
*0
70
8.
04
76
*

ar
X

iv
:0

70
8.

04
76

v2
  [

he
p-

ph
] 

 1
9 

D
ec

 2
00

7

TTP07-19SFB/CPP-07-43MPP-2007-102DESY 07-112Ele
troweak 
orre
tions to hadroni
 produ
tion ofW bosons at large transverse momentaJohann H. K�uhna, A. Kuleszab, S. Pozzorini
, M. S
hulzeaaInstitut f�ur Theoretis
he Teil
henphysik, Universit�at Karlsruhe,D-76128 Karlsruhe, GermanybDeuts
hes Elektronen-Syn
hrotron DESY, Notkestrasse 85,D{22607 Hamburg, Germany
Max-Plan
k-Institut f�ur Physik, F�ohringer Ring 6,D{80805 Muni
h, GermanyAbstra
t:To mat
h the pre
ision of present and future measurements of W -boson produ
-tion at hadron 
olliders ele
troweak radiative 
orre
tions must be in
luded in thetheory predi
tions. In this paper we 
onsider their e�e
t on the transverse momen-tum (pT) distribution of W bosons, with emphasis on large pT. We evaluate the fullele
troweak O(�) 
orre
tions to the pro
esses pp! W + jet and p�p! W + jet in-
luding virtual and real photoni
 
ontributions. We present the expli
it expressionsin analyti
al form for the virtual 
orre
tions and provide results for the real 
orre
-tions, dis
ussing in detail the treatment of soft and 
ollinear singularities. We alsoprovide 
ompa
t approximate expressions whi
h are valid in the high-energy region,where the ele
troweak 
orre
tions are strongly enhan
ed by logarithms of ŝ=M2W .These expressions des
ribe the 
omplete asymptoti
 behaviour at one loop as wellas the leading and next-to-leading logarithms at two loops. Numeri
al results arepresented for proton-proton 
ollisions at 14TeV and proton-antiproton 
ollisions at2TeV. The 
orre
tions are negative and their size in
reases with pT. At the LHC,where transverse momenta of 2TeV or more 
an be rea
hed, the one- and two-loop
orre
tions amount up to �40% and +10%, respe
tively, and will be important fora pre
ise analysis of W produ
tion. At the Tevatron, transverse momenta up to300GeV are within rea
h. In this 
ase the ele
troweak 
orre
tions amount up to�10% and are thus larger than the expe
ted statisti
al error.
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1 Introdu
tionAfter the startup of the Large Hadron Collider (LHC) hard s
attering rea
tions willbe explored with high event rates and momentum transfers up to several TeV. Inorder to identify new phenomena in this region, the predi
tions of the StandardModel have to be understood with adequate pre
ision.The study of gauge-boson produ
tion has been among the primary goals ofhadron 
olliders, starting with the dis
overy of the W and Z bosons more than twode
ades ago [1℄. The investigation of the produ
tion dynami
s, stri
tly predi
tedby the ele
troweak theory, 
onstitutes one of the important tests of the StandardModel. Di�erential distributions of gauge bosons, in rapidity as well as in transversemomentum (pT), have always been the subje
t of theoreti
al and experimental stud-ies. This allows to sear
h for and set limits on anomalous gauge-boson 
ouplings,measure the parton distribution fun
tions and, if understood suÆ
iently well, usethese rea
tions to 
alibrate the luminosity. For gauge-boson produ
tion at large pTthe �nal state of the leading-order pro
ess 
onsists of an ele
troweak gauge bosonplus one re
oiling jet. Being, in leading order, proportional to the strong 
oupling
onstant, these rea
tions 
ould also lead to a determination of �S in the TeV region.The high 
enter-of-mass energy at the LHC in 
ombination with its enormousluminosity will allow to produ
e gauge bosons with transverse momenta up to 2 TeVor even beyond. In this kinemati
 region the ele
troweak 
orre
tions are strongly en-han
ed, with the dominant terms in L-loop approximation being leading logarithms(LL) of the form �L log2L(ŝ=M2W ), next-to-leading logarithms (NLL) of the form�L log2L�1(ŝ=M2W ), and so on. These 
orre
tions, also known as ele
troweak Sudakovlogarithms, may well amount to several tens of per
ent [2, 3, 4, 5, 6, 7, 8, 9, 10, 11℄.(A re
ent survey of the literature on ele
troweak Sudakov logarithms 
an be foundin Ref. [12℄.) Spe
i�
ally, the ele
troweak 
orre
tions to the pT-distribution ofphotons and Z bosons at hadron 
olliders were studied in Refs. [7, 8, 9, 10℄. InRefs. [8, 9, 10℄, it was found that at transverse momenta of O(1TeV) the dominanttwo-loop 
ontributions to these rea
tions amount to several per
ent and must bein
luded to mat
h the pre
ision of the LHC experiments. This is quite di�erentfrom the produ
tion of on-shell gauge bosons with small transverse momenta [13℄,where the ele
troweak 
orre
tions are not enhan
ed by Sudakov logarithms. Withthis motivation in mind we study the ele
troweak 
orre
tions to hadroni
 produ
tionof W bosons in asso
iation with a jet, pp(�) !Wj, at large pT.As a 
onsequen
e of the non-vanishing W 
harge, QED 
orre
tions 
annot beseparated from the purely weak ones and will thus be in
luded in our analysis. Thus,in 
omparison with Z-boson produ
tion, several new aspe
ts arise. Real photonemission must be in
luded to 
an
el the infrared divergen
ies from virtual photoni

orre
tions. Collinear singularities, a 
onsequen
e of radiation from massless quarks,must be isolated and absorbed in the parton distribution fun
tions (PDFs) in the
ase of initial-state radiation. We regularize soft and 
ollinear singularities in twodi�erent s
hemes: using small quark and photon masses whi
h are set to zero at the1



end of the 
al
ulation and, alternatively, dimensional regularization. In events withreal radiation, the pT of the W boson is balan
ed both by the pT of the re
oilingparton (quark or gluon) and the photon. Con�gurations involving a small-pT partonand a hard photon are better des
ribed as W
 �nal states. We thus de�ne the Wj
ross se
tion imposing a lower limit on the jet transverse momentum, whi
h is 
hosenindependent of the W -boson pT. In order to avoid �nal-state 
ollinear singularities,we re
ombine 
ollinear photon-quark �nal states.The virtual EW 
orre
tions to Wj produ
tion are formally 
onne
ted with thereal emission of W and Z bosons, whi
h leads to WV j �nal states with V = W;Z.Both 
ontributions are of O(�2�S). If integrated over the full phase spa
e, the realemission of gauge bosons produ
es large Sudakov logarithms that partially 
an
elthose resulting from virtual gauge bosons. However, in ex
lusive measurements ofpp!Wj, the available phase spa
e for gauge boson emission is strongly suppressedby the experimental 
uts. We thus expe
t that real emission provides relativelysmall 
ontributions while the bulk of ele
troweak e�e
ts originates from virtual
orre
tions. In fa
t, for pp ! Zj it was shown that, in presen
e of realisti
 (andrelatively less ex
lusive) experimental 
uts, the 
ontribution of real emission is about�ve times smaller than the virtual 
orre
tions [11℄. Moreover, real emission 
an befurther redu
ed with a veto on additional jets, whi
h suppresses multiple-jet eventsresulting from the hadroni
 de
ay of the radiated gauge bosons. Therefore we willrestri
t ourselves to the investigation of virtual ele
troweak 
orre
tions (and photonbremsstrahlung). The real emission of W and Z bosons 
an be non-negligible and
ertainly deserves further detailed studies, however we do not expe
t a dramati
impa
t on our results.The partoni
 rea
tions �qq0 ! W�g (
), q0g ! W�q (
) and �qg ! W��q0 (
)with q = u; d; s; 
; b are 
onsidered. All of them are, however, trivially related byCP- and 
rossing-symmetry relations. Quark-mass e�e
ts are negle
ted throughout,whi
h allows to in
orporate the e�e
t of quark mixing through a simple rede�ni-tion of parton distribution fun
tions (see Se
t. 2.1). Our 
onventions for 
ouplings,kinemati
s and two- as well as three-body phase spa
e are also 
olle
ted in Se
t. 2.The 
al
ulation of the virtual 
orre
tions is des
ribed in Se
t. 3. We present an-alyti
 expressions for the one-loop amplitude, spe
ify the 
ounterterms in the G�renormalization s
heme and isolate the infrared singularities. The high-energy limitis studied in detail in Se
t. 4. The analyti
 one-loop result is investigated in thelimit ŝ � M2W , keeping quadrati
 and linear logarithms as well as 
onstant terms.These results are 
ompared to those derived in the NLL approximation [14℄. In viewof their numeri
al importan
e we also derive the dominant (NLL) two-loop terms,using the formalism of Refs. [15, 16℄. The 
al
ulation of the real 
orre
tions is per-formed using the dipole subtra
tion formalism [17, 18, 19℄, as dis
ussed in Se
t. 5.The 
he
ks whi
h we 
arried out in order to ensure the 
orre
tness of the results aredes
ribed in Se
t. 6.The numeri
al results are presented in Se
t. 7. After 
onvolution with parton dis-tribution fun
tions, we obtain radiatively 
orre
ted predi
tions for pT-distributions2



of W bosons at the LHC and the Tevatron. The quality of the one-loop NLL andNNLL approximations is investigated and the size of the dominant two-loop termsis 
ompared with the expe
ted statisti
al pre
ision of the experiments. Con
erningperturbative QCD, our predi
tions are based on the lowest order. To obtain real-isti
 absolute 
ross se
tions, higher-order QCD 
orre
tions [20℄ must be in
luded.However, the relative rates for W+, W� and Z produ
tion are expe
ted to be morestable against QCD e�e
ts. Therefore, the impa
t of the ele
troweak 
orre
tions onthese ratios is presented in Se
t. 7. Our 
on
lusions and a brief summary 
an befound in Se
t. 8. Expli
it analyti
 results are 
olle
ted in the Appendi
es.A short des
ription of the method of 
al
ulation and the main results for LHChave been given in Ref. [21℄. After 
ompletion of this work, Hollik, Kasprzik andKniehl [22℄ reported results on hadroni
 W -boson produ
tion at large pT qualita-tively similar to those of Ref. [21℄ and the present paper.2 De�nitions and 
onventions2.1 Hadroni
 
ross se
tionThe pT-distribution of W bosons in the rea
tion h1h2 !W�j(
) is given byd�h1h2dpT = Xa;b;k Z 10 dx1 Z 10 dx2 �(x1x2��̂min)fh1;a(x1; �2)fh2;b(x2; �2)d�̂ab!W�k(
)dpT ; (1)where �̂min depends on the kinemati
 
on�guration of the �nal state and is spe
i�edat the end of Se
t. 2.2. The indi
es a; b denote initial-state partons and fh1;a(x; �2),fh2;b(x; �2) are the 
orresponding parton distribution fun
tions (PDFs). �̂ab!W�k(
)is the partoni
 
ross se
tion for the subpro
ess ab! W �k(
). The sum in (1) runsover all a; b; k 
ombinations 
orresponding to the subpro
esses�dnum !W+g(
); um �dn !W+g(
); gum ! W+dn(
);umg !W+dn(
); �dng !W+�um(
); g �dn !W+�um(
); (2)for W+ produ
tion, and similarly for W� produ
tion.The dependen
e of the partoni
 
ross se
tions on the family indi
esm;n amountsto an overall fa
tor jVumdn j2. This fa
tor 
an be easily absorbed by rede�ning theparton distribution fun
tions as~fh;dm = 3Xn=1 jVumdn j2fh;dn; ~fh; �dm = 3Xn=1 jVumdn j2fh; �dn ;~fh;um = fh;um; ~fh;�um = fh;�um; ~fh;g = fh;g: (3)The hadroni
 
ross se
tion (1) 
an be 
omputed using the trivial CKM matrix~Vuidj = Æij and the rede�ned PDFs (3). Sin
e we do not 
onsider initial or �nal3



states involving (anti-)top quarks, only the 
ontributions of the �rst two quarkfamilies (m = 1; 2) have to be in
luded. The 
orresponding rede�ned PDFs ( ~fh;qwith q = u; d; 
; s) automati
ally in
lude the (small) 
ontributions asso
iated withinitial- and �nal-state bottom quarks.2.2 Kinemati
sFor the 2 ! 2 subpro
ess ab ! W �k the Mandelstam variables are de�ned in thestandard way,ŝ = (pa + pb)2; t̂ = (pa � pW )2; û = (pb � pW )2: (4)The momenta pa, pb, pk of the partons are assumed to be massless, whereas p2W =M2W . In terms of x1; x2; pT and the 
ollider energy ps we haveŝ = x1x2s; t̂ = M2W � ŝ2 (1� 
os �); û = M2W � ŝ2 (1 + 
os �); (5)with 
os � = q1� 4p2Tŝ=(ŝ�M2W )2 
orresponding to the 
osine of the angle betweenthe momenta pa and pW in the partoni
 
enter-of-mass frame.The pT-distribution for the unpolarized partoni
 subpro
ess ab! W �k readsd�̂ab!W�kdpT = Nab Z d�2XjMab!W�kj2 FO;2(�2); (6)where P = 14PpolP
ol involves the sum over polarization and 
olor as well as theaverage fa
tor 1=4 for initial-state polarization. The fa
tor Nab is given byNab = (2�)42ŝNab ; (7)where N�qq0 = Nq�q0 = N2
 , Ngq = Nqg = N�qg = Ng�q = N
(N2
 � 1), with N
 = 3,a

ount for the initial-state 
olour average. The phase-spa
e measure d�2 is givenby d�2 = d3pW(2�)32p0W d3pk(2�)32p0k Æ4 (pa + pb � pW � pk) ; (8)while the fun
tion FO;2 de�nes the observable of interest, i.e. the W -boson pT-distribution in presen
e of a 
ut on the transverse momentum of the jet,FO;2(�2) = Æ(pT � pT;W )�(pT; j � pminT; j) : (9)In the 2-parti
le phase spa
e the jet is identi�ed with the parton k and momentum
onservation implies pT; j = pT; k = pT;W . In pra
ti
e, sin
e we always 
onsider thepT-distribution in the region pT > pminT;W > pminT; j , the 
ut on pT; j in (9) is irrelevant.The phase-spa
e integral in (6) yields two 
ontributions originating from kinemati
4




