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TTP07-19SFB/CPP-07-43MPP-2007-102DESY 07-112Eletroweak orretions to hadroni prodution ofW bosons at large transverse momentaJohann H. K�uhna, A. Kuleszab, S. Pozzorini, M. ShulzeaaInstitut f�ur Theoretishe Teilhenphysik, Universit�at Karlsruhe,D-76128 Karlsruhe, GermanybDeutshes Elektronen-Synhrotron DESY, Notkestrasse 85,D{22607 Hamburg, GermanyMax-Plank-Institut f�ur Physik, F�ohringer Ring 6,D{80805 Munih, GermanyAbstrat:To math the preision of present and future measurements of W -boson produ-tion at hadron olliders eletroweak radiative orretions must be inluded in thetheory preditions. In this paper we onsider their e�et on the transverse momen-tum (pT) distribution of W bosons, with emphasis on large pT. We evaluate the fulleletroweak O(�) orretions to the proesses pp! W + jet and p�p! W + jet in-luding virtual and real photoni ontributions. We present the expliit expressionsin analytial form for the virtual orretions and provide results for the real orre-tions, disussing in detail the treatment of soft and ollinear singularities. We alsoprovide ompat approximate expressions whih are valid in the high-energy region,where the eletroweak orretions are strongly enhaned by logarithms of ŝ=M2W .These expressions desribe the omplete asymptoti behaviour at one loop as wellas the leading and next-to-leading logarithms at two loops. Numerial results arepresented for proton-proton ollisions at 14TeV and proton-antiproton ollisions at2TeV. The orretions are negative and their size inreases with pT. At the LHC,where transverse momenta of 2TeV or more an be reahed, the one- and two-looporretions amount up to �40% and +10%, respetively, and will be important fora preise analysis of W prodution. At the Tevatron, transverse momenta up to300GeV are within reah. In this ase the eletroweak orretions amount up to�10% and are thus larger than the expeted statistial error.
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1 IntrodutionAfter the startup of the Large Hadron Collider (LHC) hard sattering reations willbe explored with high event rates and momentum transfers up to several TeV. Inorder to identify new phenomena in this region, the preditions of the StandardModel have to be understood with adequate preision.The study of gauge-boson prodution has been among the primary goals ofhadron olliders, starting with the disovery of the W and Z bosons more than twodeades ago [1℄. The investigation of the prodution dynamis, stritly preditedby the eletroweak theory, onstitutes one of the important tests of the StandardModel. Di�erential distributions of gauge bosons, in rapidity as well as in transversemomentum (pT), have always been the subjet of theoretial and experimental stud-ies. This allows to searh for and set limits on anomalous gauge-boson ouplings,measure the parton distribution funtions and, if understood suÆiently well, usethese reations to alibrate the luminosity. For gauge-boson prodution at large pTthe �nal state of the leading-order proess onsists of an eletroweak gauge bosonplus one reoiling jet. Being, in leading order, proportional to the strong ouplingonstant, these reations ould also lead to a determination of �S in the TeV region.The high enter-of-mass energy at the LHC in ombination with its enormousluminosity will allow to produe gauge bosons with transverse momenta up to 2 TeVor even beyond. In this kinemati region the eletroweak orretions are strongly en-haned, with the dominant terms in L-loop approximation being leading logarithms(LL) of the form �L log2L(ŝ=M2W ), next-to-leading logarithms (NLL) of the form�L log2L�1(ŝ=M2W ), and so on. These orretions, also known as eletroweak Sudakovlogarithms, may well amount to several tens of perent [2, 3, 4, 5, 6, 7, 8, 9, 10, 11℄.(A reent survey of the literature on eletroweak Sudakov logarithms an be foundin Ref. [12℄.) Spei�ally, the eletroweak orretions to the pT-distribution ofphotons and Z bosons at hadron olliders were studied in Refs. [7, 8, 9, 10℄. InRefs. [8, 9, 10℄, it was found that at transverse momenta of O(1TeV) the dominanttwo-loop ontributions to these reations amount to several perent and must beinluded to math the preision of the LHC experiments. This is quite di�erentfrom the prodution of on-shell gauge bosons with small transverse momenta [13℄,where the eletroweak orretions are not enhaned by Sudakov logarithms. Withthis motivation in mind we study the eletroweak orretions to hadroni produtionof W bosons in assoiation with a jet, pp(�) !Wj, at large pT.As a onsequene of the non-vanishing W harge, QED orretions annot beseparated from the purely weak ones and will thus be inluded in our analysis. Thus,in omparison with Z-boson prodution, several new aspets arise. Real photonemission must be inluded to anel the infrared divergenies from virtual photoniorretions. Collinear singularities, a onsequene of radiation from massless quarks,must be isolated and absorbed in the parton distribution funtions (PDFs) in thease of initial-state radiation. We regularize soft and ollinear singularities in twodi�erent shemes: using small quark and photon masses whih are set to zero at the1



end of the alulation and, alternatively, dimensional regularization. In events withreal radiation, the pT of the W boson is balaned both by the pT of the reoilingparton (quark or gluon) and the photon. Con�gurations involving a small-pT partonand a hard photon are better desribed as W �nal states. We thus de�ne the Wjross setion imposing a lower limit on the jet transverse momentum, whih is hosenindependent of the W -boson pT. In order to avoid �nal-state ollinear singularities,we reombine ollinear photon-quark �nal states.The virtual EW orretions to Wj prodution are formally onneted with thereal emission of W and Z bosons, whih leads to WV j �nal states with V = W;Z.Both ontributions are of O(�2�S). If integrated over the full phase spae, the realemission of gauge bosons produes large Sudakov logarithms that partially anelthose resulting from virtual gauge bosons. However, in exlusive measurements ofpp!Wj, the available phase spae for gauge boson emission is strongly suppressedby the experimental uts. We thus expet that real emission provides relativelysmall ontributions while the bulk of eletroweak e�ets originates from virtualorretions. In fat, for pp ! Zj it was shown that, in presene of realisti (andrelatively less exlusive) experimental uts, the ontribution of real emission is about�ve times smaller than the virtual orretions [11℄. Moreover, real emission an befurther redued with a veto on additional jets, whih suppresses multiple-jet eventsresulting from the hadroni deay of the radiated gauge bosons. Therefore we willrestrit ourselves to the investigation of virtual eletroweak orretions (and photonbremsstrahlung). The real emission of W and Z bosons an be non-negligible andertainly deserves further detailed studies, however we do not expet a dramatiimpat on our results.The partoni reations �qq0 ! W�g (), q0g ! W�q () and �qg ! W��q0 ()with q = u; d; s; ; b are onsidered. All of them are, however, trivially related byCP- and rossing-symmetry relations. Quark-mass e�ets are negleted throughout,whih allows to inorporate the e�et of quark mixing through a simple rede�ni-tion of parton distribution funtions (see Set. 2.1). Our onventions for ouplings,kinematis and two- as well as three-body phase spae are also olleted in Set. 2.The alulation of the virtual orretions is desribed in Set. 3. We present an-alyti expressions for the one-loop amplitude, speify the ounterterms in the G�renormalization sheme and isolate the infrared singularities. The high-energy limitis studied in detail in Set. 4. The analyti one-loop result is investigated in thelimit ŝ � M2W , keeping quadrati and linear logarithms as well as onstant terms.These results are ompared to those derived in the NLL approximation [14℄. In viewof their numerial importane we also derive the dominant (NLL) two-loop terms,using the formalism of Refs. [15, 16℄. The alulation of the real orretions is per-formed using the dipole subtration formalism [17, 18, 19℄, as disussed in Set. 5.The heks whih we arried out in order to ensure the orretness of the results aredesribed in Set. 6.The numerial results are presented in Set. 7. After onvolution with parton dis-tribution funtions, we obtain radiatively orreted preditions for pT-distributions2



of W bosons at the LHC and the Tevatron. The quality of the one-loop NLL andNNLL approximations is investigated and the size of the dominant two-loop termsis ompared with the expeted statistial preision of the experiments. Conerningperturbative QCD, our preditions are based on the lowest order. To obtain real-isti absolute ross setions, higher-order QCD orretions [20℄ must be inluded.However, the relative rates for W+, W� and Z prodution are expeted to be morestable against QCD e�ets. Therefore, the impat of the eletroweak orretions onthese ratios is presented in Set. 7. Our onlusions and a brief summary an befound in Set. 8. Expliit analyti results are olleted in the Appendies.A short desription of the method of alulation and the main results for LHChave been given in Ref. [21℄. After ompletion of this work, Hollik, Kasprzik andKniehl [22℄ reported results on hadroni W -boson prodution at large pT qualita-tively similar to those of Ref. [21℄ and the present paper.2 De�nitions and onventions2.1 Hadroni ross setionThe pT-distribution of W bosons in the reation h1h2 !W�j() is given byd�h1h2dpT = Xa;b;k Z 10 dx1 Z 10 dx2 �(x1x2��̂min)fh1;a(x1; �2)fh2;b(x2; �2)d�̂ab!W�k()dpT ; (1)where �̂min depends on the kinemati on�guration of the �nal state and is spei�edat the end of Set. 2.2. The indies a; b denote initial-state partons and fh1;a(x; �2),fh2;b(x; �2) are the orresponding parton distribution funtions (PDFs). �̂ab!W�k()is the partoni ross setion for the subproess ab! W �k(). The sum in (1) runsover all a; b; k ombinations orresponding to the subproesses�dnum !W+g(); um �dn !W+g(); gum ! W+dn();umg !W+dn(); �dng !W+�um(); g �dn !W+�um(); (2)for W+ prodution, and similarly for W� prodution.The dependene of the partoni ross setions on the family indiesm;n amountsto an overall fator jVumdn j2. This fator an be easily absorbed by rede�ning theparton distribution funtions as~fh;dm = 3Xn=1 jVumdn j2fh;dn; ~fh; �dm = 3Xn=1 jVumdn j2fh; �dn ;~fh;um = fh;um; ~fh;�um = fh;�um; ~fh;g = fh;g: (3)The hadroni ross setion (1) an be omputed using the trivial CKM matrix~Vuidj = Æij and the rede�ned PDFs (3). Sine we do not onsider initial or �nal3



states involving (anti-)top quarks, only the ontributions of the �rst two quarkfamilies (m = 1; 2) have to be inluded. The orresponding rede�ned PDFs ( ~fh;qwith q = u; d; ; s) automatially inlude the (small) ontributions assoiated withinitial- and �nal-state bottom quarks.2.2 KinematisFor the 2 ! 2 subproess ab ! W �k the Mandelstam variables are de�ned in thestandard way,ŝ = (pa + pb)2; t̂ = (pa � pW )2; û = (pb � pW )2: (4)The momenta pa, pb, pk of the partons are assumed to be massless, whereas p2W =M2W . In terms of x1; x2; pT and the ollider energy ps we haveŝ = x1x2s; t̂ = M2W � ŝ2 (1� os �); û = M2W � ŝ2 (1 + os �); (5)with os � = q1� 4p2Tŝ=(ŝ�M2W )2 orresponding to the osine of the angle betweenthe momenta pa and pW in the partoni enter-of-mass frame.The pT-distribution for the unpolarized partoni subproess ab! W �k readsd�̂ab!W�kdpT = Nab Z d�2XjMab!W�kj2 FO;2(�2); (6)where P = 14PpolPol involves the sum over polarization and olor as well as theaverage fator 1=4 for initial-state polarization. The fator Nab is given byNab = (2�)42ŝNab ; (7)where N�qq0 = Nq�q0 = N2 , Ngq = Nqg = N�qg = Ng�q = N(N2 � 1), with N = 3,aount for the initial-state olour average. The phase-spae measure d�2 is givenby d�2 = d3pW(2�)32p0W d3pk(2�)32p0k Æ4 (pa + pb � pW � pk) ; (8)while the funtion FO;2 de�nes the observable of interest, i.e. the W -boson pT-distribution in presene of a ut on the transverse momentum of the jet,FO;2(�2) = Æ(pT � pT;W )�(pT; j � pminT; j) : (9)In the 2-partile phase spae the jet is identi�ed with the parton k and momentumonservation implies pT; j = pT; k = pT;W . In pratie, sine we always onsider thepT-distribution in the region pT > pminT;W > pminT; j , the ut on pT; j in (9) is irrelevant.The phase-spae integral in (6) yields two ontributions originating from kinemati4



on�gurations in the forward and bakward hemispheres with opposite values ofos � in the enter-of-mass frame,d�̂ab!W�kdpT = d�̂ab!W�kfwddpT + d�̂ab!W�kbkwddpT ; (10)with d�̂ab!W�kfwddpT = pT8�Nabŝjt̂� ûjXjMab!W�kj2; d�̂ab!W�kbkwddpT = d�̂ab!W�kfwddpT �����t̂$û: (11)For the 2 ! 3 subproess ab ! W �k we de�ne the following �ve independentinvariants ŝ = (pa + pb)2; t̂ = (pa � pW )2; û = (pb � pW )2;t̂0 = (pa � p)2; û0 = (pb � p)2 ; (12)and the four dependent invariantsŝ0 = (pk + p)2 = ŝ+ t̂ + û�M2W ; ŝ00 = (pW + pk)2 = ŝ+ t̂0 + û0;t̂00 = (pa � pk)2 = M2W � ŝ� t̂� t̂0; û00 = (pb � pk)2 =M2W � ŝ� û� û0 :(13)The pT-distribution for this subproess readsd�̂ab!W�kdpT = Nab Z d�3XjMab!W�kj2 FO;3(�3); (14)where d�3 = d3pW(2�)32p0W d3pk(2�)32p0k d3p(2�)32p0 Æ4 (pa + pb � pW � pk � p) : (15)In the 3-partile phase spae, the W -boson pT-distribution in Wj prodution isde�ned by the observable funtionFO;3(�3) = Æ(pT � pT;W )�(pT; j � pminT; j) : (16)The ut on the jet transverse momentum rejets events where the W -boson pT isbalaned by an isolated photon plus a parton with small transverse momentum. Thisobservable is thus free from singularities assoiated with soft and ollinear quarks orgluons. When applying the ut on the jet momentum in the 3-partile phase spae,are must be taken that the de�nition of the jet pT is ollinear-safe. In general the jetannot be identi�ed with the parton k, sine in presene of ollinear photon radiationthe transverse momentum of a harged parton is not a ollinear-safe quantity. Thuswe identify the jet with the parton k only if k is a quark well separated from the5



