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Abstra
tWe analyze in detail the size of next-to-leading order 
orre
tions to hard ex
lusive mesonprodu
tion within the 
ollinear fa
torization approa
h. Corre
tions to the 
ross se
tionare found to be huge at small xB and substantial in typi
al �xed-target kinemati
s. Withthe models we take for nu
leon heli
ity-
ip distributions, the transverse target polarizationasymmetry in ve
tor meson produ
tion is strongly a�e
ted by radiative 
orre
tions, ex
eptat large xB . Its overall size is very small for � produ
tion but 
an be large in the ! 
hannel.
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1 Introdu
tionGeneralized parton distributions (GPDs) have developed into a versatile tool to quantify importantaspe
ts of hadron stru
ture in QCD. In parti
ular they 
ontain unique information on the transversespatial distribution of partons [1℄ and on spin-orbit e�e
ts and orbital angular momentum insidethe nu
leon [2, 3℄. Deeply virtual Compton s
attering is widely re
ognized as the pro
ess providingthe theoreti
ally 
leanest a

ess to GPDs, with a wealth of observables 
al
ulable in the large Q2limit [4℄ and with the 
al
ulation of the hard-s
attering subpro
ess now pushed to next-to-next-to-leading order (NNLO) a

ura
y in �s [5℄. A quantitative theoreti
al des
ription of ex
lusive mesonprodu
tion remains a 
hallenge. It would o�er the possibility to obtain important 
omplementaryinformation, diÆ
ult to obtain from Compton s
attering alone. Perhaps most importantly, ve
tormeson produ
tion is dire
tly sensitive to gluon distributions, whi
h in the Compton pro
ess are �ssuppressed relative to quark distributions and only a

essible through s
aling violation (just as inthe well-known 
ase of in
lusive deep inelasti
 s
attering). Given in addition the large number of
hannels that 
an be studied and the wealth of high-quality data in a wide range of kinemati
s from
ollider to �xed-target energies [6, 7℄, it should be worthwhile to try and push the theory des
riptionof ex
lusive meson produ
tion as far as possible.In this work we study the ex
lusive produ
tion of light mesons at large photon virtuality Q2within the framework of 
ollinear fa
torization [8℄. In Bjorken kinemati
s, the pro
ess amplitude 
anbe approximated by the 
onvolution of hard-s
attering kernels with generalized parton distributionsand the quark-antiquark distribution amplitude of the produ
ed meson. The hard-s
attering kernelshave been 
al
ulated to O(�2s), i.e. to next-to-leading order (NLO) a

ura
y [9, 10, 11℄. The aim ofthe present paper is to investigate in some detail the size of the NLO 
orre
tions 
ompared with theleading-order (LO) results, on whi
h phenomenologi
al studies have so far relied.The 
ollinear fa
torization approa
h provides an approximation of the leading heli
ity amplitudesfor meson produ
tion in the Bjorken limit, up to relative 
orre
tions of order 1=Q2. These power
orre
tions 
annot be 
al
ulated systemati
ally (and in fa
t the derivation [8℄ of the fa
torizationtheorem suggests that these 
orre
tions do not all fa
torize into hard-s
attering kernels and nonper-turbative quantities pertaining to either the nu
leon or the produ
ed meson). One parti
ular sour
eof power 
orre
tions 
an however readily be identi�ed, namely the e�e
t of the transverse momentumof partons entering the hard-s
attering subpro
ess, whi
h in the 
ollinear approximation is negle
tedin the 
al
ulation of the hard-s
attering kernel. A number of approa
hes in
lude these kT e�e
ts,in parti
ular the studies in [12, 13℄ based on the modi�ed hard-s
attering formalism of Sterman etal. [14℄, and 
al
ulations like [15℄ whi
h are based on the 
olor dipole formulation. In the work byMartin, Ryskin and Teubner [16℄, parton-hadron duality is used to model the meson formation andthus the transverse momentum of the hadronizing quarks is in
luded in the 
al
ulation, whereas thetransverse momentum of gluons in the proton is treated within high-energy kT fa
torization. Thestudies just quoted agree in that transverse momentum e�e
ts result in substantial power 
orre
tionsto the 
ollinear approximation for Q2 up to several GeV2. Unfortunately, the 
al
ulation of fullNLO 
orre
tions in �s remains not only a pra
ti
al but also a 
on
eptual 
hallenge in all of theseapproa
hes, so that the perturbative stability of their results 
annot be investigated at present. (Theapproa
h of Sterman et al. takes partial a

ount of radiative 
orre
tions, resumming a 
ertain 
lassof them into Sudakov form fa
tors.)A 
onsistent simultaneous treatment of radiative and power 
orre
tions being out of rea
h atthis time, a possible strategy is to study the NLO 
orre
tions in the 
ollinear approximation and inparti
ular to identify kinemati
al regions where these 
orre
tions are moderate or small. There one
an then use with greater 
on�den
e formulations in
orporating power 
orre
tions. In this spirit thepresent investigation should be understood. We will study both the 
ross se
tion for meson produ
tion3



from an unpolarized target and the transverse target polarization asymmetry. This asymmetry is oneof the few observables sensitive to the nu
leon heli
ity-
ip distributions (in parti
ular for gluons) andhen
e to the spin-orbit and orbital angular momentum e�e
ts mentioned above. We will in parti
ularsee whether 
orre
tions tend to 
an
el in this polarization asymmetry, as is often assumed.In the bulk of this paper we 
on
entrate on the produ
tion of ve
tor mesons. In Se
t. 2 we set upour notation and re
all important properties of the hard-s
attering kernels at NLO, as well as givinga one-variable representation of these kernels after Gegenbauer expansion of the meson distributionamplitude. In Se
t. 3 we spe
ify the model of the generalized parton distributionsH and E we use forour numeri
al studies. The size of radiative 
orre
tions involving 
onvolutions with distributions His then studied in Se
ts. 4 and 5 for small and large xB , respe
tively, and the 
onvolutions involvingdistributions E are quanti�ed in Se
t. 6. In Se
t. 7 we then look at the NLO 
orre
tions at the level ofthe observable 
ross se
tion and polarization asymmetry. A brief study of ex
lusive pion produ
tionin Se
t. 8 
omplements our work, and in Se
t. 9 we summarize our main �ndings. A number of morelengthy formulae is 
olle
ted in appendi
es.2 Hard-s
attering kernelsIn the main part of this paper we are 
on
erned with ex
lusive produ
tion of a ve
tor meson
�(q) + p(p)! V (q0) + p(p0) (1)in the limit of large Q2 = �q2 at �xed Bjorken variable xB = Q2=(2p � q) and �xed t = (p� p0)2. Toleading order in 1=Q, the amplitude for longitudinal polarization of photon and meson 
an be writtenas M = 2�p4���QN
 QV fV Z 10 dz �V (z)Z 1�1 dx�Tg(z; x; �)F g(x; �; t)+ 1nf hTa(�z; x; �)� Ta(z;�x; �)iF S(x; �; t) + Tb(z; x; �)F S(x; �; t)+ e(3)V hTa(�z; x; �) � Ta(z;�x; �)i hF u(+)(x; �; t)� F d(+)(x; �; t)i+ e(8)V hTa(�z; x; �) � Ta(z;�x; �)i hF u(+)(x; �; t) + F d(+)(x; �; t) � 2F s(+)(x; �; t)i� (2)with �z = 1 � z, N
 = 3, and the ele
tromagneti
 �ne stru
ture 
onstant �. Throughout this paperwe work with nf = 3 a
tive quark 
avors. The proton matrix elements F are parameterized bygeneralized parton distributions,F q;g(x; �; t) = 1(p+ p0) � n �Hq;g(x; �; t) �u(p0)=nu(p) +Eq;g(x; �; t) �u(p0) i���n�(p0 � p)�2mp u(p)� (3)for quarks and gluons, where we use the 
onventions of [17℄. Here n is a light-like auxiliary ve
tor,� = xB=(2 � xB) is the skewness variable, and mp denotes the nu
leon mass. We have furtherintrodu
ed the 
ombination F q(+)(x; �; t) = F q(x; �; t)� F q(�x; �; t) (4)with positive 
harge 
onjugation parity. In (2) we have arranged the terms 
ontaining quark distri-butions into the 
avor singlet F S = F u(+) + F d(+) + F s(+) (5)4
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pFigure 1: Example graphs for the hard-s
attering kernels Ta, Tb and Tg at order �2s.and the 
avor triplet and o
tet 
ombinations, F u(+)�F d(+) and F u(+)+F d(+)� 2F s(+). The fa
torsQ� = 1p2 ; Q! = 13p2 ; Q� = �13 (6)and e(3)� = e(8)� = e(8)! = 16 ; e(3)! = 32 ; e(3)� = 0 ; e(8)� = �13 (7)
orrespond to a respe
tive 
avor 
ontent1p2�ju�ui � jd �di� ; 1p2�ju�ui+ jd �di� ; js�si (8)of the �, ! and �. The meson distribution amplitudes �V (z) are normalized as R 10 dz �V (z) = 1, andthe de
ay 
onstants have the values f� = 209MeV, f! = 187MeV, f� = 221MeV [18℄. We �nallyhave hard-s
attering kernels in (2), where Tg goes with gluon and Ta, Tb go with quark distributionsin the proton. In the graphs for Ta quark lines 
onne
t the proton and meson side, whereas in thegraphs for Tb the proton and meson side are only 
onne
ted by gluon lines. Tb thus starts at order �2sand only goes with the quark singlet distribution F S . Example graphs for the three kernels at NLOare shown in Fig. 1. We will refer to Tg, Ta, Tb as the gluon, the quark non-singlet, and the purequark singlet kernel, respe
tively.For better legibility we have not displayed the dependen
e on the renormalization and fa
torizations
ales in (2). The renormalization s
ale �R appears as argument of �s and through expli
it logarithmsin the hard-s
attering kernels T . The kernels further 
ontain logarithms of the respe
tive fa
torizations
ales �DA and �GPD for the meson distribution amplitude and the generalized parton distributions.The NLO kernels in [10, 11℄ are given for a 
ommon fa
torization s
ale �F = �DA = �GPD. We 
anrestore the individual logarithms of �DA and �GPD from the requirement that within the 
al
ulatedpre
ision the pro
ess amplitude (2) must be independent of these s
ales. As an example 
onsider theterm dd ln�2DA Z 10 dz �V (z;�DA)Ta(�z; x; �; �s(�R); �R; �GPD; �DA; Q)= Z 10 dz � dd ln�2DA �V (z;�DA)�Ta(�z; x; �; �s(�R); �R; �GPD; �DA; Q)+ Z 10 dz �V (z;�DA) � dd ln�2DA Ta(�z; x; �; �s(�R); �R; �GPD; �DA; Q)� ; (9)where the s
ale dependen
e of �V (z;�DA) is given by the ERBL evolution equation [19℄. At lead-ing order this gives a term d=d(ln�2DA )�V (z;�DA) of order �s, whose 
onvolution with the O(�s)5



