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Exa
t marginality in open string �eld theory: a general frameworkMi
hael Kiermaier1 and Yuji Okawa21 Center for Theoreti
al Physi
sMassa
husetts Institute of Te
hnologyCambridge, MA 02139, USAmkiermai�mit.edu2 DESY Theory GroupNotkestrasse 8522607 Hamburg, Germanyyuji.okawa�desy.deAbstra
tWe 
onstru
t analyti
 solutions of open bosoni
 string �eld theory for any exa
tly marginal deformationin any boundary 
onformal �eld theory when properly renormalized operator produ
ts of the marginaloperator are given. We expli
itly provide su
h renormalized operator produ
ts for a 
lass of marginaldeformations whi
h in
lude the deformations of 
at D-branes in 
at ba
kgrounds by 
onstant masslessmodes of the gauge �eld and of the s
alar �elds on the D-branes, the 
osine potential for a spa
e-like
oordinate, and the hyperboli
 
osine potential for the time-like 
oordinate. In our 
onstru
tion weuse integrated vertex operators, whi
h are 
losely related to �nite deformations in boundary 
onformal�eld theory, while previous analyti
 solutions were based on unintegrated vertex operators. We alsointrodu
e a modi�ed star produ
t to formulate string �eld theory around the deformed ba
kground.
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1 Introdu
tionString �eld theory1 
an potentially be a ba
kground-independent formulation of string theory. In the
urrent formulation of string �eld theory, however, we �rst need to 
hoose one 
onformal �eld theory(CFT) des
ribing a 
onsistent ba
kground of string theory. The 
ru
ial question is then whether otherstring ba
kgrounds 
an be des
ribed as 
lassi
al solutions of string �eld theory. In parti
ular, for ea
hexa
tly marginal deformation of the CFT, we expe
t to have a family of solutions in string �eld theorylabeled by the deformation parameter.Re
ent remarkable developments in analyti
 methods of open string �eld theory [5℄{[26℄ enabledus to address this question in a 
on
rete setting. Analyti
 solutions for marginal deformations whenoperator produ
ts of the marginal operator are regular were 
onstru
ted to all orders in the deformationparameter in [17, 18℄ for open bosoni
 string �eld theory [27℄ and in [19, 20, 22℄ for open superstring�eld theory [28℄. When the operator produ
t of the marginal operator is singular, analyti
 solutionswere 
onstru
ted to third order in the deformation parameter in [18℄. Re
ently, analyti
 solutions forthe deformation generated by the zero mode of the gauge �eld were 
onstru
ted in [21℄ by a di�erentapproa
h and extended to open superstring �eld theory in [25℄. While the equation of motion issatis�ed to all orders in the deformation parameter, a 
losed form expression for a solution satisfyingthe reality 
ondition on the string �eld has not been presented in [21, 25℄. For earlier study of marginaldeformations in string �eld theory, see [29℄{[42℄.In this paper, we present a pro
edure to 
onstru
t a solution satisfying the reality 
ondition inopen bosoni
 string �eld theory for any exa
tly marginal deformation in any boundary CFT whenproperly renormalized operator produ
ts of the marginal operator are given. The analyti
 solutionsin [17, 18℄ were 
onstru
ted using unintegrated vertex operators and b-ghost insertions. Our strategyis to use integrated vertex operators, whi
h are 
losely related to �nite deformations in boundaryCFT. We assume several properties of the properly renormalized operator produ
ts of the marginaloperator. Sin
e the identi�
ation of a set of assumptions whi
h are suÆ
ient for the 
onstru
tion ofa solution is one of the main points of the paper, we will explain these assumptions in detail in thefollowing. We will then present our solutions.1.1 AssumptionsWhen there exists an exa
tly marginal deformation in a given boundary CFT, we have a family of
onsistent boundary 
onditions labeled by the deformation parameter whi
h we denote by �. Considerthe boundary CFT on the upper-half plane and suppose that we 
hange boundary 
onditions on asegment of the boundary between a and b. Sin
e the new boundary 
ondition is also 
onformal, anintegral of the BRST 
urrent along a 
ontour vanishes if both end points of the 
ontour lie inside theregion between a and b. By C(tf ; ti) we denote a 
ontour in the upper-half plane whi
h starts from1 See [1, 2, 3, 4℄ for reviews. 2



= 0Figure 1: Illustration of (1.1). The bold line indi
ates a 
hange of boundary 
onditions on the segmentbetween a and b. The integral of the BRST 
urrent in (1.1) vanishes when a < tf < ti < b.
= +Figure 2: Illustration of (1.2). When tf < a < b < ti, the integral of the BRST 
urrent on the left-handside de
omposes into a sum of two integrals lo
alized at the end points a and b of the segment.the point ti on the real axis and ends on tf on the real axis, and we use C(tf ; ti) with tf < ti in whatfollows. We have ZC(tf ; ti)h dz2�i jB(z)� d�z2�i ~|B(�z) i = 0 when a < tf < ti < b ; (1.1)where jB(z) and ~|B(�z) are the holomorphi
 and antiholomorphi
 
omponents of the BRST 
urrent,respe
tively. See �gure 1. This identity holds inside any 
orrelation fun
tion of the deformed CFT aslong as no operators are inserted between the 
ontour C(tf ; ti) and the real axis. When tf < a < b < ti,there are 
ontributions from the points a and b where the boundary 
ondition 
hanges:ZC(tf ; ti)h dz2�i jB(z)� d�z2�i ~|B(�z) i= ZC(b)h dz2�i jB(z)� d�z2�i ~|B(�z) i+ ZC(a)h dz2�i jB(z)� d�z2�i ~|B(�z) i ; (1.2)where we have de�ned the in�nitesimal 
ontour C(t) around any point t byC(t) = lim�!0 C(t� �; t+ �) : (1.3)See �gure 2. The nonvanishing 
ontributions in (1.2) 
an be thought of as the BRST transformationsof the boundary-
ondition 
hanging operators. We also have3



= �Figure 3: Illustration of (1.4). With the presen
e of the BRST integral lo
alized at a, the integralalong C(tf ; ti) on the left-hand side lo
alizes only at the other end point b be
ause of the nilpoten
yof the BRST transformation.ZC(tf ; ti)h dz2�i jB(z)� d�z2�i ~|B(�z) i ZC(a)h dz2�i jB(z)� d�z2�i ~|B(�z) i= � ZC(a)h dz2�i jB(z)� d�z2�i ~|B(�z) i ZC(b)h dz2�i jB(z)� d�z2�i ~|B(�z) i ; (1.4)where again tf < a < b < ti, as shown in �gure 3.The boundary CFT with a di�erent boundary 
ondition on a segment between a and b dis
ussedabove 
an also be des
ribed in the boundary CFT with the original boundary 
ondition on the wholereal axis by inserting an exponential of the marginal operator V (t) integrated over the segment betweena and b, exp� �Z ba dt V (t) � = 1 + �Z ba dt V (t) + �22! Z ba dt1 Z ba dt2 V (t1)V (t2) + : : : ; (1.5)into the 
orrelation fun
tion. When operator produ
ts of the marginal operator are singular, we needto renormalize the operator (1.5) properly to make it well de�ned, and we denote the renormalizedoperator by [ e�V (a;b) ℄r ; (1.6)where V (a; b) � Z ba dt V (t) : (1.7)Then the equations (1.2) and (1.4) 
an be translated into the following assumptions on the opera-tor [ e�V (a;b) ℄r.1. The BRST transformation of the operator [ e�V (a;b) ℄r takes the following form:QB � [ e�V (a;b) ℄r = [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r ; (I)where OL(a) and OR(b) are some lo
al operators at a and b, respe
tively.2. The BRST transformation of the operator [OL(a) e�V (a;b) ℄r is given byQB � [OL(a) e�V (a;b) ℄r = � [OL(a) e�V (a;b) OR(b) ℄r : (II)4



