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AbstratExlusive �0 eletroprodution at HERA has been studied with the ZEUS de-tetor using 120 pb�1 of integrated luminosity olleted during 1996-2000. Theanalysis was arried out in the kinemati range of photon virtuality 2 < Q2 < 160GeV2, and �p entre-of-mass energy 32 < W < 180 GeV. The results inludethe Q2 and W dependene of the �p ! �0p ross setion and the distributionof the squared-four-momentum transfer to the proton. The heliity analysis ofthe deay-matrix elements of the �0 was used to study the ratio of the �p rosssetion for longitudinal and transverse photon as a funtion of Q2 and W . Fi-nally, an e�etive Pomeron trajetory was extrated. The results are omparedto various theoretial preditions.
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1 IntrodutionTwo of the most surprising aspets of high-energy deep inelasti sattering (DIS) observedat the HERA ep ollider have been the sharp rise of the proton struture funtion, F2,with dereasing value of Bjorken x and the abundane of events with a large rapidity gapin the hadroni �nal state [1℄. The latter are identi�ed as due to di�ration in the deepinelasti regime. A ontribution to the di�rative ross setion arises from the exlusiveprodution of vetor mesons (VM).High-energy exlusive VM prodution in DIS has been postulated to proeed throughtwo-gluon exhange [2, 3℄, one the sale, usually taken as the virtuality Q2 of the ex-hanged photon, is large enough for perturbative Quantum Chromodynamis (pQCD) tobe appliable. The gluons in the proton, whih lie at the origin of the sharp inrease ofF2, are also expeted to ause the VM ross setion to inrease with inreasing photonproton entre-of-mass energy, W , with the rate of inrease growing with Q2. Moreover,the e�etive size of the virtual photon dereases with inreasing Q2, leading to a atterdistribution in t, the four-momentum-transfer squared at the proton vertex. All thesefeatures, with varying levels of signi�ane, have been observed at HERA [4{10℄ in theexlusive prodution of �0, !, �, and J= mesons.This paper reports on an extensive study of the properties of exlusive �0-meson produ-tion, �p! �0p;based on a high statistis data sample olleted with the ZEUS detetor during the period1996-2000, orresponding to an integrated luminosity of about 120 pb�1.2 Theoretial bakgroundCalulations of the VM prodution ross setion in DIS require knowledge of the q�q wave-funtion of the virtual photon, spei�ed by QED and whih depends on the polarisation ofthe virtual photon. For longitudinally polarised photons, �L, q�q pairs of small transversesize dominate [3℄. The opposite holds for transversely polarised photons, �T , where q�qon�gurations with large transverse size dominate. The favourable feature of exlusiveVM prodution is that, at high Q2, the longitudinal omponent of the virtual photon isdominant. The interation ross setion in this ase an be fully alulated in pQCD [11℄,with two-gluon exhange as the leading proess in the high-energy regime. For heavyvetor mesons, suh as the J= or the �, perturbative alulations apply even at Q2 = 0,as the smallness of the q�q dipole originating from the photon is guaranteed by the massof the quarks. 1



Irrespetive of partiular alulations [12℄, in the region dominated by perturbative QCDthe following features are predited:� the total �p ! V p ross setion, ��p, exhibits a steep rise with W , whih an beparameterised as � � W Æ, with Æ inreasing with Q2;� the Q2 dependene of the ross-setion, whih for a longitudinally polarised photon isexpeted to behave as Q�6, is moderated to beome Q�4 by the rapid inrease of thegluon density with Q2;� the distribution of t beomes universal, with little or no dependene on W or Q2;� breaking of the s-hannel heliity onservation (SCHC) is expeted.In the region where perturbative alulations are appliable, exlusive vetor-meson pro-dution ould beome a omplementary soure of information on the gluon ontent of theproton. At present, the following theoretial unertainties have been identi�ed:� the alulation of �(�p! V p) involves the generalised parton distributions [13, 14℄,whih are not well tested; in addition [15℄, it involves gluon densities outside the rangeonstrained by global QCD analyses of parton densities;� higher-order orretions have not been fully alulated [16℄; therefore the overall nor-malisation is unertain and the sale at whih the gluons are probed is not known;� the rapid rise of ��p with W implies a non-zero real part of the sattering amplitude,whih is not known;� the wave-funtions of the vetor mesons are not fully known.In spite of all these problems, preise measurements of di�erential ross setions sepa-rated into longitudinal and transverse omponents [17℄, should help to resolve the abovetheoretial unertainties.It is important in these studies to establish a region of phase spae where hard interationsdominate over the non-perturbative soft omponent. If the relative transverse momentumof the q�q pair is small, the olour dipole is large and perturbative alulations do not apply.In this ase the interation looks similar to hadron-hadron elasti sattering, desribedby soft Pomeron exhange as in Regge phenomenology [18℄.The parameters of the soft Pomeron are known from measurements of total ross setionsfor hadron-hadron interations and elasti proton-proton measurements. It is usuallyassumed that the Pomeron trajetory is linear in t:�IP (t) = �IP (0) + �0IP t : (1)The parameter �IP (0) determines the energy behaviour of the total ross setion,�tot � (W 2)�IP (0)�12



and �0IP desribes the inrease of the slope b of the t distribution with inreasing W . Thevalue of �0IP is inversely proportional to the square of the typial transverse momentapartiipating in the exhanged trajetory. A large value of �0IP suggests the presene oflow transverse momenta typial of soft interations. The aepted values of �IP (0) [19℄and �0IP [20℄ are �IP (0) = 1:096� 0:003�0IP = 0:25 GeV�2:The non-universality of �IP (0) has been established in inlusive DIS, where the slope ofthe �p total ross setion with W has a pronouned Q2 dependene [21℄. The value of�0IP an be determined from exlusive VM prodution at HERA via the W dependene ofthe exponential b slope of the t distribution for �xed values of W , where b is expeted tobehave as b(W ) = b0 + 4�0IP ln WW0 ;where b0 and W0 are free parameters. The value of �0IP an also be derived from the Wdependene of d�=dt at �xed t,d�dt (W ) = F (t)W 2[2�IP (t)�2℄ ; (2)where F (t) is an arbitrary funtion. This approah has the advantage that no assumptionneeds to be made about the t dependene. The �rst indiations from measurements of�IP (t) in exlusive J= photoprodution [8,22℄ are that �IP (0) is larger and �0IP is smallerthan those of the above soft Pomeron trajetory.3 Experimental set-upThe present measurement is based on data taken with the ZEUS detetor during tworunning periods of the HERA ep ollider. During 1996-1997, protons with energy 820GeV ollided with 27.5 GeV positrons, while during 1998-2000, 920 GeV protons ollidedwith 27.5 GeV eletrons or positrons. The sample used for this study orresponds to anintegrated luminosity of 118.9 pb�1, onsisting of 37.2 pb�1 e+p sample from 1996-1997and 81.7 pb�1 from the 1998-2000 sample (16.7 pb�1 e� and 65.0 pb�1 e+)1.A detailed desription of the ZEUS detetor an be found elsewhere [23, 24℄. A briefoutline of the omponents that are most relevant for this analysis is given below.1 From now on, the word \eletron" will be used as a generi term for both eletrons and positrons.3



