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Next-to-leading order orretions inexlusive meson prodution

M. Diehl and W. KuglerDeutshes Elektronen-Synhroton DESY, 22603 Hamburg, Germany
AbstratWe analyze in detail the size of next-to-leading order orretions to hard exlusive mesonprodution within the ollinear fatorization approah. Corretions to the ross setionare found to be huge at small xB and substantial in typial �xed-target kinematis. Withthe models we take for nuleon heliity-ip distributions, the transverse target polarizationasymmetry in vetor meson prodution is strongly a�eted by radiative orretions, exeptat large xB . Its overall size is very small for � prodution but an be large in the ! hannel.
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1 IntrodutionGeneralized parton distributions (GPDs) have developed into a versatile tool to quantify importantaspets of hadron struture in QCD. In partiular they ontain unique information on the transversespatial distribution of partons [1℄ and on spin-orbit e�ets and orbital angular momentum insidethe nuleon [2, 3℄. Deeply virtual Compton sattering is widely reognized as the proess providingthe theoretially leanest aess to GPDs, with a wealth of observables alulable in the large Q2limit [4℄ and with the alulation of the hard-sattering subproess now pushed to next-to-next-to-leading order (NNLO) auray in �s [5℄. A quantitative theoretial desription of exlusive mesonprodution remains a hallenge. It would o�er the possibility to obtain important omplementaryinformation, diÆult to obtain from Compton sattering alone. Perhaps most importantly, vetormeson prodution is diretly sensitive to gluon distributions, whih in the Compton proess are �ssuppressed relative to quark distributions and only aessible through saling violation (just as inthe well-known ase of inlusive deep inelasti sattering). Given in addition the large number ofhannels that an be studied and the wealth of high-quality data in a wide range of kinematis fromollider to �xed-target energies [6, 7℄, it should be worthwhile to try and push the theory desriptionof exlusive meson prodution as far as possible.In this work we study the exlusive prodution of light mesons at large photon virtuality Q2within the framework of ollinear fatorization [8℄. In Bjorken kinematis, the proess amplitude anbe approximated by the onvolution of hard-sattering kernels with generalized parton distributionsand the quark-antiquark distribution amplitude of the produed meson. The hard-sattering kernelshave been alulated to O(�2s), i.e. to next-to-leading order (NLO) auray [9, 10, 11℄. The aim ofthe present paper is to investigate in some detail the size of the NLO orretions ompared with theleading-order (LO) results, on whih phenomenologial studies have so far relied.The ollinear fatorization approah provides an approximation of the leading heliity amplitudesfor meson prodution in the Bjorken limit, up to relative orretions of order 1=Q2. These powerorretions annot be alulated systematially (and in fat the derivation [8℄ of the fatorizationtheorem suggests that these orretions do not all fatorize into hard-sattering kernels and nonper-turbative quantities pertaining to either the nuleon or the produed meson). One partiular soureof power orretions an however readily be identi�ed, namely the e�et of the transverse momentumof partons entering the hard-sattering subproess, whih in the ollinear approximation is negletedin the alulation of the hard-sattering kernel. A number of approahes inlude these kT e�ets,in partiular the studies in [12, 13℄ based on the modi�ed hard-sattering formalism of Sterman etal. [14℄, and alulations like [15℄ whih are based on the olor dipole formulation. In the work byMartin, Ryskin and Teubner [16℄, parton-hadron duality is used to model the meson formation andthus the transverse momentum of the hadronizing quarks is inluded in the alulation, whereas thetransverse momentum of gluons in the proton is treated within high-energy kT fatorization. Thestudies just quoted agree in that transverse momentum e�ets result in substantial power orretionsto the ollinear approximation for Q2 up to several GeV2. Unfortunately, the alulation of fullNLO orretions in �s remains not only a pratial but also a oneptual hallenge in all of theseapproahes, so that the perturbative stability of their results annot be investigated at present. (Theapproah of Sterman et al. takes partial aount of radiative orretions, resumming a ertain lassof them into Sudakov form fators.)A onsistent simultaneous treatment of radiative and power orretions being out of reah atthis time, a possible strategy is to study the NLO orretions in the ollinear approximation and inpartiular to identify kinematial regions where these orretions are moderate or small. There onean then use with greater on�dene formulations inorporating power orretions. In this spirit thepresent investigation should be understood. We will study both the ross setion for meson prodution3



from an unpolarized target and the transverse target polarization asymmetry. This asymmetry is oneof the few observables sensitive to the nuleon heliity-ip distributions (in partiular for gluons) andhene to the spin-orbit and orbital angular momentum e�ets mentioned above. We will in partiularsee whether orretions tend to anel in this polarization asymmetry, as is often assumed.In the bulk of this paper we onentrate on the prodution of vetor mesons. In Set. 2 we set upour notation and reall important properties of the hard-sattering kernels at NLO, as well as givinga one-variable representation of these kernels after Gegenbauer expansion of the meson distributionamplitude. In Set. 3 we speify the model of the generalized parton distributionsH and E we use forour numerial studies. The size of radiative orretions involving onvolutions with distributions His then studied in Sets. 4 and 5 for small and large xB , respetively, and the onvolutions involvingdistributions E are quanti�ed in Set. 6. In Set. 7 we then look at the NLO orretions at the level ofthe observable ross setion and polarization asymmetry. A brief study of exlusive pion produtionin Set. 8 omplements our work, and in Set. 9 we summarize our main �ndings. A number of morelengthy formulae is olleted in appendies.2 Hard-sattering kernelsIn the main part of this paper we are onerned with exlusive prodution of a vetor meson�(q) + p(p)! V (q0) + p(p0) (1)in the limit of large Q2 = �q2 at �xed Bjorken variable xB = Q2=(2p � q) and �xed t = (p� p0)2. Toleading order in 1=Q, the amplitude for longitudinal polarization of photon and meson an be writtenas M = 2�p4���QN QV fV Z 10 dz �V (z)Z 1�1 dx�Tg(z; x; �)F g(x; �; t)+ 1nf hTa(�z; x; �)� Ta(z;�x; �)iF S(x; �; t) + Tb(z; x; �)F S(x; �; t)+ e(3)V hTa(�z; x; �) � Ta(z;�x; �)i hF u(+)(x; �; t)� F d(+)(x; �; t)i+ e(8)V hTa(�z; x; �) � Ta(z;�x; �)i hF u(+)(x; �; t) + F d(+)(x; �; t) � 2F s(+)(x; �; t)i� (2)with �z = 1 � z, N = 3, and the eletromagneti �ne struture onstant �. Throughout this paperwe work with nf = 3 ative quark avors. The proton matrix elements F are parameterized bygeneralized parton distributions,F q;g(x; �; t) = 1(p+ p0) � n �Hq;g(x; �; t) �u(p0)=nu(p) +Eq;g(x; �; t) �u(p0) i���n�(p0 � p)�2mp u(p)� (3)for quarks and gluons, where we use the onventions of [17℄. Here n is a light-like auxiliary vetor,� = xB=(2 � xB) is the skewness variable, and mp denotes the nuleon mass. We have furtherintrodued the ombination F q(+)(x; �; t) = F q(x; �; t)� F q(�x; �; t) (4)with positive harge onjugation parity. In (2) we have arranged the terms ontaining quark distri-butions into the avor singlet F S = F u(+) + F d(+) + F s(+) (5)4
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pFigure 1: Example graphs for the hard-sattering kernels Ta, Tb and Tg at order �2s.and the avor triplet and otet ombinations, F u(+)�F d(+) and F u(+)+F d(+)� 2F s(+). The fatorsQ� = 1p2 ; Q! = 13p2 ; Q� = �13 (6)and e(3)� = e(8)� = e(8)! = 16 ; e(3)! = 32 ; e(3)� = 0 ; e(8)� = �13 (7)orrespond to a respetive avor ontent1p2�ju�ui � jd �di� ; 1p2�ju�ui+ jd �di� ; js�si (8)of the �, ! and �. The meson distribution amplitudes �V (z) are normalized as R 10 dz �V (z) = 1, andthe deay onstants have the values f� = 209MeV, f! = 187MeV, f� = 221MeV [18℄. We �nallyhave hard-sattering kernels in (2), where Tg goes with gluon and Ta, Tb go with quark distributionsin the proton. In the graphs for Ta quark lines onnet the proton and meson side, whereas in thegraphs for Tb the proton and meson side are only onneted by gluon lines. Tb thus starts at order �2sand only goes with the quark singlet distribution F S . Example graphs for the three kernels at NLOare shown in Fig. 1. We will refer to Tg, Ta, Tb as the gluon, the quark non-singlet, and the purequark singlet kernel, respetively.For better legibility we have not displayed the dependene on the renormalization and fatorizationsales in (2). The renormalization sale �R appears as argument of �s and through expliit logarithmsin the hard-sattering kernels T . The kernels further ontain logarithms of the respetive fatorizationsales �DA and �GPD for the meson distribution amplitude and the generalized parton distributions.The NLO kernels in [10, 11℄ are given for a ommon fatorization sale �F = �DA = �GPD. We anrestore the individual logarithms of �DA and �GPD from the requirement that within the alulatedpreision the proess amplitude (2) must be independent of these sales. As an example onsider theterm dd ln�2DA Z 10 dz �V (z;�DA)Ta(�z; x; �; �s(�R); �R; �GPD; �DA; Q)= Z 10 dz � dd ln�2DA �V (z;�DA)�Ta(�z; x; �; �s(�R); �R; �GPD; �DA; Q)+ Z 10 dz �V (z;�DA) � dd ln�2DA Ta(�z; x; �; �s(�R); �R; �GPD; �DA; Q)� ; (9)where the sale dependene of �V (z;�DA) is given by the ERBL evolution equation [19℄. At lead-ing order this gives a term d=d(ln�2DA )�V (z;�DA) of order �s, whose onvolution with the O(�s)5