= �Figure 4: Illustration of the assumption (I). The BRST transformation on the operator [ e�V (a;b) ℄rgenerates lo
al operators OL(a) and OR(b) at the end points of the segment. Compare this �gure with�gure 2.
= �Figure 5: Illustration of the assumption (II). The BRST transformation on the operator[OL(a) e�V (a;b) ℄r generates the lo
al operator OR(b). Compare this �gure with �gure 3.These are our �rst two assumptions. They are illustrated in �gures 4 and 5.We 
an also introdu
e di�erent boundary 
onditions on di�erent segments on the boundary byinserting [ nYi=1 e�iV (ai;ai+1) ℄r (1.8)with ai < ai+1 for i = 1; 2; : : : ; n into the 
orrelation fun
tion. We make the following two assumptionson this operator.3. Repla
ement. When �i+1 = �i, the produ
t e�iV (ai;ai+1) e�i+1V (ai+1;ai+2) inside the operator (1.8)
an be repla
ed by e�iV (ai;ai+2):[ : : : e�iV (ai ;ai+1) e�iV (ai+1 ;ai+2) : : : ℄r = [ : : : e�iV (ai;ai+2) : : : ℄r : (III)4. Fa
torization. When �j vanishes, the renormalized produ
t (1.8) fa
torizes as follows:[ : : : e�j�1V (aj�1;aj) e�j+1V (aj+1;aj+2) : : : ℄r = [ : : : e�j�1V (aj�1;aj) ℄r [ e�j+1V (aj+1;aj+2) : : : ℄r : (IV)We also assume that (III) and (IV) hold when OL(a1), OR(an+1), or both of them are inserted in (1.8).A 
hange of boundary 
onditions on a segment between a and b is lo
al and independent of otherregions of the Riemann surfa
e where the boundary CFT is de�ned. Thus the operator [ e�V (a;b) ℄r5



should be independent of the global shape of the Riemann surfa
e. However, renormalization s
hemessu
h as the standard normal ordering 
an depend on the global shape of the surfa
e through the prop-agator, and normal ordered produ
ts of nonlo
al operators generi
ally do depend on the surfa
e. We
onsider boundary 
onformal �eld theory de�ned on a family of semi-in�nite 
ylinders Wn obtainedfrom the upper-half plane of z by the identi�
ation z � z+n+1 and make the following assumption.5. Lo
ality. The operators [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r de�ned on Wn 
oin
ide with those de�nedon Wm with m > n: [ e�V (a;b) ℄r on Wn = [ e�V (a;b) ℄r on Wm ;[OL(a) e�V (a;b) ℄r on Wn = [OL(a) e�V (a;b) ℄r on Wm : (V)Finally, e�V (a;b) is 
lassi
ally invariant under the re
e
tion where V (t) is repla
ed by V (a+ b� t),and we assume that [ e�V (a;b) ℄r preserves this symmetry.6. Re
e
tion. The operator [ e�V (a;b) ℄r is invariant under the re
e
tion where V (t) is repla
ed byV (a+ b� t): � exp��Z ba dt V (a+ b� t)��r = � exp��Z ba dt V (t)��r : (VI)1.2 SolutionsWe believe that all of these assumptions are satis�ed for any exa
tly marginal deformation in anyboundary CFT if the 
omposite operators are properly renormalized. When the operator [ e�V (a;b) ℄rexpanded in � as [ e�V (a;b) ℄r = 1Xn=0�n [V (n)(a; b) ℄r ; (1.9)where [V (n)(a; b) ℄r � 1n! [ (V (a; b))n ℄r for n � 1 and [V (0)(a; b) ℄r � 1 ; (1.10)is given, we 
laim that solutions to the equation of motion 
an be 
onstru
ted in the following way.We �rst de�ne a state U by U � 1 + 1Xn=1 �n U (n) ; (1.11)where h� ; U (n) i = h f Æ �(0) [V (n)(1; n) ℄r iWn : (1.12)Here and in what follows we denote a generi
 state in the Fo
k spa
e by � and its 
orrespondingoperator in the state-operator mapping by �(0). The 
onformal transformation f(�) isf(�) = 2� ar
tan � ; (1.13)6



and we denote the 
onformal transformation of �(�) under the map f(�) by f Æ �(�). The 
orrelationfun
tion is evaluated on the surfa
e Wn, whi
h we de�ned above when stating the lo
ality assump-tion (V). We represent it in the region of the upper-half plane of z where �1=2 � Re z � 1=2 + n.If the assumption (I) is satis�ed, the BRST transformation of the operator [V (n)(a; b) ℄r takes theform QB � [V (n)(a; b) ℄r = nXr=1 [V (n�r)(a; b)O(r)R (b) ℄r � nXl=1 [O(l)L (a)V (n�l)(a; b) ℄r ; (1.14)where OL and OR are expanded as follows:OL = 1Xn=1 �nO(n)L ; OR = 1Xn=1 �nO(n)R : (1.15)Thus the BRST transformation of U 
an be split into two pie
es:QBU = AR �AL (1.16)with AL = 1Xn=1 �nA(n)L ; AR = 1Xn=1 �nA(n)R ; (1.17)where h� ;A(n)L i = nXl=1h f Æ �(0) [O(l)L (1)V (n�l)(1; n) ℄r iWn ;h� ;A(n)R i = nXr=1h f Æ �(0) [V (n�r)(1; n)O(r)R (n) ℄r iWn : (1.18)We then de�ne 	L and 	R by 	L � AL � U�1 ; 	R � U�1 � AR ; (1.19)where U�1 is well de�ned perturbatively in � be
ause U = 1+O(�). We show that 	L and 	R satisfythe equation of motion, QB	L +	L �	L = 0 ; QB	R +	R �	R = 0 ; (1.20)though they do not satisfy the reality 
ondition on the string �eld. They are related by the gaugetransformation generated by U : 	R = U�1 �	L � U + U�1 �QBU : (1.21)A solution 	 satisfying the reality 
ondition is obtained from 	L or 	R by gauge transformations asfollows: 	 = 1pU �	L � pU + 1pU �QBpU= pU �	R � 1pU +pU �QB 1pU= 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QB pU �QBpU � 1pU � ; (1.22)
7



where pU and 1=pU are de�ned perturbatively in �. The three expressions are equivalent be
ause ofthe relation (1.21). This solution is the main result of the paper. In se
tion 4, we expli
itly 
onstru
t[ e�V (a;b) ℄r satisfying all the assumptions and apply the general result to obtain solutions for a 
lass ofmarginal deformations whi
h in
lude the deformations of 
at D-branes in 
at ba
kgrounds by 
onstantmassless modes of the gauge �eld and of the s
alar �elds on the D-branes, the 
osine potential for aspa
e-like 
oordinate, and the hyperboli
 
osine potential for the time-like 
oordinate.The operators O(1)R and O(1)L are O(1)R = O(1)L = 
V (1.23)for any marginal deformation. This follows only from the fa
t that the marginal operator is a primary�eld of dimension one. When operator produ
ts of the marginal operator are regular, there are nohigher-order terms and thus OR = OL = � 
V . For any exa
tly marginal deformation where thesingular part of the operator produ
t of the marginal operator with itself isV (t)V (0) � 1t2 ; (1.24)the operators O(2)L and O(2)R are O(2)R = �O(2)L = 12 �
 : (1.25)For the 
lass of marginal deformations to be 
onsidered in se
tion 4, there are no higher-order termsand the exa
t expressions of OR and OL areOR = � 
V + �22 �
 ; OL = � 
V � �22 �
 : (1.26)1.3 The organization of the paperIn se
tion 2 we �rst revisit the problem of 
onstru
ting solutions for marginal deformations withregular operator produ
ts. In x 2.1 we 
onstru
t a solution 	L to the string �eld theory equation ofmotion using integrated vertex operators without b-ghost insertions. The solution 	L, however, doesnot satisfy the reality 
ondition on the string �eld. In x 2.2 we 
onstru
t a gauge transformation whi
h
onne
ts 	L and its 
onjugate solution 	R, and then we generate a real solution 	 using the gaugetransformation. During the 
onstru
tion of this gauge transformation, we �nd an important identity.It leads us to dis
over a 
lass of states U�, whi
h generalize the wedge states W� in a deformedba
kground. We study the properties of U� in x 2.3.In the pro
ess of 
onstru
ting the gauge transformation that 
onne
ts 	L and 	R, we also �ndanother expression of the solution 	L. We study the new form of 	L in x 3.1 and prove that it satis�esthe equation of motion using the properties of U�. The new form of 	L 
an be generalized to marginaldeformations with singular operator produ
ts. In x 3.2 we 
onstru
t 	L for the singular 
ase using theoperator [ e�V (a;b) ℄r, and we prove in x 3.3 and in appendix A that it satis�es the equation of motion8