part of Ta must 
an
el against the 
ontribution from expli
it logarithms of �DA in the O(�2s) partof Ta. An analogous argument holds for the dependen
e on �GPD, with the 
ompli
ation thatthe gluon and quark singlet distributions mix under evolution. More pre
isely, the 
onvolution ofd=d(ln�2GPD )F S(x; �; t;�GPD) with the O(�s) part of Ta 
an
els at O(�2s) against the 
ontributionsfrom logarithms of �GPD in Ta and in Tg. Likewise, the 
onvolution of d=d(ln�2GPD )F g(x; �; t;�GPD)with the Born term of Tg 
an
els at O(�2s) against the 
ontributions from logarithms of �GPD in Tgand in the pure singlet kernel Tb. We have expli
itly 
he
ked that the s
ale dependen
e of the hard-s
attering kernels given in [11℄ 
an
els in the pro
ess amplitude (2) as just des
ribed, using the LOevolution equations for GPDs given in App. C.Separating the �DA and �GPD dependen
e, we 
an write the kernels asTg(z; x; �) = ��s �(� � x� i�)(� + x� i�) 1z�z �1 + �s4� Ig�z; � � x2� �� ;Tb(z; x; �) = CF �2s8� 1z�z Ib�z; � � x2� � ;Ta(�z; x; �) = �CF �s �� � x� i� 1�z �1 + �s4� Ia��z; � � x2� �� (10)with Ig(z; y) = �2CA� �yy + y�y��y ln y + �y ln �y�� CF �y�y ln y + �yy ln �y�� ln Q2�2GPD+ �0 ln �2R�2GPD + CF �3 + 2z ln �z + 2�z ln z� ln Q2�2DA +Kg(z; y) ;Ib(z; y) = 2(�y � y)� ln y�y + ln �yy � ln Q2�2GPD +Kb(z; y) (11)and Ia(v; u) = �0�53 � ln(vu) � ln Q2�2R�+ CF �3 + 2 lnu� ln Q2�2GPD + CF �3 + 2 ln v� ln Q2�2DA+Ka(v; u) ; (12)where �y = 1� y and we use the standard notationCF = N2
 � 12N
 ; CA = N
 ; �0 = 113 N
 � 23 nf : (13)The fun
tions Kg, Kb and Ka are independent of Q2 and the renormalization and fa
torization s
ales.They 
ontain fa
tors CF or CA but not �0. Their expressions 
an be found in [11℄, taking into a

ountthat the kernels Tg and Tb here are denoted by Tg and T(+) there, and thatT (v; u) ����[11℄ = CF �s4vu �1 + �s4� Ia(v; u)�here ; y ��[11℄ = �y ��here : (14)Note that the pure singlet kernel Tb does not 
ontain logarithms of �DA and �R at O(�2s), sin
e thereis no Born level 
ontribution against whi
h they 
ould 
an
el in the s
ale dependen
e of the pro
essamplitude. There is however a logarithm of �GPD, sin
e the 
orresponding derivative of the Born level6




onvolution of Tg with F g 
ontains a term going with the quark singlet distribution F S , as alreadymentioned after (9).The kernels in (10) have singularities for real-valued arguments. One readily �nds that x=� =(ŝ� û)=Q2, where ŝ and û are the Mandelstam variables for the parton-level subpro
ess 
�q ! (q�q)qor 
�g ! (q�q)g. The pres
riptions ŝ+ i� for the ŝ-
hannel and û+ i� for the û-
hannel singularitiesthus instru
t us to take x+ i� for x > 0 and x� i� for x < 0. Correspondingly, the se
ond argument(�� x)=(2�) of Ig, Ib and Ia must be taken with �i� for x > 0 and +i� for x < 0. In Ta(z;�x; �) these
ond argument of Ia is (� + x)=(2�), whi
h has to be taken with �i� for x < 0 and +i� for x > 0.We remark that, as it is written, the i� pres
ription in [11℄ for the gluon and the pure singlet kernelis 
orre
t for x > 0 but in
orre
t for x < 0. Likewise, the pres
ription given in [10, 11℄ for the quarknon-singlet kernel is 
orre
t for x > 0 if the 
orresponding argument is (� � x)=(2�) and for x < 0 ifthe argument is (� + x)=(2�), but in
orre
t in the other 
ases.12.1 Gegenbauer expansionLet us expand the meson distribution amplitude on Gegenbauer polynomials,�V (z;�) = 6z(1 � z) 1Xn=0 an(�)C3=2n (2z � 1) ; (15)where a0 = 1 a

ording to the normalization 
ondition R 10 dz �V (z) = 1. To leading order, theGegenbauer 
oeÆ
ients evolve as an(�) = an(�0) � �s(�)�s(�0)�
n=�0 (16)with anomalous dimensions
0 = 0 ; 
2 = 256 CF ; 
4 = 9115 CF ; (17)where �s(�) is the running 
oupling at one-loop a

ura
y. One has 
n � 4CF ln(n+1) within at most6% for all n. For V = �; !; � only 
oeÆ
ients an with even n are nonzero due to 
harge 
onjugationinvarian
e, and in all subsequent expressions of this paper we 
onsider n to be even. Cal
ulations ofthe distribution amplitudes in models or on the latti
e typi
ally give values for the �rst or the �rsttwo nonvanishing moments, see e.g. [20, 21, 22℄, so that a trun
ated version of the expansion (15) isvery often used in phenomenologi
al studies. Convolution with individual terms in (15) also allowsus to redu
e the hard-s
attering kernels for meson produ
tion to fun
tions of a single longitudinalvariable. More pre
isely, we 
an rewrite the pro
ess amplitude (2) asM = 2�p4���QN
 QV fV 1Xn=0 an�Fgn + FS(a)n + FS(b)n + e(3)V F (3)n + e(8)V F (8)n � (18)with 
onvolutions in xFgn = Z 1�1 dxTg;n(x; �)F g(x; �; t) ; FS(b)n = Z 1�1 dxTb;n(x; �)F S(x; �; t) ;FS(a)n = Z 1�1 dx hTa;n(x; �) � Ta;n(�x; �)i 1nf F S(x; �; t) ;F (3)n = Z 1�1 dx hTa;n(x; �) � Ta;n(�x; �)i hF u(+)(x; �; t) � F d(+)(x; �; t)i ;1We thank Dima Ivanov for dis
ussions on this point. The numeri
al results in [11℄ were obtained with the 
orre
tpres
ription. 7



F (8)n = Z 1�1 dx hTa;n(x; �) � Ta;n(�x; �)i hF u(+)(x; �; t) + F d(+)(x; �; t)� 2F s(+)(x; �; t)i ; (19)whi
h depend on � and t, and logarithmi
ally on Q2 and on the fa
torization and renormalizations
ales. At order �2s the dependen
e on �R and on �DA 
an
els in ea
h separate 
onvolution, while thedependen
e on �GPD 
an
els in F (3)n and F (8)n and in the sum Fgn + FS(a)n + FS(b)n as dis
ussed after(9). In analogy to (19) we de�ne 
onvolutions H and E for the individual distributions H and E in(3). The kernels Tg;n, Ta;n, Tb;n are obtained from Tg, Ta, Tb by multiplying with 6z(1�z)C3=2n (2z�1)and integrating over z. For n = 0 we �ndTg;n(x; �) = �3�s 2�(� � x� i�)(� + x� i�)�1 + �s4� tg;n�� � x2� �� ;Tb;n(x; �) = 3CF �2s4� tb;n�� � x2� � ;Ta;n(x; �) = �3CF �s �� � x� i� �1 + �s4� ta;n�� � x2� �� (20)withtg;0(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD+CF��52 +�1�y + 1� 4y� ln y � y2 ln2 y�y� 2(�y � y) Li2 �y � 4y�y�3Li3 �y � ln y Li2 y � �26 ln y��+CA ���6�y � 8y� lny +�1�y � 2y� ln2 y + 2(�y � y) Li2 �y�+ fy ! �yg ;tb;0(y) = 2(�y � y) ln y�y �ln Q2�2GPD � 3�+ (�y � y) ln2 y�y + 4Li2 �y � fy ! �yg ;ta;0(y) = �0 �196 � lny � ln Q2�2R �+ CF�(3 + 2 ln y) ln Q2�2GPD � 776 ��1�y � 3� ln y + ln2 y�+ (2CF � CA)��13 � 4(2� 3y) ln �y + 2(1� 6y) ln y + 4(1� 3y)�Li2 y � Li2 �y�+ 2(1 � 6y�y) �3�Li3 �y + Li3 y�� ln y Li2 y � ln �y Li2 �y � �26 �ln y + ln �y��� : (21)The 
orresponding kernels for n = 2 and n = 4 are given in App. B. The i� pres
ription to be usedin (20) is the same as spe
i�ed at the end of the previous subse
tion. This implies that in tg;n(y),tb;n(y), ta;n(y) and ta;n(�y) one has to take ln(y � i�), Li2(�y + i�) and Li3(�y + i�) for y < 0. For thegluon and pure singlet kernel, whi
h dominate in pro
ess amplitudes at small �, we have in parti
ular1� Im tg;0(y) = ��2CA (y2 + �y2)� CF y�1�y ln Q2�2GPD� CF�1� 4y + 1� y ln(�y)�y + 2(�y � y) ln �y + 2y�y�ln2 �y + 2Li2 y + �23 ��+ 2CA�3�y � 4y ��1�y � 2y� ln(�y) + (�y � y) ln �y� ;8



1� Im tb;0(y) = 2 �y � y�y �3� ln(�y)� ln Q2�2GPD �+ 4 ln �y (22)in the region y < 0. In the limit y ! 0 all three expressions in (21) 
ontain singular terms proportionalto ln y and ln2 y. For the 
onvolution (19) we should however 
onsider (y�y)�1 tg;n(y), y�1 ta;n(y) and�y�1 ta;n(�y) a

ording to (20). With the appropriate i� pres
ription, these kernels 
ontain terms whi
hfor y ! 0 go like (y � i�)�1 lnm(y � i�), where m = 0; 1; 2.3 Model for the unpolarized GPDsIt is diÆ
ult to study the impa
t of NLO 
orre
tions at the level of the hard-s
attering kernels givenin the previous subse
tion, espe
ially sin
e they are not smooth fun
tions but distributions withsingularities at y = 0. We will therefore use model GPDs to investigate the radiative 
orre
tions atthe level of the 
onvolution integrals (19). The aim of this work is not a systemati
 improvement ofexisting models, nor a detailed exploration of model un
ertainties on observables in ex
lusive mesonprodu
tion. We do however require that the models we use are 
onsistent with known theoreti
alrequirements and basi
 phenomenologi
al 
onstraints.For Hq and Hg we adopt the widely used ansatz of [26, 27℄ based on double distributions, wherea � dependen
e is generated a

ording toHq(+)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Hq(+)(�; 0; t) ;Hg(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Hg(�; 0; t) (23)with h(b)(�; �) = �(2b+ 2)22b+1�2(b+ 1) [(1� j�j)2 � �2℄b(1� j�j)2b+1 : (24)The distributions at zero skewness are taken asHq(+)(x; 0; t) = qv(x) exp�tfqv(x)�+ 2�q(x) exp�tf�q(x)� ;Hg(x; 0; t) = xg(x) exp�tfg(x)� (25)for x > 0, with the values for x < 0 following from the symmetry properties of the distributions. Hereqv(x) = q(x)� �q(x), �q(x) and g(x) are the usual unpolarized densities for valen
e quarks, antiquarksand gluons, for whi
h we take the CTEQ6M parameterization [29℄. This parameterization has anidenti
al strange and antistrange sea, so that sv(x) = 0. The ansatz (23) is taken at a starting s
ale�0 and then evolved with the LO evolution equations given in App. C. For the studies in Se
ts. 4and 5 we take �0 = 1:3GeV, whi
h is the starting s
ale of evolution for the CTEQ6M densities. InSe
ts. 6 and 7 we will instead take �0 = 2GeV, sin
e this will allow us to use the results for the tdependen
e of valen
e distributions obtained in [28℄.For the t dependen
e in the ansatz (23) we follow the modeling strategy of [27℄ and take anexponential behavior in t with an x dependent slope. For valen
e quarks we take the slope fun
tionsfqv(x) = �0v(1� x)3 ln 1x +Bqv(1� x)3 +Aqvx(1� x)2 (26)with parameters �0v = 0:9GeV�2 and 9



