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tWe 
ompute NNLO (O(�2s)) 
orre
tions to the hard-s
attering kernels entering the QCDfa
torization formula for B ! V 
 de
ays, where V is a light ve
tor meson. We give
omplete NNLO results for the dipole operators Q7 and Q8, and partial results for Q1 validin the large-�0 limit and negle
ting the NNLO 
orre
tion from hard spe
tator s
attering.Large perturbative logarithms in the hard-s
attering kernels are identi�ed and resummedusing soft-
ollinear e�e
tive theory. We use our results to estimate the bran
hing fra
tionsfor B ! K�
 and Bs ! �
 de
ays at NNLO and 
ompare them with the 
urrentexperimental data.
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1 Introdu
tionRadiative B ! V 
 de
ays, where V is a light ve
tor meson, are pro
esses of parti
ularinterest in 
avor physi
s whi
h are already a

essible at the B-meson fa
tories at SLACand KEK; 
urrent measurements [1{7℄ yield the bran
hing fra
tions presented in Table 1.These de
ays provide independent 
onstraints on the shape of the unitarity triangle,determining the side Rt of this triangle through the ratio of bran
hing fra
tions for B !(�; !)
 and B ! K�
 de
ays. This information is 
omplementary to the 
onstraints onthe ratio of CKM matrix elements jVtd=Vtsj obtained from the re
ent CDF measurementof the mass di�eren
e �Ms in the Bs � �Bs system [8℄ and the already pre
ise knowledgeof the Bd� �Bd mass di�eren
e �Md [7℄. Moreover, measurements of the CP-asymmetriesin B ! (�; !)
 de
ays and the isospin-violating ratio of the 
harged and neutral B ! �
modes would determine the inner angle � of the unitarity triangle.The 
al
ulation of the bran
hing fra
tions for B ! V 
 de
ays requires the evaluationof the hadroni
 matrix elements of the operators in the e�e
tive weak Hamiltonian. ForB ! V 
 de
ays the weak Hamiltonian is [9, 10℄:He� = GFp2 Xp=u;
�(q)p "C1Qp1 + C2Qp2 + 8Xi=3 CiQi# ; (1)where �(q)p = V �pqVpb (unitarity of the CKM matrix implies that �(q)t = �(�(q)u +�(q)
 ) and so
ontributions from diagrams with top-quark loops are in
luded impli
itly). The relevantfour-quark operators Q1 and Q2 areQp1 = (�q p)V�A (�p b)V�A; Qp2 = (�qipj)V�A (�pjbi)V�A; (2)and the ele
tromagneti
 and 
hromomagneti
 penguin operators Q7 and Q8 areQ7 = �emb(�)8�2 �q ��� [1 + 
5℄ bF�� ; Q8 = �g mb(�)8�2 �q ��� [1 + 
5℄T a bGa�� : (3)Here q = d or s, and the 
onvention for the sign of the 
ouplings 
orresponds to the
ovariant derivative iD� = i�� + eQfA� + gT aAa�, with A� and Aa� representing thephoton and gluon �elds respe
tively, and Qe = �1 et
. The fa
tor mb(�) is the MS massof the b quark. The Wilson 
oeÆ
ients Ci have been known within the next-to-leadinglogarithmi
 approximation (NLL) for over a de
ade (for a review, see [11℄), and havebeen re
ently 
al
ulated at next-to-next-to-leading logarithmi
 order (NNLL) in a seriesof papers [12{16℄. In the present work we fo
us on the most phenomenologi
ally relevantoperators, whi
h are Q1, Q7, and Q8. The matrix elements of the QCD-penguin operatorsQ3; : : : Q6 �rst 
ontribute at O(�s) and are multiplied by small Wilson 
oeÆ
ients in theweak Hamiltonian He� (1). The 
ontribution from Q2 starts at O(�2s).It has been shown that in the heavy-quark limit a fa
torization framework (
alled QCDfa
torization) 
an be applied to B ! V 
 de
ays [17{23℄ (see [24,25℄ for phenomenologi
alupdates to NLO, and [26, 27℄ for the alternative \perturbative QCD" approa
h). Inparti
ular, the matrix element of a given operator in the e�e
tive weak Hamiltonian 
anbe written in the form
V 
 jQij �B� = FB!V? T Ii + Z d! du �B+(!)�V?(u)T IIi (!; u) : (4)1



Table 1: Status of the B-meson radiative bran
hing fra
tions (in units of 10�6) from theBABAR, BELLE and CLEO 
ollaborations and their averages by HFAG [7℄. The entryfor Bs ! �
 is from the re
ent BELLE measurement [6℄.Mode BABAR BELLE CLEO HFAGB+ ! K�+
 38:7� 2:8� 2:6 42:5� 3:1� 2:4 37:6+8:9�8:3 � 2:8 40:3� 2:6B0 ! K�0
 39:2� 2:0� 2:4 40:1� 2:1� 1:7 45:5+7:2�6:8 � 3:4 40:1� 2:0B+ ! �+
 1:10+0:37�0:33 � 0:09 0:55+0:42+0:09�0:36�0:08 < 13 0:88+0:28�0:26B0 ! �0
 0:79+0:22�0:20 � 0:06 1:25+0:37+0:07�0:33�0:06 < 17 0:93+0:19�0:18B0 ! !
 0:40+0:24�0:20 � 0:05 0:56+0:34+0:05�0:27�0:10 < 9:2 0:46+0:20�0:17B ! K�
 40:4� 2:5 42:8� 2:4 43:3� 6:2 41:8� 1:7B ! (�; !) 
 1:25� 0:25� 0:09 1:32+0:34+0:10�0:31�0:09 < 14 1:28+0:31�0:29Bs ! � 
 57+18+12�15�17The non-perturbative e�e
ts are 
ontained in FB!V?, the B ! V transition form fa
tor atq2 = 0, and in �B+ and �V?, the leading-twist light-
one distribution amplitudes (LCDAs) ofthe B- and V -mesons. The hard-s
attering kernels T Ii and T IIi in
lude only short-distan
ee�e
ts and are 
al
ulable in perturbation theory. Contributions to the kernel T I are 
loselyrelated to the virtual 
orre
tions to the in
lusive de
ay rate, and are referred to as vertex
orre
tions. Those to the kernel T II are related to parton ex
hange with the light quarkin the B-meson, a me
hanism 
ommonly referred to as hard spe
tator s
attering. It isexpe
ted that the fa
torization formula is valid up to 
orre
tions of O(�QCD=mb).The derivation of the fa
torization formula from a two-step mat
hing pro
edure in soft-
ollinear e�e
tive theory (SCET) [28{31℄ has provided additional insight into its stru
ture.An advantage of the e�e
tive �eld-theory approa
h is that it allows for an unambiguousseparation of s
ales and an operator de�nition of ea
h obje
t in the fa
torization formula.The te
hni
al details for B ! V 
 have been provided in [32{34℄. In the SCET approa
hthe fa
torization formula is written as
V 
 jQij �B� = �iCA�V? + pmBFfV?4 Z d! du �B+(!)�V?(u) tIIi (!; u) ; (5)where F and fV? are meson de
ay 
onstants. The SCET form fa
tor �V? is related tothe QCD form fa
tor through perturbative and power 
orre
tions [35, 37{42℄. In SCETthe perturbative hard-s
attering kernels are the mat
hing 
oeÆ
ients �iCA and tIIi . Theyare known 
ompletely to next-to-leading order (NLO) (O(�s)) in renormalization-group(RG) improved perturbation theory [34℄. In this paper we make steps towards a 
ompleteanalysis at next-to-next-to-leading order (NNLO) by obtaining full results for the hard-s
attering kernels for the dipole operators Q7 and Q8, and partial results for Q1, valid inthe large-�0 limit and negle
ting NNLO 
orre
tions from spe
tator s
attering.The hard-s
attering kernels are found by mat
hing 
ertain partoni
 matrix elementsin QCD with those in the e�e
tive theory. For the vertex 
orre
tions the relevant matrixelements are hs
jQijbi. The loop 
orre
tions in the e�e
tive theory 
an be made tovanish by mat
hing on-shell, so the main obsta
le is the evaluation of the QCD matrixelements. However, these matrix elements are just the virtual 
orre
tions to the in
lusiveB ! Xs
 de
ay rate. Exa
t results to O(�2s) were obtained for Q7 in [43, 44℄ and for Q82



in [45℄. For Q1 the virtual 
orre
tions at O(�s) were 
al
ulated in [46{48℄, but those atO(�2s) are known only in the large-�0 limit [49, 50℄4. A 
al
ulation that goes beyond thisapproximation by employing an interpolation in the 
harm quark massm
 was reported in[52℄, and has been used in estimating the NNLO bran
hing fra
tion for the in
lusive de
ayB ! Xs
 [53℄. However, as the 
al
ulation was not split into virtual and bremsstrahlung
ontributions, those results 
annot be used in the SCET mat
hing 
al
ulation. Therefore,while we obtain exa
t NNLO results Q7 and Q8, for Q1 we are restri
ted to the large-�0limit. Our results provide an expli
it 
he
k on fa
torization at NNLO.Corre
tions from spe
tator s
attering are in
luded in the hard-s
attering kernel tII and�rst 
ontribute to the bran
hing fra
tion at NLO (O(�s)). A 
ompli
ation of spe
tators
attering is the presen
e of two widely separated perturbative s
ales m2b � mb�QCD. TheSCET approa
h provides a systemati
 framework for separating 
ontributions from thesetwo s
ales. In SCET the hard-s
attering kernel tIIi for a given operator is sub-fa
torizedinto the 
onvolution of a hard-
oeÆ
ient fun
tion with a universal jet fun
tion, in theform tIIi (u; !) = Z 10 d��iCB1(�)j?(�; u; !) � �iCB1 ? j?: (6)The hard 
oeÆ
ients �iCB1 
ontain physi
s at the hard s
ale mb, while the jet fun
tionj? 
ontains physi
s at the hard-
ollinear s
ale pmb�. The hard 
oeÆ
ient is identi�edin a �rst step of mat
hing QCD ! SCETI, and the jet fun
tion in a se
ond step ofmat
hing SCETI ! SCETII. Details have been worked out for B ! V 
 in [32, 34℄, forheavy-to-light form fa
tors in [36{42℄, and for B ! PP in [54, 55℄.The e�e
tive �eld-theory te
hniques are 
ru
ial for providing a �eld-theoreti
al de�-nition of the obje
ts in (5), and for resumming large perturbative logarithms of the ratiomb=�QCD in the tIIi . In the e�e
tive-theory approa
h resummation is 
arried out by solv-ing the renormalization-group equations for the mat
hing 
oeÆ
ients �iCB1. Sin
e these
oeÆ
ients enter the fa
torization formula in a 
onvolution with the jet fun
tion j?, theiranomalous dimension is a distribution in the variables � and u. The evolution equationsmust be solved before performing the 
onvolution with j?. Therefore, resummation is notpossible in the original QCD fa
torization formula (4), where the hard-s
attering kernelsT IIi are obtained only after this 
onvolution has been 
arried out.While the SCET formalism is indispensable for resummation, in the a
tual mat
hing
al
ulations one 
an also use the diagrammati
 method of expanding by regions [56℄ inorder to separate hard from hard-
ollinear e�e
ts as in (6). This method was used toanalyze loop 
orre
tions to spe
tator s
attering for the 
ase of the B ! � form fa
torin [57℄, and for B ! �� in [58℄. In both 
ases the results were shown to be equivalent tothose obtained dire
tly in SCET. We use similar te
hniques here to 
ompute the NNLO
orre
tion from the hard-s
attering kernel tII8 . Our result for the one-loop 
orre
tionat the hard-
ollinear s
ale agrees with (6), expli
itly 
on�rming the universality of thejet fun
tion predi
ted by SCET. Sin
e the NNLO 
orre
tions from tII7 are known fromthe form fa
tor analysis [40, 42℄, the main obsta
le to a 
omplete treatment of spe
tators
attering is the NNLO mat
hing 
al
ulation for Q1.The paper is organized as follows. In Se
tion 2 we explain the SCET fa
torizationframework and de�ne the hard-s
attering kernels. The SCET mat
hing 
al
ulations are4these results are obtained by 
al
ulating the O(�2snf ) terms and then repla
ing nf ! �3�0=2,a