under the assumptions stated in x 1.1. We then generate a real solution 	 for the singular 
ase in x 3.4by an appropriate gauge transformation as in the regular 
ase in x 2.2.In se
tion 4 we expli
itly 
onstru
t the operator [ e�V (a;b) ℄r satisfying the assumptions stated in x 1.1for a 
lass of marginal operators with singular operator produ
ts de�ned in x 4.1. We give severalexamples of marginal operators in
luded in this 
lass in x 4.2. In x 4.3 we 
onstru
t [ e�V (a;b) ℄r forthe 
lass of marginal operators, and we prove in x 4.4 and in appendix B that the assumptions statedin x 1.1 are satis�ed. We dis
uss 
onformal properties of the operator [OL(a) e�V (a;b) ℄r in x 4.5.In se
tion 5 we dis
uss string �eld theory around the deformed ba
kground and demonstrate thatit 
an be elegantly formulated in terms of a new set of algebrai
 stru
tures by de�ning a deformedstar produ
t, deformed inner produ
t, and deformed BRST operator. Se
tion 6 is for dis
ussion, andin appendix C we explain the relation to the previous work by Fu
hs, Kroyter and Potting in [21℄ forthe spe
ial 
ase of marginal deformations 
orresponding to the 
onstant mode of the gauge �eld.2 Marginal deformations with regular operator produ
ts2.1 Solutions using integrated vertex operatorsWhen we 
al
ulate n-point s
attering amplitudes for open bosoni
 strings on the disk, we use threeunintegrated vertex operators and n� 3 integrated vertex operators. The unintegrated vertex operatortakes the form 
V , where 
 is the 
 ghost and V is a matter primary �eld of dimension one. Theunintegrated vertex operator is invariant under the BRST transformation:QB � 
V (t) � ZC(t)h dz2�i jB(z)� d�z2�i ~|B(�z) i 
V (t) = 0 : (2.1)The integrated vertex operator is an integral of V on the boundary. The BRST transformation of Vis a total derivative, QB � V (t) = �t [ 
V (t) ℄ ; (2.2)and thus the integrated vertex operator is invariant under the BRST transformation up to nonvanishingterms from the boundaries of the integral region:QB � V (a; b) = QB � Z ba dt V (t) = Z ba dt �t [ 
V (t) ℄ = 
V (b)� 
V (a) : (2.3)The vertex operator V generates a marginal deformation of the boundary CFT. When the deformationis exa
tly marginal, we expe
t a 
orresponding solution 	 to the equation of motion of open string�eld theory [27℄: QB	+	 �	 = 0 : (2.4)In [17, 18℄, analyti
 solutions for marginal deformations in open bosoni
 string �eld theory were
onstru
ted to all orders in the deformation parameter � when operator produ
ts V (t1)V (t2) : : : V (tn)9



of the marginal operator are regular. The solution in [17, 18℄ takes the form of an expansion in �,	 = 1Xn=1�n	(n) ; (2.5)and the equation of motion for 	(n) isQB	(n) = � n�1Xi=1 	(n�i) �	(i) : (2.6)In the solution 
onstru
ted in [17, 18℄, 	(n) is made of n unintegrated vertex operators and n � 1b-ghost insertions. In this se
tion, we 
onstru
t 	(n) using one unintegrated and n � 1 integratedvertex operators when operator produ
ts of the marginal operator are regular.We 
hoose the �rst term 	(1) of the solution to beh�;	(1) i = h f Æ �(0) 
V (1) iW1 : (2.7)This satis�es the linearized equation of motion. The starting point of our 
onstru
tion is the obser-vation that 	(2)L made of one unintegrated vertex operator and one integrated vertex operator givenby h� ;	(2)L i = h f Æ �(0) 
V (1)V (1; 2) iW2 = Z 21 dt h f Æ �(0) 
V (1)V (t) iW2 (2.8)solves the equation of motion QB	(2)L = �	(1) �	(1). This 
an be shown as follows:h� ;QB 	(2)L i = � Z 21 dt h f Æ �(0) 
V (1) �t [ 
V (t) ℄ iW2= � h f Æ �(0) 
V (1) 
V (2) iW2= � h� ;	(1) �	(1) i ; (2.9)where we have used the formulas (2.1) and (2.3), andlimt2!t1 
V (t1) 
V (t2) = 0 ; (2.10)whi
h follows from the 
ondition that the operator produ
t V (t1)V (t2) is regular in the limit t2 ! t1.Let us next 
onstru
t a solution to O(�3). We look for 	(3)L whi
h satis�esQB 	(3)L = �	(1) �	(2)L �	(2)L �	(1): (2.11)The right-hand side is given by� h� ;	(1) �	(2)L +	(2)L �	(1) i = � h f Æ �(0) 
V (1) 
V (2)V (2; 3) iW3� h f Æ �(0) 
V (1)V (1; 2) 
V (3) iW3 : (2.12)10



First 
onsider the state 	(3)L1 de�ned byh� ;	(3)L1 i = h f Æ �(0) 
V (1)V (1; 2)V (2; 3) iW3 : (2.13)The BRST transformation of 	(3)L1 ish� ;QB 	(3)L1 i = � h f Æ �(0) 
V (1) 
V (2)V (2; 3) iW3� h f Æ �(0) 
V (1)V (1; 2) 
V (3) iW3+ h f Æ �(0) 
V (1)V (1; 2) 
V (2) iW3 : (2.14)The �rst two terms pre
isely give �	(1) � 	(2)L � 	(2)L � 	(1). To 
an
el the last term, 
onsider 	(3)L2de�ned by h� ;	(3)L2 i = 12 h f Æ �(0) 
V (1) (V (1; 2))2 iW3 : (2.15)Using the formula QB � (V (a; b))n = n [ (V (a; b))n�1 
V (b)� 
V (a) (V (a; b))n�1 ℄ ; (2.16)whi
h holds for marginal operators with regular operator produ
ts, the BRST transformation of 	(3)L2
an be 
al
ulated as follows:h� ;QB 	(3)L2 i = � h f Æ �(0) 
V (1)V (1; 2) 
V (2) iW3 : (2.17)This 
an
els the last term on the right-hand side of (2.14). Therefore, 	(3)L 
an be 
onstru
ted byadding 	(3)L2 to 	(3)L1 :h� ;	(3)L i = h� ;	(3)L1 +	(3)L2 i= h f Æ �(0) 
V (1)V (1; 2)V (2; 3) iW3 + 12 h f Æ �(0) 
V (1) (V (1; 2))2 iW3 : (2.18)To generalize this solution to higher orders, it turns out to be 
ru
ial to rewrite 	(3)L in a di�erentform. Using a path-ordered expression for 	(3)L2 , 	(3)L 
an also be written ash� ;	(3)L i = Z 21 dt1 Z 32 dt2 h f Æ �(0) 
V (1)V (t1)V (t2) iW3+ Z 21 dt1 Z 2t1 dt2 h f Æ �(0) 
V (1)V (t1)V (t2) iW3= Z 21 dt1 Z 3t1 dt2 h f Æ �(0) 
V (1)V (t1)V (t2) iW3 : (2.19)
See �gure 6. It is instru
tive to see how 	(3)L in this form satis�es the equation of motion. The BRSTtransformation of 	(3)L is given byh� ;QB	(3)L i =� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) 
V (1) �t1 [ 
V (t1) ℄V (t2) iW3� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) 
V (1)V (t1) �t2 [ 
V (t2) ℄ iW3 : (2.20)11



Figure 6: Illustration of 	(3)L . The solid dot represents the 
V insertion, and the 
ir
les represent thetwo V insertions. The left V is integrated from 1 to 2 , and the right V is integrated from the positionof the left V to 3 .The integral region of t2 depends on t1. The �rst line on the right-hand side of (2.20) 
an be 
al
ulatedas follows:� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) 
V (1) �t1 [ 
V (t1) ℄V (t2) iW3= �Z 21 dt1 �t1� Z 3t1 dt2 h f Æ �(0) 
V (1) 
V (t1)V (t2) � iW3 � Z 21 dt1 h f Æ �(0) 
V (1) 
V 2(t1) iW3= �Z 32 dt2 h f Æ �(0) 
V (1) 
V (2)V (t2) iW3 � Z 21 dt1 h f Æ �(0) 
V (1) 
V 2(t1) iW3= � h� ;	(1) �	(2)L i � Z 21 dt1 h f Æ �(0) 
V (1) 
V 2(t1) iW3 : (2.21)The 
al
ulation of the se
ond line on the right-hand side of (2.20) is straightforward:� Z 21 dt1 Z 3t1 dt2 h f Æ �(0) 
V (1)V (t1) �t2 [ 
V (t2) ℄ iW3= �Z 21 dt1 h f Æ �(0) 
V (1)V (t1) 
V (3) iW3 + Z 21 dt1 h f Æ �(0) 
V (1) 
V 2(t1) iW3= � h� ;	(2)L �	(1) i+ Z 21 dt1 h f Æ �(0) 
V (1) 
V 2(t1) iW3 : (2.22)
Note that the two terms with 
V 2, whi
h arise from 
ollisions of 
V and V , 
an
el ea
h other. Wehave thus re
on�rmed that the equation of motion at O(�3) is satis�ed.12