part of Ta must anel against the ontribution from expliit logarithms of �DA in the O(�2s) partof Ta. An analogous argument holds for the dependene on �GPD, with the ompliation thatthe gluon and quark singlet distributions mix under evolution. More preisely, the onvolution ofd=d(ln�2GPD )F S(x; �; t;�GPD) with the O(�s) part of Ta anels at O(�2s) against the ontributionsfrom logarithms of �GPD in Ta and in Tg. Likewise, the onvolution of d=d(ln�2GPD )F g(x; �; t;�GPD)with the Born term of Tg anels at O(�2s) against the ontributions from logarithms of �GPD in Tgand in the pure singlet kernel Tb. We have expliitly heked that the sale dependene of the hard-sattering kernels given in [11℄ anels in the proess amplitude (2) as just desribed, using the LOevolution equations for GPDs given in App. C.Separating the �DA and �GPD dependene, we an write the kernels asTg(z; x; �) = ��s �(� � x� i�)(� + x� i�) 1z�z �1 + �s4� Ig�z; � � x2� �� ;Tb(z; x; �) = CF �2s8� 1z�z Ib�z; � � x2� � ;Ta(�z; x; �) = �CF �s �� � x� i� 1�z �1 + �s4� Ia��z; � � x2� �� (10)with Ig(z; y) = �2CA� �yy + y�y��y ln y + �y ln �y�� CF �y�y ln y + �yy ln �y�� ln Q2�2GPD+ �0 ln �2R�2GPD + CF �3 + 2z ln �z + 2�z ln z� ln Q2�2DA +Kg(z; y) ;Ib(z; y) = 2(�y � y)� ln y�y + ln �yy � ln Q2�2GPD +Kb(z; y) (11)and Ia(v; u) = �0�53 � ln(vu) � ln Q2�2R�+ CF �3 + 2 lnu� ln Q2�2GPD + CF �3 + 2 ln v� ln Q2�2DA+Ka(v; u) ; (12)where �y = 1� y and we use the standard notationCF = N2 � 12N ; CA = N ; �0 = 113 N � 23 nf : (13)The funtions Kg, Kb and Ka are independent of Q2 and the renormalization and fatorization sales.They ontain fators CF or CA but not �0. Their expressions an be found in [11℄, taking into aountthat the kernels Tg and Tb here are denoted by Tg and T(+) there, and thatT (v; u) ����[11℄ = CF �s4vu �1 + �s4� Ia(v; u)�here ; y ��[11℄ = �y ��here : (14)Note that the pure singlet kernel Tb does not ontain logarithms of �DA and �R at O(�2s), sine thereis no Born level ontribution against whih they ould anel in the sale dependene of the proessamplitude. There is however a logarithm of �GPD, sine the orresponding derivative of the Born level6



onvolution of Tg with F g ontains a term going with the quark singlet distribution F S , as alreadymentioned after (9).The kernels in (10) have singularities for real-valued arguments. One readily �nds that x=� =(ŝ� û)=Q2, where ŝ and û are the Mandelstam variables for the parton-level subproess �q ! (q�q)qor �g ! (q�q)g. The presriptions ŝ+ i� for the ŝ-hannel and û+ i� for the û-hannel singularitiesthus instrut us to take x+ i� for x > 0 and x� i� for x < 0. Correspondingly, the seond argument(�� x)=(2�) of Ig, Ib and Ia must be taken with �i� for x > 0 and +i� for x < 0. In Ta(z;�x; �) theseond argument of Ia is (� + x)=(2�), whih has to be taken with �i� for x < 0 and +i� for x > 0.We remark that, as it is written, the i� presription in [11℄ for the gluon and the pure singlet kernelis orret for x > 0 but inorret for x < 0. Likewise, the presription given in [10, 11℄ for the quarknon-singlet kernel is orret for x > 0 if the orresponding argument is (� � x)=(2�) and for x < 0 ifthe argument is (� + x)=(2�), but inorret in the other ases.12.1 Gegenbauer expansionLet us expand the meson distribution amplitude on Gegenbauer polynomials,�V (z;�) = 6z(1 � z) 1Xn=0 an(�)C3=2n (2z � 1) ; (15)where a0 = 1 aording to the normalization ondition R 10 dz �V (z) = 1. To leading order, theGegenbauer oeÆients evolve as an(�) = an(�0) � �s(�)�s(�0)�n=�0 (16)with anomalous dimensions0 = 0 ; 2 = 256 CF ; 4 = 9115 CF ; (17)where �s(�) is the running oupling at one-loop auray. One has n � 4CF ln(n+1) within at most6% for all n. For V = �; !; � only oeÆients an with even n are nonzero due to harge onjugationinvariane, and in all subsequent expressions of this paper we onsider n to be even. Calulations ofthe distribution amplitudes in models or on the lattie typially give values for the �rst or the �rsttwo nonvanishing moments, see e.g. [20, 21, 22℄, so that a trunated version of the expansion (15) isvery often used in phenomenologial studies. Convolution with individual terms in (15) also allowsus to redue the hard-sattering kernels for meson prodution to funtions of a single longitudinalvariable. More preisely, we an rewrite the proess amplitude (2) asM = 2�p4���QN QV fV 1Xn=0 an�Fgn + FS(a)n + FS(b)n + e(3)V F (3)n + e(8)V F (8)n � (18)with onvolutions in xFgn = Z 1�1 dxTg;n(x; �)F g(x; �; t) ; FS(b)n = Z 1�1 dxTb;n(x; �)F S(x; �; t) ;FS(a)n = Z 1�1 dx hTa;n(x; �) � Ta;n(�x; �)i 1nf F S(x; �; t) ;F (3)n = Z 1�1 dx hTa;n(x; �) � Ta;n(�x; �)i hF u(+)(x; �; t) � F d(+)(x; �; t)i ;1We thank Dima Ivanov for disussions on this point. The numerial results in [11℄ were obtained with the orretpresription. 7