Charged partiles are traked in the entral traking detetor (CTD) [25{27℄. The CTDonsists of 72 ylindrial drift hamber layers, organised in nine superlayers overing thepolar-angle2 region 15Æ < � < 164Æ. The CTD operates in a magneti �eld of 1.43 Tprovided by a thin solenoid. The transverse-momentum resolution for full-length traksis �(pT )=pT = 0:0058pT � 0:0065� 0:0014=pT , with pT in GeV.The high-resolution uranium-sintillator alorimeter (CAL) [28{31℄ overs 99.7% of thetotal solid angle and onsists of three parts: the forward (FCAL), the barrel (BCAL)and the rear (RCAL) alorimeters. Eah part is subdivided transversely into towers andlongitudinally into one eletromagneti setion (EMC) and either one (in RCAL) or two(in BCAL and FCAL) hadroni setions. The CAL energy resolutions, as measured undertest-beam onditions, are �(E)=E = 0:18=pE for eletrons and �(E)=E = 0:35=pE forhadrons, with E in GeV.The position of the sattered eletron was determined by ombining information from theCAL, the small-angle rear traking detetor [32℄ and the hadron-eletron separator [33℄.In 1998, the forward plug alorimeter (FPC) [34℄ was installed in the 20�20 m2 beamhole of the FCAL with a small hole of radius 3.15 m in the entre to aommodate thebeam pipe. The FPC inreased the forward alorimeter overage by about one unit inpseudorapidity to ��5.The leading-proton spetrometer (LPS) [35℄ deteted positively harged partiles sat-tered at small angles and arrying a substantial fration, xL, of the inoming protonmomentum; these partiles remained in the beam-pipe and their trajetories were mea-sured by a system of silion mirostrip detetors, loated between 23.8 m and 90.0 mfrom the interation point. The partile deetions indued by the magnets of the protonbeam-line allowed a momentum analysis of the sattered proton.During the 1996-1997 data taking, a proton-remnant tagger (PRT1) was used to tagevents in whih the proton dissoiates. It onsisted of two layers of sintillation ountersperpendiular to the beam at Z = 5.15 m. The two layers were separated by a 2 mm-thiklead absorber. The pseudorapidity range overed by the PRT1 was 4:3 < � < 5:8.The luminosity was measured from the rate of the bremsstrahlung proess ep ! ep.The photon was measured in a lead-sintillator alorimeter [36{38℄ plaed in the HERAtunnel at Z = �107 m.2 The ZEUS oordinate system is a right-handed Cartesian system, with the Z axis pointing in theproton diretion, referred to as the \forward diretion", and the X axis pointing left towards theentre of HERA. The oordinate origin is at the nominal interation point.4



4 Data seletion and reonstrutionThe following kinemati variables are used to desribe exlusive �0 prodution and itssubsequent deay into a �+�� pair:� the four-momenta of the inident eletron (k), sattered eletron (k0), inident proton(P ), sattered proton (P 0) and virtual photon (q);� Q2 = �q2 = �(k � k0)2, the negative squared four-momentum of the virtual photon;� W 2 = (q + P )2, the squared entre-of-mass energy of the photon-proton system;� y = (P � q)=(P � k), the fration of the eletron energy transferred to the proton in itsrest frame;� M��, the invariant mass of the two deay pions;� t = (P � P 0)2, the squared four-momentum transfer at the proton vertex;� three heliity angles, �h, �h and �h (see Setion 9).The kinemati variables were reonstruted using the so-alled \onstrained" method [10,39℄, whih uses the momenta of the deay partiles measured in the CTD and the reon-struted polar and azimuthal angles of the sattered eletron.The online event seletion required an eletron andidate in the CAL, along with thedetetion of at least one and not more than six traks in the CTD.In the o�ine seletion, the following further requirements were imposed:� the presene of a sattered eletron, with energy in the CAL greater than 10 GeVand with an impat point on the fae of the RCAL outside a retangular area of26:4� 16 m2;� E � PZ > 45 GeV, where E � PZ = Pi(Ei � pZi) and the summation is over theenergies and longitudinal momenta of the �nal-state eletron and pions, was imposed.This ut exludes events with high energy photons radiated in the initial state;� the Z oordinate of the interation vertex within �50 m of the nominal interationpoint;� in addition to the sattered eletron, exatly two oppositely harged traks, eahassoiated with the reonstruted vertex, and eah having pseudorapidity j�j less than1.75 and transverse momentum greater than 150 MeV; this exluded regions of lowreonstrution eÆieny and poor momentum resolution in the CTD. These trakswere treated in the following analysis as a �+�� pair;� events with any energy deposit larger than 300 MeV in the CAL and not assoiatedwith the pion traks (so-alled `unmathed islands') were rejeted [40{42℄.5



In addition, the following requirements were applied to selet kinemati regions of highaeptane:� the analysis was restrited to the kinemati regions 2 < Q2 < 80 GeV2 and 32 < W <160 GeV in the 1996-1997 data and 2 < Q2 < 160 GeV2 and 32 < W < 180 GeV inthe 1998-2000 sample;� only events in the �+�� mass interval 0:65 < M�� < 1:1 GeV and with jtj < 1 GeV2were taken. The mass interval is slightly narrower than that used previously [10℄, inorder to redue the e�et of the bakground from non-resonant �+�� prodution. Inthe seleted M�� range, the resonant ontribution is � 100% (see Setion 8).The above seletion yielded 22,400 events in the 1996-1997 sample and 49,300 events inthe 1998-2000 sample, giving a total of 71,700 events for this analysis.
5 Monte Carlo simulationThe relevant Monte Carlo (MC) generators have been desribed in detail previously [10℄.Here their main features are summarised.The program Zeusvm [43℄ interfaed to Herales4.4 [44℄ was used. The e�etive Q2,W and t dependenes of the ross setion were parameterised to reprodue the data [42℄.The deay angular distributions were generated uniformly and the MC events were theniteratively reweighted using the results of the present analysis for the 15 ombinations ofmatrix elements r04ik , r�ik (see Setion 9).The ontribution of the proton-dissoiative proess was studied with the Epsoft [45℄generator for the 1996-1997 data and with Pythia [46℄ for the 1998-2000 data. The Q2,W and t dependenes were parameterised to reprodue the ontrol samples in the data.The deay angular distributions were generated as in the Zeusvm sample.The generated events were proessed through the same hain of seletion and reonstru-tion proedures as the data, thus aounting for trigger as well as detetor aeptane andsmearing e�ets. For both MC sets, the number of simulated events after reonstrutionwas about a fator of seven greater than the number of reonstruted data events.All measured distributions are well desribed by the MC simulations. Some examples areshown in Fig. 1, for the W , Q2, t variables, and the three heliity angles, �h, �h, and �h,and in Fig. 2 for the transverse momentum pT of the pions, for di�erent Q2 bins.6