ording to the hypothesis of \naive non-abelianization" [51℄.3




arried out for the vertex 
orre
tions in Se
tion 3 and for the hard-spe
tator 
orre
tionsin Se
tion 4. In Se
tion 5 we des
ribe the numeri
al analysis and estimate the bran
hingfra
tions for B ! K?
 and Bs ! �
 de
ays at NNLO, 
omparing our results with the
urrent data and identifying the theoreti
al un
ertainties. We 
on
lude in Se
tion 6.Results for the partoni
 matrix elements taken from 
al
ulations for in
lusive B ! Xs
de
ays are relegated to the Appendix, along with some of the SCET mat
hing fun
tionsobtained in previous work and details of the renormalization-group analysis.2 Fa
torization and the hard-s
attering kernelsIn this se
tion we explain the 
losely related issues of fa
torization and extra
tion of thehard-s
attering kernels. The obje
ts of interest are the hadroni
 matrix elements
V 
 jQij �B� :An analysis in [34℄ used a two-step mat
hing pro
edure in SCET to show that thesematrix elements 
an be written in the form (5) to all orders in perturbation theory and toleading order in 1=mb. In this paper we work out a large set of e�e
tive-theory mat
hing
oeÆ
ients at NNLO in perturbation theory. These are obtained by repla
ing the hadroni
states by partoni
 ones and 
al
ulating the matrix elements in perturbative QCD. Showingthat the partoni
 rate 
an be brought into the form (5) demonstrates fa
torization andprovides expressions for the hard-s
attering kernels.To 
al
ulate the partoni
 matrix elements requires the evaluation of multi-s
ale Feyn-man integrals. It is advantageous to perform these integrals using the method of re-gions [56℄. This not only provides a simple way to obtain results at leading order in 1=mb,but also a fa
torization of momentum s
ales at the level of Feynman diagrams. In thismethod the loop integrations are split into a sum of di�erent regions, in whi
h the loopmomenta satisfy a �xed s
aling. This allows for a Taylor expansion under the integral inea
h region, whi
h is subsequently integrated over all spa
e. The integrals are performedin dimensional regularization, where s
aleless integrals are set to zero. The sum of theresults for all the regions re
overs the full integral, expanded in 1=mb.A number of di�erent momentum regions appear in the analysis, both perturbative andnon-perturbative. To identify these we �rst introdu
e two light-like ve
tors n� satisfyingn+n� = 2. We 
hoose the outgoing ve
tor meson to travel along the n� dire
tion, andde�ne n+ su
h that the velo
ity of the b quark is given byv� = n��n+v2 + n�+n�v2 : (7)This de�nition implies v? = 0, and we shall always work in the referen
e frame wheren�v = n+v = 1. To perform the expansion in 1=mb, we de�ne the parameter �2 =(pB �mbv)2 and the dimensionless parameter � = �=mb � 1. The regions are 
lassi�eda

ording to the s
aling of their light-
one 
omponents with the expansion parameter�. Denoting the light-
one 
omponents of a generi
 four-ve
tor p by (n+p; p?; n�p), therelevant momentum regions are [34℄:
4



Perturbativehard mb(1; 1; 1)hard-
ollinear mb(1;p�; �)Non-perturbativesoft mb(�; �; �)
ollinear mb(1; �; �2)soft-
ollinear mb(�; �3=2; �2)The 
onne
tion between the SCET analysis and perturbative QCD is provided by themethod of regions. In the e�e
tive theory, 
ontributions from the perturbative regionsare en
oded in Wilson 
oeÆ
ients of operators built from �elds representing the regionsof lower virtuality. It is 
onvenient to fa
torize the two perturbative s
ales m2b and mb�using a two-step mat
hing pro
edure QCD! SCETI ! SCETII.In the �rst mat
hing step the hard s
alem2b is integrated out by mat
hing the operatorsQi onto a set of operators in SCETI. The e�e
tive theory SCETI involves �elds for thehard-
ollinear and non-perturbative modes, multiplied by Wilson 
oeÆ
ients related tothe hard region. For the 
ase of B ! V 
, the mat
hing takes the form [34℄Qi ! �iCAJA +�iCB1 ? JB1 +�iCB2 ? JB2: (8)The ? denotes a 
onvolution over momentum fra
tions, as in (6). The momentum-spa
eWilson 
oeÆ
ients depend only on quantities at the hard s
ale m2b . The exa
t form of theoperators J (i) along with the relevant SCET 
onventions 
an be found in [34℄:JA = ���Wh
� /"?(1� 
5)hv; (9)JB1 = ���Wh
� /"? /Ah
?(1 + 
5)hv; (10)JB2 = ���Wh
� /Ah
?/"?(1 + 
5)hv: (11)Here "? is the polarization ve
tor of the on-shell photon. The operators 
ontain a hard-
ollinear quark �eld �, a 
omposite obje
t Ah
, whi
h in light-
one gauge is the hard-
ollinear gluon �eld, and Wh
, a Wilson line. In SCET the b-quark �eld is treated as inHQET. We have suppressed the arguments of the �elds above, but must keep in mind thatdue to the non-lo
ality of SCET the obje
ts ���Wh
� and /Ah
? are evaluated at di�erentpoints along the n+ light-
one, whereas hv is multipole expanded and evaluated at a pointon the n� light-
one (see, e.g., [31℄). The B-type operators are a
tually power suppressedin SCETI, but 
ontribute at the same order as the A-type operator upon the transitionto SCETII [36{38℄.The matrix element of the operator JA is proportional to the SCET form fa
tor �V?.The Wilson 
oeÆ
ients �iCA multiplying this matrix element 
an be extra
ted from
al
ulations in the in
lusive B ! Xs
 de
ay. Details are given in Se
tion 3. In 
ontrastto the QCD form fa
tor, the SCET form fa
tor 
ontains no pie
e whi
h 
an be writtenin the form of a (
onvergent) 
onvolution of a hard-s
attering kernel with the mesonLCDAs [37, 38℄5. The relation between the QCD form fa
tor and the SCET form fa
tor5although see [59℄ for a renewed dis
ussion of this point.5



is determined by the fa
torization formula [35, 37, 38℄FB!V? = CAV?�V? + pmBFfV?4 Z d! du �B+(!)�V?(u) tIIV?(!; u) : (12)Sin
e the matrix element of Q7 is proportional to the form fa
tor, the 
oeÆ
ient fun
tionsCAV? and tIIV? at NNLO 
an be determined from the results for Q7. The exa
t relation isgiven in (80) below.The operators J (Bi) 
an be further mat
hed onto four-quark operators in SCETII. ForB ! V 
 de
ays, only the operator JB1 is relevant. The matrix element of the four-quarkoperator onto whi
h it mat
hes fa
torizes into a produ
t of LCDAs for the B and Vmesons. The operator JB2, on the other hand, mat
hes onto a four-quark operator whoserenormalized matrix element has no proje
tion on the pseudos
alar B-meson LCDA. Inmat
hing the operator JB1 onto SCETII the hard-
ollinear s
ale mb� is integrated out,and the asso
iated Wilson 
oeÆ
ient is the jet fun
tion j?. The �nal low-energy theorySCETII 
ontains only soft, 
ollinear, and soft-
ollinear �elds. Fa
torization means thatsoft �elds are restri
ted to the B-meson LCDA, and 
ollinear ones to the V -meson LCDA.Sin
e these two pie
es 
ommuni
ate only through soft-
ollinear intera
tions, fa
torizationamounts to showing that su
h 
ontributions de
ouple from the hadroni
 matrix element ofthe SCETII operator. This was done in [34℄. Thus the matrix element of the operator ontowhi
h JB1 mat
hes is exa
tly of the form of the se
ond pie
e of (5), with tIIi = �iCB1 ?j?.This same jet fun
tion appears in the fa
torization formula (12) for the form fa
tor, wheretIIV? = CB1V? ? j?. We 
an summarize this dis
ussion by the following fa
torization formula
V 
 jQij �B� = �iCA�V? + pmBFfV?4 ��CB1 ? j?� ? �V? ? �B+ (13)= �iCACAV? FB!V? + pmBFfV?4 ���iCB1 � �iCACAV? CB1V?� ? j?� ? �V? ? �B+:This formula relates the hard-s
attering kernels �iCA and tIIi in (5) to the Wilson 
oef-�
ients from the two-step mat
hing pro
edure in SCET, and provides a 
onne
tion withthe original formulation (4). For instan
e, using that �7Ci � CiV?, one 
an verify thatQ7 
ontributes to both terms in the SCET formulation, but only to the vertex term inthe original formulation.A main result of our paper is an expression for the O(�2s) 
orre
tion to the hard
oeÆ
ient �8CB1. We obtain it with a straightforward diagrammati
 analysis using themethod of regions, without the expli
it formulation of SCET or the use of its Feynmanrules. Sin
e 
ontributions from JB1 
an be uniquely identi�ed by the Dira
 stru
ture ofthe four-quark operator onto whi
h it mat
hes, the sub-fa
torization of the hard-s
atteringkernel into a 
onvolution of a jet and hard fun
tion 
an be performed by separating out the
ontributions of the hard and hard-
ollinear regions multiplying this stru
ture. Detailsare given in Se
tion 4.3 Vertex 
orre
tionsWe begin with the vertex 
orre
tions, extra
ting the 
ontributions of the operators Q1; Q7,and Q8 to the SCET Wilson 
oeÆ
ient CA at NNLO (O(�2s)). To do so we 
al
ulate the6



partoni
 matrix elements hQii � hq(p)
(q)jQijb(pb)ito this same order in both SCET and QCD. This matrix element is 
hosen be
ause it
ontains no external gluons and so mat
hes dire
tly onto the operator JA in (9). The 
al-
ulation is performed with on-shell external quark states and both UV and IR divergen
esare regularized dimensionally. In that 
ase the mat
hing 
al
ulation is simple, be
ause theloop 
orre
tions in SCET are s
aleless and vanish. The matrix element of JA is just thetree expression plus 
ounterterms from wave-fun
tion and 
urrent renormalization. TheQCD matrix elements 
an be read o� from the virtual 
orre
tions to the in
lusive de
ayB ! Xs
. Using that the on-shell wave-fun
tion renormalization fa
tors in the e�e
tivetheory are unity, and repla
ing the bare SCET 
urrent by its renormalized one, we havehQii = DihQ7;treei = �iCAZJhJAtreei: (14)Here the Di are the s
alar amplitudes in QCD, the �iCA are the 
ontributions of a givenoperator to the SCET mat
hing 
oeÆ
ient, and ZJ is the renormalization fa
tor of theSCET 
urrent operator JA. Ea
h of these quantities is determined as a series in �s. Forthe operators Q7;8 we 
an obtain 
omplete results at NNLO, while for Q1 we 
an onlyprovide an estimate using the large-�0 limit.We �rst 
onsider tree level, where only Q7 
ontributes. For on-shell mat
hing thespinors in QCD and SCET are equal to one another and we �nd�7CA(0) = �emb 2E
4�2 ; (15)where the photon energy is 2E
 = mB(1 �m2V =m2B) � mb in the heavy-quark limit. Athigher orders the mat
hing 
oeÆ
ients 
an be read o� from the fun
tions Di a