F (8)n = Z 1�1 dx hTa;n(x; �) � Ta;n(�x; �)i hF u(+)(x; �; t) + F d(+)(x; �; t)� 2F s(+)(x; �; t)i ; (19)whih depend on � and t, and logarithmially on Q2 and on the fatorization and renormalizationsales. At order �2s the dependene on �R and on �DA anels in eah separate onvolution, while thedependene on �GPD anels in F (3)n and F (8)n and in the sum Fgn + FS(a)n + FS(b)n as disussed after(9). In analogy to (19) we de�ne onvolutions H and E for the individual distributions H and E in(3). The kernels Tg;n, Ta;n, Tb;n are obtained from Tg, Ta, Tb by multiplying with 6z(1�z)C3=2n (2z�1)and integrating over z. For n = 0 we �ndTg;n(x; �) = �3�s 2�(� � x� i�)(� + x� i�)�1 + �s4� tg;n�� � x2� �� ;Tb;n(x; �) = 3CF �2s4� tb;n�� � x2� � ;Ta;n(x; �) = �3CF �s �� � x� i� �1 + �s4� ta;n�� � x2� �� (20)withtg;0(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD+CF��52 +�1�y + 1� 4y� ln y � y2 ln2 y�y� 2(�y � y) Li2 �y � 4y�y�3Li3 �y � ln y Li2 y � �26 ln y��+CA ���6�y � 8y� lny +�1�y � 2y� ln2 y + 2(�y � y) Li2 �y�+ fy ! �yg ;tb;0(y) = 2(�y � y) ln y�y �ln Q2�2GPD � 3�+ (�y � y) ln2 y�y + 4Li2 �y � fy ! �yg ;ta;0(y) = �0 �196 � lny � ln Q2�2R �+ CF�(3 + 2 ln y) ln Q2�2GPD � 776 ��1�y � 3� ln y + ln2 y�+ (2CF � CA)��13 � 4(2� 3y) ln �y + 2(1� 6y) ln y + 4(1� 3y)�Li2 y � Li2 �y�+ 2(1 � 6y�y) �3�Li3 �y + Li3 y�� ln y Li2 y � ln �y Li2 �y � �26 �ln y + ln �y��� : (21)The orresponding kernels for n = 2 and n = 4 are given in App. B. The i� presription to be usedin (20) is the same as spei�ed at the end of the previous subsetion. This implies that in tg;n(y),tb;n(y), ta;n(y) and ta;n(�y) one has to take ln(y � i�), Li2(�y + i�) and Li3(�y + i�) for y < 0. For thegluon and pure singlet kernel, whih dominate in proess amplitudes at small �, we have in partiular1� Im tg;0(y) = ��2CA (y2 + �y2)� CF y�1�y ln Q2�2GPD� CF�1� 4y + 1� y ln(�y)�y + 2(�y � y) ln �y + 2y�y�ln2 �y + 2Li2 y + �23 ��+ 2CA�3�y � 4y ��1�y � 2y� ln(�y) + (�y � y) ln �y� ;8



1� Im tb;0(y) = 2 �y � y�y �3� ln(�y)� ln Q2�2GPD �+ 4 ln �y (22)in the region y < 0. In the limit y ! 0 all three expressions in (21) ontain singular terms proportionalto ln y and ln2 y. For the onvolution (19) we should however onsider (y�y)�1 tg;n(y), y�1 ta;n(y) and�y�1 ta;n(�y) aording to (20). With the appropriate i� presription, these kernels ontain terms whihfor y ! 0 go like (y � i�)�1 lnm(y � i�), where m = 0; 1; 2.3 Model for the unpolarized GPDsIt is diÆult to study the impat of NLO orretions at the level of the hard-sattering kernels givenin the previous subsetion, espeially sine they are not smooth funtions but distributions withsingularities at y = 0. We will therefore use model GPDs to investigate the radiative orretions atthe level of the onvolution integrals (19). The aim of this work is not a systemati improvement ofexisting models, nor a detailed exploration of model unertainties on observables in exlusive mesonprodution. We do however require that the models we use are onsistent with known theoretialrequirements and basi phenomenologial onstraints.For Hq and Hg we adopt the widely used ansatz of [26, 27℄ based on double distributions, wherea � dependene is generated aording toHq(+)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Hq(+)(�; 0; t) ;Hg(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Hg(�; 0; t) (23)with h(b)(�; �) = �(2b+ 2)22b+1�2(b+ 1) [(1� j�j)2 � �2℄b(1� j�j)2b+1 : (24)The distributions at zero skewness are taken asHq(+)(x; 0; t) = qv(x) exp�tfqv(x)�+ 2�q(x) exp�tf�q(x)� ;Hg(x; 0; t) = xg(x) exp�tfg(x)� (25)for x > 0, with the values for x < 0 following from the symmetry properties of the distributions. Hereqv(x) = q(x)� �q(x), �q(x) and g(x) are the usual unpolarized densities for valene quarks, antiquarksand gluons, for whih we take the CTEQ6M parameterization [29℄. This parameterization has anidential strange and antistrange sea, so that sv(x) = 0. The ansatz (23) is taken at a starting sale�0 and then evolved with the LO evolution equations given in App. C. For the studies in Sets. 4and 5 we take �0 = 1:3GeV, whih is the starting sale of evolution for the CTEQ6M densities. InSets. 6 and 7 we will instead take �0 = 2GeV, sine this will allow us to use the results for the tdependene of valene distributions obtained in [28℄.For the t dependene in the ansatz (23) we follow the modeling strategy of [27℄ and take anexponential behavior in t with an x dependent slope. For valene quarks we take the slope funtionsfqv(x) = �0v(1� x)3 ln 1x +Bqv(1� x)3 +Aqvx(1� x)2 (26)with parameters �0v = 0:9GeV�2 and 9



Auv = 1:26GeV�2 ; Buv = 0:59GeV�2 ;Adv = 3:82GeV�2 ; Bdv = 0:32GeV�2 ; (27)from [28℄. We reall the sum ruleF q1 (t) = Z 1�1 dxHq(x; 0; t) = Z 10 dx qv(x) exp�tfqv(x)� ; (28)from whih one obtains the eletromagneti Dira form fators of proton and neutron by appropriatequark avor ombinations. Together with the CTEQ6M distributions at �0 = 2GeV, the ansatz in(26) and (27) gives a good desription of the data for these form fators. For gluons we take a slightlysimpler form than (26) and set fg(x) = �0g(1� x)2 ln 1x +Bg(1� x)2 : (29)For the parameters we take�0g = 0:164GeV�2 ; Bg = 1:2GeV�2 (30)so as to math reent H1 data on J=	 photoprodution, whose t dependene is well �tted by [30℄d�dt / exp��b0 + 4�0g lnWpW0 � t � (31)with entral values b0 = 4:63GeV�2 and �0g = 0:164GeV�2 for W0 = 90GeV. To onnet (31)with (29) we have used the approximate relation d�=dt / jHg(�; �; t)j2, whih is obtained when onlykeeping the imaginary part of the tree-level amplitude, where 2� = (MJ=	=Wp)2 in terms of thep .m. energy. With the ansatz (23) one approximately has Hg(�; �; t) / exp�tfg(2�)� for the tdependene of the GPD [13℄.Whereas information on valene quark GPDs an be obtained from the sum rules (28) and infor-mation on gluon GPDs from J=	 prodution, almost nothing is so far known about the t dependeneof GPDs for antiquarks. As a simple ansatz we shall take their slope funtions equal to those in thevalene setor, f�u = fuv ; f �d = fdv ; f�s = fdv ; (32)bearing in mind that it remains an outstanding task to develop more realisti models.3.1 Nuleon heliity-ip distributionsThe nuleon heliity-ip distributions Eq and Eg are less-well known than their ounterparts Hq andHg, beause their values at � = 0 and t = 0 annot be measured in inlusive proesses and are thussubjet to onsiderable unertainty.The model desribed in this subsetion refers to a sale of �0 = 2GeV. We make a doubledistribution based ansatzEq(+)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Eq(+)(�; 0; t) ;Eg(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Eg(�; 0; t) (33)10



as in (23), and for x > 0 setEq(+)(x; 0; t) = eqv(x) exp�tgqv(x)�+ 2e�q(x) exp�tg�q(x)� ;Eg(x; 0; t) = xeg(x) exp�tgg(x)� ; (34)with the orresponding values for x < 0 determined by the symmetry properties of the distributions.For the forward limit of the valene distribution we takeeqv(x) = �q N(�v; �qv )x��v (1� x)�qv ; (35)whose normalization fator N(�; �) = �(2� �+ �)�(1� �) �(1 + �) (36)ensures the sum rules �q = Z 1�1 dxEq(x; 0; 0) = Z 10 dx eqv (x) ; (37)where �u � 1:67 and �d � �2:03 are the ontributions of u and d quarks to the anomalous magnetimoment of the proton. For the funtions ontrolling the t dependene we take the same form asin (26), gqv(x) = �0v(1� x)3 ln 1x +Dqv(1� x)3 + Cqvx(1� x)2 : (38)With the parameters �v = 0:55, �0v = 0:9GeV�2 and�u = 3:99 ; Cuv = 1:22GeV�2 ; Duv = 0:38GeV�2 ;�d = 5:59 ; Cdv = 2:59GeV�2 ; Ddv = �0:75GeV�2 ; (39)from [28℄ one obtains a good �t to the eletromagneti Pauli form fators of proton and neutron viathe generalization of the sum rule (37) to �nite t.For the forward limit of the distributions of antiquarks and gluons we make the same simple ansatzas in (35), e�q(x) = k�q x���q (1� x)��q ; eg(x) = kg x��g (1� x)�g ; (40)and for the t dependene in the gluon setor we setgg(x) = �0g(1� x)2 ln 1x +Dg(1� x)2 ; (41)in analogy to the form (29) we used for Hg. We presently have not no phenomenologial informationon these distributions, but two theoretial onstraints. There is a ondition that ensures positivesemide�nite densities of partons in the transverse plane [31℄, whih with our ansatz for the GPDsreads [28℄ �e�q(x)�q(x) �2 � 8em2p �g�q(x)f�q(x)�3 �f�q(x)� g�q(x)� ;�eg(x)g(x) �2 � 8em2p �gg(x)fg(x)�3 �fg(x)� gg(x)� (42)11