photon or a gluon. Otherwise, i.e. for ollinear quark-photon on�gurations, thereombined momentum of the quark and photon is taken as momentum of the jet.In pratie, we de�ne the separation variableR(q; ) = q(�q � �)2 + (�q � �)2; (17)where �i is the pseudo-rapidity and �i is the azimuthal angle of a partile i. IfR(q; ) < Rsep, then the photon and quark momenta are reombined by simplefour-vetor addition into an e�etive momentum pj and then pT; j = q(~pT; q + ~pT; )2,otherwise pT; j = pT; q. We note that, in the ollinear region, lowest-order kinematisimplies pT;j = pT;q + pT; = pT;W > pminT; j . This means that the reombinationproedure e�etively removes the ut on pT;q inside the ollinear one R(q; ) < Rsep.For instane the reombined gq0 ! W �q ross setion is given by�̂gq0!W�qre: = ZR(q;)<Rsep d�̂gq0!W�q + ZR(q;)>Rsep �(pT; q � pminT; j) d�̂gq0!W�q :(18)In ontrast, for the ase of �nal-state gluons, we do not perform photon-gluon re-ombination and the ut on pT; g is imposed in the entire phase spae.This proedure has the advantage to avoid both ollinear-photon and soft-gluonsingularities. However it implies a di�erent treatment of quark and gluon �nal statesand an thus be regarded as an arbitrary ut-o� presription for the �nal-stateollinear singularity. Moreover, the reombined ross setion (18) has a logarithmidependene on the ut-o� parameter Rsep. These aspets are disussed in detailin Appendix A. There we ompare the reombination proedure with a realistiexperimental de�nition of exlusive pp ! Wj prodution, where �nal-state quarksare subjet to the same ut as �nal state gluons (pT;q > pminT; j) within the entire phasespae. Desribing the exlusive gq0 !W �q ross setion,�̂gq0!W�qexl: = Z �(pT; q � pminT; j) d�̂gq0!W�q ; (19)by means of quark fragmentation funtions, we �nd that the quantitative di�erenebetween the two de�nitions (18) and (19) amounts to less than two permille. More-over, we show that the reombined ross setion is extremely stable with respetto variations of the parameter Rsep. This means that the reombination proedureused in our alulation provides a very good desription of exlusive pp ! Wjprodution.Another treatment of the singularities, whih does not require reombinationand treats quark- and gluon-indued jets uniformly, has been proposed in Ref. [22℄.There, ontributions from Wj prodution and W prodution to a more inlusiveobservable, i.e. high-pT W prodution, are both alulated. All soft and ollinearsingularities in the �nal state anel in the approah of Ref. [22℄ as a result of themore inlusive observable de�nition than assoiated prodution of the W bosontogether with a jet, onsidered in this work. The omparison of our results with6



those of Ref. [22℄ seems to indiate that these di�erenes in the jet de�nitions havea quite small impat on the size of the eletroweak orretions.The quantity �̂min in (1) is related to the minimum partoni energy that is neededto produe �nal states with pT; j > pminT; j and pT;W > pminT;W ,s�̂min = �pminT; j +q(pminT;W )2 +M2W�2 : (20)When we evaluate the 2 ! 2 ontributions to the hadroni ross setion (1), afteranalyti integration of the phase spae in (6), we an set pminT; j = pminT;W = pT in (20).2.3 Crossing symmetriesThe unpolarized squared matrix elements for the 2! 2 proesses in (2) are relatedby the rossing-symmetry relationsXjMgq0!W�qj2 = �XjM�qq0!W�gj2����ŝ$t̂ ;XjM�qg!W��q0j2 = �XjM�qq0!W�gj2����ŝ$û ;XjMba!W�kj2 = XjMab!W�kj2����t̂$û : (21)Moreover, due to CP symmetry, the unpolarized partoni ross setion for the pro-dution of positively and negatively harged W bosons are related byXjM �du!W+gj2 =XjMd�u!W�gj2: (22)Eqs. (21) and (22) permit to relate the six proesses for W+ prodution in (2) andthe six harge onjugate ones to a single proess. Hene the expliit omputationof the unpolarized squared matrix element needs to be performed only one. In thefollowing we will present expliit results for the proess �qq0 !W �g.Similarly, for the unpolarized squared matrix elements for the 2 ! 3 proessesin (2) we haveXjMgq0!W�qj2 = �XjM�qq0!W�gj2����fŝ$û00;t̂$ŝ00;t̂0$ŝ0g ;XjM�qg!W��q0j2 = �XjM�qq0!W�gj2����fŝ$t̂00;û$ŝ00;û0$ŝ0g ;XjMba!W�kj2 = XjMab!W�kj2����ft̂$û;t̂0$û0g (23)and XjM �du!W+g j2 =XjMd�u!W�gj2: (24)It is thus enough to perform alulations only for the �qq0 !W �g subproess.7



2.4 Couplings and Born matrix elementFor gauge ouplings we adopt the onventions of Ref. [23℄. With this notation thegq�q vertex and the V q0�q verties with V = A;Z;W� read�q G�q = �igSta�; �q V �q0 = ie� X�=R;L!�IVq�q�0 ; (25)where !� are the hiral projetors!R = 12(1 + 5); !L = 12(1� 5); (26)ta are the Gell-Mann matries and IV are matries in the weak isospin spae. Fordiagonal matries suh as IA and IZ we write IVq�q�0 = Æqq0IVq�. In terms of the weakisospin T 3q� and the weak hyperharge Yq� we haveIZq� = WsWT 3q� � sWW Yq�2 ; IAq� = �Qq� = �T 3q� � Yq�2 ; (27)with the shorthands W = os �W and sW = sin �W for the weak mixing angle �W.The eigenvalues of isospin, hyperharge and SU(2) Casimir operators for left-handedfermions are T 3uL = �T 3dL = 12 ; YuL = YdL = 13 ; CF = 34 ; CA = 2: (28)The only non-vanishing omponents of the generators assoiated with W bosons areIW+uLdL = IW�dLuL = 1p2sW : (29)The triple gauge-bosons verties readV �1a V �3V �2b = esW "VaVbV[g�1�2(k1 � k2)�3 + g�2�3(k2 � k3)�1+ g�3�1(k3 � k1)�2 ℄; (30)where the totally anti-symmetri tensor "V1V2V3 is de�ned through the ommutationrelations hIV1 ; IV2i = isW XV3=A;Z;W� "V1V2V3I �V3 ; (31)and has omponents "ZW+W� = �iW and "AW+W� = isW.To lowest order in � and �S, the unpolarized squared matrix element for the�qq0 !W �g proess readsXjM�qq0!W�g0 j2 = 8�2��S(N2 � 1) �IW��qLq0L �2 t̂2 + û2 + 2M2W ŝt̂û ; (32)where � = e2=(4�) and �S = g2S=(4�) are the eletromagneti and the strong ouplingonstants. 8



(t1) (t2)Figure 1: Tree-level Feynman diagrams for the proess �qq0 !W �g.3 Virtual orretionsIn this setion we present the virtual eletroweak orretions to the �qq0 ! W �gproess. The algebrai redution to gauge-oupling strutures, standard matrixelements and one-loop salar integrals is desribed in Set. 3.2. The renormalizationof ultraviolet divergenes and the subtration of infrared singularities originatingfrom soft and ollinear virtual photons are disussed in Set. 3.3. and Set. 3.4,respetively. In Set. 3.5 we summarize the one-loop result for the unpolarizedsquared matrix element.3.1 PreliminariesAs disussed in the previous setion, the twelve di�erent proesses relevant for Wjprodution are related by CP and rossing symmetries. It is thus suÆient to on-sider only one of these proesses. In the following we derive the one-loop orretionsfor the �qq0 !W �g proess. The matrix elementM�qq0!W�g1 = M�qq0!W�g0 + ÆM�qq0!W�g1 (33)is expressed as a funtion of the Mandelstam invariantsŝ = (p�q + pq0)2; t̂ = (p�q � pW )2; û = (pq0 � pW )2: (34)The Born ontribution M�qq0!W�g0 results from the t- and u-hannel diagrams ofFig. 1. The loop and ounterterm diagrams ontributing to the orretions,ÆM�qq0!W�g1 = ÆM�qq0!W�g1;loops + ÆM�qq0!W�g1;CT ; (35)are depited in Fig. 2 and Fig. 3, respetively.The quarks that are present in the loop diagrams of Fig. 2 are treated as massless,and the regularization of the ollinear singularities that arise in this limit is disussedin Set. 3.4. The only quark-mass e�ets that we take into aount are the mt-termsthat enter the ounterterms through gauge-boson self-energies.Our alulation has been performed at the matrix-element level and provides fullontrol over polarization e�ets. However, at this level, the analytial expressionsare too large to be published. Expliit results will thus be presented only for theunpolarized squared matrix element. 9



V (s1) V (s2) V (v1) V (v2)V (v3) V (v4)
V1 V2(v5) V2 V1(v6)V (b1) V (b2)

V1 V2(b3)Figure 2: One-loop Feynman diagrams for the proess �qq0 ! W �g. The diagramss1, s2, v1 and v2 reeive ontributions from neutral and harged gauge bosons,V = A;Z;W�. The diagrams v3, v4, b1 and b2 involve only neutral gauge bosons,V = A;Z. The remaining diagrams, v5, v6 and b3 involve two ontributions withone harged and one neutral gauge boson: (V1; V2) = (V;W�) and (W�; V ) withV = A;Z.
(1) (2) (3) (4)

(5) (6)Figure 3: Counterterm diagrams for the proess �qq0 !W �g.10



3.2 Algebrai redutionThe matrix element (33) has the general formM�qq0!W�g1 = i e gS ta �v(p�q)ML;��1 !Lu(pq0) "��(pW )"��(pg): (36)Sine we neglet quark masses,ML;��1 onsists of terms involving an odd number ofmatries � with � = 0; : : : ; 3. The 5-terms are isolated in the hiral projetor !Lde�ned in (26). The polarization dependene of the quark spinors and gauge-bosonpolarization vetors is impliitly understood. In analogy to (33) and (35) we writeML;��1 =ML;��0 + ÆML;��1 ; ÆML;��1 = ÆML;��1;loops + ÆML;��1;CT: (37)Following the approah adopted in Ref. [9℄, we isolate the SU(2)�U(1) ouplingsthat appear in the Feynman diagrams and redue the one-loop amplitude to a sumof ontributions assoiated with independent oupling strutures. As we will see,besides an abelian and a non-abelian ontribution that are related to the ones foundfor Zj prodution [9℄, forWj prodution we have two additional oupling strutures.The oupling struture of the Born amplitude is trivial and onsists simply ofthe qLq0L omponent of the SU(2) generator,ML;��0 = IW��qLq0L S��0 = S��0p2sW ; S��0 = �(p=W � p=�q)�t̂ + �(p=g � p=�q)�û : (38)The ontribution of the loop diagrams of Fig. 2 an be written asÆML;��1;loops = �4�( XV=A;Z;W�"�IW��IV I �V �qLq0L D��1 (M2V ) + �IV I �V IW���qLq0L D��2 (M2V )#+ XV=A;Z"�IV IW��IV �qLq0L D��3 (M2V ) + isW "W�VW�� �IV IW���qLq0L�D��4 (M2V ;M2W ) + isW "VW�W�� �IW��IV �qLq0L D��4 (M2W ;M2V )#): (39)In the following, treating the eletroweak gauge ouplings as isospin matries andusing group-theoretial identities (see App. B of Ref. [23℄), we express the aboveamplitude in terms of the eigenvalues of isospin, hyperharge and SU(2) Casimiroperators for left-handed fermions (28).The tensors D��1 (M2V ) and D��2 (M2V ) in (39) desribe the ontributions of thediagrams s1, v1 and s2, v2, respetively. These diagrams may involve harged orneutral virtual bosons. In the former ase (V = W�), the orresponding ouplingsread1 X�=� IW��IW �IW�� = X�=� IW �IW��IW�� = CF � (T 3)2s2W IW�� : (40)1The following identities have to be understood as matrix identities, where the qLq0L indies ofthe SU(2) generators are impliitly understood.11



In the latter ase (V = A;Z) the oupling fators readIW��IV IV = �ÆSU(2)V V (T 3)2s2W +XV T 3Y + ÆU(1)V V Y 242W �IW�� ;IV IV IW�� = �ÆSU(2)V V (T 3)2s2W �XV T 3Y + ÆU(1)V V Y 242W �IW�� : (41)Here ÆSU(2)V V = (UVW 3)2; XV = UVW 3UV BsWW ; ÆU(1)V V = (UV B)2; (42)where U is the eletroweak mixing matrix. For V = A;Z we have ÆSU(2)AA = s2W,XA = �1, ÆU(1)AA = 2W, and ÆSU(2)ZZ = 2W, XZ = 1, ÆU(1)ZZ = s2W. We note thatXV=A;Z ÆSU(2)V V = XV=A;Z ÆU(1)V V = 1; XV=A;ZXV = 0: (43)The tensor D��3 (M2V ) in (39) orresponds to the diagrams v3, v4, b1 and b2. Thesediagrams reeive ontributions from neutral virtual gauge bosons only (V = A;Z).For the orresponding ouplings we haveIV IW��IV = �ÆSU(2)V V CF � CA=2s2W + ÆU(1)V V Y 242W �IW�� : (44)Finally, D��4 (M2V1 ;M2V2) represents the diagrams v5, v6 and b3. These diagramsinvolve a neutral gauge boson (V = A;Z) and a W boson. The oupling fatorsyield isW "W�VW��IV IW�� = �ÆSU(2)V V CA4s2W �XV T 3Y �IW�� ;isW "VW�W��IW��IV = �ÆSU(2)V V CA4s2W +XV T 3Y �IW�� : (45)Using the above identities we express the one-loop amplitude (39) for W -bosonprodution in a form that is analogous to the one adopted in Refs. [9, 10℄ to desribethe prodution of neutral gauge bosons. To this end we de�ne2ÆA��1;A(M2V ) = D��1 (M2V ) +D��2 (M2V ) +D��3 (M2V );ÆA��1;N(M2V ) = 12 hD��4 (M2V ;M2W ) +D��4 (M2W ;M2V )i�D��3 (M2V );ÆA��1;X(M2V ) = D��1 (M2V ) +D��2 (M2V );ÆA��1;Y(M2V ) = D��4 (M2V ;M2W )�D��4 (M2W ;M2V ) +D��2 (M2V )�D��1 (M2V ): (46)2In our notation we emphasize the dependene of the form fators ÆA��1;I on MV , whereas thedependene on the external momenta as well as the MW -dependene (for ÆA��1;N and ÆA��1;Y) isimpliitly understood. 12