Figure 7: Illustration of 	(n)L . The solid dot represents the 
V insertion, and the 
ir
les represent theV insertions. The integration region of tj is from tj�1 to j + 1.This form of 	(3)L 
an be generalized to 	(n)L for any n as follows:h� ;	(n)L i = D f Æ �(0) 
V (1)Z 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z ntn�2 dtn�1 V (t1)V (t2)V (t3) : : : V (tn�1)EWn= D f Æ �(0) 
V (1) n�1Yj=1 Z j+1tj�1 dtj V (tj)EWn with t0 � 1 : (2.23)See �gure 7. It is straightforward to show that 	(n)L satis�es the equation of motion:h� ;QB	(n)L i=� n�1Xi=1 D f Æ �(0) 
V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) Z i+1ti�1 dti �ti [ 
V (ti) ℄ n�1Yk=i+1Z k+1tk�1 dtkV (tk)EWn=� n�1Xi=1 D f Æ �(0) 
V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) 
V (i+ 1) Z i+2i+1 dti+1 : : : Z ntn�2 dtn�1 V (ti+1) : : : V (tk)EWn+ n�1Xi=2 D f Æ �(0) 
V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) 
V (ti�1) Z i+2ti�1 dti+1 : : : Z ntn�2 dtn�1 V (ti+1) : : : V (tk)EWn+ n�2Xi=1 D f Æ �(0) 
V (1) i�1Yj=1 Z j+1tj�1 dtjV (tj) Z i+1ti�1 dti 
V (ti) �ti" n�1Yk=i+1Z k+1tk�1 dtkV (tk)#EWn : (2.24)13



By 
arrying out the di�erentiation in the last line, we �nd that the last line pre
isely 
an
els the se
ondline on the right-hand side. The remaining �rst line on the right-hand side is a sum of �	(i) �	(n�i)over i. We have thus shown h� ; QB	(n)L i = � n�1Xi=1 h� ;	(i) �	(n�i) i : (2.25)It is 
onvenient to introdu
e the following notation:V (n)L (1; n+ 1) � Z 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z n+1tn�1 dtn V (t1)V (t2) : : : V (tn) for n � 1 ;V (0)L (1; 1) � 1 : (2.26)The supers
ript (n) indi
ates the number of operators and (1; n+ 1) indi
ates the region where oper-ators are inserted, although this notation is slightly redundant be
ause the number of operators andthe length of the region are 
orrelated for V (n)L (1; n + 1). The solution 	(n)L 
an now be 
ompa
tlywritten as h� ;	(n)L i = h f Æ �(0) 
V (1) V (n�1)L (1; n) iWn : (2.27)The state 	L de�ned by 	L = 1Xn=1 �n	(n)L (2.28)thus solves the equation of motion to all orders in �.2.2 Solutions satisfying the reality 
onditionThe solution 	L 
onstru
ted in the previous subse
tion satis�es the equation of motion, but it does notsatisfy the reality 
ondition on the string �eld. In this subse
tion, we 
onstru
t a solution satisfyingthe reality 
ondition from 	L.2.2.1 The reality 
onditionThe string �eld 	 must have a de�nite parity under the 
ombination of the Hermitean 
onjugation (h
)and the inverse BPZ 
onjugation (bpz�1) to guarantee that the string �eld theory a
tion is real [43℄.We de�ne the 
onjugate Az of a string �eld A byAz � bpz�1 Æ h
 (A) : (2.29)With this de�nition, the following relations hold:(QBA)z = � (�1)AQBAz ; (2.30)(A �B)z = Bz � Az : (2.31)14



Here and in what follows a string �eld in the exponent of (�1) denotes its Grassmann property: it is0 mod 2 for a Grassmann-even state and 1 mod 2 for a Grassmann-odd state. Sin
e the string �eld 	is Grassmann odd, it must be even under the 
onjugation 	z = 	 in order that QB	 and 	 �	 havethe same parity. We will say that a string �eld of ghost number one is real when it is even under the
onjugation.The 
lass of states we use in 
onstru
ting solutions for marginal deformations are made of wedgestates with insertions of 
V and V . Let us 
onsider the 
onjugate of a state in this 
lass. The wedgestate W� [44℄ is even under the 
onjugation W z� = W� be
ause it is 
onstru
ted from the SL(2; R)-invariant va
uum j0i satisfying j0iz = j0i by a
ting with BPZ-even Virasoro generators L�2; L�4; : : : .The �rst term 	(1) in the solution must be even (	(1))z = 	(1), as we dis
ussed above. Therefore, the
onjugate of W� �	(1) �W� is W� �	(1) �W�. This means that the operator 
V (t) on Wn is mappedto 
V (n+ 1� t) under the 
onjugation:
V (t) �! 
V (n+ 1� t) on Wn : (2.32)Its derivative �t [ 
V (t) ℄ at t = a is then mapped to � �t [ 
V (t) ℄ at t = n+ 1� a. Sin
e �t [ 
V (t) ℄ isthe BRST transformation of V (t), this means that QB � V (a) is mapped to � QB � V (n + 1 � a) onWn. It then follows from (2.30) that V (t) is mapped under the 
onjugation as follows:V (t) �! V (n+ 1� t) on Wn : (2.33)It is straightforward to generalize the argument to the 
ase with multiple operator insertions. The
onjugate of the state made of the wedge state Wn with 
V (t1); V (t2); V (t3); : : : ; V (tm) is thereforethe state made of Wn with V (n+ 1� tm); V (n+ 1� tm�1); : : : ; V (n+ 1� t2); 
V (n+ 1� t1).The state 	(n)L with n � 2 does not satisfy the reality 
ondition. Indeed, the operator V (n�1)L (1; n)de�ned in (2.26) is mapped asZ 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z ntn�2 dtn�1 V (t1)V (t2) : : : V (tn�1)�! Z 21 dt1 Z 3t1 dt2 Z 4t2 dt3 : : : Z ntn�2 dtn�1 V (n+ 1� tn�1)V (n+ 1� tn�2) : : : V (n+ 1� t1)= Z nn�1 dt01 Z t01n�2 dt02 Z t02n�3 dt03 : : : Z t0n�21 dt0n�1 V (t0n�1)V (t0n�2) : : : V (t01) (2.34)under the 
onjugation, where t0i = n+ 1� ti. We denote the 
onjugate of 	(n)L by 	(n)R . It is given byh� ;	(n)R i = h� ; (	(n)L )z i = h f Æ �(0) V (n�1)R (1; n) 
V (n) iWn ; (2.35)
15



where we de�nedV (n)R (1; n+ 1) � Z n+1n dt1 Z t1n�1 dt2 Z t2n�2 dt3 : : : Z tn�11 dtn V (tn)V (tn�1) : : : V (t1) for n � 1 ;V (0)R (1; 1) � 1 : (2.36)If 	 satis�es the equation of motion, its 
onjugate 	z also satis�es the equation of motion be
auseQB	z +	z �	z = (QB	+	 �	)z = 0 : (2.37)Therefore, 	R de�ned by 	R = 1Xn=1�n	(n)R (2.38)satis�es the equation of motion.2.2.2 Gauge transformationWe have found two solutions 	L and 	R, and we expe
t that they are related by a gauge transformationgenerated by some gauge parameter U :	R = U�1 �	L � U + U�1 �QBU : (2.39)For a physi
al gauge transformation whi
h relates two string �elds satisfying the reality 
ondition,the gauge parameter U must satisfy the unitarity relation U z = U�1. As we will see later, the gaugeparameter U that relates 	L and 	R is even under the 
onjugation: U z = U . The 
omponent �elds of	L and 	R whi
h do not satisfy the reality 
ondition are thus related through the 
omponent �eldsof U whi
h also violate the reality 
ondition on the gauge parameter.Let us now 
onstru
t U whi
h relates 	L and 	R. It is 
onvenient to rewrite the equation (2.39)as follows: QBU = U �	R � 	L � U : (2.40)We 
an expand U as U = 1Xn=0 �n U (n) with U (0) = 1 ; (2.41)and we solve the equation perturbatively in �. We 
an 
hooseU (1) = 0 (2.42)be
ause 	(1)L = 	(1)R and therefore QBU (1) = 0. The equation for U (2) ish�;QB U (2) i = h�;	(2)R i � h�;	(2)L i = h f Æ �(0) [V (1; 2) 
V (2)� 
V (1)V (1; 2) ℄ iW2 : (2.43)16