on�gurations in the forward and ba
kward hemispheres with opposite values of
os � in the 
enter-of-mass frame,d�̂ab!W�kdpT = d�̂ab!W�kfwddpT + d�̂ab!W�kbkwddpT ; (10)with d�̂ab!W�kfwddpT = pT8�Nabŝjt̂� ûjXjMab!W�kj2; d�̂ab!W�kbkwddpT = d�̂ab!W�kfwddpT �����t̂$û: (11)For the 2 ! 3 subpro
ess ab ! W �k
 we de�ne the following �ve independentinvariants ŝ = (pa + pb)2; t̂ = (pa � pW )2; û = (pb � pW )2;t̂0 = (pa � p
)2; û0 = (pb � p
)2 ; (12)and the four dependent invariantsŝ0 = (pk + p
)2 = ŝ+ t̂ + û�M2W ; ŝ00 = (pW + pk)2 = ŝ+ t̂0 + û0;t̂00 = (pa � pk)2 = M2W � ŝ� t̂� t̂0; û00 = (pb � pk)2 =M2W � ŝ� û� û0 :(13)The pT-distribution for this subpro
ess readsd�̂ab!W�k
dpT = Nab Z d�3XjMab!W�k
j2 FO;3(�3); (14)where d�3 = d3pW(2�)32p0W d3pk(2�)32p0k d3p
(2�)32p0
 Æ4 (pa + pb � pW � pk � p
) : (15)In the 3-parti
le phase spa
e, the W -boson pT-distribution in Wj produ
tion isde�ned by the observable fun
tionFO;3(�3) = Æ(pT � pT;W )�(pT; j � pminT; j) : (16)The 
ut on the jet transverse momentum reje
ts events where the W -boson pT isbalan
ed by an isolated photon plus a parton with small transverse momentum. Thisobservable is thus free from singularities asso
iated with soft and 
ollinear quarks orgluons. When applying the 
ut on the jet momentum in the 3-parti
le phase spa
e,
are must be taken that the de�nition of the jet pT is 
ollinear-safe. In general the jet
annot be identi�ed with the parton k, sin
e in presen
e of 
ollinear photon radiationthe transverse momentum of a 
harged parton is not a 
ollinear-safe quantity. Thuswe identify the jet with the parton k only if k is a quark well separated from the5



photon or a gluon. Otherwise, i.e. for 
ollinear quark-photon 
on�gurations, there
ombined momentum of the quark and photon is taken as momentum of the jet.In pra
ti
e, we de�ne the separation variableR(q; 
) = q(�q � �
)2 + (�q � �
)2; (17)where �i is the pseudo-rapidity and �i is the azimuthal angle of a parti
le i. IfR(q; 
) < Rsep, then the photon and quark momenta are re
ombined by simplefour-ve
tor addition into an e�e
tive momentum pj and then pT; j = q(~pT; q + ~pT; 
)2,otherwise pT; j = pT; q. We note that, in the 
ollinear region, lowest-order kinemati
simplies pT;j = pT;q + pT;
 = pT;W > pminT; j . This means that the re
ombinationpro
edure e�e
tively removes the 
ut on pT;q inside the 
ollinear 
one R(q; 
) < Rsep.For instan
e the re
ombined gq0 ! W �q
 
ross se
tion is given by�̂gq0!W�q
re
: = ZR(q;
)<Rsep d�̂gq0!W�q
 + ZR(q;
)>Rsep �(pT; q � pminT; j) d�̂gq0!W�q
 :(18)In 
ontrast, for the 
ase of �nal-state gluons, we do not perform photon-gluon re-
ombination and the 
ut on pT; g is imposed in the entire phase spa
e.This pro
edure has the advantage to avoid both 
ollinear-photon and soft-gluonsingularities. However it implies a di�erent treatment of quark and gluon �nal statesand 
an thus be regarded as an arbitrary 
ut-o� pres
ription for the �nal-state
ollinear singularity. Moreover, the re
ombined 
ross se
tion (18) has a logarithmi
dependen
e on the 
ut-o� parameter Rsep. These aspe
ts are dis
ussed in detailin Appendix A. There we 
ompare the re
ombination pro
edure with a realisti
experimental de�nition of ex
lusive pp ! Wj produ
tion, where �nal-state quarksare subje
t to the same 
ut as �nal state gluons (pT;q > pminT; j) within the entire phasespa
e. Des
ribing the ex
lusive gq0 !W �q
 
ross se
tion,�̂gq0!W�q
ex
l: = Z �(pT; q � pminT; j) d�̂gq0!W�q
 ; (19)by means of quark fragmentation fun
tions, we �nd that the quantitative di�eren
ebetween the two de�nitions (18) and (19) amounts to less than two permille. More-over, we show that the re
ombined 
ross se
tion is extremely stable with respe
tto variations of the parameter Rsep. This means that the re
ombination pro
edureused in our 
al
ulation provides a very good des
ription of ex
lusive pp ! Wjprodu
tion.Another treatment of the singularities, whi
h does not require re
ombinationand treats quark- and gluon-indu
ed jets uniformly, has been proposed in Ref. [22℄.There, 
ontributions from Wj produ
tion and W
 produ
tion to a more in
lusiveobservable, i.e. high-pT W produ
tion, are both 
al
ulated. All soft and 
ollinearsingularities in the �nal state 
an
el in the approa
h of Ref. [22℄ as a result of themore in
lusive observable de�nition than asso
iated produ
tion of the W bosontogether with a jet, 
onsidered in this work. The 
omparison of our results with6



those of Ref. [22℄ seems to indi
ate that these di�eren
es in the jet de�nitions havea quite small impa
t on the size of the ele
troweak 
orre
tions.The quantity �̂min in (1) is related to the minimum partoni
 energy that is neededto produ
e �nal states with pT; j > pminT; j and pT;W > pminT;W ,s�̂min = �pminT; j +q(pminT;W )2 +M2W�2 : (20)When we evaluate the 2 ! 2 
ontributions to the hadroni
 
ross se
tion (1), afteranalyti
 integration of the phase spa
e in (6), we 
an set pminT; j = pminT;W = pT in (20).2.3 Crossing symmetriesThe unpolarized squared matrix elements for the 2! 2 pro
esses in (2) are relatedby the 
rossing-symmetry relationsXjMgq0!W�qj2 = �XjM�qq0!W�gj2����ŝ$t̂ ;XjM�qg!W��q0j2 = �XjM�qq0!W�gj2����ŝ$û ;XjMba!W�kj2 = XjMab!W�kj2����t̂$û : (21)Moreover, due to CP symmetry, the unpolarized partoni
 
ross se
tion for the pro-du
tion of positively and negatively 
harged W bosons are related byXjM �du!W+gj2 =XjMd�u!W�gj2: (22)Eqs. (21) and (22) permit to relate the six pro
esses for W+ produ
tion in (2) andthe six 
harge 
onjugate ones to a single pro
ess. Hen
e the expli
it 
omputationof the unpolarized squared matrix element needs to be performed only on
e. In thefollowing we will present expli
it results for the pro
ess �qq0 !W �g.Similarly, for the unpolarized squared matrix elements for the 2 ! 3 pro
essesin (2) we haveXjMgq0!W�q
j2 = �XjM�qq0!W�g
j2����fŝ$û00;t̂$ŝ00;t̂0$ŝ0g ;XjM�qg!W��q0
j2 = �XjM�qq0!W�g
j2����fŝ$t̂00;û$ŝ00;û0$ŝ0g ;XjMba!W�k
j2 = XjMab!W�k
j2����ft̂$û;t̂0$û0g (23)and XjM �du!W+g
 j2 =XjMd�u!W�g
j2: (24)It is thus enough to perform 
al
ulations only for the �qq0 !W �g
 subpro
ess.7



2.4 Couplings and Born matrix elementFor gauge 
ouplings we adopt the 
onventions of Ref. [23℄. With this notation thegq�q vertex and the V q0�q verti
es with V = A;Z;W� read�q G�q = �igSta
�; �q V �q0 = ie
� X�=R;L!�IVq�q�0 ; (25)where !� are the 
hiral proje
tors!R = 12(1 + 
5); !L = 12(1� 
5); (26)ta are the Gell-Mann matri
es and IV are matri
es in the weak isospin spa
e. Fordiagonal matri
es su
h as IA and IZ we write IVq�q�0 = Æqq0IVq�. In terms of the weakisospin T 3q� and the weak hyper
harge Yq� we haveIZq� = 
WsWT 3q� � sW
W Yq�2 ; IAq� = �Qq� = �T 3q� � Yq�2 ; (27)with the shorthands 
W = 
os �W and sW = sin �W for the weak mixing angle �W.The eigenvalues of isospin, hyper
harge and SU(2) Casimir operators for left-handedfermions are T 3uL = �T 3dL = 12 ; YuL = YdL = 13 ; CF = 34 ; CA = 2: (28)The only non-vanishing 
omponents of the generators asso
iated with W bosons areIW+uLdL = IW�dLuL = 1p2sW : (29)The triple gauge-bosons verti
es readV �1a V �3
V �2b = esW "VaVbV
[g�1�2(k1 � k2)�3 + g�2�3(k2 � k3)�1+ g�3�1(k3 � k1)�2 ℄; (30)where the totally anti-symmetri
 tensor "V1V2V3 is de�ned through the 
ommutationrelations hIV1 ; IV2i = isW XV3=A;Z;W� "V1V2V3I �V3 ; (31)and has 
omponents "ZW+W� = �i
W and "AW+W� = isW.To lowest order in � and �S, the unpolarized squared matrix element for the�qq0 !W �g pro
ess readsXjM�qq0!W�g0 j2 = 8�2��S(N2
 � 1) �IW��qLq0L �2 t̂2 + û2 + 2M2W ŝt̂û ; (32)where � = e2=(4�) and �S = g2S=(4�) are the ele
tromagneti
 and the strong 
oupling
onstants. 8



(t1) (t2)Figure 1: Tree-level Feynman diagrams for the pro
ess �qq0 !W �g.3 Virtual 
orre
tionsIn this se
tion we present the virtual ele
troweak 
orre
tions to the �qq0 ! W �gpro
ess. The algebrai
 redu
tion to gauge-
oupling stru
tures, standard matrixelements and one-loop s
alar integrals is des
ribed in Se
t. 3.2. The renormalizationof ultraviolet divergen
es and the subtra
tion of infrared singularities originatingfrom soft and 
ollinear virtual photons are dis
ussed in Se
t. 3.3. and Se
t. 3.4,respe
tively. In Se
t. 3.5 we summarize the one-loop result for the unpolarizedsquared matrix element.3.1 PreliminariesAs dis
ussed in the previous se
tion, the twelve di�erent pro
esses relevant for Wjprodu
tion are related by CP and 
rossing symmetries. It is thus suÆ
ient to 
on-sider only one of these pro
esses. In the following we derive the one-loop 
orre
tionsfor the �qq0 !W �g pro
ess. The matrix elementM�qq0!W�g1 = M�qq0!W�g0 + ÆM�qq0!W�g1 (33)is expressed as a fun
tion of the Mandelstam invariantsŝ = (p�q + pq0)2; t̂ = (p�q � pW )2; û = (pq0 � pW )2: (34)The Born 
ontribution M�qq0!W�g0 results from the t- and u-
hannel diagrams ofFig. 1. The loop and 
ounterterm diagrams 
ontributing to the 
orre
tions,ÆM�qq0!W�g1 = ÆM�qq0!W�g1;loops + ÆM�qq0!W�g1;CT ; (35)are depi
ted in Fig. 2 and Fig. 3, respe
tively.The quarks that are present in the loop diagrams of Fig. 2 are treated as massless,and the regularization of the 
ollinear singularities that arise in this limit is dis
ussedin Se
t. 3.4. The only quark-mass e�e
ts that we take into a

ount are the mt-termsthat enter the 
ounterterms through gauge-boson self-energies.Our 
al
ulation has been performed at the matrix-element level and provides full
ontrol over polarization e�e
ts. However, at this level, the analyti
al expressionsare too large to be published. Expli
it results will thus be presented only for theunpolarized squared matrix element. 9



V (s1) V (s2) V (v1) V (v2)V (v3) V (v4)
V1 V2(v5) V2 V1(v6)V (b1) V (b2)

V1 V2(b3)Figure 2: One-loop Feynman diagrams for the pro
ess �qq0 ! W �g. The diagramss1, s2, v1 and v2 re
eive 
ontributions from neutral and 
harged gauge bosons,V = A;Z;W�. The diagrams v3, v4, b1 and b2 involve only neutral gauge bosons,V = A;Z. The remaining diagrams, v5, v6 and b3 involve two 
ontributions withone 
harged and one neutral gauge boson: (V1; V2) = (V;W�) and (W�; V ) withV = A;Z.
(
1) (
2) (
3) (
4)

(
5) (
6)Figure 3: Counterterm diagrams for the pro
ess �qq0 !W �g.10



3.2 Algebrai
 redu
tionThe matrix element (33) has the general formM�qq0!W�g1 = i e gS ta �v(p�q)ML;��1 !Lu(pq0) "��(pW )"��(pg): (36)Sin
e we negle
t quark masses,ML;��1 
onsists of terms involving an odd number ofmatri
es 
� with � = 0; : : : ; 3. The 
5-terms are isolated in the 
hiral proje
tor !Lde�ned in (26). The polarization dependen
e of the quark spinors and gauge-bosonpolarization ve
tors is impli
itly understood. In analogy to (33) and (35) we writeML;��1 =ML;��0 + ÆML;��1 ; ÆML;��1 = ÆML;��1;loops + ÆML;��1;CT: (37)Following the approa
h adopted in Ref. [9℄, we isolate the SU(2)�U(1) 
ouplingsthat appear in the Feynman diagrams and redu
e the one-loop amplitude to a sumof 
ontributions asso
iated with independent 
oupling stru
tures. As we will see,besides an abelian and a non-abelian 
ontribution that are related to the ones foundfor Zj produ
tion [9℄, forWj produ
tion we have two additional 
oupling stru
tures.The 
oupling stru
ture of the Born amplitude is trivial and 
onsists simply ofthe qLq0L 
omponent of the SU(2) generator,ML;��0 = IW��qLq0L S��0 = S��0p2sW ; S��0 = 
�(p=W � p=�q)
�t̂ + 
�(p=g � p=�q)
�û : (38)The 
ontribution of the loop diagrams of Fig. 2 
an be written asÆML;��1;loops = �4�( XV=A;Z;W�"�IW��IV I �V �qLq0L D��1 (M2V ) + �IV I �V IW���qLq0L D��2 (M2V )#+ XV=A;Z"�IV IW��IV �qLq0L D��3 (M2V ) + isW "W�VW�� �IV IW���qLq0L�D��4 (M2V ;M2W ) + isW "VW�W�� �IW��IV �qLq0L D��4 (M2W ;M2V )#): (39)In the following, treating the ele
troweak gauge 
ouplings as isospin matri
es andusing group-theoreti
al identities (see App. B of Ref. [23℄), we express the aboveamplitude in terms of the eigenvalues of isospin, hyper
harge and SU(2) Casimiroperators for left-handed fermions (28).The tensors D��1 (M2V ) and D��2 (M2V ) in (39) des
ribe the 
ontributions of thediagrams s1, v1 and s2, v2, respe
tively. These diagrams may involve 
harged orneutral virtual bosons. In the former 
ase (V = W�), the 
orresponding 
ouplingsread1 X�=� IW��IW �IW�� = X�=� IW �IW��IW�� = CF � (T 3)2s2W IW�� : (40)1The following identities have to be understood as matrix identities, where the qLq0L indi
es ofthe SU(2) generators are impli
itly understood.11