The tensor ÆA��1;A(M2V ) is idential to the abelian tensor de�ned in Ref. [9℄, andÆA��1;N(M2V ) is equal to the non-abelian tensor of Ref. [9℄ for M2V = M2W . The re-maining two tensors, ÆA��1;X(M2V ) and ÆA��1;Y(M2V ), are new. Using (40){(46) we anwrite the one-loop amplitude (39) asÆML;��1;loops = �4�p2sW( XV=A;Z" ÆSU(2)V V CFs2W + ÆU(1)V V Y 2qL42W! ÆA��1;A(M2V )� ÆSU(2)V V CF � (T 3qL)2s2W ÆA��1;X(M2V ) + ÆSU(2)V V CA2s2W ÆA��1;N(M2V )�XV T 3qLYqLÆA��1;Y(M2V )# + CF � (T 3qL)2s2W ÆA��1;X(M2W )): (47)This amplitude has been redued algebraially using the Dira equation, the identityp�"�(p) = 0 for gauge-boson polarization vetors and Dira algebra. Moreover,tensor loop integrals have been redued to salar ones by means of the Passarino-Veltman tehnique [24℄. The result has been expressed in the formÆA��1;I(M2V ) = 10Xi=1Xj F ijI (M2V )S��i Jj(M2V ); (48)for I=A,N,X,Y. The quantities F ijI (M2V ) are rational funtions of Mandelstam in-variants and masses. Expliit expressions for the tensors S��i and the salar loopintegrals Jj(M2V ) are provided in Appendix B and Appendix C.3.3 RenormalizationWhile the tensors ÆA��1;X and ÆA��1;Y are ultraviolet �nite, the abelian and the non-abelian tensors give rise to the ultraviolet singularitiesÆA��1;A(M2V )���UV = ��UV S��0 ; ÆA��1;N(M2V )���UV = 2��UV S��0 ; (49)where S��0 is the tensor struture of the Born amplitude (38), and��UV =  4��2M2Z !" �(1 + ")" = 1" � E + ln(4�) + ln �2M2Z!+O(") (50)in D = 4 � 2" dimensions. These singularities are anelled by the ountertermdiagrams depited in Fig. 3 and the results are independent of the sale � of dimen-sional regularization. The ounterterms that are responsible for the ontributionsof diagrams 1, 2, 3 and 4 read= ip=!LÆZqL; = �igSta�!LÆZqL: (51)13



Sine there is noO(�) ontribution to the renormalization of the strong oupling on-stant gS, these ounterterms depend only on the wave-funtion renormalization on-stants for left-handed quarks, ÆZqL. Their ombined ontribution to the �qq0 ! W �gproess, i.e. the sum of the diagrams 1, 2, 3 and 4, vanishes. The renormaliza-tion of the �qq0 ! W �g proess is thus provided by the diagrams 5 and 6, whihoriginate from the W �qq0 ounterterm,= ie�!LIW��qLq0L hÆCA + ÆCNi ; (52)with ÆCA = 12 (ÆZuL + ÆZdL) ; ÆCN = 12  ÆZW + Æg22g22 ! ; (53)and yields ÆML;��1;CT = �ÆCA + ÆCN�ML;��0 : (54)The wave-funtion renormalization onstants of massless left-handed quarks andon-shell W bosons are related to the orresponding self-energies byÆZqL = �Re ��q;L(0)� ; ÆZW = �Re ��WT (p2)�p2 ! �����p2=M2W ; (55)and have been evaluated using the expliit results of Ref. [25℄.For the de�nition and the renormalization of the SU(2) oupling onstant,g22 = 4��s2W ; Æg22g22 = Æ�� � Æs2Ws2W ; (56)we adopt the G�-sheme, where the eletromagneti oupling onstant � is expressedin terms of the Fermi onstant G�, and the weak mixing angle is related to the on-shell masses MZ , MW of the gauge bosons,� = p2G�M2W s2W� ; s2W = 1� 2W = 1�M2W=M2Z : (57)The ounterterm Æ�=� in the G�-sheme an be derived from the on-shell ounter-term Æ�(0)=�(0) for the �ne-struture onstant in the Thompson limit. Using theone-loop relation � = �(0) [1 + �r℄ and requiring � + Æ� = �(0) + Æ�(0) we haveÆ�� = Æ�(0)�(0) ��r: (58)Combining the relations (56){(58) and using the expliit one-loop expression for �r[26, 27℄, we obtainÆg22g22 = Re "�WT (M2W )� �WT (0)M2W #� ��s2W " ��UV + 14  6 + 7� 12s2W2s2W ln M2WM2Z !!# :(59)14



The above onterterms yield the ultraviolet singularitiesÆCA���UV = � �8� ��UV Xq=u;d XV=A;Z;W� �IV I �V �qL = � �4� ��UV  CFs2W + Y 2qL42W! ;ÆCN���UV = � �2�s2W ��UV : (60)Using (43) one an easily verify that these singularities anel those resulting fromthe loop diagrams [see (47) and (49)℄.3.4 Soft and ollinear singularitiesLoop diagrams and wave-funtion renormalization onstants involve singularitiesoriginating from soft and ollinear virtual photons (for brevity denoted in the fol-lowing as IR singularities). In order to isolate these singularities and hek that theyare anelled by orresponding ones originating from real photon bremsstrahlung,we split the wave-funtion renormalization onstants and the photon ontributionsto (47), i.e. the terms ÆA��1;I(M2A), in IR-singular (IR) and IR-�nite (�n) parts:ÆZqL = ÆZIRqL + ÆZ�nqL ;ÆZW = ÆZIRW + ÆZ�nW ;ÆA��1;I(M2A) = ÆAIR;��1;I + ÆA�n;��1;I : (61)The singular parts depend on the sheme adopted to regularize IR singularities.The remaining parts are sheme-independent and free from IR singularities, butan ontain ultraviolet poles. For the regularization of IR singularities we use,alternatively, two di�erent shemes:� In the �rst sheme, whih we denote as mass-regularization sheme (MR), weuse in�nitesimal quark masses m and a photon-mass regulator, MA = � with0 < � � m. Sine the quark-mass dependene disappears in the �nal result,we perform the omputation using the same mass m for all quarks. To denotequantities evaluated in this sheme we use the label MR;� In the seond sheme we perform the alulation using massless fermions andphotons, MA = m = 0, and we evaluate IR singularities in dimensional reg-ularization (DR). To denote quantities evaluated in this sheme we use thelabel DR.The singular parts of the wave-funtion renormalization onstants readÆZIRqL = �4�  4��2M2W !" �(1 + ")Q2qhIRq ;ÆZIRW = �4�  4��2M2W !" �(1 + ")hIRW ; (62)15



with hIRq;MR = � ln M2Wm2 !� 2 ln �2m2!� 4; hIRW;MR = �2 ln �2M2W ! ; (63)in the MR sheme and hIRq;DR = 1"; hIRW;DR = �2" ; (64)in the DR sheme. The splitting of the loop ontributions ÆA��1;I(M2A) into IR-singularand IR-�nite parts is performed at the level of the salar loop integrals Ji(M2A):Ji(M2A) = J IRi + J�ni : (65)Expliit expression for the IR-singular and IR-�nite parts of individual loop integralsare presented in Appendix D. Combining all singular ontributions J IRi we obtainÆAIR;��1;I =  4��2M2W !" �(1 + ")f IRI S��0 ; (66)i.e. the IR singularities fatorize3 with respet to the Born amplitude (38). TheIR-singular part of the renormalized amplitude an be expressed in terms of theeletromagneti harges of the external partiles asÆML;��1;IR = �4�  4��2M2W !" �(1 + ")"�QqQq0f IR1 + �Qqf IR2 � �Qq0f IR3 #ML;��0 ; (67)where � = �1 is the harge of the W boson andf IR1 = �f IRA � hIRq ;f IR2 = �f IRA � f IRN + 12 �f IRX � f IRY � hIRq � hIRW � ;f IR3 = �f IRA � f IRN + 12 �f IRX + f IRY � hIRq � hIRW� : (68)In the MR sheme we obtainf IR1;MR = �2 ln �2M2W ! ln �ŝm2!� ln2  m2M2W !+ 3 ln m2M2W !+ 2 ln �2m2! ;f IR2;MR = ln �2M2W !"ln m2M2W !� 2 ln 1� t̂M2W !#� 12 ln2  m2M2W !+ 12 ln m2M2W !+ 2 ln �2M2W ! ;f IR3;MR = f IR2;MR���t̂!û; (69)3To be preise, the tensors ÆA��1;X(M2A) and ÆA��1;N(M2A) ontain also non-fatorizable IR diver-genes. However these non-fatorizable singularities are related byÆAnon�fat;��1;X (M2A) = 2ÆAnon�fat;��1;N (M2A);and due to the identity CF� (T 3qL)2 = CA=4, whih relates the oupling strutures assoiated withthe X- and N-terms in (47), they anel. 16



and in the DR shemef IR1;DR = 2"2 � 1" "2 ln �ŝM2W !� 3#+ 4;f IR2;DR = 1"2 � 1" "2 ln 1� t̂M2W !� 52# + 2;f IR3;DR = f IR2;DR���t̂!û: (70)The splitting (61) has been performed in suh a way that in the high-energy limit(ŝ; jt̂j; jûj � M2W ) the IR-�nite part of the amplitude has the same logarithmi be-haviour as the virtual orretions regularized by a photon mass MA = MW . Indeedthe IR-singular parts f IRi orrespond exatly to the ontribution alled purely ele-tromagneti in Ref. [14℄. This implies that, up to terms that are not logarithmiallyenhaned at high energies, the IR-�nite part of the orretions orresponds to thesymmetri eletroweak ontribution of Ref. [14℄, whih is onstruted by setting thephoton mass equal to MW . This property is evident in the asymptoti high-energyexpressions (80) for the IR-�nite part of the diagrams involving virtual photons.3.5 ResultLet us summarize our result for the unpolarized squared matrix element for the�qq0 !W �g proess. To O(�2�S),XjM�qq0!W�g1 j2 =XjM�qq0!W�g0 j2 + 2Re �X�M�qq0!W�g0 �� ÆM�qq0!W�g1 � : (71)Using (36) and summing over the polarizations we an express the interferene termas 2Re �X�M�qq0!W�g0 �� ÆM�qq0!W�g1 � = 2�2��S(N2 � 1)� Re hTr �p=q0ML;��0 p=�qÆML;�0�01 �i g��0  g��0 � pW�pW�0p2W ! ; (72)where M = 0My0. Combining the ontributions of the bare one-loop diagrams(47) and the ounterterms (54) yieldsXjM�qq0!W�g1 j2 = h1 + 2Re �ÆCA + ÆCN�iXjM�qq0!W�g0 j2 + 2��2�Ss2W (N2 � 1)� Re( XV=A;Z" ÆSU(2)V V CFs2W + ÆU(1)V V Y 2qL42W!HA1 (M2V )� ÆSU(2)V V CF � (T 3qL)2s2W HX1 (M2V ) + ÆSU(2)V V CA2s2WHN1 (M2V )�XV T 3qLYqLHY1 (M2V )#+ CF � (T 3qL)2s2W HX1 (M2W )): (73)17



The unpolarized Born ontribution is given in (32), the ounterterms ÆCA and ÆCNare presented in Set. 3.3, and the oupling fators are spei�ed by (28) and (42).The funtions H I1(M2V ) represent the ontributions resulting from the loop diagramsof Fig. 2. They are related to the tensors ÆA��1;I(M2V ) in (47){(48) byH I1(M2V ) = 18Tr h p=q0 S��0 p=�q ÆA�0�01;I (M2V ) i g��0  g��0 � pW�pW�0p2W ! : (74)The ouplings assoiated with HA1 , HN1 and HX1 are the same for q = u and q =d. Thus the rossing and CP symmetry relations (21) and (22) imply that thesefuntions are symmetri with respet to the transformation t̂$ û. In ontrast, HY1is antisymmetri with respet to t̂ $ û exhange sine the orresponding ouplingis proportional to T 3qL and has thus opposite signs for q = u and q = d. Thefuntions H I1(M2V ) are presented in Appendix E as linear ombinations of salarloop integrals. We note that, in ontrast to the de�nition adopted in the ase ofZj prodution [9℄, here we do not inlude the ontributions of the fermioni wave-funtion renormalization onstants in HA1 (M2V ).For the IR-singular part of the renormalized one-loop orretion we obtainXjM�qq0!W�g1;IR j2 = �2�Re "�QqQq0f IR1 + �Qqf IR2 � �Qq0f IR3 #�  4��2M2W !" �(1 + ")XjM�qq0!W�g0 j2: (75)The IR-singular funtions f IRi in the MR and DR shemes are presented in Set. 3.4.4 High-energy limitIn this setion we provide ompat analyti expressions that desribe the behaviourof the IR-�nite part of the virtual eletroweak orretions in the limit M2W=ŝ ! 0with t̂=ŝ and û=ŝ onstant. In this limit, whih is appliable for transverse momentaof O(100GeV) or beyond, the eletroweak orretions are dominated by logarithmiontributions of the type ln(ŝ=M2W ). In Set. 4.1 we present the asymptoti expan-sion of the one-loop orretions, inluding leading and next-to-leading logarithms,as well as terms that are not logarithmially enhaned at high energies. In Set. 4.2we present the two-loop orretions to next-to-leading logarithmi auray.4.1 Next-to-next-to-leading approximation at one loopIn this setion we disuss the high-energy behaviour of the IR-�nite part of theone-loop orretions to the �qq0 ! W �g proess, obtained by subtrating the IRdivergene (75) from the renormalized one-loop result (73),XjM�qq0!W�g1;�n j2 = XjM�qq0!W�g1 j2 �XjM�qq0!W�g1;IR j2: (76)18