1 + �22! + �33! + : : :
Figure 8: Illustration of the expansion U = 1 + �2 U (2) + �3 U (3) +O(�4).This 
an be easily solved using the formula (2.16), and a solution ish�;U (2) i = 12 h f Æ �(0) (V (1; 2))2 iW2 : (2.44)We 
an 
onstru
t U (n) at higher orders re
ursively in this way. However, we 
an infer U (n) from thestru
ture of (2.40). If we assume that U 
an be written without using 
 ghosts, the only 
 ghost isinserted at t = n in the O(�n) term of h�;U � 	R i when represented on Wn and at t = 1 on Wn inthe O(�n) term of h�;	L � U i. This motivates us to make the following ansatz:h�;U (n) i / h f Æ �(0)V (n)(1; n) iWn ; (2.45)where V (n)(a; b) � 1n! (V (a; b))n for n � 1 ; V (0)(a; b) � 1 : (2.46)We in fa
t show that the gauge transformation U in (2.39) is given byh� ;U (n) i = h f Æ �(0) V (n)(1; n) iWn : (2.47)See �gure 8. The BRST transformation of U (n) given in (2.47) ish�;QBU (n) i = 
 f Æ �(0) �V (n�1)(1; n) 
V (n) � 
V (1)V (n�1)(1; n)� �Wn ; (2.48)where we used (2.16). For the spe
ial 
ase of n = 1, the terms on the right-hand side 
an
el, whi
h is
onsistent be
ause U (1) = 0. The O(�n) term of U �	R � 	L � U in (2.40) is given bynXm=1h f Æ �(0) V (n�m)(1; n�m)V (m�1)R (n�m+ 1; n) 
V (n) iWn� nXm=1h f Æ �(0) 
V (1)V (m�1)L (1;m)V (n�m)(m+ 1; n) iWn : (2.49)The proof of (2.40) for U given in (2.47) thus redu
es to showing thath f Æ �(0) 
V (1)V (n�1)(1; n) iWn = nXm=1h f Æ �(0) 
V (1)V (m�1)L (1;m)V (n�m)(m+ 1; n) iWn (2.50)17



andh f Æ �(0) V (n�1)(1; n) 
V (n) iWn = nXm=1h f Æ �(0) V (n�m)(1; n�m)V (m�1)R (n�m+ 1; n) 
V (n) iWn :(2.51)Sin
e the se
ond equation follows from the �rst one by the 
onjugation, it is suÆ
ient to show (2.50).The operator V (n�1)(1; n) on the left-hand side 
an be written in a path-ordered form as follows:V (n�1)(1; n) = Z n1 dt1 Z nt1 dt2 : : : Z ntn�2 dtn�1 V (t1) : : : V (tn�1) : (2.52)We now de
ompose the integration region 1 � t1 � t2 � : : : � tn�1 � n in the following way:t1 � 2 ;t1 � 2 ; t2 � 3 ;t1 � 2 ; t2 � 3 ; t3 � 4 ;...t1 � 2 ; t2 � 3 ; : : : ; tm�1 � m; tm � m+ 1 ;...t1 � 2 ; t2 � 3 ; t3 � 4 ; : : : : : : : : : ; tn�2 � n� 1 ; tn�1 � n ;t1 � 2 ; t2 � 3 ; t3 � 4 ; : : : : : : : : : ; tn�2 � n� 1 ; tn�1 � n :
(2.53)

This de
omposition of the integration region pre
isely mat
hes the right-hand side of (2.50). For ex-ample, the fourth line of (2.53) 
orresponds to the integration region for the produ
t of the operatorsV (m�1)L (1;m)V (n�m)(m+ 1; n). Furthermore, the �fth line vanishes be
ause of the vanishing integra-tion range n � tn�1 � n. This is 
onsistent with the right-hand side of (2.50) be
ause V (1)(n; n) = 0.The last line is nonvanishing and 
orresponds to V (n�1)L (1; n)V (0)(n+ 1; n) = V (n�1)L (1; n), where weused V (0)(a; b) � 1. We 
on
lude thatV (n�1)(1; n) = nXm=1 V (m�1)L (1;m)V (n�m)(m+ 1; n) ; (2.54)and we have thus shown (2.50). This 
ompletes the proof that U is the gauge transformation thatrelates 	L and 	R.2.2.3 Constru
tion of a real solutionThe state U takes the form U = 1 + 1Xn=2 �n U (n) ; (2.55)
18



and U (n) is even under the 
onjugation: (U (n))z = U (n). If a state X is even under the 
onjugation,then ln(1 +X) de�ned by ln(1 +X) � 1Xn=1 (�1)n+1n X �X � : : : �X| {z }n (2.56)is also even. If a state Y is even, then exp (aY ) with real a de�ned byexp (aY ) � 1 + 1Xn=1 ann! Y � Y � : : : � Y| {z }n (2.57)is also even. Therefore, (1 +X)�1, p1 +X and 1=p1 +X de�ned by(1 +X)�1 � exp [� ln(1 +X) ℄ = 1 + 1Xn=1 (�1)n X �X � : : : �X| {z }n ;p1 +X � exp � 12 ln(1 +X) � ; 1p1 +X � exp ��12 ln(1 +X) � (2.58)are all even if Xz = X. We de�ne U�1, pU , and 1=pU in this way, whi
h are well de�ned to allorders in � and are even under the 
onjugation.We 
an now 
onstru
t a real solution 	 from 	L as follows:	 � 1pU �	L � pU + 1pU �QBpU= pU �	R � 1pU +pU �QB 1pU= 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QB pU �QBpU � 1pU � : (2.59)The se
ond expression is obtained from the �rst one using QBU = U �	R�	L �U , and 	 manifestlysatis�es the reality 
ondition in the third expression be
ause of the relations 	zL = 	R, (pU )z = pU ,(1=pU )z = 1=pU , and (QB pU )z = � QB pU . The state 	 also satis�es the equation of motionbe
ause it is obtained from the solution 	L by the gauge transformation generated by pU .We have su

essfully 
onstru
ted real analyti
 solutions for marginal deformations with regularoperator produ
ts. To summarize, our solution takes the form	 = 1pU �	L � pU + 1pU �QBpU ; (2.60)
19



where 	L and U are de�ned by	L = 1Xn=1�n	(n)L ;h� ;	(n)L i = h f Æ �(0) 
V (1) V (n�1)L (1; n) iWn= Z 21 dt1 Z 3t1 dt2 : : : Z ntn�2 dtn�1 h f Æ �(0) 
V (1) V (t1)V (t2) : : : V (tn�1) iWn ;U = 1 + 1Xn=2�n U (n) ;h� ;U (n) i = h f Æ �(0)V (n)(1; n) iWn= 1n! Z n1 dt1 Z n1 dt2 : : : Z n1 dtn h f Æ �(0)V (t1)V (t2) : : : V (tn) iWn :
(2.61)

2.3 Generalization of wedge statesIn the previous subse
tion, we found the identity (2.54). It is simply a 
onsequen
e of the de
ompo-sition of the integral region (2.53). The identity (2.54) 
an be generalized in the following way. Wede�ne V (n)L;�(1; n+ �) for � � 0 byV (n)L;�(1; n+ �) � Z 1+�1 dt1 Z 2+�t1 dt2 Z 3+�t2 dt3 : : : Z n+�tn�1 dtn V (t1)V (t2) : : : V (tn) for n � 1 ;V (0)L;�(1; �) � 1 : (2.62)This redu
es to V (n)L (1; n+ 1) de�ned in (2.26) when � = 1. We then �nd thatV (n)(1; n+ �+ �) = nXm=0 V (m)L;� (1;m+ �)V (n�m)(m+ �+ 1; n+ �+ �) (2.63)for any non-negative real numbers � and �. This identity redu
es to (2.54) when � = 1, � = 0.This generalized identity 
an be shown, as before, by de
omposing the path-ordered integration region1 � t1 � t2 � : : : � tn � n+ �+ � of V (n)(1; n+ �+ �) in the following way:t1 � 1 + � ;t1 � 1 + � ; t2 � 2 + � ;t1 � 1 + � ; t2 � 2 + � ; t3 � 3 + � ;...t1 � 1 + � ; t2 � 2 + � ; : : : ; tm � m+ � ; tm+1 � m+ 1 + � ;...t1 � 1 + � ; t2 � 2 + � ; t3 � 3 + � ; : : : : : : : : : ; tn�1 � n� 1 + � ; tn � n+ � ;t1 � 1 + � ; t2 � 2 + � ; t3 � 3 + � ; : : : : : : : : : ; tn�1 � n� 1 + � ; tn � n+ � :
(2.64)
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This identity 
an be promoted to a relation of string �elds. We de�ne U� and UL;� with � � 0 byU� � 1Xn=0 �n U (n)� ; UL;� � 1Xn=0 �n U (n)L;� ; (2.65)where h� ;U (n)� i = h f Æ �(0) V (n)(1; n+ �) iWn+� for n+ � > 0 ; U (0)0 = 1 ;h� ;U (n)L;� i = h f Æ �(0) V (n)L;�(1; n+ �) iWn+� for n+ � > 0 ; U (0)L;0 = 1 : (2.66)The gauge parameter U in the previous subse
tion is thusU = U0 ; (2.67)and the solution 	L in (2.27) is UL;1 with an extra insertion of � 
V (1). It then follows from (2.63)that U�+� = UL;� � U� : (2.68)When � = 0, we have U� = UL;� � U ; (2.69)where we have used U0 = U . As we dis
ussed in the previous subse
tion, the inverse of U is wellde�ned to all orders in �. We thus �nd thatUL;� = U� � U�1 : (2.70)It follows from this and (2.68) that U�+� = U� � U�1 � U� : (2.71)The state U� is W� +O(�) for � > 0, where W� is the well-known wedge state de�ned byh� ;W� i = h f Æ �(0) iW� : (2.72)The relation (2.71) for positive � and � thus redu
es to the famous relation W�+� = W� �W� when� = 0, and the state U� 
an be thought of as a generalization of the wedge state W�. When � is apositive integer, U� 
an be written in terms of U1 and U�1:U2 = U1 � U�1 � U1 ;U3 = U1 � U�1 � U1 � U�1 � U1 ;U4 = U1 � U�1 � U1 � U�1 � U1 � U�1 � U1 ;... (2.73)This stru
ture indi
ates a modi�
ation of the star produ
t for �nite � de�ned byA ? B � A � U�1 � B ; (2.74)21