In the latter 
ase (V = A;Z) the 
oupling fa
tors readIW��IV IV = �ÆSU(2)V V (T 3)2s2W +XV T 3Y + ÆU(1)V V Y 24
2W �IW�� ;IV IV IW�� = �ÆSU(2)V V (T 3)2s2W �XV T 3Y + ÆU(1)V V Y 24
2W �IW�� : (41)Here ÆSU(2)V V = (UVW 3)2; XV = UVW 3UV BsW
W ; ÆU(1)V V = (UV B)2; (42)where U is the ele
troweak mixing matrix. For V = A;Z we have ÆSU(2)AA = s2W,XA = �1, ÆU(1)AA = 
2W, and ÆSU(2)ZZ = 
2W, XZ = 1, ÆU(1)ZZ = s2W. We note thatXV=A;Z ÆSU(2)V V = XV=A;Z ÆU(1)V V = 1; XV=A;ZXV = 0: (43)The tensor D��3 (M2V ) in (39) 
orresponds to the diagrams v3, v4, b1 and b2. Thesediagrams re
eive 
ontributions from neutral virtual gauge bosons only (V = A;Z).For the 
orresponding 
ouplings we haveIV IW��IV = �ÆSU(2)V V CF � CA=2s2W + ÆU(1)V V Y 24
2W �IW�� : (44)Finally, D��4 (M2V1 ;M2V2) represents the diagrams v5, v6 and b3. These diagramsinvolve a neutral gauge boson (V = A;Z) and a W boson. The 
oupling fa
torsyield isW "W�VW��IV IW�� = �ÆSU(2)V V CA4s2W �XV T 3Y �IW�� ;isW "VW�W��IW��IV = �ÆSU(2)V V CA4s2W +XV T 3Y �IW�� : (45)Using the above identities we express the one-loop amplitude (39) for W -bosonprodu
tion in a form that is analogous to the one adopted in Refs. [9, 10℄ to des
ribethe produ
tion of neutral gauge bosons. To this end we de�ne2ÆA��1;A(M2V ) = D��1 (M2V ) +D��2 (M2V ) +D��3 (M2V );ÆA��1;N(M2V ) = 12 hD��4 (M2V ;M2W ) +D��4 (M2W ;M2V )i�D��3 (M2V );ÆA��1;X(M2V ) = D��1 (M2V ) +D��2 (M2V );ÆA��1;Y(M2V ) = D��4 (M2V ;M2W )�D��4 (M2W ;M2V ) +D��2 (M2V )�D��1 (M2V ): (46)2In our notation we emphasize the dependen
e of the form fa
tors ÆA��1;I on MV , whereas thedependen
e on the external momenta as well as the MW -dependen
e (for ÆA��1;N and ÆA��1;Y) isimpli
itly understood. 12



The tensor ÆA��1;A(M2V ) is identi
al to the abelian tensor de�ned in Ref. [9℄, andÆA��1;N(M2V ) is equal to the non-abelian tensor of Ref. [9℄ for M2V = M2W . The re-maining two tensors, ÆA��1;X(M2V ) and ÆA��1;Y(M2V ), are new. Using (40){(46) we 
anwrite the one-loop amplitude (39) asÆML;��1;loops = �4�p2sW( XV=A;Z" ÆSU(2)V V CFs2W + ÆU(1)V V Y 2qL4
2W! ÆA��1;A(M2V )� ÆSU(2)V V CF � (T 3qL)2s2W ÆA��1;X(M2V ) + ÆSU(2)V V CA2s2W ÆA��1;N(M2V )�XV T 3qLYqLÆA��1;Y(M2V )# + CF � (T 3qL)2s2W ÆA��1;X(M2W )): (47)This amplitude has been redu
ed algebrai
ally using the Dira
 equation, the identityp�"�(p) = 0 for gauge-boson polarization ve
tors and Dira
 algebra. Moreover,tensor loop integrals have been redu
ed to s
alar ones by means of the Passarino-Veltman te
hnique [24℄. The result has been expressed in the formÆA��1;I(M2V ) = 10Xi=1Xj F ijI (M2V )S��i Jj(M2V ); (48)for I=A,N,X,Y. The quantities F ijI (M2V ) are rational fun
tions of Mandelstam in-variants and masses. Expli
it expressions for the tensors S��i and the s
alar loopintegrals Jj(M2V ) are provided in Appendix B and Appendix C.3.3 RenormalizationWhile the tensors ÆA��1;X and ÆA��1;Y are ultraviolet �nite, the abelian and the non-abelian tensors give rise to the ultraviolet singularitiesÆA��1;A(M2V )���UV = ��UV S��0 ; ÆA��1;N(M2V )���UV = 2��UV S��0 ; (49)where S��0 is the tensor stru
ture of the Born amplitude (38), and��UV =  4��2M2Z !" �(1 + ")" = 1" � 
E + ln(4�) + ln �2M2Z!+O(") (50)in D = 4 � 2" dimensions. These singularities are 
an
elled by the 
ountertermdiagrams depi
ted in Fig. 3 and the results are independent of the s
ale � of dimen-sional regularization. The 
ounterterms that are responsible for the 
ontributionsof diagrams 
1, 
2, 
3 and 
4 read= ip=!LÆZqL; = �igSta
�!LÆZqL: (51)13



Sin
e there is noO(�) 
ontribution to the renormalization of the strong 
oupling 
on-stant gS, these 
ounterterms depend only on the wave-fun
tion renormalization 
on-stants for left-handed quarks, ÆZqL. Their 
ombined 
ontribution to the �qq0 ! W �gpro
ess, i.e. the sum of the diagrams 
1, 
2, 
3 and 
4, vanishes. The renormaliza-tion of the �qq0 ! W �g pro
ess is thus provided by the diagrams 
5 and 
6, whi
horiginate from the W �qq0 
ounterterm,= ie
�!LIW��qLq0L hÆCA + ÆCNi ; (52)with ÆCA = 12 (ÆZuL + ÆZdL) ; ÆCN = 12  ÆZW + Æg22g22 ! ; (53)and yields ÆML;��1;CT = �ÆCA + ÆCN�ML;��0 : (54)The wave-fun
tion renormalization 
onstants of massless left-handed quarks andon-shell W bosons are related to the 
orresponding self-energies byÆZqL = �Re ��q;L(0)� ; ÆZW = �Re ��WT (p2)�p2 ! �����p2=M2W ; (55)and have been evaluated using the expli
it results of Ref. [25℄.For the de�nition and the renormalization of the SU(2) 
oupling 
onstant,g22 = 4��s2W ; Æg22g22 = Æ�� � Æs2Ws2W ; (56)we adopt the G�-s
heme, where the ele
tromagneti
 
oupling 
onstant � is expressedin terms of the Fermi 
onstant G�, and the weak mixing angle is related to the on-shell masses MZ , MW of the gauge bosons,� = p2G�M2W s2W� ; s2W = 1� 
2W = 1�M2W=M2Z : (57)The 
ounterterm Æ�=� in the G�-s
heme 
an be derived from the on-shell 
ounter-term Æ�(0)=�(0) for the �ne-stru
ture 
onstant in the Thompson limit. Using theone-loop relation � = �(0) [1 + �r℄ and requiring � + Æ� = �(0) + Æ�(0) we haveÆ�� = Æ�(0)�(0) ��r: (58)Combining the relations (56){(58) and using the expli
it one-loop expression for �r[26, 27℄, we obtainÆg22g22 = Re "�WT (M2W )� �WT (0)M2W #� ��s2W " ��UV + 14  6 + 7� 12s2W2s2W ln M2WM2Z !!# :(59)14



The above 
onterterms yield the ultraviolet singularitiesÆCA���UV = � �8� ��UV Xq=u;d XV=A;Z;W� �IV I �V �qL = � �4� ��UV  CFs2W + Y 2qL4
2W! ;ÆCN���UV = � �2�s2W ��UV : (60)Using (43) one 
an easily verify that these singularities 
an
el those resulting fromthe loop diagrams [see (47) and (49)℄.3.4 Soft and 
ollinear singularitiesLoop diagrams and wave-fun
tion renormalization 
onstants involve singularitiesoriginating from soft and 
ollinear virtual photons (for brevity denoted in the fol-lowing as IR singularities). In order to isolate these singularities and 
he
k that theyare 
an
elled by 
orresponding ones originating from real photon bremsstrahlung,we split the wave-fun
tion renormalization 
onstants and the photon 
ontributionsto (47), i.e. the terms ÆA��1;I(M2A), in IR-singular (IR) and IR-�nite (�n) parts:ÆZqL = ÆZIRqL + ÆZ�nqL ;ÆZW = ÆZIRW + ÆZ�nW ;ÆA��1;I(M2A) = ÆAIR;��1;I + ÆA�n;��1;I : (61)The singular parts depend on the s
heme adopted to regularize IR singularities.The remaining parts are s
heme-independent and free from IR singularities, but
an 
ontain ultraviolet poles. For the regularization of IR singularities we use,alternatively, two di�erent s
hemes:� In the �rst s
heme, whi
h we denote as mass-regularization s
heme (MR), weuse in�nitesimal quark masses m and a photon-mass regulator, MA = � with0 < � � m. Sin
e the quark-mass dependen
e disappears in the �nal result,we perform the 
omputation using the same mass m for all quarks. To denotequantities evaluated in this s
heme we use the label MR;� In the se
ond s
heme we perform the 
al
ulation using massless fermions andphotons, MA = m = 0, and we evaluate IR singularities in dimensional reg-ularization (DR). To denote quantities evaluated in this s
heme we use thelabel DR.The singular parts of the wave-fun
tion renormalization 
onstants readÆZIRqL = �4�  4��2M2W !" �(1 + ")Q2qhIRq ;ÆZIRW = �4�  4��2M2W !" �(1 + ")hIRW ; (62)15



with hIRq;MR = � ln M2Wm2 !� 2 ln �2m2!� 4; hIRW;MR = �2 ln �2M2W ! ; (63)in the MR s
heme and hIRq;DR = 1"; hIRW;DR = �2" ; (64)in the DR s
heme. The splitting of the loop 
ontributions ÆA��1;I(M2A) into IR-singularand IR-�nite parts is performed at the level of the s
alar loop integrals Ji(M2A):Ji(M2A) = J IRi + J�ni : (65)Expli
it expression for the IR-singular and IR-�nite parts of individual loop integralsare presented in Appendix D. Combining all singular 
ontributions J IRi we obtainÆAIR;��1;I =  4��2M2W !" �(1 + ")f IRI S��0 ; (66)i.e. the IR singularities fa
torize3 with respe
t to the Born amplitude (38). TheIR-singular part of the renormalized amplitude 
an be expressed in terms of theele
tromagneti
 
harges of the external parti
les asÆML;��1;IR = �4�  4��2M2W !" �(1 + ")"�QqQq0f IR1 + �Qqf IR2 � �Qq0f IR3 #ML;��0 ; (67)where � = �1 is the 
harge of the W boson andf IR1 = �f IRA � hIRq ;f IR2 = �f IRA � f IRN + 12 �f IRX � f IRY � hIRq � hIRW � ;f IR3 = �f IRA � f IRN + 12 �f IRX + f IRY � hIRq � hIRW� : (68)In the MR s
heme we obtainf IR1;MR = �2 ln �2M2W ! ln �ŝm2!� ln2  m2M2W !+ 3 ln m2M2W !+ 2 ln �2m2! ;f IR2;MR = ln �2M2W !"ln m2M2W !� 2 ln 1� t̂M2W !#� 12 ln2  m2M2W !+ 12 ln m2M2W !+ 2 ln �2M2W ! ;f IR3;MR = f IR2;MR���t̂!û; (69)3To be pre
ise, the tensors ÆA��1;X(M2A) and ÆA��1;N(M2A) 
ontain also non-fa
torizable IR diver-gen
es. However these non-fa
torizable singularities are related byÆAnon�fa
t;��1;X (M2A) = 2ÆAnon�fa
t;��1;N (M2A);and due to the identity CF� (T 3qL)2 = CA=4, whi
h relates the 
oupling stru
tures asso
iated withthe X- and N-terms in (47), they 
an
el. 16



and in the DR s
hemef IR1;DR = 2"2 � 1" "2 ln �ŝM2W !� 3#+ 4;f IR2;DR = 1"2 � 1" "2 ln 1� t̂M2W !� 52# + 2;f IR3;DR = f IR2;DR���t̂!û: (70)The splitting (61) has been performed in su
h a way that in the high-energy limit(ŝ; jt̂j; jûj � M2W ) the IR-�nite part of the amplitude has the same logarithmi
 be-haviour as the virtual 
orre
tions regularized by a photon mass MA = MW . Indeedthe IR-singular parts f IRi 
orrespond exa
tly to the 
ontribution 
alled purely ele
-tromagneti
 in Ref. [14℄. This implies that, up to terms that are not logarithmi
allyenhan
ed at high energies, the IR-�nite part of the 
orre
tions 
orresponds to thesymmetri
 ele
troweak 
ontribution of Ref. [14℄, whi
h is 
onstru
ted by setting thephoton mass equal to MW . This property is evident in the asymptoti
 high-energyexpressions (80) for the IR-�nite part of the diagrams involving virtual photons.3.5 ResultLet us summarize our result for the unpolarized squared matrix element for the�qq0 !W �g pro
ess. To O(�2�S),XjM�qq0!W�g1 j2 =XjM�qq0!W�g0 j2 + 2Re �X�M�qq0!W�g0 �� ÆM�qq0!W�g1 � : (71)Using (36) and summing over the polarizations we 
an express the interferen
e termas 2Re �X�M�qq0!W�g0 �� ÆM�qq0!W�g1 � = 2�2��S(N2
 � 1)� Re hTr �p=q0ML;��0 p=�qÆML;�0�01 �i g��0  g��0 � pW�pW�0p2W ! ; (72)where M = 
0My
0. Combining the 
ontributions of the bare one-loop diagrams(47) and the 
ounterterms (54) yieldsXjM�qq0!W�g1 j2 = h1 + 2Re �ÆCA + ÆCN�iXjM�qq0!W�g0 j2 + 2��2�Ss2W (N2
 � 1)� Re( XV=A;Z" ÆSU(2)V V CFs2W + ÆU(1)V V Y 2qL4
2W!HA1 (M2V )� ÆSU(2)V V CF � (T 3qL)2s2W HX1 (M2V ) + ÆSU(2)V V CA2s2WHN1 (M2V )�XV T 3qLYqLHY1 (M2V )#+ CF � (T 3qL)2s2W HX1 (M2W )): (73)17



The unpolarized Born 
ontribution is given in (32), the 
ounterterms ÆCA and ÆCNare presented in Se
t. 3.3, and the 
oupling fa
tors are spe
i�ed by (28) and (42).The fun
tions H I1(M2V ) represent the 
ontributions resulting from the loop diagramsof Fig. 2. They are related to the tensors ÆA��1;I(M2V ) in (47){(48) byH I1(M2V ) = 18Tr h p=q0 S��0 p=�q ÆA�0�01;I (M2V ) i g��0  g��0 � pW�pW�0p2W ! : (74)The 
ouplings asso
iated with HA1 , HN1 and HX1 are the same for q = u and q =d. Thus the 
rossing and CP symmetry relations (21) and (22) imply that thesefun
tions are symmetri
 with respe
t to the transformation t̂$ û. In 
ontrast, HY1is antisymmetri
 with respe
t to t̂ $ û ex
hange sin
e the 
orresponding 
ouplingis proportional to T 3qL and has thus opposite signs for q = u and q = d. Thefun
tions H I1(M2V ) are presented in Appendix E as linear 
ombinations of s
alarloop integrals. We note that, in 
ontrast to the de�nition adopted in the 
ase ofZj produ
tion [9℄, here we do not in
lude the 
ontributions of the fermioni
 wave-fun
tion renormalization 
onstants in HA1 (M2V ).For the IR-singular part of the renormalized one-loop 
orre
tion we obtainXjM�qq0!W�g1;IR j2 = �2�Re "�QqQq0f IR1 + �Qqf IR2 � �Qq0f IR3 #�  4��2M2W !" �(1 + ")XjM�qq0!W�g0 j2: (75)The IR-singular fun
tions f IRi in the MR and DR s
hemes are presented in Se
t. 3.4.4 High-energy limitIn this se
tion we provide 
ompa
t analyti
 expressions that des
ribe the behaviourof the IR-�nite part of the virtual ele
troweak 
orre
tions in the limit M2W=ŝ ! 0with t̂=ŝ and û=ŝ 
onstant. In this limit, whi
h is appli
able for transverse momentaof O(100GeV) or beyond, the ele
troweak 
orre
tions are dominated by logarithmi

ontributions of the type ln(ŝ=M2W ). In Se
t. 4.1 we present the asymptoti
 expan-sion of the one-loop 
orre
tions, in
luding leading and next-to-leading logarithms,as well as terms that are not logarithmi
ally enhan
ed at high energies. In Se
t. 4.2we present the two-loop 
orre
tions to next-to-leading logarithmi
 a

ura
y.4.1 Next-to-next-to-leading approximation at one loopIn this se
tion we dis
uss the high-energy behaviour of the IR-�nite part of theone-loop 
orre
tions to the �qq0 ! W �g pro
ess, obtained by subtra
ting the IRdivergen
e (75) from the renormalized one-loop result (73),XjM�qq0!W�g1;�n j2 = XjM�qq0!W�g1 j2 �XjM�qq0!W�g1;IR j2: (76)18