In the following we present expliit asymptoti expressions for the unrenormalizedloop ontributions, i.e. for the IR-�nite parts H I;�n1 of the funtions H I1 in (73).Using the general results of Ref. [28℄, we evaluate the funtions H I;�n1 to next-to-next-to-leading logarithmi (NNLL) auray. This approximation aounts for allontributions that are not suppressed by powers of M2W=ŝ. It inludes double andsingle logarithms as well as terms that are not logarithmially enhaned in the high-energy limit. To simplify non-logarithmi funtions of the ratio MZ=MW we haveperformed an expansion in s2W = 1 �M2W=M2Z, keeping only terms up to the �rstorder4 in s2W. The NNLL expansion of H I;�n1 (M2V ) has the general formH I;�n1 (M2V ) NNLL= Re "gI0(M2V ) t̂2 + û2t̂û + gI1(M2V ) t̂2 � û2t̂û + gI2(M2V )# : (77)It involves the rational funtion (t̂2+ û2)=t̂û, whih has the same angular behaviouras the squared Born amplitude (32) in the high-energy limit, and two other rationalfuntions, whih desribe di�erent angular dependenies. The funtions gIi onsist oflogarithms of the kinematial variables and onstants. The loop diagrams involvingZ and W bosons, with mass MV = MZ ;MW , yieldgN0 (M2V ) = 2 " ��UV + ln M2ZM2W !+ ln M2VM2W !# + ln2  �ŝM2V !� 12"ln2  �t̂M2V !+ ln2  �t̂M2W !+ ln2  �ûM2V !+ ln2  �ûM2W !# + ln2  t̂̂u!� 32"ln2  t̂̂s!+ ln2  û̂s!#� 20�29 � 2�p3 + 4;gN1 (M2V ) = 12"ln2  û̂s!� ln2  t̂̂s!#;gN2 (M2V ) = �2"ln2  t̂̂s!+ ln2  û̂s!+ ln t̂̂s!+ ln û̂s!#+ 2 ln M2VM2W !� 4�2;gA0 (M2V ) = � ln2  �ŝM2V !+ 3 ln �ŝM2V !+ 32"ln2  t̂̂s!+ ln2  û̂s!+ ln t̂̂s!+ ln û̂s!#+ 7�23 � 52 + gA;UV0 (M2V );gA1 (M2V ) = �gN1 (M2W ) + 32"ln û̂s!� ln t̂̂s!#;gA2 (M2V ) = �gN2 (M2W );gX0 (M2V ) = 0;gX1 (M2V ) = 0;4In pratie we �nd that all terms of O(s2W) anel in the result.19



gX2 (M2V ) = �2 "2 ln �ŝM2V !+ ln t̂̂s!+ ln û̂s!� 3# ;gY0 (M2V ) = ln2  �t̂M2W !� ln2  �t̂M2V !� ln2  �ûM2W !+ ln2  �ûM2V ! ;gY1 (M2V ) = 0;gY2 (M2V ) = 2 ln t̂̂u! ; (78)where ��UV is de�ned in (50) and, in order to failitate the omparison with Ref. [9℄,we have isolated the termgA;UV0 (M2V ) = ��UV + ln M2ZM2V !� 12 : (79)If we inluded the fermioni wave-funtion renormalization onstants in the de�ni-tion of the funtionHA1 , as we had done for the ase of Zj prodution in Ref. [9℄, thisterm would anel and the funtion gA0 (M2V ) would be idential to the one obtainedin Ref. [9℄.For the loop diagrams involving photons (MV = MA), after subtration of theIR-singular parts, we obtaingN0 (M2A) = gN0 (M2W )� 7�29 + 2�p3 ;gA0 (M2A) = gA0 (M2W ) + �2;gI0(M2A) = gI0(M2W ) for I = X;Y;gI1(M2A) = gI1(M2W ) for I = A;N;X;Y;gI2(M2A) = gI2(M2W ) for I = A;N;X;Y: (80)The ontribution of the ounterterms ÆCA and ÆCN to the IR-�nite part of therenormalized result (76) is obtained by subtrating from (53) the IR-divergent partof the wave-funtion renormalization onstants (62). This ontribution, onsistingof on-shell self-energies and their derivatives, does not depend on the satteringenergy. Therefore we evaluate the IR-�nite parts of the ounterterms in numerialform without applying any approximation. Using the input parameters spei�ed inSet. 7 we obtainÆCA;�n = 12 �ÆZ�nuL + ÆZ�ndL � = ÆCA���UV + 5:57� 10�4;ÆCN;�n = 12  ÆZ�nW + Æg22g22 ! = ÆCN���UV � 1:49� 10�3: (81)The UV divergenes ÆCA;NjUV [see (60)℄ anel against the ��UV-terms in (78){(80).The results (78){(80), for the �qq0 ! W �g proess, are valid for arbitrary valuesof the Mandelstam invariants and an easily be translated to all other proesses in20



(2) by means of the relations (21){(22). Logarithms with negative arguments in(78){(80) are de�ned through the usual i" presription, r̂ ! r̂ + i" for r̂ = ŝ; t̂; û.In next-to-leading logarithmi (NLL) approximation, i.e. retaining only doubleand single logarithms that grow with energy, the above results assume a partiularlyompat form. In this approximation the ounterterms do not ontribute,ÆCA NLL= ÆCN NLL= 0; (82)and for the funtions H I;�n1 (M2V ), negleting logarithms of MZ=MW , we obtainHN;�n1 (M2V ) NLL= � "ln2  jt̂jM2W !+ ln2  jûjM2W !� ln2  jŝjM2W !# t̂2 + û2t̂û ;HA;�n1 (M2V ) NLL= � "ln2  jŝjM2W !� 3 ln jŝjM2W !# t̂2 + û2t̂û ;HX;�n1 (M2V ) NLL= �4 ln jŝjM2W ! ;HA;�n1 (M2V ) NLL= 0; (83)for V = A;Z;W . We note that, owing to HX;�n1 (MZ) NLL= HX;�n1 (MA) and (43),the NLL ontribution of the funtion HX;�n1 (MV ) anels in (73). Thus the NLLorretions (83) are proportional to the rational funtion (t̂2+û2)=t̂û, whih desribesthe angular dependene of the Born ross setion.4.2 Next-to-leading logarithms up to two loopsLet us now present our results for the NLL asymptoti behaviour of the eletroweakorretions up to two loops. For a disussion of the alulation we refer to Ref. [8℄,where the same lass of orretions has been omputed for Zj prodution. Theresults have been obtained in the MZ = MW approximation. As in the previoussetion, we present results for the IR-�nite part of the eletroweak orretions, ob-tained after subtration of IR singularities. As disussed in Set. 3.4, at one loopthis subtration is performed in suh a way that, to NLL auray, the IR-�nitepart orresponds to the omplete eletroweak orretion regularized with a �titiousphoton mass MA = MW . The same presription is adopted at the two-loop level.The unpolarized squared matrix element for �qq0 ! W �g, inluding NLL termsup to the two-loop level, has the general formXjM�qq0!W�g2 j2 = 8�2��S(N2 � 1) t̂2 + û2t̂û "A(0) + � �2��A(1) + � �2��2A(2)# : (84)The Born ontribution reads A(0) = 12s2W : (85)21



At one loop, the NLL part onsists of double- and single-logarithmi terms and readsA(1) NLL= � 12s2W "CewqL �L2̂s � 3Lŝ�+ CA2s2W �L2̂t + L2̂u � L2̂s�# : (86)Here we used the shorthand Lk̂r = lnk(jr̂j=M2W ) for the logarithms and CewqL =Y 2qL=(42W) +CF=s2W are the eigenvalues of the eletroweak Casimir operator for left-handed quarks. This expression is onsistent with the proess-independent resultsof Ref. [14℄ as well as with the NLL part of the one-loop asymptoti expressionspresented in Set. 4.1. At two loops we obtainA(2) NLL= 12s2W(12  CewqL + CA2s2W!"CewqL �L4̂s � 6L3̂s�+ CA2s2W �L4̂t + L4̂u � L4̂s�#+ 16" b12W �YqL2 �2 + b2s2W �CF + CA2 �#L3̂s); (87)where b1 = �41=(62W) and b2 = 19=(6s2W) are the one-loop �-funtion oeÆientsassoiated with the U(1) and SU(2) ouplings, respetively. The LLs as well as theangular-dependent subset of the NLLs in (87), i.e. all ontributions of the form L4̂rwith r̂ = ŝ; t̂; û, have been derived from Ref. [15℄. There, by means of a diagram-mati two-loop alulation in the spontaneously broken eletroweak theory, it wasshown that suh two-loop terms result from the exponentiation of the orrespond-ing one-loop orretions. The additional NLLs of the form L3̂s in (87) have beenobtained via a �xed-order expansion of the proess-independent resummed expres-sion proposed in Ref. [16℄. This resummation [16℄ relies on the assumption thate�ets from spontaneous breaking of the SU(2)�U(1) symmetry an be negletedin the high-energy limit.Our NNLO preditions inlude only the LL and NLL terms. Thus they area�eted by a potentially large theoretial unertainty, due to missing subleadingontributions of order �2 lnk(ŝ=M2W ) with k = 2; 1; 0. For four-fermion sattering itwas found that, at ŝ � 1TeV2, the two-loop logarithmi expansion has an osillatingbehaviour haraterized by large anellations between leading and subleading terms[3℄. In this ase the subleading terms play a very important role and the NLLapproximation yields misleading results. In ontrast, in the ase of Wj prodution,the relative weight of the LL, NLL and NNLL ontributions at one loop indiatesa fairly good onvergene of the logarithmi expansion. Indeed, as an be seenfrom our numerial results in Set. 7, the one-loop orretions are learly dominatedby the negative LL ontributions, while the NLL terms are relatively small andthe NNLL ontributions almost negligible. A similar onvergene is expeted alsoat two-loops, owing to the exponentiation property of the logarithmi orretions.Thus our NLL two-loop preditions an be regarded as a plausible estimate of thesize of the two-loop eletroweak e�ets in high-pT W -boson prodution.22
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Figure 4: Tree-level diagrams for the proess �qq0 ! Wg.5 Real orretionsIn order to anel IR singularities from the virtual-photon orretions, real emissionorretions need to be alulated. As disussed in Set. 2.3, all relevant partonireations are related to the �qq0 !W �g proess through rossing and CP symmetry.The tree-level diagrams for this proess are shown in Fig. 4.The squared matrix element for the 2 ! 3 proess ab ! W �k, summed overpolarization and olour as well as averaged over initial-state polarization, an bewritten in a general form [29℄XjMab!W�k0 j2 = 4�� h�QqQq0H1;abr (ŝ; t̂; û; t̂0; û0)+ �QqH2;abr (ŝ; t̂; û; t̂0; û0)� �Qq0H3;abr (ŝ; t̂; û; t̂0; û0)i ; (88)with the kinematial invariants de�ned in Set. 2.2. In the limit of soft and/orollinear photon emission, the squared matrix element (88) exhibits IR singularities.To ombine these singularities with those originating from virtual orretions wehave to extrat them in analyti form. This is done with the help of the dipolesubtration formalism [17, 18, 19℄. Within this framework the partoni di�erentialross setion an be shematially written asd�̂ab!W�kdpT = Nab Z d�3 hMab(�3)�Mabsub(�3)i+ d�̂abAdpT ; (89)with Nab given in (7). The quantity Mab readsMab(�3) =XjMab!W�k0 j2FO;3(�3) : (90)The auxiliary funtionMabsub is hosen suh that it has the same singular behaviour asMab in the soft and ollinear limits. This ensures that the di�erene Mab�Mabsub anbe integrated numerially. To ompensate for the subtration, the integral of theauxiliary funtion Mabsub, denoted here d�̂abA =dpT, is then added bak. The analytialform of d�̂abA =dpT is obtained after performing integration over the subspae of the23



radiated photon. The result of this one-partile subspae integration ontains sin-gular ontributions whih must be ombined with those in virtual orretions. Thealgorithms for onstruting the auxiliary subtration funtion and its integratedounterpart have been developed both for the ase of photon radiation o� masslessor massive fermions [17℄ and QCD radiation o� massless [18℄ or massive partons [19℄.In Sets. 5.1 and 5.2 we disuss the appliation of both formalisms to alulate theO(�) real orretions to the Wj prodution proess. In both approahes we useexpressions for the emission o� a massive fermion to desribe the emission o� a Wboson, sine only soft singularities are present in this ase and they depend only onthe harge of the external partile and not on its spin.After adding the real and virtual orretions, ollinear singularities remain.Final-state singularities are avoided by reombining ollinear photon-quark on-�gurations as disussed in Set. 2.2. Initial-state singularities are absorbed in thede�nition of PDFs using the MS sheme.5.1 Mass regularizationThe formalism of Ref. [17℄ employs small photon and fermion masses to regularizesoft and ollinear singularities. The subtration term for the squared matrix elementis onstruted from the appropriate dipole fators. Keeping the original notation ofRef. [17℄ we an write for the proess ab!W �k (where a (b) an be �q; q0; g)Mabsub(�3) = �4�� X�=�( QaQb gsubab;� (pa; pb; p) Ma0b00 �~�2;ab�� Qa� gsubaW;�(pa; pW ; p) Ma0b00 �~�2;aW�� �Qa gsubWa;�(pW ; pa; p) Ma0b00 �~�2;Wa�� QaQk gsubak;�(pa; pk; p) Ma0b00 �~�2;ak�� QkQa gsubka;�(pk; pa; p) Ma0b00 �~�2;ka�+ (a$b)!�����fa0=a; b0=bg+ Qk� gsubkW;�(pk; pW ; p) Mab0 �~�2;kW�+ �Qk gsubWk;�(pW ; pk; p) Mab0 �~�2;Wk�) ; (91)with Mab0 (~�2;nm) =XjMab!W�k0 (~�2;nm)j2FO;2(~�2;nm) : (92)Due to Qg = 0 the dipole terms with gluon indies do not ontribute to (91) andfor eah subproess the subtration term Mabsub is onstruted from six dipole terms,haraterised by the gsub funtions. Expressions for these funtions are taken diretlyfrom Ref. [17℄. In Appendix F (see Table 1) we list all the funtions whih are usedto alulate (91), together with the orresponding equation numbers in Ref. [17℄.24



