� + gT aAa�, with A� and Aa� representing thephoton and gluon �elds respetively, and Qe = �1 et. The fator mb(�) is the MS massof the b quark. The Wilson oeÆients Ci have been known within the next-to-leadinglogarithmi approximation (NLL) for over a deade (for a review, see [11℄), and havebeen reently alulated at next-to-next-to-leading logarithmi order (NNLL) in a seriesof papers [12{16℄. In the present work we fous on the most phenomenologially relevantoperators, whih are Q1, Q7, and Q8. The matrix elements of the QCD-penguin operatorsQ3; : : : Q6 �rst ontribute at O(�s) and are multiplied by small Wilson oeÆients in theweak Hamiltonian He� (1). The ontribution from Q2 starts at O(�2s).It has been shown that in the heavy-quark limit a fatorization framework (alled QCDfatorization) an be applied to B ! V  deays [17{23℄ (see [24,25℄ for phenomenologialupdates to NLO, and [26, 27℄ for the alternative \perturbative QCD" approah). Inpartiular, the matrix element of a given operator in the e�etive weak Hamiltonian anbe written in the form
V  jQij �B� = FB!V? T Ii + Z d! du �B+(!)�V?(u)T IIi (!; u) : (4)1



Table 1: Status of the B-meson radiative branhing frations (in units of 10�6) from theBABAR, BELLE and CLEO ollaborations and their averages by HFAG [7℄. The entryfor Bs ! � is from the reent BELLE measurement [6℄.Mode BABAR BELLE CLEO HFAGB+ ! K�+ 38:7� 2:8� 2:6 42:5� 3:1� 2:4 37:6+8:9�8:3 � 2:8 40:3� 2:6B0 ! K�0 39:2� 2:0� 2:4 40:1� 2:1� 1:7 45:5+7:2�6:8 � 3:4 40:1� 2:0B+ ! �+ 1:10+0:37�0:33 � 0:09 0:55+0:42+0:09�0:36�0:08 < 13 0:88+0:28�0:26B0 ! �0 0:79+0:22�0:20 � 0:06 1:25+0:37+0:07�0:33�0:06 < 17 0:93+0:19�0:18B0 ! ! 0:40+0:24�0:20 � 0:05 0:56+0:34+0:05�0:27�0:10 < 9:2 0:46+0:20�0:17B ! K� 40:4� 2:5 42:8� 2:4 43:3� 6:2 41:8� 1:7B ! (�; !)  1:25� 0:25� 0:09 1:32+0:34+0:10�0:31�0:09 < 14 1:28+0:31�0:29Bs ! �  57+18+12�15�17The non-perturbative e�ets are ontained in FB!V?, the B ! V transition form fator atq2 = 0, and in �B+ and �V?, the leading-twist light-one distribution amplitudes (LCDAs) ofthe B- and V -mesons. The hard-sattering kernels T Ii and T IIi inlude only short-distanee�ets and are alulable in perturbation theory. Contributions to the kernel T I are loselyrelated to the virtual orretions to the inlusive deay rate, and are referred to as vertexorretions. Those to the kernel T II are related to parton exhange with the light quarkin the B-meson, a mehanism ommonly referred to as hard spetator sattering. It isexpeted that the fatorization formula is valid up to orretions of O(�QCD=mb).The derivation of the fatorization formula from a two-step mathing proedure in soft-ollinear e�etive theory (SCET) [28{31℄ has provided additional insight into its struture.An advantage of the e�etive �eld-theory approah is that it allows for an unambiguousseparation of sales and an operator de�nition of eah objet in the fatorization formula.The tehnial details for B ! V  have been provided in [32{34℄. In the SCET approahthe fatorization formula is written as
V  jQij �B� = �iCA�V? + pmBFfV?4 Z d! du �B+(!)�V?(u) tIIi (!; u) ; (5)where F and fV? are meson deay onstants. The SCET form fator �V? is related tothe QCD form fator through perturbative and power orretions [35, 37{42℄. In SCETthe perturbative hard-sattering kernels are the mathing oeÆients �iCA and tIIi . Theyare known ompletely to next-to-leading order (NLO) (O(�s)) in renormalization-group(RG) improved perturbation theory [34℄. In this paper we make steps towards a ompleteanalysis at next-to-next-to-leading order (NNLO) by obtaining full results for the hard-sattering kernels for the dipole operators Q7 and Q8, and partial results for Q1, valid inthe large-�0 limit and negleting NNLO orretions from spetator sattering.The hard-sattering kernels are found by mathing ertain partoni matrix elementsin QCD with those in the e�etive theory. For the vertex orretions the relevant matrixelements are hsjQijbi. The loop orretions in the e�etive theory an be made tovanish by mathing on-shell, so the main obstale is the evaluation of the QCD matrixelements. However, these matrix elements are just the virtual orretions to the inlusiveB ! Xs deay rate. Exat results to O(�2s) were obtained for Q7 in [43, 44℄ and for Q82



in [45℄. For Q1 the virtual orretions at O(�s) were alulated in [46{48℄, but those atO(�2s) are known only in the large-�0 limit [49, 50℄4. A alulation that goes beyond thisapproximation by employing an interpolation in the harm quark massm was reported in[52℄, and has been used in estimating the NNLO branhing fration for the inlusive deayB ! Xs [53℄. However, as the alulation was not split into virtual and bremsstrahlungontributions, those results annot be used in the SCET mathing alulation. Therefore,while we obtain exat NNLO results Q7 and Q8, for Q1 we are restrited to the large-�0limit. Our results provide an expliit hek on fatorization at NNLO.Corretions from spetator sattering are inluded in the hard-sattering kernel tII and�rst ontribute to the branhing fration at NLO (O(�s)). A ompliation of spetatorsattering is the presene of two widely separated perturbative sales m2b � mb�QCD. TheSCET approah provides a systemati framework for separating ontributions from thesetwo sales. In SCET the hard-sattering kernel tIIi for a given operator is sub-fatorizedinto the onvolution of a hard-oeÆient funtion with a universal jet funtion, in theform tIIi (u; !) = Z 10 d��iCB1(�)j?(�; u; !) � �iCB1 ? j?: (6)The hard oeÆients �iCB1 ontain physis at the hard sale mb, while the jet funtionj? ontains physis at the hard-ollinear sale pmb�. The hard oeÆient is identi�edin a �rst step of mathing QCD ! SCETI, and the jet funtion in a seond step ofmathing SCETI ! SCETII. Details have been worked out for B ! V  in [32, 34℄, forheavy-to-light form fators in [36{42℄, and for B ! PP in [54, 55℄.The e�etive �eld-theory tehniques are ruial for providing a �eld-theoretial de�-nition of the objets in (5), and for resumming large perturbative logarithms of the ratiomb=�QCD in the tIIi . In the e�etive-theory approah resummation is arried out by solv-ing the renormalization-group equations for the mathing oeÆients �iCB1. Sine theseoeÆients enter the fatorization formula in a onvolution with the jet funtion j?, theiranomalous dimension is a distribution in the variables � and u. The evolution equationsmust be solved before performing the onvolution with j?. Therefore, resummation is notpossible in the original QCD fatorization formula (4), where the hard-sattering kernelsT IIi are obtained only after this onvolution has been arried out.While the SCET formalism is indispensable for resummation, in the atual mathingalulations one an also use the diagrammati method of expanding by regions [56℄ inorder to separate hard from hard-ollinear e�ets as in (6). This method was used toanalyze loop orretions to spetator sattering for the ase of the B ! � form fatorin [57℄, and for B ! �� in [58℄. In both ases the results were shown to be equivalent tothose obtained diretly in SCET. We use similar tehniques here to ompute the NNLOorretion from the hard-sattering kernel tII8 . Our result for the one-loop orretionat the hard-ollinear sale agrees with (6), expliitly on�rming the universality of thejet funtion predited by SCET. Sine the NNLO orretions from tII7 are known fromthe form fator analysis [40, 42℄, the main obstale to a omplete treatment of spetatorsattering is the NNLO mathing alulation for Q1.The paper is organized as follows. In Setion 2 we explain the SCET fatorizationframework and de�ne the hard-sattering kernels. The SCET mathing alulations are4these results are obtained by alulating the O(�2snf ) terms and then replaing nf ! �3�0=2,aording to the hypothesis of \naive non-abelianization" [51℄.3



arried out for the vertex orretions in Setion 3 and for the hard-spetator orretionsin Setion 4. In Setion 5 we desribe the numerial analysis and estimate the branhingfrations for B ! K? and Bs ! � deays at NNLO, omparing our results with theurrent data and identifying the theoretial unertainties. We onlude in Setion 6.Results for the partoni matrix elements taken from alulations for inlusive B ! Xsdeays are relegated to the Appendix, along with some of the SCET mathing funtionsobtained in previous work and details of the renormalization-group analysis.2 Fatorization and the hard-sattering kernelsIn this setion we explain the losely related issues of fatorization and extration of thehard-sattering kernels. The objets of interest are the hadroni matrix elements
V  jQij �B� :An analysis in [34℄ used a two-step mathing proedure in SCET to show that thesematrix elements an be written in the form (5) to all orders in perturbation theory and toleading order in 1=mb. In this paper we work out a large set of e�etive-theory mathingoeÆients at NNLO in perturbation theory. These are obtained by replaing the hadronistates by partoni ones and alulating the matrix elements in perturbative QCD. Showingthat the partoni rate an be brought into the form (5) demonstrates fatorization andprovides expressions for the hard-sattering kernels.To alulate the partoni matrix elements requires the evaluation of multi-sale Feyn-man integrals. It is advantageous to perform these integrals using the method of re-gions [56℄. This not only provides a simple way to obtain results at leading order in 1=mb,but also a fatorization of momentum sales at the level of Feynman diagrams. In thismethod the loop integrations are split into a sum of di�erent regions, in whih the loopmomenta satisfy a �xed saling. This allows for a Taylor expansion under the integral ineah region, whih is subsequently integrated over all spae. The integrals are performedin dimensional regularization, where saleless integrals are set to zero. The sum of theresults for all the regions reovers the full integral, expanded in 1=mb.A number of di�erent momentum regions appear in the analysis, both perturbative andnon-perturbative. To identify these we �rst introdue two light-like vetors n� satisfyingn+n� = 2. We hoose the outgoing vetor meson to travel along the n� diretion, andde�ne n+ suh that the veloity of the b quark is given byv� = n��n+v2 + n�+n�v2 : (7)This de�nition implies v? = 0, and we shall always work in the referene frame wheren�v = n+v = 1. To perform the expansion in 1=mb, we de�ne the parameter �2 =(pB �mbv)2 and the dimensionless parameter � = �=mb � 1. The regions are lassi�edaording to the saling of their light-one omponents with the expansion parameter�. Denoting the light-one omponents of a generi four-vetor p by (n+p; p?; n�p), therelevant momentum regions are [34℄:
4