In the following we present expli
it asymptoti
 expressions for the unrenormalizedloop 
ontributions, i.e. for the IR-�nite parts H I;�n1 of the fun
tions H I1 in (73).Using the general results of Ref. [28℄, we evaluate the fun
tions H I;�n1 to next-to-next-to-leading logarithmi
 (NNLL) a

ura
y. This approximation a

ounts for all
ontributions that are not suppressed by powers of M2W=ŝ. It in
ludes double andsingle logarithms as well as terms that are not logarithmi
ally enhan
ed in the high-energy limit. To simplify non-logarithmi
 fun
tions of the ratio MZ=MW we haveperformed an expansion in s2W = 1 �M2W=M2Z, keeping only terms up to the �rstorder4 in s2W. The NNLL expansion of H I;�n1 (M2V ) has the general formH I;�n1 (M2V ) NNLL= Re "gI0(M2V ) t̂2 + û2t̂û + gI1(M2V ) t̂2 � û2t̂û + gI2(M2V )# : (77)It involves the rational fun
tion (t̂2+ û2)=t̂û, whi
h has the same angular behaviouras the squared Born amplitude (32) in the high-energy limit, and two other rationalfun
tions, whi
h des
ribe di�erent angular dependen
ies. The fun
tions gIi 
onsist oflogarithms of the kinemati
al variables and 
onstants. The loop diagrams involvingZ and W bosons, with mass MV = MZ ;MW , yieldgN0 (M2V ) = 2 " ��UV + ln M2ZM2W !+ ln M2VM2W !# + ln2  �ŝM2V !� 12"ln2  �t̂M2V !+ ln2  �t̂M2W !+ ln2  �ûM2V !+ ln2  �ûM2W !# + ln2  t̂̂u!� 32"ln2  t̂̂s!+ ln2  û̂s!#� 20�29 � 2�p3 + 4;gN1 (M2V ) = 12"ln2  û̂s!� ln2  t̂̂s!#;gN2 (M2V ) = �2"ln2  t̂̂s!+ ln2  û̂s!+ ln t̂̂s!+ ln û̂s!#+ 2 ln M2VM2W !� 4�2;gA0 (M2V ) = � ln2  �ŝM2V !+ 3 ln �ŝM2V !+ 32"ln2  t̂̂s!+ ln2  û̂s!+ ln t̂̂s!+ ln û̂s!#+ 7�23 � 52 + gA;UV0 (M2V );gA1 (M2V ) = �gN1 (M2W ) + 32"ln û̂s!� ln t̂̂s!#;gA2 (M2V ) = �gN2 (M2W );gX0 (M2V ) = 0;gX1 (M2V ) = 0;4In pra
ti
e we �nd that all terms of O(s2W) 
an
el in the result.19



gX2 (M2V ) = �2 "2 ln �ŝM2V !+ ln t̂̂s!+ ln û̂s!� 3# ;gY0 (M2V ) = ln2  �t̂M2W !� ln2  �t̂M2V !� ln2  �ûM2W !+ ln2  �ûM2V ! ;gY1 (M2V ) = 0;gY2 (M2V ) = 2 ln t̂̂u! ; (78)where ��UV is de�ned in (50) and, in order to fa
ilitate the 
omparison with Ref. [9℄,we have isolated the termgA;UV0 (M2V ) = ��UV + ln M2ZM2V !� 12 : (79)If we in
luded the fermioni
 wave-fun
tion renormalization 
onstants in the de�ni-tion of the fun
tionHA1 , as we had done for the 
ase of Zj produ
tion in Ref. [9℄, thisterm would 
an
el and the fun
tion gA0 (M2V ) would be identi
al to the one obtainedin Ref. [9℄.For the loop diagrams involving photons (MV = MA), after subtra
tion of theIR-singular parts, we obtaingN0 (M2A) = gN0 (M2W )� 7�29 + 2�p3 ;gA0 (M2A) = gA0 (M2W ) + �2;gI0(M2A) = gI0(M2W ) for I = X;Y;gI1(M2A) = gI1(M2W ) for I = A;N;X;Y;gI2(M2A) = gI2(M2W ) for I = A;N;X;Y: (80)The 
ontribution of the 
ounterterms ÆCA and ÆCN to the IR-�nite part of therenormalized result (76) is obtained by subtra
ting from (53) the IR-divergent partof the wave-fun
tion renormalization 
onstants (62). This 
ontribution, 
onsistingof on-shell self-energies and their derivatives, does not depend on the s
atteringenergy. Therefore we evaluate the IR-�nite parts of the 
ounterterms in numeri
alform without applying any approximation. Using the input parameters spe
i�ed inSe
t. 7 we obtainÆCA;�n = 12 �ÆZ�nuL + ÆZ�ndL � = ÆCA���UV + 5:57� 10�4;ÆCN;�n = 12  ÆZ�nW + Æg22g22 ! = ÆCN���UV � 1:49� 10�3: (81)The UV divergen
es ÆCA;NjUV [see (60)℄ 
an
el against the ��UV-terms in (78){(80).The results (78){(80), for the �qq0 ! W �g pro
ess, are valid for arbitrary valuesof the Mandelstam invariants and 
an easily be translated to all other pro
esses in20



(2) by means of the relations (21){(22). Logarithms with negative arguments in(78){(80) are de�ned through the usual i" pres
ription, r̂ ! r̂ + i" for r̂ = ŝ; t̂; û.In next-to-leading logarithmi
 (NLL) approximation, i.e. retaining only doubleand single logarithms that grow with energy, the above results assume a parti
ularly
ompa
t form. In this approximation the 
ounterterms do not 
ontribute,ÆCA NLL= ÆCN NLL= 0; (82)and for the fun
tions H I;�n1 (M2V ), negle
ting logarithms of MZ=MW , we obtainHN;�n1 (M2V ) NLL= � "ln2  jt̂jM2W !+ ln2  jûjM2W !� ln2  jŝjM2W !# t̂2 + û2t̂û ;HA;�n1 (M2V ) NLL= � "ln2  jŝjM2W !� 3 ln jŝjM2W !# t̂2 + û2t̂û ;HX;�n1 (M2V ) NLL= �4 ln jŝjM2W ! ;HA;�n1 (M2V ) NLL= 0; (83)for V = A;Z;W . We note that, owing to HX;�n1 (MZ) NLL= HX;�n1 (MA) and (43),the NLL 
ontribution of the fun
tion HX;�n1 (MV ) 
an
els in (73). Thus the NLL
orre
tions (83) are proportional to the rational fun
tion (t̂2+û2)=t̂û, whi
h des
ribesthe angular dependen
e of the Born 
ross se
tion.4.2 Next-to-leading logarithms up to two loopsLet us now present our results for the NLL asymptoti
 behaviour of the ele
troweak
orre
tions up to two loops. For a dis
ussion of the 
al
ulation we refer to Ref. [8℄,where the same 
lass of 
orre
tions has been 
omputed for Zj produ
tion. Theresults have been obtained in the MZ = MW approximation. As in the previousse
tion, we present results for the IR-�nite part of the ele
troweak 
orre
tions, ob-tained after subtra
tion of IR singularities. As dis
ussed in Se
t. 3.4, at one loopthis subtra
tion is performed in su
h a way that, to NLL a

ura
y, the IR-�nitepart 
orresponds to the 
omplete ele
troweak 
orre
tion regularized with a �
titiousphoton mass MA = MW . The same pres
ription is adopted at the two-loop level.The unpolarized squared matrix element for �qq0 ! W �g, in
luding NLL termsup to the two-loop level, has the general formXjM�qq0!W�g2 j2 = 8�2��S(N2
 � 1) t̂2 + û2t̂û "A(0) + � �2��A(1) + � �2��2A(2)# : (84)The Born 
ontribution reads A(0) = 12s2W : (85)21



At one loop, the NLL part 
onsists of double- and single-logarithmi
 terms and readsA(1) NLL= � 12s2W "CewqL �L2̂s � 3Lŝ�+ CA2s2W �L2̂t + L2̂u � L2̂s�# : (86)Here we used the shorthand Lk̂r = lnk(jr̂j=M2W ) for the logarithms and CewqL =Y 2qL=(4
2W) +CF=s2W are the eigenvalues of the ele
troweak Casimir operator for left-handed quarks. This expression is 
onsistent with the pro
ess-independent resultsof Ref. [14℄ as well as with the NLL part of the one-loop asymptoti
 expressionspresented in Se
t. 4.1. At two loops we obtainA(2) NLL= 12s2W(12  CewqL + CA2s2W!"CewqL �L4̂s � 6L3̂s�+ CA2s2W �L4̂t + L4̂u � L4̂s�#+ 16" b1
2W �YqL2 �2 + b2s2W �CF + CA2 �#L3̂s); (87)where b1 = �41=(6
2W) and b2 = 19=(6s2W) are the one-loop �-fun
tion 
oeÆ
ientsasso
iated with the U(1) and SU(2) 
ouplings, respe
tively. The LLs as well as theangular-dependent subset of the NLLs in (87), i.e. all 
ontributions of the form L4̂rwith r̂ = ŝ; t̂; û, have been derived from Ref. [15℄. There, by means of a diagram-mati
 two-loop 
al
ulation in the spontaneously broken ele
troweak theory, it wasshown that su
h two-loop terms result from the exponentiation of the 
orrespond-ing one-loop 
orre
tions. The additional NLLs of the form L3̂s in (87) have beenobtained via a �xed-order expansion of the pro
ess-independent resummed expres-sion proposed in Ref. [16℄. This resummation [16℄ relies on the assumption thate�e
ts from spontaneous breaking of the SU(2)�U(1) symmetry 
an be negle
tedin the high-energy limit.Our NNLO predi
tions in
lude only the LL and NLL terms. Thus they area�e
ted by a potentially large theoreti
al un
ertainty, due to missing subleading
ontributions of order �2 lnk(ŝ=M2W ) with k = 2; 1; 0. For four-fermion s
attering itwas found that, at ŝ � 1TeV2, the two-loop logarithmi
 expansion has an os
illatingbehaviour 
hara
terized by large 
an
ellations between leading and subleading terms[3℄. In this 
ase the subleading terms play a very important role and the NLLapproximation yields misleading results. In 
ontrast, in the 
ase of Wj produ
tion,the relative weight of the LL, NLL and NNLL 
ontributions at one loop indi
atesa fairly good 
onvergen
e of the logarithmi
 expansion. Indeed, as 
an be seenfrom our numeri
al results in Se
t. 7, the one-loop 
orre
tions are 
learly dominatedby the negative LL 
ontributions, while the NLL terms are relatively small andthe NNLL 
ontributions almost negligible. A similar 
onvergen
e is expe
ted alsoat two-loops, owing to the exponentiation property of the logarithmi
 
orre
tions.Thus our NLL two-loop predi
tions 
an be regarded as a plausible estimate of thesize of the two-loop ele
troweak e�e
ts in high-pT W -boson produ
tion.22
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Figure 4: Tree-level diagrams for the pro
ess �qq0 ! Wg
.5 Real 
orre
tionsIn order to 
an
el IR singularities from the virtual-photon 
orre
tions, real emission
orre
tions need to be 
al
ulated. As dis
ussed in Se
t. 2.3, all relevant partoni
rea
tions are related to the �qq0 !W �g
 pro
ess through 
rossing and CP symmetry.The tree-level diagrams for this pro
ess are shown in Fig. 4.The squared matrix element for the 2 ! 3 pro
ess ab ! W �k
, summed overpolarization and 
olour as well as averaged over initial-state polarization, 
an bewritten in a general form [29℄XjMab!W�k
0 j2 = 4�� h�QqQq0H1;abr (ŝ; t̂; û; t̂0; û0)+ �QqH2;abr (ŝ; t̂; û; t̂0; û0)� �Qq0H3;abr (ŝ; t̂; û; t̂0; û0)i ; (88)with the kinemati
al invariants de�ned in Se
t. 2.2. In the limit of soft and/or
ollinear photon emission, the squared matrix element (88) exhibits IR singularities.To 
ombine these singularities with those originating from virtual 
orre
tions wehave to extra
t them in analyti
 form. This is done with the help of the dipolesubtra
tion formalism [17, 18, 19℄. Within this framework the partoni
 di�erential
ross se
tion 
an be s
hemati
ally written asd�̂ab!W�k
dpT = Nab Z d�3 hMab(�3)�Mabsub(�3)i+ d�̂abAdpT ; (89)with Nab given in (7). The quantity Mab readsMab(�3) =XjMab!W�k
0 j2FO;3(�3) : (90)The auxiliary fun
tionMabsub is 
hosen su
h that it has the same singular behaviour asMab in the soft and 
ollinear limits. This ensures that the di�eren
e Mab�Mabsub 
anbe integrated numeri
ally. To 
ompensate for the subtra
tion, the integral of theauxiliary fun
tion Mabsub, denoted here d�̂abA =dpT, is then added ba
k. The analyti
alform of d�̂abA =dpT is obtained after performing integration over the subspa
e of the23



radiated photon. The result of this one-parti
le subspa
e integration 
ontains sin-gular 
ontributions whi
h must be 
ombined with those in virtual 
orre
tions. Thealgorithms for 
onstru
ting the auxiliary subtra
tion fun
tion and its integrated
ounterpart have been developed both for the 
ase of photon radiation o� masslessor massive fermions [17℄ and QCD radiation o� massless [18℄ or massive partons [19℄.In Se
ts. 5.1 and 5.2 we dis
uss the appli
ation of both formalisms to 
al
ulate theO(�) real 
orre
tions to the Wj produ
tion pro
ess. In both approa
hes we useexpressions for the emission o� a massive fermion to des
ribe the emission o� a Wboson, sin
e only soft singularities are present in this 
ase and they depend only onthe 
harge of the external parti
le and not on its spin.After adding the real and virtual 
orre
tions, 
ollinear singularities remain.Final-state singularities are avoided by re
ombining 
ollinear photon-quark 
on-�gurations as dis
ussed in Se
t. 2.2. Initial-state singularities are absorbed in thede�nition of PDFs using the MS s
heme.5.1 Mass regularizationThe formalism of Ref. [17℄ employs small photon and fermion masses to regularizesoft and 
ollinear singularities. The subtra
tion term for the squared matrix elementis 
onstru
ted from the appropriate dipole fa
tors. Keeping the original notation ofRef. [17℄ we 
an write for the pro
ess ab!W �k
 (where a (b) 
an be �q; q0; g)Mabsub(�3) = �4�� X�=�( QaQb gsubab;� (pa; pb; p
) Ma0b00 �~�2;ab�� Qa� gsubaW;�(pa; pW ; p
) Ma0b00 �~�2;aW�� �Qa gsubWa;�(pW ; pa; p
) Ma0b00 �~�2;Wa�� QaQk gsubak;�(pa; pk; p
) Ma0b00 �~�2;ak�� QkQa gsubka;�(pk; pa; p
) Ma0b00 �~�2;ka�+ (a$b)!�����fa0=a; b0=bg+ Qk� gsubkW;�(pk; pW ; p
) Mab0 �~�2;kW�+ �Qk gsubWk;�(pW ; pk; p
) Mab0 �~�2;Wk�) ; (91)with Mab0 (~�2;nm) =XjMab!W�k0 (~�2;nm)j2FO;2(~�2;nm) : (92)Due to Qg = 0 the dipole terms with gluon indi
es do not 
ontribute to (91) andfor ea
h subpro
ess the subtra
tion term Mabsub is 
onstru
ted from six dipole terms,
hara
terised by the gsub fun
tions. Expressions for these fun
tions are taken dire
tlyfrom Ref. [17℄. In Appendix F (see Table 1) we list all the fun
tions whi
h are usedto 
al
ulate (91), together with the 
orresponding equation numbers in Ref. [17℄.24