For eah subproess the six dipole terms fall into three groups, eah ontainingtwo dipole terms and oming with a spei� harge ombination, either �QqQq0or �Qq, or ��Qq0 . The subtration term Mabsub has then the same struture as Mabin (88) and the IR-singular part of the virtual orretions (75). Thus the anellationof singularities an be analyzed for eah harge ombination separately.The onstrution of the redued phase spae ~�2;nm follows the presriptionsof Ref. [17℄. Generally ~�2;nm is a mapping from the 3-partile phase spae intoa 2-partile phase spae. The mapping respets all mass shell onditions. For di�er-ent types of dipoles, di�erent mappings are neessary. In Table 1 we list numbers ofequations in Ref. [17℄ whih we used to performmapping for the dipole terms appear-ing in our alulations. In partiular, the observable-de�ning funtion FO;2(~�2;nm)in (92) is then FO;2(~�2;nm) = Æ(pT � ~pT;W )�(~pT; j � pminT; j) ; (93)with ~pT;W and ~pT; j belonging to ~�2;nm.The expression for the subtration term integrated over the phase spae of thephoton readsd�̂abAdpT = � �2�(2QaQb " GsubI;I (r̂ab) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;I (r̂ab; x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�Qa� " GsubI;FM(r̂aW ) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;FM(r̂aW (x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�Qb� " GsubI;FM(r̂bW ) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;FM(r̂bW (x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�QaQk " GsubI;F (r̂ak) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;F (r̂ak(x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�QbQk " GsubI;F (r̂bk) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;F (r̂bk(x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#+Qk� " GsubF;FM(r̂kW ) d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#) : (94)25



The relevant invariants in (94) are de�ned as r̂ab = (pa+pb)2 = ŝ, r̂kW = (pk+pW )2 =ŝ, and r̂aW (x) = (xpa � pW )2;r̂ak(x) = (xpa � pk)2;r̂nl = r̂nl(1): (95)The terms proportional to d�̂ab!W�kfwd =dpT in (94) represent the ontributions orig-inating from the forward hemisphere in the 2-partile phase spae [see (10)-(11)℄.The (a$b) terms are the ontributions from the bakward hemisphere, andd�̂ab!W�kfwddpT �����a$b = d�̂ab!W�kbkwddpT : (96)Note that the �rst argument of d�̂ab!W�kfwd =dpT in (94) diretly indiates the x-dependene of the atual values of the t̂, û invariants de�ned in (5). The plus-distributions appearing in eq. (94) are evaluated aording to the presriptionZ 10 dx hGsub(r̂(x); x)i+ d�̂dpT (xŝ; pT) == Z 10 dx"Gsub(r̂(x); x) d�̂dpT (xŝ; pT) � (x� �̂)� Gsub(r̂(1); x) d�̂dpT (ŝ; pT) #; (97)where �̂ = �pT +qp2T +M2W�2.ŝ guarantees the minimal enter-of-mass energyto produe the �nal state. The expressions for the funtions Gsub and Gsub followdiretly5 from the results in Ref. [17℄. For the funtions Gsub they readGsubI;I (r̂) = 12"Re �f IR1;MR�+ ln2  r̂M2W !� 3 ln r̂M2W !� 23�2 + 4#; (98)GsubI;FM(r̂) = Re �f IR2;MR� ���t̂$r̂ + 2 ln2  1� r̂M2W !� ln2  2� r̂M2W !+ ln 1� r̂M2W ! M4Wr̂2 � 3M2Wr̂ � 3!� 2Li2  M2W2M2W � r̂!+2Li2  r̂2M2W � r̂!� 2Li2  �r̂2M2W � r̂!+ M2Ŵr + �26 + 12 ; (99)GsubI;F (r̂) = Re �f IR1;MR� ���ŝ$r̂ + ln2  �r̂M2W !� 3 ln �r̂M2W !� �23 + 12 ; (100)GsubF;FM(r̂) = Re �f IR2;MR� ���t̂$r̂ + ln2  r̂M2W � 1!+ ln2  1� M2Ŵr !5The funtion GsubF;FM(r̂) has been derived from eq. (4.10) in Ref. [17℄ by taking the limit of anin�nitesimal quark mass. 26



+12 ln r̂M2W !� 72 ln r̂M2W � 1!� 32 ln pr̂ �MWpr̂ +MW !+4Li2  M2Ŵr !� 4Li20�sM2Ŵr 1A+ M2W2r̂ � 2�23 + 3: (101)The IR-singular funtions f IRi;MR anel against those in the virtual orretions, f.Set. 3.4. The expliit forms of the funtions Gsub areGsubI;I (r̂; x) = �(x) + 1 + x21� x (ln r̂�2QED!+ 2 ln (1� x))+ 1� x; (102)GsubI;FM(r̂; x) = �(x) + 1 + x21� x ( ln M2W � r̂x�2QED !+ ln �(1� x)(1� z1(r̂; x))�)+z1(r̂; x)� 12(1� x)  3 + z1(r̂; x)� 4M2Wx(r̂ �M2W )(1� x)!+ 1� x; (103)GsubI;F (r̂; x) = �(x) + 1 + x21� x (ln �r̂x�2QED!+ ln (1� x))� 32(1� x) + 1� x; (104)with z1(r̂; x) = M2WxM2W � (1� x)r̂ (105)and �(x) = 1 + x21� x (ln �2QEDm2 !� 2 ln (1� x)� 1) ; (106)where �QED is the fatorization sale and m stands for the quark-mass regulator.The funtions �(x) are singular. These singularities are related to the ollinearphoton radiation o� an initial-state quark and are absorbed in the de�nition of thePDFs, yielding the hadroni ross setion �nite. The proedure bears ompleteanalogy to absorbing ollinear QCD singularities into the de�nition of the PDFs. Inthe MS fatorization sheme, the rede�nition is ahieved by replaing [5℄fh;q(x; �2QCD)! fh;q(x; �2QCD; �2QED)� �2�Q2q Z 1x dzz fh;q(xz ; �2QCD; �2QED) [�(z)℄+ :(107)5.2 Dimensional regularizationIn an independent alulation we used the results of Refs. [18, 19℄ to evaluate thedipole subtration terms and their integrated ounterparts. The formalism of [18, 19℄is onerned with QCD radiation and expressions for dipoles are given as matries inolour and heliity spae. Sine we onsider photon emission o� a fermion line, the27



olour and heliity struture disappears and the dipole matries redue to simpleexpressions. More preisely, to adapt the formalism Refs. [18, 19℄ for the alulationof QED orretions, we make use of expressions desribing gluon radiation o� afermion line in Refs. [18, 19℄ and replae�S ! �; Ti ! �iQi; CF ! Q2i ; TR ! 1; CA ! 0 ; (108)where Ti indiates the olour of the emitting parton, Qi is the eletri harge in unitsof the positron harge for this parton, and �i = +1 (�1) for inoming (outgoing)partons. Adopting notation analogous to Refs. [18, 19℄, the subtration term for theproess ab! W �k an be then writtenMabsub(�3) = hDa;bQED +DaW; QED +DaW; QED +Dak; QED +Dak; QED + (a$b)i+Dk;W; QED +DW;k; QED ; (109)where DIF; QED = FO;2(~�2;nm)DIF (pW ; pk; p; pa; pb)���replaements of eq: (108): (110)It is understood in eq. (109) that dipole subtration terms with a gluon index donot ontribute to Mabsub. In a omplete analogy to eq. (91), for any initial state abthe expression for Mabsub is onstruted from six dipole subtration terms DIF; QED,eah assoiated with one of the three possible harge ombinations �QqQq0, �Qq or��Qq0 . The dipole subtration funtionsDIF are taken diretly fromRefs. [18, 19℄. Alist of the funtionsDIF used to alulate the subtration termMabsub in (109), togetherwith the orresponding equation numbers in Refs. [18, 19℄, is presented in Table 2,Appendix F. Additionally, for eah dipole subtration term appearing in (109) weinlude a desription of its type. The mappings from �3 to ~�2;nm agree between theformalism of Refs. [18, 19℄ and [17℄. However, for the sake of ompleteness, Table 2ontains numbers of equations whih provide mapping formulae in Refs. [18, 19℄.The funtion FO;2 in (110) is given by expression (93).Moreover, apart from the �nal-state emitter, �nal-state spetator ase, i.e. thedipoles Dk;W; QED and DW;k; QED, there is a diret orrespondene between thedipole subtration terms in the two formalisms of the formDa;bQED "!0! �QaQb 4�� X�=� gsubab;� (pa; pb; p)Mab0 (~�2;ab);DaW; QED "!0! Qa� 4�� X�=� gsubaW;�(pa; pW ; p)Mab0 (~�2;aW );DaW; QED "!0! Qa� 4�� X�=� gsubWa;�(pW ; pa; p)Mab0 (~�2;Wa);Dak; QED "!0! QaQk 4�� X�=� gsubak;�(pa; pk; p)Mab0 (~�2;ak);Dak; QED "!0! QaQk 4�� X�=� gsubka;�(pk; pa; p)Mab0 (~�2;ka): (111)28



The subtration term integrated over the photon phase spae is onstrutedaording tod�̂abAdpT = �2�"Iab(ŝ; pT) + Z 10 dx �Kab(x; ŝ; pT) + Pab(x; ŝ; pT)�#; (112)where the expressions for I;K and P funtions follow from results for the integrateddipole funtions in Refs. [18, 19℄ after performing replaements of eq. (108). For thephotoni orretions to any of the subproesses ab! W �k we an writeIab(ŝ; pT) = QaQb "~I(ŝab)d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�Qa� "I 0(ŝaW )d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�Qb� "I 0(ŝbW )d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�QaQk "~I(ŝak)d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�QbQk "~I(ŝbk)d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#+Qk� "I 0(ŝkW )d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)# ; (113)where ŝnm = 2pnpm, and we make use of Qg = 0. As in (94), the terms proportionalto d�̂ab!W�kfwd =dpT originate from the forward hemisphere and the (a$b) terms fromthe bakward hemisphere. The integrated dipole funtions in (113) read~I(ŝnm) = � 4��2M2W !" �(1 + ") Re �f IR1;DR� ����ŝ=ŝnm � ln2  ŝnmM2W !+ 3 ln ŝnmM2W !+4�23 � 6 ;I 0(ŝnm) = � 4��2M2W !" �(1 + ") Re �f IR2;DR� ����t̂=M2W+�n�m ŝnm � ln2  ŝnmM2W !� ln ŝnmM2W ! ln ŝnmM2W + ŝnm!� 3!� ln ŝnmM2W + ŝnm!+ ln M2WM2W + ŝnm! ln ŝnmM2W + ŝnm!+ 3 ln0�1�vuut M2WM2W + ŝnm1A+ M2Wŝnm ln M2WM2W + ŝnm!+ 2Li2  ŝnmM2W + ŝnm!+ 3MWqŝnm +M2W +MW+ �2 � 6 : (114)29



The struture of the singular terms f IRi;DR in (114) is kept the same as in (75) tomanifestly show anellation of singularities between virtual and real orretions.For the x-dependent funtions we haveKab(x; ŝ; pT) = (Q2a +Q2b) " �K(x)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#+ 2QaQb " ~K(x)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qa� "K0(x; ŝaW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qb� "K0(x; ŝbW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� (QaQk +QbQk) "K00(x)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)# ;Pab(x; ŝ; pT) = 2QaQb "P(x; ŝab)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qa� "P(x; ŝaW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qb� "P(x; ŝbW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� QaQk "P(x; ŝak)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� QbQk "P(x; ŝbk)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)# ; (115)with �K(x) = Preg(x) ln�1� xx �+ (1� x) + � 21� x ln�1� xx ��+�Æ(1� x)(5� �2) ;~K(x) = �Preg(x) ln(1� x)� "2 ln(1� x)1� x !+ � �23 Æ(1� x)# ;K0(x; ŝnm) = �2 ln(1� x)1� x !+ + 2ln(2� x)1� x� 1� x2 (1� x+M2W=ŝnm)2 � 21� x "1 + ln 1� x + M2Wŝnm !#!+�� 21� x�+ "ln 2� x + M2Wŝnm !+ ln (2� x)ŝnm(2� x)ŝnm +M2W !#�Preg(x) ln (1� x)ŝnm(1� x)ŝnm +M2W !30