Perturbativehard mb(1; 1; 1)hard-ollinear mb(1;p�; �)Non-perturbativesoft mb(�; �; �)ollinear mb(1; �; �2)soft-ollinear mb(�; �3=2; �2)The onnetion between the SCET analysis and perturbative QCD is provided by themethod of regions. In the e�etive theory, ontributions from the perturbative regionsare enoded in Wilson oeÆients of operators built from �elds representing the regionsof lower virtuality. It is onvenient to fatorize the two perturbative sales m2b and mb�using a two-step mathing proedure QCD! SCETI ! SCETII.In the �rst mathing step the hard salem2b is integrated out by mathing the operatorsQi onto a set of operators in SCETI. The e�etive theory SCETI involves �elds for thehard-ollinear and non-perturbative modes, multiplied by Wilson oeÆients related tothe hard region. For the ase of B ! V , the mathing takes the form [34℄Qi ! �iCAJA +�iCB1 ? JB1 +�iCB2 ? JB2: (8)The ? denotes a onvolution over momentum frations, as in (6). The momentum-spaeWilson oeÆients depend only on quantities at the hard sale m2b . The exat form of theoperators J (i) along with the relevant SCET onventions an be found in [34℄:JA = ���Wh� /"?(1� 5)hv; (9)JB1 = ���Wh� /"? /Ah?(1 + 5)hv; (10)JB2 = ���Wh� /Ah?/"?(1 + 5)hv: (11)Here "? is the polarization vetor of the on-shell photon. The operators ontain a hard-ollinear quark �eld �, a omposite objet Ah, whih in light-one gauge is the hard-ollinear gluon �eld, and Wh, a Wilson line. In SCET the b-quark �eld is treated as inHQET. We have suppressed the arguments of the �elds above, but must keep in mind thatdue to the non-loality of SCET the objets ���Wh� and /Ah? are evaluated at di�erentpoints along the n+ light-one, whereas hv is multipole expanded and evaluated at a pointon the n� light-one (see, e.g., [31℄). The B-type operators are atually power suppressedin SCETI, but ontribute at the same order as the A-type operator upon the transitionto SCETII [36{38℄.The matrix element of the operator JA is proportional to the SCET form fator �V?.The Wilson oeÆients �iCA multiplying this matrix element an be extrated fromalulations in the inlusive B ! Xs deay. Details are given in Setion 3. In ontrastto the QCD form fator, the SCET form fator ontains no piee whih an be writtenin the form of a (onvergent) onvolution of a hard-sattering kernel with the mesonLCDAs [37, 38℄5. The relation between the QCD form fator and the SCET form fator5although see [59℄ for a renewed disussion of this point.5



is determined by the fatorization formula [35, 37, 38℄FB!V? = CAV?�V? + pmBFfV?4 Z d! du �B+(!)�V?(u) tIIV?(!; u) : (12)Sine the matrix element of Q7 is proportional to the form fator, the oeÆient funtionsCAV? and tIIV? at NNLO an be determined from the results for Q7. The exat relation isgiven in (80) below.The operators J (Bi) an be further mathed onto four-quark operators in SCETII. ForB ! V  deays, only the operator JB1 is relevant. The matrix element of the four-quarkoperator onto whih it mathes fatorizes into a produt of LCDAs for the B and Vmesons. The operator JB2, on the other hand, mathes onto a four-quark operator whoserenormalized matrix element has no projetion on the pseudosalar B-meson LCDA. Inmathing the operator JB1 onto SCETII the hard-ollinear sale mb� is integrated out,and the assoiated Wilson oeÆient is the jet funtion j?. The �nal low-energy theorySCETII ontains only soft, ollinear, and soft-ollinear �elds. Fatorization means thatsoft �elds are restrited to the B-meson LCDA, and ollinear ones to the V -meson LCDA.Sine these two piees ommuniate only through soft-ollinear interations, fatorizationamounts to showing that suh ontributions deouple from the hadroni matrix element ofthe SCETII operator. This was done in [34℄. Thus the matrix element of the operator ontowhih JB1 mathes is exatly of the form of the seond piee of (5), with tIIi = �iCB1 ?j?.This same jet funtion appears in the fatorization formula (12) for the form fator, wheretIIV? = CB1V? ? j?. We an summarize this disussion by the following fatorization formula
V  jQij �B� = �iCA�V? + pmBFfV?4 ��CB1 ? j?� ? �V? ? �B+ (13)= �iCACAV? FB!V? + pmBFfV?4 ���iCB1 � �iCACAV? CB1V?� ? j?� ? �V? ? �B+:This formula relates the hard-sattering kernels �iCA and tIIi in (5) to the Wilson oef-�ients from the two-step mathing proedure in SCET, and provides a onnetion withthe original formulation (4). For instane, using that �7Ci � CiV?, one an verify thatQ7 ontributes to both terms in the SCET formulation, but only to the vertex term inthe original formulation.A main result of our paper is an expression for the O(�2s) orretion to the hardoeÆient �8CB1. We obtain it with a straightforward diagrammati analysis using themethod of regions, without the expliit formulation of SCET or the use of its Feynmanrules. Sine ontributions from JB1 an be uniquely identi�ed by the Dira struture ofthe four-quark operator onto whih it mathes, the sub-fatorization of the hard-satteringkernel into a onvolution of a jet and hard funtion an be performed by separating out theontributions of the hard and hard-ollinear regions multiplying this struture. Detailsare given in Setion 4.3 Vertex orretionsWe begin with the vertex orretions, extrating the ontributions of the operators Q1; Q7,and Q8 to the SCET Wilson oeÆient CA at NNLO (O(�2s)). To do so we alulate the6



partoni matrix elements hQii � hq(p)(q)jQijb(pb)ito this same order in both SCET and QCD. This matrix element is hosen beause itontains no external gluons and so mathes diretly onto the operator JA in (9). The al-ulation is performed with on-shell external quark states and both UV and IR divergenesare regularized dimensionally. In that ase the mathing alulation is simple, beause theloop orretions in SCET are saleless and vanish. The matrix element of JA is just thetree expression plus ounterterms from wave-funtion and urrent renormalization. TheQCD matrix elements an be read o� from the virtual orretions to the inlusive deayB ! Xs. Using that the on-shell wave-funtion renormalization fators in the e�etivetheory are unity, and replaing the bare SCET urrent by its renormalized one, we havehQii = DihQ7;treei = �iCAZJhJAtreei: (14)Here the Di are the salar amplitudes in QCD, the �iCA are the ontributions of a givenoperator to the SCET mathing oeÆient, and ZJ is the renormalization fator of theSCET urrent operator JA. Eah of these quantities is determined as a series in �s. Forthe operators Q7;8 we an obtain omplete results at NNLO, while for Q1 we an onlyprovide an estimate using the large-�0 limit.We �rst onsider tree level, where only Q7 ontributes. For on-shell mathing thespinors in QCD and SCET are equal to one another and we �nd�7CA(0) = �emb 2E4�2 ; (15)where the photon energy is 2E = mB(1 �m2V =m2B) � mb in the heavy-quark limit. Athigher orders the mathing oeÆients an be read o� from the funtions Di aordingto the relation �iCA(mb; �) = �7CA(0) lim�!0 Z�1J (�;mb; �)Di(�;mb; �) : (16)The SCET urrent renormalization fator ZJ is determined by requiring that the WilsonoeÆient be free of IR poles.Before giving results for the higher-order orretions, we pause to explain a subtlety inthe mathing whih �rst appears at two loops. The on-shell matrix elements of the QCDoperators Qi are alulated in MS renormalization in the �ve-avor theory, nf = nl + nhwith nh = 1 for the b quark. However, in SCET b-quark loops are absent and the matrixelements are alulated as an expansion in the four-avor theory. In order to performa orret mathing, it is neessary to express the UV renormalized results in the �ve-avor theory in terms of the four-avor parameters of SCET. A similar problem ariseswhen integrating out the top quark to math the Standard Model onto the e�etive weakHamiltonian. The solution is to renormalize the oupling onstant in the nf = nh + nlavor theory aording to �bares = Znh+nl� �s, with (see e.g. [13, 60℄)Znh+nl� = 1� �s4�� �113 CA � 23nf + 23nh(1�N�)� : (17)The funtion N� is �xed suh that �s is the MS-renormalized oupling in the four avortheory. Its value is N(�) = e �� �2m2b�� �(1 + �) : (18)7