For ea
h subpro
ess the six dipole terms fall into three groups, ea
h 
ontainingtwo dipole terms and 
oming with a spe
i�
 
harge 
ombination, either �QqQq0or �Qq, or ��Qq0 . The subtra
tion term Mabsub has then the same stru
ture as Mabin (88) and the IR-singular part of the virtual 
orre
tions (75). Thus the 
an
ellationof singularities 
an be analyzed for ea
h 
harge 
ombination separately.The 
onstru
tion of the redu
ed phase spa
e ~�2;nm follows the pres
riptionsof Ref. [17℄. Generally ~�2;nm is a mapping from the 3-parti
le phase spa
e intoa 2-parti
le phase spa
e. The mapping respe
ts all mass shell 
onditions. For di�er-ent types of dipoles, di�erent mappings are ne
essary. In Table 1 we list numbers ofequations in Ref. [17℄ whi
h we used to performmapping for the dipole terms appear-ing in our 
al
ulations. In parti
ular, the observable-de�ning fun
tion FO;2(~�2;nm)in (92) is then FO;2(~�2;nm) = Æ(pT � ~pT;W )�(~pT; j � pminT; j) ; (93)with ~pT;W and ~pT; j belonging to ~�2;nm.The expression for the subtra
tion term integrated over the phase spa
e of thephoton readsd�̂abAdpT = � �2�(2QaQb " GsubI;I (r̂ab) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;I (r̂ab; x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�Qa� " GsubI;FM(r̂aW ) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;FM(r̂aW (x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�Qb� " GsubI;FM(r̂bW ) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;FM(r̂bW (x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�QaQk " GsubI;F (r̂ak) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;F (r̂ak(x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#�QbQk " GsubI;F (r̂bk) d�̂ab!W�kfwddpT (ŝ; pT)+ Z 10 dx hGsubI;F (r̂bk(x); x)i+ d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#+Qk� " GsubF;FM(r̂kW ) d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#) : (94)25



The relevant invariants in (94) are de�ned as r̂ab = (pa+pb)2 = ŝ, r̂kW = (pk+pW )2 =ŝ, and r̂aW (x) = (xpa � pW )2;r̂ak(x) = (xpa � pk)2;r̂nl = r̂nl(1): (95)The terms proportional to d�̂ab!W�kfwd =dpT in (94) represent the 
ontributions orig-inating from the forward hemisphere in the 2-parti
le phase spa
e [see (10)-(11)℄.The (a$b) terms are the 
ontributions from the ba
kward hemisphere, andd�̂ab!W�kfwddpT �����a$b = d�̂ab!W�kbkwddpT : (96)Note that the �rst argument of d�̂ab!W�kfwd =dpT in (94) dire
tly indi
ates the x-dependen
e of the a
tual values of the t̂, û invariants de�ned in (5). The plus-distributions appearing in eq. (94) are evaluated a

ording to the pres
riptionZ 10 dx hGsub(r̂(x); x)i+ d�̂dpT (xŝ; pT) == Z 10 dx"Gsub(r̂(x); x) d�̂dpT (xŝ; pT) � (x� �̂)� Gsub(r̂(1); x) d�̂dpT (ŝ; pT) #; (97)where �̂ = �pT +qp2T +M2W�2.ŝ guarantees the minimal 
enter-of-mass energyto produ
e the �nal state. The expressions for the fun
tions Gsub and Gsub followdire
tly5 from the results in Ref. [17℄. For the fun
tions Gsub they readGsubI;I (r̂) = 12"Re �f IR1;MR�+ ln2  r̂M2W !� 3 ln r̂M2W !� 23�2 + 4#; (98)GsubI;FM(r̂) = Re �f IR2;MR� ���t̂$r̂ + 2 ln2  1� r̂M2W !� ln2  2� r̂M2W !+ ln 1� r̂M2W ! M4Wr̂2 � 3M2Wr̂ � 3!� 2Li2  M2W2M2W � r̂!+2Li2  r̂2M2W � r̂!� 2Li2  �r̂2M2W � r̂!+ M2Ŵr + �26 + 12 ; (99)GsubI;F (r̂) = Re �f IR1;MR� ���ŝ$r̂ + ln2  �r̂M2W !� 3 ln �r̂M2W !� �23 + 12 ; (100)GsubF;FM(r̂) = Re �f IR2;MR� ���t̂$r̂ + ln2  r̂M2W � 1!+ ln2  1� M2Ŵr !5The fun
tion GsubF;FM(r̂) has been derived from eq. (4.10) in Ref. [17℄ by taking the limit of anin�nitesimal quark mass. 26



+12 ln r̂M2W !� 72 ln r̂M2W � 1!� 32 ln pr̂ �MWpr̂ +MW !+4Li2  M2Ŵr !� 4Li20�sM2Ŵr 1A+ M2W2r̂ � 2�23 + 3: (101)The IR-singular fun
tions f IRi;MR 
an
el against those in the virtual 
orre
tions, 
f.Se
t. 3.4. The expli
it forms of the fun
tions Gsub areGsubI;I (r̂; x) = �(x) + 1 + x21� x (ln r̂�2QED!+ 2 ln (1� x))+ 1� x; (102)GsubI;FM(r̂; x) = �(x) + 1 + x21� x ( ln M2W � r̂x�2QED !+ ln �(1� x)(1� z1(r̂; x))�)+z1(r̂; x)� 12(1� x)  3 + z1(r̂; x)� 4M2Wx(r̂ �M2W )(1� x)!+ 1� x; (103)GsubI;F (r̂; x) = �(x) + 1 + x21� x (ln �r̂x�2QED!+ ln (1� x))� 32(1� x) + 1� x; (104)with z1(r̂; x) = M2WxM2W � (1� x)r̂ (105)and �(x) = 1 + x21� x (ln �2QEDm2 !� 2 ln (1� x)� 1) ; (106)where �QED is the fa
torization s
ale and m stands for the quark-mass regulator.The fun
tions �(x) are singular. These singularities are related to the 
ollinearphoton radiation o� an initial-state quark and are absorbed in the de�nition of thePDFs, yielding the hadroni
 
ross se
tion �nite. The pro
edure bears 
ompleteanalogy to absorbing 
ollinear QCD singularities into the de�nition of the PDFs. Inthe MS fa
torization s
heme, the rede�nition is a
hieved by repla
ing [5℄fh;q(x; �2QCD)! fh;q(x; �2QCD; �2QED)� �2�Q2q Z 1x dzz fh;q(xz ; �2QCD; �2QED) [�(z)℄+ :(107)5.2 Dimensional regularizationIn an independent 
al
ulation we used the results of Refs. [18, 19℄ to evaluate thedipole subtra
tion terms and their integrated 
ounterparts. The formalism of [18, 19℄is 
on
erned with QCD radiation and expressions for dipoles are given as matri
es in
olour and heli
ity spa
e. Sin
e we 
onsider photon emission o� a fermion line, the27




olour and heli
ity stru
ture disappears and the dipole matri
es redu
e to simpleexpressions. More pre
isely, to adapt the formalism Refs. [18, 19℄ for the 
al
ulationof QED 
orre
tions, we make use of expressions des
ribing gluon radiation o� afermion line in Refs. [18, 19℄ and repla
e�S ! �; Ti ! �iQi; CF ! Q2i ; TR ! 1; CA ! 0 ; (108)where Ti indi
ates the 
olour of the emitting parton, Qi is the ele
tri
 
harge in unitsof the positron 
harge for this parton, and �i = +1 (�1) for in
oming (outgoing)partons. Adopting notation analogous to Refs. [18, 19℄, the subtra
tion term for thepro
ess ab! W �k
 
an be then writtenMabsub(�3) = hDa
;bQED +Da
W; QED +Da
W; QED +Da
k; QED +Da
k; QED + (a$b)i+D
k;W; QED +D
W;k; QED ; (109)where DIF; QED = FO;2(~�2;nm)DIF (pW ; pk; p
; pa; pb)���repla
ements of eq: (108): (110)It is understood in eq. (109) that dipole subtra
tion terms with a gluon index donot 
ontribute to Mabsub. In a 
omplete analogy to eq. (91), for any initial state abthe expression for Mabsub is 
onstru
ted from six dipole subtra
tion terms DIF; QED,ea
h asso
iated with one of the three possible 
harge 
ombinations �QqQq0, �Qq or��Qq0 . The dipole subtra
tion fun
tionsDIF are taken dire
tly fromRefs. [18, 19℄. Alist of the fun
tionsDIF used to 
al
ulate the subtra
tion termMabsub in (109), togetherwith the 
orresponding equation numbers in Refs. [18, 19℄, is presented in Table 2,Appendix F. Additionally, for ea
h dipole subtra
tion term appearing in (109) wein
lude a des
ription of its type. The mappings from �3 to ~�2;nm agree between theformalism of Refs. [18, 19℄ and [17℄. However, for the sake of 
ompleteness, Table 2
ontains numbers of equations whi
h provide mapping formulae in Refs. [18, 19℄.The fun
tion FO;2 in (110) is given by expression (93).Moreover, apart from the �nal-state emitter, �nal-state spe
tator 
ase, i.e. thedipoles D
k;W; QED and D
W;k; QED, there is a dire
t 
orresponden
e between thedipole subtra
tion terms in the two formalisms of the formDa
;bQED "!0! �QaQb 4�� X�=� gsubab;� (pa; pb; p
)Mab0 (~�2;ab);Da
W; QED "!0! Qa� 4�� X�=� gsubaW;�(pa; pW ; p
)Mab0 (~�2;aW );Da
W; QED "!0! Qa� 4�� X�=� gsubWa;�(pW ; pa; p
)Mab0 (~�2;Wa);Da
k; QED "!0! QaQk 4�� X�=� gsubak;�(pa; pk; p
)Mab0 (~�2;ak);Da
k; QED "!0! QaQk 4�� X�=� gsubka;�(pk; pa; p
)Mab0 (~�2;ka): (111)28



The subtra
tion term integrated over the photon phase spa
e is 
onstru
teda

ording tod�̂abAdpT = �2�"Iab(ŝ; pT) + Z 10 dx �Kab(x; ŝ; pT) + Pab(x; ŝ; pT)�#; (112)where the expressions for I;K and P fun
tions follow from results for the integrateddipole fun
tions in Refs. [18, 19℄ after performing repla
ements of eq. (108). For thephotoni
 
orre
tions to any of the subpro
esses ab! W �k we 
an writeIab(ŝ; pT) = QaQb "~I(ŝab)d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�Qa� "I 0(ŝaW )d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�Qb� "I 0(ŝbW )d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�QaQk "~I(ŝak)d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#�QbQk "~I(ŝbk)d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)#+Qk� "I 0(ŝkW )d�̂ab!W�kfwddpT (ŝ; pT) + (a$b)# ; (113)where ŝnm = 2pnpm, and we make use of Qg = 0. As in (94), the terms proportionalto d�̂ab!W�kfwd =dpT originate from the forward hemisphere and the (a$b) terms fromthe ba
kward hemisphere. The integrated dipole fun
tions in (113) read~I(ŝnm) = � 4��2M2W !" �(1 + ") Re �f IR1;DR� ����ŝ=ŝnm � ln2  ŝnmM2W !+ 3 ln ŝnmM2W !+4�23 � 6 ;I 0(ŝnm) = � 4��2M2W !" �(1 + ") Re �f IR2;DR� ����t̂=M2W+�n�m ŝnm � ln2  ŝnmM2W !� ln ŝnmM2W ! ln ŝnmM2W + ŝnm!� 3!� ln ŝnmM2W + ŝnm!+ ln M2WM2W + ŝnm! ln ŝnmM2W + ŝnm!+ 3 ln0�1�vuut M2WM2W + ŝnm1A+ M2Wŝnm ln M2WM2W + ŝnm!+ 2Li2  ŝnmM2W + ŝnm!+ 3MWqŝnm +M2W +MW+ �2 � 6 : (114)29



The stru
ture of the singular terms f IRi;DR in (114) is kept the same as in (75) tomanifestly show 
an
ellation of singularities between virtual and real 
orre
tions.For the x-dependent fun
tions we haveKab(x; ŝ; pT) = (Q2a +Q2b) " �K(x)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#+ 2QaQb " ~K(x)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qa� "K0(x; ŝaW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qb� "K0(x; ŝbW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� (QaQk +QbQk) "K00(x)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)# ;Pab(x; ŝ; pT) = 2QaQb "P(x; ŝab)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qa� "P(x; ŝaW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� Qb� "P(x; ŝbW )d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� QaQk "P(x; ŝak)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)#� QbQk "P(x; ŝbk)d�̂ab!W�kfwddpT (xŝ; pT) + (a$b)# ; (115)with �K(x) = Preg(x) ln�1� xx �+ (1� x) + � 21� x ln�1� xx ��+�Æ(1� x)(5� �2) ;~K(x) = �Preg(x) ln(1� x)� "2 ln(1� x)1� x !+ � �23 Æ(1� x)# ;K0(x; ŝnm) = �2 ln(1� x)1� x !+ + 2ln(2� x)1� x� 1� x2 (1� x+M2W=ŝnm)2 � 21� x "1 + ln 1� x + M2Wŝnm !#!+�� 21� x�+ "ln 2� x + M2Wŝnm !+ ln (2� x)ŝnm(2� x)ŝnm +M2W !#�Preg(x) ln (1� x)ŝnm(1� x)ŝnm +M2W !30