Auv = 1:26GeV�2 ; Buv = 0:59GeV�2 ;Adv = 3:82GeV�2 ; Bdv = 0:32GeV�2 ; (27)from [28℄. We re
all the sum ruleF q1 (t) = Z 1�1 dxHq(x; 0; t) = Z 10 dx qv(x) exp�tfqv(x)� ; (28)from whi
h one obtains the ele
tromagneti
 Dira
 form fa
tors of proton and neutron by appropriatequark 
avor 
ombinations. Together with the CTEQ6M distributions at �0 = 2GeV, the ansatz in(26) and (27) gives a good des
ription of the data for these form fa
tors. For gluons we take a slightlysimpler form than (26) and set fg(x) = �0g(1� x)2 ln 1x +Bg(1� x)2 : (29)For the parameters we take�0g = 0:164GeV�2 ; Bg = 1:2GeV�2 (30)so as to mat
h re
ent H1 data on J=	 photoprodu
tion, whose t dependen
e is well �tted by [30℄d�dt / exp��b0 + 4�0g lnW
pW0 � t � (31)with 
entral values b0 = 4:63GeV�2 and �0g = 0:164GeV�2 for W0 = 90GeV. To 
onne
t (31)with (29) we have used the approximate relation d�=dt / jHg(�; �; t)j2, whi
h is obtained when onlykeeping the imaginary part of the tree-level amplitude, where 2� = (MJ=	=W
p)2 in terms of the
p 
.m. energy. With the ansatz (23) one approximately has Hg(�; �; t) / exp�tfg(2�)� for the tdependen
e of the GPD [13℄.Whereas information on valen
e quark GPDs 
an be obtained from the sum rules (28) and infor-mation on gluon GPDs from J=	 produ
tion, almost nothing is so far known about the t dependen
eof GPDs for antiquarks. As a simple ansatz we shall take their slope fun
tions equal to those in thevalen
e se
tor, f�u = fuv ; f �d = fdv ; f�s = fdv ; (32)bearing in mind that it remains an outstanding task to develop more realisti
 models.3.1 Nu
leon heli
ity-
ip distributionsThe nu
leon heli
ity-
ip distributions Eq and Eg are less-well known than their 
ounterparts Hq andHg, be
ause their values at � = 0 and t = 0 
annot be measured in in
lusive pro
esses and are thussubje
t to 
onsiderable un
ertainty.The model des
ribed in this subse
tion refers to a s
ale of �0 = 2GeV. We make a doubledistribution based ansatzEq(+)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Eq(+)(�; 0; t) ;Eg(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �)Eg(�; 0; t) (33)10



as in (23), and for x > 0 setEq(+)(x; 0; t) = eqv(x) exp�tgqv(x)�+ 2e�q(x) exp�tg�q(x)� ;Eg(x; 0; t) = xeg(x) exp�tgg(x)� ; (34)with the 
orresponding values for x < 0 determined by the symmetry properties of the distributions.For the forward limit of the valen
e distribution we takeeqv(x) = �q N(�v; �qv )x��v (1� x)�qv ; (35)whose normalization fa
tor N(�; �) = �(2� �+ �)�(1� �) �(1 + �) (36)ensures the sum rules �q = Z 1�1 dxEq(x; 0; 0) = Z 10 dx eqv (x) ; (37)where �u � 1:67 and �d � �2:03 are the 
ontributions of u and d quarks to the anomalous magneti
moment of the proton. For the fun
tions 
ontrolling the t dependen
e we take the same form asin (26), gqv(x) = �0v(1� x)3 ln 1x +Dqv(1� x)3 + Cqvx(1� x)2 : (38)With the parameters �v = 0:55, �0v = 0:9GeV�2 and�u = 3:99 ; Cuv = 1:22GeV�2 ; Duv = 0:38GeV�2 ;�d = 5:59 ; Cdv = 2:59GeV�2 ; Ddv = �0:75GeV�2 ; (39)from [28℄ one obtains a good �t to the ele
tromagneti
 Pauli form fa
tors of proton and neutron viathe generalization of the sum rule (37) to �nite t.For the forward limit of the distributions of antiquarks and gluons we make the same simple ansatzas in (35), e�q(x) = k�q x���q (1� x)��q ; eg(x) = kg x��g (1� x)�g ; (40)and for the t dependen
e in the gluon se
tor we setgg(x) = �0g(1� x)2 ln 1x +Dg(1� x)2 ; (41)in analogy to the form (29) we used for Hg. We presently have not no phenomenologi
al informationon these distributions, but two theoreti
al 
onstraints. There is a 
ondition that ensures positivesemide�nite densities of partons in the transverse plane [31℄, whi
h with our ansatz for the GPDsreads [28℄ �e�q(x)�q(x) �2 � 8em2p �g�q(x)f�q(x)�3 �f�q(x)� g�q(x)� ;�eg(x)g(x) �2 � 8em2p �gg(x)fg(x)�3 �fg(x)� gg(x)� (42)11



if we negle
t for simpli
ity the polarized antiquark and gluon distributions 
ompared with the unpo-larized ones. On the other hand we have the sum rule0 = Z 10 dxEg(x; 0; 0) +Xq Z 1�1 dxxEq(x; 0; 0)= Z 10 dxxeg(x) +Xq Z 10 dxx�eqv(x) + 2e�q(x)� (43)following from the 
onservation of the energy-momentum tensor. For the parameters in (41) we take�0g = 0:164GeV�2 ; Dg = 1:08GeV�2 ; (44)with �0g as in (30) and Dg slightly smaller than its 
ounterpart Bg for Hg, so that the positivity
ondition (42) 
an be ful�lled. Assuming a similar small-x behavior of the distributions for protonheli
ity-
ip and non-
ip, we take in (40) the values ��q = 1:25 and �g = 1:10, whi
h we obtain when�tting the CTEQ6M distributions to a power law in the x range from 10�4 to 10�3.Sin
e it turns out that the transverse target polarization asymmetry in � produ
tion is verysensitive to the details of the heli
ity-
ip distributions, we will explore two model s
enarios in ournumeri
al studies:1. a s
enario where the sea quark distributions e�q behave similarly to the valen
e distributions eqv .For the t dependen
e we then take g�u(x) = guv (x) and g �d(x) = gdv(x). The parameters k�q in(40) are taken su
h that se
ond moments at t = 0 ful�llR 10 dxxe�q(x)R 10 dxxeqv(x) = R 10 dxx�q(x)R 10 dxxqv(x) (45)for q = u; d, where the ratio on the r.h.s. is taken from the CTEQ6M parameterization at � =2GeV. Its value is 0:095 for u and 0:30 for d quarks. This �xes the values of k�q N�1(��q� 1; ��q)with N given in (36). For the strange distribution we set es = e�s = 0, and kgN�1(�g � 1; �g)is then �xed by the sum rule (43).The powers ��q and �g 
ontrolling the large-x behavior are �nally taken to have the smallestvalues for whi
h the positivity 
ondition (42) holds in the range x < 0:9 (for higher x even theunpolarized densities are so un
ertain that we do not insist on the positivity 
onditions to beful�lled).2. a s
enario where e�q behaves similarly to the gluon distribution eg . The t dependen
e is nowmodeled by taking g�q(x) = gg(x) for q = u; d; s. For the se
ond moments we imposeR 10 dxxe�q(x)R 10 dxxeg(x) = R 10 dxx�q(x)R 10 dxxg(x) (46)for the three light quark 
avors, where with the CTEQ6M distributions the r.h.s. is equal to0:064, 0:083, 0:036 for u, d, s, respe
tively. We now have a nonzero es = e�s. The values ofk�q N�1(��q�1; ��q) and kg N�1(�g�1; �g) are taken to ful�ll both (46) and (43), and the powers��q, �g are set to the minimal values for whi
h positivity holds in the range x < 0:9.The parameters resulting from this modeling pro
edure are 
olle
ted in Table 1, and the distributionsat � = 0 and t = 0 for model 1 are shown in Fig. 2.12



Table 1: Parameters in the ansatz (40) for di�erent parton spe
ies a in the two models des
ribed inthe text. The values for valen
e quarks apply to both models, with normalization parameters givenby kqv = �qN(�v; �qv ) a

ording to (35). The last line gives the se
ond Mellin moment at � = 2GeVin the forward limit. model 1 model 2uv dv �u �d g �u �d �s g�a 0:55 0:55 1:25 1:25 1:10 1:25 1:25 1:25 1:10�a 3:99 5:59 9:6 9:2 6:7 7:6 6:5 5:5 2:5ka 1:71 �2:36 0:06 �0:18 0:26 �0:0016 �0:0018 �0:0007 �0:017R 10 dxxea(x) 0:138 �0:130 0:013 �0:039 0:044 �0:0004 �0:0005 �0:0002 �0:0059
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xFigure 2: The forward limits ea(x) of the nu
leon heli
ity-
ip distributions at � = 2GeV for di�erentparton spe
ies a in model 1.We �nd that in model 2, both sea quark and gluon distributions are nearly zero (so that we donot atta
h importan
e to the unrealisti
ally small value of �g obtained with our above pro
edure).Their smallness 
an be tra
ed ba
k to the small value of the 
avor singlet integralZ 10 dxx�euv(x) + edv (x)� = 0:008 (47)in the valen
e se
tor of our ansatz. In model 2, the distributions e�q and eg have the same sign as a
onsequen
e of (46) and due to the sum rule (43) 
an only be tiny. Somewhat larger distributions forsea quarks and gluons are obtained in model 1, where they have opposite sign be
ause of (45).We note that the parameters (39) we have taken for the valen
e part of Eq are by no meanspre
isely determined by a �t to the Pauli form fa
tors: alternative �ts in [28℄ gave a similarly gooddes
ription of the form fa
tor data, with some variation of the resulting value of the integral in (47).Nevertheless, any model where euv and edv have similar shapes and no zeroes in x will yield rathersmall values of this integral, given the strong 
an
ellation between u and d quark 
ontributions in themoment R 10 dx �euv(x) + edv (x)� = �u + �d � �0:36. It would be interesting to explore how mu
h theintegral (47) and as a 
onsequen
e the sea quark and gluon distributions 
an vary in realisti
 models,but su
h an investigation is beyond the s
ope of this work.13