Results for the salar amplitudes Di in this renormalization sheme an be obtained fromthe MS results given in the Appendix by making the replaement�s ! �s�1 + �s4� 43nh �L + ��L2 + �224� + �2�2L33 + �212L� �36 ���+ : : : ; (19)where L = ln�=mb. Note that this is just the standard deoupling relation when evaluatedin four dimensions.We now give results for the Wilson oeÆients, whih we write in the form�iCA = �7CA(0) "Æi7 + �s(�)4� �iCA(1) + ��s(�)4� �2�iCA(2)# : (20)We begin with Q7. Results an be given analytially, but sine those for Q8 are onlyknown numerially we treat Q7 the same. Using the salar funtions D7 given in theAppendix we �nd�7CA(1) = CF ��2L2 � 5L� 2LQCD � 6:8225� ;�7CA(2) = C2F �2L4 + 14L3 + 38:1449L2 + 56:14711L+ 7:8159�+CFCA ��4:8889L3 � 33:9758L2 � 92:3415L� 83:8866�+CFnl �0:8889L3 + 6:8889L2 + 19:9050L+ 23:8254�+CFnh ��1:3333L2 + 2:8889L� 0:810288� ; (21)where one is to use nl = 4 and nh = 1 in the above equation. In the one-loop result we havedistinguished the logarithms LQCD = ln�QCD=mb and L = ln�=mb. The �QCD dependeneanels against the sale dependene in the e�etive weak Hamiltonian, whereas the �dependene anels against the sale dependene of the SCET soft funtion �V? and therunning oupling onstant. At one loop it is straightforward to separate the logarithmsby identifying the UV and IR poles in the individual Feynman diagrams. At two loopsthe distintion an be made by using the renormalization-group equation (25) below. Wegive expliit results for the ase where L is distinguished from LQCD in the Appendix, butin this setion we quote the NNLO results only for L = LQCD.We an use our results to determine the anomalous dimension of the operator JA upto two loops. The anomalous dimension is obtained from the oeÆient Z(1)J of the 1=�pole term in the urrent renormalization fator and has the formA = 2�s ���s Z(1)J (mb; �) = ��usp(�s) ln �mb + J(�s) ; (22)where �usp is the usp anomalous dimension appearing in the renormalization-grouptheory of Wilson lines [61℄ (it has reently been alulated to three loops [62℄; the resultis listed in the appendix). The result for the renormalization fator to two loops isZJ = 1 + CF�s4� �� 1�2 � 52� � 2L� �+CF ��s4��2 �� 0:5CF�4 + 1�3�� 2:5CF + 2:75CA � 0:5nl � 2CFL�+ 1�2�� 3:125CF + 3:5447CA � 0:5556nl � 2CFL2 + (�5CF + 3:6667CA � 0:6667nl)L�+1��� 2:6525CF � 3:4386CA + 1:9799nl + (�4:1546CA + 1:1111nl)L�� ; (23)8



from whih we �ndA = CF�s4� (�4L� 5) (24)+CF ��s4��2 ((�16:6183CA + 4:444nl)L� 10:6102CF � 13:7545CA + 7:9195nl) :This is onsistent with (22) and de�nes J . The one-loop result was �rst obtained in [29℄.We note that in this ase the nh dependene in the renormalization fator ZJ drops outafter using (19). This must be the ase, sine in the e�etive-theory urrent the b quarkis integrated out and so its anomalous dimension annot depend on nh. Our result forthe anomalous dimension, along with the relation� dd��iCA = A�iCA ; (25)allows us to perform the separation of UV and SCET logs in the Wilson oeÆients givenin the Appendix.The same SCET urrent also appears in the study of the inlusive B ! Xs deayspetrum with a ut on the photon energy [63℄. A result equivalent to our two-loopmathing oeÆient �7CA(2) with � = mb was reently obtained in [64℄. Translating ourexpression into the two-loop result for h(1) given in [64℄, we �nd numerial agreement.The dependene on nh not taken into aount in that work is negligible numerially. Wean also hek the two-loop anomalous dimension by using RG-invariane of the inlusivedeay rate along with the anomalous dimensions of the jet and soft funtions alulatedin [65, 66℄. Here again the results agree.We repeat the alulation for Q8. In this ase the one-loop result is IR �nite. Thetwo-loop mathing equation also beomes IR �nite after the results are expressed in termsof the renormalized urrent alulated above. This is a hek on the e�etive-theoryonstrution, aording to whih the IR poles in the QCD amplitudes for eah operatorin the weak Hamiltonian are absorbed by the same SCET urrent. For the oeÆientfuntions we �nd�8CA(1) = CF [2:6667LQCD + 1:4734 + 2:0944i℄ ;�8CA(2) = �C2F �5:3333L3 + 32:2802L2 + 50:9612L+ 1:8875+i(4:1888L2 + 31:4159L+ 29:8299)�+CFCA�15:1111L2 + 31:6617L+ 2:3833 + i(23:7365L+ 28:0745)��CFnl�1:7778L2 + 4:0386L+ 1:7170 + i(2:7925L+ 4:4215)�+CFnh�1:7778L2 � 2:0741L+ 0:8829�: (26)Finally, we onsider the four-quark operators Q1 and Q2. At NLO the ontributionfrom Q1 an be obtained as an expansion in m2=m2b , whereas that from Q2 vanishes.To extrat the NNLO results for these operators would require the QCD amplitudes D1and D2 to this same order, whih involves the alulation of a large set of three-loopgraphs. These orretions are known exatly only in the large-�0 limit, in an expansionin z = m2=m2b [49℄. Within this approximation the result for Q2 vanishes, and that forQ1 an be written as�1CA(1) = mbmbCF ��3:8519LQCD + r(1)(z)� ; (27)�1CA(2) = �3�02 mbmbCF �2:4691L2 + l(2)(z)L + r(2)(z)� ;9



where we have replaed nf ! �3�0=2 as appropriate in the large-�0 limit. Within thislimit it is also onsistent to set the ratio mb=mb to unity, as we shall do in the numerialanalysis of Setion 5. Sine in the large-�0 limit the amplitude is IR �nite, we an reado� the funtions r(i) and l(2) diretly from the results for inlusive B ! Xs deay.Converting to our notation we haver(1) = r2CF ; r(2) = r(2)2CF l(2) = � l(2)2CF ; (28)where r2 is de�ned in eq. (2.35) of [46℄, and r(2)2 ; l(2)2 in eq. (22) of [49℄. As an example,for m=mb = 1:2=4:8 we have�1CA(1) = mbmbCF [�3:8519LQCD � 3:4529� 0:5138i℄ ; (29)�1CA(2) = �3�02 mbmbCF �2:4691L2 + 4:9083L+ 5:1203 + i(0:9953L+ 1:6014)� :There are two major unertainties assoiated the large-�0 limit. The �rst is that thereis no way to quantify the size of the terms in �1CA(2) not aptured within this limit. Theseond is that the higher-order alulation does not resolve the perturbative ambiguitiesin the ratios of quark masses mb=mb and m=mb in the lower-order oeÆient �1CA(1):the di�erene between mass renormalization shemes in these ratios is a orretion pro-portional to CF�s and set to zero in the large-�0 limit. We disuss these unertainties inmore detail in the numerial analysis of Setion 5.In Setion 5 we will be interested in the dependene of the branhing frations onthe hoie of renormalization sales. Both the mathing oeÆients �iCA and the SCETsoft funtion �V? depend on the SCET fatorization sale �. It is onvenient to usethe renormalization group to determine the oeÆients �iCA at an arbitrary sale �,given their value at a mathing sale �h � �QCD � mb. This allows us to �x � = mband determine the soft funtion �V? only at this single sale. We an then study thedependene of the branhing frations under variations in �h and �QCD, under whih itis formally invariant. The relevant RG formalism was worked out in [41℄. The expressionwe need is�iCA(mb; �h; �) = �mb�h �a(�h;�) exp[S(�h; �) + aJ(�h; �)℄�iCA(mb; �QCD = �h; �h) :(30)In the above equation we have orrelated the sales �QCD = �h for simpliity, althoughwe an keep them separate using the results in the Appendix. With this hoie thedependene on �h = �QCD on the left-hand side anels against the dependene in thee�etive weak Hamiltonian, so that the branhing frations are invariant under variationsof the mathing sale �h. The RG exponents S and a, and aJ are given byS(�1; �2) = � Z �s(�2)�s(�1) d��(�)�usp(�) Z ��s(�1) d�0�(�0) ; (31)a(�1; �2) = Z �s(�2)�s(�1) d��(�)�usp(�); (32)aJ(�1; �2) = Z �s(�2)�s(�1) d��(�)J(�): (33)10



These exat solutions are evaluated by expanding the anomalous dimensions and the QCD�-funtion as perturbative series in the strong oupling. We an do this to two-loop orderfor a and aJ , and to three-loop order for S. The expansions to this order are listed in theAppendix.4 Hard spetator satteringIn this setion we onsider the spetator sattering mehanism and the alulation of tIIi(i = 1; 7; 8). The leading orretions from spetator sattering ontribute to the branhingfrations at NLO (O(�s)) and are known ompletely. The NNLO orretions from Q7 arealso known [34℄, sine they an be taken from the heavy-to-light form fator analysisin [39, 40, 42℄. In this setion we alulate the NNLO orretions from Q8. We �ndagreement with a ertain set of logarithmi orretions obtained in [67℄, and verify theimportant SCET result that ontributions at the hard-ollinear sale for eah operatorin the e�etive weak Hamiltonian are taken into aount by a universal jet funtion. Toomplete the NNLO mathing alulation for spetator sattering would require resultsfor Q1 and Q2. This is a rather diÆult alulation involving the evaluation of two-loopgraphs depending on the ratio m=mb.Before presenting our results for Q8, we �rst review the results for Q7 as derived in [34℄.This will �x some notation and larify the sub-fatorization of tIIi into a onvolution ofhard and jet funtions. The alulation makes use of the two-step mathing proedureoutlined in Setion 2 to integrate out the perturbative sales m2b � mb�QCD. At tree leveland to leading order in the HQET expansion the result istII(0)7 (u; !) = Z 10 d� �7CB1(0)(�)j(0)? (�; u; !); (34)where �7CB1(0)(�) = emb4�2 ; j(0)? (�; u; !) = �4�CF�sN 1mb!�uÆ(� � u) : (35)The one-loop orretion to the hard-sattering kernel breaks into a sum of orretions tothe hard oeÆient and the jet funtion aording totII(1)7 = �7CB1(1) ? j(0)? +�7CB1(0) ? j(1)? ; (36)where the supersripts denote the (n)-loop orretion to eah funtion and the ? denotesa onvolution over the variable � . Expliit results for eah term an be dedued fromthe form-fator analysis in [39, 40, 42℄ and are listed in the Appendix. Note that whilethe hard oeÆient funtion �7CB1 is partiular to the operator Q7, the jet funtionj? is not. It is determined by the mathing step SCETI ! SCETII, whih ontains noinformation about the struture of the operators in the e�etive weak Hamiltonian at thesale mb. In the SCET desription of spetator sattering, therefore, the non-trivial taskis to determine the orretions at the hard sale mb, ontained in the Wilson oeÆients�iCB1. The ontributions at the hard-ollinear sale mb� an be obtained by performingthe onvolution in the seond term of (36).In what follows we obtain an expression for tII(1)8 in the form (36), derived in thefollowing way. We �rst alulate the hard-sattering kernel diretly in QCD fatorization,11