� + �2 + �32 + : : :
Figure 9: Illustration of the expansion AL = �A(1)L + �2A(2)L + �3A(3)L +O(�4).and the relation (2.71) 
an be written as U�+� = U� ? U� : (2.75)On a te
hni
al level, the relation (2.71) will play an important role in the next se
tion for the 
on-stru
tion of solutions asso
iated with general marginal deformations. On a more 
on
eptual level, wewill see in se
tion 5 that the modi�ed star produ
t (2.74) naturally appears in the string �eld theorya
tion expanded around a deformed ba
kground.3 Marginal deformations with singular operator produ
ts3.1 Another form of the solution with regular operator produ
tsIn the pro
ess of 
onstru
ting a real solution from 	L in the previous se
tion, we proved thatQB U = U �	R �	L � U : (3.1)As we have seen in (2.48), the BRST transformation of U 
an be de
omposed into two pie
es:QB U = AR �AL ; (3.2)where AL and AR are given byh� ;AL i = 1Xn=1�n h f Æ �(0) 
V (1)V (n�1)(1; n) iWn ;h� ;AR i = 1Xn=1�n h f Æ �(0)V (n�1)(1; n) 
V (n) iWn : (3.3)See �gure 9. At O(�n) with n � 2, AL and AR a

ount for the term with 
V (1) and the term with
V (n) in QBU (n), respe
tively. At O(�), QB U vanishes be
ause U (1) = 0, but we have 
hosen AL andAR at O(�) to be �	(1) for later 
onvenien
e.In the proof of (3.1), we have a
tually shown thatAL = 	L � U ; AR = U �	R : (3.4)22



As we dis
ussed in the previous se
tion, the inverse of U is well de�ned to all orders in �. We thusobtain new expressions for 	L and 	R:	L = AL � U�1 ; 	R = U�1 � AR : (3.5)We have shown that 	L with 	(n)L in the form of (2.27) satis�es the equation of motion. Let us nowsee how 	L in the new form satis�es the equation of motion. The BRST transformation of 	L 
an be
al
ulated as follows:QB	L = QB (AL � U�1)= (QBAL) � U�1 +AL � U�1 � (QBU) � U�1= (QBAL) � U�1 +AL � U�1 � (AR �AL) � U�1= (QBAL +AL � U�1 �AR) � U�1 �AL � U�1 �AL � U�1= (QBAL +AL � U�1 �AR) � U�1 �	L �	L : (3.6)
Therefore, the equation of motion is satis�ed if�QBAL = AL � U�1 � AR : (3.7)The left-hand side of the equation 
an be 
al
ulated as follows:� h� ;QBAL i = 1Xn=2�n h f Æ �(0) 
V (1)V (n�2)(1; n) 
V (n) iWn : (3.8)Let us next 
onsider the stru
ture of the state AL � U�1 � AR on the right-hand side of (3.7). TheO(�n) terms of AL and AR are made of the wedge state Wn with operator insertions. The inverseU�1 
an be written as a linear 
ombination of string produ
ts made of �n U (n), and their O(�n) termsare again made of the wedge state Wn with operator insertions. It thus follows that all of the O(�n)terms of AL �U�1 �AR are made of Wn with operator insertions. This is 
onsistent with the stru
tureof (3.8). Furthermore, the insertions of � 
V on the surfa
eWn are always � 
V (1) and � 
V (n), whi
his again 
onsistent with the stru
ture of (3.8). Finally, let us 
onsider the stru
ture of integratedvertex operators. The state �QBAL takes the form of the state U2 de�ned in (2.65) with insertionsof � 
V . Similarly, AL and AR take the form of U1 with an insertion of � 
V . The equation (3.7) thusfollows from (2.71) with � = � = 1: U2 = U1 � U�1 � U1 : (3.9)We 
on
lude that 	L of the form given in (3.5) satis�es the equation of motion.3.2 Generalization to the 
ase with singular operator produ
tsThe form 	L = AL � U�1 for the solution 
an be generalized to the 
ase where operator produ
ts ofthe marginal operator are singular. As we dis
ussed in the introdu
tion, let us denote the properly23



renormalized operator implementing the 
hange of the boundary 
ondition between the points a andb by [ e� V (a;b) ℄r, whi
h is given in the form of an expansion in �:[ e� V (a;b) ℄r = 1Xn=0 �nn! [ (V (a; b))n ℄r ;= 1Xn=0 �n [V (n)(a; b) ℄r : (3.10)We de�ne U in the general 
ase by U � 1Xn=0 �n U (n) ; (3.11)where h� ;U (n) i = h f Æ �(0) [V (n)(1; n) ℄r iWn : (3.12)As we dis
ussed in the introdu
tion, we assume that the BRST transformation of [ e�V (a;b) ℄r forany exa
tly marginal deformation takes the formQB � [ e�V (a;b) ℄r = [ e� V (a;b) OR(b) ℄r � [OL(a) e� V (a;b) ℄r ; (3.13)where OL and OR are �-dependent, Grassmann-odd lo
al operators. The operators OL and OR are
losely related and mapped to ea
h other under the 
onjugation dis
ussed in x 2.2.1 when the re
e
tionassumption (VI) is satis�ed. We will dis
uss the relation between OL and OR in more detail in x 3.4, butit is relevant only when generating a real solution from 	L and we do not need to assume any relationbetween OL and OR in the 
onstru
tion of the solution 	L. In the 
ase of marginal deformations withregular operator produ
ts, we see from (2.16) thatQB � e�V (a;b) = � � e�V (a;b) 
V (b)� 
V (a) e� V (a;b) i (3.14)and identify OregularL = OregularR = � 
V : (3.15)In the 
ase of marginal deformations with singular operator produ
ts, there 
an be 
orre
tions to OLand OR, whi
h are determined from the BRST transformation of [V (n)(a; b) ℄r in the formQB � [V (n)(a; b) ℄r = nXr=1 [V (n�r)(a; b)O(r)R (b) ℄r � nXl=1 [O(l)L (a)V (n�l)(a; b) ℄r ; (3.16)where OL and OR are expanded as follows:OL = 1Xn=1 �nO(n)L ; OR = 1Xn=1 �nO(n)R : (3.17)The operators O(1)L and O(1)R are determined from the BRST transformation of [V (1)(a; b) ℄r . Sin
e[V (1)(a; b) ℄r does not require any renormalization, we �ndQB � [V (1)(a; b) ℄r = QB � V (a; b) = 
V (b)� 
V (a) (3.18)24



12 + +
Figure 10: Illustration of A(3)L .for any dimension-one primary �eld V . Thus the operators O(1)L and O(1)R are determined to beO(1)L = O(1)R = 
V (3.19)for any marginal deformation. Similarly, the operators O(n)L and O(n)R with n � 2 are determined fromthe BRST transformation of [V (n)(a; b) ℄r with n � 2 , but we do not need any spe
i�
 information onthese operator in the 
onstru
tion of solutions. The BRST transformation of U is then given byQB U = AR �AL ; (3.20)where AL � 1Xn=1 �nA(n)L ; AR � 1Xn=1 �nA(n)R ; (3.21)with h� ;A(n)L i = nXl=1h f Æ �(0) [O(l)L (1)V (n�l)(1; n) ℄r iWn ;h� ;A(n)R i = nXr=1h f Æ �(0) [V (n�r)(1; n)O(r)R (n) ℄r iWn : (3.22)See �gure 10. We have de�ned A(1)L and A(1)R to be 	(1) as in the regular 
ase.We now de�ne 	L by 	L � AL � U�1 ; (3.23)and we 
on
lude from the 
al
ulation (3.6), where we only used the relation QBU = AR � AL, that	L satis�es the equation of motion if�QBAL = AL � U�1 � AR : (3.24)So far we have only used the assumption (I) on the BRST transformation of [ e�V (a;b) ℄r. We showin the next subse
tion that the equation (3.24) holds when the assumptions (II){(V) stated in theintrodu
tion are satis�ed. 25



