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1 IntrodutionString �eld theory1 an potentially be a bakground-independent formulation of string theory. In theurrent formulation of string �eld theory, however, we �rst need to hoose one onformal �eld theory(CFT) desribing a onsistent bakground of string theory. The ruial question is then whether otherstring bakgrounds an be desribed as lassial solutions of string �eld theory. In partiular, for eahexatly marginal deformation of the CFT, we expet to have a family of solutions in string �eld theorylabeled by the deformation parameter.Reent remarkable developments in analyti methods of open string �eld theory [5℄{[26℄ enabledus to address this question in a onrete setting. Analyti solutions for marginal deformations whenoperator produts of the marginal operator are regular were onstruted to all orders in the deformationparameter in [17, 18℄ for open bosoni string �eld theory [27℄ and in [19, 20, 22℄ for open superstring�eld theory [28℄. When the operator produt of the marginal operator is singular, analyti solutionswere onstruted to third order in the deformation parameter in [18℄. Reently, analyti solutions forthe deformation generated by the zero mode of the gauge �eld were onstruted in [21℄ by a di�erentapproah and extended to open superstring �eld theory in [25℄. While the equation of motion issatis�ed to all orders in the deformation parameter, a losed form expression for a solution satisfyingthe reality ondition on the string �eld has not been presented in [21, 25℄. For earlier study of marginaldeformations in string �eld theory, see [29℄{[42℄.In this paper, we present a proedure to onstrut a solution satisfying the reality ondition inopen bosoni string �eld theory for any exatly marginal deformation in any boundary CFT whenproperly renormalized operator produts of the marginal operator are given. The analyti solutionsin [17, 18℄ were onstruted using unintegrated vertex operators and b-ghost insertions. Our strategyis to use integrated vertex operators, whih are losely related to �nite deformations in boundaryCFT. We assume several properties of the properly renormalized operator produts of the marginaloperator. Sine the identi�ation of a set of assumptions whih are suÆient for the onstrution ofa solution is one of the main points of the paper, we will explain these assumptions in detail in thefollowing. We will then present our solutions.1.1 AssumptionsWhen there exists an exatly marginal deformation in a given boundary CFT, we have a family ofonsistent boundary onditions labeled by the deformation parameter whih we denote by �. Considerthe boundary CFT on the upper-half plane and suppose that we hange boundary onditions on asegment of the boundary between a and b. Sine the new boundary ondition is also onformal, anintegral of the BRST urrent along a ontour vanishes if both end points of the ontour lie inside theregion between a and b. By C(tf ; ti) we denote a ontour in the upper-half plane whih starts from1 See [1, 2, 3, 4℄ for reviews. 2



= 0Figure 1: Illustration of (1.1). The bold line indiates a hange of boundary onditions on the segmentbetween a and b. The integral of the BRST urrent in (1.1) vanishes when a < tf < ti < b.
= +Figure 2: Illustration of (1.2). When tf < a < b < ti, the integral of the BRST urrent on the left-handside deomposes into a sum of two integrals loalized at the end points a and b of the segment.the point ti on the real axis and ends on tf on the real axis, and we use C(tf ; ti) with tf < ti in whatfollows. We have ZC(tf ; ti)h dz2�i jB(z)� d�z2�i ~|B(�z) i = 0 when a < tf < ti < b ; (1.1)where jB(z) and ~|B(�z) are the holomorphi and antiholomorphi omponents of the BRST urrent,respetively. See �gure 1. This identity holds inside any orrelation funtion of the deformed CFT aslong as no operators are inserted between the ontour C(tf ; ti) and the real axis. When tf < a < b < ti,there are ontributions from the points a and b where the boundary ondition hanges:ZC(tf ; ti)h dz2�i jB(z)� d�z2�i ~|B(�z) i= ZC(b)h dz2�i jB(z)� d�z2�i ~|B(�z) i+ ZC(a)h dz2�i jB(z)� d�z2�i ~|B(�z) i ; (1.2)where we have de�ned the in�nitesimal ontour C(t) around any point t byC(t) = lim�!0 C(t� �; t+ �) : (1.3)See �gure 2. The nonvanishing ontributions in (1.2) an be thought of as the BRST transformationsof the boundary-ondition hanging operators. We also have3



= �Figure 3: Illustration of (1.4). With the presene of the BRST integral loalized at a, the integralalong C(tf ; ti) on the left-hand side loalizes only at the other end point b beause of the nilpotenyof the BRST transformation.ZC(tf ; ti)h dz2�i jB(z)� d�z2�i ~|B(�z) i ZC(a)h dz2�i jB(z)� d�z2�i ~|B(�z) i= � ZC(a)h dz2�i jB(z)� d�z2�i ~|B(�z) i ZC(b)h dz2�i jB(z)� d�z2�i ~|B(�z) i ; (1.4)where again tf < a < b < ti, as shown in �gure 3.The boundary CFT with a di�erent boundary ondition on a segment between a and b disussedabove an also be desribed in the boundary CFT with the original boundary ondition on the wholereal axis by inserting an exponential of the marginal operator V (t) integrated over the segment betweena and b, exp� �Z ba dt V (t) � = 1 + �Z ba dt V (t) + �22! Z ba dt1 Z ba dt2 V (t1)V (t2) + : : : ; (1.5)into the orrelation funtion. When operator produts of the marginal operator are singular, we needto renormalize the operator (1.5) properly to make it well de�ned, and we denote the renormalizedoperator by [ e�V (a;b) ℄r ; (1.6)where V (a; b) � Z ba dt V (t) : (1.7)Then the equations (1.2) and (1.4) an be translated into the following assumptions on the opera-tor [ e�V (a;b) ℄r.1. The BRST transformation of the operator [ e�V (a;b) ℄r takes the following form:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r ; (I)where OL(a) and OR(b) are some loal operators at a and b, respetively.2. The BRST transformation of the operator [OL(a) e�V (a;b) ℄r is given byQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b) OR(b) ℄r : (II)4



= �Figure 4: Illustration of the assumption (I). The BRST transformation on the operator [ e�V (a;b) ℄rgenerates loal operators OL(a) and OR(b) at the end points of the segment. Compare this �gure with�gure 2.
= �Figure 5: Illustration of the assumption (II). The BRST transformation on the operator[OL(a) e�V (a;b) ℄r generates the loal operator OR(b). Compare this �gure with �gure 3.These are our �rst two assumptions. They are illustrated in �gures 4 and 5.We an also introdue di�erent boundary onditions on di�erent segments on the boundary byinserting [ nYi=1 e�iV (ai;ai+1) ℄r (1.8)with ai < ai+1 for i = 1; 2; : : : ; n into the orrelation funtion. We make the following two assumptionson this operator.3. Replaement. When �i+1 = �i, the produt e�iV (ai;ai+1) e�i+1V (ai+1;ai+2) inside the operator (1.8)an be replaed by e�iV (ai;ai+2):[ : : : e�iV (ai ;ai+1) e�iV (ai+1 ;ai+2) : : : ℄r = [ : : : e�iV (ai;ai+2) : : : ℄r : (III)4. Fatorization. When �j vanishes, the renormalized produt (1.8) fatorizes as follows:[ : : : e�j�1V (aj�1;aj) e�j+1V (aj+1;aj+2) : : : ℄r = [ : : : e�j�1V (aj�1;aj) ℄r [ e�j+1V (aj+1;aj+2) : : : ℄r : (IV)We also assume that (III) and (IV) hold when OL(a1), OR(an+1), or both of them are inserted in (1.8).A hange of boundary onditions on a segment between a and b is loal and independent of otherregions of the Riemann surfae where the boundary CFT is de�ned. Thus the operator [ e�V (a;b) ℄r5



should be independent of the global shape of the Riemann surfae. However, renormalization shemessuh as the standard normal ordering an depend on the global shape of the surfae through the prop-agator, and normal ordered produts of nonloal operators generially do depend on the surfae. Weonsider boundary onformal �eld theory de�ned on a family of semi-in�nite ylinders Wn obtainedfrom the upper-half plane of z by the identi�ation z � z+n+1 and make the following assumption.5. Loality. The operators [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r de�ned on Wn oinide with those de�nedon Wm with m > n: [ e�V (a;b) ℄r on Wn = [ e�V (a;b) ℄r on Wm ;[OL(a) e�V (a;b) ℄r on Wn = [OL(a) e�V (a;b) ℄r on Wm : (V)Finally, e�V (a;b) is lassially invariant under the reetion where V (t) is replaed by V (a+ b� t),and we assume that [ e�V (a;b) ℄r preserves this symmetry.6. Reetion. The operator [ e�V (a;b) ℄r is invariant under the reetion where V (t) is replaed byV (a+ b� t): � exp��Z ba dt V (a+ b� t)��r = � exp��Z ba dt V (t)��r : (VI)1.2 SolutionsWe believe that all of these assumptions are satis�ed for any exatly marginal deformation in anyboundary CFT if the omposite operators are properly renormalized. When the operator [ e�V (a;b) ℄rexpanded in � as [ e�V (a;b) ℄r = 1Xn=0�n [V (n)(a; b) ℄r ; (1.9)where [V (n)(a; b) ℄r � 1n! [ (V (a; b))n ℄r for n � 1 and [V (0)(a; b) ℄r � 1 ; (1.10)is given, we laim that solutions to the equation of motion an be onstruted in the following way.We �rst de�ne a state U by U � 1 + 1Xn=1 �n U (n) ; (1.11)where h� ; U (n) i = h f Æ �(0) [V (n)(1; n) ℄r iWn : (1.12)Here and in what follows we denote a generi state in the Fok spae by � and its orrespondingoperator in the state-operator mapping by �(0). The onformal transformation f(�) isf(�) = 2� artan � ; (1.13)6



and we denote the onformal transformation of �(�) under the map f(�) by f Æ �(�). The orrelationfuntion is evaluated on the surfae Wn, whih we de�ned above when stating the loality assump-tion (V). We represent it in the region of the upper-half plane of z where �1=2 � Re z � 1=2 + n.If the assumption (I) is satis�ed, the BRST transformation of the operator [V (n)(a; b) ℄r takes theform QB � [V (n)(a; b) ℄r = nXr=1 [V (n�r)(a; b)O(r)R (b) ℄r � nXl=1 [O(l)L (a)V (n�l)(a; b) ℄r ; (1.14)where OL and OR are expanded as follows:OL = 1Xn=1 �nO(n)L ; OR = 1Xn=1 �nO(n)R : (1.15)Thus the BRST transformation of U an be split into two piees:QBU = AR �AL (1.16)with AL = 1Xn=1 �nA(n)L ; AR = 1Xn=1 �nA(n)R ; (1.17)where h� ;A(n)L i = nXl=1h f Æ �(0) [O(l)L (1)V (n�l)(1; n) ℄r iWn ;h� ;A(n)R i = nXr=1h f Æ �(0) [V (n�r)(1; n)O(r)R (n) ℄r iWn : (1.18)We then de�ne 	L and 	R by 	L � AL � U�1 ; 	R � U�1 � AR ; (1.19)where U�1 is well de�ned perturbatively in � beause U = 1+O(�). We show that 	L and 	R satisfythe equation of motion, QB	L +	L �	L = 0 ; QB	R +	R �	R = 0 ; (1.20)though they do not satisfy the reality ondition on the string �eld. They are related by the gaugetransformation generated by U : 	R = U�1 �	L � U + U�1 �QBU : (1.21)A solution 	 satisfying the reality ondition is obtained from 	L or 	R by gauge transformations asfollows: 	 = 1pU �	L � pU + 1pU �QBpU= pU �	R � 1pU +pU �QB 1pU= 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QB pU �QBpU � 1pU � ; (1.22)
7



where pU and 1=pU are de�ned perturbatively in �. The three expressions are equivalent beause ofthe relation (1.21). This solution is the main result of the paper. In setion 4, we expliitly onstrut[ e�V (a;b) ℄r satisfying all the assumptions and apply the general result to obtain solutions for a lass ofmarginal deformations whih inlude the deformations of at D-branes in at bakgrounds by onstantmassless modes of the gauge �eld and of the salar �elds on the D-branes, the osine potential for aspae-like oordinate, and the hyperboli osine potential for the time-like oordinate.The operators O(1)R and O(1)L are O(1)R = O(1)L = V (1.23)for any marginal deformation. This follows only from the fat that the marginal operator is a primary�eld of dimension one. When operator produts of the marginal operator are regular, there are nohigher-order terms and thus OR = OL = � V . For any exatly marginal deformation where thesingular part of the operator produt of the marginal operator with itself isV (t)V (0) � 1t2 ; (1.24)the operators O(2)L and O(2)R are O(2)R = �O(2)L = 12 � : (1.25)For the lass of marginal deformations to be onsidered in setion 4, there are no higher-order termsand the exat expressions of OR and OL areOR = � V + �22 � ; OL = � V � �22 � : (1.26)1.3 The organization of the paperIn setion 2 we �rst revisit the problem of onstruting solutions for marginal deformations withregular operator produts. In x 2.1 we onstrut a solution 	L to the string �eld theory equation ofmotion using integrated vertex operators without b-ghost insertions. The solution 	L, however, doesnot satisfy the reality ondition on the string �eld. In x 2.2 we onstrut a gauge transformation whihonnets 	L and its onjugate solution 	R, and then we generate a real solution 	 using the gaugetransformation. During the onstrution of this gauge transformation, we �nd an important identity.It leads us to disover a lass of states U�, whih generalize the wedge states W� in a deformedbakground. We study the properties of U� in x 2.3.In the proess of onstruting the gauge transformation that onnets 	L and 	R, we also �ndanother expression of the solution 	L. We study the new form of 	L in x 3.1 and prove that it satis�esthe equation of motion using the properties of U�. The new form of 	L an be generalized to marginaldeformations with singular operator produts. In x 3.2 we onstrut 	L for the singular ase using theoperator [ e�V (a;b) ℄r, and we prove in x 3.3 and in appendix A that it satis�es the equation of motion8



under the assumptions stated in x 1.1. We then generate a real solution 	 for the singular ase in x 3.4by an appropriate gauge transformation as in the regular ase in x 2.2.In setion 4 we expliitly onstrut the operator [ e�V (a;b) ℄r satisfying the assumptions stated in x 1.1for a lass of marginal operators with singular operator produts de�ned in x 4.1. We give severalexamples of marginal operators inluded in this lass in x 4.2. In x 4.3 we onstrut [ e�V (a;b) ℄r forthe lass of marginal operators, and we prove in x 4.4 and in appendix B that the assumptions statedin x 1.1 are satis�ed. We disuss onformal properties of the operator [OL(a) e�V (a;b) ℄r in x 4.5.In setion 5 we disuss string �eld theory around the deformed bakground and demonstrate thatit an be elegantly formulated in terms of a new set of algebrai strutures by de�ning a deformedstar produt, deformed inner produt, and deformed BRST operator. Setion 6 is for disussion, andin appendix C we explain the relation to the previous work by Fuhs, Kroyter and Potting in [21℄ forthe speial ase of marginal deformations orresponding to the onstant mode of the gauge �eld.2 Marginal deformations with regular operator produts2.1 Solutions using integrated vertex operatorsWhen we alulate n-point sattering amplitudes for open bosoni strings on the disk, we use threeunintegrated vertex operators and n� 3 integrated vertex operators. The unintegrated vertex operatortakes the form V , where  is the  ghost and V is a matter primary �eld of dimension one. Theunintegrated vertex operator is invariant under the BRST transformation:QB � V (t) � ZC(t)h dz2�i jB(z)� d�z2�i ~|B(�z) i V (t) = 0 : (2.1)The integrated vertex operator is an integral of V on the boundary. The BRST transformation of Vis a total derivative, QB � V (t) = �t [ V (t) ℄ ; (2.2)and thus the integrated vertex operator is invariant under the BRST transformation up to nonvanishingterms from the boundaries of the integral region:QB � V (a; b) = QB � Z ba dt V (t) = Z ba dt �t [ V (t) ℄ = V (b)� V (a) : (2.3)The vertex operator V generates a marginal deformation of the boundary CFT. When the deformationis exatly marginal, we expet a orresponding solution 	 to the equation of motion of open string�eld theory [27℄: QB	+	 �	 = 0 : (2.4)In [17, 18℄, analyti solutions for marginal deformations in open bosoni string �eld theory wereonstruted to all orders in the deformation parameter � when operator produts V (t1)V (t2) : : : V (tn)9



of the marginal operator are regular. The solution in [17, 18℄ takes the form of an expansion in �,	 = 1Xn=1�n	(n) ; (2.5)and the equation of motion for 	(n) isQB	(n) = � n�1Xi=1 	(n�i) �	(i) : (2.6)In the solution onstruted in [17, 18℄, 	(n) is made of n unintegrated vertex operators and n � 1b-ghost insertions. In this setion, we onstrut 	(n) using one unintegrated and n � 1 integratedvertex operators when operator produts of the marginal operator are regular.We hoose the �rst term 	(1) of the solution to beh�;	(1) i = h f Æ �(0) V (1) iW1 : (2.7)This satis�es the linearized equation of motion. The starting point of our onstrution is the obser-vation that 	(2)L made of one unintegrated vertex operator and one integrated vertex operator givenby h� ;	(2)L i = h f Æ �(0) V (1)V (1; 2) iW2 = Z 21 dt h f Æ �(0) V (1)V (t) iW2 (2.8)solves the equation of motion QB	(2)L = �	(1) �	(1). This an be shown as follows:h� ;QB 	(2)L i = � Z 21 dt h f Æ �(0) V (1) �t [ V (t) ℄ iW2= � h f Æ �(0) V (1) V (2) iW2= � h� ;	(1) �	(1) i ; (2.9)where we have used the formulas (2.1) and (2.3), andlimt2!t1 V (t1) V (t2) = 0 ; (2.10)whih follows from the ondition that the operator produt V (t1)V (t2) is regular in the limit t2 ! t1.Let us next onstrut a solution to O(�3). We look for 	(3)L whih satis�esQB 	(3)L = �	(1) �	(2)L �	(2)L �	(1): (2.11)The right-hand side is given by� h� ;	(1) �	(2)L +	(2)L �	(1) i = � h f Æ �(0) V (1) V (2)V (2; 3) iW3� h f Æ �(0) V (1)V (1; 2) V (3) iW3 : (2.12)10