Figure 1: The lowest-order diagram for spetator sattering with Q8. The double-linerepresents the inoming b quark and the solid box an insertion of Q8. The photon an beattahed to any of the four rosses. Only photon emissions from the light quark emergingfrom the Q8 insertion ontributes at leading power in 1=mb.but separate the ontributions from the hard and hard-ollinear sales using the methodof regions. We then show that the one-loop ontribution from the hard-ollinear region isexatly �8CB1(0)?j(1)? . Sine both the oeÆient funtion �8CB1(0) � ��=� (with �� � 1��)and the jet funtion j(1)? are non-trivial funtions of � , this provides a onsisteny hekbetween the QCD fatorization and the SCET formalism, and also a hek on our loopalulations. The remaining ontribution is from the hard region and is identi�ed with�8CB1(1) ? j(0)? . Sine j(0)? is a delta funtion in the variable � , this result is suÆientto reover the oeÆient funtion �8CB1(1). As mentioned in the Introdution, it is this� -dependent funtion whih is needed to obtain the resummed hard-sattering kernel usedin the numerial analysis in Setion 5.4.1 Q8 at tree levelWe start by reviewing the tree-level alulation. The strategy is to evaluate the partonimatrix element A8 = hq(p1) �q0(p2)(q) jQ8 j �q0(k) b(pb)i and show that it an be writtenin the form (5). The hard-sattering kernel is independent of the exat hoie of thepartoni momenta. We shall work with on-shell quarks in the initial and �nal states,and furthermore work in the referene frame where the perpendiular omponents of theexternal parton momenta vanish. In this frame, the momenta an be hosen as p1 = up;p2 = �up, k = !n+=2, pb = mbv = pB � k, and q = En+, with �u � 1 � u. At leadingorder in 1=mb we an write the vetor-meson momentum as p � mbn�=2 and the photonenergy as E � mb=2. The photon's polarization vetor lies in the transverse plane andis denoted by �?. The power ounting is suh that !=mb � �� 1.The four Feynman diagrams whih an ontribute at tree-level are represented inFigure 1. The photon an be emitted from any of the four rosses. At leading orderin � only the diagram where the photon is attahed to the light quark produed at theavor-hanging weak urrent ontributes. Emissions from the other quark lines are eitherpower suppressed or have no projetion on the meson LCDAs. For the tree-level satteringamplitude one �ndsA(0)8 = mbmb eQd�s� �uu 1�u! h�u(up) f�/?�? (1 + 5)gT au(pb)i h�v(k)�?T av(�up)i= mbmb CFN eQd�s� �uu 1�u! [�/?�? 
 �?℄ � A(0) [�/?�? 
 �?℄ ; (37)where u and v represent the free-partile spinor wave-funtions and Qd = �1=3 denotesthe harge of a down-type quark. We have distinguished the MS mass mb(�) from the12



pole mass mb, antiipating the one-loop alulation in the next setion. To obtain theseond line we already performed the olor trae, so that the notation �1 
 �2 is to beunderstood as the Dira struture between quark spinors. In the seond line we de�nedthe tree-level partoni amplitude A(0). At tree level there is only one Dira struture,related to the mathing of the SCETI operator JB1.To proeed further we need de�nitions for the LCDAs in the low-energy theory SCETII.The light-one projetion operator �H��(~k) onto a heavy state H ontaining the b-quarkis given by �H��(~!) = Z dt2� eit~! h0 j�qs�(tn�) [tn�; 0℄hv�(0)jH(v)i ; (38)where qs and hv are soft and heavy quark �elds in HQET; � and � are spinor labels. Thequantity [tn�; 0℄ denotes a path-ordered exponential along the light one. Similarly, thelight-one projetion operator �VÆ(u) onto a light meson state L is de�ned by�LÆ(u) = n+p Z ds2� e�isun+p 
L(p) ����Æ(sn+) [sn+; 0℄ �(0)�� 0� ; (39)where the � are ollinear quark �elds in SCET. The hadroni matrix elements of theselight-one projetion operators, ontrated with ertain Dira strutures, are the LCDAsof the B and V mesons. The exat de�nitions of the distribution amplitudes needed inthe analysis areh0j�qs(tn�)[tn�; 0℄ /n�2 hv(0)jB(v)i = � iF (�)2 pmB tr�/n�2 1 + /v2 5� Z 10 d!e�i!t�B+(!; �)hV (p)j��(sn+) [sn+; 0℄ �? /n+2 �(0)j0i = ifV?(�)4 n+p tr�/�?�? /n+/n�4 � Z 10 du eisun+p�V?(u; �);(40)where �? is the polarization vetor of the V -meson.To extrat the hard-sattering kernels we need only the partoni matrix elements. Wewrite these as a produt of salar distribution funtions multiplied by appropriate Diraspinors. For on-shell mathing at leading order in 1=mb the QCD spinors are equal to thee�etive theory ones. At lowest order we have�b�q0(0)�� (!0) = �b�q0(0) �v�(k) u�(pB � k) = Æ(! � !0) �v�(k) u�(pB � k); (41)�q�q0(0)Æ (x) = �q�q0(0) �uÆ(up) v(�up) = Æ(u� x) �uÆ(up) v(�up); (42)and A(0)8 an be written in the fatorized formA(0)8 = �b�q0(0) ? T II(0)8 ? �q�q0(0); (43)with T II(0)8; ��Æ(!; u) = mbmb CFN eQd�s� 1u! f�/?�?(1 + 5)gÆ� f�?g�� tII(0)8 f�/?�?(1 + 5)gÆ� f�?g� : (44)13



The sub-fatorization of tII(0)8 into the onvolution of a hard oeÆient with the jet funtionis given by [34℄�8CB1(0)(�) = �eQdmb4�2 ��� ; j(0)? (� ; u; !) = �4�CF�sN 1mb!�uÆ(� � u): (45)To show that the hard-sattering kernel tII8 is what appears in the fatorization formula(5), we now onsider in more detail the hadroni matrix elements of four-quark operatorsin SCETII. Note that the four-quark operator whose hadroni matrix element leads to aprodut of LCDAs has the opposite Fierz ordering ([���℄[�qshv℄) ompared to the operatorwhose partoni matrix element mathes straightforwardly onto the expression in (43)([��hv℄[�qs�℄). In four dimensions the two operators are onneted by a Fierz transformationaording to (see, e.g., [40℄)OV? = ���/?�?(1 + 5)hv �qs�?� $ O0V? = ���/? /n+2 (1 + 5)� �qs /n�2 5 hv ; (46)where the ollinear (soft/HQET) �elds in eah operator are understood to be evaluatedat di�erent points on the n+(n�) light-one, and made gauge invariant by inserting ap-propriate Wilson lines. In writing (46) we have omitted Dira strutures ontributing toO0V? whih have no projetion onto the pseudosalar B-meson LCDA. Comparing with(40), we immediately see that, in the absene of soft-ollinear interations, the hadronimatrix element of the operator O0V? fatorizes into a produt of �V? and �B+. On the otherhand, the partoni matrix element of the Fierz-transformed version OV? mathes (43), upto the hard-sattering kernel tII(0)8 . We thus verify that our expression for the tree-levelamplitude is equivalent to (5).We shall perform a similar alulation at one loop in the next subsetion. A om-pliation ompared to tree level is that the appearane of IR poles in the dimensionallyregulated one-loop amplitude prevents one from using the Fierz relation (46). To extratthe hard-sattering kernel by omparing the renormalized matrix elements alulated inthe two Fierz orderings is thus non-trivial, and will require the use of some tehnialdetails from the SCET analysis used to extrat the one-loop jet funtion in [40, 42℄.4.2 Q8 at one loopWe now turn to a main subjet of this paper, the alulation of the one-loop orretionfrom Q8 to the hard-sattering kernel tII. The �rst task is to alulate the amputatedpart of the full set of one-loop Feynman diagrams shown in Figure 2, supplemented by theon-shell renormalization fators for the quark �elds. Photon emission from the spetatorquark need not be onsidered for the ase of pseudosalar B-meson deay, sine thefour-quark strutures appearing in the mathing vanish at leading order in 1=mb afterprojeting onto the meson LCDAs [34℄. When a loop integral involves more than onesale, we alulate the leading term in the 1=mb expansion using the method of regions.All integrals are alulated in dimensional regularization in d = 4 � 2� dimensions andwith the NDR sheme for 5. The result an be written in the formA(1)8 = A(1) (�/?�? 
 �?) +B(1) (�?�/? 
 �?) : (47)The four-quark struture multiplied by the salar funtion A(1) is related to the mathingof the operator JB1. It is proportional to the tree amplitude and is used to extrat the14