�Æ(1� x) 24�32 + M2Wŝnm ln M2Wŝnm +M2W !+ 3MWqŝnm +M2W +MW+ 32 ln0� ŝnm � 2MWqŝnm +M2W + 2M2Wŝnm 1A+ 12 M2Wŝnm +M2W 35 ;K00(x) = 32 "� 11� x�+ + Æ(1� x)# ;P(x; ŝnm) =  1 + x21� x !+ ln �2QEDxŝnm ! ; (116)and Preg(x) =  1 + x21� x !+ �  21� x!+ � 32Æ(1� x) : (117)Note that in ontrast to eq. (113), the quantity ŝnm in (115) an be impliitlydependent on the fration x. More preisely, it is the ase if ŝnm involves themomentum of a �nal-state partile. The �nal-state momentum belongs then to thephase spae for whih the squared enter-of-mass energy is xŝ = 2xpapb [19℄.The evaluation of the terms involving the plus-distribution is arried out asindiated in Ref. [19℄, i.e. aording toZ 10 dx [R(x; ŝnm(x))℄+ d�̂dpT (xŝ; pT) == Z 10 dx"R(x; ŝnm(x)) d�̂dpT (xŝ; pT) �(x� �̂ )�R(x; ŝnm(1)) d�̂dpT (ŝ; pT) #;(118)with �̂ = �pT +qp2T +M2W�2.ŝ.In the formalism of Refs. [18, 19℄ the ollinear ounterterms assoiated with PDFrenormalization are inluded in the expressions for integrated dipole funtions, i.e.the �nal results whih we use are free from ollinear singularities. The expressionspresented here are alulated using the MS fatorization sheme.As an be seen from the presented formulae, the expliit expressions for theintegrated dipole funtions in the two formalisms are di�erent. In partiular, theexpressions for the end-point ontributions have di�erent forms due to spei� on-ventions wrt. alulating the plus-distribution terms in the two formalisms. Howeverwe have heked that, after subtration of the IR singularities, for eah harge om-bination apart from �Qk the integrated dipole ontributions to d�abA =dpT in the twoformalisms are equivalent.
31



6 CheksEvery part of the presented alulation has been performed in two ompletely in-dependent ways. The algebrai redutions were done using two di�erent Mathe-matia [30℄ odes. For the numerial evaluation we have implemented the resultsin two independent Fortran programs. Comparing the results at numerial levelwe �nd agreement within the statistial errors.Furthermore, in order to ontrol the orretness of our results we performedvarious onsisteny heks. On the side of virtual orretions we have veri�ed thatthe one-loop orretions (48) satisfy the Ward Identity"��(pW ) pg� �v(p�q) hÆA��1;I(M2V )!�i u(pq) = 0 for I=A,N,X,Y: (119)A similar Ward identity holds for the lowest-order amplitude6. The anellation ofthe ultraviolet divergenies has been veri�ed analytially and numerially. For thenumerial evaluation of the loop integrals we use a set of routines by A. Dennerand, alternatively, the FF library [31℄. The NLL approximation that was derivedfrom the full one-loop alulation, has been heked against results from the generalderivation of NLL terms [14℄. Also the IR-singular ontributions in the high-energylimit have been reprodued within this framework.The squared matrix element for the real orretions was heked numeriallyagainstMadGraph [32℄. The anellation of IR singularities between real and vir-tual orretions was done analytially using the dipole formalism. The subtrationterms were derived and implemented in two di�erent ways, using the mass regu-larization of IR singularities and the dimensional regularization. The phase-spaeintegration for the real orretions was performed with adaptive Monte-Carlo inte-gration using VEGAS [33℄. Detailed omparisons at analytial and numerial levelwere performed, and the agreement between the preditions generated within twodi�erent regularization shemes provided a strong hek on the alulation of thereal orretions.7 Numerial resultsIn this setion we present numerial preditions for the large-pT prodution of Wbosons at the hadron olliders LHC and Tevatron. The following input parame-6We note that the abelian one-loop ontribution satis�es two additional Ward identitiespW� "��(pg) �v(p�q) hÆA��1;A(M2V )!�iu(pq) = 0; pW� pg� �v(p�q) hÆA��1;A(M2V )!�iu(pq) = 0:Similar identities for the N-, X- and Y- form fators exist but are less trivial due to the non-vanishing ontributions from would-be Goldstone bosons on the right-hand side. This means thatthe alulation of the unpolarized ross setion requires the use of the exat expression for the W -boson polarization sum. Instead, owing to (119), the gluon polarization sum an be implementedas �g��0 . 32



ters are used: G� = 1:16637 � 10�5GeV�2, MW = 80:39GeV, MZ = 91:19GeV,mt = 171:4GeV, MH = 120GeV. For the numerial values of elements in the CKMquark mixing matrix we refer to [34℄.The hadroni ross setions are obtained using LO MRST2001 PDFs [35℄. Wehoose �2QCD = p2T as the fatorization sale and, similarly, as the sale at whihthe strong oupling onstant is evaluated7. We also adopt, in agreement with thevalue used in the PDF analysis, the value �S(M2Z) = 0:13 and use the one-looprunning expression for �S(�2QCD). In our alulations of the real orretions wehoose the MS fatorization sheme with the sale �2QED = M2W . We note that inorder to onsistently inlude O(�) orretions in a alulation of a hadroni rosssetion, PDFs that are used in the alulation need to take into aount QEDe�ets. Suh PDF analysis has been performed in [36℄ and the O(�) e�ets areknown to be small for �QED <� 100GeV, both onerning the hange in the quarkdistribution funtions (below O(1%) [37℄) and the size of the photon distributionfuntion. Moreover, the urrently available PDFs inorporating O(�) orretions,MRST2004QED [36℄, inlude QCD e�ets at the NLO in �S. Sine our alulationsare of the lowest order in QCD, and QED e�ets on PDFs are estimated to be smallfor �QED <� 100GeV, we prefer to use a LO QCD PDF set without QED orretionsinorporated, rather than MRST2004QED, and we set �QED = MW 8. Moreover wedo not inlude photon-indued ontributions, whih are parametrially suppressedby a fator �=�S. However, in the onurrent to this paper (and subsequent toRef. [21℄), work of Ref. [22℄, it has been reported that photon-indued ontributionsare of numerial signi�ane for large pT W -boson prodution at the LHC. Estimatesof the exat size of these e�ets are obsured by large theoretial unertainty on thephoton's PDF, as demonstrated in Ref. [22℄.We hoose the following values of the pT-uts: pminT; j = 100GeV for LHC andpminT; j = 50GeV for Tevatron. The value of the separation parameter below whihthe reombination proedure is applied is taken to be Rsep = 0:4. The dependene ofour preditions on Rsep is negligible. We have veri�ed that the shift of the transverse-7Note that when alulating the ontribution to the hadroni ross setion oming from thesubtration term in the real orretions, we take the transverse momentum of the W boson in theredued phase spae, ~pT;W , as the fatorization sale and the argument of �S.8 The use of di�erent fatorization sales, �QCD = pT and �QED =MW , is due to the fat that�QCD and �QED play a di�erent role in our alulation. The dependene on �QCD is due to the LOevolution of the PDFs and represents an e�et of O(�S ln(�QCD=�0)), where �0 is the sale at whihthe PDF evolution starts. This dependene would be ompensated by NLO QCD ontributions ofO(�S ln(pT=�QCD)) and, although QCD orretions are not inluded in our alulation, hoosing�QCD = pT we an absorb large NLO QCD logarithms of the sale pT in the LO PDF evolution. Inontrast, the �QED dependene of our preditions is due to O(� ln(pT=�QED)) terms in the photonbremsstrahlung orretions. This dependene is not ompensated by the PDF evolution sine weuse a PDF set that does not inlude QED e�ets, assuming that these e�ets are negligible. Thisapproah makes sense only if the sale �QED is hosen in suh a way that the (potential) impatof QED e�ets on the PDFs is very small. In Ref. [37℄ it was shown that the QED orretions tothe PDFs grow with �QED but do not exeed one perent for �QED <� 100GeV. This motivatesour hoie �QED =MW for the QED fatorization sale.33



momentum distribution indued by variations of this parameter in the range 0:1 �Rsep � 1:0 does not exeed a few permille.Our lowest-order (LO) preditions result from (32). The next-to-leading orderpreditions (NLO) inlude the LO+virtual ontributions (73) and the real brems-strahlung (89). We also study the relative importane of the IR-�nite parts of thevirtual (NLOvirt) and real (NLOreal) ontributions. These IR-�nite parts are on-struted by subtrating the IR divergene (75) from the virtual orretions andadding it to the real ones. The next-to-leading-logarithmi (NLL) and next-to-next-leading-logarithmi (NNLL) preditions9 are obtained adding to the LO theapproximations (86) and (77) for the NLOvirt part and negleting the NLOreal partof the orretions. As we will demonstrate, for the ase of fully inlusive photonradiation negleting this piee provides a good approximation of the omplete alu-lation. The next-to-next-to-leading order preditions (NNLO) inlude the full NLOresults plus the two-loop NLL orretions (87).The LO transverse-momentum distributions for pp ! W+j and pp ! W�j atthe LHC are shown in Fig. 5a. In Fig. 5b and Fig. 5 we plot the relative size of theNLO, one-loop NLL, one-loop NNLL and NNLO orretions wrt. the LO preditionsfor W+ and W� prodution, respetively. The behaviour of the relative orretionsto W+ and W� prodution is very similar. As expeted, the importane of theNLO ontribution inreases signi�antly with pT and leads to a negative orretionranging from �15% at pT = 500GeV to �43% at pT = 2TeV. We also observe thatthe one-loop NLL and NNLL approximations are in good agreement (at the 1-2%level) with the full NLO result for pT � 100GeV. The di�erene between NLO andNNLO urves is signi�ant. The two-loop terms are positive and amount to +3%at pT = 1TeV and +9% at pT = 2TeV. This shifts the relative orretions for W+prodution up to �25% at pT = 1TeV and �34% at pT = 2TeV.The IR-�nite parts of the virtual (NLOvirt) and real (NLOreal) orretions toW+ prodution at the LHC are shown separately in Fig. 6a. Fig. 6b shows therelative size of the NLOvirt and NLOreal orretions wrt. the LO preditions. TheNLOvirt ontribution dominates the full NLO orretion and amounts up to �42%at pT = 2TeV. The NLOreal part ontributes with a smaller and nearly onstantorretion of about �1% in the entire pT-range. This means that, for the ase offully inlusive photon radiation, the NLOvirt part represents a good approximationof the full NLO orretion.The high-energy behaviour of the NLOvirt part is desribed by the ompat NLLand NNLL approximations presented in Set. 4. The quality of these approximationsis shown in Fig. 7. We observe that the NLL approximation works well di�ering fromthe exat NLOvirt result by less than 1% for pT � 200GeV. The quality of the NNLLapproximation is of the order of one permille or better in the entire pT-range.For less inlusive observables where a veto on hard photons is imposed, theNLOreal ontribution an beome important. Fig. 8 shows the relative NLOreal or-9For details onerning the treatment of angular-dependent logarithms at the NLL level werefer to Ref. [8℄. 34
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retions for W+ prodution. We ompare the fully inlusive photon radiation withthe ase where visible photons with pT; > 10GeV and R(; j) > 0:4 are rejeted.This veto leads to a signi�ant enhanement of the (absolute size of the) NLOrealpart, whih an exeed �5% for pT � 1TeV.To underline the relevane of the large eletroweak orretions for W produ-tion at the LHC, in Fig. 9a and Fig. 9b we present the relative NLO and NNLOorretions to the W+ and W� ross setions integrated over pT starting frompT = putT , as a funtion of putT . This is ompared with the statistial error, de-�ned as ��stat=� = 1=pN with N = L�BR��LO. The branhing ratio BR = 2=9aounts for the full eÆieny of W -detetion in the e ��e and � ��� modes (for thisestimate we ignore experimental eÆienies and uts) and we assume a total inte-grated luminosity L = 300fb�1 for the LHC [38℄. It is lear that the size of the NLOorretions is muh bigger than the statistial error. Indeed, already for L = 3fb�1and pT <� 800GeV they orrespond to a two standard deviation e�et. Also thedi�erene between the NNLO and NLO orretions, due to two-loop logarithmie�ets, is signi�ant. In terms of the estimated statistial error, these two-loopontributions amount to 1{3 standard deviations for pT of O(1TeV).Ratios of pT-distributions for W+, W�, Z bosons [9℄ and photons [10℄, in on-trast to the distributions themselves are expeted to be relatively insensitive to QCDorretions and theoretial unertainties assoiated with �S and PDFs. These ra-tios lead to important experimental tests of W and Z ouplings in the high-energyregion. For W+ and W� the ratio is presented in Fig. 10a. The LO value inreasesfrom 1.5 at pT = 100GeV to 3.4 at pT = 2TeV. As already observed, the (rela-tive) eletroweak orretions to the W+- and W�-boson pT-distributions are almostidential. In onsequene, the LO, NLO and NNLO urves in Fig. 10a overlap. Inontrast, the impat of the eletroweak orretions on the W+= ratio (Fig. 10b) atthe LHC is learly visible. The LO predition, ranging from 1.4 to 2.5, reeives anegative NLO orretion that grows with pT and amounts to �0:5 for pT = 1TeV.At pT = 2TeV the di�erene between the NNLO and NLO urves is about 0:2.The ratios of pT-distributions for W+=Z and W�=Z are shown in Fig. 11a andFig. 11b, respetively. For the W+=Z ratio the LO predition ranges from 1.5 to 2.For pT � 1TeV it is redued by 0.09 to 0.18 by the NLO eletroweak orretions.The logarithmi two-loop orretions are small. A qualitatively similar behaviour isobserved for the W�=Z ratio.The results of a similar analysis forW+ prodution at the Tevatron (ps = 2TeV)are shown in Figs. 12{15 (the pT-distributions for W+ and W� prodution are ob-viously idential). The LO pT-distribution is shown in Fig. 12a, the relative NLO,NLL, NNLL and NNLO orretions in Fig. 12b. The NLO orretions grow withpT and reah �11% at pT = 400GeV. The one-loop NNLL and NLL approxima-tions desribe the exat NLO results with 1% and 3% preision, respetively. Thedominant two-loop e�ets have little impat on the size of the orretions.The quality of the high-energy approximations wrt. the IR-�nite part of thevirtual orretions (NLOvirt) is shown in Fig. 13. In the pT-range under onsidera-38
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tion both approximations are less preise than at the LHC, nevertheless the NNLLapproximation in suÆient for all pratial purposes.In Fig. 14 the relative NLO and NNLO orretions to the integrated ross setionfor pT � putT are ompared with the expeted statistial error for an integratedluminosity L = 7fb�1 [39℄. The size of the NLO eletroweak orretions is abovethe statistial error for a signi�ant range of pT-values. Therefore they should beinluded in the analysis when onsidering preision measurements. In ontrast, theimpat of the dominant two-loop orretions is negligible.The e�et of the eletroweak orretions on the ratios of pT-distributions forW=Z and for W= is shown in Fig. 15a and Fig. 15b, respetively.8 SummaryIn this work the eletroweak orretions to large transverse momentum produtionof W bosons at the hadron olliders Tevatron and LHC were evaluated. The on-tributions from real and virtual photons annot be separated in a gauge-invariantmanner from purely weak orretions and were thus inluded in our analysis. Softand ollinear singularities were regulated by introduing a small quark mass anda small photon mass and, alternatively, by using dimensional regularization. Thereal photon radiation was evaluated using the dipole subtration formalism. Theagreement between the results derived in the two regularization shemes has been animportant ross hek of the alulation. Numerous additional tests were performedto ensure the orretness of the result.At the Tevatron, pT-values up to around 300GeV an be reahed with reasonableevent rates. In this region the O(�) eletroweak orretions reah up to �10% andare thus of relevane for preision measurements. Two-loop eletroweak orretionsare negligible at the Tevatron. With pT below 400GeV the relative rates for W , Zand  prodution are hardly a�eted by eletroweak orretions.In ontrast, for transverse momenta in the TeV region aessible at the LHC,eletroweak orretions play an important role. The O(�) orretions lead to aredution of the ross setion by about �15% at transverse momenta of 500GeVand reah more than �40% at 2TeV. The logarithmially dominant terms wereextrated from the exat expression of the virtual orretions and agreement wasfound with the preditions based on the proess-independent analysis of eletroweakSudakov logarithms. If no uts on real photons are applied, the ontribution of thereal photon emission is numerially small (about 1%) and almost independent of pT.Numerially the NLL and NNLL approximations give a good desription of the fullO(�) result with an auray of about 1{2%. Considering the large event rate atthe LHC, leading to a fairly good statistial preision even at transverse momentaup to 2TeV, we evaluated also the dominant (NLL) two-loop terms. In the high-pTregion, these two-loop logarithmi e�ets inrease the ross setion by 5{10% andthus beome of importane in preision studies. We also studied the relative rates42