ordingto the relation �iCA(mb; �) = �7CA(0) lim�!0 Z�1J (�;mb; �)Di(�;mb; �) : (16)The SCET 
urrent renormalization fa
tor ZJ is determined by requiring that the Wilson
oeÆ
ient be free of IR poles.Before giving results for the higher-order 
orre
tions, we pause to explain a subtlety inthe mat
hing whi
h �rst appears at two loops. The on-shell matrix elements of the QCDoperators Qi are 
al
ulated in MS renormalization in the �ve-
avor theory, nf = nl + nhwith nh = 1 for the b quark. However, in SCET b-quark loops are absent and the matrixelements are 
al
ulated as an expansion in the four-
avor theory. In order to performa 
orre
t mat
hing, it is ne
essary to express the UV renormalized results in the �ve-
avor theory in terms of the four-
avor parameters of SCET. A similar problem ariseswhen integrating out the top quark to mat
h the Standard Model onto the e�e
tive weakHamiltonian. The solution is to renormalize the 
oupling 
onstant in the nf = nh + nl
avor theory a

ording to �bares = Znh+nl� �s, with (see e.g. [13, 60℄)Znh+nl� = 1� �s4�� �113 CA � 23nf + 23nh(1�N�)� : (17)The fun
tion N� is �xed su
h that �s is the MS-renormalized 
oupling in the four 
avortheory. Its value is N(�) = e
 �� �2m2b�� �(1 + �) : (18)7



Results for the s
alar amplitudes Di in this renormalization s
heme 
an be obtained fromthe MS results given in the Appendix by making the repla
ement�s ! �s�1 + �s4� 43nh �L + ��L2 + �224� + �2�2L33 + �212L� �36 ���+ : : : ; (19)where L = ln�=mb. Note that this is just the standard de
oupling relation when evaluatedin four dimensions.We now give results for the Wilson 
oeÆ
ients, whi
h we write in the form�iCA = �7CA(0) "Æi7 + �s(�)4� �iCA(1) + ��s(�)4� �2�iCA(2)# : (20)We begin with Q7. Results 
an be given analyti
ally, but sin
e those for Q8 are onlyknown numeri
ally we treat Q7 the same. Using the s
alar fun
tions D7 given in theAppendix we �nd�7CA(1) = CF ��2L2 � 5L� 2LQCD � 6:8225� ;�7CA(2) = C2F �2L4 + 14L3 + 38:1449L2 + 56:14711L+ 7:8159�+CFCA ��4:8889L3 � 33:9758L2 � 92:3415L� 83:8866�+CFnl �0:8889L3 + 6:8889L2 + 19:9050L+ 23:8254�+CFnh ��1:3333L2 + 2:8889L� 0:810288� ; (21)where one is to use nl = 4 and nh = 1 in the above equation. In the one-loop result we havedistinguished the logarithms LQCD = ln�QCD=mb and L = ln�=mb. The �QCD dependen
e
an
els against the s
ale dependen
e in the e�e
tive weak Hamiltonian, whereas the �dependen
e 
an
els against the s
ale dependen
e of the SCET soft fun
tion �V? and therunning 
oupling 
onstant. At one loop it is straightforward to separate the logarithmsby identifying the UV and IR poles in the individual Feynman diagrams. At two loopsthe distin
tion 
an be made by using the renormalization-group equation (25) below. Wegive expli
it results for the 
ase where L is distinguished from LQCD in the Appendix, butin this se
tion we quote the NNLO results only for L = LQCD.We 
an use our results to determine the anomalous dimension of the operator JA upto two loops. The anomalous dimension is obtained from the 
oeÆ
ient Z(1)J of the 1=�pole term in the 
urrent renormalization fa
tor and has the form
A = 2�s ���s Z(1)J (mb; �) = ��
usp(�s) ln �mb + 
J(�s) ; (22)where �
usp is the 
usp anomalous dimension appearing in the renormalization-grouptheory of Wilson lines [61℄ (it has re
ently been 
al
ulated to three loops [62℄; the resultis listed in the appendix). The result for the renormalization fa
tor to two loops isZJ = 1 + CF�s4� �� 1�2 � 52� � 2L� �+CF ��s4��2 �� 0:5CF�4 + 1�3�� 2:5CF + 2:75CA � 0:5nl � 2CFL�+ 1�2�� 3:125CF + 3:5447CA � 0:5556nl � 2CFL2 + (�5CF + 3:6667CA � 0:6667nl)L�+1��� 2:6525CF � 3:4386CA + 1:9799nl + (�4:1546CA + 1:1111nl)L�� ; (23)8



from whi
h we �nd
A = CF�s4� (�4L� 5) (24)+CF ��s4��2 ((�16:6183CA + 4:444nl)L� 10:6102CF � 13:7545CA + 7:9195nl) :This is 
onsistent with (22) and de�nes 
J . The one-loop result was �rst obtained in [29℄.We note that in this 
ase the nh dependen
e in the renormalization fa
tor ZJ drops outafter using (19). This must be the 
ase, sin
e in the e�e
tive-theory 
urrent the b quarkis integrated out and so its anomalous dimension 
annot depend on nh. Our result forthe anomalous dimension, along with the relation� dd��iCA = 
A�iCA ; (25)allows us to perform the separation of UV and SCET logs in the Wilson 
oeÆ
ients givenin the Appendix.The same SCET 
urrent also appears in the study of the in
lusive B ! Xs
 de
ayspe
trum with a 
ut on the photon energy [63℄. A result equivalent to our two-loopmat
hing 
oeÆ
ient �7CA(2) with � = mb was re
ently obtained in [64℄. Translating ourexpression into the two-loop result for h(1) given in [64℄, we �nd numeri
al agreement.The dependen
e on nh not taken into a

ount in that work is negligible numeri
ally. We
an also 
he
k the two-loop anomalous dimension by using RG-invarian
e of the in
lusivede
ay rate along with the anomalous dimensions of the jet and soft fun
tions 
al
ulatedin [65, 66℄. Here again the results agree.We repeat the 
al
ulation for Q8. In this 
ase the one-loop result is IR �nite. Thetwo-loop mat
hing equation also be
omes IR �nite after the results are expressed in termsof the renormalized 
urrent 
al
ulated above. This is a 
he
k on the e�e
tive-theory
onstru
tion, a

ording to whi
h the IR poles in the QCD amplitudes for ea
h operatorin the weak Hamiltonian are absorbed by the same SCET 
urrent. For the 
oeÆ
ientfun
tions we �nd�8CA(1) = CF [2:6667LQCD + 1:4734 + 2:0944i℄ ;�8CA(2) = �C2F �5:3333L3 + 32:2802L2 + 50:9612L+ 1:8875+i(4:1888L2 + 31:4159L+ 29:8299)�+CFCA�15:1111L2 + 31:6617L+ 2:3833 + i(23:7365L+ 28:0745)��CFnl�1:7778L2 + 4:0386L+ 1:7170 + i(2:7925L+ 4:4215)�+CFnh�1:7778L2 � 2:0741L+ 0:8829�: (26)Finally, we 
onsider the four-quark operators Q1 and Q2. At NLO the 
ontributionfrom Q1 
an be obtained as an expansion in m2
=m2b , whereas that from Q2 vanishes.To extra
t the NNLO results for these operators would require the QCD amplitudes D1and D2 to this same order, whi
h involves the 
al
ulation of a large set of three-loopgraphs. These 
orre
tions are known exa
tly only in the large-�0 limit, in an expansionin z = m2
=m2b [49℄. Within this approximation the result for Q2 vanishes, and that forQ1 
an be written as�1CA(1) = mbmbCF ��3:8519LQCD + r(1)(z)� ; (27)�1CA(2) = �3�02 mbmbCF �2:4691L2 + l(2)(z)L + r(2)(z)� ;9



where we have repla
ed nf ! �3�0=2 as appropriate in the large-�0 limit. Within thislimit it is also 
onsistent to set the ratio mb=mb to unity, as we shall do in the numeri
alanalysis of Se
tion 5. Sin
e in the large-�0 limit the amplitude is IR �nite, we 
an reado� the fun
tions r(i) and l(2) dire
tly from the results for in
lusive B ! Xs
 de
ay.Converting to our notation we haver(1) = r2CF ; r(2) = r(2)2CF l(2) = � l(2)2CF ; (28)where r2 is de�ned in eq. (2.35) of [46℄, and r(2)2 ; l(2)2 in eq. (22) of [49℄. As an example,for m
=mb = 1:2=4:8 we have�1CA(1) = mbmbCF [�3:8519LQCD � 3:4529� 0:5138i℄ ; (29)�1CA(2) = �3�02 mbmbCF �2:4691L2 + 4:9083L+ 5:1203 + i(0:9953L+ 1:6014)� :There are two major un
ertainties asso
iated the large-�0 limit. The �rst is that thereis no way to quantify the size of the terms in �1CA(2) not 
aptured within this limit. These
ond is that the higher-order 
al
ulation does not resolve the perturbative ambiguitiesin the ratios of quark masses mb=mb and m
=mb in the lower-order 
oeÆ
ient �1CA(1):the di�eren
e between mass renormalization s
hemes in these ratios is a 
orre
tion pro-portional to CF�s and set to zero in the large-�0 limit. We dis
uss these un
ertainties inmore detail in the numeri
al analysis of Se
tion 5.In Se
tion 5 we will be interested in the dependen
e of the bran
hing fra
tions onthe 
hoi
e of renormalization s
ales. Both the mat
hing 
oeÆ
ients �iCA and the SCETsoft fun
tion �V? depend on the SCET fa
torization s
ale �. It is 
onvenient to usethe renormalization group to determine the 
oeÆ
ients �iCA at an arbitrary s
ale �,given their value at a mat
hing s
ale �h � �QCD � mb. This allows us to �x � = mband determine the soft fun
tion �V? only at this single s
ale. We 
an then study thedependen
e of the bran
hing fra
tions under variations in �h and �QCD, under whi
h itis formally invariant. The relevant RG formalism was worked out in [41℄. The expressionwe need is�iCA(mb; �h; �) = �mb�h �a(�h;�) exp[S(�h; �) + aJ(�h; �)℄�iCA(mb; �QCD = �h; �h) :(30)In the above equation we have 
orrelated the s
ales �QCD = �h for simpli
ity, althoughwe 
an keep them separate using the results in the Appendix. With this 
hoi
e thedependen
e on �h = �QCD on the left-hand side 
an
els against the dependen
e in thee�e
tive weak Hamiltonian, so that the bran
hing fra
tions are invariant under variationsof the mat
hing s
ale �h. The RG exponents S and a, and aJ are given byS(�1; �2) = � Z �s(�2)�s(�1) d��(�)�
usp(�) Z ��s(�1) d�0�(�0) ; (31)a(�1; �2) = Z �s(�2)�s(�1) d��(�)�
usp(�); (32)aJ(�1; �2) = Z �s(�2)�s(�1) d��(�)
J(�): (33)10