We end this se
tion by quoting the values for the total angular momentum 
arried by quarks andantiquarks of a given 
avor in our model, given byJq = 12 Z 1�1 dxx�Hq(x; 0; 0) +Eq(x; 0; 0)� (48)a

ording to Ji's sum rule [2℄. With the parameters in Table 1 and the CTEQ6M distributions we�nd Ju = 0:25 ; Jd = �0:01 ; (model 1)Ju = 0:24 ; Jd = 0:03 (model 2) (49)at the s
ale � = 2GeV of our model. We note that this is in rather good agreement with theresults of re
ent latti
e 
al
ulations, with Ju = 0:214(16) and Jd = �0:001(16) reported in [32℄, andJu = 0:33(2) and Jd = �0:02(2) in [33℄. Let us reiterate that with just two sets of model parameterswe 
annot exhaust the range of possible s
enarios but only provide two representatives that are
onsistent with presently known 
onstraints. As just dis
ussed, the relative smallness of sea quarkand gluon distributions 
ompared with the nu
leon heli
ity 
onserving 
ase should however be typi
alof a rather wide 
lass of models.4 Ve
tor meson produ
tion at small xBWe now study numeri
ally the importan
e of NLO 
orre
tions in ve
tor meson produ
tion. Hereand in the following se
tions we use the two-loop strong 
oupling for nf = 3 
avors with a QCDs
ale parameter �(3) = 226MeV. This value 
orresponds to �(4) = 326MeV, �(5) = 372MeV andto �(5)s (MZ) = 0:118 when mat
hing at m
 = 1:3GeV and mb = 4:5GeV, whi
h are the valuesused in the CTEQ6M parton analysis [29℄. We also take nf = 3 �xed in the evolution and thehard-s
attering kernels. Taking nf = 4 with massless 
harm or nf = 5 with massless 
harm andbottom would not be a good approximation for the rather moderate values of Q2 we will dis
ussfor �xed-target kinemati
s. On the other hand, taking nf = 3 and negle
ting 
harm altogether isadmittedly not a good approximation for the larger Q2 relevant in 
ollider kinemati
s. However, with�(3)s = 0:164 
ompared to �(5)s = 0:178 at � = 10GeV we expe
t that this ina

ura
y will not a�e
tthe 
on
lusions at high Q2 we shall draw from our studies.We have performed the evolution of the GPDs at LO using the momentum-spa
e evolution 
odeof [34℄. As explained in Se
t. 2, taking LO evolution together with the NLO hard-s
attering kernelsis suÆ
ient to obtain s
ale independen
e of the pro
ess amplitude up to un
al
ulated 
orre
tions oforder �3s. With the input s
ale of evolution not taken too small, NLO evolution e�e
ts should berather moderate at the Q2 values relevant in �xed-target kinemati
s, whereas our general 
on
lusionsfor highQ2 and small xB will again not depend on this level of detail. We note that the NLO kernels inmomentum spa
e are available in the literature [35℄, but their 
onsiderable length makes it diÆ
ult toimplement them in a fast numeri
al evaluation. For in
luding NLO e�e
ts in the evolution it shouldbe more eÆ
ient to use the Mellin spa
e approa
h re
ently followed for deeply virtual Comptons
attering in [5℄.Here and in the following se
tion we 
onsider the 
onvolutions of hard-s
attering kernels withGPDs at t = 0. For nonzero � = xB=(2 � xB) this should be understood in the sense of an analyti

ontinuation, sin
e the physi
al region for meson produ
tion is �t � 4m2p�2=(1 � �2) in Bjorkenkinemati
s. To explore the importan
e of NLO 
orre
tions we do not see this as a short
oming.Let us start our dis
ussion with the gluon and quark singlet se
tor. Here and in following we shallalways present the 
onvolutions (19) for Gegenbauer index n = 0 unless indi
ated otherwise. In Fig. 314
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tion for 
�p ! �p with longitudinal photon polarization. Bands 
orrespond tothe range Q=2 < � < 2Q and solid lines to � = Q. We also show the power-law behavior � / W 0:88(with arbitrary normalization) obtained from a �t to data in the range 0:001<� xB <� 0:005 [36℄.we show the LO and NLO pie
es of the 
onvolutions for the s
ale 
hoi
e �R = �GPD = �DA = Q. Thesize of 
orre
tions at small xB is dramati
: we have large NLO 
orre
tions with opposite sign 
omparedto the LO term for Hg, and a similarly large NLO 
ontribution from HS(b) with sign opposite to theLO result for HS(a). In the sum of gluon and quark singlet terms, the NLO 
orre
tions drasti
allyredu
e the LO result or even lead to a 
hange of sign between LO and the sum of LO and NLOresults. We also observe that for higher Gegenbauer index the NLO 
orre
tions tend to be even moreimportant. Note that the LO term of the 
onvolutions is the same for all n as 
an be seen from(19) and (20). The size of NLO 
orre
tions in HS(a) is 
omparatively moderate, at least for lowerGegenbauer moments. The same is seen for the quark non-singlet 
onvolutions in Fig. 4. Of 
ourse,the gluon and quark singlet terms will dominate meson produ
tion at small xB in those 
hannelswhere it is allowed by the meson quantum numbers.In Fig. 5 we explore the in
uen
e of the s
ale 
hoi
e by varying �R = �GPD simultaneously. ForxB = 2� 10�3 we �nd an indi
ation for the onset of perturbative stability at Q = 7GeV but not yetat Q = 4GeV. For xB = 2 � 10�2 the situation is less severe, with moderate 
orre
tions in a wide� range already at Q = 4GeV. In 
ontrast, when going down to xB = 2 � 10�4 we �nd very large
orre
tions even at Q = 7GeV. We have 
he
ked that the 
on
lusions in the respe
tive kinemati
sdo not 
hange when we vary �GPD while keeping �R = Q �xed.Figure 6 shows how the perturbative instability we observed in the 
onvolutions a�e
ts the longitu-dinal 
ross se
tion for � produ
tion. Here we have taken the asymptoti
 form of the meson distributionamplitude, i.e. set an = 0 for n � 2. In the NLO result for the 
ross se
tion we have squared the 
o-herent sum of LO and NLO terms in the pro
ess amplitude,2 i.e. we have taken jMLO+MNLOj2. Wesee that the NLO 
orre
tions severely de
rease the LO result. As a 
onsequen
e of the 
an
ellationsbetween LO and NLO 
ontributions, the s
ale dependen
e of the 
ross se
tion does not de
rease. Wealso show in the �gure the power-law behavior � / W 0:88 obtained from a �t to data in the range0:001<� xB <� 0:005 [36℄. As observed in [13℄, a double distribution model with the CTEQ6M distri-butions as input lead to a rather good des
ription of this experimentally observed energy dependen
e2We thus keep terms of O(�3s) in the 
ross se
tion, although the a

ura
y of the NLO 
al
ulation is only up to O(�2s).This should not be seen as a problem, as it will not make a 
onsiderable di�eren
e in situations where perturbative
orre
tions are moderate, whereas in situations where NLO 
orre
tions are huge we would neither trust the 
ross se
tionwith or without the partially in
luded O(�3s) terms. 18
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torization s
ale dependent and independent terms of Im tg;n and Im tb;n as spe
i�edin (54), shown for n = 0 and y < 0.if the 
ross se
tion is evaluated at LO. With the strong 
an
ellations from the O(�2s) 
orre
tions, oneobtains an NLO result whose energy behavior is mu
h too weak.Let us dis
uss how the huge size of 
orre
tions 
an be understood at an analyti
al level, followingthe line of argument given in [11, 37℄. Using (81) and (82) we 
an approximate the hard-s
atteringkernels for large negative y as1� Im Ig(z; y) = 4CA�ln(z�z) + ln Q2�2GPD �y +O(1) ; ReIg(z; y) = O(1) ;1� ImIb(z; y) = 4�1� ln(z�z)� ln Q2�2GPD �+O�y�1� ; ReIb(z; y) = O�y�1� ; (50)where here and in the following the order of 
orre
tions is given up to powers of ln �y. The quarknon-singlet kernel is subleading 
ompared with the pure singlet one,Ia(�z; y)y � Ia(z; �y)�y � O�y�1� ; (51)where we have divided Ia(�z; y) by y 
orresponding to the prefa
tor in the 
omplete kernel (10). From(50) we readily obtain 1� Im tg;n(y) = �4CA�
n � ln Q2�2GPD �y +O(1) ;1� Im tb;n(y) = 4�
n + 1� ln Q2�2GPD �+O�y�1� (52)with 
onstants
0 = 2 ; 
2 = 113 � 3:7 ; 
4 = 13730 � 4:6 ; 
n = �Z 10 dz ln(z�z)C3=2n (2z � 1) (53)that in
rease with the Gegenbauer index n. In Fig. 7 we show for the 
ase n = 0 that these approxi-mations be
ome very good for in
reasing jyj, where we have de
omposed the exa
t kernels asIm tg;n(y) = Im tCg;n(y) + Im tGg;n(y) ln Q2�2GPD ;19



Im tb;n(y) = Im tCb;n(y) + Im tGb;n(y) ln Q2�2GPD : (54)Let us now rewrite the 
onvolutions of kernels and GPDs in terms of the variable ! = x=�,ImhHgn +HS(b)n i = �6�s ��Hg(�; �; t) + �s4� ImZ 1=�0 d!�� 21� ! � i� tg;n�1� ! � i�2 � Hg(!�; �; t)1 + ! �CF tb;n�1� ! � i�2 � �HS(!�; �; t)�� : (55)For ! � !0 with some !0 � 1 we 
an use the approximation (52) of the hard-s
attering kernels, andfurther approximate 1 + ! � ! in the �rst term on the se
ond line. This gives� 16��s ImhHgn +HS(b)n i � Hg(�; �; t) + �s� Z !00 d! : : :� �s� Z 1=�!0 d!�CA�
n � ln Q2�2GPD � Hg(!�; �; t)! +CF�
n + 1� ln Q2�2GPD � �HS(!�; �; t)� ; (56)where the integral over ! on the �rst line is to be taken with the unapproximated integrand from(55). It grows with � like Hg(!�; �; t) or �HS(!�; �; t) but la
ks the enhan
ement due to the upperlimit 1=� of the integral on the se
ond line. Restri
ting our dis
ussion to t = 0 for simpli
ity, we 
anfor suÆ
iently large ! negle
t the e�e
t of skewness in the GPDs and then haveHg(!�; �; 0) � !�g(!�) ; HS(!�; �; 0) � S(!�) =Xq �q(!�) + �q(!�)� ; (57)where S(x) is the usual quark singlet distribution. In a very rough approximation one may treatxg(x) and xS(x) as 
onstant at small x. In (56) one then has loop integrals R d!=! for both thegluon and the quark term, whi
h generate large logarithms ln(!0�) for 1=� � !0. These logarithmsare of BFKL type and 
orrespond to graphs with t-
hannel gluon ex
hange in the hard-s
atteringkernel, su
h as those for Tb and Tg in Fig. 1.In a phenomenologi
ally more realisti
 approximation one has xg(x) � ax�� at small x and asimilar behavior with di�erent values of a and � for xS(x). This givesZ 1=�!0 d! Hg(!�; �; 0)! � a��� Z 1=�!0 d! !���1 � a� �!0���� (58)for 1=� � !0, when the bulk of the integral 
omes from the region where the small-x approximationof the gluon density is valid. With � being rather small for the gluon distribution in a wide range ofthe fa
torization s
ale, the term (58) has the same power behavior ��� as the Born term Hg(�; �; 0)in (56) but is numeri
ally enhan
ed by 1=�. A 
ontribution analogous to (58) is obtained from thequark singlet term in (56) and 
omes with a similar enhan
ement.Con
erning the 
hoi
e of fa
torization s
ale, it is 
lear that the size of the 
orre
tions in (56) isde
reased if �GPD is taken smaller than Q. It is also 
lear that no s
ale 
hoi
e 
an eliminate boththe gluon and quark singlet 
ontribution in this expression. To make at least the gluon term forn = 0 disappear one needs �2GPD = e�2Q2 � 0:14Q2. For a wide range of Q2 this is outside theperturbative region or at least so low that the quark singlet distribution has a rather small power �and 
an thus give important 
orre
tions. We note that previous analyses of ve
tor meson produ
tionat small xB have argued for a fa
torization s
ale well below Q2, based on di�erent estimates of thetypi
al virtualities in the leading-order graphs [15, 38℄. We also note that the �R dependent term�0 ln(�2R=�2GPD) in the gluon kernel (11) does not appear in the approximation (50) whi
h dominatesthe 
onvolutions at small xB . The 
hoi
e of �R 
an thus not 
ure the huge NLO 
orre
tions we havedis
ussed. 20