First onsider the state 	(3)L1 de�ned byh� ;	(3)L1 i = h f Æ �(0) V (1)V (1; 2)V (2; 3) iW3 : (2.13)The BRST transformation of 	(3)L1 ish� ;QB 	(3)L1 i = � h f Æ �(0) V (1) V (2)V (2; 3) iW3� h f Æ �(0) V (1)V (1; 2) V (3) iW3+ h f Æ �(0) V (1)V (1; 2) V (2) iW3 : (2.14)The �rst two terms preisely give �	(1) � 	(2)L � 	(2)L � 	(1). To anel the last term, onsider 	(3)L2de�ned by h� ;	(3)L2 i = 12 h f Æ �(0) V (1) (V (1; 2))2 iW3 : (2.15)Using the formula QB � (V (a; b))n = n [ (V (a; b))n�1 V (b)� V (a) (V (a; b))n�1 ℄ ; (2.16)whih holds for marginal operators with regular operator produts, the BRST transformation of 	(3)L2an be alulated as follows:h� ;QB 	(3)L2 i = � h f Æ �(0) V (1)V (1; 2) V (2) iW3 : (2.17)This anels the last term on the right-hand side of (2.14). Therefore, 	(3)L an be onstruted byadding 	(3)L2 to 	(3)L1 :h� ;	(3)L i = h� ;	(3)L1 +	(3)L2 i= h f Æ �(0) V (1)V (1; 2)V (2; 3) iW3 + 12 h f Æ �(0) V (1) (V (1; 2))2 iW3 : (2.18)To generalize this solution to higher orders, it turns out to be ruial to rewrite 	(3)L in a di�erentform. Using a path-ordered expression for 	(3)L2 , 	(3)L an also be written ash� ;	(3)L i = Z 21 dt1 Z 32 dt2 h f Æ �(0) V (1)V (t1)V (t2) iW3+ Z 21 dt1 Z 2t1 dt2 h f Æ �(0) V (1)V (t1)V (t2) iW3= Z 21 dt1 Z 3t1 dt2 h f Æ �(0) V (1)V (t1)V (t2) iW3 : (2.19)
See �gure 6. It is instrutive to see how 	(3)L in this form satis�es the equation of motion. The BRSTtransformation of 	(3)L is given byh� ;QB	(3)L i =� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) V (1) �t1 [ V (t1) ℄V (t2) iW3� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) V (1)V (t1) �t2 [ V (t2) ℄ iW3 : (2.20)11



Figure 6: Illustration of 	(3)L . The solid dot represents the V insertion, and the irles represent thetwo V insertions. The left V is integrated from 1 to 2 , and the right V is integrated from the positionof the left V to 3 .The integral region of t2 depends on t1. The �rst line on the right-hand side of (2.20) an be alulatedas follows:� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) V (1) �t1 [ V (t1) ℄V (t2) iW3= �Z 21 dt1 �t1� Z 3t1 dt2 h f Æ �(0) V (1) V (t1)V (t2) � iW3 � Z 21 dt1 h f Æ �(0) V (1) V 2(t1) iW3= �Z 32 dt2 h f Æ �(0) V (1) V (2)V (t2) iW3 � Z 21 dt1 h f Æ �(0) V (1) V 2(t1) iW3= � h� ;	(1) �	(2)L i � Z 21 dt1 h f Æ �(0) V (1) V 2(t1) iW3 : (2.21)The alulation of the seond line on the right-hand side of (2.20) is straightforward:� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) V (1)V (t1) �t2 [ V (t2) ℄ iW3= �Z 21 dt1 h f Æ �(0) V (1)V (t1) V (3) iW3 + Z 21 dt1 h f Æ �(0) V (1) V 2(t1) iW3= � h� ;	(2)L �	(1) i+ Z 21 dt1 h f Æ �(0) V (1) V 2(t1) iW3 : (2.22)
Note that the two terms with V 2, whih arise from ollisions of V and V , anel eah other. Wehave thus reon�rmed that the equation of motion at O(�3) is satis�ed.12



Figure 7: Illustration of 	(n)L . The solid dot represents the V insertion, and the irles represent theV insertions. The integration region of tj is from tj�1 to j + 1.This form of 	(3)L an be generalized to 	(n)L for any n as follows:h� ;	(n)L i = D f Æ �(0) V (1)Z 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z ntn�2 dtn�1 V (t1)V (t2)V (t3) : : : V (tn�1)EWn= D f Æ �(0) V (1) n�1Yj=1 Z j+1tj�1 dtj V (tj)EWn with t0 � 1 : (2.23)See �gure 7. It is straightforward to show that 	(n)L satis�es the equation of motion:h� ;QB	(n)L i=� n�1Xi=1 D f Æ �(0) V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) Z i+1ti�1 dti �ti [ V (ti) ℄ n�1Yk=i+1Z k+1tk�1 dtkV (tk)EWn=� n�1Xi=1 D f Æ �(0) V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) V (i+ 1) Z i+2i+1 dti+1 : : : Z ntn�2 dtn�1 V (ti+1) : : : V (tk)EWn+ n�1Xi=2 D f Æ �(0) V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) V (ti�1) Z i+2ti�1 dti+1 : : : Z ntn�2 dtn�1 V (ti+1) : : : V (tk)EWn+ n�2Xi=1 D f Æ �(0) V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) Z i+1ti�1 dti V (ti) �ti" n�1Yk=i+1Z k+1tk�1 dtkV (tk)#EWn : (2.24)13



By arrying out the di�erentiation in the last line, we �nd that the last line preisely anels the seondline on the right-hand side. The remaining �rst line on the right-hand side is a sum of �	(i) �	(n�i)over i. We have thus shown h� ; QB	(n)L i = � n�1Xi=1 h� ;	(i) �	(n�i) i : (2.25)It is onvenient to introdue the following notation:V (n)L (1; n+ 1) � Z 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z n+1tn�1 dtn V (t1)V (t2) : : : V (tn) for n � 1 ;V (0)L (1; 1) � 1 : (2.26)The supersript (n) indiates the number of operators and (1; n+ 1) indiates the region where oper-ators are inserted, although this notation is slightly redundant beause the number of operators andthe length of the region are orrelated for V (n)L (1; n + 1). The solution 	(n)L an now be ompatlywritten as h� ;	(n)L i = h f Æ �(0) V (1) V (n�1)L (1; n) iWn : (2.27)The state 	L de�ned by 	L = 1Xn=1 �n	(n)L (2.28)thus solves the equation of motion to all orders in �.2.2 Solutions satisfying the reality onditionThe solution 	L onstruted in the previous subsetion satis�es the equation of motion, but it does notsatisfy the reality ondition on the string �eld. In this subsetion, we onstrut a solution satisfyingthe reality ondition from 	L.2.2.1 The reality onditionThe string �eld 	 must have a de�nite parity under the ombination of the Hermitean onjugation (h)and the inverse BPZ onjugation (bpz�1) to guarantee that the string �eld theory ation is real [43℄.We de�ne the onjugate Az of a string �eld A byAz � bpz�1 Æ h (A) : (2.29)With this de�nition, the following relations hold:(QBA)z = � (�1)AQBAz ; (2.30)(A �B)z = Bz � Az : (2.31)14



Here and in what follows a string �eld in the exponent of (�1) denotes its Grassmann property: it is0 mod 2 for a Grassmann-even state and 1 mod 2 for a Grassmann-odd state. Sine the string �eld 	is Grassmann odd, it must be even under the onjugation 	z = 	 in order that QB	 and 	 �	 havethe same parity. We will say that a string �eld of ghost number one is real when it is even under theonjugation.The lass of states we use in onstruting solutions for marginal deformations are made of wedgestates with insertions of V and V . Let us onsider the onjugate of a state in this lass. The wedgestate W� [44℄ is even under the onjugation W z� = W� beause it is onstruted from the SL(2; R)-invariant vauum j0i satisfying j0iz = j0i by ating with BPZ-even Virasoro generators L�2; L�4; : : : .The �rst term 	(1) in the solution must be even (	(1))z = 	(1), as we disussed above. Therefore, theonjugate of W� �	(1) �W� is W� �	(1) �W�. This means that the operator V (t) on Wn is mappedto V (n+ 1� t) under the onjugation:V (t) �! V (n+ 1� t) on Wn : (2.32)Its derivative �t [ V (t) ℄ at t = a is then mapped to � �t [ V (t) ℄ at t = n+ 1� a. Sine �t [ V (t) ℄ isthe BRST transformation of V (t), this means that QB � V (a) is mapped to � QB � V (n + 1 � a) onWn. It then follows from (2.30) that V (t) is mapped under the onjugation as follows:V (t) �! V (n+ 1� t) on Wn : (2.33)It is straightforward to generalize the argument to the ase with multiple operator insertions. Theonjugate of the state made of the wedge state Wn with V (t1); V (t2); V (t3); : : : ; V (tm) is thereforethe state made of Wn with V (n+ 1� tm); V (n+ 1� tm�1); : : : ; V (n+ 1� t2); V (n+ 1� t1).The state 	(n)L with n � 2 does not satisfy the reality ondition. Indeed, the operator V (n�1)L (1; n)de�ned in (2.26) is mapped asZ 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z ntn�2 dtn�1 V (t1)V (t2) : : : V (tn�1)�! Z 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z ntn�2 dtn�1 V (n+ 1� tn�1)V (n+ 1� tn�2) : : : V (n+ 1� t1)= Z nn�1 dt01 Z t01n�2 dt02 Z t02n�3 dt03 : : : Z t0n�21 dt0n�1 V (t0n�1)V (t0n�2) : : : V (t01) (2.34)under the onjugation, where t0i = n+ 1� ti. We denote the onjugate of 	(n)L by 	(n)R . It is given byh� ;	(n)R i = h� ; (	(n)L )z i = h f Æ �(0) V (n�1)R (1; n) V (n) iWn ; (2.35)
15



where we de�nedV (n)R (1; n+ 1) � Z n+1n dt1 Z t1n�1 dt2 Z t2n�2 dt3 : : : Z tn�11 dtn V (tn)V (tn�1) : : : V (t1) for n � 1 ;V (0)R (1; 1) � 1 : (2.36)If 	 satis�es the equation of motion, its onjugate 	z also satis�es the equation of motion beauseQB	z +	z �	z = (QB	+	 �	)z = 0 : (2.37)Therefore, 	R de�ned by 	R = 1Xn=1�n	(n)R (2.38)satis�es the equation of motion.2.2.2 Gauge transformationWe have found two solutions 	L and 	R, and we expet that they are related by a gauge transformationgenerated by some gauge parameter U :	R = U�1 �	L � U + U�1 �QBU : (2.39)For a physial gauge transformation whih relates two string �elds satisfying the reality ondition,the gauge parameter U must satisfy the unitarity relation U z = U�1. As we will see later, the gaugeparameter U that relates 	L and 	R is even under the onjugation: U z = U . The omponent �elds of	L and 	R whih do not satisfy the reality ondition are thus related through the omponent �eldsof U whih also violate the reality ondition on the gauge parameter.Let us now onstrut U whih relates 	L and 	R. It is onvenient to rewrite the equation (2.39)as follows: QBU = U �	R � 	L � U : (2.40)We an expand U as U = 1Xn=0 �n U (n) with U (0) = 1 ; (2.41)and we solve the equation perturbatively in �. We an hooseU (1) = 0 (2.42)beause 	(1)L = 	(1)R and therefore QBU (1) = 0. The equation for U (2) ish�;QB U (2) i = h�;	(2)R i � h�;	(2)L i = h f Æ �(0) [V (1; 2) V (2)� V (1)V (1; 2) ℄ iW2 : (2.43)16



1 + �22! + �33! + : : :
Figure 8: Illustration of the expansion U = 1 + �2 U (2) + �3 U (3) +O(�4).This an be easily solved using the formula (2.16), and a solution ish�;U (2) i = 12 h f Æ �(0) (V (1; 2))2 iW2 : (2.44)We an onstrut U (n) at higher orders reursively in this way. However, we an infer U (n) from thestruture of (2.40). If we assume that U an be written without using  ghosts, the only  ghost isinserted at t = n in the O(�n) term of h�;U � 	R i when represented on Wn and at t = 1 on Wn inthe O(�n) term of h�;	L � U i. This motivates us to make the following ansatz:h�;U (n) i / h f Æ �(0)V (n)(1; n) iWn ; (2.45)where V (n)(a; b) � 1n! (V (a; b))n for n � 1 ; V (0)(a; b) � 1 : (2.46)We in fat show that the gauge transformation U in (2.39) is given byh� ;U (n) i = h f Æ �(0) V (n)(1; n) iWn : (2.47)See �gure 8. The BRST transformation of U (n) given in (2.47) ish�;QBU (n) i = 
 f Æ �(0) �V (n�1)(1; n) V (n) � V (1)V (n�1)(1; n)� �Wn ; (2.48)where we used (2.16). For the speial ase of n = 1, the terms on the right-hand side anel, whih isonsistent beause U (1) = 0. The O(�n) term of U �	R � 	L � U in (2.40) is given bynXm=1h f Æ �(0) V (n�m)(1; n�m)V (m�1)R (n�m+ 1; n) V (n) iWn� nXm=1h f Æ �(0) V (1)V (m�1)L (1;m)V (n�m)(m+ 1; n) iWn : (2.49)The proof of (2.40) for U given in (2.47) thus redues to showing thath f Æ �(0) V (1)V (n�1)(1; n) iWn = nXm=1h f Æ �(0) V (1)V (m�1)L (1;m)V (n�m)(m+ 1; n) iWn (2.50)17



andh f Æ �(0) V (n�1)(1; n) V (n) iWn = nXm=1h f Æ �(0) V (n�m)(1; n�m)V (m�1)R (n�m+ 1; n) V (n) iWn :(2.51)Sine the seond equation follows from the �rst one by the onjugation, it is suÆient to show (2.50).The operator V (n�1)(1; n) on the left-hand side an be written in a path-ordered form as follows:V (n�1)(1; n) = Z n1 dt1 Z nt1 dt2 : : : Z ntn�2 dtn�1 V (t1) : : : V (tn�1) : (2.52)We now deompose the integration region 1 � t1 � t2 � : : : � tn�1 � n in the following way:t1 � 2 ;t1 � 2 ; t2 � 3 ;t1 � 2 ; t2 � 3 ; t3 � 4 ;...t1 � 2 ; t2 � 3 ; : : : ; tm�1 � m; tm � m+ 1 ;...t1 � 2 ; t2 � 3 ; t3 � 4 ; : : : : : : : : : ; tn�2 � n� 1 ; tn�1 � n ;t1 � 2 ; t2 � 3 ; t3 � 4 ; : : : : : : : : : ; tn�2 � n� 1 ; tn�1 � n :
(2.53)