�Æ(1� x) 24�32 + M2Wŝnm ln M2Wŝnm +M2W !+ 3MWqŝnm +M2W +MW+ 32 ln0� ŝnm � 2MWqŝnm +M2W + 2M2Wŝnm 1A+ 12 M2Wŝnm +M2W 35 ;K00(x) = 32 "� 11� x�+ + Æ(1� x)# ;P(x; ŝnm) =  1 + x21� x !+ ln �2QEDxŝnm ! ; (116)and Preg(x) =  1 + x21� x !+ �  21� x!+ � 32Æ(1� x) : (117)Note that in 
ontrast to eq. (113), the quantity ŝnm in (115) 
an be impli
itlydependent on the fra
tion x. More pre
isely, it is the 
ase if ŝnm involves themomentum of a �nal-state parti
le. The �nal-state momentum belongs then to thephase spa
e for whi
h the squared 
enter-of-mass energy is xŝ = 2xpapb [19℄.The evaluation of the terms involving the plus-distribution is 
arried out asindi
ated in Ref. [19℄, i.e. a

ording toZ 10 dx [R(x; ŝnm(x))℄+ d�̂dpT (xŝ; pT) == Z 10 dx"R(x; ŝnm(x)) d�̂dpT (xŝ; pT) �(x� �̂ )�R(x; ŝnm(1)) d�̂dpT (ŝ; pT) #;(118)with �̂ = �pT +qp2T +M2W�2.ŝ.In the formalism of Refs. [18, 19℄ the 
ollinear 
ounterterms asso
iated with PDFrenormalization are in
luded in the expressions for integrated dipole fun
tions, i.e.the �nal results whi
h we use are free from 
ollinear singularities. The expressionspresented here are 
al
ulated using the MS fa
torization s
heme.As 
an be seen from the presented formulae, the expli
it expressions for theintegrated dipole fun
tions in the two formalisms are di�erent. In parti
ular, theexpressions for the end-point 
ontributions have di�erent forms due to spe
i�
 
on-ventions wrt. 
al
ulating the plus-distribution terms in the two formalisms. Howeverwe have 
he
ked that, after subtra
tion of the IR singularities, for ea
h 
harge 
om-bination apart from �Qk the integrated dipole 
ontributions to d�abA =dpT in the twoformalisms are equivalent.
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6 Che
ksEvery part of the presented 
al
ulation has been performed in two 
ompletely in-dependent ways. The algebrai
 redu
tions were done using two di�erent Mathe-mati
a [30℄ 
odes. For the numeri
al evaluation we have implemented the resultsin two independent Fortran programs. Comparing the results at numeri
al levelwe �nd agreement within the statisti
al errors.Furthermore, in order to 
ontrol the 
orre
tness of our results we performedvarious 
onsisten
y 
he
ks. On the side of virtual 
orre
tions we have veri�ed thatthe one-loop 
orre
tions (48) satisfy the Ward Identity"��(pW ) pg� �v(p�q) hÆA��1;I(M2V )!�i u(pq) = 0 for I=A,N,X,Y: (119)A similar Ward identity holds for the lowest-order amplitude6. The 
an
ellation ofthe ultraviolet divergen
ies has been veri�ed analyti
ally and numeri
ally. For thenumeri
al evaluation of the loop integrals we use a set of routines by A. Dennerand, alternatively, the FF library [31℄. The NLL approximation that was derivedfrom the full one-loop 
al
ulation, has been 
he
ked against results from the generalderivation of NLL terms [14℄. Also the IR-singular 
ontributions in the high-energylimit have been reprodu
ed within this framework.The squared matrix element for the real 
orre
tions was 
he
ked numeri
allyagainstMadGraph [32℄. The 
an
ellation of IR singularities between real and vir-tual 
orre
tions was done analyti
ally using the dipole formalism. The subtra
tionterms were derived and implemented in two di�erent ways, using the mass regu-larization of IR singularities and the dimensional regularization. The phase-spa
eintegration for the real 
orre
tions was performed with adaptive Monte-Carlo inte-gration using VEGAS [33℄. Detailed 
omparisons at analyti
al and numeri
al levelwere performed, and the agreement between the predi
tions generated within twodi�erent regularization s
hemes provided a strong 
he
k on the 
al
ulation of thereal 
orre
tions.7 Numeri
al resultsIn this se
tion we present numeri
al predi
tions for the large-pT produ
tion of Wbosons at the hadron 
olliders LHC and Tevatron. The following input parame-6We note that the abelian one-loop 
ontribution satis�es two additional Ward identitiespW� "��(pg) �v(p�q) hÆA��1;A(M2V )!�iu(pq) = 0; pW� pg� �v(p�q) hÆA��1;A(M2V )!�iu(pq) = 0:Similar identities for the N-, X- and Y- form fa
tors exist but are less trivial due to the non-vanishing 
ontributions from would-be Goldstone bosons on the right-hand side. This means thatthe 
al
ulation of the unpolarized 
ross se
tion requires the use of the exa
t expression for the W -boson polarization sum. Instead, owing to (119), the gluon polarization sum 
an be implementedas �g��0 . 32



ters are used: G� = 1:16637 � 10�5GeV�2, MW = 80:39GeV, MZ = 91:19GeV,mt = 171:4GeV, MH = 120GeV. For the numeri
al values of elements in the CKMquark mixing matrix we refer to [34℄.The hadroni
 
ross se
tions are obtained using LO MRST2001 PDFs [35℄. We
hoose �2QCD = p2T as the fa
torization s
ale and, similarly, as the s
ale at whi
hthe strong 
oupling 
onstant is evaluated7. We also adopt, in agreement with thevalue used in the PDF analysis, the value �S(M2Z) = 0:13 and use the one-looprunning expression for �S(�2QCD). In our 
al
ulations of the real 
orre
tions we
hoose the MS fa
torization s
heme with the s
ale �2QED = M2W . We note that inorder to 
onsistently in
lude O(�) 
orre
tions in a 
al
ulation of a hadroni
 
rossse
tion, PDFs that are used in the 
al
ulation need to take into a

ount QEDe�e
ts. Su
h PDF analysis has been performed in [36℄ and the O(�) e�e
ts areknown to be small for �QED <� 100GeV, both 
on
erning the 
hange in the quarkdistribution fun
tions (below O(1%) [37℄) and the size of the photon distributionfun
tion. Moreover, the 
urrently available PDFs in
orporating O(�) 
orre
tions,MRST2004QED [36℄, in
lude QCD e�e
ts at the NLO in �S. Sin
e our 
al
ulationsare of the lowest order in QCD, and QED e�e
ts on PDFs are estimated to be smallfor �QED <� 100GeV, we prefer to use a LO QCD PDF set without QED 
orre
tionsin
orporated, rather than MRST2004QED, and we set �QED = MW 8. Moreover wedo not in
lude photon-indu
ed 
ontributions, whi
h are parametri
ally suppressedby a fa
tor �=�S. However, in the 
on
urrent to this paper (and subsequent toRef. [21℄), work of Ref. [22℄, it has been reported that photon-indu
ed 
ontributionsare of numeri
al signi�
an
e for large pT W -boson produ
tion at the LHC. Estimatesof the exa
t size of these e�e
ts are obs
ured by large theoreti
al un
ertainty on thephoton's PDF, as demonstrated in Ref. [22℄.We 
hoose the following values of the pT-
uts: pminT; j = 100GeV for LHC andpminT; j = 50GeV for Tevatron. The value of the separation parameter below whi
hthe re
ombination pro
edure is applied is taken to be Rsep = 0:4. The dependen
e ofour predi
tions on Rsep is negligible. We have veri�ed that the shift of the transverse-7Note that when 
al
ulating the 
ontribution to the hadroni
 
ross se
tion 
oming from thesubtra
tion term in the real 
orre
tions, we take the transverse momentum of the W boson in theredu
ed phase spa
e, ~pT;W , as the fa
torization s
ale and the argument of �S.8 The use of di�erent fa
torization s
ales, �QCD = pT and �QED =MW , is due to the fa
t that�QCD and �QED play a di�erent role in our 
al
ulation. The dependen
e on �QCD is due to the LOevolution of the PDFs and represents an e�e
t of O(�S ln(�QCD=�0)), where �0 is the s
ale at whi
hthe PDF evolution starts. This dependen
e would be 
ompensated by NLO QCD 
ontributions ofO(�S ln(pT=�QCD)) and, although QCD 
orre
tions are not in
luded in our 
al
ulation, 
hoosing�QCD = pT we 
an absorb large NLO QCD logarithms of the s
ale pT in the LO PDF evolution. In
ontrast, the �QED dependen
e of our predi
tions is due to O(� ln(pT=�QED)) terms in the photonbremsstrahlung 
orre
tions. This dependen
e is not 
ompensated by the PDF evolution sin
e weuse a PDF set that does not in
lude QED e�e
ts, assuming that these e�e
ts are negligible. Thisapproa
h makes sense only if the s
ale �QED is 
hosen in su
h a way that the (potential) impa
tof QED e�e
ts on the PDFs is very small. In Ref. [37℄ it was shown that the QED 
orre
tions tothe PDFs grow with �QED but do not ex
eed one per
ent for �QED <� 100GeV. This motivatesour 
hoi
e �QED =MW for the QED fa
torization s
ale.33



momentum distribution indu
ed by variations of this parameter in the range 0:1 �Rsep � 1:0 does not ex
eed a few permille.Our lowest-order (LO) predi
tions result from (32). The next-to-leading orderpredi
tions (NLO) in
lude the LO+virtual 
ontributions (73) and the real brems-strahlung (89). We also study the relative importan
e of the IR-�nite parts of thevirtual (NLOvirt) and real (NLOreal) 
ontributions. These IR-�nite parts are 
on-stru
ted by subtra
ting the IR divergen
e (75) from the virtual 
orre
tions andadding it to the real ones. The next-to-leading-logarithmi
 (NLL) and next-to-next-leading-logarithmi
 (NNLL) predi
tions9 are obtained adding to the LO theapproximations (86) and (77) for the NLOvirt part and negle
ting the NLOreal partof the 
orre
tions. As we will demonstrate, for the 
ase of fully in
lusive photonradiation negle
ting this pie
e provides a good approximation of the 
omplete 
al
u-lation. The next-to-next-to-leading order predi
tions (NNLO) in
lude the full NLOresults plus the two-loop NLL 
orre
tions (87).The LO transverse-momentum distributions for pp ! W+j and pp ! W�j atthe LHC are shown in Fig. 5a. In Fig. 5b and Fig. 5
 we plot the relative size of theNLO, one-loop NLL, one-loop NNLL and NNLO 
orre
tions wrt. the LO predi
tionsfor W+ and W� produ
tion, respe
tively. The behaviour of the relative 
orre
tionsto W+ and W� produ
tion is very similar. As expe
ted, the importan
e of theNLO 
ontribution in
reases signi�
antly with pT and leads to a negative 
orre
tionranging from �15% at pT = 500GeV to �43% at pT = 2TeV. We also observe thatthe one-loop NLL and NNLL approximations are in good agreement (at the 1-2%level) with the full NLO result for pT � 100GeV. The di�eren
e between NLO andNNLO 
urves is signi�
ant. The two-loop terms are positive and amount to +3%at pT = 1TeV and +9% at pT = 2TeV. This shifts the relative 
orre
tions for W+produ
tion up to �25% at pT = 1TeV and �34% at pT = 2TeV.The IR-�nite parts of the virtual (NLOvirt) and real (NLOreal) 
orre
tions toW+ produ
tion at the LHC are shown separately in Fig. 6a. Fig. 6b shows therelative size of the NLOvirt and NLOreal 
orre
tions wrt. the LO predi
tions. TheNLOvirt 
ontribution dominates the full NLO 
orre
tion and amounts up to �42%at pT = 2TeV. The NLOreal part 
ontributes with a smaller and nearly 
onstant
orre
tion of about �1% in the entire pT-range. This means that, for the 
ase offully in
lusive photon radiation, the NLOvirt part represents a good approximationof the full NLO 
orre
tion.The high-energy behaviour of the NLOvirt part is des
ribed by the 
ompa
t NLLand NNLL approximations presented in Se
t. 4. The quality of these approximationsis shown in Fig. 7. We observe that the NLL approximation works well di�ering fromthe exa
t NLOvirt result by less than 1% for pT � 200GeV. The quality of the NNLLapproximation is of the order of one permille or better in the entire pT-range.For less in
lusive observables where a veto on hard photons is imposed, theNLOreal 
ontribution 
an be
ome important. Fig. 8 shows the relative NLOreal 
or-9For details 
on
erning the treatment of angular-dependent logarithms at the NLL level werefer to Ref. [8℄. 34
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) Relative NLO (dotted), NLL (thin solid), NNLL(squares) and NNLO (thi
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orre
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re
tions for W+ produ
tion. We 
ompare the fully in
lusive photon radiation withthe 
ase where visible photons with pT;
 > 10GeV and R(
; j) > 0:4 are reje
ted.This veto leads to a signi�
ant enhan
ement of the (absolute size of the) NLOrealpart, whi
h 
an ex
eed �5% for pT � 1TeV.To underline the relevan
e of the large ele
troweak 
orre
tions for W produ
-tion at the LHC, in Fig. 9a and Fig. 9b we present the relative NLO and NNLO
orre
tions to the W+ and W� 
ross se
tions integrated over pT starting frompT = p
utT , as a fun
tion of p
utT . This is 
ompared with the statisti
al error, de-�ned as ��stat=� = 1=pN with N = L�BR��LO. The bran
hing ratio BR = 2=9a