5 Ve
tor meson produ
tion at moderate to large xBLet us now investigate the NLO 
orre
tions in typi
al �xed-target kinemati
s, as it is a

essibleat HERMES, JLab and COMPASS. We take again t = 0 and for de�niteness present estimates atQ2 = 4GeV2. For larger Q2, whi
h will in parti
ular be a

essible with the JLab energy upgrade to12GeV, the 
orre
tions are in general smaller.In Fig. 8 we 
ompare the LO and NLO parts of the 
onvolution integrals. In the gluon se
torwe �nd no simple pi
ture, with relative 
orre
tions that are typi
ally moderate but be
ome largefor ReHg at smaller xB and for ImHg at larger xB . For the quark singlet the situation is similarto the one in the small-xB region, i.e. we have rather large NLO 
orre
tions from HS(b) with signopposite to the LO part of HS(a), whereas the NLO 
orre
tions in HS(a) are smaller. Adding gluonand quark singlet 
ontributions, we �nd that for n = 0 the NLO 
orre
tions are of reasonable size forthe imaginary part. For the real part at lower xB , the 
orre
tions are however large and of oppositesign 
ompared to the Born term. We note that the 
onvolutions H satisfy a dispersion relation in1=xB for �xed Q2 and t [39℄. In this representation their real parts at a given xB are sensitive to theimaginary part at smaller values of xB, where the NLO 
orre
tions rapidly in
rease as we have seenin the previous se
tion. Turning to the quark non-singlet 
onvolutions, we see in Fig. 9 that for n = 0the NLO 
orre
tions are 
omparatively moderate for the imaginary part and larger for the real part.Going from n = 0 to higher Gegenbauer indi
es n = 2 and n = 4, the NLO 
orre
tions be
omelarger, as we see in Figs. 8 and 9 and already observed at small xB. Generi
ally this is not unexpe
ted,sin
e the z dependent kernels (10) 
ontain logarithms ln z and ln �z whi
h enhan
e the endpointregions of the z integration, and those endpoint regions are more prominent for higher Gegenbauerpolynomials in the expansion (15). Note that a

ording to phenomenologi
al estimates or latti
e
al
ulations the 
oeÆ
ients an of these polynomials are 
learly smaller than a0, so that in
reasing
orre
tions to Hn for higher n do not a�e
t the sumPn anHn as mu
h. We note that in the modi�edhard-s
attering approa
h of Sterman et al. [14℄, whi
h goes beyond the 
ollinear approximation used inthe present work, the endpoint regions in z are suppressed by radiative 
orre
tions that are resummedinto Sudakov form fa
tors. As just dis
ussed, we do not observe su
h a suppression in the �xed-orderresults analyzed here, where various positive and negative 
orre
tions 
ompete with ea
h other|onlysome of them related to the Sudakov fa
tor. How the situation will be at higher orders is an importantquestion, whi
h goes beyond the s
ope of the present work.Let us now take a 
loser look at the �R dependen
e of the 
orre
tions. As we explained in Se
t. 2,the pure quark singlet kernel Tb is independent of this s
ale at O(�2s). A

ording to (11) the gluonkernel Tg depends on �2R only through �0 ln(�2R=�2GPD), whi
h originates from graphs with gluonpropagator 
orre
tions su
h as the one shown in Fig. 10. The �GPD dependen
e of this term is
onne
ted with the 
ontribution proportional to �0 in the evolution kernel V gg for the gluon GPD,given in (92). As already pointed out in Se
t. 4, the term �0 ln(�2R=�2GPD) does not 
ontribute to thelarge-jyj behavior of Im tg;n(y) and is hen
e not relevant for the huge NLO 
orre
tions at small xB.For the kernel Ta the situation is more involved. The general stru
ture of its 
onvolution with thequark singlet distribution HS 
an be written asHS(a)n = �0�HS(a)n;� +HS(a)n;R ln Q2�2R�+HS(a)n;C +HS(a)n;G ln Q2�2GPD +HS(a)n;D ln Q2�2DA (59)with an analogous de
omposition for the 
onvolutions H(3)n and H(8)n . The terms proportional to �0originate from graphs with gluon propagator 
orre
tions su
h as in Fig. 10, whereas the terms withsubs
ripts C;G;D do not 
ontain �0. In Fig. 11 we show the 
orresponding 
ontributions for n = 0.We see that terms multiplying ln(Q2=�2GPD) are rather small, whereas those going with ln(Q2=�2DA)are of 
ourse absent for n = 0. The term H0;R is 
learly smaller than H0;� and has opposite sign.21
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oupling in the kernels at�R = 2GeV.H0;C has also the opposite sign 
ompared to H0;� but is similar in magnitude. We note that jHn;�jin
reases with n, as 
an be seen from (86) and (88).Let us brie
y 
omment on the BLM s
ale setting pres
ription [23℄, whi
h has been dis
ussed in the
ontext of ex
lusive meson produ
tion in [10, 24℄. This pres
ription aims at in
luding the 
orre
tionsfrom graphs like those of Fig. 10 in the argument of the running 
oupling, and for the 
ase at hand takes�R su
h that the 
ontribution from Hn;� 
an
els against the one from Hn;R ln(Q2=�2R) in (59). As isevident from Fig. 11, this requires �2R to be substantially lower than Q2. For most of experimentallya

essible kinemati
s, the resulting �R is in fa
t far below the region where perturbation theory
an be applied. In su
h a situation, the perturbative running of �s is often modi�ed su
h that the
oupling saturates for de
reasing �R. We note that in the 
ontext of our NLO analysis, the logarithm�0 ln(Q2=�2R) in the hard-s
attering kernel is intimately related with the perturbative running of�s(�R), so that keeping one while modifying the other is not obviously 
onsistent.We also remark that if Hn;� and Hn;R ln(Q2=�2R) are made to 
an
el by the BLM s
ale 
hoi
e,one is left with a relatively large 
orre
tion from Hn;C . For s
ale 
hoi
es where �2R is 
loser to Q2, oneinstead has a partial 
an
ellation between Hn;C and Hn;�. A more detailed analysis for the similar
ase of the ele
tromagneti
 form fa
tor is given in [25℄, whi
h also dis
usses the issue of Sudakov-type
orre
tions we raised above.Figure 12 shows the dependen
e of the 
onvolutions on �R at �xed �GPD = Q. Within the �Rrange shown we generally �nd a moderate s
ale dependen
e, both at LO and at NLO. An ex
eption24
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e on the fa
torization s
ale �DA of the 
onvolutions in the gluon and quarksinglet se
tor multiplied by the s
ale dependen
e a2(�DA)=a2(�0) of the 
orresponding Gegenbauer
oeÆ
ient. The referen
e s
ale for a2 is taken as �0 = 2GeV, and the other s
ales are set to�GPD = �R = Q = 2GeV.is the region �R<� 2GeV, where the growth of the LO results simply re
e
ts the growth of �s(�R).Note that with the parameters spe
i�ed at beginning of Se
t. 4 we have �(3)s (2GeV) = 0:30 and�(3)s (1GeV) = 0:51. The NLO results further 
ontain expli
it logarithms ln(Q2=�2R), whi
h in some
ases 
an 
ause 
orre
tions to grow out of 
ontrol, espe
ially for the real parts of 
onvolutions. Wenote that for ReH(8) the NLO 
orre
tion is is unusually large 
ompared with the LO term. This isbe
ause of a nearby zero in xB , as is seen in Fig. 9, and should not be a reason of parti
ular 
on
ern.The variation of the 
onvolutions with �GPD at �xed �R = Q is shown in Fig. 13. We again�nd a rather moderate s
ale dependen
e, ex
ept when �GPD be
omes small. The dependen
e on asingle s
ale � = �R = �GPD is shown in Fig. 14. Note that in many 
ases the individual variationof �R de
reases the amplitude in absolute size whereas the variation of �GPD in
reases it, with bothtenden
ies partially 
an
eling when the s
ales are set equal. Again we �nd that the s
ale dependen
ebe
omes quite drasti
 below 2GeV.We �nally dis
uss the dependen
e on �DA for Gegenbauer indi
es n > 0. A

ording to (18)the 
onvolutions Hn(�DA) appear multiplied by an(�DA) in the pro
ess amplitude, where the s
aledependen
e of both fa
tors partially 
an
els. In Fig. 15 we therefore plot 
onvolutions multipliedwith a2(�DA)=a2(�0) = ��s(�DA)=�s(�0)�
2=�0 following the relation (16). The 
orresponding plotsfor n = 4 and for 
onvolutions in the quark non-singlet se
tor look very similar. We �nd that thedependen
e on �DA is slightly de
reased when going to NLO.6 Proton heli
ity 
ip amplitudesWe now turn to the 
onvolutions of the hard-s
attering kernels with the GPDs des
ribing protonheli
ity 
ip. In this se
tion we take t = �0:4GeV2, whi
h is the value for whi
h will present estimatesfor observables in the next se
tion.In Figs. 16 and 17 we 
ompare the LO and NLO terms of the 
onvolutions in the gluon and quarksinglet se
tor for the two models des
ribed in Se
t. 3.1. For model 1 the individual 
orre
tions forgluon and quark 
onvolutions look quite similar to those we saw for H in the previous se
tion. Thesum of gluon and quark singlet 
ontributions at LO is however very small in this model be
auseof 
an
ellations, so that the NLO term dominates in a wide kinemati
al region. In model 2 the28
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gluon 
ontributions are nearly absent, so that the quark singlet 
ontribution dominates in this se
tor.We note that, 
ontrary to the individual terms, the sum of gluon and quark singlet 
ontributions
omes out to be rather similar in the two models and is small 
ompared with the 
avor non-singlet
ontributions shown in Figs. 18 and 19. A