These exa
t solutions are evaluated by expanding the anomalous dimensions and the QCD�-fun
tion as perturbative series in the strong 
oupling. We 
an do this to two-loop orderfor a and aJ , and to three-loop order for S. The expansions to this order are listed in theAppendix.4 Hard spe
tator s
atteringIn this se
tion we 
onsider the spe
tator s
attering me
hanism and the 
al
ulation of tIIi(i = 1; 7; 8). The leading 
orre
tions from spe
tator s
attering 
ontribute to the bran
hingfra
tions at NLO (O(�s)) and are known 
ompletely. The NNLO 
orre
tions from Q7 arealso known [34℄, sin
e they 
an be taken from the heavy-to-light form fa
tor analysisin [39, 40, 42℄. In this se
tion we 
al
ulate the NNLO 
orre
tions from Q8. We �ndagreement with a 
ertain set of logarithmi
 
orre
tions obtained in [67℄, and verify theimportant SCET result that 
ontributions at the hard-
ollinear s
ale for ea
h operatorin the e�e
tive weak Hamiltonian are taken into a

ount by a universal jet fun
tion. To
omplete the NNLO mat
hing 
al
ulation for spe
tator s
attering would require resultsfor Q1 and Q2. This is a rather diÆ
ult 
al
ulation involving the evaluation of two-loopgraphs depending on the ratio m
=mb.Before presenting our results for Q8, we �rst review the results for Q7 as derived in [34℄.This will �x some notation and 
larify the sub-fa
torization of tIIi into a 
onvolution ofhard and jet fun
tions. The 
al
ulation makes use of the two-step mat
hing pro
edureoutlined in Se
tion 2 to integrate out the perturbative s
ales m2b � mb�QCD. At tree leveland to leading order in the HQET expansion the result istII(0)7 (u; !) = Z 10 d� �7CB1(0)(�)j(0)? (�; u; !); (34)where �7CB1(0)(�) = emb4�2 ; j(0)? (�; u; !) = �4�CF�sN
 1mb!�uÆ(� � u) : (35)The one-loop 
orre
tion to the hard-s
attering kernel breaks into a sum of 
orre
tions tothe hard 
oeÆ
ient and the jet fun
tion a

ording totII(1)7 = �7CB1(1) ? j(0)? +�7CB1(0) ? j(1)? ; (36)where the supers
ripts denote the (n)-loop 
orre
tion to ea
h fun
tion and the ? denotesa 
onvolution over the variable � . Expli
it results for ea
h term 
an be dedu
ed fromthe form-fa
tor analysis in [39, 40, 42℄ and are listed in the Appendix. Note that whilethe hard 
oeÆ
ient fun
tion �7CB1 is parti
ular to the operator Q7, the jet fun
tionj? is not. It is determined by the mat
hing step SCETI ! SCETII, whi
h 
ontains noinformation about the stru
ture of the operators in the e�e
tive weak Hamiltonian at thes
ale mb. In the SCET des
ription of spe
tator s
attering, therefore, the non-trivial taskis to determine the 
orre
tions at the hard s
ale mb, 
ontained in the Wilson 
oeÆ
ients�iCB1. The 
ontributions at the hard-
ollinear s
ale mb� 
an be obtained by performingthe 
onvolution in the se
ond term of (36).In what follows we obtain an expression for tII(1)8 in the form (36), derived in thefollowing way. We �rst 
al
ulate the hard-s
attering kernel dire
tly in QCD fa
torization,11



Figure 1: The lowest-order diagram for spe
tator s
attering with Q8. The double-linerepresents the in
oming b quark and the solid box an insertion of Q8. The photon 
an beatta
hed to any of the four 
rosses. Only photon emissions from the light quark emergingfrom the Q8 insertion 
ontributes at leading power in 1=mb.but separate the 
ontributions from the hard and hard-
ollinear s
ales using the methodof regions. We then show that the one-loop 
ontribution from the hard-
ollinear region isexa
tly �8CB1(0)?j(1)? . Sin
e both the 
oeÆ
ient fun
tion �8CB1(0) � ��=� (with �� � 1��)and the jet fun
tion j(1)? are non-trivial fun
tions of � , this provides a 
onsisten
y 
he
kbetween the QCD fa
torization and the SCET formalism, and also a 
he
k on our loop
al
ulations. The remaining 
ontribution is from the hard region and is identi�ed with�8CB1(1) ? j(0)? . Sin
e j(0)? is a delta fun
tion in the variable � , this result is suÆ
ientto re
over the 
oeÆ
ient fun
tion �8CB1(1). As mentioned in the Introdu
tion, it is this� -dependent fun
tion whi
h is needed to obtain the resummed hard-s
attering kernel usedin the numeri
al analysis in Se
tion 5.4.1 Q8 at tree levelWe start by reviewing the tree-level 
al
ulation. The strategy is to evaluate the partoni
matrix element A8 = hq(p1) �q0(p2)
(q) jQ8 j �q0(k) b(pb)i and show that it 
an be writtenin the form (5). The hard-s
attering kernel is independent of the exa
t 
hoi
e of thepartoni
 momenta. We shall work with on-shell quarks in the initial and �nal states,and furthermore work in the referen
e frame where the perpendi
ular 
omponents of theexternal parton momenta vanish. In this frame, the momenta 
an be 
hosen as p1 = up;p2 = �up, k = !n+=2, pb = mbv = pB � k, and q = E
n+, with �u � 1 � u. At leadingorder in 1=mb we 
an write the ve
tor-meson momentum as p � mbn�=2 and the photonenergy as E
 � mb=2. The photon's polarization ve
tor lies in the transverse plane andis denoted by �?. The power 
ounting is su
h that !=mb � �� 1.The four Feynman diagrams whi
h 
an 
ontribute at tree-level are represented inFigure 1. The photon 
an be emitted from any of the four 
rosses. At leading orderin � only the diagram where the photon is atta
hed to the light quark produ
ed at the
avor-
hanging weak 
urrent 
ontributes. Emissions from the other quark lines are eitherpower suppressed or have no proje
tion on the meson LCDAs. For the tree-level s
atteringamplitude one �ndsA(0)8 = mbmb eQd�s� �uu 1�u! h�u(up) f�/?
�? (1 + 
5)gT au(pb)i h�v(k)
�?T av(�up)i= mbmb CFN
 eQd�s� �uu 1�u! [�/?
�? 
 
�?℄ � A(0) [�/?
�? 
 
�?℄ ; (37)where u and v represent the free-parti
le spinor wave-fun
tions and Qd = �1=3 denotesthe 
harge of a down-type quark. We have distinguished the MS mass mb(�) from the12



pole mass mb, anti
ipating the one-loop 
al
ulation in the next se
tion. To obtain these
ond line we already performed the 
olor tra
e, so that the notation �1 
 �2 is to beunderstood as the Dira
 stru
ture between quark spinors. In the se
ond line we de�nedthe tree-level partoni
 amplitude A(0). At tree level there is only one Dira
 stru
ture,related to the mat
hing of the SCETI operator JB1.To pro
eed further we need de�nitions for the LCDAs in the low-energy theory SCETII.The light-
one proje
tion operator �H��(~k) onto a heavy state H 
ontaining the b-quarkis given by �H��(~!) = Z dt2� eit~! h0 j�qs�(tn�) [tn�; 0℄hv�(0)jH(v)i ; (38)where qs and hv are soft and heavy quark �elds in HQET; � and � are spinor labels. Thequantity [tn�; 0℄ denotes a path-ordered exponential along the light 
one. Similarly, thelight-
one proje
tion operator �V
Æ(u) onto a light meson state L is de�ned by�L
Æ(u) = n+p Z ds2� e�isun+p 
L(p) ����Æ(sn+) [sn+; 0℄ �
(0)�� 0� ; (39)where the � are 
ollinear quark �elds in SCET. The hadroni
 matrix elements of theselight-
one proje
tion operators, 
ontra
ted with 
ertain Dira
 stru
tures, are the LCDAsof the B and V mesons. The exa
t de�nitions of the distribution amplitudes needed inthe analysis areh0j�qs(tn�)[tn�; 0℄ /n�2 hv(0)jB(v)i = � iF (�)2 pmB tr�/n�2 1 + /v2 
5� Z 10 d!e�i!t�B+(!; �)hV (p)j��(sn+) [sn+; 0℄ 
�? /n+2 �(0)j0i = ifV?(�)4 n+p tr�/�?
�? /n+/n�4 � Z 10 du eisun+p�V?(u; �);(40)where �? is the polarization ve
tor of the V -meson.To extra
t the hard-s
attering kernels we need only the partoni
 matrix elements. Wewrite these as a produ
t of s
alar distribution fun
tions multiplied by appropriate Dira
spinors. For on-shell mat
hing at leading order in 1=mb the QCD spinors are equal to thee�e
tive theory ones. At lowest order we have�b�q0(0)�� (!0) = �b�q0(0) �v�(k) u�(pB � k) = Æ(! � !0) �v�(k) u�(pB � k); (41)�q�q0(0)
Æ (x) = �q�q0(0) �uÆ(up) v
(�up) = Æ(u� x) �uÆ(up) v
(�up); (42)and A(0)8 
an be written in the fa
torized formA(0)8 = �b�q0(0) ? T II(0)8 ? �q�q0(0); (43)with T II(0)8; ��
Æ(!; u) = mbmb CFN
 eQd�s� 1u! f�/?
�?(1 + 
5)gÆ� f
�?g�
� tII(0)8 f�/?
�?(1 + 
5)gÆ� f
�?g�
 : (44)13