Figure 2: The one-loop orretions to spetator sattering with Q8. The solid box denotesa Q8 insertion and the photon an be attahed to any of the rosses.hard-sattering kernel. For our hoie of external momenta, the funtion A(1) reeivesnon-vanishing ontributions from the hard, hard-ollinear, and soft momentum regions.Sine we work with on-shell partoni states, ontributions from the ollinear and soft-ollinear regions are only in saleless integrals and vanish (this would not be true ifo�-shell regularization were used). We shall label the ontributions from the di�erentregions as A(1)h ; A(1)h , and A(1)s in what follows. Moreover, we de�ne the amplitude A(1)hto inlude the �s ontribution from wave-funtion renormalization of the b-quark �eld,whih reads Z1=22b � 1 = �CF�s4� � 32� + 3 ln �mb + 2� : (48)The renormalization fators for the light-quark �elds vanish, to this order in �s. In writingthe result (47), we used the presription [40℄�?�?�/?�? 
 �?�?�? ! (d� 4)2 (�/?�? 
 �?) ; (49)the relevane of whih will be explained below.The struture multiplied by the salar funtion B(1) is related to the mathing of theoperator JB2. The ontributions from individual diagrams ontain 1=� poles, but theseanel in the sum of all diagrams. Sine the matrix element of this four-quark operatorhas no projetion onto the B-meson LCDA, this piee does not ontribute to the hard-sattering kernel.Note that there is no third Dira struture, whih would orrespond to a ontributionfrom the operator JA. The mathing of JA involves the emission of the n+Ah omponent15



of a hard-ollinear gluon. Using the equations of motion �v(k)/n+ = /n�v(�up) = 0 ensuresthat the Dira struture an always be written in terms of the transverse omponents ofDira matries. It is easy to see that this preludes taking out a fator of n+Ah from theWilson line in the operator JA and attahing it to the spetator quark.The funtion A(1) has both UV and IR divergenes. The UV divergenes are removedby oupling onstant, mass, and operator renormalization (reall that the ontributionfrom wave-funtion renormalization of the b-quark is inluded in the de�nition of A(1)h ).We de�ne the renormalized parameters as mbareb = Zmmb, et. As with the vertex term,we �rst ompute the QCD amplitude with nf = nh + nl ative avors, and then expressresults in the MS sheme in the nl-avor theory by renormalizing the oupling as in (17).Doing so, we �nd that all dependene on nh drops out. The UV renormalized amplitudeis obtained by making the replaementA(1) ! A(1) + A(1):t: = A(1) + Znh+nl(1)� + Z(1)m + Z(1)88 � u�u Z(1)87Qd !A(0); (50)where the various fators at one loop areZ(1)m = �3CF�s4�� ; Z(1)88 = 8�CF � CA4 � �s4�� ; Z(1)87 = QdCF�s�� : (51)The u-dependent fator multiplying the ounterterm Z(1)87 follows from the tree-level oef-�ients (35,45). To this order in �s, mass renormalization for the b-quark is needed onlyfor the MS mass appearing in the de�nition of Q8, see (3).We an extrat the one-loop orretion to the hard-sattering kernel from the UVrenormalized partoni amplitude. It is de�ned by�b�q0(0) ? tII(1)8 ? �q�q0(0) = A(1) + A(1):t: � �b�q0(1) ? tII(0)8 ? �q�q0(0) � �b�q0(0) ? tII(0)8 ? �q�q0(1); (52)where the one-loop LCDAs are the renormalized ones. The one-loop ontributions to therenormalized LCDAs take the form�q�q0(1) = Z(0)V? ? �q�q0(1)bare + Z(1)V? ? �q�q0(0)bare ; (53)�b�q0(1) = Z(0)B ? �b�q0(1)bare + Z(1)B ? �b�q0(0)bare : (54)The renormalization fator ZV? for the V -meson LCDA is the Brodsky-Lepage kernel[68,69℄ for a transversely polarized vetor meson, and that for the B-meson was alulatedin [70℄. Here there is an important subtlety, whih is disussed in detail in [40, 42℄. Therenormalization fators for the B and V meson LCDAs are alulated in the MS shemeunder the assumption that the light-one projetion operators in (38, 39) are ontratedwith the spei� Dira strutures shown in (40). In our ase this orresponds to theone-loop orretions to the operator O0V? in (46). However, the one-loop amplitude A(1)is extrated from (47) and thus multiplies the opposite Fierz ordering, orresponding toOV? in (46). The Fierz transformation relating the two operators is valid only in d = 4dimensions, and in d = 4 � 2� dimensions they may di�er by terms whih vanish in thelimit d! 4. One an �x these seemingly arbitrary terms by de�ning a presription for theredution of evanesent Dira strutures, whih ensures that the subtrations in (52) areperformed aording to the MS sheme. This is ahieved by using the presription for the16



evanesent operator in (49) [40, 42℄. Sine this struture is multiplied by poles related tothe hard-ollinear region, we an verify that we have performed the orret subtrations byheking eq. (59) against a orresponding result obtained using the one-loop jet funtionfrom [40, 42℄. We desribe this ross-hek below.To evaluate (52) it is instrutive to rewrite the right-hand side as(52) = A(1)h+h + A(1):t: � Z(1)B ? tII(0)8 ? �q�q0(0) � �b�q0(0) ? tII(0)8 ? Z(1)V?+A(1)s � �b�q0(1)bare ? tII(0)8 ? �q�q0(0): (55)We have simpli�ed the above equation by using that the fators Z(0)i and �i(0) are deltafuntions, and that the one-loop orretion to the bare V -meson LCDA vanishes for on-shell quarks in dimensional regularization (beause the integrals are saleless). Using theexpliit results from [68{70℄ to perform the onvolutions with the tree-level hard-satteringkernel, the �rst line of (55) an be written asA(1)h+h + A(1):t: � �z(1)B + z(1)V?�A(0); (56)where z(1)B = CF�s4� � 1�2 + 2� ln �! � 52�� ;z(1)V? = CF�s4�� ��3� 2 lnu�u � : (57)Evaluating (56), one �nds that after UV renormalization the IR poles in the sum ofthe hard and hard-ollinear regions are exatly subtrated by the poles related to therenormalization of the LCDAs. On the other hand, the seond line of (55) vanishes,showing that ontributions from the soft region are restrited to the B-meson LCDA.Therefore, the hard-sattering kernel is free of 1=� poles and insensitive to IR physis.This was �rst veri�ed by the expliit alulations in [67℄.We have shown that the �nite part of the sum of hard and hard-ollinear regions istII(1)8 . As for Q7, we write the result astII(1)8 = �8CB1(0) ? j(1)? +�8CB1(1) ? j(0)? : (58)We an identify the �nite part of the hard-ollinear region with �8CB1(0) ? j(1)? , and the�nite part of the hard region with �8CB1(1) ? j(0)? . For the sum of hard-ollinear graphs,we �nd �8CB1(0) ? j(1)? = A(1)h;�n = �s(4�)[CF jF + CAjA + nljf ℄tII(0)8 ; (59)
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where nl = 4 is the number of light avors, and (Lh = lnmb!=�2)jF = L2h + �5� 2� 2 lnu�u + 2 lnu�Lh + 4�u � 12� �26+�5� 4�u� ln �u+ 2 ln �u lnu�u + ln2 u�1 + 1�u� + 4�uLi2(�u);jA = ��113 + ln �u� �1 + 1�u2� lnu�Lh + 769 + ��113 + 1�u� ln �u+ ln2 �u2 ;+� 1�u2 � 1�u� lnu� �12 + 12�u2� ln2 u� ln �u lnu�u2 � 2�u2Li2(�u);jl = 23Lh + 2 ln �u3 � 109 : (60)Taking the onvolution of the one-loop jet funtion j(1)? listed in the Appendix with theleading-order hard oeÆient in (45), we reprodue the above equation. This veri�esthat the sub-fatorization of the hard-sattering kernel aording to momentum regionsis equivalent to that in SCET, and also that we have performed the orret subtrationsin (52). However, we again emphasize that this integrated form annot be used to obtainthe resummed hard-sattering kernels used in our numerial analysis in Setion 5.The �nite part of the hard region gives an expression for �8CB1(1) ? j(0)? . In this asewe have �8CB1(1) ? j(0)? = A(1)h;�n = �s4� [CFhF + CAhA℄tII(0)8 ; (61)wherehF = �2L2 � �1 + 4�u � 4 lnu�L� �18� 8�u�LQCD + i���4 + 2�u + 2 lnu�u2 ��15 + 7�212 � 1�u � 2�23�u + �2 + 2u + 4�u� ln �u+�4� 2�u � 2�u2� lnu+ �3�u + 2�u2 + 12� �u� ln �u lnu� �2 + 1�u2� ln2 u+��2 + 12�u + 3�u2 + 12(2� �u)�Li2(�u) + �5�u � 6�u2 + 12� �u� g(�u) + �1�u � 12� �u� h(�u);hA = ��2 lnu� 2 lnu�u2 + 2 ln �u�L + 4LQCD + i��1� 1�u � 2 lnu�u2 �+ 2� �23 + 3�u� ln �u�u + ��1 + 2�u � 1�u2� lnu+ �1� 32�u � 12(2� �u)� ln �u lnu� ln2 �u+�1 + 1�u2� ln2 u+ �2� 14�u � 12�u2 � 14(2� �u)�Li2(�u)+�� 52�u + 3�u2 � 12(2� �u)� g(�u) + �� 12�u + 12(2� �u)� h(�u): (62)The logarithms L and LQCD are de�ned after (21). The terms proportional to L agreewith the orresponding terms in [67℄, and an be dedued by onvoluting the renormal-ization fator z?(�) of the SCET urrent JB1 obtained in [40,41℄ with the tree-level hard18