ording to our dis
ussion at the end of Se
t. 3.1 this hasits origin in the sum rule (43) for the se
ond moment of E at t = 0, so that we expe
t a small net
ontribution from gluons and the quark singlet in large 
lass of models for E.As shown in Figs. 18 and 19, the NLO 
orre
tions to the quark non-singlet 
onvolutions arerelatively moderate but not small, similarly to the 
ase of H. The size of the 
onvolutions is quitedi�erent in the two models, indi
ating the important role played at intermediate xB by sea quarks inmodel 1. Let us re
all that with the double distribution ansatz (33) the GPDs at x � � are sensitiveto forward parton distributions with momentum fra
tions well below �, as dis
ussed in Se
t. 4.3.3of [17℄.7 Cross se
tions and asymmetriesHaving studied in detail the building blo
ks of the s
attering amplitude for ve
tor meson produ
tion,we now 
ombine them to observables. We re
all that to leading order in 1=Q there are just two ofthese: the unpolarized 
�p 
ross se
tion and the asymmetry for a transversely polarized target, bothreferring to longitudinal polarization of virtual photon and produ
ed meson. The ep 
ross se
tion inthe leading 1=Q approximation 
an be written asd�(ep! epV )dt dQ2 dy d� d�S = �4�3 1� xBQ2 1� yy d�Ldt h1 + ST sin(�� �S)AUT i (60)where y is the usual inelasti
ity variable for deep inelasti
 s
attering and ST denotes the transverse
omponent of the target polarization. � is the azimuthal angle between lepton plane and hadron plane,and �S is the azimuthal angle between lepton plane and target spin ve
tor, both de�ned a

ordingto the Trento 
onvention [40℄. The 
�p 
ross se
tion d�L=dt and the polarization asymmetry AUTdepend on xB, Q2 and t. To leading order in 1=Q they are given byd�Ldt = �29 �Q6 (2� xB)21� xB f2V h(1� �2) jHV j2 � �t=(4m2p) + �2� jEV j2 � 2�2Re�E�V HV �i (61)and AUT = pt0 � tmp p1� �2 Im�E�V HV �(1� �2) jHV j2 � �t=(4m2p) + �2� jEV j2 � 2�2Re�E�V HV � ; (62)where t0 = �4m2p�2=(1� �2). Here we have 
ombined the 
onvolutions (19) intoFV = QV 1Xn=0 an�Fgn +HS(a)n + FS(b)n + e(3)V F (3)n + e(8)V F (8)n � ; (63)with analogous 
ombinations for HV and EV . In the remainder of this se
tion we take the asymptoti
form of the meson distribution amplitude, i.e. we set an = 0 for n � 2. As long as EV is not mu
hlarger than HV , the 
ross se
tion (61) is dominated by the term with jHV j2 in a wide range ofkinemati
s, where the prefa
tors �2 and t=(4m2p) of the other terms are small. The asymmetry (62)is then approximately given byAUT � pt0 � tmp Im�E�V HV �jHV j2 = pt0 � tmp ���� EVHV ���� sin ÆV ; (64)33
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tion.where ÆV = arg(HV =EV ) is the relative phase between HV and EV .Figure 20 shows the real and imaginary parts of the 
onvolutions appearing in (61) and (62). H�is dominated by the gluon and quark singlet part, and in line with our dis
ussion in Se
t. 5 we �ndrather moderate 
orre
tions for the imaginary part but a very unstable real part in a wide range of xB .As for E�, its real part is very small and subje
t to large relative 
orre
tions, whereas its imaginarypart is mu
h larger and re
eives 
orre
tions of order 100% . As we see in Fig. 18, the individual 
avornon-singlet 
ombinations E(3) and E(8) are less a�e
ted by 
orre
tions, but they have opposite signand partially 
an
el in the sum relevant for � produ
tion. The rather small but unstable 
ontributionfrom the gluon and quark singlet terms is hen
e important in this 
hannel and largely responsible forthe NLO 
orre
tions seen in Fig. 20. As a further 
onsequen
e of the 
an
ellations just mentioned,the size of E� is tiny 
ompared with H�. The quark 
avor 
ombination relevant for � produ
tion is2u+ d, where in our model the 
avor 
ombinations add for H but largely 
an
el for E.For ! produ
tion we see in Fig. 21 that at smaller xB the 
onvolution H! is about 1=3 of H�,whi
h follows from the dominan
e of the gluon 
ontribution as seen in (6) and (7), whereas at largerxB di�eren
es between the two 
hannels appear. E! is mu
h bigger than E� sin
e in the 
ombination2u� d the 
ontributions of u and d quarks add for E, and the size of its radiative 
orre
tions re
e
ts34



the one of E(3) in Fig. 18. We note that the dominan
e of the imaginary over the real part in E! andE� is less pronoun
ed in model 2, as 
an be anti
ipated by 
omparing Figs. 18 and 19.The 
ross se
tion d�L=dt for � produ
tion is dominated by (ImH�)2, ex
ept for 
ontributionsfrom (ReH�)2 at small xB for NLO and at large xB for LO. Given the size of 
orre
tions to ImH�in Fig. 20 we thus have quite substantial NLO e�e
ts in the 
ross se
tion at Q2 = 4GeV2, as shownin Fig. 22. For Q2 = 9GeV2 and xB > 0:1 the relative 
orre
tions de
rease. The plot has been
al
ulated with model 1 for E, but sin
e its 
ontribution to d�L=dt is negligible the 
orresponding
urves for model 2 look very similar. To obtain an estimate of s
ale un
ertainties, we show bands
orresponding to � = �R = �GPD between 2GeV and 2Q. Given our dis
ussion in the previousse
tion, we do not 
onsider it meaningful to go to s
ales below 2GeV, so that the bands in the �gureare strongly asymmetri
. For Q2 = 4GeV2 they go only in one dire
tion, and the band of the LOresult does not provide an estimate for the size of the NLO 
orre
tions, whi
h turn out to go in theother dire
tion.We have a very pe
uliar situation for the polarization asymmetry AUT in � produ
tion, whi
has shown in Figs. 23 and 24 is very small in both models 1 and 2 due to the 
an
ellations in E�dis
ussed above. AUT 
hanges quite dramati
ally from LO to NLO in a wide range of kinemati
s,
learly be
ause of the NLO 
orre
tions in the numerator. A 
loser look at Fig. 20 reveals that thelarge perturbative 
orre
tions in Im�E��H�� are mainly due to the large 
orre
tions to both ReH�and Re E�. These hardly a�e
t the unpolarized 
ross se
tion, whi
h is strongly dominated by ImH�.At higher Q2 the instability of AUT is less pronoun
ed, and in model 2 we even have quite small
orre
tions. We note that the bands from the s
ale variation at LO order are extremely narrow inFigs. 23 and 24. This is be
ause the s
ale variation of �s(�R) 
an
els in the ratio AUT at LO andbe
ause in the kinemati
s we are looking at, the �GPD dependen
e of H� and E� is rather weak. Inthis situation, the s
ale un
ertainty of the LO result does obviously not provide a good estimate forthe size of higher-order 
orre
tions. Let us �nally remark that at t = �0:4GeV2 the asymmetry AUTmust go to zero as xB tends to 0:484 be
ause of the prefa
tor pt0 � t in (62).The 
ross se
tion for ! produ
tion is shown in Fig. 25 and shows a similar pattern of NLO
orre
tions to the one in � produ
tion, re
e
ting the similar pattern of 
orre
tions we have seen forImH� and ImH!. As a result the ratio of 
ross se
tions d�L=dt in the two 
hannels is quite stableunder radiative 
orre
tions, as seen in Fig. 26. The target polarization asymmetry, shown in Fig. 27for model 1, 
hanges however drasti
ally between LO and NLO at small to intermediate xB . This isbe
ause ImE! then dominates over Re E!, so that its produ
t with the unstable 
onvolution ReH!
ontrols the numerator of the asymmetry. The absolute size of AUT 
an be large in this 
hannelsin
e jE!j � jH!j in our model. A

ording to Fig. 21, the relative phase Æ! is 
lose to zero at LO forxB <� 0:3, so that the fa
tor sin Æ! in (64) makes AUT small and prone to large radiative 
orre
tions.Let us �nally take a look at � produ
tion. At LO this 
hannel is strongly dominated by gluonex
hange, sin
e in our models strange quark distributions are small for H and even more so for E.At NLO we have further 
ontributions from the pure singlet terms HS(b) and ES(b), whi
h are notnegligible. We see in Fig. 28 that the NLO 
orre
tions to the 
ross se
tion are large at small xB andslowly de
rease with xB. Ex
ept for the region of small xB , this pattern is quite di�erent from theone in � produ
tion, so that the 
ross se
tion ratio for the two 
hannels re
eives important 
orre
tionsat larger xB as we see in Fig. 29. The asymmetry AUT is essentially zero at LO, be
ause in our modelthe relative phase Æ� between H� and E� is very 
lose to zero. This 
hanges at NLO, where in model 1we obtain a small to moderate AUT , as shown in Fig. 30.
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8 Pseudos
alar meson produ
tionHaving studied in detail the produ
tion of ve
tor mesons, let us �nally take a look at pseudos
alarprodu
tion. We will only 
onsider 
�p ! �+n, whi
h was already studied at NLO in [10℄. Gluondistributions do not 
ontribute in this 
hannel.In the 
ollinear approximation the amplitude for this pro
ess 
an be written asM = 4�p4���QN
 f� Z 10 dz ��(z)Z 1�1 dx heuTa(�z; x; �)� edTa(z;�x; �)i h eF u(x; �; t)� eF d(x; �; t)i= 4�p4���QN
 f� 1Xn=0 an eF �n (65)with eu = 2=3, ed = �1=3 and f� = 131MeV. ��(z) is the twist-two distribution amplitude of thepion and has a Gegenbauer de
omposition as in (15). The 
onvolutions eF �n are de�ned aseF �n = Z 1�1 dx heuTa;n(x; �) � edTa(�x; �)i h eF u(x; �; t)� eF d(x; �; t)i ; (66)and the kernels Ta(�z; x; �) and Ta;n(x; �) are the same as in Se
t. 2. The matrix elements eF q are the
ounterparts of F q for polarized quarks and given byeF q(x; �; t) = 1(p+ p0) � n � eHq(x; �; t) �u(p0)=n
5u(p) + eEq(x; �; t) �u(p0) (p0 � p) � n2mp 
5u(p)� (67)in terms of the generalized parton distributions eH and eE, where as in the unpolarized 
ase we usethe 
onventions of [17℄. Sin
e the hard-s
attering kernel in (66) is neither even nor odd in x, the
onvolution involves both the 
harge-
onjugation even and odd 
ombinationseF q(+)(x; �; t) = eF q(x; �; t) + eF q(�x; �; t) ; eF q(�)(x; �; t) = eF q(x; �; t) � eF q(�x; �; t) : (68)We model the distributions eH in 
lose analogy to the unpolarized 
ase and seteHq(+)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �) eHq(+)(�; 0; t) ;eHq(�)(x; �; t) = Z 1�1 d� Z 1�j�j�1+j�j d� Æ(x� � � ��)h(2)(�; �) eHq(�)(�; 0; t) ; (69)with h(2)(�; �) as in (24) andeHq(+)(x; 0; t) = �qv(x) exp�tfqv(x)�+ 2��q(x) exp�tf�q(x)� ;eHq(�)(x; 0; t) = �qv(x) exp�tfqv(x)� (70)for x > 0. The values for x < 0 are determined by the symmetry properties following from (68). Forthe polarized valen
e and antiquark densities �qv and ��q we use the NLO parameterization from[41℄ at � = 2GeV, and for the t dependen
e we take the same fun
tions fqv(x) as in (26), (27) andfurthermore set f�q(x) = fqv(x). As was shown in [28℄, this gives a good des
ription of the isove
toraxial form fa
tor via the sum ruleFA(t) = Z 10 dx � eHu(+)(x; 0; t) � eHd(+)(x; 0; t)� : (71)39