if we neglet for simpliity the polarized antiquark and gluon distributions ompared with the unpo-larized ones. On the other hand we have the sum rule0 = Z 10 dxEg(x; 0; 0) +Xq Z 1�1 dxxEq(x; 0; 0)= Z 10 dxxeg(x) +Xq Z 10 dxx�eqv(x) + 2e�q(x)� (43)following from the onservation of the energy-momentum tensor. For the parameters in (41) we take�0g = 0:164GeV�2 ; Dg = 1:08GeV�2 ; (44)with �0g as in (30) and Dg slightly smaller than its ounterpart Bg for Hg, so that the positivityondition (42) an be ful�lled. Assuming a similar small-x behavior of the distributions for protonheliity-ip and non-ip, we take in (40) the values ��q = 1:25 and �g = 1:10, whih we obtain when�tting the CTEQ6M distributions to a power law in the x range from 10�4 to 10�3.Sine it turns out that the transverse target polarization asymmetry in � prodution is verysensitive to the details of the heliity-ip distributions, we will explore two model senarios in ournumerial studies:1. a senario where the sea quark distributions e�q behave similarly to the valene distributions eqv .For the t dependene we then take g�u(x) = guv (x) and g �d(x) = gdv(x). The parameters k�q in(40) are taken suh that seond moments at t = 0 ful�llR 10 dxxe�q(x)R 10 dxxeqv(x) = R 10 dxx�q(x)R 10 dxxqv(x) (45)for q = u; d, where the ratio on the r.h.s. is taken from the CTEQ6M parameterization at � =2GeV. Its value is 0:095 for u and 0:30 for d quarks. This �xes the values of k�q N�1(��q� 1; ��q)with N given in (36). For the strange distribution we set es = e�s = 0, and kgN�1(�g � 1; �g)is then �xed by the sum rule (43).The powers ��q and �g ontrolling the large-x behavior are �nally taken to have the smallestvalues for whih the positivity ondition (42) holds in the range x < 0:9 (for higher x even theunpolarized densities are so unertain that we do not insist on the positivity onditions to beful�lled).2. a senario where e�q behaves similarly to the gluon distribution eg . The t dependene is nowmodeled by taking g�q(x) = gg(x) for q = u; d; s. For the seond moments we imposeR 10 dxxe�q(x)R 10 dxxeg(x) = R 10 dxx�q(x)R 10 dxxg(x) (46)for the three light quark avors, where with the CTEQ6M distributions the r.h.s. is equal to0:064, 0:083, 0:036 for u, d, s, respetively. We now have a nonzero es = e�s. The values ofk�q N�1(��q�1; ��q) and kg N�1(�g�1; �g) are taken to ful�ll both (46) and (43), and the powers��q, �g are set to the minimal values for whih positivity holds in the range x < 0:9.The parameters resulting from this modeling proedure are olleted in Table 1, and the distributionsat � = 0 and t = 0 for model 1 are shown in Fig. 2.12



Table 1: Parameters in the ansatz (40) for di�erent parton speies a in the two models desribed inthe text. The values for valene quarks apply to both models, with normalization parameters givenby kqv = �qN(�v; �qv ) aording to (35). The last line gives the seond Mellin moment at � = 2GeVin the forward limit. model 1 model 2uv dv �u �d g �u �d �s g�a 0:55 0:55 1:25 1:25 1:10 1:25 1:25 1:25 1:10�a 3:99 5:59 9:6 9:2 6:7 7:6 6:5 5:5 2:5ka 1:71 �2:36 0:06 �0:18 0:26 �0:0016 �0:0018 �0:0007 �0:017R 10 dxxea(x) 0:138 �0:130 0:013 �0:039 0:044 �0:0004 �0:0005 �0:0002 �0:0059
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We end this setion by quoting the values for the total angular momentum arried by quarks andantiquarks of a given avor in our model, given byJq = 12 Z 1�1 dxx�Hq(x; 0; 0) +Eq(x; 0; 0)� (48)aording to Ji's sum rule [2℄. With the parameters in Table 1 and the CTEQ6M distributions we�nd Ju = 0:25 ; Jd = �0:01 ; (model 1)Ju = 0:24 ; Jd = 0:03 (model 2) (49)at the sale � = 2GeV of our model. We note that this is in rather good agreement with theresults of reent lattie alulations, with Ju = 0:214(16) and Jd = �0:001(16) reported in [32℄, andJu = 0:33(2) and Jd = �0:02(2) in [33℄. Let us reiterate that with just two sets of model parameterswe annot exhaust the range of possible senarios but only provide two representatives that areonsistent with presently known onstraints. As just disussed, the relative smallness of sea quarkand gluon distributions ompared with the nuleon heliity onserving ase should however be typialof a rather wide lass of models.4 Vetor meson prodution at small xBWe now study numerially the importane of NLO orretions in vetor meson prodution. Hereand in the following setions we use the two-loop strong oupling for nf = 3 avors with a QCDsale parameter �(3) = 226MeV. This value orresponds to �(4) = 326MeV, �(5) = 372MeV andto �(5)s (MZ) = 0:118 when mathing at m = 1:3GeV and mb = 4:5GeV, whih are the valuesused in the CTEQ6M parton analysis [29℄. We also take nf = 3 �xed in the evolution and thehard-sattering kernels. Taking nf = 4 with massless harm or nf = 5 with massless harm andbottom would not be a good approximation for the rather moderate values of Q2 we will disussfor �xed-target kinematis. On the other hand, taking nf = 3 and negleting harm altogether isadmittedly not a good approximation for the larger Q2 relevant in ollider kinematis. However, with�(3)s = 0:164 ompared to �(5)s = 0:178 at � = 10GeV we expet that this inauray will not a�etthe onlusions at high Q2 we shall draw from our studies.We have performed the evolution of the GPDs at LO using the momentum-spae evolution odeof [34℄. As explained in Set. 2, taking LO evolution together with the NLO hard-sattering kernelsis suÆient to obtain sale independene of the proess amplitude up to unalulated orretions oforder �3s. With the input sale of evolution not taken too small, NLO evolution e�ets should berather moderate at the Q2 values relevant in �xed-target kinematis, whereas our general onlusionsfor highQ2 and small xB will again not depend on this level of detail. We note that the NLO kernels inmomentum spae are available in the literature [35℄, but their onsiderable length makes it diÆult toimplement them in a fast numerial evaluation. For inluding NLO e�ets in the evolution it shouldbe more eÆient to use the Mellin spae approah reently followed for deeply virtual Comptonsattering in [5℄.Here and in the following setion we onsider the onvolutions of hard-sattering kernels withGPDs at t = 0. For nonzero � = xB=(2 � xB) this should be understood in the sense of an analytiontinuation, sine the physial region for meson prodution is �t � 4m2p�2=(1 � �2) in Bjorkenkinematis. To explore the importane of NLO orretions we do not see this as a shortoming.Let us start our disussion with the gluon and quark singlet setor. Here and in following we shallalways present the onvolutions (19) for Gegenbauer index n = 0 unless indiated otherwise. In Fig. 314
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Im tb;n(y) = Im tCb;n(y) + Im tGb;n(y) ln Q2�2GPD : (54)Let us now rewrite the onvolutions of kernels and GPDs in terms of the variable ! = x=�,ImhHgn +HS(b)n i = �6�s ��Hg(�; �; t) + �s4� ImZ 1=�0 d!�� 21� ! � i� tg;n�1� ! � i�2 � Hg(!�; �; t)1 + ! �CF tb;n�1� ! � i�2 � �HS(!�; �; t)�� : (55)For ! � !0 with some !0 � 1 we an use the approximation (52) of the hard-sattering kernels, andfurther approximate 1 + ! � ! in the �rst term on the seond line. This gives� 16��s ImhHgn +HS(b)n i � Hg(�; �; t) + �s� Z !00 d! : : :� �s� Z 1=�!0 d!�CA�n � ln Q2�2GPD � Hg(!�; �; t)! +CF�n + 1� ln Q2�2GPD � �HS(!�; �; t)� ; (56)where the integral over ! on the �rst line is to be taken with the unapproximated integrand from(55). It grows with � like Hg(!�; �; t) or �HS(!�; �; t) but laks the enhanement due to the upperlimit 1=� of the integral on the seond line. Restriting our disussion to t = 0 for simpliity, we anfor suÆiently large ! neglet the e�et of skewness in the GPDs and then haveHg(!�; �; 0) � !�g(!�) ; HS(!�; �; 0) � S(!�) =Xq �q(!�) + �q(!�)� ; (57)where S(x) is the usual quark singlet distribution. In a very rough approximation one may treatxg(x) and xS(x) as onstant at small x. In (56) one then has loop integrals R d!=! for both thegluon and the quark term, whih generate large logarithms ln(!0�) for 1=� � !0. These logarithmsare of BFKL type and orrespond to graphs with t-hannel gluon exhange in the hard-satteringkernel, suh as those for Tb and Tg in Fig. 1.In a phenomenologially more realisti approximation one has xg(x) � ax�� at small x and asimilar behavior with di�erent values of a and � for xS(x). This givesZ 1=�!0 d! Hg(!�; �; 0)! � a��� Z 1=�!0 d! !���1 � a� �!0���� (58)for 1=� � !0, when the bulk of the integral omes from the region where the small-x approximationof the gluon density is valid. With � being rather small for the gluon distribution in a wide range ofthe fatorization sale, the term (58) has the same power behavior ��� as the Born term Hg(�; �; 0)in (56) but is numerially enhaned by 1=�. A ontribution analogous to (58) is obtained from thequark singlet term in (56) and omes with a similar enhanement.Conerning the hoie of fatorization sale, it is lear that the size of the orretions in (56) isdereased if �GPD is taken smaller than Q. It is also lear that no sale hoie an eliminate boththe gluon and quark singlet ontribution in this expression. To make at least the gluon term forn = 0 disappear one needs �2GPD = e�2Q2 � 0:14Q2. For a wide range of Q2 this is outside theperturbative region or at least so low that the quark singlet distribution has a rather small power �and an thus give important orretions. We note that previous analyses of vetor meson produtionat small xB have argued for a fatorization sale well below Q2, based on di�erent estimates of thetypial virtualities in the leading-order graphs [15, 38℄. We also note that the �R dependent term�0 ln(�2R=�2GPD) in the gluon kernel (11) does not appear in the approximation (50) whih dominatesthe onvolutions at small xB . The hoie of �R an thus not ure the huge NLO orretions we havedisussed. 20