This deomposition of the integration region preisely mathes the right-hand side of (2.50). For ex-ample, the fourth line of (2.53) orresponds to the integration region for the produt of the operatorsV (m�1)L (1;m)V (n�m)(m+ 1; n). Furthermore, the �fth line vanishes beause of the vanishing integra-tion range n � tn�1 � n. This is onsistent with the right-hand side of (2.50) beause V (1)(n; n) = 0.The last line is nonvanishing and orresponds to V (n�1)L (1; n)V (0)(n+ 1; n) = V (n�1)L (1; n), where weused V (0)(a; b) � 1. We onlude thatV (n�1)(1; n) = nXm=1 V (m�1)L (1;m)V (n�m)(m+ 1; n) ; (2.54)and we have thus shown (2.50). This ompletes the proof that U is the gauge transformation thatrelates 	L and 	R.2.2.3 Constrution of a real solutionThe state U takes the form U = 1 + 1Xn=2 �n U (n) ; (2.55)
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and U (n) is even under the onjugation: (U (n))z = U (n). If a state X is even under the onjugation,then ln(1 +X) de�ned by ln(1 +X) � 1Xn=1 (�1)n+1n X �X � : : : �X| {z }n (2.56)is also even. If a state Y is even, then exp (aY ) with real a de�ned byexp (aY ) � 1 + 1Xn=1 ann! Y � Y � : : : � Y| {z }n (2.57)is also even. Therefore, (1 +X)�1, p1 +X and 1=p1 +X de�ned by(1 +X)�1 � exp [� ln(1 +X) ℄ = 1 + 1Xn=1 (�1)n X �X � : : : �X| {z }n ;p1 +X � exp � 12 ln(1 +X) � ; 1p1 +X � exp ��12 ln(1 +X) � (2.58)are all even if Xz = X. We de�ne U�1, pU , and 1=pU in this way, whih are well de�ned to allorders in � and are even under the onjugation.We an now onstrut a real solution 	 from 	L as follows:	 � 1pU �	L � pU + 1pU �QBpU= pU �	R � 1pU +pU �QB 1pU= 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QB pU �QBpU � 1pU � : (2.59)The seond expression is obtained from the �rst one using QBU = U �	R�	L �U , and 	 manifestlysatis�es the reality ondition in the third expression beause of the relations 	zL = 	R, (pU )z = pU ,(1=pU )z = 1=pU , and (QB pU )z = � QB pU . The state 	 also satis�es the equation of motionbeause it is obtained from the solution 	L by the gauge transformation generated by pU .We have suessfully onstruted real analyti solutions for marginal deformations with regularoperator produts. To summarize, our solution takes the form	 = 1pU �	L � pU + 1pU �QBpU ; (2.60)
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where 	L and U are de�ned by	L = 1Xn=1�n	(n)L ;h� ;	(n)L i = h f Æ �(0) V (1) V (n�1)L (1; n) iWn= Z 21 dt1 Z 3t1 dt2 : : : Z ntn�2 dtn�1 h f Æ �(0) V (1) V (t1)V (t2) : : : V (tn�1) iWn ;U = 1 + 1Xn=2�n U (n) ;h� ;U (n) i = h f Æ �(0)V (n)(1; n) iWn= 1n! Z n1 dt1 Z n1 dt2 : : : Z n1 dtn h f Æ �(0)V (t1)V (t2) : : : V (tn) iWn :
(2.61)

2.3 Generalization of wedge statesIn the previous subsetion, we found the identity (2.54). It is simply a onsequene of the deompo-sition of the integral region (2.53). The identity (2.54) an be generalized in the following way. Wede�ne V (n)L;�(1; n+ �) for � � 0 byV (n)L;�(1; n+ �) � Z 1+�1 dt1 Z 2+�t1 dt2 Z 3+�t2 dt3 : : : Z n+�tn�1 dtn V (t1)V (t2) : : : V (tn) for n � 1 ;V (0)L;�(1; �) � 1 : (2.62)This redues to V (n)L (1; n+ 1) de�ned in (2.26) when � = 1. We then �nd thatV (n)(1; n+ �+ �) = nXm=0 V (m)L;� (1;m+ �)V (n�m)(m+ �+ 1; n+ �+ �) (2.63)for any non-negative real numbers � and �. This identity redues to (2.54) when � = 1, � = 0.This generalized identity an be shown, as before, by deomposing the path-ordered integration region1 � t1 � t2 � : : : � tn � n+ �+ � of V (n)(1; n+ �+ �) in the following way:t1 � 1 + � ;t1 � 1 + � ; t2 � 2 + � ;t1 � 1 + � ; t2 � 2 + � ; t3 � 3 + � ;...t1 � 1 + � ; t2 � 2 + � ; : : : ; tm � m+ � ; tm+1 � m+ 1 + � ;...t1 � 1 + � ; t2 � 2 + � ; t3 � 3 + � ; : : : : : : : : : ; tn�1 � n� 1 + � ; tn � n+ � ;t1 � 1 + � ; t2 � 2 + � ; t3 � 3 + � ; : : : : : : : : : ; tn�1 � n� 1 + � ; tn � n+ � :
(2.64)
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This identity an be promoted to a relation of string �elds. We de�ne U� and UL;� with � � 0 byU� � 1Xn=0 �n U (n)� ; UL;� � 1Xn=0 �n U (n)L;� ; (2.65)where h� ;U (n)� i = h f Æ �(0) V (n)(1; n+ �) iWn+� for n+ � > 0 ; U (0)0 = 1 ;h� ;U (n)L;� i = h f Æ �(0) V (n)L;�(1; n+ �) iWn+� for n+ � > 0 ; U (0)L;0 = 1 : (2.66)The gauge parameter U in the previous subsetion is thusU = U0 ; (2.67)and the solution 	L in (2.27) is UL;1 with an extra insertion of � V (1). It then follows from (2.63)that U�+� = UL;� � U� : (2.68)When � = 0, we have U� = UL;� � U ; (2.69)where we have used U0 = U . As we disussed in the previous subsetion, the inverse of U is wellde�ned to all orders in �. We thus �nd thatUL;� = U� � U�1 : (2.70)It follows from this and (2.68) that U�+� = U� � U�1 � U� : (2.71)The state U� is W� +O(�) for � > 0, where W� is the well-known wedge state de�ned byh� ;W� i = h f Æ �(0) iW� : (2.72)The relation (2.71) for positive � and � thus redues to the famous relation W�+� = W� �W� when� = 0, and the state U� an be thought of as a generalization of the wedge state W�. When � is apositive integer, U� an be written in terms of U1 and U�1:U2 = U1 � U�1 � U1 ;U3 = U1 � U�1 � U1 � U�1 � U1 ;U4 = U1 � U�1 � U1 � U�1 � U1 � U�1 � U1 ;... (2.73)This struture indiates a modi�ation of the star produt for �nite � de�ned byA ? B � A � U�1 � B ; (2.74)21



� + �2 + �32 + : : :
Figure 9: Illustration of the expansion AL = �A(1)L + �2A(2)L + �3A(3)L +O(�4).and the relation (2.71) an be written as U�+� = U� ? U� : (2.75)On a tehnial level, the relation (2.71) will play an important role in the next setion for the on-strution of solutions assoiated with general marginal deformations. On a more oneptual level, wewill see in setion 5 that the modi�ed star produt (2.74) naturally appears in the string �eld theoryation expanded around a deformed bakground.3 Marginal deformations with singular operator produts3.1 Another form of the solution with regular operator produtsIn the proess of onstruting a real solution from 	L in the previous setion, we proved thatQB U = U �	R �	L � U : (3.1)As we have seen in (2.48), the BRST transformation of U an be deomposed into two piees:QB U = AR �AL ; (3.2)where AL and AR are given byh� ;AL i = 1Xn=1�n h f Æ �(0) V (1)V (n�1)(1; n) iWn ;h� ;AR i = 1Xn=1�n h f Æ �(0)V (n�1)(1; n) V (n) iWn : (3.3)See �gure 9. At O(�n) with n � 2, AL and AR aount for the term with V (1) and the term withV (n) in QBU (n), respetively. At O(�), QB U vanishes beause U (1) = 0, but we have hosen AL andAR at O(�) to be �	(1) for later onveniene.In the proof of (3.1), we have atually shown thatAL = 	L � U ; AR = U �	R : (3.4)22



As we disussed in the previous setion, the inverse of U is well de�ned to all orders in �. We thusobtain new expressions for 	L and 	R:	L = AL � U�1 ; 	R = U�1 � AR : (3.5)We have shown that 	L with 	(n)L in the form of (2.27) satis�es the equation of motion. Let us nowsee how 	L in the new form satis�es the equation of motion. The BRST transformation of 	L an bealulated as follows:QB	L = QB (AL � U�1)= (QBAL) � U�1 +AL � U�1 � (QBU) � U�1= (QBAL) � U�1 +AL � U�1 � (AR �AL) � U�1= (QBAL +AL � U�1 �AR) � U�1 �AL � U�1 �AL � U�1= (QBAL +AL � U�1 �AR) � U�1 �	L �	L : (3.6)
Therefore, the equation of motion is satis�ed if�QBAL = AL � U�1 � AR : (3.7)The left-hand side of the equation an be alulated as follows:� h� ;QBAL i = 1Xn=2�n h f Æ �(0) V (1)V (n�2)(1; n) V (n) iWn : (3.8)Let us next onsider the struture of the state AL � U�1 � AR on the right-hand side of (3.7). TheO(�n) terms of AL and AR are made of the wedge state Wn with operator insertions. The inverseU�1 an be written as a linear ombination of string produts made of �n U (n), and their O(�n) termsare again made of the wedge state Wn with operator insertions. It thus follows that all of the O(�n)terms of AL �U�1 �AR are made of Wn with operator insertions. This is onsistent with the strutureof (3.8). Furthermore, the insertions of � V on the surfaeWn are always � V (1) and � V (n), whihis again onsistent with the struture of (3.8). Finally, let us onsider the struture of integratedvertex operators. The state �QBAL takes the form of the state U2 de�ned in (2.65) with insertionsof � V . Similarly, AL and AR take the form of U1 with an insertion of � V . The equation (3.7) thusfollows from (2.71) with � = � = 1: U2 = U1 � U�1 � U1 : (3.9)We onlude that 	L of the form given in (3.5) satis�es the equation of motion.3.2 Generalization to the ase with singular operator produtsThe form 	L = AL � U�1 for the solution an be generalized to the ase where operator produts ofthe marginal operator are singular. As we disussed in the introdution, let us denote the properly23



renormalized operator implementing the hange of the boundary ondition between the points a andb by [ e� V (a;b) ℄r, whih is given in the form of an expansion in �:[ e� V (a;b) ℄r = 1Xn=0 �nn! [ (V (a; b))n ℄r ;= 1Xn=0 �n [V (n)(a; b) ℄r : (3.10)We de�ne U in the general ase by U � 1Xn=0 �n U (n) ; (3.11)where h� ;U (n) i = h f Æ �(0) [V (n)(1; n) ℄r iWn : (3.12)As we disussed in the introdution, we assume that the BRST transformation of [ e�V (a;b) ℄r forany exatly marginal deformation takes the formQB � [ e�V (a;b) ℄r = [ e� V (a;b) OR(b) ℄r � [OL(a) e� V (a;b) ℄r ; (3.13)where OL and OR are �-dependent, Grassmann-odd loal operators. The operators OL and OR arelosely related and mapped to eah other under the onjugation disussed in x 2.2.1 when the reetionassumption (VI) is satis�ed. We will disuss the relation between OL and OR in more detail in x 3.4, butit is relevant only when generating a real solution from 	L and we do not need to assume any relationbetween OL and OR in the onstrution of the solution 	L. In the ase of marginal deformations withregular operator produts, we see from (2.16) thatQB � e�V (a;b) = � � e�V (a;b) V (b)� V (a) e� V (a;b) i (3.14)and identify OregularL = OregularR = � V : (3.15)In the ase of marginal deformations with singular operator produts, there an be orretions to OLand OR, whih are determined from the BRST transformation of [V (n)(a; b) ℄r in the formQB � [V (n)(a; b) ℄r = nXr=1 [V (n�r)(a; b)O(r)R (b) ℄r � nXl=1 [O(l)L (a)V (n�l)(a; b) ℄r ; (3.16)where OL and OR are expanded as follows:OL = 1Xn=1 �nO(n)L ; OR = 1Xn=1 �nO(n)R : (3.17)The operators O(1)L and O(1)R are determined from the BRST transformation of [V (1)(a; b) ℄r . Sine[V (1)(a; b) ℄r does not require any renormalization, we �ndQB � [V (1)(a; b) ℄r = QB � V (a; b) = V (b)� V (a) (3.18)24
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Figure 10: Illustration of A(3)L .for any dimension-one primary �eld V . Thus the operators O(1)L and O(1)R are determined to beO(1)L = O(1)R = V (3.19)for any marginal deformation. Similarly, the operators O(n)L and O(n)R with n � 2 are determined fromthe BRST transformation of [V (n)(a; b) ℄r with n � 2 , but we do not need any spei� information onthese operator in the onstrution of solutions. The BRST transformation of U is then given byQB U = AR �AL ; (3.20)where AL � 1Xn=1 �nA(n)L ; AR � 1Xn=1 �nA(n)R ; (3.21)with h� ;A(n)L i = nXl=1h f Æ �(0) [O(l)L (1)V (n�l)(1; n) ℄r iWn ;h� ;A(n)R i = nXr=1h f Æ �(0) [V (n�r)(1; n)O(r)R (n) ℄r iWn : (3.22)See �gure 10. We have de�ned A(1)L and A(1)R to be 	(1) as in the regular ase.We now de�ne 	L by 	L � AL � U�1 ; (3.23)and we onlude from the alulation (3.6), where we only used the relation QBU = AR � AL, that	L satis�es the equation of motion if�QBAL = AL � U�1 � AR : (3.24)So far we have only used the assumption (I) on the BRST transformation of [ e�V (a;b) ℄r. We showin the next subsetion that the equation (3.24) holds when the assumptions (II){(V) stated in theintrodution are satis�ed. 25



3.3 Proof that the equation of motion is satis�edLet us �rst examine the left-hand side of (3.24). From the assumption (II) on the BRST transformationof [OL(a) e� V (a;b) ℄r, it is given by� h� ;QBA(n)L i = Xl+r�nh f Æ �(0) [O(l)L (1)V (n�l�r)(1; n)O(r)R (n) ℄r iWn : (3.25)If we de�ne U� for � � 0 in the singular ase byU� � 1Xn=0 �n U (n)� (3.26)with h� ;U (n)� i = h f Æ �(0) [V (n)(1; n+ �) ℄r iWn+� for n+ � > 0 ; U (0)0 � 1 ; (3.27)then �QBAL an be onstruted from Ul+r by inserting �l O(l)L and �r O(r)R and by summing over land r. We shematially write the state in the following way:�QBAL �Xl; r �Ul+r with �lO(l)L and �r O(r)R � : (3.28)The state AL on the right-hand side of (3.24) an be onstruted from Ul by inserting �lO(l)L andby summing over l. Similarly, the state AR an be onstruted from Ur by inserting �r O(r)R and bysumming over r. Therefore, the state AL � U�1 � AR an be shematially expressed as follows:AL � U�1 �AR �Xl �Ul with �lO(l)L � � U�1 �Xr �Ur with �r O(r)R ��Xl; r �Ul � U�1 � Ur with �lO(l)L and �r O(r)R � : (3.29)The equation �QBAL = AL � U�1 � AR thus follows if the relationUl+r = Ul � U�1 � Ur (3.30)with additional operator insertions of O(l)L and O(r)R holds for the singular ase.Motivated by this observation, we �rst show that the relation Ul+r = Ul � U�1 � Ur holds for thesingular ase if the assumptions of replaement (III), fatorization (IV), and loality (V) are satis�ed.It is then straightforward to generalize the proof by taking into aount the insertions of O(l)L and O(r)Rand show the equation (3.24). Instead of presenting a lengthy formal proof, we demonstrate how theseequations hold using onrete examples and then explain how the proof generalizes.Let us onsider the equation U2 = U1 � U�1 � U1 at O(�2). Sine U�1 = 1 � �2 U (2) + O(�3), itan be written as follows:U (2)2 = U (0)1 � U (2)1 + U (1)1 � U (1)1 + U (2)1 � U (0)1 � U (0)1 � U (2) � U (0)1 : (3.31)26