The sub-fa
torization of tII(0)8 into the 
onvolution of a hard 
oeÆ
ient with the jet fun
tionis given by [34℄�8CB1(0)(�) = �eQdmb4�2 ��� ; j(0)? (� ; u; !) = �4�CF�sN
 1mb!�uÆ(� � u): (45)To show that the hard-s
attering kernel tII8 is what appears in the fa
torization formula(5), we now 
onsider in more detail the hadroni
 matrix elements of four-quark operatorsin SCETII. Note that the four-quark operator whose hadroni
 matrix element leads to aprodu
t of LCDAs has the opposite Fierz ordering ([���℄[�qshv℄) 
ompared to the operatorwhose partoni
 matrix element mat
hes straightforwardly onto the expression in (43)([��hv℄[�qs�℄). In four dimensions the two operators are 
onne
ted by a Fierz transformationa

ording to (see, e.g., [40℄)OV? = ���/?
�?(1 + 
5)hv �qs
�?� $ O0V? = ���/? /n+2 (1 + 
5)� �qs /n�2 
5 hv ; (46)where the 
ollinear (soft/HQET) �elds in ea
h operator are understood to be evaluatedat di�erent points on the n+(n�) light-
one, and made gauge invariant by inserting ap-propriate Wilson lines. In writing (46) we have omitted Dira
 stru
tures 
ontributing toO0V? whi
h have no proje
tion onto the pseudos
alar B-meson LCDA. Comparing with(40), we immediately see that, in the absen
e of soft-
ollinear intera
tions, the hadroni
matrix element of the operator O0V? fa
torizes into a produ
t of �V? and �B+. On the otherhand, the partoni
 matrix element of the Fierz-transformed version OV? mat
hes (43), upto the hard-s
attering kernel tII(0)8 . We thus verify that our expression for the tree-levelamplitude is equivalent to (5).We shall perform a similar 
al
ulation at one loop in the next subse
tion. A 
om-pli
ation 
ompared to tree level is that the appearan
e of IR poles in the dimensionallyregulated one-loop amplitude prevents one from using the Fierz relation (46). To extra
tthe hard-s
attering kernel by 
omparing the renormalized matrix elements 
al
ulated inthe two Fierz orderings is thus non-trivial, and will require the use of some te
hni
aldetails from the SCET analysis used to extra
t the one-loop jet fun
tion in [40, 42℄.4.2 Q8 at one loopWe now turn to a main subje
t of this paper, the 
al
ulation of the one-loop 
orre
tionfrom Q8 to the hard-s
attering kernel tII. The �rst task is to 
al
ulate the amputatedpart of the full set of one-loop Feynman diagrams shown in Figure 2, supplemented by theon-shell renormalization fa
tors for the quark �elds. Photon emission from the spe
tatorquark need not be 
onsidered for the 
ase of pseudos
alar B-meson de
ay, sin
e thefour-quark stru
tures appearing in the mat
hing vanish at leading order in 1=mb afterproje
ting onto the meson LCDAs [34℄. When a loop integral involves more than ones
ale, we 
al
ulate the leading term in the 1=mb expansion using the method of regions.All integrals are 
al
ulated in dimensional regularization in d = 4 � 2� dimensions andwith the NDR s
heme for 
5. The result 
an be written in the formA(1)8 = A(1) (�/?
�? 
 
�?) +B(1) (
�?�/? 
 
�?) : (47)The four-quark stru
ture multiplied by the s
alar fun
tion A(1) is related to the mat
hingof the operator JB1. It is proportional to the tree amplitude and is used to extra
t the14



Figure 2: The one-loop 
orre
tions to spe
tator s
attering with Q8. The solid box denotesa Q8 insertion and the photon 
an be atta
hed to any of the 
rosses.hard-s
attering kernel. For our 
hoi
e of external momenta, the fun
tion A(1) re
eivesnon-vanishing 
ontributions from the hard, hard-
ollinear, and soft momentum regions.Sin
e we work with on-shell partoni
 states, 
ontributions from the 
ollinear and soft-
ollinear regions are only in s
aleless integrals and vanish (this would not be true ifo�-shell regularization were used). We shall label the 
ontributions from the di�erentregions as A(1)h ; A(1)h
 , and A(1)s in what follows. Moreover, we de�ne the amplitude A(1)hto in
lude the �s 
ontribution from wave-fun
tion renormalization of the b-quark �eld,whi
h reads Z1=22b � 1 = �CF�s4� � 32� + 3 ln �mb + 2� : (48)The renormalization fa
tors for the light-quark �elds vanish, to this order in �s. In writingthe result (47), we used the pres
ription [40℄
�?
�?�/?
�? 
 
�?
�?
�? ! (d� 4)2 (�/?
�? 
 
�?) ; (49)the relevan
e of whi
h will be explained below.The stru
ture multiplied by the s
alar fun
tion B(1) is related to the mat
hing of theoperator JB2. The 
ontributions from individual diagrams 
ontain 1=� poles, but these
an
el in the sum of all diagrams. Sin
e the matrix element of this four-quark operatorhas no proje
tion onto the B-meson LCDA, this pie
e does not 
ontribute to the hard-s
attering kernel.Note that there is no third Dira
 stru
ture, whi
h would 
orrespond to a 
ontributionfrom the operator JA. The mat
hing of JA involves the emission of the n+Ah
 
omponent15



of a hard-
ollinear gluon. Using the equations of motion �v(k)/n+ = /n�v(�up) = 0 ensuresthat the Dira
 stru
ture 
an always be written in terms of the transverse 
omponents ofDira
 matri
es. It is easy to see that this pre
ludes taking out a fa
tor of n+Ah
 from theWilson line in the operator JA and atta
hing it to the spe
tator quark.The fun
tion A(1) has both UV and IR divergen
es. The UV divergen
es are removedby 
oupling 
onstant, mass, and operator renormalization (re
all that the 
ontributionfrom wave-fun
tion renormalization of the b-quark is in
luded in the de�nition of A(1)h ).We de�ne the renormalized parameters as mbareb = Zmmb, et
. As with the vertex term,we �rst 
ompute the QCD amplitude with nf = nh + nl a
tive 
avors, and then expressresults in the MS s
heme in the nl-
avor theory by renormalizing the 
oupling as in (17).Doing so, we �nd that all dependen
e on nh drops out. The UV renormalized amplitudeis obtained by making the repla
ementA(1) ! A(1) + A(1)
:t: = A(1) + Znh+nl(1)� + Z(1)m + Z(1)88 � u�u Z(1)87Qd !A(0); (50)where the various fa
tors at one loop areZ(1)m = �3CF�s4�� ; Z(1)88 = 8�CF � CA4 � �s4�� ; Z(1)87 = QdCF�s�� : (51)The u-dependent fa
tor multiplying the 
ounterterm Z(1)87 follows from the tree-level 
oef-�
ients (35,45). To this order in �s, mass renormalization for the b-quark is needed onlyfor the MS mass appearing in the de�nition of Q8, see (3).We 
an extra
t the one-loop 
orre
tion to the hard-s
attering kernel from the UVrenormalized partoni
 amplitude. It is de�ned by�b�q0(0) ? tII(1)8 ? �q�q0(0) = A(1) + A(1)
:t: � �b�q0(1) ? tII(0)8 ? �q�q0(0) � �b�q0(0) ? tII(0)8 ? �q�q0(1); (52)where the one-loop LCDAs are the renormalized ones. The one-loop 
ontributions to therenormalized LCDAs take the form�q�q0(1) = Z(0)V? ? �q�q0(1)bare + Z(1)V? ? �q�q0(0)bare ; (53)�b�q0(1) = Z(0)B ? �b�q0(1)bare + Z(1)B ? �b�q0(0)bare : (54)The renormalization fa
tor ZV? for the V -meson LCDA is the Brodsky-Lepage kernel[68,69℄ for a transversely polarized ve
tor meson, and that for the B-meson was 
al
ulatedin [70℄. Here there is an important subtlety, whi
h is dis
ussed in detail in [40, 42℄. Therenormalization fa
tors for the B and V meson LCDAs are 
al
ulated in the MS s
hemeunder the assumption that the light-
one proje
tion operators in (38, 39) are 
ontra
tedwith the spe
i�
 Dira
 stru
tures shown in (40). In our 
ase this 
orresponds to theone-loop 
orre
tions to the operator O0V? in (46). However, the one-loop amplitude A(1)is extra
ted from (47) and thus multiplies the opposite Fierz ordering, 
orresponding toOV? in (46). The Fierz transformation relating the two operators is valid only in d = 4dimensions, and in d = 4 � 2� dimensions they may di�er by terms whi
h vanish in thelimit d! 4. One 
an �x these seemingly arbitrary terms by de�ning a pres
ription for theredu
tion of evanes
ent Dira
 stru
tures, whi
h ensures that the subtra
tions in (52) areperformed a

ording to the MS s
heme. This is a
hieved by using the pres
ription for the16



evanes
ent operator in (49) [40, 42℄. Sin
e this stru
ture is multiplied by poles related tothe hard-
ollinear region, we 
an verify that we have performed the 
orre
t subtra
tions by
he
king eq. (59) against a 
orresponding result obtained using the one-loop jet fun
tionfrom [40, 42℄. We des
ribe this 
ross-
he
k below.To evaluate (52) it is instru
tive to rewrite the right-hand side as(52) = A(1)h+h
 + A(1)
:t: � Z(1)B ? tII(0)8 ? �q�q0(0) � �b�q0(0) ? tII(0)8 ? Z(1)V?+A(1)s � �b�q0(1)bare ? tII(0)8 ? �q�q0(0): (55)We have simpli�ed the above equation by using that the fa
tors Z(0)i and �i(0) are deltafun
tions, and that the one-loop 
orre
tion to the bare V -meson LCDA vanishes for on-shell quarks in dimensional regularization (be
ause the integrals are s
aleless). Using theexpli
it results from [68{70℄ to perform the 
onvolutions with the tree-level hard-s
atteringkernel, the �rst line of (55) 
an be written asA(1)h+h
 + A(1)
:t: � �z(1)B + z(1)V?�A(0); (56)where z(1)B = CF�s4� � 1�2 + 2� ln �! � 52�� ;z(1)V? = CF�s4�� ��3� 2 lnu�u � : (57)Evaluating (56), one �nds that after UV renormalization the IR poles in the sum ofthe hard and hard-
ollinear regions are exa
tly subtra
ted by the poles related to therenormalization of the LCDAs. On the other hand, the se
ond line of (55) vanishes,showing that 
ontributions from the soft region are restri
ted to the B-meson LCDA.Therefore, the hard-s
attering kernel is free of 1=� poles and insensitive to IR physi
s.This was �rst veri�ed by the expli
it 
al
ulations in [67℄.We have shown that the �nite part of the sum of hard and hard-
ollinear regions istII(1)8 . As for Q7, we write the result astII(1)8 = �8CB1(0) ? j(1)? +�8CB1(1) ? j(0)? : (58)We 
an identify the �nite part of the hard-
ollinear region with �8CB1(0) ? j(1)? , and the�nite part of the hard region with �8CB1(1) ? j(0)? . For the sum of hard-
ollinear graphs,we �nd �8CB1(0) ? j(1)? = A(1)h
;�n = �s(4�)[CF jF + CAjA + nljf ℄tII(0)8 ; (59)
17



where nl = 4 is the number of light 
avors, and (Lh
 = lnmb!=�2)jF = L2h
 + �5� 2� 2 lnu�u + 2 lnu�Lh
 + 4�u � 12� �26+�5� 4�u� ln �u+ 2 ln �u lnu�u + ln2 u�1 + 1�u� + 4�uLi2(�u);jA = ��113 + ln �u� �1 + 1�u2� lnu�Lh
 + 769 + ��113 + 1�u� ln �u+ ln2 �u2 ;+� 1�u2 � 1�u� lnu� �12 + 12�u2� ln2 u� ln �u lnu�u2 � 2�u2Li2(�u);jl = 23Lh
 + 2 ln �u3 � 109 : (60)Taking the 
onvolution of the one-loop jet fun
tion j(1)? listed in the Appendix with theleading-order hard 
oeÆ
ient in (45), we reprodu
e the above equation. This veri�esthat the sub-fa
torization of the hard-s
attering kernel a