5 Vetor meson prodution at moderate to large xBLet us now investigate the NLO orretions in typial �xed-target kinematis, as it is aessibleat HERMES, JLab and COMPASS. We take again t = 0 and for de�niteness present estimates atQ2 = 4GeV2. For larger Q2, whih will in partiular be aessible with the JLab energy upgrade to12GeV, the orretions are in general smaller.In Fig. 8 we ompare the LO and NLO parts of the onvolution integrals. In the gluon setorwe �nd no simple piture, with relative orretions that are typially moderate but beome largefor ReHg at smaller xB and for ImHg at larger xB . For the quark singlet the situation is similarto the one in the small-xB region, i.e. we have rather large NLO orretions from HS(b) with signopposite to the LO part of HS(a), whereas the NLO orretions in HS(a) are smaller. Adding gluonand quark singlet ontributions, we �nd that for n = 0 the NLO orretions are of reasonable size forthe imaginary part. For the real part at lower xB , the orretions are however large and of oppositesign ompared to the Born term. We note that the onvolutions H satisfy a dispersion relation in1=xB for �xed Q2 and t [39℄. In this representation their real parts at a given xB are sensitive to theimaginary part at smaller values of xB, where the NLO orretions rapidly inrease as we have seenin the previous setion. Turning to the quark non-singlet onvolutions, we see in Fig. 9 that for n = 0the NLO orretions are omparatively moderate for the imaginary part and larger for the real part.Going from n = 0 to higher Gegenbauer indies n = 2 and n = 4, the NLO orretions beomelarger, as we see in Figs. 8 and 9 and already observed at small xB. Generially this is not unexpeted,sine the z dependent kernels (10) ontain logarithms ln z and ln �z whih enhane the endpointregions of the z integration, and those endpoint regions are more prominent for higher Gegenbauerpolynomials in the expansion (15). Note that aording to phenomenologial estimates or lattiealulations the oeÆients an of these polynomials are learly smaller than a0, so that inreasingorretions to Hn for higher n do not a�et the sumPn anHn as muh. We note that in the modi�edhard-sattering approah of Sterman et al. [14℄, whih goes beyond the ollinear approximation used inthe present work, the endpoint regions in z are suppressed by radiative orretions that are resummedinto Sudakov form fators. As just disussed, we do not observe suh a suppression in the �xed-orderresults analyzed here, where various positive and negative orretions ompete with eah other|onlysome of them related to the Sudakov fator. How the situation will be at higher orders is an importantquestion, whih goes beyond the sope of the present work.Let us now take a loser look at the �R dependene of the orretions. As we explained in Set. 2,the pure quark singlet kernel Tb is independent of this sale at O(�2s). Aording to (11) the gluonkernel Tg depends on �2R only through �0 ln(�2R=�2GPD), whih originates from graphs with gluonpropagator orretions suh as the one shown in Fig. 10. The �GPD dependene of this term isonneted with the ontribution proportional to �0 in the evolution kernel V gg for the gluon GPD,given in (92). As already pointed out in Set. 4, the term �0 ln(�2R=�2GPD) does not ontribute to thelarge-jyj behavior of Im tg;n(y) and is hene not relevant for the huge NLO orretions at small xB.For the kernel Ta the situation is more involved. The general struture of its onvolution with thequark singlet distribution HS an be written asHS(a)n = �0�HS(a)n;� +HS(a)n;R ln Q2�2R�+HS(a)n;C +HS(a)n;G ln Q2�2GPD +HS(a)n;D ln Q2�2DA (59)with an analogous deomposition for the onvolutions H(3)n and H(8)n . The terms proportional to �0originate from graphs with gluon propagator orretions suh as in Fig. 10, whereas the terms withsubsripts C;G;D do not ontain �0. In Fig. 11 we show the orresponding ontributions for n = 0.We see that terms multiplying ln(Q2=�2GPD) are rather small, whereas those going with ln(Q2=�2DA)are of ourse absent for n = 0. The term H0;R is learly smaller than H0;� and has opposite sign.21
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gluon ontributions are nearly absent, so that the quark singlet ontribution dominates in this setor.We note that, ontrary to the individual terms, the sum of gluon and quark singlet ontributionsomes out to be rather similar in the two models and is small ompared with the avor non-singletontributions shown in Figs. 18 and 19. Aording to our disussion at the end of Set. 3.1 this hasits origin in the sum rule (43) for the seond moment of E at t = 0, so that we expet a small netontribution from gluons and the quark singlet in large lass of models for E.As shown in Figs. 18 and 19, the NLO orretions to the quark non-singlet onvolutions arerelatively moderate but not small, similarly to the ase of H. The size of the onvolutions is quitedi�erent in the two models, indiating the important role played at intermediate xB by sea quarks inmodel 1. Let us reall that with the double distribution ansatz (33) the GPDs at x � � are sensitiveto forward parton distributions with momentum frations well below �, as disussed in Set. 4.3.3of [17℄.7 Cross setions and asymmetriesHaving studied in detail the building bloks of the sattering amplitude for vetor meson prodution,we now ombine them to observables. We reall that to leading order in 1=Q there are just two ofthese: the unpolarized �p ross setion and the asymmetry for a transversely polarized target, bothreferring to longitudinal polarization of virtual photon and produed meson. The ep ross setion inthe leading 1=Q approximation an be written asd�(ep! epV )dt dQ2 dy d� d�S = �4�3 1� xBQ2 1� yy d�Ldt h1 + ST sin(�� �S)AUT i (60)where y is the usual inelastiity variable for deep inelasti sattering and ST denotes the transverseomponent of the target polarization. � is the azimuthal angle between lepton plane and hadron plane,and �S is the azimuthal angle between lepton plane and target spin vetor, both de�ned aordingto the Trento onvention [40℄. The �p ross setion d�L=dt and the polarization asymmetry AUTdepend on xB, Q2 and t. To leading order in 1=Q they are given byd�Ldt = �29 �Q6 (2� xB)21� xB f2V h(1� �2) jHV j2 � �t=(4m2p) + �2� jEV j2 � 2�2Re�E�V HV �i (61)and AUT = pt0 � tmp p1� �2 Im�E�V HV �(1� �2) jHV j2 � �t=(4m2p) + �2� jEV j2 � 2�2Re�E�V HV � ; (62)where t0 = �4m2p�2=(1� �2). Here we have ombined the onvolutions (19) intoFV = QV 1Xn=0 an�Fgn +HS(a)n + FS(b)n + e(3)V F (3)n + e(8)V F (8)n � ; (63)with analogous ombinations for HV and EV . In the remainder of this setion we take the asymptotiform of the meson distribution amplitude, i.e. we set an = 0 for n � 2. As long as EV is not muhlarger than HV , the ross setion (61) is dominated by the term with jHV j2 in a wide range ofkinematis, where the prefators �2 and t=(4m2p) of the other terms are small. The asymmetry (62)is then approximately given byAUT � pt0 � tmp Im�E�V HV �jHV j2 = pt0 � tmp ���� EVHV ���� sin ÆV ; (64)33
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the one of E(3) in Fig. 18. We note that the dominane of the imaginary over the real part in E! andE� is less pronouned in model 2, as an be antiipated by omparing Figs. 18 and 19.The ross setion d�L=dt for � prodution is dominated by (ImH�)2, exept for ontributionsfrom (ReH�)2 at small xB for NLO and at large xB for LO. Given the size of orretions to ImH�in Fig. 20 we thus have quite substantial NLO e�ets in the ross setion at Q2 = 4GeV2, as shownin Fig. 22. For Q2 = 9GeV2 and xB > 0:1 the relative orretions derease. The plot has beenalulated with model 1 for E, but sine its ontribution to d�L=dt is negligible the orrespondingurves for model 2 look very similar. To obtain an estimate of sale unertainties, we show bandsorresponding to � = �R = �GPD between 2GeV and 2Q. Given our disussion in the previoussetion, we do not onsider it meaningful to go to sales below 2GeV, so that the bands in the �gureare strongly asymmetri. For Q2 = 4GeV2 they go only in one diretion, and the band of the LOresult does not provide an estimate for the size of the NLO orretions, whih turn out to go in theother diretion.We have a very peuliar situation for the polarization asymmetry AUT in � prodution, whihas shown in Figs. 23 and 24 is very small in both models 1 and 2 due to the anellations in E�disussed above. AUT hanges quite dramatially from LO to NLO in a wide range of kinematis,learly beause of the NLO orretions in the numerator. A loser look at Fig. 20 reveals that thelarge perturbative orretions in Im�E��H�� are mainly due to the large orretions to both ReH�and Re E�. These hardly a�et the unpolarized ross setion, whih is strongly dominated by ImH�.At higher Q2 the instability of AUT is less pronouned, and in model 2 we even have quite smallorretions. We note that the bands from the sale variation at LO order are extremely narrow inFigs. 23 and 24. This is beause the sale variation of �s(�R) anels in the ratio AUT at LO andbeause in the kinematis we are looking at, the �GPD dependene of H� and E� is rather weak. Inthis situation, the sale unertainty of the LO result does obviously not provide a good estimate forthe size of higher-order orretions. Let us �nally remark that at t = �0:4GeV2 the asymmetry AUTmust go to zero as xB tends to 0:484 beause of the prefator pt0 � t in (62).The ross setion for ! prodution is shown in Fig. 25 and shows a similar pattern of NLOorretions to the one in � prodution, reeting the similar pattern of orretions we have seen forImH� and ImH!. As a result the ratio of ross setions d�L=dt in the two hannels is quite stableunder radiative orretions, as seen in Fig. 26. The target polarization asymmetry, shown in Fig. 27for model 1, hanges however drastially between LO and NLO at small to intermediate xB . This isbeause ImE! then dominates over Re E!, so that its produt with the unstable onvolution ReH!ontrols the numerator of the asymmetry. The absolute size of AUT an be large in this hannelsine jE!j � jH!j in our model. Aording to Fig. 21, the relative phase Æ! is lose to zero at LO forxB <� 0:3, so that the fator sin Æ! in (64) makes AUT small and prone to large radiative orretions.Let us �nally take a look at � prodution. At LO this hannel is strongly dominated by gluonexhange, sine in our models strange quark distributions are small for H and even more so for E.At NLO we have further ontributions from the pure singlet terms HS(b) and ES(b), whih are notnegligible. We see in Fig. 28 that the NLO orretions to the ross setion are large at small xB andslowly derease with xB. Exept for the region of small xB , this pattern is quite di�erent from theone in � prodution, so that the ross setion ratio for the two hannels reeives important orretionsat larger xB as we see in Fig. 29. The asymmetry AUT is essentially zero at LO, beause in our modelthe relative phase Æ� between H� and E� is very lose to zero. This hanges at NLO, where in model 1we obtain a small to moderate AUT , as shown in Fig. 30.
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8 Pseudosalar meson produtionHaving studied in detail the prodution of vetor mesons, let us �nally take a look at pseudosalarprodution. We will only onsider �p ! �+n, whih was already studied at NLO in [10℄. Gluondistributions do not ontribute in this hannel.In the ollinear approximation the amplitude for this proess an be written asM = 4�p4���QN f� Z 10 dz ��(z)Z 1�1 dx heuTa(�z; x; �)� edTa(z;�x; �)i h eF u(x; �; t)� eF d(x; �; t)i= 4�p4���QN f� 1Xn=0 an eF �n (65)with eu = 2=3, ed = �1=3 and f� = 131MeV. ��(z) is the twist-two distribution amplitude of thepion and has a Gegenbauer deomposition as in (15). The onvolutions eF �n are de�ned aseF �n = Z 1�1 dx heuTa;n(x; �) � edTa(�x; �)i h eF u(x; �; t)� eF d(x; �; t)i ; (66)and the kernels Ta(�z; x; �) and Ta;n(x; �) are the same as in Set. 2. The matrix elements eF q are theounterparts of F q for polarized quarks and given byeF q(x; �; t) = 1(p+ p0) � n � eHq(x; �; t) �u(p0)=n5u(p) + eEq(x; �; t) �u(p0) (p0 � p) � n2mp 5u(p)� (67)in terms of the generalized parton distributions eH and eE, where as in the unpolarized ase we usethe onventions of [17℄. Sine the hard-sattering kernel in (66) is neither even nor odd in x, theonvolution involves both the harge-onjugation even and odd ombinationseF q(+)(x; �; t) = eF q(x; �; t) + eF q(�x; �; t) ; eF q(�)(x; �; t) = eF q(x; �; t) � eF q(�x; �; t) : (68)We model the distributions eH in lose analogy to the unpolarized ase and seteHq(+)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �) eHq(+)(�; 0; t) ;eHq(�)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �) eHq(�)(�; 0; t) ; (69)with h(2)(�; �) as in (24) andeHq(+)(x; 0; t) = �qv(x) exp�tfqv(x)�+ 2��q(x) exp�tf�q(x)� ;eHq(�)(x; 0; t) = �qv(x) exp�tfqv(x)� (70)for x > 0. The values for x < 0 are determined by the symmetry properties following from (68). Forthe polarized valene and antiquark densities �qv and ��q we use the NLO parameterization from[41℄ at � = 2GeV, and for the t dependene we take the same funtions fqv(x) as in (26), (27) andfurthermore set f�q(x) = fqv(x). As was shown in [28℄, this gives a good desription of the isovetoraxial form fator via the sum ruleFA(t) = Z 10 dx � eHu(+)(x; 0; t) � eHd(+)(x; 0; t)� : (71)39
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form of the pion distribution amplitude, where the onvolution has no dependene on �GPD and �DA.We then have the rather large oeÆient 79=12 � 6:6 in square brakets, so that with the sale hoie�R = Q there are quite large NLO orretions. The orretions are zero for �2R = e�79=27Q2 � 0:05Q2,whih is outside the perturbative region for most ases relevant in pratie. The BLM sale for thisase is yet smaller: with (73) we reprodue the well-known result �2R = e�14=3Q2 � 0:01Q2 [10℄. TheoeÆient of �s=� in (74) is then �47=12 � �3:9 and thus again rather large, but of ourse the sale�R is outside the perturbative region for all experimentally relevant kinematis. We �nally see in (74)that for higher Gegenbauer moments the orretion terms are larger than for m = n = 0. The reasonfor this is the same whih we disussed in Set. 5 for the onvolutions H. In (73) we also see that theBLM sale beomes smaller for higher m and n.The observables for exlusive pion prodution at leading order in 1=Q are the same as for vetormeson prodution, and the ep ross setion is given as in (60). The ross setion for a longitudinalphoton and the transverse target asymmetry are now respetively given byd�Ldt = �29 �Q6 (2� xB)21� xB (2f�)2 h(1� �2) j eH�j2 � �2 t=(4m2p) jeE�j2 � 2�2Re�eE�� eH��i (75)and AUT = �pt0 � tmp �p1� �2 Im�eE�� eH��(1� �2) j eH�j2 � �2 t=(4m2p) j eE�j2 � 2�2Re�eE�� eH�� ; (76)with eH� = 1Xn=0 an eH�n ; eE� = 1Xn=0 an eE �n : (77)For numerial estimates we take the asymptoti pion distribution amplitude in the following, settingan = 0 for n � 2. We note that the reent lattie study [22℄ obtained a rather moderate valuea2(�0) = 0:201(114) at �0 = 2GeV.In Fig. 32 we show the separate ontributions from the terms with j eH�j2 and with jeE�j2 in (75),as well as the full result. We see that at the value of t hosen here, the ontribution from j eH�j2 ismore important, mainly beause of the suppression fator (�2 �m2�)=(�2 � t) in our model (72) foreE. The square of this fator is 0:36 at t = �0:4GeV2.We ompare the LO and NLO results for the ross setion in Fig. 33 and �nd that the NLOorretions are quite large, even at Q2 = 9GeV2. In ontrast, the orretions for the beam spinasymmetry are very small as seen in Fig. 34, in line with the �ndings reported in [10℄. Note that withour model eE� is purely real, so that at intermediate xB the large relative NLO orretions in Re eH�do not a�et the numerator of AUT in (75). Approximating the asymmetry asAUT � �pt0 � tmp � Im�eE�� eH��j eH�j2 = �pt0 � tmp ����� eE�eH� ���� sin Æ� (78)with Æ� = arg( eH�=eE�), we an understand why only small orretions are seen in this ase: therelative phase Æ� is well di�erent from zero, and the NLO orretions inrease both j eH�j and jeE�j.
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9 SummaryIn this work we have analyzed the NLO orretions for exlusive meson prodution at large Q2 in theollinear fatorization approah. Using the Gegenbauer expansion of meson distribution amplitudes,we have rewritten the hard-sattering kernels of [11℄ into funtions depending on only one variable,and we have separated the expliit logarithms in the fatorization sale for the meson distributionamplitude and the generalized parton distributions.For vetor meson prodution at small xB we �nd huge NLO orretions even for Q2 well above10GeV2, in agreement with the results obtained in [11℄. The orretions have opposite sign omparedto the Born term and an be traed bak to BFKL type logarithms in the hard-sattering kernels,whih appear with rather large numerial prefators in this proess. We onlude at this stagethat a quantitative ontrol of radiative orretions at small xB will require resummation of theselogarithms. First steps in this diretion have been reported in [43℄. If suessful, suh a resummationin ombination with a dispersion relation [39℄ may also be useful for stabilizing the real part of theamplitude, where we �nd very large NLO orretions even at xB � 0:1.At intermediate to large xB , typial of �xed-target experiments, we have investigated the pro-dution of �0, !, � and of �+. We �nd NLO orretions to the longitudinal ross setions of up to100%, whih somewhat derease in size when going from Q2 = 4GeV2 to 9GeV2. Note that the me-son prodution ross setion depends quadratially on generalized parton distributions|the inreasedsensitivity to these basi quantities omes with an inreased sensitivity to higher-order orretions.We generally �nd that unertainties on the ross setion due to the hoie of renormalization andfatorization sales are not too large at LO and do not signi�antly derease when going to NLO. Forsales below 4GeV2, however, NLO orretions often grow out of ontrol. The ross setion ratio for! to � prodution turns out to be very stable under orretions, but less so the one for � to �. Forthe transverse target polarization asymmetry AUT in �+ prodution we �nd quite small NLO e�ets,on�rming the results in [10℄. For vetor meson prodution this is however not the ase. With themodels we have used for the nuleon heliity-ip distributions E, the numerator of the asymmetry inthis hannel is dominated by the produt (Im EV )(ReHV ) in a wide range of kinematis and thereforesu�ers from the perturbative instability we �nd for ReHV at small to intermediate xB , even if theorretions to Im EV are not too large. It is often assumed that orretions tend to anel in asym-metries. The examples we have studied show that this may hold in spei� ases but not in others,and that speial are is needed for observables like AUT that depend on the relative phase betweenamplitudes.We should reall that in the kinematis we studied, one must expet that our leading-twist resultsreeive power orretions that annot be negleted when omparing with data. They will ertainlya�et the ross setions and will not always anel in ross setion ratios. An example is the transversetarget polarization asymmetry in �+ prodution. The phenomenologial estimates in [12℄ found thatthe onvolution eH� is dereased by e�ets of transverse parton momentum in the hard sattering,whereas eE� is inreased by the soft overlap mehanism that has been extensively studied in the ontextof the pion form fator. Together, these orretions may signi�antly inrease leading-twist estimatesfor AUT .From our numerial studies we must onlude that a preise quantitative interpretation of exlu-sive meson prodution requires large Q2, say above 10GeV2. In addition it would be highly valuableto have a onsistent sheme for ombining radiative with power orretions, at least in parts. Nev-ertheless, we �nd that valuable information on generalized parton distributions an be obtained alsofrom data at lower Q2. In partiular, a large measured asymmetry AUT in vetor meson produtionwould give valuable onstraints on the size of the proton heliity-ip distribution Eg for gluons, whihare most diÆult to obtain in deeply virtual Compton sattering or from lattie QCD alulations.43