oeÆient �8CB1 in (45). We have de�ned the funtionsg(u) = Z 10 dy ln [1� uy(1� y)℄y ; (63)h(u) = Z 10 dy ln [1� uy(1� y)℄1� uy : (64)These funtions have no imaginary part for u 2 [0; 1℄ and an be expressed in terms ofdilogarithms and logarithms, but we shall not give the expliit results here. Sine j(0)? isa delta funtion in � , the result for �8CB1(1) is obtained diretly from (62).5 Numerial analysisIn this setion we disuss the numerial impat of our results. Our main fous is onthe branhing frations for B ! K� and Bs ! � deays. The branhing fration forB ! K� deays is B(B ! K�) = �BmB4� �1� m2K�m2B � jAv +Ahsj2 ; (65)where we have split the ontributions from the vertex and hard-spetator orretionsaording toAv = GFp2V �sVbXi Ci(�QCD)�iCA(mb; �QCD; �)�K�?(�); (66)Ahs = GFp2V �sVbXi Ci(�QCD) tIIi (�QCD; �) ? �pmBF4 �B+ ? fK��K�?� (�): (67)Results forBs ! � are obtained by making the appropriate replaements. The branhingfrations depend on a number of parameters, whose values and unertainties are summa-rized in Table 3. The vertex and hard-spetator amplitudes are independently invariantunder variations of �QCD and �. For this reason, their ontributions to the amplitudesan be studied separately. We disuss eah one in turn for the ase of B ! K�, beforepresenting the �nal branhing frations for all deay modes in Setion 5.4.5.1 The vertex amplitudeWe begin with the vertex orretions. For these orretions the relevant perturbativequantities are the Wilson oeÆients Ci in the e�etive weak Hamiltonian and the SCETmathing oeÆients �iCA. We alulate the Wilson oeÆients in the e�etive weakHamiltonian using the information summarized in Appendix A of [16℄ (see also [12, 13℄),and ollet the results for three values of the renormalization sale in Table 2. Theresults for the SCET mathing oeÆients are simplest when �QCD = � = mb, in whihase all logarithms vanish. We use this hoie as our default sheme. Throughout theanalysis we use the four-loop running oupling with �s(mZ) = 0:1176, swithing from �veto four ative avors at the mathing sale �h = �QCD. The vertex amplitude and thebranhing frations depend rather strongly on �V?. We determine it in Setion 5.3 by19



requiring that the matrix element of Q7 be proportional to the QCD form fator FB!V?at NNLO, �nding �V?(� = mb) = 0:35� 0:05. We will express higher-order orretions tothe amplitudes in terms of the leading-order result, whih isALOv = �GFp2V �sVbCLL7 emb 2E4�2 �K?? = �5:48� 10�9 : (68)Up to NNLO, the result obtained using the default parameter values in Table 3 isANNLOvALOv = 1 + (0:096 + 0:057i) [�s℄ + (�0:007 + 0:030i) ��2s� ; (69)where the �rst term in parentheses is the NLO (�s) orretion and the seond term theNNLO (�2s) orretion. The orretions ome both from the Wilson oeÆients Ci inthe e�etive weak Hamiltonian and the SCET oeÆients �iCA. Note that we haveused the e�etive oeÆients Ce�7;8 in the numerial analysis. This amounts to inludingertain ontributions from Q3 : : : Q6, and should be taken into aount, if in the future theontributions from these operators are worked out systematially. Split into ontributionsfrom the individual operators, the results for the NLO and NNLO perturbative orretionsreadANNLOvALOv � 1 = �(0:264 + 0:034i) [Q1℄� (0:184) [Q7℄ + (0:016 + 0:023i) [Q8℄� [�s℄(70)+ �(0:073 + 0:022i) [Q1℄� (0:081) [Q7℄ + (0:002 + 0:008i) [Q8℄� [�2s℄ :At both NLO and NNLO the orretions from Q1 and Q7 are relatively large, but thereal parts tend to anel against eah other. Whether this anellation persists beyondthe large-�0 limit is an important question. The ontribution from Q8 to the real partof the amplitude is small, but that to the imaginary part is not. It adds together withthat from Q1 to produe a large NNLO orretion to the imaginary part. This would bea signi�ant e�et for CP asymmetries, a topi we leave for future work.In Setion 5.4 we will study the dependene of the branhing frations on the renor-malization sales. To do this we use the SCET Wilson oeÆients as given in (30) inSetion 3. As explained there, this allows us to �x the sale � = mb in �V? and studythe stability of the results under variations in �QCD and �h. Although the expressionsin the Appendix allow us to vary �QCD and �h separately, we hoose not to do so. Forsimpliity, we set �QCD = �h and vary them simultaneously. To evaluate the RG expo-nents in the SCET evolution fators we distinguish the operators Q7;8 and Q1. For Q7;8we evaluate the RG exponents using the two-loop anomalous dimensions in a and aJ , andthe three-loop usp anomalous dimension in the Sudakov fator S. For Q1 we evaluatethe RG exponents using the large-�0 limit. In that ase it is onsistent to set all SCETanomalous dimensions to zero, meaning that we an use the form (29) diretly.5.2 The hard spetator amplitudeThe evaluation of the hard spetator amplitude is more ompliated than the vertexamplitude. It involves a large number of hadroni parameters and the hard-satteringkernel ontains logarithms of both the hard and hard-ollinear sales. While it is possible20



Table 2: Wilson oeÆients Ci(�) (i = 1; 7; 8) at LL, NLL and NNLL. The results atNNLL are alulated from the expressions given in [12, 13, 16℄, adapted to the operatorbasis in (2, 3). The table uses mb = 4:8 GeV.LL NLL NNLLC1(� = mb) 1:11 1.06C1(� = p2mb) 1:09 1:04C1(� = mb=p2) 1:13 1:08Ce�7 (� = mb) �0:312 �0:303 �0:294Ce�7 (� = p2mb) �0:294 �0:290 �0:282Ce�7 (� = mb=p2) �0:332 �0:316 �0:306Ce�8 (� = mb) �0:148 �0:167Ce�8 (� = p2mb) �0:141 �0:159Ce�8 (� = mb=p2) �0:156 �0:175to �x the sale �QCD � mb to eliminate some of these logarithms, any hoie of the SCETfatorization sale � leads to large logarithms in tIIi . This an be solved by renormalization-group improvement in the e�etive theory [41℄. The hard oeÆient �iCB1 is extratedat a sale �h � �QCD � mb and and evolved down to the intermediate sale �i � 1:5 GeVby solving the RG equations in the e�etive theory. The RG-improved hard oeÆientsread [41℄�iCB1(u; �i) = �mb�h �a(�h ;�i) eS(�h;�i) Z 10 dv U?(u; v; �h; �i)�iCB1(v; �h) : (71)The RG exponents S and a are the same as in (31). The evolution fator U? is thesolution to the integro-di�erential equation� dd�U?(u; v; �h; �) = Z 10 dy ?(y; u)U?(y; v; �h; �); (72)with the initial ondition U?(u; v; �h; �h) = Æ(u � v). The distribution ?(y; u) is theanomalous dimension of the operator JB1. A proper treatment of the NNLO mathingorretions requires this anomalous dimension at two loops, but at present it is knownonly at one loop [40,41℄. This adds a small unertainty to the analysis. The solution to theevolution equation is obtained numerially. In the numerial implementation we performthe �-evolution from �h to �i in 100 disrete steps. We hoose the default renormalizationsales as �QCD = �h = mb and �i = 1:5 GeV. The dependene on the variable u inthe resummed �iCB1 is obtained for disretized values of 0 < u < 1. We determinethe disretization sale by taking more points in u until the numerial onvolution ofthe resummed oeÆient with the jet funtion beomes stable. This generally requiresbetween one and three-hundred values, although for some ases it is neessary to takemore values near the endpoints.It is natural to evaluate the resummed hard oeÆients �iCB1(u; �) at a sale � � �i,sine at that sale the jet funtion is free of large logs. However, the hadroni parametersin Table 3 are extrated at a low sale � = 1 GeV. For a proper treatment one must21



either run these parameters up to the intermediate sale �i � 1:5 GeV, or run the hard-sattering kernel down to the lower sale. This stage of RG running has been studiedin [41,70,71℄. We have performed this evolution in our numerial analysis but its e�et onthe branhing frations is extremely small. Therefore, in quoting our results, we performthe running from �h to �i, but ignore that between the sale �i and the fatorizationsale � � 1 GeV. The shortoming of this treatment is that the amplitude is not invariantunder variations of the intermediate sale. However, the dominant e�et in this salevariation is related the B-meson distribution amplitude. We aount for this in our erroranalysis by assigning a rather large unertainty to �B.A omplete treatment of the hard-spetator amplitude is only possible for the NLO or-retions. There are three piees missing for a full resummed result for the hard-spetatorterm at NNLO: the NNLO hard mathing oeÆient for Q1, the two-loop anomalous di-mension of the urrent JB1, and the two-loop anomalous dimension of the jet funtion.These missing piees add unertainties to the analysis whih are diÆult to quantify.However, we will see that the higher-order orretions from spetator sattering are notvery important for the branhing frations.In addition to the input parameters listed in Table 3, we must also speify the mesonLCDAs. For the vetor mesons we use the Gegenbauer expansion and keep only the �rsttwo moments:�V (u) = 6u(1� u) h1 + aV1 (�)C(3=2)1 (2u� 1) + aV2 (�)C(3=2)2 (2u� 1)i : (73)For the B-meson LCDA we use the model [72℄�B+(!; � = 1GeV) = 4��1B� ! �!2 + �2 � �2!2 + �2 � 2(�B � 1)�2 ln !�� : (74)The B-meson deay onstant in the stati limit isF (�) = fBpmBK(�h) eVF (�h;�) ; (75)where to one loop [73℄KF (�) = 1 + CF�s(�)4� �3 lnmb� � 2� ; VF (�h; �) = �3CF2�0 ln �s(�)�s(�h) : (76)We now quote the result for the hard-spetator amplitude to NNLO, aurate withinthe limitations explained above. We �ndANNLOhsALOv = �0:11 + 0:05i� [�s℄ + �0:03 + 0:01i� [�2s℄: (77)Performing the RG evolution of the hard-sattering kernel between �i and the fatorizationsale � = 1 GeV suppresses the above result by about 10%, or in other words makesabout a 1% di�erene on the total amplitude. Split into ontributions from the individualoperators, we haveANNLOhsALOv = �(0:023 + 0:046i) [Q1℄ + 0:074 [Q7℄ + 0:010 [Q8℄� [�s℄ (78)+ �(0:004 + 0:003i) [Q1℄ + 0:025 [Q7℄ + (0:003 + 0:005i) [Q8℄� [�2s℄ :22