6 SystematisThe systemati unertainties of the ross setion were evaluated by varying the seletionuts and the MC simulation parameters. The following seletion uts were varied:� the E � PZ ut was hanged within the appropriate resolution of �3 GeV;� the pT of the pion traks (default 0.15 GeV) was inreased to 0.2 GeV;� the distane of losest approah of the extrapolated trak to the mathed island in theCAL was hanged from 30 m to 20 m;� the �+��-mass window was hanged to 0.65{1.2 GeV;� the Z vertex ut was varied by �10 m;� the retangular area of the eletron impat point on the CAL was inreased by 0.5 min X and Y ;� the energy of an unmathed island was lowered to 0.25 GeV and then raised to 0.35GeV.The dependene of the results on the preision with whih the MC reprodues the perfor-mane of the detetor and the data was heked by varying the following inputs withintheir estimated unertainty:� the reonstruted position of the eletron was shifted with respet to the MC by�1 mm;� the eletron-position resolution was varied by �10% in the MC;� the W Æ-dependene in the MC was hanged by varying Æ by �0:03;� the exponential t-distribution in the MC was reweighted by hanging the nominalslope parameter b by �0:5 GeV�2;� the angular distributions in the MC were reweighted assuming SCHC;� the Q2-distribution in the MC was reweighted by (Q2 +M2� )k, where k = �0:05.The largest unertainty of about �4% originated from the variation of the energy ofthe unmathed islands. All the other heks resulted on average in a 0.5% hange inthe measured ross setions. All the systemati unertainties were added in quadrature.In addition, the ross-setion measurements have an overall normalisation unertaintyof �2% due to the luminosity measurement.7



7 Proton dissoiationThe prodution of �0 mesons may be aompanied by the proton-dissoiation proess,�p! �0N . For low masses MN of the dissoiative system N , the hadronisation produtsmay remain inside the beam-pipe, leaving no signals in the main detetor. The ontribu-tion of these events to the exlusive �0 ross setion was estimated from MC generatorsfor proton-dissoiative proesses.A lass of proton dissoiative events for whih the �nal-state partiles leave observedsignals in the surrounding detetors was used to tune the MN and the t distributionin the MC. In the 1998-2000 running period, these events were seleted by requiringa signal in the FPC detetor with energy above 1 GeV. The omparison of the datawith Pythia expetations for the energy distribution in the FPC is shown in Fig. 3(a).The same proedure was repeated with a sample of �0 events for whih the FPC energywas less than 1 GeV and a leading proton was measured in the LPS detetor, withthe fration of the inoming proton momentum xL < 0:95. The omparison betweenthe xL distribution measured in the data and that expeted from Pythia is shown inFig. 3(b), where the elasti peak in the data (xL > 0:95) is also observed. Also shownin Fig. 3(-e) is the fration of proton-dissoiative events expeted in the seleted �0sample as a funtion of Q2, W and t. The fration is at the level of 19%, independentof Q2 and W , but inreasing with inreasing jtj. The ombined use of the FPC and LPSmethods leads to an estimate of the proton dissoiative ontribution for jtj < 1 GeV2 of0.19 � 0.02(stat.) � 0.03(syst.). The systemati unertainty was estimated by varyingthe parameters of the MN distribution and by hanging the FPC ut.In the 1996-1997 data-taking period, a similar proedure was applied, after tuning theEpsoft MC to reprodue events with hits in the PRT1 or energy deposits in the FCAL.The proton-dissoiative ontribution for jtj < 1 GeV2 was determined to be 0:07 � 0:02after rejeting events with hits in the PRT1 or energy deposits in the FCAL. This numberis onsistent with that determined from the LPS and FPC beause of the di�erent angularoverage of the PRT1.After subtration of the proton-dissoiative ontribution, a good agreement between theross setions derived from the two data-taking periods was found. For all the quoted rosssetions integrated over t, the overall normalisation unertainty due to the subtration ofthe proton-dissoiative ontributions was estimated to be�4% and was not inluded in thesystemati unertainty. The proton-dissoiative ontribution was statistially subtratedin eah analysed bin, unless stated otherwise.8



8 Mass distributionsThe �+��-invariant-mass distribution is presented in Fig. 4. A lear enhanement in the�0 region is observed. Bakground oming from the deay � ! K+K�, where the kaonsare misidenti�ed as pions, is expeted [42℄ in the region M�� < 0:55 GeV. That omingfrom ! events in the deay hannel ! ! �+���0, where the �0 remains undeteted,ontributes [42℄ in the region M�� < 0:65 GeV. Therefore de�ning the seleted �0 eventsto be in the window 0:65 < M�� < 1:1 GeV ensures no bakground from these twohannels.In order to estimate the non-resonant �+�� bakground under the �0, the S�oding param-eterisation [47℄ was �tted to the data, with results shown in the �gure. The resultingmass and width values are in agreement with those given in the Partile Data Group [48℄ompilation. The integrated non-resonant bakground is of the order of 1% and is thusnegleted.The �+�� mass distributions in di�erent regions of Q2 and t are shown in Fig. 5 andFig. 6, respetively. The shape of the mass distribution hanges neither with Q2 nor witht. The results of the �t to the S�oding parameterisation are also shown. Note that theinterferene term dereases with Q2 as expeted but is independent of t, indiating thatthe non-exlusive bakground is negligible.9 Angular distributions and deay-matrix densityThe exlusive eletroprodution and deay of �0 mesons is desribed, at �xed W , Q2, M��and t, by three heliity angles: �h is the angle between the �0 prodution plane and theeletron sattering plane in the �p entre-of-mass frame; �h and �h are the polar andazimuthal angles of the positively harged deay pion in the s-hannel heliity frame. Inthis frame, the spin-quantisation axis is de�ned as the diretion opposite to the momen-tum of the �nal-state proton in the �0 rest frame. In the �p entre-of-mass system, �h isthe angle between the deay plane and the �0 prodution plane. The angular distributionas a funtion of these three angles, W (os �h; �h;�h), is parameterised by the �0 spin-density matrix elements, ��ik, where i; k = �1; 0; 1 and by onvention �=0,1,2,4,5,6 foran unpolarised harged-lepton beam [49℄. The supersript denotes the deomposition ofthe spin-density matrix into ontributions from the following photon-polarisation states:unpolarised transverse photons (0); linearly polarised transverse photons (1,2); longitudi-nally polarised photons (4); and from the interferene of the longitudinal and transverseamplitudes (5,6).The deay angular distribution an be expressed in terms of ombinations, r04ik and r�ik, of9