AknowledgmentsWe gratefully aknowledge disussions with L. Favart, H. Fisher, P. Kroll, A. Rostomyan andA. Sh�afer. Speial thanks are due to D. Yu. Ivanov for numerous onversations and advie. Thiswork is supported by the Helmholtz Assoiation, ontrat number VH-NG-004.A PolylogarithmsWe ollet here some properties of the polylogarithms that appear in the hard-sattering kernels formeson prodution. Their de�nitions areLi2 z = �Z 10 dtt ln(1� zt) ; Li3 z = Z 10 dtt Li2(zt) ; (79)from whih one readily obtains for the imaginary partsImhLi2(�y + i�)i = ��(�y) ln �y ; ImhLi3(�y + i�)i = �2 �(�y) ln2 �y : (80)The limiting behavior for y ! �1 an be obtained from the expansionsLi2 y = ��26 � 12 ln2(�y)� 1Xn=1 y�nn2 ; Li3 y = ��26 ln(�y)� 16 ln3(�y) + 1Xn=1 y�nn3 ; (81)whih are valid for y < �1, and fromRehLi2 �yi = �23 � 12 ln2 �y � 1Xn=1 �y�nn2 ; RehLi3 �yi = �23 ln �y � 16 ln3 �y + 1Xn=1 �y�nn3 ; (82)whih holds for y < 0. A useful relation �nally isLi2 y + Li2 �y = �26 � (ln y) (ln �y) : (83)A wealth of further information an be found in [44℄.B Hard-sattering kernels for higher Gegenbauer momentsIn this appendix we give the analogs of the hard-sattering kernels in (21) for Gegenbauer index n = 2and n = 4. For the gluon kernel we �ndtg;2(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD � 2512 CF ln Q2�2DA+ CF�3536(5� 54y�y)� y2 ln2 y�y � 7(�y � y)(1� 30y�y) Li2 �y+�1�y � 32 � 3923 y + 525y2 � 420y3� ln y�+ CA��154 (1� 4y�y) +�1�y � 2y� ln2 y + (�y � y)(7� 60y�y) Li2 �y��233�y + 56 � 58y + 150y2 � 120y3� ln y�44