−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4

LO
LO+NLO

Re H̃π

xB

0

0.5

1

1.5

2

2.5

0.1 0.2 0.3 0.4

LO+NLO

LO

Im H̃π

xBFigure 31: The 
onvolution eH�0 de�ned as in (66), evaluated at Q = 2GeV and t = �0:4GeV2. Thes
ales are set to �R = �GPD = Q.For the nu
leon heli
ity-
ip distribution eE we take a pion ex
hange ansatzeEu(x; �; t) = � eEd(x; �; t) = ��� � jxj�2� �� �x+ �2� � 2m2p gAm2� � t �2 �m2��2 � t ; (72)with the nu
leon axial 
harge gA � 1:26 and a 
uto� parameter � = 0:8GeV [42℄ to suppress largeo�-shellness of the ex
hanged pion in the t 
hannel.8.1 ResultsThe 
onvolution eH�n at LO and NLO is shown in Fig. 31 for n = 0. We �nd moderate 
orre
tions forthe imaginary part and larger ones for the real part. For eE �n we 
an easily give the analyti
 form ofthe NLO result. The s
ale dependent terms admit a 
losed expression,Xn an eE �n / Xm;n aman�1 + �s4�� ��0�143 + 
m + 
n2CF � ln Q2�2R�� 
m ln Q2�2GPD � 
n ln Q2�2DA + : : : �� ; (73)where the : : : denote 
ontributions whi
h depend neither on Q2 and the s
ales nor on �0. In
ludingthese terms we 
an writeXn an eE �n / (1 + a2 + a4)2 + �s(�R)� �7912 + 25:0a2 + 32:8a4 + 53:4a2a4 + 21:4a22 + 32:6a24� 94 (1 + a2 + a4)2 ln Q2�2R � (1 + a2 + a4)�2518 a2 + 9145 a4��ln Q2�2GPD + ln Q2�2DA��+ : : : ; (74)where we have set nf = 3 in �0 and where we approximated numeri
ally the 
oeÆ
ients writtenwith a de
imal point. Here the : : : denote terms with higher Gegenbauer 
oeÆ
ients. Note thatthese 
oeÆ
ients appear twi
e, on
e for the produ
ed pion and on
e for the pion ex
hange ansatzof the distribution eE. Up to a global fa
tor, the expression (74) also gives the NLO result for theele
tromagneti
 pion form fa
tor F�(Q2) at large spa
elike momentum transfer Q2, and it agrees withthe result in the detailed study [9℄. Let us �rst dis
uss the 
ase m = n = 0 relevant for the asymptoti
40



form of the pion distribution amplitude, where the 
onvolution has no dependen
e on �GPD and �DA.We then have the rather large 
oeÆ
ient 79=12 � 6:6 in square bra
kets, so that with the s
ale 
hoi
e�R = Q there are quite large NLO 
orre
tions. The 
orre
tions are zero for �2R = e�79=27Q2 � 0:05Q2,whi
h is outside the perturbative region for most 
ases relevant in pra
ti
e. The BLM s
ale for this
ase is yet smaller: with (73) we reprodu
e the well-known result �2R = e�14=3Q2 � 0:01Q2 [10℄. The
oeÆ
ient of �s=� in (74) is then �47=12 � �3:9 and thus again rather large, but of 
ourse the s
ale�R is outside the perturbative region for all experimentally relevant kinemati
s. We �nally see in (74)that for higher Gegenbauer moments the 
orre
tion terms are larger than for m = n = 0. The reasonfor this is the same whi
h we dis
ussed in Se
t. 5 for the 
onvolutions H. In (73) we also see that theBLM s
ale be
omes smaller for higher m and n.The observables for ex
lusive pion produ
tion at leading order in 1=Q are the same as for ve
tormeson produ
tion, and the ep 
ross se
tion is given as in (60). The 
ross se
tion for a longitudinalphoton and the transverse target asymmetry are now respe
tively given byd�Ldt = �29 �Q6 (2� xB)21� xB (2f�)2 h(1� �2) j eH�j2 � �2 t=(4m2p) jeE�j2 � 2�2Re�eE�� eH��i (75)and AUT = �pt0 � tmp �p1� �2 Im�eE�� eH��(1� �2) j eH�j2 � �2 t=(4m2p) j eE�j2 � 2�2Re�eE�� eH�� ; (76)with eH� = 1Xn=0 an eH�n ; eE� = 1Xn=0 an eE �n : (77)For numeri
al estimates we take the asymptoti
 pion distribution amplitude in the following, settingan = 0 for n � 2. We note that the re
ent latti
e study [22℄ obtained a rather moderate valuea2(�0) = 0:201(114) at �0 = 2GeV.In Fig. 32 we show the separate 
ontributions from the terms with j eH�j2 and with jeE�j2 in (75),as well as the full result. We see that at the value of t 
hosen here, the 
ontribution from j eH�j2 ismore important, mainly be
ause of the suppression fa
tor (�2 �m2�)=(�2 � t) in our model (72) foreE. The square of this fa
tor is 0:36 at t = �0:4GeV2.We 
ompare the LO and NLO results for the 
ross se
tion in Fig. 33 and �nd that the NLO
orre
tions are quite large, even at Q2 = 9GeV2. In 
ontrast, the 
orre
tions for the beam spinasymmetry are very small as seen in Fig. 34, in line with the �ndings reported in [10℄. Note that withour model eE� is purely real, so that at intermediate xB the large relative NLO 
orre
tions in Re eH�do not a�e
t the numerator of AUT in (75). Approximating the asymmetry asAUT � �pt0 � tmp � Im�eE�� eH��j eH�j2 = �pt0 � tmp ����� eE�eH� ���� sin Æ� (78)with Æ� = arg( eH�=eE�), we 
an understand why only small 
orre
tions are seen in this 
ase: therelative phase Æ� is well di�erent from zero, and the NLO 
orre
tions in
rease both j eH�j and jeE�j.
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xBFigure 32: The longitudinal 
ross se
tion for 
�p! �+n, evaluated at NLO. Shown are the separate
ontributions from the terms with j eH�j2 and with jeE�j2 in (75), as well as the 
omplete expression.

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4

dσL/dt [nb/GeV2] at Q2 = 4 GeV2, t = −0.4 GeV2

LO
LO+NLO

xB

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4

dσL/dt [nb/GeV2] at Q2 = 9 GeV2, t = −0.4 GeV2

LO
LO+NLO

xBFigure 33: Longitudinal 
ross se
tion for 
�p ! �+n. Bands 
orrespond to the range 2GeV < � <4GeV in the left and to 2GeV < � < 6GeV in the right plot, and solid lines to � = Q in both 
ases.

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1 0.2 0.3 0.4

AUT at Q2 = 4 GeV2, t = −0.4 GeV2

LO
LO+NLO

xB

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1 0.2 0.3 0.4

AUT at Q2 = 9 GeV2, t = −0.4 GeV2

LO
LO+NLO

xBFigure 34: The transverse target spin asymmetry for �+ produ
tion, as de�ned in (60). The meaningof the bands and solid lines is as in Fig. 33. 42



9 SummaryIn this work we have analyzed the NLO 
orre
tions for ex
lusive meson produ
tion at large Q2 in the
ollinear fa
torization approa
h. Using the Gegenbauer expansion of meson distribution amplitudes,we have rewritten the hard-s
attering kernels of [11℄ into fun
tions depending on only one variable,and we have separated the expli
it logarithms in the fa
torization s
ale for the meson distributionamplitude and the generalized parton distributions.For ve
tor meson produ
tion at small xB we �nd huge NLO 
orre
tions even for Q2 well above10GeV2, in agreement with the results obtained in [11℄. The 
orre
tions have opposite sign 
omparedto the Born term and 
an be tra
ed ba
k to BFKL type logarithms in the hard-s
attering kernels,whi
h appear with rather large numeri
al prefa
tors in this pro
ess. We 
on
lude at this stagethat a quantitative 
ontrol of radiative 
orre
tions at small xB will require resummation of theselogarithms. First steps in this dire
tion have been reported in [43℄. If su

essful, su
h a resummationin 
ombination with a dispersion relation [39℄ may also be useful for stabilizing the real part of theamplitude, where we �nd very large NLO 
orre
tions even at xB � 0:1.At intermediate to large xB , typi
al of �xed-target experiments, we have investigated the pro-du
tion of �0, !, � and of �+. We �nd NLO 
orre
tions to the longitudinal 
ross se
tions of up to100%, whi
h somewhat de
rease in size when going from Q2 = 4GeV2 to 9GeV2. Note that the me-son produ
tion 
ross se
tion depends quadrati
ally on generalized parton distributions|the in
reasedsensitivity to these basi
 quantities 
omes with an in
reased sensitivity to higher-order 
orre
tions.We generally �nd that un
ertainties on the 
ross se
tion due to the 
hoi
e of renormalization andfa
torization s
ales are not too large at LO and do not signi�
antly de
rease when going to NLO. Fors
ales below 4GeV2, however, NLO 
orre
tions often grow out of 
ontrol. The 
ross se
tion ratio for! to � produ
tion turns out to be very stable under 
orre
tions, but less so the one for � to �. Forthe transverse target polarization asymmetry AUT in �+ produ
tion we �nd quite small NLO e�e
ts,
on�rming the results in [10℄. For ve
tor meson produ
tion this is however not the 
ase. With themodels we have used for the nu
leon heli
ity-
ip distributions E, the numerator of the asymmetry inthis 
hannel is dominated by the produ
t (Im EV )(ReHV ) in a wide range of kinemati
s and thereforesu�ers from the perturbative instability we �nd for ReHV at small to intermediate xB , even if the
orre
tions to Im EV are not too large. It is often assumed that 
orre
tions tend to 
an
el in asym-metries. The examples we have studied show that this may hold in spe
i�
 