the density matrix elements r04ik = �0ik + �R�4ik1 + �R ;r�ik = 8>>><>>>: ��ik1 + �R; � = 1; 2pR ��ik1 + �R; � = 5; 6;where � is the ratio of the longitudinal- to transverse-photon uxes and R = �L=�T , with�L and �T the ross setions for exlusive �0 prodution from longitudinal and transversevirtual photons, respetively. In the kinemati range of this analysis, the value of �varies between 0.96 and 1 with an average value of 0.996; hene �0ik and �4ik annot bedistinguished.The Hermitian nature of the spin-density matrix and the requirement of parity onser-vation redues the number of independent parameters to 15 [49℄. A 15-parameter �t wasperformed to the data and the obtained results are listed in Table 1 and shown in Fig. 7 asa funtion of Q2. The published ZEUS results [50℄ at lower Q2 values and the expetationsof SCHC, when relevant, are also inluded. The observed Q2 dependene, expeted insome alulations [51℄ and previously reported by H1 [52℄, is driven by the R dependeneon Q2 under the assumption of heliity onservation and natural parity exhange. Thesigni�ant deviation of r500 from zero shows that SCHC does not hold [51℄ as was observedpreviously [50, 52℄.The angular distribution for the deay of the �0 meson, integrated over �h and �h, reduesto W (os �h) / �(1� r0400) + (3r0400 � 1) os2 �h� : (3)The element r0400 may be extrated from a one-dimensional �t to the os �h distribution.The os �h distributions, for di�erent Q2 intervals, are shown in Fig. 8, together with theresults of a one-dimensional �t of the form (3). The data are well desribed by the �ttedparameter r0400 at eah value of Q2.10 Cross setionThe measured �p ross setions are averaged over intervals listed in the appropriate tablesand are quoted at �xed values of Q2 and W . The ross setions are orreted for the massrange 0:28 < M�� < 1:5 GeV and integrated over the full t-range, where appliable.10



10.1 t dependene of �(�p! �0p)The determination of �(�p ! �0p) as a funtion of t for W = 90 GeV was performedby averaging over 40 < W < 140 GeV. The di�erential ross-setion d�=dt(�p ! �0p)is shown in Fig. 9 and listed in Table 2, for di�erent ranges of Q2. An exponential formproportional to e�bjtj was �tted to the data in eah range of Q2; the results are shown inFig. 10. The exponent b, listed in Table 3, dereases as a funtion of Q2. After inludingthe previous results at lower Q2 [10, 53℄, a sharp derease of b is observed at low Q2; thevalue of b then levels o� at about 5 GeV�2.A ompilation of the value of the slope b for exlusive VM eletroprodution, as a funtionof Q2 + M2, is shown in Fig. 11. Here M is the mass of the orresponding �nal state.It also inludes the exlusive prodution of a real photon, the deeply virtual Comptonsattering (DVCS) measurement [54℄. When b is plotted as a funtion of Q2 + M2, thetrend of b dereasing with inreasing sale to an asymptoti value of 5 GeV�2, seems tobe a universal property of exlusive proesses, as expeted in perturbative QCD [2℄.10.2 Q2 dependene of �(�p! �0p)The determination of �(�p! �0p) as a funtion of Q2 for W = 90 GeV was performed byaveraging over 40 < W < 140 GeV. The results are shown in Fig. 12 with orrespondingvalues given in Table 4. As expeted, a steep derease of the ross setion with Q2is observed. The photoprodution and the low-Q2 (< 1 GeV2) measurements are alsoshown in the �gure. An attempt to �t the Q2 dependene with a simple propagator term�(�p! �0p) � (Q2 +m2�)�n;with the normalisation and n as free parameters, failed to produe results with an aept-able �2. The data appear to favour an n value whih inreases with Q2.10.3 W dependene of �(�p! �0p)The values of the ross setion �(�p ! �0p) as a funtion of W , for �xed values of Q2,are plotted in Fig. 13 and given in Table 5. The ross setions inrease with inreasingW , with the rate of inrease growing with inreasing Q2.In order to quantify the rate of growth and its signi�ane, the W dependene for eahQ2 value was �tted to the funtional form� � W Æ:11



The resulting Æ values are presented as a funtion of Q2 in Fig. 14 and listed in Table 6.For ompleteness, the Æ values from lower Q2 are also inluded. A lear inrease of Æ withQ2 is observed. Suh an inrease is expeted in pQCD, and reets the hange of thelow-x gluon distribution of the proton with Q2.To failitate the omparison, the ZEUS ross-setion data as a funtion of W have beenreplotted in the Q2 bins used by H1 [9℄. The results are shown in Fig. 15. The agreementbetween the two measurements is reasonable. However, in some Q2 bins the shape of theW dependene is somewhat di�erent.A ompilation of the value of the slope Æ for exlusive VM eletroprodution, as a funtionof Q2 +M2, is shown in Fig. 16. It also inludes the DVCS result [54℄. When plotted asa funtion of Q2 +M2, the value of Æ and its inrease with the sale are similar for all theexlusive proesses, as expeted in perturbative QCD [2℄.11 R = �L=�T and r0400The SCHC hypothesis implies that r11�1 = �Imfr21�1g and Refr510g = �Imfr610g. In thisase, the ratio R = �L=�T an be related to the r0400 matrix element,R = 1� r04001� r0400 ; (4)and thus an be extrated from the �h distribution alone.If the SCHC requirement is relaxed, then the relation between R and r0400 is modi�ed,R = 1� r0400 ��21� (r0400 ��2) ;with � ' r500p2r0400 :In the kinemati range of the measurements presented in this paper, the non-zero valueof � implies a orretion of �3% on R up to the highest Q2 value, where it is �10%, andis negleted.Under the assumption that Eq. (4) is valid and for values of � studied in this paper,< � >=0.996, the matrix element r0400 may be interpreted asr0400 = �L=�tot;where �tot = �L+�T . When the value of r0400 is lose to one, as is the ase for this analysis,the error on R beomes large and highly asymmetrial. It is then advantageous to studythe properties of r0400 itself whih arries the same information, rather than R.12