ounts for the full eÆ
ien
y of W -dete
tion in the e ��e and � ��� modes (for thisestimate we ignore experimental eÆ
ien
ies and 
uts) and we assume a total inte-grated luminosity L = 300fb�1 for the LHC [38℄. It is 
lear that the size of the NLO
orre
tions is mu
h bigger than the statisti
al error. Indeed, already for L = 3fb�1and pT <� 800GeV they 
orrespond to a two standard deviation e�e
t. Also thedi�eren
e between the NNLO and NLO 
orre
tions, due to two-loop logarithmi
e�e
ts, is signi�
ant. In terms of the estimated statisti
al error, these two-loop
ontributions amount to 1{3 standard deviations for pT of O(1TeV).Ratios of pT-distributions for W+, W�, Z bosons [9℄ and photons [10℄, in 
on-trast to the distributions themselves are expe
ted to be relatively insensitive to QCD
orre
tions and theoreti
al un
ertainties asso
iated with �S and PDFs. These ra-tios lead to important experimental tests of W and Z 
ouplings in the high-energyregion. For W+ and W� the ratio is presented in Fig. 10a. The LO value in
reasesfrom 1.5 at pT = 100GeV to 3.4 at pT = 2TeV. As already observed, the (rela-tive) ele
troweak 
orre
tions to the W+- and W�-boson pT-distributions are almostidenti
al. In 
onsequen
e, the LO, NLO and NNLO 
urves in Fig. 10a overlap. In
ontrast, the impa
t of the ele
troweak 
orre
tions on the W+=
 ratio (Fig. 10b) atthe LHC is 
learly visible. The LO predi
tion, ranging from 1.4 to 2.5, re
eives anegative NLO 
orre
tion that grows with pT and amounts to �0:5 for pT = 1TeV.At pT = 2TeV the di�eren
e between the NNLO and NLO 
urves is about 0:2.The ratios of pT-distributions for W+=Z and W�=Z are shown in Fig. 11a andFig. 11b, respe
tively. For the W+=Z ratio the LO predi
tion ranges from 1.5 to 2.For pT � 1TeV it is redu
ed by 0.09 to 0.18 by the NLO ele
troweak 
orre
tions.The logarithmi
 two-loop 
orre
tions are small. A qualitatively similar behaviour isobserved for the W�=Z ratio.The results of a similar analysis forW+ produ
tion at the Tevatron (ps = 2TeV)are shown in Figs. 12{15 (the pT-distributions for W+ and W� produ
tion are ob-viously identi
al). The LO pT-distribution is shown in Fig. 12a, the relative NLO,NLL, NNLL and NNLO 
orre
tions in Fig. 12b. The NLO 
orre
tions grow withpT and rea
h �11% at pT = 400GeV. The one-loop NNLL and NLL approxima-tions des
ribe the exa
t NLO results with 1% and 3% pre
ision, respe
tively. Thedominant two-loop e�e
ts have little impa
t on the size of the 
orre
tions.The quality of the high-energy approximations wrt. the IR-�nite part of thevirtual 
orre
tions (NLOvirt) is shown in Fig. 13. In the pT-range under 
onsidera-38
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tion both approximations are less pre
ise than at the LHC, nevertheless the NNLLapproximation in suÆ
ient for all pra
ti
al purposes.In Fig. 14 the relative NLO and NNLO 
orre
tions to the integrated 
ross se
tionfor pT � p
utT are 
ompared with the expe
ted statisti
al error for an integratedluminosity L = 7fb�1 [39℄. The size of the NLO ele
troweak 
orre
tions is abovethe statisti
al error for a signi�
ant range of pT-values. Therefore they should bein
luded in the analysis when 
onsidering pre
ision measurements. In 
ontrast, theimpa
t of the dominant two-loop 
orre
tions is negligible.The e�e
t of the ele
troweak 
orre
tions on the ratios of pT-distributions forW=Z and for W=
 is shown in Fig. 15a and Fig. 15b, respe
tively.8 SummaryIn this work the ele
troweak 
orre
tions to large transverse momentum produ
tionof W bosons at the hadron 
olliders Tevatron and LHC were evaluated. The 
on-tributions from real and virtual photons 
annot be separated in a gauge-invariantmanner from purely weak 
orre
tions and were thus in
luded in our analysis. Softand 
ollinear singularities were regulated by introdu
ing a small quark mass anda small photon mass and, alternatively, by using dimensional regularization. Thereal photon radiation was evaluated using the dipole subtra
tion formalism. Theagreement between the results derived in the two regularization s
hemes has been animportant 
ross 
he
k of the 
al
ulation. Numerous additional tests were performedto ensure the 
orre
tness of the result.At the Tevatron, pT-values up to around 300GeV 
an be rea
hed with reasonableevent rates. In this region the O(�) ele
troweak 
orre
tions rea
h up to �10% andare thus of relevan
e for pre
ision measurements. Two-loop ele
troweak 
orre
tionsare negligible at the Tevatron. With pT below 400GeV the relative rates for W , Zand 
 produ
tion are hardly a�e
ted by ele
troweak 
orre
tions.In 
ontrast, for transverse momenta in the TeV region a

essible at the LHC,ele
troweak 
orre
tions play an important role. The O(�) 
orre
tions lead to aredu
tion of the 
ross se
tion by about �15% at transverse momenta of 500GeVand rea
h more than �40% at 2TeV. The logarithmi
ally dominant terms wereextra
ted from the exa
t expression of the virtual 
orre
tions and agreement wasfound with the predi
tions based on the pro
ess-independent analysis of ele
troweakSudakov logarithms. If no 
uts on real photons are applied, the 
ontribution of thereal photon emission is numeri
ally small (about 1%) and almost independent of pT.Numeri
ally the NLL and NNLL approximations give a good des
ription of the fullO(�) result with an a

ura
y of about 1{2%. Considering the large event rate atthe LHC, leading to a fairly good statisti
al pre
ision even at transverse momentaup to 2TeV, we evaluated also the dominant (NLL) two-loop terms. In the high-pTregion, these two-loop logarithmi
 e�e
ts in
rease the 
ross se
tion by 5{10% andthus be
ome of importan
e in pre
ision studies. We also studied the relative rates42



for W+, W�, Z and 
 produ
tion, whi
h are expe
ted to be stable with respe
t toQCD e�e
ts. The ele
troweak 
orre
tions 
an
el almost 
ompletely in the W+=W�ratio. In 
ontrast, their impa
t on the W+=Z and the W+=
 ratios is signi�
antand leads to a shift of O(10%) for pT � 1TeV.A
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A Re
ombination and ex
lusive Wj 
ross se
tionAs dis
ussed in Se
t. 2.2, the re
ombination pres
ription that we use to regularizephoton-quark �nal-state 
ollinear singularities implies a di�erent treatment of �nal-state quarks and gluons. While for �nal-state gluons we apply a 
ut on pT; g withinthe entire phase spa
e, for �nal-state quarks the re
ombination e�e
tively removesthe 
ut on pT; q inside the 
ollinear 
one R(q; 
) < Rsep. As a 
onsequen
e there
ombined gq0 ! W �q
 
ross se
tion (18) has a logarithmi
 dependen
e on the
ut-o� parameter Rsep. In order to quantify this Rsep-dependen
e, let us 
onsiderthe 
ontribution of real photon radiation inside the re
ombination 
one. To thisend, assuming that the 
one is suÆ
iently small (Rsep � 1), we adopt a 
ollinearapproximation ZR(q;
)<Rsep d�̂gq0!W�q
 = �̂gq0!W�q Z 10 dzFq
(z); (120)where10 z = pT;
=(pT;q + pT;
) = 1 � pT;q=pT;W is the photon momentum fra
tionand [18℄ Fq
(z) = �Q2q2� Pq
(z; ") (4��2)"�(1� ") Z k2?;max0 dk2?(k2?)1+"= ��Q2q2� Pq
(z) (4�)""�(1� ") + �Fq
(z; �2) (121)with �Fq
(z; �2) = ��Q2q2� "Pq
(z) ln �2k2?;max!� z# : (122)Here Pq
(z; ") = Pq
(z) � "z with Pq
(z) = [1 + (1 � z)2℄=z is the q ! 
 splittingfun
tion in 4�2" dimensions, k? is the photon tranverse momentum wrt. the photon-quark system, and k?;max = z(1�z)RseppT;W . The 1=" 
ollinear singularity resultingfrom in
lusive photon radiation, i.e. integrating over the 
omplete energy spe
trum0 � z � 1, 
an
els against the virtual 
orre
tions.The Rsep-dependen
e of the re
ombined 
ross se
tion (18) is due to the fa
t that,inside the re
ombination 
one quarks with pT;q < pminT; j (or equivalently photons withz > 1�pminT; j=pT;W ) are not reje
ted. Thus the variation of �̂re
: indu
ed by a res
alingRsep ! �sepRsep amounts to��̂gq0!W�q
re
:�̂gq0!W�q = �Q2q2� ln �2sep Z 1zmin dzPq
(z) with zmin = 1� pminT; j=pT;W : (123)For relatively small transverse momenta (pT;W ' 2pminT; j) a res
aling ofRsep by a fa
tor�sep = 10 shifts the gq0 !W �q(
) 
ross se
tion by less than 2 (0.5) permille for up-10Here we assume lowest-order kinemati
s, i.e. pT;q + pT;
 = pT;W in the 
ollinear region.47



(down-) type quarks. Moreover it is obvious that at high pT;W , where zmin ! 1, thise�e
t tends to disappear.Let us now 
ompare the re
ombination pro
edure with a realisti
 de�nition ofex
lusive pp! Wj produ
tion, where �nal-state quarks (a = q) and gluons (a = g)are subje
t to the same 
ut pT;a > pminT; j within the entire phase spa
e (in
luding
ollinear quark-photon 
on�gurations). Sin
e the re
ombination pro
edure doesnot a�e
t �nal-state gluons, only 
hannels involving �nal-state quarks need to be
onsidered. The di�eren
e between the re
ombined gq0 ! W �q
 
ross se
tion (18)and the ex
lusive 
ross se
tion (19) 
orresponds to the 
ontribution of hard 
ollinearphotons with R(q; 
) < Rsep and zmin � z � 1. This 
ollinear hard-photon radiation
an be des
ribed by means of quark fragmentation fun
tions [43, 44, 45, 46, 47, 48℄as ��̂ex
l: = �̂gq0!W�q
re
: � �̂gq0!W�q
ex
l: = �̂gq0!W�q Z 1zmin dzDq
(z): (124)Here the e�e
tive quark fragmentation fun
tion Dq
(z) = Fq
(z) +Dq
(z) 
onsistsof the perturbative 
ontribution Fq
 and the bare fragmentation fun
tion Dq
. The
ollinear singularity resulting from the perturbative 
ontribution is fa
torized intothe bare fragmentation fun
tion at the s
ale �, su
h that in the MS s
heme [43℄Dq
(z) = �Fq
(z; �2) + �Dq
(z; �2); (125)and the renormalized fragmentation fun
tion �Dq
 
an be extra
ted from experimen-tal measurements. Using the parametrization [44, 48℄�Dq
(z; �20) = �Q2q2� h�Pq
(z) ln(1� z)2 � 13:26i ; (126)obtained by the ALEPH 
ollaboration at �0 = 0:14GeV, we arrive atDq
(z) = �Q2q2� 24Pq
(z) ln zRseppT;W�0 !2 + z � 13:2635 : (127)With this expression we derive a 
onservative upper bound for ��̂ex
l:. To thisend we 
onsider Qq = 2=3, Rsep ' 1, and a wide range of transverse momenta,2pminT; j � pT;W � 2TeV. With these parameters we obtain��̂ex
l:�̂ <� 2� 10�3: (128)We 
on
lude that, for Rsep <� O(1), the re
ombined 
ross se
tion has a negligi-ble dependen
e on the re
ombination parameter Rsep and provides a fairly pre
isedes
ription of ex
lusive pp!Wj produ
tion at high transverse momentum.48



B Standard matrix elementsThe algebrai
 expressions involving external momenta, Dira
 matri
es, spinors andgauge-boson polarization ve
tors have been redu
ed to a set of 10 standard matrixelements Si = �v(p�q)S��i !Lu(pq0) "��(pW )"��(pg); (129)with S��1 = 
�(p=W � p=�q)
�;S��2 = (p=W � p=g)g��;S��3 = 
�p�W ;S��4 = �
�p�g ;S��5 = 
�p�q0;S��6 = �
�p��q ;S��7 = (p=W � p=g)p�gp�W ;S��8 = (p=W � p=g)p��q p�q0;S��9 = (p=W � p=g)p�gp�q0;S��10 = (p=W � p=g)p��q p�W : (130)These algebrai
 expressions 
orrespond to the massless subset of the standard matrixelements of Ref. [25℄.C S
alar loop integralsIn this appendix we list the s
alar loop integrals Jj(M2V ) that 
ontribute to (48).The symbols Jj are 
hosen in analogy with Ref. [9℄. For 
onvenien
e, to denote
onstant terms we de�ne J0(M2V ) = 1: (131)For the s
alar integrals A0; B0; C0 and D0 we adopt the notation of FeynCal
 [40℄.However, we 
hoose their normalization a

ording to Ref. [25℄, i.e. we in
lude thefa
tor (2��)4�D whi
h is omitted in the 
onventions of FeynCal
.The UV-divergent one- and two-point fun
tions are denoted asJ1a(M2V ) = B0(m2;M2V ; m2);J1b(M2V ) = B0(m2;M2W ; m2) = J1a(M2W );J2(M2V ) = B0(p2W ;m2; m2);J3(M2V ) = B0(p2W ;M2W ;M2V );J4(M2V ) = B0(ŝ;m2; m2);J5a(M2V ) = B0(û;M2V ; m2);49



J5b(M2V ) = B0(û;M2W ; m2) = J5a(M2W );J6a(M2V ) = B0(t̂;M2V ; m2);J6b(M2V ) = B0(t̂;M2W ; m2) = J6a(M2W ): (132)The remaining loop integrals are free from UV singularities. The following three-point fun
tions are �nite if MV and the W -boson transverse momentum are non-vanishing: J7(M2V ) = C0(ŝ; m2; m2;m2; m2;M2V );J8(M2V ) = C0(û; p2W ; m2;M2V ; m2; m2);J9a(M2V ) = C0(û; p2W ; m2;m2;M2W ;M2V );J9b(M2V ) = C0(û; p2W ; m2;m2;M2V ;M2W ) = J9a(M2V )���M2V$M2W ;J10(M2V ) = C0(t̂; p2W ; m2;M2V ; m2; m2) = J8(M2V )���t̂$û ;J11a(M2V ) = C0(t̂; p2W ; m2;m2;M2W ;M2V ) = J9a(M2V )���t̂$û ;J11b(M2V ) = C0(t̂; p2W ; m2;m2;M2V ;M2W ) = J9b(M2V )���t̂$û ; (133)In addition, the box diagrams b1{b3 in Fig. 2, provide the following 
ombinationsof three- and four-point fun
tionsJ12(M2V ) = D0(m2; 0; p2W ; m2; û; ŝ;M2V ; m2; m2; m2)� 1ŝû+ (t̂+ û)M2V� �(û� p2W )C0(û; p2W ; m2;M2V ; m2; m2) + ûC0(û; 0; m2;M2V ; m2; m2)+ (ŝ� p2W )C0(ŝ; p2W ; 0;m2; m2; m2)�;J13(M2V ) = J12(M2V )���t̂$û ;J14a(M2V ) = D0(p2W ; m2; 0; m2; t̂; û;M2V ;M2W ; m2; m2)� t̂C0(t̂; 0; m2;M2V ; m2; m2) + ûC0(û; 0; m2;M2W ; m2; m2)t̂û� t̂M2W � ûM2V ;J14b(M2V ) = J14a(M2V )���M2W$M2V = J14a(M2V )���t̂$û : (134)For non-vanishing MV and W -boson transverse momentum, the fun
tions J12{J14bare �nite. The fa
t that the s
alar four-point fun
tions in (134) appear alwaysin 
ombination with three-point fun
tions is due to the 
an
ellation of the 
ollinearsingularities that are asso
iated with the gq�q vertex [9℄. Although these singularitiesare present in individual D0 and C0 fun
tions, they always 
an
el in the 
ompleteresult for box diagrams.
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D Infrared singularitiesThe s
alar integrals Ji(M2V ) in Appendix C 
ontain soft and 
ollinear singularitiesthat appear when MV = MA ! 0 and m ! 0. As dis
ussed in Se
t. 3.4, theseintegrals are split into IR-singular (IR) and IR-�nite (�n) parts,Ji(M2A) = J IRi + J�ni : (135)The IR-singular parts depend on the s
heme adopted to regularize soft and 
ollinearsingularities. The IR-�nite parts are s
heme independent and free from soft-
ollinearsingularities, but 
an 
ontain ultraviolet poles.Let us start with the two-point fun
tions (132). Here only J1a(M2A) gives rise toIR singularities. This integral is split intoJ IR1a;MR = � ln m2M2W !+ 1;J IR1a;DR = � 4��2M2W !" �(1 + ")" � 1;J�n1a =  4��2M2W !" �(1 + ")" + 1: (136)We note that within dimensional regularization the UV and IR singularities 
an-
el ea
h other and the massless two-point fun
tion vanishes, J IR1a;DR + J�n1a = 0.The three-point fun
tions J9b(M2A) and J11b(M2A) are free from IR singularities andthe singularities originating from J8(M2A) and J10(M2A) do not need to be 
onsid-ered sin
e the 
oeÆ
ients asso
iated with these s
alar integrals are of order M2A(see Appendix E). The remaining three-point fun
tions in (133) 
ontain soft and
ollinear singularities. For them we �ndJ IR7;MR = 1̂s "�12 ln2  M2Wm2 !+ ln M2W�2 ! ln �ŝm2!# ;J IR7;DR =  4��2M2W !" �(1 + ")ŝ " 1"2 � 1" ln �ŝM2W !# ;J�n7 = 1̂s "12 ln2  �ŝM2W !� �26 # ; (137)and J IR9a;MR = 1û�M2W (12 "ln M2W�2 !� 12 ln M2Wm2 !# ln M2Wm2 !+ ln M2W�2 ! ln 1� ûM2W !) ;J IR9a;DR =  4��2M2W !" �(1 + ")û�M2W " 12"2 � 1" ln 1� ûM2W !# ;J�n9a = 1û�M2W "ln2  1� ûM2W !+ Li2  ûM2W !# ; (138)51