All the terms are made of the wedge state W4 with operator insertions. In the regular ase, theequation was a onsequene of the following relation of the operator insertions on W4:(V (1; 4))2 = (V (2; 4))2 + 2V (1; 2)V (3; 4) + (V (1; 3))2 � (V (2; 3))2 : (3.32)In the singular ase, we need to show[ (V (1; 4))2 ℄r = [ (V (2; 4))2 ℄r + 2 [V (1; 2) ℄r [V (3; 4) ℄r + [ (V (1; 3))2 ℄r � [ (V (2; 3))2 ℄r : (3.33)Note that we have impliitly used the loality assumption (V). The operators [ (V (2; 4))2 ℄r and[ (V (1; 3))2 ℄r on the right-hand side were originally de�ned on W3 and [ (V (2; 3))2 ℄r was de�nedon W2. They are now inserted on W4 in the same forms beause of the assumption (V). We next usethe fatorization assumption (IV) of the following form:[ e�1V (1;2) e�2V (3;4) ℄r = [ e�1V (1;2) ℄r [ e�2V (3;4) ℄r : (3.34)The relation at O(�1 �2) is [V (1; 2)V (3; 4) ℄r = [V (1; 2) ℄r [V (3; 4) ℄r : (3.35)Thus the right-hand side of (3.33) an be written as[ (V (2; 4))2 ℄r + 2 [V (1; 2) ℄r [V (3; 4) ℄r + [ (V (1; 3))2 ℄r � [ (V (2; 3))2 ℄r= [ (V (2; 4))2 ℄r + 2 [V (1; 2)V (3; 4) ℄r + [ (V (1; 3))2 ℄r � [ (V (2; 3))2 ℄r : (3.36)We then use the assumption (III) of replaement in the �nal step. It follows from the assumption (III)that [ e�V (a;) ℄r = [ e�V (a;b) e�V (b;) ℄r (3.37)for a < b < . At O(�2), we obtain the following formula:[ (V (a; ))2 ℄r = [ (V (a; b))2 ℄r + 2 [V (a; b)V (b; ) ℄r + [ (V (b; ))2 ℄r : (3.38)We thus �nd [ (V (2; 4))2 ℄r = [ (V (2; 3) + V (3; 4) )2 ℄r= [ (V (2; 3))2 ℄r + 2 [V (2; 3)V (3; 4) ℄r + [ (V (3; 4))2 ℄r ;[ (V (1; 3))2 ℄r = [ (V (1; 2) + V (2; 3) )2 ℄r= [ (V (1; 2))2 ℄r + 2 [V (1; 2)V (2; 3) ℄r + [ (V (2; 3))2 ℄r : (3.39)For the operator [ (V (1; 4))2 ℄r on the left-hand side of (3.33), we use the formula (3.38) reursivelyand obtain[ (V (1; 4))2 ℄r = [ (V (1; 2) + V (2; 3) + V (3; 4) )2 ℄r= [ (V (1; 2))2 ℄r + [ (V (2; 3))2 ℄r + [ (V (3; 4))2 ℄r+ 2 [V (1; 2)V (2; 3) ℄r + 2 [V (2; 3)V (3; 4) ℄r + 2 [V (1; 2)V (3; 4) ℄r : (3.40)27



We an expliitly on�rm that the equation (3.33) is satis�ed. However, the oeÆients in the basis� [ (V (1; 2))2 ℄r ; [ (V (2; 3))2 ℄r ; [ (V (3; 4))2 ℄r ;[V (1; 2)V (2; 3) ℄r ; [V (2; 3)V (3; 4) ℄r ; [V (1; 2)V (3; 4) ℄r 	 (3.41)are guaranteed to math on both sides of (3.33) beause they are the same as those in the regular asewhere the orresponding identity (3.32) has been shown.This proof an be generalized to Ul+r = Ul � U�1 � Ur at O(�n) for any positive integers l, r,and n. The state U (n)l+r an be expressed in terms of [V (n)(1; l + r + n) ℄r on Wl+r+n. Beause of theassumption (V), the terms of Ul �U�1 �Ur at O(�n) an also be expressed in terms of produts of theform Yj [V (kj)(aj ; bj) ℄r (3.42)on Wl+r+n, where positive integers kj , aj, and bj satisfy 1 � aj < bj � l + r + n, bj < aj+1 andPj kj = n. Using the fatorization assumption (IV), the produts an be written in the form[Yj V (kj)(aj ; bj) ℄r (3.43)on Wl+r+n. Finally, we use the replaement assumption (III) to expand both sides of the equationUl+r = Ul � U�1 � Ur in the basis n [ l+r+n�1Yi=1 V (`i)(i; i + 1) ℄r o ; (3.44)where `i's are non-negative integers withPl+r+n�1i=1 `i = n. The oeÆients in the basis are guaranteedto math on both sides of Ul+r = Ul � U�1 � Ur beause the equation holds in the regular ase. Thisompletes the proof of Ul+r = Ul � U�1 � Ur in the singular ase to all orders in �.The proof of �QBAL = AL �U�1 �AR is essentially parallel using the assumptions (III) and (IV)of replaement and fatorization with additional insertions of OL and OR. We provide the details ofthe proof in appendix A. We thus onlude that 	L given by	L = AL � U�1 (3.45)solves the equation of motion for any exatly marginal deformations satisfying the assumptions (I){(V).3.4 Constrution of a real solutionIt is straightforward to onstrut a real solution 	 from 	L as we did in x 2.2 for marginal deformationswith regular operator produts. The state U satis�es U z = U under the assumption (VI) of reetion.It then follows from (2.30) that (QBU)z = � QBU and thus (AR � AL)z = AL � AR. From this we28



onlude that the loal operators OL and OR are mapped under the onjugation disussed in x 2.2.1as follows: OL(t) �! OR(n+ 1� t) ; OR(t) �! OL(n+ 1� t) on Wn : (3.46)We thus �nd AzL = AR ; AzR = AL : (3.47)In the ase of marginal deformations with regular operator produts, OL and OR are both � V andare indeed mapped as (3.46).We de�ne 	R by 	R � U�1 � AR : (3.48)As in the regular ase, the state 	R is the onjugate of 	L:	R = 	zL : (3.49)It satis�es the equation of motion and obeys the relation QBU = U �	R�	L �U . We onlude that	 given by 	 = 1pU �	L � pU + 1pU �QB pU= pU �	R � 1pU +pU �QB 1pU= 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QB pU �QB pU � 1pU � (3.50)is real and satis�es the equation of motion. The solution 	 an also be expressed in terms of AL andAR in the following way, whih might be more onvenient for an expliit expansion in �:	 = 1pU � AL � 1pU + 1pU �QB pU= 1pU � AR � 1pU +pU �QB 1pU= 12 � 1pU � (AL +AR) � 1pU + 1pU �QB pU �QB pU � 1pU � : (3.51)
4 Expliit onstrutionWe have separated the onstrution of solutions for marginal deformations in open string �eld theoryinto two steps. In the previous setion, we have presented the general onstrution of solutions in openstring �eld theory from the operator [ e�V (a;b) ℄r. The seond step is then to onstrut suh properlyrenormalized operators satisfying the assumptions stated in the introdution for onrete examples ofexatly marginal deformations. This is a problem in the boundary CFT and independent of string�eld theory. In this setion, we arry out the seond step for a lass of marginal deformations withsingular operator produts by onstruting [ e�V (a;b) ℄r expliitly.29



4.1 A lass of marginal deformations with singular operator produtsThe dependene of the two-point funtion hV (t1)V (t2) i on t1 and t2 for a dimension-one primary�eld V is ompletely �xed by onformal symmetry. When the singular part of the operator produtexpansion (OPE) of V with itself is given byV (t)V (0) � 1t2 ; (4.1)the operator produt V (t1)V (t2) an be made �nite in the limit t1 ! t2 by subtrating hV (t1)V (t2) ifrom it.2 We de�ne ÆÆ V (t1)V (t2) ÆÆ for t1 6= t2 byÆÆ V (t1)V (t2) ÆÆ � V (t1)V (t2)�G(t1; t2) ; (4.2)where G(t1; t2) � hV (t1)V (t2) i : (4.3)Note that the orrelation funtion hV (t1)V (t2) i depends on the Riemann surfae where the boundaryCFT is de�ned, and thus the de�nition of ÆÆ V (t1)V (t2) ÆÆ also depends on the Riemann surfae.The OPE of V with itself, however, an have other singular terms. For example, the singular partof the OPE an be V (t)V (0) � 1t2 + 1t eV (0) (4.4)with some dimension-one primary �eld eV , whih an be proportional to V itself. The operatorÆÆ V (t1)V (t2) ÆÆ is not �nite if the single-pole term with eV is nonvanishing. We will disuss the asewith the OPE (4.4) in more detail in x 4.4.The operator ÆÆ V (t1)V (t2) ÆÆ oinides with the ordinary normal-ordered produt : V (t1)V (t2) :and is thus manifestly �nite for V (t) = i �tX�(t)=p2�0, where X� is a spae-like oordinate along theD-brane. However, it is in general di�erent from : V (t1)V (t2) : when V is a omposite operator. Forexample, when V (t) is given by V (t) = p2 : os�X�(t)p�0 � : ; (4.5)we an write ÆÆ V (t1)V (t2) ÆÆ asÆÆ V (t1)V (t2) ÆÆ = G(t1; t2)�1 : os�X�(t1) +X�(t2)p�0 � : +G(t1; t2) � : os�X�(t1)�X�(t2)p�0 � : �1 � ;(4.6)whih is not the same as the normal-ordered produt:ÆÆ V (t1)V (t2) ÆÆ 6= : V (t1)V (t2) : = 2 : os�X�(t1)p�0 � os�X�(t2)p�0 � : : (4.7)2 When the double-pole term 1=t2 in the OPE V (t)V (0) is nonvanishing, we normalize V (t) suh that the oeÆientof the double-pole term is unity. If the state 	(1) using V with this normalization is odd instead of even under theonjugation disussed in x 2.2.1, we set � = i ~� and take ~� to be real when onstruting the real solution 	 in x 3.4.30



We similarly de�ne ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ for arbitrary n with ti 6= tj reursively as follows:ÆÆ V (t1) ÆÆ � V (t1) ;ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ � ÆÆ V (t1)V (t2) : : : V (tn�1) ÆÆ V (tn)� n�1Xi=1 G(ti; tn) ÆÆ V (t1)V (t2) : : : V (ti�1)V (ti+1) : : : V (tn�1) ÆÆ (4.8)for n > 1 and ti 6= tj. This an be formally written in the following form:ÆÆYi V (ti) ÆÆ = exp��12 Z dt1dt2G(t1; t2) ÆÆV (t1) ÆÆV (t2) �Yi V (ti) for ti 6= tj : (4.9)For V (t) = i �tX�(t)=p2�0, the operator produt ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ again oinides with: V (t1)V (t2) : : : V (tn) : and is regular. In general, however, ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ with n � 3an be singular, even if it is �nite in the limit ti ! tj for any pair of i and j, when more than twooperators simultaneously ollide. In this setion, we onsider a lass of marginal operators V whihsatisfy the following �niteness ondition.The �niteness ondition. The limitlimt!t0 ÆÆ V (t)V (t0)n ÆÆ (4.10)is �nite for any positive integer n.We expliitly onstrut [ e� V (a;b) ℄r satisfying the assumptions stated in the introdution for this lassof marginal operators.4.2 ExamplesLet us give some examples of suh marginal deformations for D-branes in at spaetime with Neumannor Dirihlet boundary onditions. As we have already mentioned, the �niteness ondition (4.10) issatis�ed for V (t) = ip2�0 �tX�(t) ; (4.11)where X� is a spae-like diretion along the D-brane. The diretion X� an be nonompat or an beompati�ed on a irle with any radius. Similarly, the operatorV (t) = 1p2�0 �tX0(t) (4.12)for the time-like diretion also satis�es the �niteness ondition.3 Both of these deformations orrespondto turning on a onstant mode of the gauge �eld on the D-brane.3 We have to set � = i ~� and take ~� to be real for this operator when onstruting the real solution 	.31



The �niteness ondition is also satis�ed forV (t) = 1p2�0 �?X�(t) ; (4.13)whereX� is a diretion transverse to the D-brane and �? is the derivative normal to the boundary. Thediretion X� an be nonompat or an be ompati�ed on a irle with any radius. This deformationorresponds to displaement of the position of the D-brane in the diretion X�. The ondition (4.10)is satis�ed beause the operator ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ again oinides with : V (t1)V (t2) : : : V (tn) :and is regular.A more nontrivial example of V satisfying (4.10) isV (t) = p2 : os�X�(t)p�0 � : ; (4.14)whereX� is again a spae-like diretion along the D-brane. The diretionX� an be nonompat or anbe ompati�ed on a irle whose radius is a multiple of the self-dual radius to be onsistent with theperiodiity of the osine potential. This deformation is known to be exatly marginal [45, 46, 47, 48℄and interpolates Neumann and Dirihlet boundary onditions. If we start from a D25-brane anddeform the bakground by this operator, we obtain a periodi array of D24-branes at some valueof the deformation parameter. When we ompatify the X� diretion on a irle with the self-dualradius, the free boson for the X� diretion an be desribed by a di�erent free boson Y � beause of theSU(2) � SU(2) symmetry, and the marginal operator V (t) an be written in terms of Y � as follows:V (t) = p2 : os�X�(t)p�0 � : = ip2�0 �tY �(t) : (4.15)See, for example, x 3.1 of [2℄. Finiteness of ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ at the self-dual radius is then aonsequene of Wik's theorem in the desription in terms of Y �. On the other hand, the �nitenessis highly nontrivial in the original desription in terms of X�. The operator algebra of boundaryoperators neessary for the alulation of ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ, however, does not depend on theompati�ation radius. Thus ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ is �nite for any radius whih is a multiple ofthe self-dual radius and for the nonompat ase as well.The operator algebra of boundary operators neessary for the alulation of the operator produtÆÆ V (t1)V (t2) : : : V (tn) ÆÆ is the same if we replae X� by iX0. Therefore, the marginal operatorV (t) = p2 : osh�X0(t)p�0 � : (4.16)also satis�es the �niteness ondition. This deformation has been disussed in detail in the ontext ofthe rolling tahyon [49℄.All the operators mentioned in this subsetion are known to be exatly marginal. In the remain-der of this setion, we onstrut solutions in terms of ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ, and the onstrutiondepends on the expliit form of V only through these operator produts. Thus all the marginaldeformations disussed in this subsetion are overed by our onstrution.32