The Q2 dependene of r0400 for W = 90 GeV, averaged over the range 40 < W < 140 GeV,is shown in Fig. 17 and listed in Table 7 together with the orresponding R values. The�gure inludes three data points at lower Q2 from previous studies [10, 53℄. An initialsteep rise of r0400 with Q2 is observed and above Q2 ' 10 GeV2, the rise with Q2 beomesmilder. At Q2 = 40 GeV2, �L onstitutes about 90% of the total �p ross setion.The omparison of the H1 and ZEUS results is presented in Fig. 18 in terms of the ratioR. The H1 measurements are at W = 75 GeV and those of ZEUS at W = 90 GeV. Giventhe fat that R seems to be independent of W (see below), both data sets an be diretlyompared. The two measurements are in good agreement.The dependene of R on M�� is presented in Fig. 19 for two Q2 intervals. The value ofR falls rapidly with M�� above the entral �0 mass value. Although a hange of R withM�� was antiipated to be � 10% [55℄, the e�et seen in the data is muh stronger. Thee�et remains strong also at higher Q2, ontrary to expetations [55℄. One averaged overthe �0 mass region, the main ontribution to R omes from the entral �0 mass value.The W dependene of r0400, for di�erent values of Q2, is shown in Fig. 20 and listed inTable 8. Within the measurement unertainties, r0400 is independent of W , for all Q2values. This implies that the W behaviour of �L is the same as that of �T , a resultwhih is somewhat surprising. The q�q on�gurations in the wave funtion of �L havetypially a small transverse size, while the on�gurations ontributing to �T may havelarge transverse size. The ontribution to �T of large-size q�q on�gurations, whih aremore hadron-like, is expeted to lead to a shallower W dependene than in ase of �L.Thus, the result presented in Fig. 20 suggests that the large-size on�gurations of thetransversely polarised photon are suppressed.The above onlusion an also explain the behaviour of r0400 as a funtion of t, shown inFig. 21 and presented in Table 9 for two Q2 values. Di�erent sizes of interating objetsimply di�erent t distributions, in partiular a steeper d�T=dt ompared to d�L=dt. Thisturns out not to be the ase. In both Q2 ranges, r0400 is independent of t, reinforing theearlier onlusion about the suppression of the large-size on�gurations in the transverselypolarised photon.12 E�etive Pomeron trajetoryAn e�etive Pomeron trajetory an be determined from exlusive �0 eletroprodutionby using Eq. (2). Sine the W dependene of the proton-dissoiative ontribution was es-tablished to be the same as the exlusive �0 sample, no subtration for proton-dissoiativeevents was performed. 13



A study of the W dependene of the di�erential d�=dt ross setion at �xed t resultsin values of �IP (t), listed in Table 10 and displayed in Fig. 22, for Q2 = 3 GeV2 (upperplot) and 10 GeV2 (lower plot). A linear �t of the form of Eq. (1), shown in the �gures,yields values of �IP (0) and �0IP shown in Fig. 23, and listed in Table 11. The valueof �IP (0) inreases slightly with Q2, while the value of �0IP is Q2 independent, within themeasurement unertainties. Its value tends to be lower than that of the soft Pomeron [56℄.An alternative way of measuring the slope of the Pomeron trajetory is to study theW dependene of the b slope, for �xed Q2 values. Figure 24 displays the values of bas a funtion of W for two Q2 intervals (see also Table 12). The urves are a resultof �tting the data to the expression b = b0 + 4�0IP ln(W=W0). The resulting slopes ofthe trajetory are �0IP = 0:15 � 0:04 (stat:) +0:04�0:06 (syst:) for < Q2 > = 3.5 GeV2 and�0IP = 0:04 � 0:06 (stat:) +0:07�0:02 (syst:) for < Q2 > = 11 GeV2. These results are onsistentwith those presented in Table 11.13 Comparison to modelsIn this setion, preditions from several pQCD-inspired models are ompared to the mea-surements.13.1 The modelsAll models are based on the dipole representation of the virtual photon, in whih thephoton �rst utuates into a q�q pair (the olour dipole), whih then interats with theproton to produe the �0. The ingredients neessary in suh alulations are the virtual-photon wave-funtion, the dipole-proton ross setion, and the �0 wave-funtion. Thephoton wave-funtion is known from QED. The models di�er in the treatment of thedipole-proton ross setion and the assumed �0 wave-funtion.The models of Frankfurt, Koepf and Strikman (FKS) [57, 58℄ and of Martin, Ryskin andTeubner (MRT) [59, 60℄ are based on two-gluon exhange as the dominant mehanismfor the dipole-proton interation. The gluon distributions are derived from inlusivemeasurements of the proton struture funtion. In the FKS model, a three-dimensionalGaussian is assumed for the �0 wave-funtion, while MRT use parton-hadron duality andnormalise the alulations to the data. For the omparison with the present measurementsthe MRST99 [61℄ and CTEQ6.5M [62℄ parameterisations for the gluon density were used.Kowalski, Motyka and Watt (KMW) [63℄ use an improved version of the saturationmodel [64,65℄, with an expliit dependene on the impat parameter and DGLAP [66{69℄evolution in Q2, introdued through the unintegrated gluon distribution [70℄. Forshaw,14



Sandapen and Shaw (FSS) [71℄ model the dipole-proton interation through the exhangeof a soft [56℄ and a hard [72℄ Pomeron, with (Sat) and without (Nosat) saturation, anduse the DGKP and Gaussian �0 wave-funtions. In the model of Dosh and Ferreira(DF) [73℄, the dipole ross setion is alulated using Wilson loops, making use of thestohasti vauum model for the non-perturbative QCD ontribution.While the alulations based on two-gluon exhange are limited to relatively high-Q2values (typially � 4 GeV2), those based on modelling the dipole ross setion inorporateboth the perturbative and non-perturbative aspets of �0 prodution.
13.2 Comparison with dataThe di�erent preditions disussed above are ompared to the Q2 dependene of the rosssetion in Fig. 25. None of the models gives a good desription of the data over thefull kinemati range of the measurement. The FSS model with the three-dimensionalGaussian �0 wave-funtion desribes the low-Q2 data very well, while the KMW and DFmodels desribe the Q2 > 1 GeV2 region well.The various preditions are also ompared with the W dependene of the ross setion, fordi�erent Q2 values, in Fig. 26. Here again, none of the models reprodues the magnitudeof the ross setion measurements. The losest to the data, in shape and magnitude,are the MRT model with the CTEQ6.5M parametrisation of the gluon distribution inthe proton and the KMW model. The KMW model gives a good desription of the Q2dependene of Æ, as shown in Fig. 27.The dependene of b on Q2 is given only in the FKS and the KMW models as shown inFig. 28. The FKS expetations are somewhat loser to the data.The expeted Q2 dependene of r0400 is ompared to the measurements in Fig. 29. The MRTpredition, using the CTEQ6.5M gluon density, is the only predition whih desribes thedata in the whole Q2 range. While all the models exhibit a mild dependene of r0400 on W ,onsistent with the data as shown in Figs. 30 and 31, none of them reprodues orretlythe magnitude of r0400 in all the Q2 bins.In summary, none of the models onsidered above is able to desribe all the features ofthe data presented in this paper. The high preision of the measurements an be used tore�ne models for exlusive �0 eletroprodution.15