where Li2(x) = � R x0 dt ln(1 � t)=t. The �nite and singular parts for J11a(M2A) =J9a(M2A)jû!t̂ are 
onstru
ted in the same way.The singular parts of the subtra
ted four-point fun
tions (134) 
an be related tothe ones of the three-point fun
tions,J IR12 = J IR13 ���t̂$û = 1̂uJ IR7 ;J IR14a = J IR14b���t̂$û = 1̂t J IR9a ; (139)in both regularization s
hemes. This impli
itly de�nes the remainders asJ�n12 = J�n13 ���t̂$û = J12(M2A)� 1̂uJ IR7 ;J�n14a = J�n14b���t̂$û = J14a(M2A)� 1̂t J IR9a : (140)Using the expli
it analyti
 expressions for the infrared singular four-point and three-point fun
tions [41, 42℄ we obtainJ�n12 = 1̂sû�12 ln2  �ŝM2W !� ln2  ŝ̂u!� 2Li2  1� M2Ŵs !� 2Li2  1� M2Ŵu !� �22 �;J�n14a = 1t̂(û�M2W )�2 ln 1� ûM2W ! ln �t̂M2W !� 12 ln2  �t̂M2W !+ Li2  ûM2W !� �22 �: (141)E Expli
it result for the virtual 
orre
tionsIn this appendix we present expli
it analyti
 expression for the fun
tions H I1(M2V )de�ned in (74). These fun
tions des
ribe the 
ontribution of the unrenormalizedFeynman diagrams of Fig. 2 to the unpolarized 
ross se
tion. They 
onsist of linear
ombinations of the s
alar integrals de�ned in Appendix C,H I1(M2V ) = Xj KIj(M2V ) Re hJj(M2V )i for I = A;N;X;Y: (142)The 
oeÆ
ients of the fun
tion HA1 (M2V ) readKA0 (M2V ) = �4ŝ2 + 3(t̂2 + û2)t̂û + ŝ 1ŝ+ t̂ + 1ŝ+ û � 5̂u � 5̂t + 4t̂+ û!;KA1a(M2V ) = M2V (� " 3ŝ(ŝ+ t̂)2 + 3ŝ(ŝ+ û)2# +  1ŝ+ t̂ + 1ŝ+ û!� 2 ŝ + ût̂2 + ŝ+ t̂û2 !+ 2ŝ2(2ŝ+ t̂+ û)t̂û(ŝ+ t̂)(ŝ+ û))+ 4(ŝ+ t̂)2 + (ŝ+ û)2t̂û ;52



KA1b(M2V ) = 0;KA2 (M2V ) = p2W" 6ŝM2V(ŝ+ t̂)3 + 6ŝM2V(ŝ+ û)3 + 2ŝM2V(ŝ+ t̂)2û + 2ŝM2V(ŝ+ û)2t̂ + 4(ŝ+ t̂+ û)(t̂+ û)2 � 3̂t� 3̂u + 2ŝ+ t̂� 2M2V(ŝ+ t̂)2 + 2ŝ+ û� 2M2V(ŝ+ û)2 � ŝ(2ŝ+ t̂ + û)(2M2V + 3ŝ)t̂û(ŝ+ t̂)(ŝ+ û) #;KA3 (M2V ) = 0;KA4 (M2V ) = �4ŝ(ŝ+ 2t̂ + 2û)(t̂+ û)2 ;KA5a(M2V ) = � 6M2V ŝû(ŝ + t̂)3 + M2V (2û� 5ŝ)� ŝû(ŝ+ t̂)2 + 2M2V (ŝ+ t̂+ û)û2 � M2V + 4ŝ+ ûŝ+ t̂ ;KA5b(M2V ) = 0;KA6a(M2V ) = KA5a(M2V )���t̂$û;KA6b(M2V ) = 0;KA7 (M2V ) = � ŝ̂tû"2(ŝ+M2V )(t̂+ û) + t̂2 + û2#;KA8 (M2V ) = p2WM2Vû(û� p2W )3 "2t̂M2V (û� ŝ� t̂)� 4p2W ŝ(ŝ+ t̂+M2V )#;KA9a(M2V ) = KA9b(M2V ) = 0;KA10(M2V ) = KA8 (M2V )���t̂$û;KA11a(M2V ) = KA11b(M2V ) = 0;KA12(M2V ) = �M2V (t̂+ û) + ŝût̂û "2(ŝ+M2V )(ŝ+M2V + t̂) + t̂2#;KA13(M2V ) = KA12(M2V )���t̂$û;KA14a(M2V ) = KA14b(M2V ) = 0: (143)The only di�eren
e between HA1 (M2V ) and the equally named fun
tion in Ref. [9℄ isdue to the fa
t that HA1 (M2V ) in Ref. [9℄ in
ludes the 
ontribution of the fermioni
wave-fun
tion renormalization 
onstants, whi
h modify the 
oeÆ
ients KA0 and KA1a(see eqs. (54) and (55) in Ref. [9℄).For the 
oeÆ
ients of the fun
tion HN1 (M2V ) we obtainKN0 (M2V ) = 4ŝt̂û (ŝ+ t̂+ û)� 2ŝ 1ŝ+ û + 1ŝ + t̂ + 2t̂+ û!+ 2 t̂̂u + û̂t !;KN1a(M2V ) = �M2V2 (4ŝt̂û + (t̂û� 2ŝ(ŝ+ t̂+ û))� 1t̂(ŝ+ û)2 + 1û(ŝ+ t̂)2 �)� ŝ(4ŝ+ 3t̂+ 3û) + t̂2 + û2t̂û ;53



KN1b(M2V ) = � KN1a(M2V )���M2V$M2W ;KN2 (M2V ) = �KA2 (M2V );KN3 (M2V ) = (M2W +M2V )" 3ŝt̂(ŝ+ û)3 + 3ŝû(ŝ+ t̂)3#� 1̂tû" 1(ŝ+ t̂)2 + 1(ŝ+ û)2#� (ŝ4 � 2t̂2û2 + ŝ2(t̂+ û)(2ŝ+ t̂ + û) + (M2W +M2V )� "ŝ2(ŝ+ t̂+ û)� t̂û(2ŝ� t̂� û)#);KN4 (M2V ) = �KA4 (M2V );KN5a(M2V ) = 2ŝ(ŝ+ t̂)� 2t̂û2(ŝ+ t̂)2 � " ŝ+ t̂û � 2ŝŝ+ t̂ � û(2ŝ+ t̂)2(ŝ+ t̂)2 #�M2V " 1̂u � 2ŝ+ t̂2(ŝ+ t̂)2#+ (2M2V �M2W )" 2ŝ(ŝ+ t̂)2 + û(2ŝ� t̂)(ŝ+ t̂)3 #;KN5b(M2V ) = 2ŝ(ŝ+ t̂)� 2t̂û2(ŝ+ t̂)2 + " ŝ+ t̂û � 2ŝŝ+ t̂ � û(2ŝ+ t̂)2(ŝ+ t̂)2 # +M2W" 1̂u � 2ŝ+ t̂2(ŝ+ t̂)2 #�M2V " 2ŝ(ŝ+ t̂)2 + û(2ŝ� t̂)(ŝ+ t̂)3 #;KN6a(M2V ) = KN5a(M2V )���t̂$û;KN6b(M2V ) = KN5b(M2V )���t̂$û;KN7 (M2V ) = �KA7 (M2V );KN8 (M2V ) = �KA8 (M2V );KN9a(M2V ) = û� ŝ2 � ŝt̂2t̂ + ŝ2 + ŝt̂2û + (M2W +M2V )"2ŝ2 + t̂ŝ+ t̂22t̂û � t̂� ŝ2t̂ #� 2M2V t̂û(ŝ+ t̂)2 + M2Vŝ+ t̂"M2W ŝ2t̂û � M2V û(2ŝ� t̂)(ŝ+ t̂)2 � 2(M2W +M2V )ŝŝ+ t̂ #;KN9b(M2V ) = KN9a(M2V )���M2V$M2W ;KN10(M2V ) = KN8 (M2V )���t̂$û = �KA10(M2V );KN11a(M2V ) = KN9a(M2V )���t̂$û;KN11b(M2V ) = KN9b(M2V )���t̂$û;KN12(M2V ) = �KA12(M2V );KN13(M2V ) = KN12(M2V )���t̂$û = �KA13(M2V );KN14a(M2V ) = M2W t̂+M2V û� t̂û2t̂û "2M2WM2V + (2ŝ+ t̂+ û)(M2W +M2V )� 2t̂û54



� ŝ(t̂+ û)#;KN14b(M2V ) = KN14a(M2V )���M2V$M2W : (144)For MV = MW the fun
tion HN1 (M2V ) is identi
al to the equally named fun
tion inRef. [9℄.The only non-vanishing 
oeÆ
ients of the fun
tion HX1 (M2V ) readKX0 (M2V ) = � t̂2 + û2 + ŝ(t̂ + û)t̂û ;KX1a(M2V ) = � hKX5a(M2V ) +KX6a(M2V )i ;KX5a(M2V ) = 2(M2V � û)(ŝ+ t̂)û2 ;KX6a(M2V ) = KX5a(M2V )���t̂$û: (145)Finally, for HY1 (M2V ) we obtainKY0 (M2V ) = (û� t̂)(ŝ+ t̂ + û)t̂û ;KY1a(M2V ) = M2V " 2̂t + 3ŝ(ŝ+ t̂)2 � 1ŝ+ t̂ � 2̂u � 3ŝ(ŝ+ û)2 + 1ŝ+ û#+M2V "2(ŝ+ û)t̂2 � 2(ŝ+ t̂)û2 #;KY1b(M2V ) = �M2W" 2̂t + 3ŝ(ŝ+ t̂)2 � 1ŝ+ t̂ � 2̂u � 3ŝ(ŝ+ û)2 + 1ŝ+ û#� "2(ŝ+ û)t̂ � 2(ŝ+ t̂)û #;KY2 (M2V ) = 0;KY3 (M2V ) = 2(M2W �M2V )(t̂� û)(ŝ+ t̂+ û)(ŝ+ t̂)3(ŝ+ û)3 ��7ŝ3 + (t̂û� 6ŝ2)(t̂+ û)� ŝ(2t̂2 � t̂û+ 2û2)�;KY4 (M2V ) = 0;KY5a(M2V ) = �2ŝ2 + 3t̂û+ 2ŝ(t̂+ û)(ŝ+ t̂)2 �M2W � 4ŝ(ŝ+ t̂)2 + 2û(2ŝ� t̂)(ŝ+ t̂)3 ��M2V � 2ŝ+ t̂(ŝ+ t̂)2 � 2̂u � 2(ŝ+ t̂)û2 �;KY5b(M2V ) = 2ŝ2 + 3t̂û+ 2ŝ(t̂+ û)(ŝ+ t̂)2 +M2V � 4ŝ(ŝ+ t̂)2 + 2û(2ŝ� t̂)(ŝ+ t̂)3 �55



+M2W � 2ŝ+ t̂(ŝ+ t̂)2 � 2̂u�� 2(ŝ+ t̂)û ;KY6a(M2V ) = �KY5a(M2V )���t̂$û;KY6b(M2V ) = �KY5b(M2V )���t̂$û;KY7 (M2V ) = 0;KY8 (M2V ) = 0;KY9a(M2V ) = 1(ŝ+ t̂)3t̂û(2M4V t̂û�2ŝ2 � t̂û+ 2ŝ(t̂ + û)��M2V (ŝ+ t̂)�(ŝ+ t̂)2(2ŝ2 + ŝt̂+ t̂2) + (ŝ� t̂)(ŝ+ t̂)2û� 4t̂2û2+ 2M2W ŝ�ŝ(ŝ+ t̂)� 2t̂û��� (ŝ+ t̂)3�ŝ2(t̂� û) + 2t̂û2+ ŝt̂(t̂ + û) +M2W�2ŝ2 + t̂(t̂� û) + ŝ(t̂ + û)��);KY9b(M2V ) = � KY9a(M2V )���M2V$M2W ;KY10(M2V ) = 0;KY11a(M2V ) = �KY9a(M2V )���t̂$û;KY11b(M2V ) = �KY9b(M2V )���t̂$û;KY12(M2V ) = 0;KY13(M2V ) = 0;KY14a(M2V ) = �2KN14a(M2V );KY14b(M2V ) = 2KN14b(M2V ) = � KY14a(M2V )���M2V$M2W : (146)F Real 
orre
tionsIn Table 1 and Table 2 we list the dipoles that were used to 
al
ulate the subtra
tionterms in (91) for the massive regularization and in (109) for the dimensional reg-ularization, respe
tively. We give referen
es to the expli
it formulae for the dipoleterms and the phase-spa
e mappings in the original paper [17℄ and [18, 19℄.
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Dipole Type (emitter, spe
tator) eq. no. ~�2;nmgsubab;� massless IS, massless IS (3.22) (3.25){(3.27)gsubaW;� massless IS, massive FS (A.1) (3.12)gsubWa;� massive FS, massless IS (A.1) (3.12)gsubak;� massless IS, massless FS (3.9) (3.12)gsubka;� massless FS, massless IS (3.9) (3.12)gsubkW;� massless FS, massive FS (4.4) (4.5)gsubWk;� massive FS, massless FS (4.4) (4.5)Table 1: Dipole subtra
tion terms from Ref. [17℄ used to 
al
ulate Mabsub in (91) forthe massive regularization (IS = initial-state, FS = �nal-state).Dipole Type (emitter, spe
tator) eq. nos. ~�2;nmDa
;bQED massless IS, massless IS (5.136), (5.145) (5.137), (5.139),in Ref. [18℄ (5.140) in Ref. [18℄Da
W; QED massless IS, massive FS (5.71), (5.81) (5.73), (5.74)in Ref. [19℄ in Ref. [19℄Da
W; QED massive FS, massless IS (5.40), (5.50) (5.42), (5.43)in Ref. [19℄ in Ref. [19℄Da
k; QED massless IS, massless FS (5.61), (5.65) (5.62)-(5.64)in Ref. [18℄ in Ref. [18℄Da
k; QED massless FS, massless IS (5.36), (5.39) (5.37), (5.38)in Ref. [18℄ in Ref. [18℄D
k;W; QED massless FS, massive FS (5.2), (5.16) (5.3), (5.7), (5.9)in Ref. [19℄ in Ref. [19℄D
W;k; QED massive FS, massless FS (5.2), (5.16) (5.3), (5.7), (5.9)in Ref. [19℄ in Ref. [19℄Table 2: Dipole expressions from Refs. [18, 19℄ used to 
al
ulate Mabsub in (109) forthe dimensional regularization. 57
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