4.3 Renormalizing operatorsFor the lass of marginal operators satisfying the �niteness ondition (4.10) in x 4.1, we an onstrut�nite operators ÆÆ(V (a; b))n ÆÆ for any n using the point-splitting regularization. For n = 2, we onstrutÆÆ(V (a; b))2 ÆÆ as follows:ÆÆ(V (a; b))2 ÆÆ = lim�!0 Z b��a dt1 Z bt1+� dt2 �V (t1)V (t2)�G(t1; t2)�+ lim�!0 Z ba+� dt1 Z t1��a dt2 �V (t1)V (t2)�G(t1; t2)� : (4.17)The �rst line and the seond line on the right-hand side are atually idential. We ould have writtenÆÆ(V (a; b))2 ÆÆ using only one of them, but we used both of them so that the integral region redues tothe produt of a � t1 � b and a � t2 � b without any ordering onstraint in the limit � ! 0. Theonstrution an be generalized to any n as follows:ÆÆ(V (a; b))n ÆÆ = lim�!0 Z�(n)� dt1dt2 : : : dtn X0�k�n=2 (�1)k n!2k k! (n� 2k)! kYi=1 G(ti; ti+k) nYj=2k+1V (tj) ; (4.18)where the integral region �(n)� is�(n)� : a � ti � b for i = 1; 2; : : : ; n with j ti � tj j � � for i 6= j : (4.19)The �niteness ondition (4.10) guarantees that the limit �! 0 is well de�ned and �nite for any n. Wethen de�ne ÆÆ e�V (a;b) ÆÆ by its expansion in �:ÆÆ e�V (a;b) ÆÆ � 1Xn=0 �nn! ÆÆ(V (a; b))n ÆÆ : (4.20)The de�nition of ÆÆ e�V (a;b) ÆÆ depends on the Riemann surfae where the boundary CFT is de�nedthrough the propagator G(t1; t2). When we alulate star produts of string �elds involving theoperators in the expansion (4.20), the operators de�ned on Wn are embedded in a surfae Wm withm � n, and the operators in the expansion (4.20) are not invariant. Thus we annot simply set[ e�V (a;b) ℄r � ÆÆ e�V (a;b) ÆÆ beause the loality assumption (V) on [ e�V (a;b) ℄r is not satis�ed.Let us study the issue more expliitly in a simpler example. The operator ÆÆ V (a)V (a; b) ÆÆ is givenby ÆÆ V (a)V (a; b) ÆÆ = lim�!0 Z ba+� dt ÆÆ V (a)V (t) ÆÆ = lim�!0 Z ba+� dt hV (a)V (t)�G(a; t) i : (4.21)We denote the propagator G(t1; t2) on Wn by Gn(t1; t2). Its expliit expression isGn(t1; t2) � hV (t1)V (t2) iWn = �2(n+ 1)2 sin2� t2 � t1n+ 1 �� : (4.22)33



The operator ÆÆ V (a)V (a; b) ÆÆ de�ned on Wn is thusÆÆ V (a)V (a; b) ÆÆ = lim�!0 Z ba+� dt h V (a)V (t)� �2(n+ 1)2 sin2� t�an+1 �� i on Wn : (4.23)When this operator is embedded in Wm, it should be written using the propagator on Wm as follows:lim�!0 Z ba+� dt hV (a)V (t)� �2(n+ 1)2 sin2� t�an+1 �� i= lim�!0 Z ba+� dt hV (a)V (t)� �2(m+ 1)2 sin2� t�am+1 �� i� Z ba dt ÆG(a; t) ; (4.24)where ÆG(t1; t2) � Gn(t1; t2)�Gm(t1; t2)= �2(n+ 1)2 sin2� t2 � t1n+ 1 �� � �2(m+ 1)2 sin2� t2 � t1m+ 1 ��= (m� n)(2 +m+ n)�23(m+ 1)2(n+ 1)2 +O((t2 � t1)2) ; (4.25)and ÆG(t1; t2) is �nite in the limit t2 ! t1. The operator ÆÆ V (a)V (a; b) ÆÆ de�ned on Wn is thusrewritten when embedded in Wm asÆÆ V (a)V (a; b) ÆÆ �������!Wn!Wm ÆÆ V (a)V (a; b) ÆÆ�Z ba dt ÆG(a; t) : (4.26)The notation A �������!Wn!Wm B (4.27)implies that A = B, but A is written in terms of the propagator on Wn and B is written in terms ofthe propagator on Wm. The assumption of loality (V) an be stated using this notation as[ e�V (a;b) ℄r �������!Wn!Wm [ e�V (a;b) ℄r ; [OL(a) e�V (a;b) ℄r �������!Wn!Wm [OL(a) e�V (a;b) ℄r : (4.28)As an be expeted from the fat that O(1)L = O(1)R = V in general, we will need to de�ne the operator[V (a) e�V (a;b) ℄r satisfying [V (a) e�V (a;b) ℄r �������!Wn!Wm [V (a) e�V (a;b) ℄r : (4.29)The operator ÆÆ V (a)V (a; b) ÆÆ does not satisfy[V (a)V (a; b) ℄r �������!Wn!Wm [V (a)V (a; b) ℄r ; (4.30)and thus violates (4.29) at O(�). In order to anel the extra term in (4.26), we add bak a �nitepart of the propagator ontration whih we subtrated. We de�ne the renormalized ontrationhV (a)V (a; b) ir by hV (a)V (a; b)ir � lim�!0 � Z ba+� dtG(a; t) � 1� � : (4.31)34



Its expliit expression on Wn ishV (a)V (a; b) ir = � �1 + n ot��(b� a)1 + n � on Wn ; (4.32)and it is rewritten when embedded in Wm ashV (a)V (a; b) ir �������!Wn!Wm hV (a)V (a; b) ir + Z ba dt ÆG(a; t) : (4.33)This allows us to de�ne our �rst renormalized operator [V (a)V (a; b) ℄r by�V (a)V (a; b) �r � ÆÆ V (a)V (a; b) ÆÆ + hV (a)V (a; b) ir : (4.34)Sine the extra term in (4.26) is aneled by the extra terms in (4.33), the operator [V (a)V (a; b) ℄ris invariant under the embedding from Wn to Wm and thus satis�es (4.30). In fat, we an write[V (a)V (a; b) ℄r in the following form whih does not depend on the propagator:�V (a)V (a; b) �r = lim�!0� Z ba+� dt V (a)V (t)� 1� � : (4.35)Similarly, we an de�ne the renormalized ontration and the renormalized operator for V (a; b)V (b)by hV (a; b)V (b) ir � lim�!0 � Z b��a G(t; b) � 1� � ;�V (a; b)V (b) �r � ÆÆ V (a; b)V (b) ÆÆ + hV (a; b)V (b) ir = lim�!0 � Z b��a dt V (t)V (b)� 1� � : (4.36)The renormalized ontration hV (a; b)V (b) ir on Wn ishV (a; b)V (b) ir = � �1 + n ot��(b� a)1 + n � on Wn : (4.37)We use the same strategy to de�ne [ (V (a; b))2 ℄r. We de�ne hV (a; b)2 ir byhV (a; b)2 ir � 2 lim�!0� Z b��a dt1 Z bt1+� dt2G(t1; t2)� b� a� �� � ln � � : (4.38)Its expression on Wn ishV (a; b)2 ir = ln� �2(n+ 1)2 sin2� b�an+1 ��� = lnGn(a; b) on Wn : (4.39)We then de�ne [ (V (a; b))2 ℄r by� (V (a; b))2 �r � ÆÆ(V (a; b))2 ÆÆ + hV (a; b)2 ir : (4.40)35



Sine ÆÆ(V (a; b))2 ÆÆ and hV (a; b)2 ir de�ned on Wn are rewritten when embedded in Wm asÆÆ(V (a; b))2 ÆÆ �������!Wn!Wm ÆÆ(V (a; b))2 ÆÆ �� ;hV (a; b)2 ir �������!Wn!Wm hV (a; b)2 ir +� ; (4.41)where � � Z ba dt1 Z ba dt2 ÆG(t1; t2) ; (4.42)the operator [ (V (a; b))2 ℄r is invariant under the embedding from Wn to Wm.The operator [ e�V (a;b) ℄r an also be de�ned using hV (a; b)2 ir as follows:[ e�V (a;b) ℄r � e 12�2hV (a;b)2 ir ÆÆ e�V (a;b) ÆÆ : (4.43)By replaing Gn in (4.18) on Wn with Gm + ÆG, we �ndÆÆ(V (a; b))k ÆÆ �������!Wn!Wm X0�`�k=2 (�1)` k!2` (k � 2`)! `! �` ÆÆ(V (a; b))k�2` ÆÆ : (4.44)It then follows from ÆÆ e�V (a;b) ÆÆ �������!Wn!Wm e� 12 �2� ÆÆ e�V (a;b) ÆÆ ;e 12�2hV (a;b)2 ir �������!Wn!Wm e 12 �2� e 12�2hV (a;b)2 ir (4.45)that the operator [ e�V (a;b) ℄r transforms as[ e�V (a;b) ℄r �������!Wn!Wm [ e�V (a;b) ℄r (4.46)under the embedding and thus satis�es the loality assumption (V). It is obvious from the de�nition(4.18) that [ e�V (a;b) ℄r is invariant when V (t) is replaed by V (a+b� t) and thus satis�es the reetionassumption (VI) as well.Let us next de�ne the operators [V (a) e�V (a;b) ℄r and [ e�V (a;b) V (b) ℄r. Using the renormalizedontrations hV (a; b)2 ir, hV (a)V (a; b) ir , and hV (a; b)V (b) ir, they are de�ned as follows:[V (a) e�V (a;b) ℄r � e 12�2hV (a;b)2ir ÆÆ �V (a) + � hV (a)V (a; b) ir� e�V (a;b) ÆÆ ;[ e�V (a;b) V (b) ℄r � e 12�2hV (a;b)2ir ÆÆ e�V (a;b)�V (b) + � hV (a; b)V (b) ir� ÆÆ : (4.47)Let us prove that [V (a) e�V (a;b) ℄r satis�es the ondition (4.29). It follows from the de�nition ofÆÆ V (t1)V (t2) : : : V (tn) ÆÆ thatÆÆ V (a) e�V (a;b) ÆÆ = lim�!0 �V (a� �) ÆÆ e�V (a;b) ÆÆ � � Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ � : (4.48)36



We thus �nde 12�2hV (a;b)2ir ÆÆ V (a) e�V (a;b) ÆÆ �������!Wn!Wm e 12�2hV (a;b)2ir ÆÆ V (a) e�V (a;b) ÆÆ � � Z ba dt ÆG(a; t) [ e�V (a;b) ℄r(4.49)for the �rst term in the de�nition (4.47) of [V (a) e�V (a;b) ℄r. Similarly, the seond term transforms as� hV (a)V (a; b) ir [ e�V (a;b)℄r �������!Wn!Wm � hV (a)V (a; b) ir [ e�V (a;b)℄r + � Z ba dt ÆG(a; t) [ e�V (a;b) ℄r ;(4.50)where we used (4.33). Combining (4.49) and (4.50), we have thus shown that [V (a) e�V (a;b) ℄r satis-�es (4.29).To summarize, we have de�ned [ e�V (a;b) ℄r satisfying the assumptions of loality (V) and ree-tion (VI) and [V (a) e�V (a;b) ℄r satisfying (4.29) for the lass of marginal operators satisfying the �nite-ness ondition stated in x 4.1.4.4 The BRST transformationLet us next alulate the BRST transformation of [ e�V (a;b) ℄r de�ned in (4.43) to verify that theassumption (I) on the BRST transformation is satis�ed and determine OL and OR. The alulationat O(�) is the same as (2.3) in the regular ase and gives O(1)L = O(1)R = V . The alulation at O(�2)involves the OPE of the marginal operator with itself. We in fat expet that the assumption (I) isnot satis�ed when the marginal deformation is not exatly marginal. It is known that the deformationassoiated with V is not exatly marginal if the single-pole term in (4.4) is nonvanishing. See, forexample, [47℄. In the onstrution of analyti solutions in [18℄, there was indeed an obstrution to solvethe equation of motion at O(�2) when the single-pole term in (4.4) is nonvanishing. It is thereforeinstrutive to briey onsider the ase of the more general OPE (4.4),V (t)V (0) � 1t2 + 1t eV (0) ; (4.51)and to see how the assumption (I) is violated when the single-pole term with eV is nonvanishing. Weregularize V (2)(a; b) as follows: Z b��a dt1 Z bt1+� dt2 V (t1)V (t2) : (4.52)The alulation of its BRST transformation is similar to the alulation of QB	(3)L presented in (2.21)and (2.22):QB � � Z b��a dt1 Z bt1+� dt2 V (t1)V (t2) � = Z b��a dt1 Z bt1+� dt2 h �t1 [ V (t1) ℄V (t2) + V (t1) �t2 [ V (t2) ℄ i=Z b��a dt1 V (t1) V (b)� Z ba+� dt2 V (a)V (t2) + Z b��a dt1 V (t1)V (t1 + �) � (t1)� (t1 + �) � :(4.53)37



The last term on the right-hand side no longer vanishes in the limit � ! 0 when the OPE of V withitself is singular and an be alulated as follows:Z b��a dt V (t)V (t+ �) h (t)� (t+ �) i= Z b��a dt� 1�2 � 1� eV (t) +O(�0)�h�� �(t)� �22 �2(t) +O(�3) i= Z b��a dt h �eV (t)� 1� �(t) � 12 �2(t) i+O(�)= Z b��a dt �eV (t)� 1� (b� �) + 1� (a)� 12 �(b� �) + 12 �(a) +O(�)= Z ba dt �eV (t)� 1� (b) + 1� (a) + 12 �(b) + 12 �(a) +O(�) :
(4.54)

We thus obtain QB � �Z b��a dt1 Z bt1+� dt2 V (t1)V (t2)�= "Z b��a dt1 V (t1)V (b)� 1�#(b)� (a)"Z ba+� dt2 V (a)V (t2)� 1�#+ �(b)2 + �(a)2 + Z ba dt1�eV (t1) +O(�) : (4.55)
This does not take the form of the O(�2) term of [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r beause of theterm with �eV , whih is �nite in the limit � ! 0. The divergenes in (4.55) arise only when V (t)approahes the end points of the integral region, and any ounterterms to take are of those loalizeddivergenes will not anel the �nite integral of �eV over the whole integral region. Therefore, theassumption (I) on the BRST transformation is not satis�ed when the single-pole term in (4.51) isnonvanishing. This is onsistent beause the deformation is not exatly marginal in this ase, as wementioned before. When the single-pole term in (4.51) vanishes, the result (4.55) in the limit �! 0 is�nite and given bylim�!0 �QB � hZ b��a dt1 Z bt1+� dt2 V (t1)V (t2)i � = [V (a; b) V (b) ℄r � [ V (a)V (a; b) ℄r + �(b)2 + �(a)2 :(4.56)Note that [V (a; b) V (b) ℄r and [ V (a)V (a; b) ℄r given in (4.35) and (4.36) emerged naturally. Weonlude that O(1)R = O(1)L = V ; O(2)R = �O(2)L = 12 � (4.57)for any exatly marginal deformation with the singular OPE given by (4.1).Let us now alulate the BRST transformation of [ e�V (a;b) ℄r for the lass of marginal operatorssatisfying the �niteness ondition (4.10) in x 4.1:QB � [ e�V (a;b) ℄r = e 12�2hV (a;b)2ir 1Xn=1 �nn! QB � ÆÆ (V (a; b))n ÆÆ (4.58)38



We use the expression (4.18) of ÆÆ (V (a; b))n ÆÆ and alulate its BRST transformation as follows:QB � ÆÆ (V (a; b))n ÆÆ= X0�k�n=2 (�1)k n!2k k! (n� 2k)! lim�!0Z�(n)� dnt kYi=1 G(ti; ti+k) QB � nYj=2k+1V (tj)= n X0�k<n=2 (�1)k (n� 1)!2k k! (n� 2k � 1)! lim�!0Z�(n)� dnt kYi=1 G(ti; ti+k) n�1Yj=2k+1V (tj) �tn�V (tn)�= n lim�!0Z�(n)� dnt ÆÆ V (t1) : : : V (tn�1) ÆÆ �tn�V (tn)� : (4.59)
Using (4.8), this an be written in the following way:QB � ÆÆ (V (a; b))n ÆÆ = lim�!0Z�(n)� dnt �n ÆÆ V (t1) : : : V (tn�1) �tn�V (tn)� ÆÆ+ n(n� 1) ÆÆ V (t1) : : : V (tn�2) ÆÆ �tn�G(tn�1; tn) (tn)� � : (4.60)The �rst term of the integrand on the right-hand side is �nite so that we an take the limit � ! 0and arry out the integral over tn. The only divergene in the seond term of the integrand ariseswhen jtn � tn�1j ! 0. The integral region therefore fatorizes into that of t1; t2; : : : tn�2 without therestrition jti � tjj � � and �(2)� for tn�1 and tn. We thus obtainQB � ÆÆ (V (a; b))n ÆÆ = nZ ba dtn ÆÆ (V (a; b))n�1 �tn�V (tn)� ÆÆ+ n(n� 1) ÆÆ (V (a; b))n�2 ÆÆ lim�!0Z�(2)� dtn�1dtn �tn�G(tn�1; tn) (tn)�= n ÆÆ (V (a; b))n�1 �V (b)� V (a)� ÆÆ+ n(n� 1) ÆÆ (V (a; b))n�2 ÆÆ lim�!0Z�(2)� dtn�1dtn �tn�G(tn�1; tn) (tn)� :(4.61)The integral an be evaluated as follows:lim�!0Z�(2)� dt1dt2 �t2�G(t1; t2) (t2) �= lim�!0� Z b��a dt1 Z bt1+� dt2 �t2�G(t1; t2) (t2) �+ Z ba+� dt1 Z t1��a dt2 �t2�G(t1; t2) (t2) � �= lim�!0� Z b��a dt1 hG(t1; b) (b) �G(t1; t1 + �) (t1 + �) i+ Z ba+� dt1 hG(t1 � �; t1) (t1 � �)�G(a; t1) (a) i �= lim�!0� Z b��a dtG(t; b) (b) � Z ba+� dtG(a; t) (a) + Z b��a dtG(t; t+ �) h (t)� (t+ �) i � :