ording to momentum regionsis equivalent to that in SCET, and also that we have performed the 
orre
t subtra
tionsin (52). However, we again emphasize that this integrated form 
annot be used to obtainthe resummed hard-s
attering kernels used in our numeri
al analysis in Se
tion 5.The �nite part of the hard region gives an expression for �8CB1(1) ? j(0)? . In this 
asewe have �8CB1(1) ? j(0)? = A(1)h;�n = �s4� [CFhF + CAhA℄tII(0)8 ; (61)wherehF = �2L2 � �1 + 4�u � 4 lnu�L� �18� 8�u�LQCD + i���4 + 2�u + 2 lnu�u2 ��15 + 7�212 � 1�u � 2�23�u + �2 + 2u + 4�u� ln �u+�4� 2�u � 2�u2� lnu+ �3�u + 2�u2 + 12� �u� ln �u lnu� �2 + 1�u2� ln2 u+��2 + 12�u + 3�u2 + 12(2� �u)�Li2(�u) + �5�u � 6�u2 + 12� �u� g(�u) + �1�u � 12� �u� h(�u);hA = ��2 lnu� 2 lnu�u2 + 2 ln �u�L + 4LQCD + i��1� 1�u � 2 lnu�u2 �+ 2� �23 + 3�u� ln �u�u + ��1 + 2�u � 1�u2� lnu+ �1� 32�u � 12(2� �u)� ln �u lnu� ln2 �u+�1 + 1�u2� ln2 u+ �2� 14�u � 12�u2 � 14(2� �u)�Li2(�u)+�� 52�u + 3�u2 � 12(2� �u)� g(�u) + �� 12�u + 12(2� �u)� h(�u): (62)The logarithms L and LQCD are de�ned after (21). The terms proportional to L agreewith the 
orresponding terms in [67℄, and 
an be dedu
ed by 
onvoluting the renormal-ization fa
tor z?(�) of the SCET 
urrent JB1 obtained in [40,41℄ with the tree-level hard18




oeÆ
ient �8CB1 in (45). We have de�ned the fun
tionsg(u) = Z 10 dy ln [1� uy(1� y)℄y ; (63)h(u) = Z 10 dy ln [1� uy(1� y)℄1� uy : (64)These fun
tions have no imaginary part for u 2 [0; 1℄ and 
an be expressed in terms ofdilogarithms and logarithms, but we shall not give the expli
it results here. Sin
e j(0)? isa delta fun
tion in � , the result for �8CB1(1) is obtained dire
tly from (62).5 Numeri
al analysisIn this se
tion we dis
uss the numeri
al impa
t of our results. Our main fo
us is onthe bran
hing fra
tions for B ! K�
 and Bs ! �
 de
ays. The bran
hing fra
tion forB ! K�
 de
ays is B(B ! K�
) = �BmB4� �1� m2K�m2B � jAv +Ahsj2 ; (65)where we have split the 
ontributions from the vertex and hard-spe
tator 
orre
tionsa

ording toAv = GFp2V �
sV
bXi Ci(�QCD)�iCA(mb; �QCD; �)�K�?(�); (66)Ahs = GFp2V �
sV
bXi Ci(�QCD) tIIi (�QCD; �) ? �pmBF4 �B+ ? fK��K�?� (�): (67)Results forBs ! �
 are obtained by making the appropriate repla
ements. The bran
hingfra
tions depend on a number of parameters, whose values and un
ertainties are summa-rized in Table 3. The vertex and hard-spe
tator amplitudes are independently invariantunder variations of �QCD and �. For this reason, their 
ontributions to the amplitudes
an be studied separately. We dis
uss ea
h one in turn for the 
ase of B ! K�
, beforepresenting the �nal bran
hing fra
tions for all de
ay modes in Se
tion 5.4.5.1 The vertex amplitudeWe begin with the vertex 
orre
tions. For these 
orre
tions the relevant perturbativequantities are the Wilson 
oeÆ
ients Ci in the e�e
tive weak Hamiltonian and the SCETmat
hing 
oeÆ
ients �iCA. We 
al
ulate the Wilson 
oeÆ
ients in the e�e
tive weakHamiltonian using the information summarized in Appendix A of [16℄ (see also [12, 13℄),and 
olle
t the results for three values of the renormalization s
ale in Table 2. Theresults for the SCET mat
hing 
oeÆ
ients are simplest when �QCD = � = mb, in whi
h
ase all logarithms vanish. We use this 
hoi
e as our default s
heme. Throughout theanalysis we use the four-loop running 
oupling with �s(mZ) = 0:1176, swit
hing from �veto four a
tive 
avors at the mat
hing s
ale �h = �QCD. The vertex amplitude and thebran
hing fra
tions depend rather strongly on �V?. We determine it in Se
tion 5.3 by19



requiring that the matrix element of Q7 be proportional to the QCD form fa
tor FB!V?at NNLO, �nding �V?(� = mb) = 0:35� 0:05. We will express higher-order 
orre
tions tothe amplitudes in terms of the leading-order result, whi
h isALOv = �GFp2V �
sV
bCLL7 emb 2E
4�2 �K?? = �5:48� 10�9 : (68)Up to NNLO, the result obtained using the default parameter values in Table 3 isANNLOvALOv = 1 + (0:096 + 0:057i) [�s℄ + (�0:007 + 0:030i) ��2s� ; (69)where the �rst term in parentheses is the NLO (�s) 
orre
tion and the se
ond term theNNLO (�2s) 
orre
tion. The 
orre
tions 
ome both from the Wilson 
oeÆ
ients Ci inthe e�e
tive weak Hamiltonian and the SCET 
oeÆ
ients �iCA. Note that we haveused the e�e
tive 
oeÆ
ients Ce�7;8 in the numeri
al analysis. This amounts to in
luding
ertain 
ontributions from Q3 : : : Q6, and should be taken into a

ount, if in the future the
ontributions from these operators are worked out systemati
ally. Split into 
ontributionsfrom the individual operators, the results for the NLO and NNLO perturbative 
orre
tionsreadANNLOvALOv � 1 = �(0:264 + 0:034i) [Q1℄� (0:184) [Q7℄ + (0:016 + 0:023i) [Q8℄� [�s℄(70)+ �(0:073 + 0:022i) [Q1℄� (0:081) [Q7℄ + (0:002 + 0:008i) [Q8℄� [�2s℄ :At both NLO and NNLO the 
orre
tions from Q1 and Q7 are relatively large, but thereal parts tend to 
an
el against ea
h other. Whether this 
an
ellation persists beyondthe large-�0 limit is an important question. The 
ontribution from Q8 to the real partof the amplitude is small, but that to the imaginary part is not. It adds together withthat from Q1 to produ
e a large NNLO 
orre
tion to the imaginary part. This would bea signi�
ant e�e
t for CP asymmetries, a topi
 we leave for future work.In Se
tion 5.4 we will study the dependen
e of the bran
hing fra
tions on the renor-malization s
ales. To do this we use the SCET Wilson 
oeÆ
ients as given in (30) inSe
tion 3. As explained there, this allows us to �x the s
ale � = mb in �V? and studythe stability of the results under variations in �QCD and �h. Although the expressionsin the Appendix allow us to vary �QCD and �h separately, we 
hoose not to do so. Forsimpli
ity, we set �QCD = �h and vary them simultaneously. To evaluate the RG expo-nents in the SCET evolution fa
tors we distinguish the operators Q7;8 and Q1. For Q7;8we evaluate the RG exponents using the two-loop anomalous dimensions in a and aJ , andthe three-loop 
usp anomalous dimension in the Sudakov fa
tor S. For Q1 we evaluatethe RG exponents using the large-�0 limit. In that 
ase it is 
onsistent to set all SCETanomalous dimensions to zero, meaning that we 
an use the form (29) dire
tly.5.2 The hard spe
tator amplitudeThe evaluation of the hard spe
tator amplitude is more 
ompli
ated than the vertexamplitude. It involves a large number of hadroni
 parameters and the hard-s
atteringkernel 
ontains logarithms of both the hard and hard-
ollinear s
ales. While it is possible20



Table 2: Wilson 
oeÆ
ients Ci(�) (i = 1; 7; 8) at LL, NLL and NNLL. The results atNNLL are 
al
ulated from the expressions given in [12, 13, 16℄, adapted to the operatorbasis in (2, 3). The table uses mb = 4:8 GeV.LL NLL NNLLC1(� = mb) 1:11 1.06C1(� = p2mb) 1:09 1:04C1(� = mb=p2) 1:13 1:08Ce�7 (� = mb) �0:312 �0:303 �0:294Ce�7 (� = p2mb) �0:294 �0:290 �0:282Ce�7 (� = mb=p2) �0:332 �0:316 �0:306Ce�8 (� = mb) �0:148 �0:167Ce�8 (� = p2mb) �0:141 �0:159Ce�8 (� = mb=p2) �0:156 �0:175to �x the s
ale �QCD � mb to eliminate some of these logarithms, any 
hoi
e of the SCETfa
torization s
ale � leads to large logarithms in tIIi . This 
an be solved by renormalization-group improvement in the e�e
tive theory [41℄. The hard 
oeÆ
ient �iCB1 is extra
tedat a s
ale �h � �QCD � mb and and evolved down to the intermediate s
ale �i � 1:5 GeVby solving the RG equations in the e�e
tive theory. The RG-improved hard 
oeÆ
ientsread [41℄�iCB1(u; �i) = �mb�h �a(�h ;�i) eS(�h;�i) Z 10 dv U?(u; v; �h; �i)�iCB1(v; �h) : (71)The RG exponents S and a are the same as in (31). The evolution fa
tor U? is thesolution to the integro-di�erential equation� dd�U?(u; v; �h; �) = Z 10 dy 
?(y; u)U?(y; v; �h; �); (72)with the initial 
ondition U?(u; v; �h; �h) = Æ(u � v). The distribution 
?(y; u) is theanomalous dimension of the operator JB1. A proper treatment of the NNLO mat
hing
orre
tions requires this anomalous dimension at two loops, but at present it is knownonly at one loop [40,41℄. This adds a small un
ertainty to the analysis. The solution to theevolution equation is obtained numeri
ally. In the numeri
al implementation we performthe �-evolution from �h to �i in 100 dis
rete steps. We 
hoose the default renormalizations
ales as �QCD = �h = mb and �i = 1:5 GeV. The dependen
e on the variable u inthe resummed �iCB1 is obtained for dis
retized values of 0 < u < 1. We determinethe dis
retization s
ale by taking more points in u until the numeri
al 
onvolution ofthe resummed 
oeÆ
ient with the jet fun
tion be
omes stable. This generally requiresbetween one and three-hundred values, although for some 
ases it is ne
essary to takemore values near the endpoints.It is natural to evaluate the resummed hard 
oeÆ
ients �iCB1(u; �) at a s
ale � � �i,sin
e at that s
ale the jet fun
tion is free of large logs. However, the hadroni
 parametersin Table 3 are extra
ted at a low s
ale � = 1 GeV. For a proper treatment one must21



either run these parameters up to the intermediate s
ale �i � 1:5 GeV, or run the hard-s
attering kernel down to the lower s
ale. This stage of RG running has been studiedin [41,70,71℄. We have performed this evolution in our numeri
al analysis but its e�e
t onthe bran
hing fra
tions is extremely small. Therefore, in quoting our results, we performthe running from �h to �i, but ignore that between the s
ale �i and the fa
torizations
ale � � 1 GeV. The short
oming of this treatment is that the amplitude is not invariantunder variations of the intermediate s
ale. However, the dominant e�e
t in this s
alevariation is related the B-meson distribution amplitude. We a