for W+, W�, Z and  prodution, whih are expeted to be stable with respet toQCD e�ets. The eletroweak orretions anel almost ompletely in the W+=W�ratio. In ontrast, their impat on the W+=Z and the W+= ratios is signi�antand leads to a shift of O(10%) for pT � 1TeV.AknowledgementsWe would like to thank S. Dittmaier, B. J�ager and P. Uwer for helpful disussions.This work was supported in part by BMBF Grant No. 05HT4VKA/3, the Sonder-forshungsbereih Transregio 9 and the DFG Graduiertenkolleg \Hohenergiephysikund Teilhenastrophysik".
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A Reombination and exlusive Wj ross setionAs disussed in Set. 2.2, the reombination presription that we use to regularizephoton-quark �nal-state ollinear singularities implies a di�erent treatment of �nal-state quarks and gluons. While for �nal-state gluons we apply a ut on pT; g withinthe entire phase spae, for �nal-state quarks the reombination e�etively removesthe ut on pT; q inside the ollinear one R(q; ) < Rsep. As a onsequene thereombined gq0 ! W �q ross setion (18) has a logarithmi dependene on theut-o� parameter Rsep. In order to quantify this Rsep-dependene, let us onsiderthe ontribution of real photon radiation inside the reombination one. To thisend, assuming that the one is suÆiently small (Rsep � 1), we adopt a ollinearapproximation ZR(q;)<Rsep d�̂gq0!W�q = �̂gq0!W�q Z 10 dzFq(z); (120)where10 z = pT;=(pT;q + pT;) = 1 � pT;q=pT;W is the photon momentum frationand [18℄ Fq(z) = �Q2q2� Pq(z; ") (4��2)"�(1� ") Z k2?;max0 dk2?(k2?)1+"= ��Q2q2� Pq(z) (4�)""�(1� ") + �Fq(z; �2) (121)with �Fq(z; �2) = ��Q2q2� "Pq(z) ln �2k2?;max!� z# : (122)Here Pq(z; ") = Pq(z) � "z with Pq(z) = [1 + (1 � z)2℄=z is the q !  splittingfuntion in 4�2" dimensions, k? is the photon tranverse momentum wrt. the photon-quark system, and k?;max = z(1�z)RseppT;W . The 1=" ollinear singularity resultingfrom inlusive photon radiation, i.e. integrating over the omplete energy spetrum0 � z � 1, anels against the virtual orretions.The Rsep-dependene of the reombined ross setion (18) is due to the fat that,inside the reombination one quarks with pT;q < pminT; j (or equivalently photons withz > 1�pminT; j=pT;W ) are not rejeted. Thus the variation of �̂re: indued by a resalingRsep ! �sepRsep amounts to��̂gq0!W�qre:�̂gq0!W�q = �Q2q2� ln �2sep Z 1zmin dzPq(z) with zmin = 1� pminT; j=pT;W : (123)For relatively small transverse momenta (pT;W ' 2pminT; j) a resaling ofRsep by a fator�sep = 10 shifts the gq0 !W �q() ross setion by less than 2 (0.5) permille for up-10Here we assume lowest-order kinematis, i.e. pT;q + pT; = pT;W in the ollinear region.47



(down-) type quarks. Moreover it is obvious that at high pT;W , where zmin ! 1, thise�et tends to disappear.Let us now ompare the reombination proedure with a realisti de�nition ofexlusive pp! Wj prodution, where �nal-state quarks (a = q) and gluons (a = g)are subjet to the same ut pT;a > pminT; j within the entire phase spae (inludingollinear quark-photon on�gurations). Sine the reombination proedure doesnot a�et �nal-state gluons, only hannels involving �nal-state quarks need to beonsidered. The di�erene between the reombined gq0 ! W �q ross setion (18)and the exlusive ross setion (19) orresponds to the ontribution of hard ollinearphotons with R(q; ) < Rsep and zmin � z � 1. This ollinear hard-photon radiationan be desribed by means of quark fragmentation funtions [43, 44, 45, 46, 47, 48℄as ��̂exl: = �̂gq0!W�qre: � �̂gq0!W�qexl: = �̂gq0!W�q Z 1zmin dzDq(z): (124)Here the e�etive quark fragmentation funtion Dq(z) = Fq(z) +Dq(z) onsistsof the perturbative ontribution Fq and the bare fragmentation funtion Dq. Theollinear singularity resulting from the perturbative ontribution is fatorized intothe bare fragmentation funtion at the sale �, suh that in the MS sheme [43℄Dq(z) = �Fq(z; �2) + �Dq(z; �2); (125)and the renormalized fragmentation funtion �Dq an be extrated from experimen-tal measurements. Using the parametrization [44, 48℄�Dq(z; �20) = �Q2q2� h�Pq(z) ln(1� z)2 � 13:26i ; (126)obtained by the ALEPH ollaboration at �0 = 0:14GeV, we arrive atDq(z) = �Q2q2� 24Pq(z) ln zRseppT;W�0 !2 + z � 13:2635 : (127)With this expression we derive a onservative upper bound for ��̂exl:. To thisend we onsider Qq = 2=3, Rsep ' 1, and a wide range of transverse momenta,2pminT; j � pT;W � 2TeV. With these parameters we obtain��̂exl:�̂ <� 2� 10�3: (128)We onlude that, for Rsep <� O(1), the reombined ross setion has a negligi-ble dependene on the reombination parameter Rsep and provides a fairly preisedesription of exlusive pp!Wj prodution at high transverse momentum.48



B Standard matrix elementsThe algebrai expressions involving external momenta, Dira matries, spinors andgauge-boson polarization vetors have been redued to a set of 10 standard matrixelements Si = �v(p�q)S��i !Lu(pq0) "��(pW )"��(pg); (129)with S��1 = �(p=W � p=�q)�;S��2 = (p=W � p=g)g��;S��3 = �p�W ;S��4 = ��p�g ;S��5 = �p�q0;S��6 = ��p��q ;S��7 = (p=W � p=g)p�gp�W ;S��8 = (p=W � p=g)p��q p�q0;S��9 = (p=W � p=g)p�gp�q0;S��10 = (p=W � p=g)p��q p�W : (130)These algebrai expressions orrespond to the massless subset of the standard matrixelements of Ref. [25℄.C Salar loop integralsIn this appendix we list the salar loop integrals Jj(M2V ) that ontribute to (48).The symbols Jj are hosen in analogy with Ref. [9℄. For onveniene, to denoteonstant terms we de�ne J0(M2V ) = 1: (131)For the salar integrals A0; B0; C0 and D0 we adopt the notation of FeynCal [40℄.However, we hoose their normalization aording to Ref. [25℄, i.e. we inlude thefator (2��)4�D whih is omitted in the onventions of FeynCal.The UV-divergent one- and two-point funtions are denoted asJ1a(M2V ) = B0(m2;M2V ; m2);J1b(M2V ) = B0(m2;M2W ; m2) = J1a(M2W );J2(M2V ) = B0(p2W ;m2; m2);J3(M2V ) = B0(p2W ;M2W ;M2V );J4(M2V ) = B0(ŝ;m2; m2);J5a(M2V ) = B0(û;M2V ; m2);49



J5b(M2V ) = B0(û;M2W ; m2) = J5a(M2W );J6a(M2V ) = B0(t̂;M2V ; m2);J6b(M2V ) = B0(t̂;M2W ; m2) = J6a(M2W ): (132)The remaining loop integrals are free from UV singularities. The following three-point funtions are �nite if MV and the W -boson transverse momentum are non-vanishing: J7(M2V ) = C0(ŝ; m2; m2;m2; m2;M2V );J8(M2V ) = C0(û; p2W ; m2;M2V ; m2; m2);J9a(M2V ) = C0(û; p2W ; m2;m2;M2W ;M2V );J9b(M2V ) = C0(û; p2W ; m2;m2;M2V ;M2W ) = J9a(M2V )���M2V$M2W ;J10(M2V ) = C0(t̂; p2W ; m2;M2V ; m2; m2) = J8(M2V )���t̂$û ;J11a(M2V ) = C0(t̂; p2W ; m2;m2;M2W ;M2V ) = J9a(M2V )���t̂$û ;J11b(M2V ) = C0(t̂; p2W ; m2;m2;M2V ;M2W ) = J9b(M2V )���t̂$û ; (133)In addition, the box diagrams b1{b3 in Fig. 2, provide the following ombinationsof three- and four-point funtionsJ12(M2V ) = D0(m2; 0; p2W ; m2; û; ŝ;M2V ; m2; m2; m2)� 1ŝû+ (t̂+ û)M2V� �(û� p2W )C0(û; p2W ; m2;M2V ; m2; m2) + ûC0(û; 0; m2;M2V ; m2; m2)+ (ŝ� p2W )C0(ŝ; p2W ; 0;m2; m2; m2)�;J13(M2V ) = J12(M2V )���t̂$û ;J14a(M2V ) = D0(p2W ; m2; 0; m2; t̂; û;M2V ;M2W ; m2; m2)� t̂C0(t̂; 0; m2;M2V ; m2; m2) + ûC0(û; 0; m2;M2W ; m2; m2)t̂û� t̂M2W � ûM2V ;J14b(M2V ) = J14a(M2V )���M2W$M2V = J14a(M2V )���t̂$û : (134)For non-vanishing MV and W -boson transverse momentum, the funtions J12{J14bare �nite. The fat that the salar four-point funtions in (134) appear alwaysin ombination with three-point funtions is due to the anellation of the ollinearsingularities that are assoiated with the gq�q vertex [9℄. Although these singularitiesare present in individual D0 and C0 funtions, they always anel in the ompleteresult for box diagrams.
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D Infrared singularitiesThe salar integrals Ji(M2V ) in Appendix C ontain soft and ollinear singularitiesthat appear when MV = MA ! 0 and m ! 0. As disussed in Set. 3.4, theseintegrals are split into IR-singular (IR) and IR-�nite (�n) parts,Ji(M2A) = J IRi + J�ni : (135)The IR-singular parts depend on the sheme adopted to regularize soft and ollinearsingularities. The IR-�nite parts are sheme independent and free from soft-ollinearsingularities, but an ontain ultraviolet poles.Let us start with the two-point funtions (132). Here only J1a(M2A) gives rise toIR singularities. This integral is split intoJ IR1a;MR = � ln m2M2W !+ 1;J IR1a;DR = � 4��2M2W !" �(1 + ")" � 1;J�n1a =  4��2M2W !" �(1 + ")" + 1: (136)We note that within dimensional regularization the UV and IR singularities an-el eah other and the massless two-point funtion vanishes, J IR1a;DR + J�n1a = 0.The three-point funtions J9b(M2A) and J11b(M2A) are free from IR singularities andthe singularities originating from J8(M2A) and J10(M2A) do not need to be onsid-ered sine the oeÆients assoiated with these salar integrals are of order M2A(see Appendix E). The remaining three-point funtions in (133) ontain soft andollinear singularities. For them we �ndJ IR7;MR = 1̂s "�12 ln2  M2Wm2 !+ ln M2W�2 ! ln �ŝm2!# ;J IR7;DR =  4��2M2W !" �(1 + ")ŝ " 1"2 � 1" ln �ŝM2W !# ;J�n7 = 1̂s "12 ln2  �ŝM2W !� �26 # ; (137)and J IR9a;MR = 1û�M2W (12 "ln M2W�2 !� 12 ln M2Wm2 !# ln M2Wm2 !+ ln M2W�2 ! ln 1� ûM2W !) ;J IR9a;DR =  4��2M2W !" �(1 + ")û�M2W " 12"2 � 1" ln 1� ûM2W !# ;J�n9a = 1û�M2W "ln2  1� ûM2W !+ Li2  ûM2W !# ; (138)51



where Li2(x) = � R x0 dt ln(1 � t)=t. The �nite and singular parts for J11a(M2A) =J9a(M2A)jû!t̂ are onstruted in the same way.The singular parts of the subtrated four-point funtions (134) an be related tothe ones of the three-point funtions,J IR12 = J IR13 ���t̂$û = 1̂uJ IR7 ;J IR14a = J IR14b���t̂$û = 1̂t J IR9a ; (139)in both regularization shemes. This impliitly de�nes the remainders asJ�n12 = J�n13 ���t̂$û = J12(M2A)� 1̂uJ IR7 ;J�n14a = J�n14b���t̂$û = J14a(M2A)� 1̂t J IR9a : (140)Using the expliit analyti expressions for the infrared singular four-point and three-point funtions [41, 42℄ we obtainJ�n12 = 1̂sû�12 ln2  �ŝM2W !� ln2  ŝ̂u!� 2Li2  1� M2Ŵs !� 2Li2  1� M2Ŵu !� �22 �;J�n14a = 1t̂(û�M2W )�2 ln 1� ûM2W ! ln �t̂M2W !� 12 ln2  �t̂M2W !+ Li2  ûM2W !� �22 �: (141)E Expliit result for the virtual orretionsIn this appendix we present expliit analyti expression for the funtions H I1(M2V )de�ned in (74). These funtions desribe the ontribution of the unrenormalizedFeynman diagrams of Fig. 2 to the unpolarized ross setion. They onsist of linearombinations of the salar integrals de�ned in Appendix C,H I1(M2V ) = Xj KIj(M2V ) Re hJj(M2V )i for I = A;N;X;Y: (142)The oeÆients of the funtion HA1 (M2V ) readKA0 (M2V ) = �4ŝ2 + 3(t̂2 + û2)t̂û + ŝ 1ŝ+ t̂ + 1ŝ+ û � 5̂u � 5̂t + 4t̂+ û!;KA1a(M2V ) = M2V (� " 3ŝ(ŝ+ t̂)2 + 3ŝ(ŝ+ û)2# +  1ŝ+ t̂ + 1ŝ+ û!� 2 ŝ + ût̂2 + ŝ+ t̂û2 !+ 2ŝ2(2ŝ+ t̂+ û)t̂û(ŝ+ t̂)(ŝ+ û))+ 4(ŝ+ t̂)2 + (ŝ+ û)2t̂û ;52