3.3 Proof that the equation of motion is satis�edLet us �rst examine the left-hand side of (3.24). From the assumption (II) on the BRST transformationof [OL(a) e� V (a;b) ℄r, it is given by� h� ;QBA(n)L i = Xl+r�nh f Æ �(0) [O(l)L (1)V (n�l�r)(1; n)O(r)R (n) ℄r iWn : (3.25)If we de�ne U� for � � 0 in the singular 
ase byU� � 1Xn=0 �n U (n)� (3.26)with h� ;U (n)� i = h f Æ �(0) [V (n)(1; n+ �) ℄r iWn+� for n+ � > 0 ; U (0)0 � 1 ; (3.27)then �QBAL 
an be 
onstru
ted from Ul+r by inserting �l O(l)L and �r O(r)R and by summing over land r. We s
hemati
ally write the state in the following way:�QBAL �Xl; r �Ul+r with �lO(l)L and �r O(r)R � : (3.28)The state AL on the right-hand side of (3.24) 
an be 
onstru
ted from Ul by inserting �lO(l)L andby summing over l. Similarly, the state AR 
an be 
onstru
ted from Ur by inserting �r O(r)R and bysumming over r. Therefore, the state AL � U�1 � AR 
an be s
hemati
ally expressed as follows:AL � U�1 �AR �Xl �Ul with �lO(l)L � � U�1 �Xr �Ur with �r O(r)R ��Xl; r �Ul � U�1 � Ur with �lO(l)L and �r O(r)R � : (3.29)The equation �QBAL = AL � U�1 � AR thus follows if the relationUl+r = Ul � U�1 � Ur (3.30)with additional operator insertions of O(l)L and O(r)R holds for the singular 
ase.Motivated by this observation, we �rst show that the relation Ul+r = Ul � U�1 � Ur holds for thesingular 
ase if the assumptions of repla
ement (III), fa
torization (IV), and lo
ality (V) are satis�ed.It is then straightforward to generalize the proof by taking into a

ount the insertions of O(l)L and O(r)Rand show the equation (3.24). Instead of presenting a lengthy formal proof, we demonstrate how theseequations hold using 
on
rete examples and then explain how the proof generalizes.Let us 
onsider the equation U2 = U1 � U�1 � U1 at O(�2). Sin
e U�1 = 1 � �2 U (2) + O(�3), it
an be written as follows:U (2)2 = U (0)1 � U (2)1 + U (1)1 � U (1)1 + U (2)1 � U (0)1 � U (0)1 � U (2) � U (0)1 : (3.31)26



All the terms are made of the wedge state W4 with operator insertions. In the regular 
ase, theequation was a 
onsequen
e of the following relation of the operator insertions on W4:(V (1; 4))2 = (V (2; 4))2 + 2V (1; 2)V (3; 4) + (V (1; 3))2 � (V (2; 3))2 : (3.32)In the singular 
ase, we need to show[ (V (1; 4))2 ℄r = [ (V (2; 4))2 ℄r + 2 [V (1; 2) ℄r [V (3; 4) ℄r + [ (V (1; 3))2 ℄r � [ (V (2; 3))2 ℄r : (3.33)Note that we have impli
itly used the lo
ality assumption (V). The operators [ (V (2; 4))2 ℄r and[ (V (1; 3))2 ℄r on the right-hand side were originally de�ned on W3 and [ (V (2; 3))2 ℄r was de�nedon W2. They are now inserted on W4 in the same forms be
ause of the assumption (V). We next usethe fa
torization assumption (IV) of the following form:[ e�1V (1;2) e�2V (3;4) ℄r = [ e�1V (1;2) ℄r [ e�2V (3;4) ℄r : (3.34)The relation at O(�1 �2) is [V (1; 2)V (3; 4) ℄r = [V (1; 2) ℄r [V (3; 4) ℄r : (3.35)Thus the right-hand side of (3.33) 
an be written as[ (V (2; 4))2 ℄r + 2 [V (1; 2) ℄r [V (3; 4) ℄r + [ (V (1; 3))2 ℄r � [ (V (2; 3))2 ℄r= [ (V (2; 4))2 ℄r + 2 [V (1; 2)V (3; 4) ℄r + [ (V (1; 3))2 ℄r � [ (V (2; 3))2 ℄r : (3.36)We then use the assumption (III) of repla
ement in the �nal step. It follows from the assumption (III)that [ e�V (a;
) ℄r = [ e�V (a;b) e�V (b;
) ℄r (3.37)for a < b < 
. At O(�2), we obtain the following formula:[ (V (a; 
))2 ℄r = [ (V (a; b))2 ℄r + 2 [V (a; b)V (b; 
) ℄r + [ (V (b; 
))2 ℄r : (3.38)We thus �nd [ (V (2; 4))2 ℄r = [ (V (2; 3) + V (3; 4) )2 ℄r= [ (V (2; 3))2 ℄r + 2 [V (2; 3)V (3; 4) ℄r + [ (V (3; 4))2 ℄r ;[ (V (1; 3))2 ℄r = [ (V (1; 2) + V (2; 3) )2 ℄r= [ (V (1; 2))2 ℄r + 2 [V (1; 2)V (2; 3) ℄r + [ (V (2; 3))2 ℄r : (3.39)For the operator [ (V (1; 4))2 ℄r on the left-hand side of (3.33), we use the formula (3.38) re
ursivelyand obtain[ (V (1; 4))2 ℄r = [ (V (1; 2) + V (2; 3) + V (3; 4) )2 ℄r= [ (V (1; 2))2 ℄r + [ (V (2; 3))2 ℄r + [ (V (3; 4))2 ℄r+ 2 [V (1; 2)V (2; 3) ℄r + 2 [V (2; 3)V (3; 4) ℄r + 2 [V (1; 2)V (3; 4) ℄r : (3.40)27



We 
an expli
itly 
on�rm that the equation (3.33) is satis�ed. However, the 
oeÆ
ients in the basis� [ (V (1; 2))2 ℄r ; [ (V (2; 3))2 ℄r ; [ (V (3; 4))2 ℄r ;[V (1; 2)V (2; 3) ℄r ; [V (2; 3)V (3; 4) ℄r ; [V (1; 2)V (3; 4) ℄r 	 (3.41)are guaranteed to mat
h on both sides of (3.33) be
ause they are the same as those in the regular 
asewhere the 
orresponding identity (3.32) has been shown.This proof 
an be generalized to Ul+r = Ul � U�1 � Ur at O(�n) for any positive integers l, r,and n. The state U (n)l+r 
an be expressed in terms of [V (n)(1; l + r + n) ℄r on Wl+r+n. Be
ause of theassumption (V), the terms of Ul �U�1 �Ur at O(�n) 
an also be expressed in terms of produ
ts of theform Yj [V (kj)(aj ; bj) ℄r (3.42)on Wl+r+n, where positive integers kj , aj, and bj satisfy 1 � aj < bj � l + r + n, bj < aj+1 andPj kj = n. Using the fa
torization assumption (IV), the produ
ts 
an be written in the form[Yj V (kj)(aj ; bj) ℄r (3.43)on Wl+r+n. Finally, we use the repla
ement assumption (III) to expand both sides of the equationUl+r = Ul � U�1 � Ur in the basis n [ l+r+n�1Yi=1 V (`i)(i; i + 1) ℄r o ; (3.44)where `i's are non-negative integers withPl+r+n�1i=1 `i = n. The 
oeÆ
ients in the basis are guaranteedto mat
h on both sides of Ul+r = Ul � U�1 � Ur be
ause the equation holds in the regular 
ase. This
ompletes the proof of Ul+r = Ul � U�1 � Ur in the singular 
ase to all orders in �.The proof of �QBAL = AL �U�1 �AR is essentially parallel using the assumptions (III) and (IV)of repla
ement and fa
torization with additional insertions of OL and OR. We provide the details ofthe proof in appendix A. We thus 
on
lude that 	L given by	L = AL � U�1 (3.45)solves the equation of motion for any exa
tly marginal deformations satisfying the assumptions (I){(V).3.4 Constru
tion of a real solutionIt is straightforward to 
onstru
t a real solution 	 from 	L as we did in x 2.2 for marginal deformationswith regular operator produ
ts. The state U satis�es U z = U under the assumption (VI) of re
e
tion.It then follows from (2.30) that (QBU)z = � QBU and thus (AR � AL)z = AL � AR. From this we28




on
lude that the lo
al operators OL and OR are mapped under the 
onjugation dis
ussed in x 2.2.1as follows: OL(t) �! OR(n+ 1� t) ; OR(t) �! OL(n+ 1� t) on Wn : (3.46)We thus �nd AzL = AR ; AzR = AL : (3.47)In the 
ase of marginal deformations with regular operator produ
ts, OL and OR are both � 
V andare indeed mapped as (3.46).We de�ne 	R by 	R � U�1 � AR : (3.48)As in the regular 
ase, the state 	R is the 
onjugate of 	L:	R = 	zL : (3.49)It satis�es the equation of motion and obeys the relation QBU = U �	R�	L �U . We 
on
lude that	 given by 	 = 1pU �	L � pU + 1pU �QB pU= pU �	R � 1pU +pU �QB 1pU= 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QB pU �QB pU � 1pU � (3.50)is real and satis�es the equation of motion. The solution 	 
an also be expressed in terms of AL andAR in the following way, whi
h might be more 
onvenient for an expli
it expansion in �:	 = 1pU � AL � 1pU + 1pU �QB pU= 1pU � AR � 1pU +pU �QB 1pU= 12 � 1pU � (AL +AR) � 1pU + 1pU �QB pU �QB pU � 1pU � : (3.51)
4 Expli
it 
onstru
tionWe have separated the 
onstru
tion of solutions for marginal deformations in open string �eld theoryinto two steps. In the previous se
tion, we have presented the general 
onstru
tion of solutions in openstring �eld theory from the operator [ e�V (a;b) ℄r. The se
ond step is then to 
onstru
t su
h properlyrenormalized operators satisfying the assumptions stated in the introdu
tion for 
on
rete examples ofexa
tly marginal deformations. This is a problem in the boundary CFT and independent of string�eld theory. In this se
tion, we 
arry out the se
ond step for a 
lass of marginal deformations withsingular operator produ
ts by 
onstru
ting [ e�V (a;b) ℄r expli
itly.29