(4.62)
39



The alulation of the last term is essentially the same as that of (4.54) without the term involving eV :Z b��a dtG(t; t + �) h (t)� (t+ �) i = Z b��a dt� 1�2 +O(�0)�h�� �(t)� �22 �2(t) +O(�3) i= �1� (b) + 1� (a) + 12 �(b) + 12 �(a) +O(�) : (4.63)We thus �ndlim�!0Z�(2)� dt1dt2 �t2�G(t1; t2) (t2) �= lim�!0 � Z b��a dtG(t; b) � 1� � (b)� lim�!0 � Z ba+� dtG(a; t) � 1� � (a) + 12 �(b) + 12 �(a)= hV (a; b)V (b) ir (b)� hV (a)V (a; b) ir (a) + 12 �(b) + 12 �(a) ; (4.64)where we have used (4.31) and (4.36). Combining this and (4.61), the result an be written as follows:QB � ÆÆ e�V (a;b) ÆÆ = � ÆÆ e�V (a;b) V (b) ÆÆ � � ÆÆ V (a) e�V (a;b) ÆÆ+ �2 hV (a; b)V (b) ir ÆÆ e�V (a;b) (b) ÆÆ � �2 hV (a)V (a; b) ir ÆÆ (a) e�V (a;b) ÆÆ+ �22 ÆÆ e�V (a;b) �(b) ÆÆ + �22 ÆÆ �(a) e�V (a;b) ÆÆ : (4.65)Note that the struturesÆÆ�V (a) + � hV (a)V (a; b) ir� e�V (a;b) ÆÆ ; ÆÆ e�V (a;b) �V (b) + � hV (a; b)V (b) ir� ÆÆ (4.66)of [V (a) e�V (a;b) ℄r and [ e�V (a;b) V (b) ℄r de�ned in (4.47) emerged naturally. Therefore, the BRSTtransformation of [ e�V (a;b) ℄r an be written using the de�nitions (4.47) as follows:QB � [ e�V (a;b) ℄r = h e�V (a;b)��V (b) + �22 �(b)� ir � h ��V (a)� �22 �(a)�e�V (a;b) ir : (4.67)We have thus veri�ed the assumption (I) on the BRST transformation and determined the operatorsOL and OR to be OR = � V + �22 � ; OL = � V � �22 � ; (4.68)or equivalentlyO(1)R = O(1)L = V ; O(2)R = �O(2)L = 12 � ; O(n)R = O(n)L = 0 for n � 3 : (4.69)With these expressions for OR and OL and the expliit forms of [ e�V (a;b) ℄r and [V (a) e�V (a;b) ℄r givenin (4.43) and (4.47), 	L and 	 an be expliitly onstruted for the lass of marginal deformations sat-isfying the �niteness ondition (4.10) in x 4.1. If all the assumptions (I){(VI) stated in the introdutionare satis�ed, 	L and 	 are guaranteed to solve the equation of motion. The loality assumption (V)for the operator [OL(a) e�V (a;b) ℄r is satis�ed beause of (4.29), (4.46), and (4.68). We have thusveri�ed the assumptions (I), (V), and (VI). We prove the remaining assumptions of replaement(III) and fatorization (IV) in appendix B.1 and the assumption (II) on the BRST transformation inappendix B.2. 40



4.5 Conformal properties of [OL(a) e�V (a;b) ℄rThe operator OL(a) always appears in the ombination [OL(a) e�V (a;b) : : : ℄r with some b. Similarly, theoperator OR(b) always appears in the ombination [ : : : e�V (a;b) OR(b) ℄r with some a. Correspondingly,the operators O(l)L (a) and O(r)R (b) always appear in the form� nXl=1 O(l)L (a)V (n�l)(a; b) : : : �r ; � : : : nXr=1 V (n�r)(a; b)O(r)R (b) �r ; (4.70)or � Xl+r�n O(l)L (a)V (n�l�r)(a; b)O(r)R (b) �r : (4.71)We do not need to require the existene of OL(a) andOR(b) as independent operators, and we only needto de�ne [OL(a) e�V (a;b) : : : ℄r and [ : : : e�V (a;b) OR(b) ℄r expanded in �. In fat, operators in these formsare expeted to transform ovariantly under onformal transformations. Let us onsider onformaltransformations of the operator [OL(a) e� V (a;b) ℄r we determined in x 4.4 to the �rst nontrivial orderin �.When we hange boundary onditions on a segment between a and b of the real axis, the two endpoints a and b behave as primary �elds under onformal transformations, and they are often desribedin terms of boundary-ondition hanging operators. We thus expet that the operator [ e�V (a;b) ℄r ismapped by a onformal transformation g(z) to g0(a)h(�) g0(b)h(�) [ e�V (g(a); g(b)) ℄r, where h(�) an beinterpreted as the dimension of the boundary-ondition hanging operator. For simpliity, we assumethat the segment between a and b is mapped by g(z) to a segment on the real axis so that theoperator [ e�V (g(a); g(b)) ℄r is well de�ned without any generalization. Sine the BRST transformationmaps a primary �eld to another primary �eld of the same dimension, we also expet that the operator[OL(a) e�V (a;b) ℄r transforms ovariantly and is mapped by g(z) asg Æ [OL(a) e�V (a;b) ℄r = g0(a)h(�) g0(b)h(�) [OL(g(a)) e�V (g(a); g(b)) ℄r : (4.72)To linear order in �, the onformal transformation isg Æ �� V (a) +O(�2) � = � V (g(a)) +O(�2) (4.73)and is onsistent with (4.72) for h(�) = O(�). At O(�2), we have[O(1)L (a)V (a; b) ℄r + [O(2)L (a) ℄r = [ V (a)V (a; b) ℄r � 12 �(a) : (4.74)The operator � is not a primary �eld and thus the seond term of (4.74) does not transform ovariantlyunder onformal transformations. In fat, the �rst term does not transform ovariantly either butthe sum [O(1)L (a)V (a; b) ℄r + [O(2)L (a) ℄r does transform ovariantly. The operator �V (a)V (a; b) �r is41



mapped by g(z) as follows:g Æ �V (a)V (a; b) �r = lim�!0 � Z ba+� dt g0(a)V �g(a)� g0(t)V �g(t)�� 1� �= lim�!0 � g0(a)Z g(b)g(a+�) d~t V �g(a)� V �~t�� 1� �= g0(a) lim�!0 � Z g(b)g(a+�) d~t V �g(a)� V �~t�� 1g(a + �)� g(a) �+ lim�!0 � g0(a)g(a+ �)� g(a) � 1� �= g0(a) � V �g(a)� V �g(a); g(b)� �r � g00(a)2 g0(a) ; (4.75)
where ~t = g(t). If we ompare this withg Æ �(a) = dda � �g(a)�g0(a) � = ��g(a)�� g00(a)g0(a)2 �g(a)� ; (4.76)we �nd g Æ [ V (a)V (a; b) ℄r � g Æ �(a)2= � V �g(a)� V �g(a); g(b)� �r � g00(a)2 g0(a)2 �g(a)�� ��g(a)�2 + g00(a)2 g0(a)2 �g(a)�= � V �g(a)� V �g(a); g(b)� �r � ��g(a)�2 : (4.77)This is onsistent with (4.72) at O(�2) with h(�) = O(�2). Note that the oeÆient of the seondterm in (4.74) had to be �1=2 for the nonovariant term to be aneled. Eah of these two operators[O(1)L (a)V (a; b) ℄r and [O(2)L (a) ℄r de�ned on Wn is invariant when embedded in Wm. Thus any linearombination of the two is invariant under the embedding from Wn to Wm, but only the ombination[O(1)L (a)V (a; b) ℄r +[O(2)L (a) ℄r transforms ovariantly under onformal transformations. Although theovariane of [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r under onformal transformations is not required for thesolution to satisfy the equation of motion, this alulation provides a nontrivial onsisteny hek ofour result for the operator OL.5 String �eld theory around the deformed bakground5.1 AtionNow that we have onstruted solutions for general marginal deformations, let us expand the string�eld theory ation around the solutions. The string �eld theory ation is given byS[	℄ = � 1g2 � 12 h	 ; QB	 i+ 13 h	 ; 	 �	 i � ; (5.1)42



where g is the open string oupling onstant. In the ase of a D25-brane in at spaetime, g is relatedto the D25-brane tension T25 as T25 = 1=(2�2g2) . We shift the string �eld 	 as	 = 	� + Æ	 ; (5.2)where the solution 	� is	� = 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QBpU �QBpU � 1pU �= 12 � 1pU � (AL +AR) � 1pU + 1pU �QBpU �QBpU � 1pU � : (5.3)We then expand the ation and obtainS[	℄ = S[	�℄ + S[Æ	℄� 1g2 h Æ	 ; 	� � Æ	 i= S[	�℄ + S[Æ	℄� 12g2 h h Æ	 ; 1pU � (AL +AR) � 1pU � Æ	 i+ h Æ	 ; 1pU �QBpU � Æ	 i � h Æ	 ; QBpU � 1pU � Æ	 i i : (5.4)The term linear in Æ	 vanishes beause 	� satis�es the equation of motion. The term S[	�℄ onlyshifts the ation by an overall onstant. In fat, it should vanish for solutions orresponding to exatlymarginal deformations. The struture of the ation suggests the following �eld rede�nition:� � pU � Æ	 � pU =) Æ	 = 1pU � � � 1pU : (5.5)The term S[Æ	℄ an be expressed in terms of the new variable � as follows:S[Æ	℄ = S� 1pU � � � 1pU �= � 12g2D 1pU � � � 1pU ; QB � � 1pU � � � 1pU �E� 13g2 
� ; U�1 � � � U�1 � � � U�1 �= � 12g2D� ; U�1 �QB� � U�1 E� 13g2 
� ; U�1 � � � U�1 � � � U�1 �� 12g2D 1pU � � � 1pU ; QB 1pU � � � 1pU E+ 12g2D 1pU � � � 1pU ; 1pU � � �QB 1pU E :(5.6)Using the identity QB 1pU = � 1pU �QBpU � 1pU ; (5.7)it is easy to see that the last line of (5.6) preisely anels the last two terms on the right-hand sideof (5.4). The ation around the deformed bakground in terms of � is thus given byS[	℄ = S[	�℄� 12g2 h 
� ; U�1 �QB� � U�1 �+ 
� ; U�1 � (AL +AR) � U�1 � � � U�1 � i� 13g2 
� ; U�1 � � � U�1 � � � U�1 � : (5.8)43



Let us now introdue the following deformed algebrai strutures:A ? B � A � U�1 �B ;QA � QBA+AL ? A� (�1)AA ? AR = QBA+	L �A� (�1)AA �	R ;hhA;B ii � hA;U�1 � B � U�1 i : (5.9)As U = 1+O(�2), AL = O(�), and AR = O(�), these strutures redue to the original star produt �,BRST operator QB, and inner produt h ; i when �! 0. The shifted ation S[�℄ � S[	℄� S[	�℄ interms of the new variable � an be written as follows:S[�℄ = � 1g2 � 12 hh� ; Q� ii+ 13 hh� ; � ? � ii � ; (5.10)where we have usedh� ; U�1 � (AL +AR) � U�1 � � � U�1 i= h� ; U�1 � AL � U�1 � � � U�1 i + h� ; U�1 � � � U�1 �AR � U�1 i : (5.11)Thus string �eld theory around the deformed bakground an be desribed by the star produt ? , theoperator Q, and the inner produt hh ; ii. Note that pU and 1=pU ompletely disappeared and theation is written in terms of U�1, AL, and AR.5.2 Properties of algebrai strutures around the deformed bakgroundLet us verify that the new algebrai strutures obey the following relations neessary for a onsistentformulation of string �eld theory: Q2A = 0 ; (5.12)Q (A ? B) = (QA) ? B + (�1)AA ? (QB) ; (5.13)hhA;B ii = (�1)AB hhB;A ii ; (5.14)hhQA;B ii = �(�1)AhhA;QB ii ; (5.15)hhA;B ? C ii = hhA ? B;C ii : (5.16)Furthermore, we show that the generalized wedge states U� satisfyQU� = 0 : (5.17)Let us begin with (5.12). It follows from the de�nition of Q thatQ2A = Q �QBA+	L � A� (�1)AA �	R �= Q2BA+QB	L � A�	L �QBA� (�1)AQBA �	R �A �QB	R+	L � �QBA+	L �A� (�1)AA �	R�+ (�1)A �QBA+	L �A� (�1)AA �	R� �	R :(5.18)44



Using Q2B = 0 and the equation of motion for 	L and 	R, all the terms anel and we �nd Q2A = 0.Similarly, we an prove (5.13) as follows:QB (A ? B) = QBA � U�1 � B + (�1)AA �QBU�1 �B + (�1)AA � U�1 �QBB+	L � A � U�1 �B � (�1)A(�1)B A � U�1 � B �	R= QA ? B + (�1)AA ?QB+ (�1)AA �QBU�1 � B + (�1)AA �	R � U�1 � B � (�1)AA � U�1 �	L � B : (5.19)The terms in the last line anel beause of the identityQBU�1 = � U�1 �QBU � U�1 = U�1 � (AL �AR) � U�1 = U�1 �	L �	R � U�1 : (5.20)This ompletes the proof of (5.13).It is easy to verify (5.14) using the properties of the inner produt h ; i:hhA;B ii = hA;U�1 �B � U�1 i= hA � U�1; B � U�1 i= (�1)ABhB � U�1; A � U�1 i= (�1)ABhB;U�1 � A � U�1 i= (�1)ABhhB;A ii : (5.21)
To show (5.15), we use the orresponding identity of QB and the properties of h ; i. We �ndhhQA;B ii = hQBA+	L � A� (�1)AA �	R ; U�1 � B � U�1 i= � (�1)AhA ; QBU�1 �B � U�1 + U�1 �QBB � U�1 + (�1)BU�1 � B �QBU�1 i+ (�1)A(�1)BhA ; U�1 �B � U�1 �	L i � (�1)AhA ; 	R � U�1 � B � U�1 i : (5.22)Using the identity (5.20), we obtainhhQA;B ii =� (�1)A hA ; U�1 � �QBB +	L �B � (�1)B B �	R � � U�1 i=� (�1)A hhA;QB ii : (5.23)Finally, the relation (5.16) follows from the de�nitions of the deformed strutures and the property ofthe inner produt h ; i:hhA;B ? C ii = hA ; U�1 � B � U�1 � C � U�1 i= hA � U�1 �B ; U�1 � C � U�1 i = hhA ? B;C ii : (5.24)We have thus shown that the deformed algebrai strutures satisfy all the algebrai relations requiredfor a onsistent formulation of string �eld theory.45