KA1b(M2V ) = 0;KA2 (M2V ) = p2W" 6ŝM2V(ŝ+ t̂)3 + 6ŝM2V(ŝ+ û)3 + 2ŝM2V(ŝ+ t̂)2û + 2ŝM2V(ŝ+ û)2t̂ + 4(ŝ+ t̂+ û)(t̂+ û)2 � 3̂t� 3̂u + 2ŝ+ t̂� 2M2V(ŝ+ t̂)2 + 2ŝ+ û� 2M2V(ŝ+ û)2 � ŝ(2ŝ+ t̂ + û)(2M2V + 3ŝ)t̂û(ŝ+ t̂)(ŝ+ û) #;KA3 (M2V ) = 0;KA4 (M2V ) = �4ŝ(ŝ+ 2t̂ + 2û)(t̂+ û)2 ;KA5a(M2V ) = � 6M2V ŝû(ŝ + t̂)3 + M2V (2û� 5ŝ)� ŝû(ŝ+ t̂)2 + 2M2V (ŝ+ t̂+ û)û2 � M2V + 4ŝ+ ûŝ+ t̂ ;KA5b(M2V ) = 0;KA6a(M2V ) = KA5a(M2V )���t̂$û;KA6b(M2V ) = 0;KA7 (M2V ) = � ŝ̂tû"2(ŝ+M2V )(t̂+ û) + t̂2 + û2#;KA8 (M2V ) = p2WM2Vû(û� p2W )3 "2t̂M2V (û� ŝ� t̂)� 4p2W ŝ(ŝ+ t̂+M2V )#;KA9a(M2V ) = KA9b(M2V ) = 0;KA10(M2V ) = KA8 (M2V )���t̂$û;KA11a(M2V ) = KA11b(M2V ) = 0;KA12(M2V ) = �M2V (t̂+ û) + ŝût̂û "2(ŝ+M2V )(ŝ+M2V + t̂) + t̂2#;KA13(M2V ) = KA12(M2V )���t̂$û;KA14a(M2V ) = KA14b(M2V ) = 0: (143)The only di�erene between HA1 (M2V ) and the equally named funtion in Ref. [9℄ isdue to the fat that HA1 (M2V ) in Ref. [9℄ inludes the ontribution of the fermioniwave-funtion renormalization onstants, whih modify the oeÆients KA0 and KA1a(see eqs. (54) and (55) in Ref. [9℄).For the oeÆients of the funtion HN1 (M2V ) we obtainKN0 (M2V ) = 4ŝt̂û (ŝ+ t̂+ û)� 2ŝ 1ŝ+ û + 1ŝ + t̂ + 2t̂+ û!+ 2 t̂̂u + û̂t !;KN1a(M2V ) = �M2V2 (4ŝt̂û + (t̂û� 2ŝ(ŝ+ t̂+ û))� 1t̂(ŝ+ û)2 + 1û(ŝ+ t̂)2 �)� ŝ(4ŝ+ 3t̂+ 3û) + t̂2 + û2t̂û ;53



KN1b(M2V ) = � KN1a(M2V )���M2V$M2W ;KN2 (M2V ) = �KA2 (M2V );KN3 (M2V ) = (M2W +M2V )" 3ŝt̂(ŝ+ û)3 + 3ŝû(ŝ+ t̂)3#� 1̂tû" 1(ŝ+ t̂)2 + 1(ŝ+ û)2#� (ŝ4 � 2t̂2û2 + ŝ2(t̂+ û)(2ŝ+ t̂ + û) + (M2W +M2V )� "ŝ2(ŝ+ t̂+ û)� t̂û(2ŝ� t̂� û)#);KN4 (M2V ) = �KA4 (M2V );KN5a(M2V ) = 2ŝ(ŝ+ t̂)� 2t̂û2(ŝ+ t̂)2 � " ŝ+ t̂û � 2ŝŝ+ t̂ � û(2ŝ+ t̂)2(ŝ+ t̂)2 #�M2V " 1̂u � 2ŝ+ t̂2(ŝ+ t̂)2#+ (2M2V �M2W )" 2ŝ(ŝ+ t̂)2 + û(2ŝ� t̂)(ŝ+ t̂)3 #;KN5b(M2V ) = 2ŝ(ŝ+ t̂)� 2t̂û2(ŝ+ t̂)2 + " ŝ+ t̂û � 2ŝŝ+ t̂ � û(2ŝ+ t̂)2(ŝ+ t̂)2 # +M2W" 1̂u � 2ŝ+ t̂2(ŝ+ t̂)2 #�M2V " 2ŝ(ŝ+ t̂)2 + û(2ŝ� t̂)(ŝ+ t̂)3 #;KN6a(M2V ) = KN5a(M2V )���t̂$û;KN6b(M2V ) = KN5b(M2V )���t̂$û;KN7 (M2V ) = �KA7 (M2V );KN8 (M2V ) = �KA8 (M2V );KN9a(M2V ) = û� ŝ2 � ŝt̂2t̂ + ŝ2 + ŝt̂2û + (M2W +M2V )"2ŝ2 + t̂ŝ+ t̂22t̂û � t̂� ŝ2t̂ #� 2M2V t̂û(ŝ+ t̂)2 + M2Vŝ+ t̂"M2W ŝ2t̂û � M2V û(2ŝ� t̂)(ŝ+ t̂)2 � 2(M2W +M2V )ŝŝ+ t̂ #;KN9b(M2V ) = KN9a(M2V )���M2V$M2W ;KN10(M2V ) = KN8 (M2V )���t̂$û = �KA10(M2V );KN11a(M2V ) = KN9a(M2V )���t̂$û;KN11b(M2V ) = KN9b(M2V )���t̂$û;KN12(M2V ) = �KA12(M2V );KN13(M2V ) = KN12(M2V )���t̂$û = �KA13(M2V );KN14a(M2V ) = M2W t̂+M2V û� t̂û2t̂û "2M2WM2V + (2ŝ+ t̂+ û)(M2W +M2V )� 2t̂û54



� ŝ(t̂+ û)#;KN14b(M2V ) = KN14a(M2V )���M2V$M2W : (144)For MV = MW the funtion HN1 (M2V ) is idential to the equally named funtion inRef. [9℄.The only non-vanishing oeÆients of the funtion HX1 (M2V ) readKX0 (M2V ) = � t̂2 + û2 + ŝ(t̂ + û)t̂û ;KX1a(M2V ) = � hKX5a(M2V ) +KX6a(M2V )i ;KX5a(M2V ) = 2(M2V � û)(ŝ+ t̂)û2 ;KX6a(M2V ) = KX5a(M2V )���t̂$û: (145)Finally, for HY1 (M2V ) we obtainKY0 (M2V ) = (û� t̂)(ŝ+ t̂ + û)t̂û ;KY1a(M2V ) = M2V " 2̂t + 3ŝ(ŝ+ t̂)2 � 1ŝ+ t̂ � 2̂u � 3ŝ(ŝ+ û)2 + 1ŝ+ û#+M2V "2(ŝ+ û)t̂2 � 2(ŝ+ t̂)û2 #;KY1b(M2V ) = �M2W" 2̂t + 3ŝ(ŝ+ t̂)2 � 1ŝ+ t̂ � 2̂u � 3ŝ(ŝ+ û)2 + 1ŝ+ û#� "2(ŝ+ û)t̂ � 2(ŝ+ t̂)û #;KY2 (M2V ) = 0;KY3 (M2V ) = 2(M2W �M2V )(t̂� û)(ŝ+ t̂+ û)(ŝ+ t̂)3(ŝ+ û)3 ��7ŝ3 + (t̂û� 6ŝ2)(t̂+ û)� ŝ(2t̂2 � t̂û+ 2û2)�;KY4 (M2V ) = 0;KY5a(M2V ) = �2ŝ2 + 3t̂û+ 2ŝ(t̂+ û)(ŝ+ t̂)2 �M2W � 4ŝ(ŝ+ t̂)2 + 2û(2ŝ� t̂)(ŝ+ t̂)3 ��M2V � 2ŝ+ t̂(ŝ+ t̂)2 � 2̂u � 2(ŝ+ t̂)û2 �;KY5b(M2V ) = 2ŝ2 + 3t̂û+ 2ŝ(t̂+ û)(ŝ+ t̂)2 +M2V � 4ŝ(ŝ+ t̂)2 + 2û(2ŝ� t̂)(ŝ+ t̂)3 �55



+M2W � 2ŝ+ t̂(ŝ+ t̂)2 � 2̂u�� 2(ŝ+ t̂)û ;KY6a(M2V ) = �KY5a(M2V )���t̂$û;KY6b(M2V ) = �KY5b(M2V )���t̂$û;KY7 (M2V ) = 0;KY8 (M2V ) = 0;KY9a(M2V ) = 1(ŝ+ t̂)3t̂û(2M4V t̂û�2ŝ2 � t̂û+ 2ŝ(t̂ + û)��M2V (ŝ+ t̂)�(ŝ+ t̂)2(2ŝ2 + ŝt̂+ t̂2) + (ŝ� t̂)(ŝ+ t̂)2û� 4t̂2û2+ 2M2W ŝ�ŝ(ŝ+ t̂)� 2t̂û��� (ŝ+ t̂)3�ŝ2(t̂� û) + 2t̂û2+ ŝt̂(t̂ + û) +M2W�2ŝ2 + t̂(t̂� û) + ŝ(t̂ + û)��);KY9b(M2V ) = � KY9a(M2V )���M2V$M2W ;KY10(M2V ) = 0;KY11a(M2V ) = �KY9a(M2V )���t̂$û;KY11b(M2V ) = �KY9b(M2V )���t̂$û;KY12(M2V ) = 0;KY13(M2V ) = 0;KY14a(M2V ) = �2KN14a(M2V );KY14b(M2V ) = 2KN14b(M2V ) = � KY14a(M2V )���M2V$M2W : (146)F Real orretionsIn Table 1 and Table 2 we list the dipoles that were used to alulate the subtrationterms in (91) for the massive regularization and in (109) for the dimensional reg-ularization, respetively. We give referenes to the expliit formulae for the dipoleterms and the phase-spae mappings in the original paper [17℄ and [18, 19℄.
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Dipole Type (emitter, spetator) eq. no. ~�2;nmgsubab;� massless IS, massless IS (3.22) (3.25){(3.27)gsubaW;� massless IS, massive FS (A.1) (3.12)gsubWa;� massive FS, massless IS (A.1) (3.12)gsubak;� massless IS, massless FS (3.9) (3.12)gsubka;� massless FS, massless IS (3.9) (3.12)gsubkW;� massless FS, massive FS (4.4) (4.5)gsubWk;� massive FS, massless FS (4.4) (4.5)Table 1: Dipole subtration terms from Ref. [17℄ used to alulate Mabsub in (91) forthe massive regularization (IS = initial-state, FS = �nal-state).Dipole Type (emitter, spetator) eq. nos. ~�2;nmDa;bQED massless IS, massless IS (5.136), (5.145) (5.137), (5.139),in Ref. [18℄ (5.140) in Ref. [18℄DaW; QED massless IS, massive FS (5.71), (5.81) (5.73), (5.74)in Ref. [19℄ in Ref. [19℄DaW; QED massive FS, massless IS (5.40), (5.50) (5.42), (5.43)in Ref. [19℄ in Ref. [19℄Dak; QED massless IS, massless FS (5.61), (5.65) (5.62)-(5.64)in Ref. [18℄ in Ref. [18℄Dak; QED massless FS, massless IS (5.36), (5.39) (5.37), (5.38)in Ref. [18℄ in Ref. [18℄Dk;W; QED massless FS, massive FS (5.2), (5.16) (5.3), (5.7), (5.9)in Ref. [19℄ in Ref. [19℄DW;k; QED massive FS, massless FS (5.2), (5.16) (5.3), (5.7), (5.9)in Ref. [19℄ in Ref. [19℄Table 2: Dipole expressions from Refs. [18, 19℄ used to alulate Mabsub in (109) forthe dimensional regularization. 57
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