ount for this in our erroranalysis by assigning a rather large un
ertainty to �B.A 
omplete treatment of the hard-spe
tator amplitude is only possible for the NLO 
or-re
tions. There are three pie
es missing for a full resummed result for the hard-spe
tatorterm at NNLO: the NNLO hard mat
hing 
oeÆ
ient for Q1, the two-loop anomalous di-mension of the 
urrent JB1, and the two-loop anomalous dimension of the jet fun
tion.These missing pie
es add un
ertainties to the analysis whi
h are diÆ
ult to quantify.However, we will see that the higher-order 
orre
tions from spe
tator s
attering are notvery important for the bran
hing fra
tions.In addition to the input parameters listed in Table 3, we must also spe
ify the mesonLCDAs. For the ve
tor mesons we use the Gegenbauer expansion and keep only the �rsttwo moments:�V (u) = 6u(1� u) h1 + aV1 (�)C(3=2)1 (2u� 1) + aV2 (�)C(3=2)2 (2u� 1)i : (73)For the B-meson LCDA we use the model [72℄�B+(!; � = 1GeV) = 4��1B� ! �!2 + �2 � �2!2 + �2 � 2(�B � 1)�2 ln !�� : (74)The B-meson de
ay 
onstant in the stati
 limit isF (�) = fBpmBK(�h) eVF (�h;�) ; (75)where to one loop [73℄KF (�) = 1 + CF�s(�)4� �3 lnmb� � 2� ; VF (�h; �) = �3CF2�0 ln �s(�)�s(�h) : (76)We now quote the result for the hard-spe
tator amplitude to NNLO, a

urate withinthe limitations explained above. We �ndANNLOhsALOv = �0:11 + 0:05i� [�s℄ + �0:03 + 0:01i� [�2s℄: (77)Performing the RG evolution of the hard-s
attering kernel between �i and the fa
torizations
ale � = 1 GeV suppresses the above result by about 10%, or in other words makesabout a 1% di�eren
e on the total amplitude. Split into 
ontributions from the individualoperators, we haveANNLOhsALOv = �(0:023 + 0:046i) [Q1℄ + 0:074 [Q7℄ + 0:010 [Q8℄� [�s℄ (78)+ �(0:004 + 0:003i) [Q1℄ + 0:025 [Q7℄ + (0:003 + 0:005i) [Q8℄� [�2s℄ :22



Unlike the 
ase of the vertex 
orre
tions, the individual 
ontributions from the di�erentoperators are rather small at NLO and espe
ially NNLO. For Q1 we have listed the NNLO
orre
tion found by numeri
ally evaluating �1CB1(0) ? j(1)? . In addition to this 
orre
tionfrom the jet fun
tion, there is also a hard 
orre
tion �1CB1(1) ? j(0)? whi
h is not known.Both terms are used for Q7 and Q8. To 
he
k the 
onvergen
e of perturbation theoryat the intermediate s
ale �i � 1:5 GeV we split up the 
ontributions from ea
h operatorinto these two 
ontributions. We also separate the NNLO 
orre
tions from the Wilson
oeÆ
ients in the e�e
tive weak Hamiltonian separate, labeling them with a [w℄. Forthese three sour
es of NNLO 
orre
tions, in units of 1=ALOv , we haveQ1 : (0:023 + 0:046i) [�s℄ + �(�0:001� 0:002i) [w℄ + (0:005 + 0:006i) [jet℄� [�2s℄;Q7 : 0:074 [�s℄ + �� 0:002 [w℄ + 0:015 [jet℄ + 0:012 [hard℄� [�2s℄;Q8 : 0:01 [�s℄ + �0:001 [w℄ + 0:001 [jet℄ + (0:001 + 0:005i) [hard℄� [�2s℄: (79)In none of the 
ases is the 
orre
tion at the jet s
ale �i = 1:5 GeV unusually large.5.3 The SCET soft fun
tionIn this subse
tion we explain our method for determining the SCET soft fun
tion �V?.We �x it by requiring that the matrix element of Q7 is proportional to the tensor QCDform fa
tor FB!V? (often referred to as T1). Using the SCET fa
torization formula forQ7 we �nd FB!V? = �7CA�7CA(0) �V? � 1�7CB1(0) tII7 ? �pmBF4mb �B ? fV?�V?� : (80)The re
ent LCSR-based update [25℄ for the tensor QCD form fa
tor yields FB!K� =FB!� = 0:31 � 0:04 at �QCD = mb. Inserting this into (80) and treating the hard-spe
tator term as in the default s
heme above leads to �V?(� = mb) = 0:35� 0:05. Thisis 
onsiderably smaller than the value �V? ' 0:41 used in the SCET analysis in [34℄, andit is mainly for this reason that we �nd smaller bran
hing fra
tions below.We 
an use this value for �V? to 
ompare the size of higher-order 
orre
tions to thefa
torization formula for the form fa
tor. We label the vertex term (v) and the hard spe
-tator term (hs), and express ea
h as an expansion in �s. Then the individual 
ontributionsread FB!V?�V? = �1� 0:15[�s℄� 0:06[�2s℄�[v℄ + �0:07[�s℄ + 0:03[�2s℄�[hs℄ : (81)For both the �s and �2s 
orre
tions the vertex term is about twi
e as large as the hard-spe
tator term and 
omes with the opposite sign.5.4 Bran
hing fra
tionsWe now 
onvert our results for the amplitudes into estimates for the bran
hing fra
tions atNNLO. The most important un
ertainties in the input parameters 
ome from �V?, pz =23



Table 3: Input parameters used in the 
al
ulation of B(B ! K�
) and B(B ! �
). TheGegenbauer 
oeÆ
ients in the LCDAs are taken from the LCSR analysis reported in [25℄.Parameter Value�s(mZ) 0:1176V �
sV
b �0:040� 0:002�K�?(0) 0:35� 0:05��?(0) 0:35� 0:05mb;pole (4:80� 0:10) GeVmt;pole (171� 2:0) GeVpz = m
=mb 0:27� 0:06fB (205� 25) MeVfBs (240� 30) MeVf (K�)? (1 GeV) (185� 10) MeVf (�)? (1 GeV) (186� 9) MeVa(K�)?1 (1 GeV) 0:04� 0:03a(�)?1(1 GeV) 0:0a(K�)?2 (1 GeV) 0:15� 0:10a(�)?2(1 GeV) 0:20� 0:20��1B (1 GeV) (2:15� 0:50) GeV�1�B(1 GeV) (1:4� 0:4)m
=mb, �B, and the renormalization s
ales. To assess the un
ertainty asso
iated with �V?,m
 and �B, we vary them in the ranges indi
ated in Table 3. The s
ale dependen
e of thebran
hing fra
tion is 
ompletely dominated by the vertex term. We treat this dependen
eas explained in Se
tion 5.1, varying the s
ale �h = �QCD in the range mb=p2 < �h <p2mb. In
luding the 
orre
tions up to NNLO and dis
arding terms of O(�3s) and higherin the bran
hing fra
tions, we �ndB(B+ ! K�+
) = (4:6� 1:2 [�K�℄� 0:4 [m
℄� 0:2 [�B℄� 0:1 [�℄)� 10�5;B(B0 ! K�0
) = (4:3� 1:1 [�K�℄� 0:4 [m
℄� 0:2 [�B℄� 0:1 [�℄)� 10�5;B(Bs ! �
) = (4:3� 1:1 [��℄� 0:3 [m
℄� 0:3 [�B℄� 0:1 [�℄)� 10�5: (82)In 
ases where the errors are asymmetri
, we have taken the average of the higher andlower values to get the symmetri
 form above. The un
ertainty in jV �
sV
bj, whi
h appearsas an overall fa
tor multiplying the bran
hing fra
tions, adds about a 10% error to ea
hde
ay mode. To obtain the bran
hing fra
tions we used the following lifetimes (in unitsof ps) [7℄�(B0) = 1:527� 0:008; �(B+) = 1:643� 0:010; �(Bs) = 1:451� 0:028 : (83)In addition to the lifetime di�eren
es, our analysis of the three de
ay modes in
ludesdi�eren
es in the meson de
ay 
onstants, meson masses, and Gegenbauer moments of thelight-meson LCDAs (we have assumed that SU(3) violating e�e
ts in the B-meson LCDAsare small). Other sour
es of isospin and SU(3) violation are not in
luded. Con
erning24



the � and K� de
ay modes, the most important sour
e of SU(3) violation is the di�eren
ebetween the SCET soft fun
tions of the two mesons. We dis
uss this in more detail below,giving a result for the ratio of bran
hing fra
tions of these two de
ay modes. A studyof dynami
al isospin breaking 
ontributions within QCD fa
torization was 
arried outin [20℄. From this study we expe
t the dynami
al isospin violating e�e
ts to make only asmall di�eren
e in the bran
hing fra
tions.It is important to keep in mind that we have not 
ompleted the NNLO 
al
ulation forQ1. The NNLO vertex 
orre
tion is only an estimate in the large-�0 limit and the NNLOhard-spe
tator 
orre
tion related to �1CB1 is entirely absent. To study the e�e
ts ofpossible deviations from large-�0 limit we assign a 100% un
ertainty to the NNLO vertex
orre
tion from Q1, evaluating the bran
hing fra
tions using 2�1CA(2) and �1CA(2) = 0.For the hard spe
tator term we take the NNLO 
orre
tion as �1 its NLO value. The
orresponding un
ertainties in the bran
hing fra
tions, to be added to the errors quotedin (82), are �0:5 for the vertex 
orre
tions and �0:1 for the hard-spe
tator 
orre
tions.The un
ertainties asso
iated with the unknown 
orre
tions to hard spe
tator s
atteringmake little di�eren
e for the bran
hing fra
tion. The un
ertainties asso
iated with thelarge-�0 limit in the vertex term are rather large, even though this is an O(�2s) 
orre
tion.We are very 
onservative with the range in whi
h we vary this 
orre
tion, but even in theonly existing 
al
ulation of NNLO 
orre
tions from Q1 beyond the large-�0 limit [53℄ forthe in
lusive 
ase this is an issue. In that paper the part of the O(�2s) 
orre
tion to thematrix element of Q1 beyond the large-�0 limit (
alled P (2)rem2 (z0) in [53℄) remains ratherun
ertain.Adding together all the errors mentioned above in quadrature, we obtain the �nalresults for the bran
hing fra
tionsB(B+ ! K�+
) = (4:6� 1:4)� 10�5;B(B0 ! K�0
) = (4:3� 1:4)� 10�5;B(Bs ! �
) = (4:3� 1:4)� 10�5: (84)The NNLO estimates given in (84) are to be 
ompared with the experimental measure-ments summarized in Table 1. We �ndB(B+ ! K�+
)SM;NNLOB(B+ ! K�+
)expt = 1:1� 0:35 [theory℄� 0:07 [expt:℄ ;B(B0 ! K�0
)SM;NNLOB(B0 ! K�0
)expt = 1:1� 0:35 [theory℄� 0:06 [expt:℄ ;B(Bs ! �
)SM;NNLOB(Bs ! �
)expt = 0:8� 0:2 [theory℄� 0:3 [expt:℄ : (85)Although the results are in reasonable agreement with ea
h other, the theory errors for theB ! K�
 de
ay modes are still mu
h larger than the experimental ones. The dominantun
ertainty is in the SCET soft fun
tion �V?. The remaining un
ertainties would begreatly redu
ed by determining the NNLO 
orre
tions from Q1 to the vertex term beyondthe large-�0 limit. This would not only dire
tly eliminate the un
ertainty in the NNLO
orre
tion to the hard-s
attering kernel, it would also redu
e the dependen
e on the
harm-quark mass by �xing its perturbative de�nition.Another measurement of interest is the ratio of the bran
hing fra
tions of the K� and� de
ay modes. In the ratio, only the errors in the quantities whi
h are di�erent for25