Let us now show the equation (5.17), namely, that the generalized wedge states U� are annihilatedby Q. We de�ne the generalizations AL;� and AR;� of AL and AR, respetively, byAL;� � 1Xn=1 �nA(n)L;� ; AR;� � 1Xn=1 �nA(n)R;� (5.25)for � � 0, where h� ;A(n)L;� i = nXl=1h f Æ �(0) [O(l)L (1)V (n�l)(1; n+ �) ℄r iWn+� ;h� ;A(n)R;� i = nXr=1h f Æ �(0) [V (n�r)(1; n+ �)O(r)R (n+ �) ℄r iWn+� : (5.26)Note that AL = AL;0 and AR = AR;0. The states AL;� and AR;� satisfy the following relations:QBU� = AR;� �AL;� ; AL;�+� = AL;� � U�1 � U� ; AR;�+� = U� � U�1 �AR;� ; (5.27)whih are generalizations of QBU = AR � AL and U�+� = U� � U�1 � U� . The �rst relation im-mediately follows from the assumption (I). The seond and third relations an be shown using theassumptions (III){(V) as in the proofs of U�+� = U� �U�1 �U� and �QBAL = AL �U�1 �AR in x 3.3and appendix A. Using these relations, it is easy to show that QU� vanishes:QU� = AR;� �AL;� +	L � U� � U� �	R= U� � U�1 �AR �AL � U�1 � U� +AL � U�1 � U� � U� � U�1 � AR= 0 : (5.28)The state U1 is expeted to play the role of the SL(2; R)-invariant vauum in the deformed theory,and U = U0 is the identity state of the deformed star algebra. In fat,U ? A = U � U�1 � A = A ; A ? U = A � U�1 � U = A : (5.29)6 DisussionThe main result of the paper is the onstrution of analyti solutions of open bosoni string �eld theoryfor general marginal deformations. We presented a proedure to onstrut a solution from the operator[ e�V (a;b) ℄r satisfying the set of assumptions stated in the introdution. We believe that all of theseassumptions are satis�ed for any exatly marginal deformation and are thus neessary onditions forexat marginality of the deformation. We also believe that the set of assumptions provides a suÆientondition for marginality to all orders in � beause we have sueeded in onstruting solutions ofstring �eld theory. We regard this new haraterization of exat marginality as another importantresult of the paper, and we hope that our approah motivated by string �eld theory will provide newperspetives on the study of marginal deformations.46



In setion 4 we expliitly onstruted the operator [ e�V (a;b) ℄r for any marginal operator satisfyingthe �niteness ondition (4.10). We thus believe that the �niteness ondition (4.10) is a suÆientondition for marginality to all orders in �. We an atually relax the ondition beause we onlyneeded �niteness of the operator ÆÆ(V (a; b))n ÆÆ onstruted in (4.18). Therefore, we an onstrutsolutions even if the �niteness ondition (4.10) is violated as long as the operator ÆÆ(V (a; b))n ÆÆ is wellde�ned for any n.4 It would be an interesting open problem whether the ondition an be furtherrelaxed. In partiular, it is an interesting question whether the operators O(n)L and O(n)R with n � 3 anbe nonvanishing by nontrivial ollisions of more than two operators. In [47℄, Reknagel and Shomerusgave a suÆient ondition for exat marginality whih they alled self-loality of the marginal operator.See x 2.4 of [47℄. It would be also interesting to investigate the relation between their haraterizationof exat marginality in boundary onformal �eld theory and ours.In [21℄, Fuhs, Kroyter and Potting onstruted non-real solutions for the marginal deformationorresponding to turning on the onstant mode of the gauge �eld. We disuss the relation betweentheir solutions and ours in appendix C and show that our solutions 	L and 	R for this partiularmarginal deformation oinide with theirs.There are many interesting diretions for future work. It would be interesting to study the solutionorresponding to the deformation by the osine potential in detail. The deformation at the value of� desribing lower-dimensional D-branes is partiularly interesting. In the level-trunation analysis ofmarginal deformations, it has been demonstrated that the Siegel gauge ondition is not globally wellde�ned [55℄ and the branh of the marginal deformation orresponding to turning on the onstantmode of the gauge �eld trunates at a �nite value of the deformation parameter [29℄.5 It is thereforeimportant to study the onvergene property of the expansion in � for our solutions.We expet that our work will play a role in further investigating bakground independene instring �eld theory by extending previous work [50℄{[54℄. We also expet that the generalizationof our onstrution to open superstring �eld theory formulated by Berkovits [28℄ would be fairlystraightforward. Another important generalization is the onstrution of solutions orresponding toboundary onditions whih are not onneted by exatly marginal deformations. For example, onsiderthe ase where the original CFT ows to a di�erent CFT by a marginally relevant deformation. Wethen expet that the operator [ e�V (a;b) ℄r satisfying the assumptions (I) and (II) an be onstrutedat a speial value of � and our framework will be useful in onstruting solutions for suh marginallyrelevant deformations. Finally, the approah explored in [58℄ seems to be losely related to ours andmay be useful in future developments of our work.
4 We thank Ashoke Sen for disussions on this point and for explaining expliit examples.5 See [56, 57℄ for reent related study. 47
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� for OR(b) is the same as the one appearing in the exponential operator. In (A.4), for example, thevalue of � for OL(1) is �1 and the value of � for OR(4) is �2. The relation (A.4) at O(�21 �22) reads[W (2)L (1; 2)W (2)R (3; 4) ℄r = [W (2)L (1; 2) ℄r [W (2)R (3; 4) ℄r : (A.5)Sine W (1)L (a; a) = W (1)L (a; b) and W (1)R (b; b) = W (1)R (a; b) for a < b, the operators [W (1)L (1; 1) ℄r and[W (1)R (4; 4) ℄r an be thought of as the O(�1) term of [OL(1) e�1V (1;1+�) ℄r and the O(�2) term of[ e�2V (4��;4)OR(4) ℄r , respetively, with arbitrary � in the range 0 < � < 1. Therefore, the right-handside of (A.2) an be written using the fatorization assumption (IV) as follows:[W (1)L (1; 1) ℄r [W (3)R (2; 4) ℄r + [W (2)L (1; 2) ℄r [W (2)R (3; 4) ℄r + [W (3)L (1; 3) ℄r [W (1)R (4; 4) ℄r� [W (1)L (1; 1) ℄r [V (2)(2; 3) ℄r [W (1)R (4; 4) ℄r= [W (1)L (1; 1)W (3)R (2; 4) ℄r + [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (3)L (1; 3)W (1)R (4; 4) ℄r� [W (1)L (1; 1)V (2)(2; 3)W (1)R (4; 4) ℄r : (A.6)We then apply the replaement assumption (III) of the following forms:[OL(1) e�1V (1;1+�) e�2V (2;4) OR(4) ℄r = [OL(1) e�1V (1;1+�) e�2V (2;3) e�2V (3;4)OR(4) ℄r ;[OL(1) e�1V (1;3) e�2V (4��;4) OR(4) ℄r = [OL(1) e�1V (1;2) e�1V (2;3) e�2V (4��;4)OR(4) ℄r ; (A.7)where � is again an arbitrary number in the range 0 < � < 1. The �rst equation at O(�1�32) and theseond equation at O(�31�2) give[W (1)L (1; 1)W (3)R (2; 4) ℄r = [W (1)L (1; 1)W (3)R (3; 4) ℄r + [W (1)L (1; 1)V (1)(2; 3)W (2)R (3; 4) ℄r+ [W (1)L (1; 1)V (2)(2; 3)W (1)R (3; 4) ℄r ;[W (3)L (1; 3)W (1)R (4; 4) ℄r = [W (1)L (1; 2)V (2)(2; 3)W (1)R (4; 4) ℄r + [W (2)L (1; 2)V (1)(2; 3)W (1)R (4; 4) ℄r+ [W (3)L (1; 2)W (1)R (4; 4) ℄r : (A.8)Replaing W (1)L (1; 1) with W (1)L (1; 2) and W (1)R (4; 4) with W (1)R (3; 4), the right-hand side of (A.6) anbe written as follows:[W (1)L (1; 1)W (3)R (2; 4) ℄r + [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (3)L (1; 3)W (1)R (4; 4) ℄r� [W (1)L (1; 1)V (2)(2; 3)W (1)R (4; 4) ℄r= [W (1)L (1; 2)W (3)R (3; 4) ℄r + [W (1)L (1; 2)V (1)(2; 3)W (2)R (3; 4) ℄r + [W (1)L (1; 2)V (2)(2; 3)W (1)R (3; 4) ℄r+ [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (2)L (1; 2)V (1)(2; 3)W (1)R (3; 4) ℄r + [W (3)L (1; 2)W (1)R (3; 4) ℄r : (A.9)The terms on the left-hand side of (A.2) are obtained from the expansion of [OL(1) e�V (1;4) OR(4) ℄rin �. Using the replaement assumption (III), we have[OL(1) e�V (1;4)OR(4) ℄r = [OL(1) e�V (1;2) e�V (2;3) e�V (3;4)OR(4) ℄r : (A.10)49



By evaluating both sides at O(�4), the left-hand side of (A.2) an be written as[O(1)L (1)V (2)(1; 4)O(1)R (4) ℄r + [O(1)L (1)V (1)(1; 4)O(2)R (4) ℄r + [O(2)L (1)V (1)(1; 4)O(1)R (4) ℄r+ [O(1)L (1)O(3)R (4) ℄r + [O(2)L (1)O(2)R (4) ℄r + [O(3)L (1)O(1)R (4) ℄r= [W (1)L (1; 2)W (3)R (3; 4) ℄r + [W (1)L (1; 2)V (1)(2; 3)W (2)R (3; 4) ℄r + [W (1)L (1; 2)V (2)(2; 3)W (1)R (3; 4) ℄r+ [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (2)L (1; 2)V (1)(2; 3)W (1)R (3; 4) ℄r + [W (3)L (1; 2)W (1)R (3; 4) ℄r : (A.11)We have reprodued (A.9) and thus shown �QBAL = AL � U�1 � AR at O(�4).We will now show that this proof an be generalized to O(�n) for any n � 3, while the equationtrivially holds for n = 1 and n = 2. Using the replaement assumption (III), we an rewrite[OL(1) e�V (1;n)OR(n) ℄r = �OL(1) e�V (1;2) n�2Yi=2 [ e�V (i;i+1) ℄ e�V (n�1;n)OR(n) �r : (A.12)At O(�n), this implies that the operator insertions for �QBA(n)L on Wn an be expanded in the basisn �W (`1)L (1; 2) n�2Yi=2 [V (`i)(i; i+ 1) ℄W (`n�1)R (n� 1; n) �r o ; (A.13)where `i's are non-negative integers with Pn�1i=1 `i = n and `1; `n�1 � 1. On the other hand, beauseof the loality assumption (V), the terms of AL � U�1 � AR at O(�n) an be expressed in terms ofproduts of the form [W (k1)L (1; b1) ℄r m�1Yj=2 [V (kj)(aj ; bj) ℄r [W (km)R (am; n) ℄r (A.14)on Wn, where positive integers aj, bj and kj satisfy 1 � aj < bj � n, bj < aj+1, and Pmj=1 kj = n.From the fatorization assumption (IV), we have[OL(1) e�1V (1;b1) ℄r m�1Yj=2 [ e�jV (aj ;bj) ℄r [ e�mV (am;n)OR(n) ℄r= �OL(1) e�1V (1;b1) m�1Yj=2 [ e�jV (aj ;bj) ℄ e�mV (am;n)OR(n) �r : (A.15)At O(Qj �kj ), this allows us to express (A.14) as�W (k1)L (1; b1) m�1Yj=2 [V (kj)(aj ; bj) ℄W (km)R (am; n) �r (A.16)on Wn. Finally, applying the replaement assumption (III) and using W (1)L (1; 1) = W (1)L (1; 2) andW (1)R (n; n) = W (1)R (n � 1; n), the operators an be expanded in the basis (A.13). Now onsider the50



following state for a marginal operator with regular operator produts:1Xl; r=1�l+r (l)L (r)R Ul+r ; (A.17)where (l)L and (r)R are parameters. The operators at O(�n) on Wn an be expanded in the basisn!(`1)L (1; 2) n�2Yi=2 [V (`i)(i; i+ 1) ℄!(`n�1)R (n� 1; n)o ; (A.18)where !(i)L (1; 2) � iXl=1 (l)L V (i�l)(1; 2) ; !(i)R (n� 1; n) � iXr=1 (i)R V (i�r)(n� 1; n) ; (A.19)and `i's are non-negative integers with Pn�1i=1 `i = n and `1; `n�1 � 1 as in (A.13). The oeÆientswhen the state (A.17) is expanded in this basis reprodue those of �QBAL expanded in the basis (A.13)with replaing W (i)L by !(i)L and W (i)R by !(i)R . Let us next onsider the following state for a marginaloperator with regular operator produts:1Xl; r=1��l (l)L Ul � � U�1 � ��r (r)R Ur � (A.20)where again (l)L and (r)R are parameters. The terms of (A.20) at O(�n) an also be expanded inthe basis (A.18) and the oeÆients reprodue those of AL � U�1 � AR at O(�n) expanded in thebasis (A.13) with replaing W (i)L by !(i)L and W (i)R by !(i)R . The states (A.17) and (A.20) are atuallyequal beause of the relation Ul+r = Ul � U�1 � Ur:1Xl; r=1�l+r (l)L (r)R Ul+r = 1Xl; r=1��l (l)L Ul � � U�1 � � �r (r)R Ur � : (A.21)We have thus shown that �QBAL = AL � U�1 � AR to all orders in �.B Proof of the assumptionsIn setion 4 we have presented expliit forms of [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r, whih are used inonstruting 	L and 	, for the lass of marginal deformations satisfying the �niteness ondition (4.10)in x 4.1. We have shown that the assumptions (I), (V), and (VI) are satis�ed for these operators. Weprove the remaining assumptions (II), (III), and (IV) in this appendix.
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B.1 Assumptions (III) and (IV): replaement and fatorizationLet us start by proving the replaement and fatorization assumptions (III) and (IV). To this end, we�rst need to de�ne [Qni=1 e�iV (ai ;ai+1) ℄r, [V (a1) Qni=1 e�iV (ai;ai+1) ℄r, [Qni=1 e�iV (ai;ai+1) V (an+1) ℄r,and [V (a1) Qni=1 e�iV (ai;ai+1) V (an+1) ℄r. Let us begin with [Qni=1 e�iV (ai;ai+1) ℄r. We de�ne it asfollows:[ nYi=1 e�iV (ai;ai+1) ℄r � nYi=1 e 12 �2i h V (ai;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ nYi=1 e�iV (ai;ai+1) ÆÆ ; (B.1)where hV (a; b)2ir � 2 lim�!0 � Z b��a dt1 Z bt1+� dt2G(t1; t2)� b� a� �� � ln � � ;hV (a; b)V (b; ) ir � lim�!0 � Z b��=2a dt1 Z b+�=2 dt2G(t1; t2) + ln � � ;hV (a; b)V (; d)ir � Z ba dt1 Z d dt2G(t1; t2) (B.2)
for a < b <  < d. Their expliit expressions on Wn arehV (a; b)2ir = lnGn(a; b) ;hV (a; b)V (b; ) ir = 12 h lnGn(a; )� lnGn(a; b)� lnGn(b; ) i ;hV (a; b)V (; d)ir = 12 h lnGn(a; d) + lnGn(b; )� lnGn(a; )� lnGn(b; d) i ; (B.3)where Gn(t1; t2) = �2(n+ 1)2 sin2� t2 � t1n+ 1 �� : (B.4)The operator (B.1) redues to [ e� V (a;b) ℄r de�ned in (4.43) when n = 1. It is easy to show thathV (a; )2 ir = hV (a; b)2 ir + 2 hV (a; b)V (b; ) ir + hV (b; )2 ir ;hV (a; )V (; d) ir = hV (a; b)V (; d) ir + hV (b; )V (; d) ir ;hV (a; b)V (b; d) ir = hV (a; b)V (b; ) ir + hV (a; b)V (; d) ir ;hV (a; )V (d; e) ir = hV (a; b)V (d; e) ir + hV (b; )V (d; e) ir ;hV (a; b)V (; e) ir = hV (a; b)V (; d) ir + hV (a; b)V (d; e) ir (B.5)
for a < b <  < d < e. The replaement assumption (III) is therefore satis�ed. The assumption (IV)of fatorization is also satis�ed beause of the de�nition of hV (a; b)V (; d) ir for a < b <  < d.Let us next de�ne the operators [V (a1) Qni=1 e�i V (ai ;ai+1) ℄r, [Qni=1 e�i V (ai;ai+1) V (an+1) ℄r, and
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[V (a1) Qni=1 e�i V (ai ;ai+1) V (an+1) ℄r. We de�ne them as follows:[V (a1) nYi=1 e�i V (ai;ai+1) ℄r� nYi=1 e 12 �2i h V (ai ;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ V (a1) nYi=1 e�i V (ai;ai+1) ÆÆ+ nXi=1 �i hV (a1)V (ai; ai+1) ir [ nYi=1 e�i V (ai;ai+1) ℄r ;[ nYi=1 e�i V (ai;ai+1) V (an+1) ℄r� nYi=1 e 12 �2i h V (ai ;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ nYi=1 e�i V (ai;ai+1) V (an+1) ÆÆ+ nXi=1 �i hV (ai; ai+1)V (an+1) ir [ nYi=1 e�i V (ai;ai+1) ℄r ;[V (a1) nYi=1 e�i V (ai;ai+1) V (an+1) ℄r� nYi=1 e 12 �2i h V (ai ;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ V (a1) nYi=1 e�i V (ai;ai+1) V (an+1) ÆÆ+ nXi=1 �i hV (a1)V (ai; ai+1) ir [ nYi=1 e�i V (ai;ai+1) V (an+1) ℄r+ nXi=1 �i hV (ai; ai+1)V (an+1) ir [V (a1) nYi=1 e�i V (ai ;ai+1) ℄r� nXi; j=1 �i �j hV (a1)V (ai; ai+1) ir hV (aj ; aj+1)V (an+1) ir [ nYi=1 e�i V (ai ;ai+1) ℄r+ hV (a1)V (an+1) ir [ nYi=1 e�i V (ai;ai+1) ℄r ;