Unlike the ase of the vertex orretions, the individual ontributions from the di�erentoperators are rather small at NLO and espeially NNLO. For Q1 we have listed the NNLOorretion found by numerially evaluating �1CB1(0) ? j(1)? . In addition to this orretionfrom the jet funtion, there is also a hard orretion �1CB1(1) ? j(0)? whih is not known.Both terms are used for Q7 and Q8. To hek the onvergene of perturbation theoryat the intermediate sale �i � 1:5 GeV we split up the ontributions from eah operatorinto these two ontributions. We also separate the NNLO orretions from the WilsonoeÆients in the e�etive weak Hamiltonian separate, labeling them with a [w℄. Forthese three soures of NNLO orretions, in units of 1=ALOv , we haveQ1 : (0:023 + 0:046i) [�s℄ + �(�0:001� 0:002i) [w℄ + (0:005 + 0:006i) [jet℄� [�2s℄;Q7 : 0:074 [�s℄ + �� 0:002 [w℄ + 0:015 [jet℄ + 0:012 [hard℄� [�2s℄;Q8 : 0:01 [�s℄ + �0:001 [w℄ + 0:001 [jet℄ + (0:001 + 0:005i) [hard℄� [�2s℄: (79)In none of the ases is the orretion at the jet sale �i = 1:5 GeV unusually large.5.3 The SCET soft funtionIn this subsetion we explain our method for determining the SCET soft funtion �V?.We �x it by requiring that the matrix element of Q7 is proportional to the tensor QCDform fator FB!V? (often referred to as T1). Using the SCET fatorization formula forQ7 we �nd FB!V? = �7CA�7CA(0) �V? � 1�7CB1(0) tII7 ? �pmBF4mb �B ? fV?�V?� : (80)The reent LCSR-based update [25℄ for the tensor QCD form fator yields FB!K� =FB!� = 0:31 � 0:04 at �QCD = mb. Inserting this into (80) and treating the hard-spetator term as in the default sheme above leads to �V?(� = mb) = 0:35� 0:05. Thisis onsiderably smaller than the value �V? ' 0:41 used in the SCET analysis in [34℄, andit is mainly for this reason that we �nd smaller branhing frations below.We an use this value for �V? to ompare the size of higher-order orretions to thefatorization formula for the form fator. We label the vertex term (v) and the hard spe-tator term (hs), and express eah as an expansion in �s. Then the individual ontributionsread FB!V?�V? = �1� 0:15[�s℄� 0:06[�2s℄�[v℄ + �0:07[�s℄ + 0:03[�2s℄�[hs℄ : (81)For both the �s and �2s orretions the vertex term is about twie as large as the hard-spetator term and omes with the opposite sign.5.4 Branhing frationsWe now onvert our results for the amplitudes into estimates for the branhing frations atNNLO. The most important unertainties in the input parameters ome from �V?, pz =23



Table 3: Input parameters used in the alulation of B(B ! K�) and B(B ! �). TheGegenbauer oeÆients in the LCDAs are taken from the LCSR analysis reported in [25℄.Parameter Value�s(mZ) 0:1176V �sVb �0:040� 0:002�K�?(0) 0:35� 0:05��?(0) 0:35� 0:05mb;pole (4:80� 0:10) GeVmt;pole (171� 2:0) GeVpz = m=mb 0:27� 0:06fB (205� 25) MeVfBs (240� 30) MeVf (K�)? (1 GeV) (185� 10) MeVf (�)? (1 GeV) (186� 9) MeVa(K�)?1 (1 GeV) 0:04� 0:03a(�)?1(1 GeV) 0:0a(K�)?2 (1 GeV) 0:15� 0:10a(�)?2(1 GeV) 0:20� 0:20��1B (1 GeV) (2:15� 0:50) GeV�1�B(1 GeV) (1:4� 0:4)m=mb, �B, and the renormalization sales. To assess the unertainty assoiated with �V?,m and �B, we vary them in the ranges indiated in Table 3. The sale dependene of thebranhing fration is ompletely dominated by the vertex term. We treat this dependeneas explained in Setion 5.1, varying the sale �h = �QCD in the range mb=p2 < �h <p2mb. Inluding the orretions up to NNLO and disarding terms of O(�3s) and higherin the branhing frations, we �ndB(B+ ! K�+) = (4:6� 1:2 [�K�℄� 0:4 [m℄� 0:2 [�B℄� 0:1 [�℄)� 10�5;B(B0 ! K�0) = (4:3� 1:1 [�K�℄� 0:4 [m℄� 0:2 [�B℄� 0:1 [�℄)� 10�5;B(Bs ! �) = (4:3� 1:1 [��℄� 0:3 [m℄� 0:3 [�B℄� 0:1 [�℄)� 10�5: (82)In ases where the errors are asymmetri, we have taken the average of the higher andlower values to get the symmetri form above. The unertainty in jV �sVbj, whih appearsas an overall fator multiplying the branhing frations, adds about a 10% error to eahdeay mode. To obtain the branhing frations we used the following lifetimes (in unitsof ps) [7℄�(B0) = 1:527� 0:008; �(B+) = 1:643� 0:010; �(Bs) = 1:451� 0:028 : (83)In addition to the lifetime di�erenes, our analysis of the three deay modes inludesdi�erenes in the meson deay onstants, meson masses, and Gegenbauer moments of thelight-meson LCDAs (we have assumed that SU(3) violating e�ets in the B-meson LCDAsare small). Other soures of isospin and SU(3) violation are not inluded. Conerning24



the � and K� deay modes, the most important soure of SU(3) violation is the di�erenebetween the SCET soft funtions of the two mesons. We disuss this in more detail below,giving a result for the ratio of branhing frations of these two deay modes. A studyof dynamial isospin breaking ontributions within QCD fatorization was arried outin [20℄. From this study we expet the dynamial isospin violating e�ets to make only asmall di�erene in the branhing frations.It is important to keep in mind that we have not ompleted the NNLO alulation forQ1. The NNLO vertex orretion is only an estimate in the large-�0 limit and the NNLOhard-spetator orretion related to �1CB1 is entirely absent. To study the e�ets ofpossible deviations from large-�0 limit we assign a 100% unertainty to the NNLO vertexorretion from Q1, evaluating the branhing frations using 2�1CA(2) and �1CA(2) = 0.For the hard spetator term we take the NNLO orretion as �1 its NLO value. Theorresponding unertainties in the branhing frations, to be added to the errors quotedin (82), are �0:5 for the vertex orretions and �0:1 for the hard-spetator orretions.The unertainties assoiated with the unknown orretions to hard spetator satteringmake little di�erene for the branhing fration. The unertainties assoiated with thelarge-�0 limit in the vertex term are rather large, even though this is an O(�2s) orretion.We are very onservative with the range in whih we vary this orretion, but even in theonly existing alulation of NNLO orretions from Q1 beyond the large-�0 limit [53℄ forthe inlusive ase this is an issue. In that paper the part of the O(�2s) orretion to thematrix element of Q1 beyond the large-�0 limit (alled P (2)rem2 (z0) in [53℄) remains ratherunertain.Adding together all the errors mentioned above in quadrature, we obtain the �nalresults for the branhing frationsB(B+ ! K�+) = (4:6� 1:4)� 10�5;B(B0 ! K�0) = (4:3� 1:4)� 10�5;B(Bs ! �) = (4:3� 1:4)� 10�5: (84)The NNLO estimates given in (84) are to be ompared with the experimental measure-ments summarized in Table 1. We �ndB(B+ ! K�+)SM;NNLOB(B+ ! K�+)expt = 1:1� 0:35 [theory℄� 0:07 [expt:℄ ;B(B0 ! K�0)SM;NNLOB(B0 ! K�0)expt = 1:1� 0:35 [theory℄� 0:06 [expt:℄ ;B(Bs ! �)SM;NNLOB(Bs ! �)expt = 0:8� 0:2 [theory℄� 0:3 [expt:℄ : (85)Although the results are in reasonable agreement with eah other, the theory errors for theB ! K� deay modes are still muh larger than the experimental ones. The dominantunertainty is in the SCET soft funtion �V?. The remaining unertainties would begreatly redued by determining the NNLO orretions from Q1 to the vertex term beyondthe large-�0 limit. This would not only diretly eliminate the unertainty in the NNLOorretion to the hard-sattering kernel, it would also redue the dependene on theharm-quark mass by �xing its perturbative de�nition.Another measurement of interest is the ratio of the branhing frations of the K� and� deay modes. In the ratio, only the errors in the quantities whih are di�erent for25