ases but not in others,and that spe
ial 
are is needed for observables like AUT that depend on the relative phase betweenamplitudes.We should re
all that in the kinemati
s we studied, one must expe
t that our leading-twist resultsre
eive power 
orre
tions that 
annot be negle
ted when 
omparing with data. They will 
ertainlya�e
t the 
ross se
tions and will not always 
an
el in 
ross se
tion ratios. An example is the transversetarget polarization asymmetry in �+ produ
tion. The phenomenologi
al estimates in [12℄ found thatthe 
onvolution eH� is de
reased by e�e
ts of transverse parton momentum in the hard s
attering,whereas eE� is in
reased by the soft overlap me
hanism that has been extensively studied in the 
ontextof the pion form fa
tor. Together, these 
orre
tions may signi�
antly in
rease leading-twist estimatesfor AUT .From our numeri
al studies we must 
on
lude that a pre
ise quantitative interpretation of ex
lu-sive meson produ
tion requires large Q2, say above 10GeV2. In addition it would be highly valuableto have a 
onsistent s
heme for 
ombining radiative with power 
orre
tions, at least in parts. Nev-ertheless, we �nd that valuable information on generalized parton distributions 
an be obtained alsofrom data at lower Q2. In parti
ular, a large measured asymmetry AUT in ve
tor meson produ
tionwould give valuable 
onstraints on the size of the proton heli
ity-
ip distribution Eg for gluons, whi
hare most diÆ
ult to obtain in deeply virtual Compton s
attering or from latti
e QCD 
al
ulations.43
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t number VH-NG-004.A PolylogarithmsWe 
olle
t here some properties of the polylogarithms that appear in the hard-s
attering kernels formeson produ
tion. Their de�nitions areLi2 z = �Z 10 dtt ln(1� zt) ; Li3 z = Z 10 dtt Li2(zt) ; (79)from whi
h one readily obtains for the imaginary partsImhLi2(�y + i�)i = ��(�y) ln �y ; ImhLi3(�y + i�)i = �2 �(�y) ln2 �y : (80)The limiting behavior for y ! �1 
an be obtained from the expansionsLi2 y = ��26 � 12 ln2(�y)� 1Xn=1 y�nn2 ; Li3 y = ��26 ln(�y)� 16 ln3(�y) + 1Xn=1 y�nn3 ; (81)whi
h are valid for y < �1, and fromRehLi2 �yi = �23 � 12 ln2 �y � 1Xn=1 �y�nn2 ; RehLi3 �yi = �23 ln �y � 16 ln3 �y + 1Xn=1 �y�nn3 ; (82)whi
h holds for y < 0. A useful relation �nally isLi2 y + Li2 �y = �26 � (ln y) (ln �y) : (83)A wealth of further information 
an be found in [44℄.B Hard-s
attering kernels for higher Gegenbauer momentsIn this appendix we give the analogs of the hard-s
attering kernels in (21) for Gegenbauer index n = 2and n = 4. For the gluon kernel we �ndtg;2(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD � 2512 CF ln Q2�2DA+ CF�3536(5� 54y�y)� y2 ln2 y�y � 7(�y � y)(1� 30y�y) Li2 �y+�1�y � 32 � 3923 y + 525y2 � 420y3� ln y�+ CA��154 (1� 4y�y) +�1�y � 2y� ln2 y + (�y � y)(7� 60y�y) Li2 �y��233�y + 56 � 58y + 150y2 � 120y3� ln y�44



+ 6y�yh5(1� 4y�y)CA � 14(1� 5y�y)CF i�3Li3 �y � ln y Li2 y � �26 ln y�+ fy ! �yg ;tg;4(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD � 9130 CF ln Q2�2DA+ CF�272871800 � 595y�y + 2520(y�y)2 � y2 ln2 y�y + 16(�y � y)�1� 105y�y + 630(y�y)2�Li2 �y+�1�y � 52 � 1159615 y + 9660y2 � 34160y3 + 45360y4 � 20160y5� ln y�+ CA��3516 (1� 4y�y)(5� 72y�y) +�1�y � 2y� ln2 y + 2(�y � y)�8� 315y�y + 1260(y�y)2�Li2 �y��25730�y + 7760 � 17415 y + 2940y2 � 8960y3 + 11340y4 � 5040y5� ln y�+ 30y�yh7(1 � 4y�y)(1� 6y�y)CA� 16�1� 14y�y + 42(y�y)2�CF i�3Li3 �y � lny Li2 y � �26 ln y�+ fy ! �yg ; (84)and for the pure singlet kerneltb;2(y) = 2(�y � y) ln y�y �ln Q2�2GPD � 236 �+ (�y � y) ln2 y�y � 152 (�y � y)+ 2(7 � 60y�y) Li2 �y ��53 � 90y + 120y2� ln y+ 60(�y � y)y�y �3Li3 �y +�Li2 �y + ln2 �y � �23 � ln y�� fy ! �yg ;tb;4(y) = 2(�y � y) ln y�y �ln Q2�2GPD � 25760 �+ (�y � y) ln2 y�y � 358 (�y � y)(5� 72y�y)+ 4�8� 315y�y + 1260(y�y)2�Li2 �y ��7730 � 665y + 4550y2 � 8820y3 + 5040y4� ln y+ 420(�y � y)y�y(1� 6y�y) �3Li3 �y +�Li2 �y + ln2 �y � �23 �ln y�� fy ! �yg : (85)The quark non-singlet kernel readsta;2(y) = �0 �214 � ln y � ln Q2�2R �+ CF�(3 + 2 ln y) ln Q2�2GPD � 256 ln Q2�2DA � 101972 ��1�y + 76� ln y + ln2 y�+ (2CF � CA)�40112 � 255y + 270y2 ��2993 � 867y + 1830y2 � 1080y3� ln �y+�563 � 357y + 1290y2 � 1080y3� ln y + 2�22� 291y + 780y2 � 540y3� �Li2 y � Li2 �y�+ 12(1 � 21y + 106y2 � 175y3 + 90y4)� �3�Li3 �y + Li3 y�� ln y Li2 y � ln �y Li2 �y � �26 �ln y + ln �y��� ;45



ta;4(y) = �0 �315 � ln y � ln Q2�2R �+ CF�(3 + 2 ln y) ln Q2�2GPD � 9115 ln Q2�2DA � 10213900 ��1�y + 4615� ln y + ln2 y�+ (2CF � CA)�490340 � 57752 y + 570854 y2 � 23310y3 + 11970y4��2110960 � 414515 y + 1032852 y2 � 125020y3 + 129150y4 � 47880y5� ln �y+�289960 � 110015 y + 455352 y2 � 78400y3 + 105210y4 � 47880y5� ln y+ �137� 4506y + 35280y2 � 100380y3 + 117180y4 � 47880y5� �Li2 y � Li2 �y�+ 30�1� 48y + 580y2 � 2590y3 + 5166y4 � 4704y5 + 1596y6�� �3�Li3 �y + Li3 y�� ln y Li2 y � ln �y Li2 �y � �26 �ln y + ln �y��� : (86)Using (11), (12) and the representation
n = (�1)n+1 2CF Z 10 dz (1� z)(3 + 2 ln z)C3=2n (2z � 1) (87)of the anomalous dimensions, we 
an give a 
losed form for the s
ale dependent terms for all even n,tg;n(y) = �2CA (y2 + �y2)� CF y� ln y�y ln Q2�2GPD + �02 ln �2R�2GPD � 
n2 ln Q2�2DA + fy ! �yg+ : : : ;tb;n(y) = 2(�y � y) ln y�y ln Q2�2GPD � fy ! �yg+ : : : ;ta;n(y) = �0�196 + 
n2CF � ln y � ln Q2�2R�+ CF (3 + 2 ln y) ln Q2�2GPD � 
n ln Q2�2DA + : : : ; (88)where the terms denoted by : : : are independent of Q2 and the s
ales and do not involve �0. Fromthe s
ale dependen
e (16) of the Gegenbauer 
oeÆ
ients of the meson distribution amplitude we 
anreadily re
onstru
t their evolution equation�2 dd�2 an(�) = ��s(�)4� 
nan(�) +O(�2s) : (89)With (20) and (88) we see that the �DA dependen
e of the pro
ess amplitude (18) 
an
els up to termsof order �3s, as it must be.C Evolution kernelsFor de�niteness we give here the LO evolution kernels for GPDs, whi
h we have used to 
he
k thes
ale invarian
e of the NLO amplitude for meson produ
tion as explained in Se
t. 2. The non-singletevolution equation reads�2 dd�2 FNS(x; �; t) = Z 1�1 dyj�j V NS�x� ; y��FNS(y; �; t) ; (90)46



where FNS 
an be a 
avor non-singlet 
ombination su
h as F u(+)�F d(+), or the 
harge-
onjugationodd 
ombination F q(�)(x; �; t) = F q(x; �; t) + F q(�x; �; t) for a single quark 
avor. In the gluon andquark singlet se
tor we have a matrix equation�2 dd�2  F S(x; �; t)F g(x; �; t)! = Z 1�1 dyj�j 0� V qq �x� ; y�� ��1V qg �x� ; y���V gq �x� ; y�� V gg �x� ; y�� 1A  F S(y; �; t)F g(y; �; t)! (91)with F S de�ned in (5). At O(�s) one has V NS(x; y) = V qq(x; y) andV qq(x; y) = �s4� CF ��(x; y) 1 + x1 + y �1 + 2y � x�+ fx! �x; y ! �yg�+ ;V qg(x; y) = ��s4� 2TF nf ��(x; y) 1 + x(1 + y)2 (1� 2x+ y � xy)� fx! �x; y ! �yg� ;V gq(x; y) = �s4� CF ��(x; y) �(2� x)(1 + x)2 � (1 + x)21 + y �� fx! �x; y ! �yg� ;V gg(x; y) = �s4� CA ��(x; y) (1 + x)2(1 + y)2 �2 + 2y � x�+ fx! �x; y ! �yg�++ �s4� CA ��(x; y) (1 + x)2(1 + y)2 (1� 2x+ 2y � xy) + fx! �x; y ! �yg�+ �s4� ��0 � 143 CA� Æ(x� y) (92)with TF = 1=2 and the remaining 
onstants as given in (13). The plus-pres
ription appearing in V qqand V gg is de�ned by �f(x; y)�+ = f(x; y)� Æ(x� y)Z dz f(z; y) ; (93)and the fun
tion �(x; y) spe
i�es the support as�(x; y) = ��1 + x1 + y� ��1� 1 + x1 + y� sgn(1 + y) = �(y � x) �(x+ 1)� �(x� y) �(�x� 1) : (94)The evolution equations for polarized GPDs read as in (90) and (91), with the unpolarized matrixelements F and kernels V repla
ed by their polarized 
ounterparts eF and eV . With eF q(+) and eF q(�)de�ned in (68) above, eFNS 
an be either a 
avor non-singlet 
ombination like eF u(+) � eF d(+) or a
harge-
onjugation odd 
ombination eF q(�), whereas the 
avor singlet 
ombination is given byeF S = eF u(+) + eF d(+) + eF s(+) : (95)To O(�s) the polarized evolution kernels areeV NS(x; y) = eV qq(x; y) = V qq(x; y) (96)and eV qg(x; y) = ��s4� 2Tf nf ��(x; y) 1 + x(1 + y)2 � fx! �x; y ! �yg� ;eV gq(x; y) = �s4� CF ��(x; y) (1 + x)21 + y � fx! �x; y ! �yg� ;47



eV gg(x; y) = �s4� CA ��(x; y) (1 + x)2(1 + y)2 �2 + 2y � x�+ fx! �x; y ! �yg�++ �s4� ��0 � 143 CA� Æ(x� y) : (97)The kernels given here agree with those in [45℄ if one takes into a

ount that any 
ontribution toV gq(x; y) whi
h is even in y at �xed x will drop out in the 
onvolution (91). Taking the limit � ! 0as lim�!0+ 1� 0� V qq � z� ; 1�� 1� V qg � z� ; 1���z V gq � z� ; 1�� 1z V gg � z� ; 1��1A =  P qq(z) P qg(z)P gq(z) P gg(z)! (98)one obtains the usual DGLAP evolution kernels from (92), and in analogy one re
overs the polarizedDGLAP kernels from (97). The fa
tors 1z in front of V gq and V gg re
e
t the di�erent forward limitsof the quark and gluon GPDs.Referen
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