+ 6y�yh5(1� 4y�y)CA � 14(1� 5y�y)CF i�3Li3 �y � ln y Li2 y � �26 ln y�+ fy ! �yg ;tg;4(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD � 9130 CF ln Q2�2DA+ CF�272871800 � 595y�y + 2520(y�y)2 � y2 ln2 y�y + 16(�y � y)�1� 105y�y + 630(y�y)2�Li2 �y+�1�y � 52 � 1159615 y + 9660y2 � 34160y3 + 45360y4 � 20160y5� ln y�+ CA��3516 (1� 4y�y)(5� 72y�y) +�1�y � 2y� ln2 y + 2(�y � y)�8� 315y�y + 1260(y�y)2�Li2 �y��25730�y + 7760 � 17415 y + 2940y2 � 8960y3 + 11340y4 � 5040y5� ln y�+ 30y�yh7(1 � 4y�y)(1� 6y�y)CA� 16�1� 14y�y + 42(y�y)2�CF i�3Li3 �y � lny Li2 y � �26 ln y�+ fy ! �yg ; (84)and for the pure singlet kerneltb;2(y) = 2(�y � y) ln y�y �ln Q2�2GPD � 236 �+ (�y � y) ln2 y�y � 152 (�y � y)+ 2(7 � 60y�y) Li2 �y ��53 � 90y + 120y2� ln y+ 60(�y � y)y�y �3Li3 �y +�Li2 �y + ln2 �y � �23 � ln y�� fy ! �yg ;tb;4(y) = 2(�y � y) ln y�y �ln Q2�2GPD � 25760 �+ (�y � y) ln2 y�y � 358 (�y � y)(5� 72y�y)+ 4�8� 315y�y + 1260(y�y)2�Li2 �y ��7730 � 665y + 4550y2 � 8820y3 + 5040y4� ln y+ 420(�y � y)y�y(1� 6y�y) �3Li3 �y +�Li2 �y + ln2 �y � �23 �ln y�� fy ! �yg : (85)The quark non-singlet kernel readsta;2(y) = �0 �214 � ln y � ln Q2�2R �+ CF�(3 + 2 ln y) ln Q2�2GPD � 256 ln Q2�2DA � 101972 ��1�y + 76� ln y + ln2 y�+ (2CF � CA)�40112 � 255y + 270y2 ��2993 � 867y + 1830y2 � 1080y3� ln �y+�563 � 357y + 1290y2 � 1080y3� ln y + 2�22� 291y + 780y2 � 540y3� �Li2 y � Li2 �y�+ 12(1 � 21y + 106y2 � 175y3 + 90y4)� �3�Li3 �y + Li3 y�� ln y Li2 y � ln �y Li2 �y � �26 �ln y + ln �y��� ;45