the Bs; � and B;K� mesons add signi�
ant un
ertainties. Sin
e the spe
tator s
atteringamplitude is small 
ompared to the vertex term, to a good approximation the error isgiven by that in the ratio �K�=��. As an example, assuming �K�=�� = 1� 0:1, we �nd forthe ratio of bran
hing fra
tionsB(B0 ! K�0
)B(Bs ! �
) = 1:0� 0:2 : (86)By 
omparison, the 
urrent experimental number is 0:7 � 0:3. Improved measurementsof the Bs ! �
 bran
hing fra
tion, and a more a

urate determination of the ratio ofSCET soft fun
tions, would allow for a 
omparison between theory and experiment withsmaller un
ertainties than for the bran
hing fra
tions themselves.6 Con
lusionsWe 
omputed NNLO 
orre
tions to the hard-s
attering kernels entering the QCD fa
tor-ization formula for B ! V 
 de
ays. We used soft-
ollinear e�e
tive theory to separate
ontributions between the hard and hard-
ollinear s
ales and to resum large logarithmsdepending on their ratio. For the operators Q7 and Q8 we obtained exa
t expressions forthe hard-s
attering kernels for the vertex and hard spe
tator 
orre
tions up to NNLO.The results for the vertex 
orre
tions provide an expli
it demonstration of fa
torization attwo loops. For the operator Q1, we estimated its 
ontribution to the vertex 
orre
tion atNNLO using the large-�0 limit. Its 
omplete NNLO 
orre
tion from hard spe
tator s
at-tering was not obtained, but its 
ontribution at the jet s
ale was evaluated numeri
allyand found to be small.As an appli
ation of our results we provided estimates of the bran
hing fra
tions forB ! K�
 and Bs ! �
 de
ays at NNLO. The bran
hing fra
tions are very sensitive tothe value of the SCET soft fun
tion �V?. We used updated results from QCD sum rulesfor the tensor form fa
tor FB!V? along with our NNLO results for Q7 to �nd �V? ' 0:35.Sin
e this value is 
onsiderably lower than the default value �V? ' 0:41 used in theprevious SCET analysis in [34℄, we also �nd lower bran
hing fra
tions. Our results for theB ! K�
 modes show good agreement with the experimental data, but the theory errorsare still mu
h larger than the experimental ones. Our result for Bs ! �
, whi
h has a
omparable theoreti
al error as in the B ! K�
 modes, is also in agreement with the datawithin the large experimental error. The main theoreti
al un
ertainty is in �V?, whi
h 
anbe redu
ed by improved latti
e or QCD sum-rule 
al
ulations. On the perturbative side,by far the most important issue is the 
al
ulation of the NNLO vertex 
orre
tion for Q1beyond the large-�0 limit. This requires the same diagrammati
 
al
ulation as the virtual
orre
tions to in
lusive B ! Xs
, whi
h remains to be done. Our results are also relevantfor B ! �
 and B ! !
, but for these de
ays a 
omplete des
ription also requires theperturbative 
orre
tions to weak annihilation, a topi
 we leave for future work.A
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7 Appendix7.1 Matrix elementsIn the se
tion we give results for the UV renormalized on-shell matrix elementshQii � hq(p)
(q)jQijb(pb)iin QCD. The results given below are 
al
ulated in the MS renormalization s
heme withnf = nh + nl 
avors. For Q7 and Q8 we writehQii = hQ7;treei �Æi7 + CF�s4� D(1)i + ��s4��2CF �CFD(2)iF + CAD(2)iA + nlD(2)iL + nhD(2)iH�� :(87)For Q7 the results are [43, 44℄ (re
all L = ln�=mb)D(1)7 = � 1�2 � 2L + 2:5� � 2L2 � 7L� 6:8225 (88)��(1:3333L3 + 7L2 + 13:6449L+ 13:4779)��2(0:6667L4 + 4:6667L3 + 13:6449L2 + 26:9559L+ 26:1412);D(2)7F = 0:5�4 + 2L+ 2:5�3 + 4L2 + 12L+ 9:9475�2 + 5:3333L3 + 26L2 + 44:7899L+ 27:8816�+5:3333L4 + 36L3 + 96:5798L2 + 144:1712L+ 67:6519;D(2)7A = 2:75�3 + 3:6667L+ 3:5447�2 � 4:1546L+ 3:4386��4:8889L3 � 33:9758L2 � 92:3415L� 83:8866;D(2)7L = �0:5�3 � 0:6667L+ 0:5556�2 + 1:1111L+ 1:9799�+0:8889L3 + 6:8889L2 + 19:9050L+ 23:8254;D(2)7H = 1:3333L�2 + 4L2 + 3:3333L+ 0:5483� + 6:2222L3 + 11:3333L2 + 14:1788L+ 0:2934;and for Q8 we have [45℄D(1)8 = 2:6667L+ 1:4734 + 2:0944i+ �[2:6667L2 + 2:9468L� 1:1947 + i(4:1888L+ 4:1888)℄+�2[1:7778L3 + 2:9468L2 � 2:3894L� 5:5373 + i(4:1888L2 + 8:3776L+ 2:1627)℄;D(2)8F = D(1)8 �� 1�2 � 2L + 2:5� �� 5:3333L3 � 32:2802L2 � 50:9612L� 1:8875�i(4:1888L2 + 31:4159L+ 29:8299);D(2)8A = 15:111L2 + 31:6617L+ 2:38332 + i(23:7365L+ 28:0745);D(2)8L = �1:7778L2 � 4:0386L� 1:7170� i(2:7925L+ 4:4215);D(2)8H = �1:7778L2 � 4:0386L+ 0:8829� i2:7925L: (89)7.2 The 
oeÆ
ients �1CB1(0), �7CB1(1) and j(1)?Here we list the 
oeÆ
ients needed for the numeri
al analysis of spe
tator s
attering whi
hare not written in main text. The lowest order expression for �1CB1 is [34℄�1CB1(0)(u) = E
4�2 2e3 f � m2
�um2b� ; (90)27



where f(x) = ��14 � x��1 + 4x�ar
tanh(p1� 4x)� i�2�2�+��x� 14��1� 4x�ar
tan2 1p4x� 1�� : (91)For Q7 the tree-level 
oeÆ
ient was given in (35). The one-loop 
orre
tion is [39, 42℄�7CB1(1)�7CB1(0) = CF�s4� 12�� 4 ln2 �mb � 2 ln �mb � 4 ln �QCDmb � �26 � 4u ln �u� 2+4�uu ���2 ln �mb � 1� ln �u+ ln2 �u+ Li2(u)��+12 �CF � CA2 � �s4��� 4�uu ���2 ln �mb � 1� ln �u+ ln2 �u+ Li2(u)��4(2� u)�u ���2 ln �mb � 1� lnu+ ln2 u+ Li2(�u)�+ 4�uuLi2(�u) + 4u �Li2(u)� �26 �+ 4 ln �u� 4 lnu� 4�: (92)The one-loop 
orre
tion to the jet fun
tion 
an be obtained from, e.g., eq. (79) of [40℄after appropriate repla
ements. Calling the one-loop 
orre
tion de�ned in eq. (79) of [40℄jBY? after the authors of that paper, we havej(1)? (�; u; !) = �4�CF�sN
 1mb!�uÆ(� � u) h�s4� jBY? (�� ; u; !)i : (93)7.3 RG fun
tionsHere we summarize the perturbative solutions to the RG exponents in (30, 71). We de�nethe expansion 
oeÆ
ients of the anomalous dimensions and the �-fun
tion as�
usp(�s) = �0 �s4� + �1 ��s4��2 + �2 ��s4��3 + : : : ;�(�s) = �2�s ��0 �s4� + �1 ��s4��2 + �2 ��s4��3 + : : : � ; (94)and similarly for the anomalous dimension 
J . In terms of these quantities, the fun
tiona (and aJ with obvious repla
ements) is given bya(�; �) = � �02�0 " ln �s(�)�s(�) + ��1�0 � �1�0� �s(�)� �s(�)4� #: (95)The result for the Sudakov fa
tor S to this same order isS(�; �) = �04�20 ( 4��s(�) �1� 1r � ln r�+ ��1�0 � �1�0� (1� r + ln r) + �12�0 ln2 r+ �s(�)4� "��1�1�0�0 � �2�0� (1� r + r ln r) + ��21�20 � �2�0� (1� r) ln r� ��21�20 � �2�0 � �1�1�0�0 + �2�0� (1� r)22 #); (96)28



where r = �s(�)=�s(�). The 
usp anomalous dimension to three loops is�0 = 4CF ;�1 = 4CF ��679 � �23 �CA � 209 TFnf� ;�2 = 4CF"C2A�2456 � 134�227 + 11�445 + 223 �3�+ CATFnf ��41827 + 40�227 � 563 �3�+ CFTFnf ��553 + 16�3�� 1627 T 2Fn2f#; (97)and the QCD � fun
tion is�0 = 113 CA � 43 TFnf ;�1 = 343 C2A � 203 CATFnf � 4CFTFnf ; (98)�2 = 285754 C3A + �2C2F � 2059 CFCA � 141527 C2A�TFnf + �449 CF + 15827 CA�T 2Fn2f :7.4 Separating s
ales in the �iCA 
oeÆ
ientsHere we list the NNLO 
oeÆ
ients �iCA in the 
ase where we distinguish LQCD from L.This is a
hieved by solving the RG equation (25) perturbatively, given the form (22) forthe anomalous dimension 
A. This has been done in [74℄ and we 
an use those resultsafter making appropriate repla
ements. We �nd�7CA(2) = C2F �2L4 + 10L3 + 4L2LQCD + 26:1449L2 + 10LLQCD + 2L2QCD+23:5022L+ 32:6449LQCD + 7:8159�+CFCA�� 4:8889L3 � 26:6425L2 � 14:6667LLQCD + 7:33333L2QCD�63:7859L� 28:5556LQCD � 83:8866�+CFnl�0:8889L3 + 5:5556L2 + 2:6667LLQCD � 1:3333L2QCD+17:0161L+ 2:8889LQCD + 23:8254�+CFnh ��1:3333L2QCD + 2:8889LQCD � 0:810288� ; (99)�8CA(2) = �C2F �5:3333L2LQCD + 2:9468L2 + 13:333LLQCD + 16L2QCD+7:3671L+ 43:5941LQCD + 1:8875+i(4:1888L2 + 10:4720L+ 20:9440LQCD + 29:8299)�+CFCA�19:5556LLQCD � 4:4444L2QCD + 10:8051L+ 20:8566LQCD + 2:3833+i(15:3589L+ 8:3776LQCD + 28:0745)��CFnl�3:5556LLQCD � 1:7778L2QCD + 1:9646L+ 2:0741LQCD + 1:7170+i(2:7925L+ 4:4215)�+CFnh�1:7778L2QCD � 2:0741LQCD + 0:8829� ; (100)29



�1CA(2) = �3�02 mbmbCF �2:4691L2QCD + l(2)(z)LQCD + r(2)(z)�� 2�0LQCD�1CA(1)+2�0L�1CA(1) : (101)Referen
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