14 Summary and ConlusionsExlusive �0 eletroprodution has been studied by ZEUS at HERA in the range 2 < Q2 <160 GeV2 and 32 < W < 180 GeV with a high statistis sample. The Q2 dependene ofthe �p! �0p ross setion is a steeply falling funtion of Q2. The ross setion rises withW and its logarithmi derivative in W inreases with inreasing Q2. The exponential slopeof the t distribution dereases with inreasing Q2 and levels o� at about b = 5 GeV�2.The deay angular distributions of the �0 indiate s-hannel heliity breaking. The ratioof ross setions indued by longitudinally and transversely polarised virtual photonsinreases with Q2, but is independent of W and of jtj, suggesting suppression of large-sizeon�gurations of the transversely polarised photon. The e�etive Pomeron trajetory,averaged over the full Q2 range, has a larger interept and a smaller slope than thoseextrated from soft interations. All these features are ompatible with expetations ofperturbative QCD. However, none of the available models whih have been ompared tothe measurements is able to reprodue all the features of the data.AknowledgmentsIt is a pleasure to thank the DESY Diretorate for their strong support and enourage-ment. The remarkable ahievements of the HERA mahine group were essential for thesuessful ompletion of this work and are greatly appreiated. The design, onstrutionand installation of the ZEUS detetor has been made possible by the e�orts of manypeople who are not listed as authors. We thank E. Ferreira, J. Forshaw, M. Strikman, T.Teubner and G. Watt, for providing the results of their alulations.
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Element 2 < Q2 < 3 GeV2 3 < Q2 < 4 GeV2 4 < Q2 < 6 GeV2 6 < Q2 < 10 GeV2 10 < Q2 < 100 GeV2r0400 0.590�0.006+0:012�0:010 0.659�0.008+0:009�0:015 0.725�0.008+0:014�0:008 0.752�0.008+0:011�0:008 0.814�0.010+0:008�0:019Re(r0410) 0.024�0.005+0:003�0:009 0.025�0.007+0:008�0:009 0.007�0.007+0:004�0:017 0.014�0.007+0:005�0:010 0.014�0.009+0:016�0:007r041�1 -0.009�0.007+0:008�0:012 -0.010�0.008+0:006�0:016 0.000�0.007+0:015�0:006 -0.016�0.007+0:018�0:004 -0.001�0.010+0:021�0:006r111 -0.008�0.007+0:006�0:019 -0.023�0.008+0:008�0:016 -0.015�0.008+0:010�0:019 -0.032�0.008+0:017�0:001 -0.002�0.011+0:008�0:020r100 -0.037�0.019+0:047�0:014 -0.014�0.026+0:046�0:015 0.020�0.028+0:072�0:013 0.019�0.030+0:008�0:060 -0.018�0.042+0:053�0:034Re(r110) -0.032�0.007+0:018�0:004 -0.023�0.010+0:008�0:024 -0.016�0.009+0:018�0:013 -0.006�0.011+0:003�0:030 -0.042�0.016+0:029�0:009r11�1 0.195�0.009+0:012�0:019 0.151�0.011+0:014�0:011 0.121�0.011+0:016�0:011 0.095�0.011+0:006�0:029 0.100�0.016+0:023�0:032Im(r210) 0.040�0.007+0:010�0:020 0.024�0.009+0:005�0:020 0.029�0.009+0:012�0:011 0.031�0.009+0:016�0:012 0.026�0.015+0:028�0:005Im(r21�1) -0.186�0.009+0:009�0:024 -0.148�0.011+0:019�0:015 -0.124�0.012+0:029�0:013 -0.107�0.011+0:004�0:027 -0.052�0.016+0:039�0:012r511 0.018�0.003+0:004�0:005 0.018�0.004+0:006�0:004 0.007�0.003+0:005�0:007 0.018�0.004+0:005�0:002 0.004�0.005+0:007�0:003r500 0.085�0.009+0:007�0:015 0.089�0.013+0:019�0:016 0.106�0.013+0:010�0:016 0.093�0.013+0:013�0:010 0.168�0.018+0:011�0:020Re(r510) 0.167�0.003+0:007�0:003 0.164�0.004+0:005�0:006 0.143�0.005+0:004�0:013 0.132�0.005+0:004�0:003 0.110�0.007+0:011�0:008r51�1 0.000�0.005+0:006�0:008 -0.006�0.006+0:009�0:006 0.001�0.005+0:009�0:003 0.000�0.006+0:018�0:003 0.001�0.007+0:011�0:002Im(r610) -0.157�0.003+0:006�0:004 -0.147�0.004+0:004�0:007 -0.145�0.004+0:003�0:009 -0.135�0.004+0:007�0:003 -0.125�0.006+0:012�0:002Im(r61�1) 0.010�0.005+0:004�0:013 -0.005�0.005+0:008�0:005 -0.001�0.005+0:005�0:017 0.008�0.005+0:003�0:006 -0.002�0.007+0:005�0:007Table 1: Spin density matrix elements for eletroprodution of �0, for di�erentintervals of Q2. The �rst unertainty is statistial, the seond systemati.

20



Q2 bin Q2 jtj d�=dt(GeV2) (GeV2) (GeV2) (nb=GeV2) stat. syst.2�4 2:7 0:05 2636:4 �49:5 +117:3�155:32�4 2:7 0:15 1284:2 �32:8 +65:4�87:72�4 2:7 0:29 450:7 �13:5 +30:8�39:12�4 2:7 0:53 127:5 �6:2 +17:2�17:02�4 2:7 0:83 28:1 �3:3 +10:3�5:14�6.5 5:0 0:05 842:7 �23:7 +33:3�40:54�6.5 5:0 0:15 415:8 �15:4 +18:9�26:14�6.5 5:0 0:29 159:8 �7:0 +10:6�13:84�6.5 5:0 0:53 43:7 �3:2 +5:7�5:84�6.5 5:0 0:83 12:5 �1:8 +2:2�2:26.5�10 7:8 0:05 338:4 �10:8 +15:4�15:06.5�10 7:8 0:15 156:2 �7:4 +5:3�13:36.5�10 7:8 0:29 67:3 �3:3 +4:9�4:76.5�10 7:8 0:53 22:1 �1:6 +2:3�3:16.5�10 7:8 0:83 5:03 �0:94 +1:48�0:9210�15 11:9 0:05 118:0 �5:0 +5:5�5:710�15 11:9 0:15 70:2 �3:9 +5:2�3:610�15 11:9 0:29 26:8 �1:7 +1:7�2:610�15 11:9 0:53 8:40 �0:76 +0:97�1:3610�15 11:9 0:83 2:67 �0:51 +0:48�0:5215�30 19:7 0:05 39:6 �2:2 +1:7�3:315�30 19:7 0:15 20:4 �1:5 +1:9�1:415�30 19:7 0:29 9:12 �0:71 +0:59�0:9415�30 19:7 0:53 2:73 �0:31 +0:39�0:3815�30 19:7 0:83 0:84 �0:19 +0:19�0:3030�80 41:0 0:05 5:44 �0:83 +0:76�0:8030�80 41:0 0:15 2:28 �0:50 +0:37�0:5430�80 41:0 0:29 1:40 �0:26 +0:26�0:3530�80 41:0 0:53 0:42 �0:11 +0:07�0:1130�80 41:0 0:83 0:15 �0:07 +0:06�0:07Table 2: The di�erential ross-setion d�=dt for the reation �p ! �0p fordi�erent Q2 intervals. The �rst olumn gives the Q2 bin, while the seond olumngives the Q2 value at whih the ross setion is quoted. The normalisation uner-tainty due to luminosity (�2%) and proton-dissoiative bakground (�4%), is notinluded. 21