ta;4(y) = �0 �315 � ln y � ln Q2�2R �+ CF�(3 + 2 ln y) ln Q2�2GPD � 9115 ln Q2�2DA � 10213900 ��1�y + 4615� ln y + ln2 y�+ (2CF � CA)�490340 � 57752 y + 570854 y2 � 23310y3 + 11970y4��2110960 � 414515 y + 1032852 y2 � 125020y3 + 129150y4 � 47880y5� ln �y+�289960 � 110015 y + 455352 y2 � 78400y3 + 105210y4 � 47880y5� ln y+ �137� 4506y + 35280y2 � 100380y3 + 117180y4 � 47880y5� �Li2 y � Li2 �y�+ 30�1� 48y + 580y2 � 2590y3 + 5166y4 � 4704y5 + 1596y6�� �3�Li3 �y + Li3 y�� ln y Li2 y � ln �y Li2 �y � �26 �ln y + ln �y��� : (86)Using (11), (12) and the representationn = (�1)n+1 2CF Z 10 dz (1� z)(3 + 2 ln z)C3=2n (2z � 1) (87)of the anomalous dimensions, we an give a losed form for the sale dependent terms for all even n,tg;n(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD � n2 ln Q2�2DA + fy ! �yg+ : : : ;tb;n(y) = 2(�y � y) ln y�y ln Q2�2GPD � fy ! �yg+ : : : ;ta;n(y) = �0�196 + n2CF � ln y � ln Q2�2R�+ CF (3 + 2 ln y) ln Q2�2GPD � n ln Q2�2DA + : : : ; (88)where the terms denoted by : : : are independent of Q2 and the sales and do not involve �0. Fromthe sale dependene (16) of the Gegenbauer oeÆients of the meson distribution amplitude we anreadily reonstrut their evolution equation�2 dd�2 an(�) = ��s(�)4� nan(�) +O(�2s) : (89)With (20) and (88) we see that the �DA dependene of the proess amplitude (18) anels up to termsof order �3s, as it must be.C Evolution kernelsFor de�niteness we give here the LO evolution kernels for GPDs, whih we have used to hek thesale invariane of the NLO amplitude for meson prodution as explained in Set. 2. The non-singletevolution equation reads�2 dd�2 FNS(x; �; t) = Z 1�1 dyj�j V NS�x� ; y��FNS(y; �; t) ; (90)46



where FNS an be a avor non-singlet ombination suh as F u(+)�F d(+), or the harge-onjugationodd ombination F q(�)(x; �; t) = F q(x; �; t) + F q(�x; �; t) for a single quark avor. In the gluon andquark singlet setor we have a matrix equation�2 dd�2  F S(x; �; t)F g(x; �; t)! = Z 1�1 dyj�j 0� V qq �x� ; y�� ��1V qg �x� ; y���V gq �x� ; y�� V gg �x� ; y�� 1A  F S(y; �; t)F g(y; �; t)! (91)with F S de�ned in (5). At O(�s) one has V NS(x; y) = V qq(x; y) andV qq(x; y) = �s4� CF ��(x; y) 1 + x1 + y �1 + 2y � x�+ fx! �x; y ! �yg�+ ;V qg(x; y) = ��s4� 2TF nf ��(x; y) 1 + x(1 + y)2 (1� 2x+ y � xy)� fx! �x; y ! �yg� ;V gq(x; y) = �s4� CF ��(x; y) �(2� x)(1 + x)2 � (1 + x)21 + y �� fx! �x; y ! �yg� ;V gg(x; y) = �s4� CA ��(x; y) (1 + x)2(1 + y)2 �2 + 2y � x�+ fx! �x; y ! �yg�++ �s4� CA ��(x; y) (1 + x)2(1 + y)2 (1� 2x+ 2y � xy) + fx! �x; y ! �yg�+ �s4� ��0 � 143 CA� Æ(x� y) (92)with TF = 1=2 and the remaining onstants as given in (13). The plus-presription appearing in V qqand V gg is de�ned by �f(x; y)�+ = f(x; y)� Æ(x� y)Z dz f(z; y) ; (93)and the funtion �(x; y) spei�es the support as�(x; y) = ��1 + x1 + y� ��1� 1 + x1 + y� sgn(1 + y) = �(y � x) �(x+ 1)� �(x� y) �(�x� 1) : (94)The evolution equations for polarized GPDs read as in (90) and (91), with the unpolarized matrixelements F and kernels V replaed by their polarized ounterparts eF and eV . With eF q(+) and eF q(�)de�ned in (68) above, eFNS an be either a avor non-singlet ombination like eF u(+) � eF d(+) or aharge-onjugation odd ombination eF q(�), whereas the avor singlet ombination is given byeF S = eF u(+) + eF d(+) + eF s(+) : (95)To O(�s) the polarized evolution kernels areeV NS(x; y) = eV qq(x; y) = V qq(x; y) (96)and eV qg(x; y) = ��s4� 2Tf nf ��(x; y) 1 + x(1 + y)2 � fx! �x; y ! �yg� ;eV gq(x; y) = �s4� CF ��(x; y) (1 + x)21 + y � fx! �x; y ! �yg� ;47
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