(B.6)

wherehV (a) V (a; b) ir � lim�!0� Z ba+� dtG(a; t) � 1� � ; hV (a; b)V (b) ir � lim�!0� Z b��a dtG(t; b) � 1� � ;hV (a)V (b; ) ir � Z b dtG(a; t) ; hV (a; b)V () ir � Z ba dtG(t; ) ; hV (a)V (b) ir � G(a; b)(B.7)for a < b < . These de�nitions are onsistent with [V (a) e� V (a;b) ℄r and [ e�V (a;b) V (b) ℄r in (4.47). It
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is easy to show that hV (a)V (a; ) ir = hV (a)V (a; b) ir + hV (a)V (b; ) ir ;hV (a)V (b; d) ir = hV (a)V (b; ) ir + hV (a)V (; d) ir ;hV (a; )V () ir = hV (a; b)V () ir + hV (b; )V () ir ;hV (a; )V (d) ir = hV (a; b)V (d) ir + hV (b; )V (d) ir (B.8)for a < b <  < d. The replaement assumption (III) is therefore satis�ed. The assumption (IV)of fatorization is also satis�ed beause of the de�nitions of hV (a)V (b; ) ir , hV (a; b)V () ir, andhV (a)V (b) ir for a < b < .B.2 Assumption (II): alulation of QB � [OL(a) e�V (a;b) ℄rLet us next prove the assumption (II) on the BRST transformation of [OL(a) e� V (a;b) ℄r:QB � [OL(a) e� V (a;b) ℄r = � [OL(a) e� V (a;b)OR(b) ℄r ; (B.9)where OL(a) = � V (a)� �22 �(a) ; OR(b) = � V (b) + �22 �(b) : (B.10)The operator [OL(a) e� V (a;b) ℄r an be written as[OL(a) e� V (a;b) ℄r = � e 12�2hV (a;b)2ir ÆÆ V (a) e�V (a;b) ÆÆ+ �2 hV (a)V (a; b) ir [ (a) e�V (a;b) ℄r � �22 [ �(a) e�V (a;b) ℄r : (B.11)The BRST transformation of ÆÆ V (a) e�V (a;b) ÆÆ an be alulated in the following way:QB � ÆÆ V (a) e�V (a;b) ÆÆ= QB � lim�!0 � V (a� �) ÆÆ e�V (a;b) ÆÆ�� (a� �)Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ �= lim�!0� � V (a� �)QB � ÆÆ e�V (a;b) ÆÆ � � �(a � �)Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ+ � (a� �)Z ba dtG(a � �; t) QB � ÆÆ e�V (a;b) ÆÆ � : (B.12)
The BRST transformation of ÆÆ e�V (a;b) ÆÆ appearing in (B.12) has been alulated in (4.65). The on-tribution from the �rst term � ÆÆ e�V (a;b) V (b) ÆÆ on the right-hand side of (4.65) islim�!0� � � V (a� �) ÆÆ e�V (a;b) V (b) ÆÆ + �2 (a� �)Z ba dtG(a � �; t) ÆÆ e�V (a;b) V (b) ÆÆ �= � � ÆÆ V (a) e�V (a;b) V (b) ÆÆ � �G(a; b) ÆÆ (a) e�V (a;b) (b) ÆÆ : (B.13)
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The ontribution from the seond term �� ÆÆ V (a) e�V (a;b) ÆÆ on the right-hand side of (4.65) divergesin the limit �! 0:� V (a� �) ÆÆ V (a) e�V (a;b) ÆÆ � �2 (a� �)Z ba dtG(a� �; t) ÆÆ V (a) e�V (a;b) ÆÆ= � ÆÆ V (a� �) V (a) e�V (a;b) ÆÆ + �G(a� �; a) (a � �) (a) ÆÆ e�V (a;b) ÆÆ : (B.14)The �rst term on the right-hand side vanishes in the limit � ! 0. The seond term is of O(1=�), butthe sum of this term and the seond term on the right-hand side of (B.12) is �nite in the limit �! 0:lim�!0� � � �(a � �)Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ + �G(a� �; a) (a � �) (a) ÆÆ e�V (a;b) ÆÆ �= � � hV (a)V (a; b) ir �(a) ÆÆ e�V (a;b) ÆÆ + �2 �2(a) ÆÆ e�V (a;b) ÆÆ ; (B.15)where we have used Z ba dtG(a � �; t) = 1� + hV (a)V (a; b)ir +O(�) ;G(a� �; a) (a� �)(a) � 1� �(a � �) = 12�2(a) +O(�) : (B.16)Contributions from the remaining terms on the right-hand side of (4.65) an be easily alulated. The�nal result for the BRST transformation of ÆÆ V (a) e�V (a;b) ÆÆ isQB � ÆÆ V (a) e�V (a;b) ÆÆ = � � ÆÆ V (a) e�V (a;b) V (b) ÆÆ � �G(a; b) ÆÆ (a) e�V (a;b) (b) ÆÆ� � hV (a)V (a; b) ir ÆÆ �(a) e�V (a;b) ÆÆ + �2 ÆÆ �2(a) e�V (a;b) ÆÆ� �2 hV (a; b)V (b) ir ÆÆ V (a) e�V (a;b) (b) ÆÆ� �22 ÆÆ V (a) e�V (a;b) �(b) ÆÆ��22 ÆÆ �V (a) e�V (a;b) ÆÆ : (B.17)
Using (4.47) and (B.6), the operator QB � ÆÆ V (a) e�V (a;b) ÆÆ multiplied by the fator � e 12�2hV (a;b)2ir anbe written as follows:� e 12�2hV (a;b)2ir QB � ÆÆ V (a) e�V (a;b) ÆÆ= � � [ V (a) e�V (a;b)OR(b) ℄r + �2 hV (a)V (a; b) ir [ (a) e�V (a;b)OR(b) ℄r� �2 hV (a)V (a; b) ir [ �(a) e�V (a;b) ℄r + �22 [ �2(a) e�V (a;b) ℄r� �32 [ �V (a) e�V (a;b) ℄r + �42 hV (a)V (a; b) ir [ �(a) e�V (a;b) ℄r : (B.18)
The BRST transformation of [ (a) e�V (a;b) ℄r in (B.11) an be alulated as follows:QB � [ (a) e�V (a;b) ℄r = lim�!0 QB � [ (a� �) e�V (a;b) ℄r= lim�!0 [ �(a � �) e�V (a;b) ℄r � lim�!0 [ (a� �)QB � e�V (a;b) ℄r= [ �(a) e�V (a;b) ℄r � [ (a) e�V (a;b)OR(b) ℄r � �22 [ �(a) e�V (a;b) ℄r : (B.19)55



Similarly, the BRST transformation of [ �(a) e�V (a;b) ℄r in (B.11) an be alulated asQB � [ �(a) e�V (a;b) ℄r = lim�!0 QB � [ �(a � �) e�V (a;b) ℄r= lim�!0 [ �2(a� �) e�V (a;b) ℄r � lim�!0 [ �(a � �)QB � e�V (a;b) ℄r= [ �2(a) e�V (a;b) ℄r � [ �(a) e�V (a;b) OR(b) ℄r � � [ �V (a) e�V (a;b) ℄r : (B.20)By ombining the results (B.18), (B.19), and (B.20), we �ndQB � [OL(a) e� V (a;b) ℄r = � � [ V (a) e�V (a;b) OR(b) ℄r + �22 [ �(a) e�V (a;b)OR(b) ℄r= � [OL(a) e�V (a;b) OR(b) ℄r : (B.21)This ompletes the proof of the assumption (II).C Marginal deformations for the onstant mode of the gauge �eldIn [21℄, Fuhs, Kroyter and Potting onstruted solutions for the marginal deformation orrespondingto turning on the onstant mode of the gauge �eld. We disuss the relation between their solutionsand ours in this appendix.The marginal operator for this deformation isV (t) = ip2�0 �tX�(t) ; (C.1)where X� is a spae-like diretion along the D-brane.6 The solution in [21℄ is written formally as apure-gauge form using the operator X�. The propagator hX�(t1)X�(t2) i is logarithmi, and thusthe operator X� does not belong to the omplete set of loal operators of the boundary CFT. If weallow to use X�, V (a; b) an be written as follows:V (a; b) = ip2�0 Z ba dt �tX�(t) = ip2�0�X�(b)�X�(a)� : (C.2)Then the operator ÆÆ e�V (a;b) ÆÆ an be written asÆÆ e�V (a;b) ÆÆ = : e�V (a;b) : = : e� i�p2�0X�(a) e i�p2�0X�(b) : : (C.3)To turn this operator into [ e�V (a;b) ℄r , we have to multiply it by e 12�2hV (a;b)2ir . We notie from theexpliit expression (4.39) that hV (a; b)2 ir = 1�0 hX�(a) X�(b) i (C.4)6 It is straightforward to inorporate the time-like diretion into the disussion.56



and therefore [ e�V (a;b) ℄r = e 12�2hV (a;b)2ir : e� i�p2�0X�(a) e i�p2�0X�(b) := e �22�0 hX�(a)X�(b) i : e� i�p2�0X�(a) e i�p2�0X�(b) := : e� i�p2�0X�(a) : : e i�p2�0X�(b) : : (C.5)Beause of the fator e 12�2hV (a;b)2ir , the operator : e� i�p2�0X�(a) e i�p2�0X�(b) : fatorized into a produtof two primary �elds at a and b. We an interpret the operators : e� i�p2�0X�(a) : and : e i�p2�0X�(b) : asthe boundary-ondition hanging operators at a and b, respetively. The onformal properties of theoperator [ e�V (a;b) ℄r disussed in x 4.5 are manifest in this expression. In partiular, the onformaldimension of : e� i�p2�0X�(b) : is �2=2 and thus onsistent with h(�) = O(�2) found in x 4.5.Let us see how the operators OL and OR arise from this expression. Using the formulaQB � : e� i�p2�0X� : = : ��� ip2�0 �X� + �22 �� e �i�p2�0X� := : ��� V + �22 �� e �i�p2�0X� : ; (C.6)the BRST transformation of [ e�V (a;b) ℄r an be alulated as follows:QB � � e�V (a;b) �r = : e� i�p2�0X�(a) : : �� V (b) + �22 �(b)�e i�p2�0X�(b) :� : �� V (a)� �22 �(a)�e� i�p2�0X�(a) : : e i�p2�0X�(b) : : (C.7)We have thus reprodued our previous result for OL and OR:O(1)R = O(1)L = V ; O(2)R = �O(2)L = �2 ; O(n)R = O(n)L = 0 for n � 3 : (C.8)The operator [ e�V (a;b) ℄r is written in (C.5) in terms of the exponential operators in the ompleteset of loal operators and thus well de�ned. When we onstrut our solution, we have to expand[ e�V (a;b) ℄r in � to obtain [V (n)(a; b) ℄r . We an write [V (n)(a; b) ℄r in terms of loal operators in theomplete set as we did in setion 4, but if we allow to use X�, [ e�V (a;b) ℄r an also be expanded in � as� e�V (a;b) �r = 1Xn=0�n� ip2�0�n nXk=0 (�1)kk!(n� k)! : �X�(a)�k : : �X�(b)�n�k : ; (C.9)and the state U (n) for n � 1 ish� ;U (n) i = nXk=0� ip2�0�n (�1)kk!(n� k)! 
 f Æ �(0) : �X�(1)�k : : �X�(n)�n�k : �Wn : (C.10)The state U an be formally fatorized [21℄ as follows:U = �L � �R ; (C.11)57



where �L = 1 + 1Xn=1�n �(n)L ; �R = 1 + 1Xn=1�n �(n)R (C.12)with h� ;�(n)L i = 1n! �� ip2�0�n 
 f Æ �(0) : �X�(1)�n : �Wn ;h� ;�(n)R i = 1n! � ip2�0�n 
 f Æ �(0) : �X�(n)�n : �Wn : (C.13)The BRST transformation of U isQBU = (QB�L) � �R +�L � (QB�R) ; (C.14)and we �nd AL = � (QB�L) � �R ; AR = �L � (QB�R) : (C.15)The solutions 	L and 	R an thus be written as	L = AL � U�1 = � (QB�L) � ��1L ; 	R = U�1 � AR = ��1R � (QB�R) : (C.16)These expressions in the pure-gauge form oinide with the solutions in [21℄.7 Sine the real solution 	onstruted in x 3.4 is related to 	L and 	R by gauge transformations, 	 an also be written in apure-gauge form:	 = � hQB � 1pU � �L � i � ���1L � pU �= �pU � ��1R � � hQB ��R � 1pU � i= 12 �pU � ��1R � � hQB ��R � 1pU � i � 12 hQB � 1pU � �L � i � ���1L � pU � : (C.17)In the last expression, 	 is manifestly real beause �zR = �L. We have thus solved the problem of�nding a real solution in a pure-gauge form raised in [25℄.The states �L and �R annot be written in terms of loal operators in the omplete set, while thesolutions 	L and 	R an be written without usingX�, as we have expliitly demonstrated in setion 4.It is, however, highly nontrivial to derive suh an expression of 	L or 	R from the pure-gauge formin [21℄. We ould attempt, for example, to write X�(a) asX�(a) = � Z 1a dt �tX�(t) (C.18)7 When the polarization vetor �� of [21℄ is given by �� = ��� , our � is related to that of [21℄ as follows:�FKP = ip2 � ours :Note in partiular that their � must be imaginary for the solution at O(�) to satisfy the reality ondition.58



with the presription that the ontribution of its BRST transformation from the boundary t = 1vanishes and with the ondition that the \ux" to in�nity anels in the solution. While this pitureould give some useful insight, it is obviously formal and it seems to be diÆult to make suh approaheswell de�ned in general.We have seen that the operator X� used in [21℄ as the basi objet in the onstrution of thesolution is formally the logarithm of the boundary-ondition hanging operator orresponding to themarginal deformation. Thus the solution in [21℄ an be generalized to other marginal deformations ifan expansion of the boundary-ondition hanging operator in � is given. However, the terms in theexpansion do not belong to the omplete set of loal operators, and it is not lear how to alulateorrelation funtions involving suh operators in general. Let us, for example, onsider the deformationby the osine potential along a spae-like diretion X� whih is ompati�ed at the self-dual radius.In this ase, the expansion of the boundary-ondition hanging operator an be written in terms of: (Y �)n : , where Y � is the free boson in the di�erent desription we mentioned in x 4.2. We then needto alulate orrelation funtions involving both : (Y �)n : and operators in the X� desription, forexample, when we expand the solution in the omponent �elds.While the approah in [21℄ an be pratially useful for the partiular marginal deformation (C.1),we believe that our approah has an advantage in the generalization to other marginal deformations. Inpartiular, we do not need to enlarge the Hilbert spae of the boundary CFT at any intermediate stage,whih we believe will be a useful feature when we address the question of bakground independenein string �eld theory.
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