Q2 bin (GeV2) Q2 (GeV2) b (GeV�2)2�4 2.7 6:6� 0:1+0:2�0:24�6.5 5.0 6:3� 0:2+0:2�0:26.5�10 7.8 5:9� 0:2+0:2�0:210�15 11.9 5:5� 0:2+0:2�0:215�30 19.7 5:5� 0:3+0:2�0:330�80 41.0 4:9� 0:6+0:8�0:5Table 3: The slope b resulting from a �t to the di�erential ross-setion d�=dtto an exponential form for the reation �p! �0p, for di�erent Q2 intervals. The�rst olumn gives the Q2 bin, while the seond olumn gives the Q2 value at whihthe di�erential ross setions are quoted. The �rst unertainty is statistial, theseond systemati.
Q2 bin W bin Q2 W �(�p! �0p)(GeV2) (GeV) (GeV2) (GeV) (nb) stat. syst.2�3 40� 100 2:4 90 647:1 �8:7 +28:4�41:73�4 40� 100 3:4 90 396:7 �6:7 +14:6�19:44�5 40� 100 4:4 90 247:8 �5:8 +8:9�12:65�7 40� 120 5:8 90 140:3 �2:6 +3:9�5:97�10 40� 140 8:2 90 71:9 �1:4 +1:7�2:910�15 40� 140 12 90 29:73 �0:68 +0:75�1:1415�20 40� 140 17 90 12:77 �0:50 +0:27�0:4220�30 40� 140 24 90 6:03 �0:31 +0:37�0:1330�50 40� 140 37 90 1:88 �0:16 +0:07�0:1550�80 40� 140 60 90 0:36 �0:07 +0:04�0:0380�160 40� 140 100 90 0:05 �0:03 +0:02�0:01Table 4: Cross-setion measurements at Q2 and W = 90 GeV averaged overthe Q2 and W intervals given in the table. The normalisation unertainty due toluminosity (�2%) and proton-dissoiative bakground (�4%) is not inluded.
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Q2 bin W bin Q2 W �(�p! �0p)(GeV2) (GeV) (GeV2) (GeV) (nb) stat. syst.2�3 32�40 2:4 36:0 451:9 �15:1 +25:5�43:62�3 40�60 2:4 50:0 554:1 �11:5 +31:6�39:22�3 60�80 2:4 70:0 599:9 �13:9 +28:5�38:52�3 80�100 2:4 90:0 622:5 �17:3 +33:8�43:22�3 100�120 2:4 110:0 690:1 �30:3 +40:9�66:93�5 32�40 3:7 36:0 240:8 �8:0 +9:5�15:53�5 40�60 3:7 50:0 277:5 �5:9 +12:2�15:33�5 60�80 3:7 70:0 303:7 �7:3 +11:1�14:43�5 80�100 3:7 90:0 344:6 �9:4 +10:4�17:23�5 100�120 3:7 110:0 404:7 �15:5 +15:2�22:55�7 32�40 6:0 36:0 88:5 �5:1 +6:0�4:15�7 40�60 6:0 50:0 104:9 �3:6 +3:6�6:95�7 60�80 6:0 70:0 113:6 �4:1 +6:0�3:95�7 80�100 6:0 90:0 127:6 �4:9 +4:0�5:85�7 100�120 6:0 110:0 144:0 �6:1 +8:6�8:47�10 40�60 8:3 50:0 52:3 �1:9 +1:7�2:77�10 60�80 8:3 70:0 61:7 �2:4 +2:1�2:97�10 80�100 8:3 90:0 70:1 �2:9 +2:0�3:37�10 100�120 8:3 110:0 75:2 �3:4 +3:1�3:07�10 120�140 8:3 130:0 87:5 �4:7 +2:5�4:110�22 40�60 13:5 50:0 16:4 �0:6 +0:6�0:710�22 60�80 13:5 70:0 20:2 �0:8 +0:8�0:710�22 80�100 13:5 90:0 21:9 �0:9 +0:7�0:910�22 100�120 13:5 110:0 24:3 �1:1 +0:9�1:210�22 120�140 13:5 130:0 27:7 �1:4 +0:9�1:010�22 140�160 13:5 150:0 30:7 �2:3 +1:2�1:122�80 40�60 32:0 50:0 1:5 �0:2 +0:2�0:122�80 60�80 32:0 70:0 2:3 �0:2 +0:1�0:122�80 80�100 32:0 90:0 2:6 �0:3 +0:3�0:222�80 100�120 32:0 110:0 3:6 �0:4 +0:1�0:322�80 120�140 32:0 130:0 4:0 �0:5 +0:2�0:422�80 140�160 32:0 150:0 4:2 �0:6 +0:2�0:422�80 160�180 32:0 170:0 3:6 �0:7 +0:3�0:3Table 5: Cross-setions values obtained at Q2 and W as a result of averagingover bins of the Q2 and W intervals given in the table. The normalisation uner-tainty due to luminosity (�2%) and proton-dissoiative bakground (�4%), are notinluded. 23