the Bs; � and B;K� mesons add signi�ant unertainties. Sine the spetator satteringamplitude is small ompared to the vertex term, to a good approximation the error isgiven by that in the ratio �K�=��. As an example, assuming �K�=�� = 1� 0:1, we �nd forthe ratio of branhing frationsB(B0 ! K�0)B(Bs ! �) = 1:0� 0:2 : (86)By omparison, the urrent experimental number is 0:7 � 0:3. Improved measurementsof the Bs ! � branhing fration, and a more aurate determination of the ratio ofSCET soft funtions, would allow for a omparison between theory and experiment withsmaller unertainties than for the branhing frations themselves.6 ConlusionsWe omputed NNLO orretions to the hard-sattering kernels entering the QCD fator-ization formula for B ! V  deays. We used soft-ollinear e�etive theory to separateontributions between the hard and hard-ollinear sales and to resum large logarithmsdepending on their ratio. For the operators Q7 and Q8 we obtained exat expressions forthe hard-sattering kernels for the vertex and hard spetator orretions up to NNLO.The results for the vertex orretions provide an expliit demonstration of fatorization attwo loops. For the operator Q1, we estimated its ontribution to the vertex orretion atNNLO using the large-�0 limit. Its omplete NNLO orretion from hard spetator sat-tering was not obtained, but its ontribution at the jet sale was evaluated numeriallyand found to be small.As an appliation of our results we provided estimates of the branhing frations forB ! K� and Bs ! � deays at NNLO. The branhing frations are very sensitive tothe value of the SCET soft funtion �V?. We used updated results from QCD sum rulesfor the tensor form fator FB!V? along with our NNLO results for Q7 to �nd �V? ' 0:35.Sine this value is onsiderably lower than the default value �V? ' 0:41 used in theprevious SCET analysis in [34℄, we also �nd lower branhing frations. Our results for theB ! K� modes show good agreement with the experimental data, but the theory errorsare still muh larger than the experimental ones. Our result for Bs ! �, whih has aomparable theoretial error as in the B ! K� modes, is also in agreement with the datawithin the large experimental error. The main theoretial unertainty is in �V?, whih anbe redued by improved lattie or QCD sum-rule alulations. On the perturbative side,by far the most important issue is the alulation of the NNLO vertex orretion for Q1beyond the large-�0 limit. This requires the same diagrammati alulation as the virtualorretions to inlusive B ! Xs, whih remains to be done. Our results are also relevantfor B ! � and B ! !, but for these deays a omplete desription also requires theperturbative orretions to weak annihilation, a topi we leave for future work.Aknowledgments: We would like to thank Alexander Parkhomenko for ollabora-tion in the early stages of this work, Guo-huai Zhu for orrespondene on the numerialaspets of SCET resummation, and Thomas Beher for useful disussions. One of us(C.G.) thanks DESY for the hospitality in Hamburg where this work was arried out.This work was supported in part by the EU Contrat No. MRTN-CT-2006-035482, FLA-VIAnet. 26



7 Appendix7.1 Matrix elementsIn the setion we give results for the UV renormalized on-shell matrix elementshQii � hq(p)(q)jQijb(pb)iin QCD. The results given below are alulated in the MS renormalization sheme withnf = nh + nl avors. For Q7 and Q8 we writehQii = hQ7;treei �Æi7 + CF�s4� D(1)i + ��s4��2CF �CFD(2)iF + CAD(2)iA + nlD(2)iL + nhD(2)iH�� :(87)For Q7 the results are [43, 44℄ (reall L = ln�=mb)D(1)7 = � 1�2 � 2L + 2:5� � 2L2 � 7L� 6:8225 (88)��(1:3333L3 + 7L2 + 13:6449L+ 13:4779)��2(0:6667L4 + 4:6667L3 + 13:6449L2 + 26:9559L+ 26:1412);D(2)7F = 0:5�4 + 2L+ 2:5�3 + 4L2 + 12L+ 9:9475�2 + 5:3333L3 + 26L2 + 44:7899L+ 27:8816�+5:3333L4 + 36L3 + 96:5798L2 + 144:1712L+ 67:6519;D(2)7A = 2:75�3 + 3:6667L+ 3:5447�2 � 4:1546L+ 3:4386��4:8889L3 � 33:9758L2 � 92:3415L� 83:8866;D(2)7L = �0:5�3 � 0:6667L+ 0:5556�2 + 1:1111L+ 1:9799�+0:8889L3 + 6:8889L2 + 19:9050L+ 23:8254;D(2)7H = 1:3333L�2 + 4L2 + 3:3333L+ 0:5483� + 6:2222L3 + 11:3333L2 + 14:1788L+ 0:2934;and for Q8 we have [45℄D(1)8 = 2:6667L+ 1:4734 + 2:0944i+ �[2:6667L2 + 2:9468L� 1:1947 + i(4:1888L+ 4:1888)℄+�2[1:7778L3 + 2:9468L2 � 2:3894L� 5:5373 + i(4:1888L2 + 8:3776L+ 2:1627)℄;D(2)8F = D(1)8 �� 1�2 � 2L + 2:5� �� 5:3333L3 � 32:2802L2 � 50:9612L� 1:8875�i(4:1888L2 + 31:4159L+ 29:8299);D(2)8A = 15:111L2 + 31:6617L+ 2:38332 + i(23:7365L+ 28:0745);D(2)8L = �1:7778L2 � 4:0386L� 1:7170� i(2:7925L+ 4:4215);D(2)8H = �1:7778L2 � 4:0386L+ 0:8829� i2:7925L: (89)7.2 The oeÆients �1CB1(0), �7CB1(1) and j(1)?Here we list the oeÆients needed for the numerial analysis of spetator sattering whihare not written in main text. The lowest order expression for �1CB1 is [34℄�1CB1(0)(u) = E4�2 2e3 f � m2�um2b� ; (90)27



where f(x) = ��14 � x��1 + 4x�artanh(p1� 4x)� i�2�2�+��x� 14��1� 4x�artan2 1p4x� 1�� : (91)For Q7 the tree-level oeÆient was given in (35). The one-loop orretion is [39, 42℄�7CB1(1)�7CB1(0) = CF�s4� 12�� 4 ln2 �mb � 2 ln �mb � 4 ln �QCDmb � �26 � 4u ln �u� 2+4�uu ���2 ln �mb � 1� ln �u+ ln2 �u+ Li2(u)��+12 �CF � CA2 � �s4��� 4�uu ���2 ln �mb � 1� ln �u+ ln2 �u+ Li2(u)��4(2� u)�u ���2 ln �mb � 1� lnu+ ln2 u+ Li2(�u)�+ 4�uuLi2(�u) + 4u �Li2(u)� �26 �+ 4 ln �u� 4 lnu� 4�: (92)The one-loop orretion to the jet funtion an be obtained from, e.g., eq. (79) of [40℄after appropriate replaements. Calling the one-loop orretion de�ned in eq. (79) of [40℄jBY? after the authors of that paper, we havej(1)? (�; u; !) = �4�CF�sN 1mb!�uÆ(� � u) h�s4� jBY? (�� ; u; !)i : (93)7.3 RG funtionsHere we summarize the perturbative solutions to the RG exponents in (30, 71). We de�nethe expansion oeÆients of the anomalous dimensions and the �-funtion as�usp(�s) = �0 �s4� + �1 ��s4��2 + �2 ��s4��3 + : : : ;�(�s) = �2�s ��0 �s4� + �1 ��s4��2 + �2 ��s4��3 + : : : � ; (94)and similarly for the anomalous dimension J . In terms of these quantities, the funtiona (and aJ with obvious replaements) is given bya(�; �) = � �02�0 " ln �s(�)�s(�) + ��1�0 � �1�0� �s(�)� �s(�)4� #: (95)The result for the Sudakov fator S to this same order isS(�; �) = �04�20 ( 4��s(�) �1� 1r � ln r�+ ��1�0 � �1�0� (1� r + ln r) + �12�0 ln2 r+ �s(�)4� "��1�1�0�0 � �2�0� (1� r + r ln r) + ��21�20 � �2�0� (1� r) ln r� ��21�20 � �2�0 � �1�1�0�0 + �2�0� (1� r)22 #); (96)28



where r = �s(�)=�s(�). The usp anomalous dimension to three loops is�0 = 4CF ;�1 = 4CF ��679 � �23 �CA � 209 TFnf� ;�2 = 4CF"C2A�2456 � 134�227 + 11�445 + 223 �3�+ CATFnf ��41827 + 40�227 � 563 �3�+ CFTFnf ��553 + 16�3�� 1627 T 2Fn2f#; (97)and the QCD � funtion is�0 = 113 CA � 43 TFnf ;�1 = 343 C2A � 203 CATFnf � 4CFTFnf ; (98)�2 = 285754 C3A + �2C2F � 2059 CFCA � 141527 C2A�TFnf + �449 CF + 15827 CA�T 2Fn2f :7.4 Separating sales in the �iCA oeÆientsHere we list the NNLO oeÆients �iCA in the ase where we distinguish LQCD from L.This is ahieved by solving the RG equation (25) perturbatively, given the form (22) forthe anomalous dimension A. This has been done in [74℄ and we an use those resultsafter making appropriate replaements. We �nd�7CA(2) = C2F �2L4 + 10L3 + 4L2LQCD + 26:1449L2 + 10LLQCD + 2L2QCD+23:5022L+ 32:6449LQCD + 7:8159�+CFCA�� 4:8889L3 � 26:6425L2 � 14:6667LLQCD + 7:33333L2QCD�63:7859L� 28:5556LQCD � 83:8866�+CFnl�0:8889L3 + 5:5556L2 + 2:6667LLQCD � 1:3333L2QCD+17:0161L+ 2:8889LQCD + 23:8254�+CFnh ��1:3333L2QCD + 2:8889LQCD � 0:810288� ; (99)�8CA(2) = �C2F �5:3333L2LQCD + 2:9468L2 + 13:333LLQCD + 16L2QCD+7:3671L+ 43:5941LQCD + 1:8875+i(4:1888L2 + 10:4720L+ 20:9440LQCD + 29:8299)�+CFCA�19:5556LLQCD � 4:4444L2QCD + 10:8051L+ 20:8566LQCD + 2:3833+i(15:3589L+ 8:3776LQCD + 28:0745)��CFnl�3:5556LLQCD � 1:7778L2QCD + 1:9646L+ 2:0741LQCD + 1:7170+i(2:7925L+ 4:4215)�+CFnh�1:7778L2QCD � 2:0741LQCD + 0:8829� ; (100)29
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