Q2 bin Q2(GeV2) (GeV2) Æ stat. syst.2�3 2:4 0:321 �0:035 +0:068�0:0433�5 3:7 0:412 �0:036 +0:029�0:0355�7 6:0 0:400 �0:052 +0:048�0:0457�10 8:3 0:503 �0:057 +0:047�0:04110�22 13:5 0:529 �0:051 +0:030�0:03522�80 32:0 0:834 �0:118 +0:043�0:112Table 6: The value of Æ obtained from �tting ��p!�0p / W Æ. The �rst olumngives the Q2 bin, while the seond olumn gives the Q2 value at whih the rosssetion was quoted.
Q2 bin (GeV2) Q2 (GeV2) W bin (GeV) r0400 R = �L=�T2�3 2:4 32� 120 0:60� 0:01+0:03�0:03 1:50+0:05�0:05 +0:20�0:153�5 3:7 32� 120 0:68� 0:01+0:02�0:02 2:10+0:08�0:08 +0:18�0:145�7 5:9 40� 140 0:73� 0:01+0:01�0:02 2:70+0:14�0:13 +0:26�0:287�10 8:3 40� 140 0:76� 0:01+0:01�0:02 3:20+0:20�0:18 +0:25�0:2710�15 12:0 40� 140 0:78� 0:01+0:01�0:01 3:50+0:26�0:24 +0:30�0:2615�30 19:5 40� 140 0:82� 0:02+0:01�0:02 4:60+0:54�0:45 +0:48�0:4430�100 40:5 40� 160 0:86� 0:04+0:03�0:02 6:10+2:75�1:56 +2:15�0:85Table 7: The spin matrix element r0400 and the ratio of ross setions for longitudi-nally and transversely polarised photons, R = �L=�T , as a funtion of Q2, averagedover the Q2 and W bins given in the table. The �rst unertainty is statistial, theseond systemati.
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Q2 bin (GeV2) Q2 (GeV2) W bin (GeV) W (GeV) r0400 R = �L=�T2�3 2:4 32�55 43 0:60� 0:01+0:03�0:02 1:50+0:06�0:06 +0:21�0:152�3 2:4 55�75 65 0:60� 0:01+0:05�0:03 1:50+0:06�0:06 +0:35�0:172�3 2:4 75�110 91 0:59� 0:01+0:04�0:04 1:43+0:06�0:06 +0:23�0:233�7 4:2 32�60 45 0:70� 0:01+0:01�0:01 2:33+0:09�0:09 +0:13�0:093�7 4:2 60�80 70 0:69� 0:01+0:02�0:01 2:23+0:12�0:11 +0:24�0:103�7 4:2 80�120 99 0:69� 0:01+0:01�0:01 2:23+0:10�0:09 +0:14�0:097�12 8:8 40�70 55 0:74� 0:01+0:01�0:02 2:85+0:25�0:22 +0:23�0:267�12 8:8 70�100 85 0:76� 0:02+0:01�0:02 3:17+0:38�0:32 +0:19�0:287�12 8:8 100�140 120 0:76� 0:02+0:01�0:02 3:17+0:38�0:32 +0:23�0:2612�50 18:0 40�70 55 0:84� 0:03+0:01�0:01 5:25+1:16�0:84 +0:54�0:3412�50 18:0 70�100 85 0:82� 0:03+0:01�0:02 4:55+0:94�0:70 +0:47�0:4312�50 18:0 100�160 130 0:83� 0:02+0:02�0:01 4:88+0:87�0:67 +0:64�0:39Table 8: The spin matrix element r0400 and the ratio of ross setions for longi-tudinally and transversely polarised photons, R = �L=�T , as a funtion of W fordi�erent values of Q2, averaged over the Q2 and W bins given in the table. The�rst unertainty is statistial, the seond systemati.
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Q2 bin (GeV2) Q2 (GeV2) W bin (GeV) jtj (GeV2) r0400 R = �L=�T2�5 3:0 32� 120 0.04 0:62� 0:01+0:02�0:02 1:63+0:07�0:06 +0:15�0:132�5 3:0 32� 120 0.14 0:62� 0:01+0:01�0:03 1:63+0:09�0:09 +0:10�0:192�5 3:0 32� 120 0.27 0:63� 0:01+0:04�0:02 1:70+0:11�0:11 +0:24�0:142�5 3:0 32� 120 0.45 0:64� 0:02+0:02�0:03 1:78+0:14�0:13 +0:16�0:212�5 3:0 32� 120 0.76 0:63� 0:03+0:07�0:05 1:70+0:26�0:22 +0:63�0:325�50 10:0 40� 160 0.04 0:74� 0:01+0:01�0:01 2:84+0:18�0:17 +0:16�0:155�50 10:0 40� 160 0.15 0:75� 0:01+0:01�0:02 3:00+0:26�0:23 +0:17�0:305�50 10:0 40� 160 0.27 0:74� 0:02+0:02�0:04 2:84+0:26�0:24 +0:32�0:515�50 10:0 40� 160 0.45 0:72� 0:02+0:03�0:02 2:57+0:29�0:25 +0:41�0:225�50 10:0 40� 160 0.76 0:73� 0:04+0:03�0:05 2:70+0:56�0:43 +0:45�0:57Table 9: The spin matrix element r0400 and the ratio of ross setions for longi-tudinally and transversely polarised photons, R = �L=�T , as a funtion of jtj fortwo values of Q2, averaged over the Q2 and W bins given in the table. The �rstunertainty is statistial, the seond systemati.
Q2 bin (GeV2) Q2 (GeV2) jtj (GeV2) �IP (t)2� 5 3 0:04 1:104� 0:011+0:010�0:0102� 5 3 0:14 1:099� 0:014+0:011�0:0252� 5 3 0:28 1:048� 0:016+0:038�0:0142� 5 3 0:57 1:013� 0:021+0:041�0:0175� 50 10 0:04 1:149� 0:012+0:015�0:0065� 50 10 0:16 1:134� 0:014+0:005�0:0275� 50 10 0:35 1:104� 0:017+0:012�0:0115� 50 10 0:68 1:085� 0:028+0:042�0:031Table 10: The values of the e�etive Pomeron trajetory �IP (t) as a funtion ofjtj, for two Q2 values. The �rst unertainty is statistial, the seond systemati.
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Q2 bin (GeV2) Q2 (GeV2) �IP (0) �0IP (GeV�2)2� 5 3 1:113� 0:010+0:009�0:012 0:185� 0:042+0:022�0:0575� 50 10 1:152� 0:011+0:006�0:006 0:114� 0:043+0:026�0:024Table 11: The values of the e�etive Pomeron trajetory interept �IP (0) and slope�0IP , for two Q2 values. The �rst unertainty is statistial, the seond systemati.
Q2 (GeV2) W (GeV) b (GeV�2)3:5 38 6:3� 0:2+0:4�0:33:5 57 6:3� 0:1+0:3�0:33:5 82 6:6� 0:2+0:2�0:33:5 107 6:9� 0:2+0:3�0:33:5 134 7:0� 0:3+0:4�0:311 38 5:8� 0:3+0:3�0:411 57 5:8� 0:2+0:2�0:311 82 5:7� 0:2+0:2�0:211 107 5:9� 0:2+0:3�0:211 134 6:1� 0:2+0:3�0:2Table 12: The slope b resulting from a �t of the di�erential ross setion d�=dtfor the reation �p! �0p to an exponential form, for di�erent W values, for twoQ2 values. The �rst unertainty is statistial, the seond systemati.
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Figure 1: Comparison between the data and the Zeusvm MC distributions for (a)W , (b) Q2, () jtj, (d) os �h, (e) �h and (f) �h for events with 0:65 < M�� < 1:1GeV and jtj < 1:0 GeV2. The MC distributions are normalised to the data.
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Figure 2: Comparison between the data and the Zeusvm MC distributions forthe transverse momentum, pT , of �+ and �� partiles, for di�erent ranges of Q2,as indiated in the �gure. The events are seleted to be within 0:65 < M�� < 1:1GeV and jtj < 1:0 GeV2. The MC distributions are normalised to the data.
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