4.1 A 
lass of marginal deformations with singular operator produ
tsThe dependen
e of the two-point fun
tion hV (t1)V (t2) i on t1 and t2 for a dimension-one primary�eld V is 
ompletely �xed by 
onformal symmetry. When the singular part of the operator produ
texpansion (OPE) of V with itself is given byV (t)V (0) � 1t2 ; (4.1)the operator produ
t V (t1)V (t2) 
an be made �nite in the limit t1 ! t2 by subtra
ting hV (t1)V (t2) ifrom it.2 We de�ne ÆÆ V (t1)V (t2) ÆÆ for t1 6= t2 byÆÆ V (t1)V (t2) ÆÆ � V (t1)V (t2)�G(t1; t2) ; (4.2)where G(t1; t2) � hV (t1)V (t2) i : (4.3)Note that the 
orrelation fun
tion hV (t1)V (t2) i depends on the Riemann surfa
e where the boundaryCFT is de�ned, and thus the de�nition of ÆÆ V (t1)V (t2) ÆÆ also depends on the Riemann surfa
e.The OPE of V with itself, however, 
an have other singular terms. For example, the singular partof the OPE 
an be V (t)V (0) � 1t2 + 1t eV (0) (4.4)with some dimension-one primary �eld eV , whi
h 
an be proportional to V itself. The operatorÆÆ V (t1)V (t2) ÆÆ is not �nite if the single-pole term with eV is nonvanishing. We will dis
uss the 
asewith the OPE (4.4) in more detail in x 4.4.The operator ÆÆ V (t1)V (t2) ÆÆ 
oin
ides with the ordinary normal-ordered produ
t : V (t1)V (t2) :and is thus manifestly �nite for V (t) = i �tX�(t)=p2�0, where X� is a spa
e-like 
oordinate along theD-brane. However, it is in general di�erent from : V (t1)V (t2) : when V is a 
omposite operator. Forexample, when V (t) is given by V (t) = p2 : 
os�X�(t)p�0 � : ; (4.5)we 
an write ÆÆ V (t1)V (t2) ÆÆ asÆÆ V (t1)V (t2) ÆÆ = G(t1; t2)�1 : 
os�X�(t1) +X�(t2)p�0 � : +G(t1; t2) � : 
os�X�(t1)�X�(t2)p�0 � : �1 � ;(4.6)whi
h is not the same as the normal-ordered produ
t:ÆÆ V (t1)V (t2) ÆÆ 6= : V (t1)V (t2) : = 2 : 
os�X�(t1)p�0 � 
os�X�(t2)p�0 � : : (4.7)2 When the double-pole term 1=t2 in the OPE V (t)V (0) is nonvanishing, we normalize V (t) su
h that the 
oeÆ
ientof the double-pole term is unity. If the state 	(1) using V with this normalization is odd instead of even under the
onjugation dis
ussed in x 2.2.1, we set � = i ~� and take ~� to be real when 
onstru
ting the real solution 	 in x 3.4.30



We similarly de�ne ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ for arbitrary n with ti 6= tj re
ursively as follows:ÆÆ V (t1) ÆÆ � V (t1) ;ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ � ÆÆ V (t1)V (t2) : : : V (tn�1) ÆÆ V (tn)� n�1Xi=1 G(ti; tn) ÆÆ V (t1)V (t2) : : : V (ti�1)V (ti+1) : : : V (tn�1) ÆÆ (4.8)for n > 1 and ti 6= tj. This 
an be formally written in the following form:ÆÆYi V (ti) ÆÆ = exp��12 Z dt1dt2G(t1; t2) ÆÆV (t1) ÆÆV (t2) �Yi V (ti) for ti 6= tj : (4.9)For V (t) = i �tX�(t)=p2�0, the operator produ
t ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ again 
oin
ides with: V (t1)V (t2) : : : V (tn) : and is regular. In general, however, ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ with n � 3
an be singular, even if it is �nite in the limit ti ! tj for any pair of i and j, when more than twooperators simultaneously 
ollide. In this se
tion, we 
onsider a 
lass of marginal operators V whi
hsatisfy the following �niteness 
ondition.The �niteness 
ondition. The limitlimt!t0 ÆÆ V (t)V (t0)n ÆÆ (4.10)is �nite for any positive integer n.We expli
itly 
onstru
t [ e� V (a;b) ℄r satisfying the assumptions stated in the introdu
tion for this 
lassof marginal operators.4.2 ExamplesLet us give some examples of su
h marginal deformations for D-branes in 
at spa
etime with Neumannor Diri
hlet boundary 
onditions. As we have already mentioned, the �niteness 
ondition (4.10) issatis�ed for V (t) = ip2�0 �tX�(t) ; (4.11)where X� is a spa
e-like dire
tion along the D-brane. The dire
tion X� 
an be non
ompa
t or 
an be
ompa
ti�ed on a 
ir
le with any radius. Similarly, the operatorV (t) = 1p2�0 �tX0(t) (4.12)for the time-like dire
tion also satis�es the �niteness 
ondition.3 Both of these deformations 
orrespondto turning on a 
onstant mode of the gauge �eld on the D-brane.3 We have to set � = i ~� and take ~� to be real for this operator when 
onstru
ting the real solution 	.31



The �niteness 
ondition is also satis�ed forV (t) = 1p2�0 �?X�(t) ; (4.13)whereX� is a dire
tion transverse to the D-brane and �? is the derivative normal to the boundary. Thedire
tion X� 
an be non
ompa
t or 
an be 
ompa
ti�ed on a 
ir
le with any radius. This deformation
orresponds to displa
ement of the position of the D-brane in the dire
tion X�. The 
ondition (4.10)is satis�ed be
ause the operator ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ again 
oin
ides with : V (t1)V (t2) : : : V (tn) :and is regular.A more nontrivial example of V satisfying (4.10) isV (t) = p2 : 
os�X�(t)p�0 � : ; (4.14)whereX� is again a spa
e-like dire
tion along the D-brane. The dire
tionX� 
an be non
ompa
t or 
anbe 
ompa
ti�ed on a 
ir
le whose radius is a multiple of the self-dual radius to be 
onsistent with theperiodi
ity of the 
osine potential. This deformation is known to be exa
tly marginal [45, 46, 47, 48℄and interpolates Neumann and Diri
hlet boundary 
onditions. If we start from a D25-brane anddeform the ba
kground by this operator, we obtain a periodi
 array of D24-branes at some valueof the deformation parameter. When we 
ompa
tify the X� dire
tion on a 
ir
le with the self-dualradius, the free boson for the X� dire
tion 
an be des
ribed by a di�erent free boson Y � be
ause of theSU(2) � SU(2) symmetry, and the marginal operator V (t) 
an be written in terms of Y � as follows:V (t) = p2 : 
os�X�(t)p�0 � : = ip2�0 �tY �(t) : (4.15)See, for example, x 3.1 of [2℄. Finiteness of ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ at the self-dual radius is then a
onsequen
e of Wi
k's theorem in the des
ription in terms of Y �. On the other hand, the �nitenessis highly nontrivial in the original des
ription in terms of X�. The operator algebra of boundaryoperators ne
essary for the 
al
ulation of ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ, however, does not depend on the
ompa
ti�
ation radius. Thus ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ is �nite for any radius whi
h is a multiple ofthe self-dual radius and for the non
ompa
t 
ase as well.The operator algebra of boundary operators ne
essary for the 
al
ulation of the operator produ
tÆÆ V (t1)V (t2) : : : V (tn) ÆÆ is the same if we repla
e X� by iX0. Therefore, the marginal operatorV (t) = p2 : 
osh�X0(t)p�0 � : (4.16)also satis�es the �niteness 
ondition. This deformation has been dis
ussed in detail in the 
ontext ofthe rolling ta
hyon [49℄.All the operators mentioned in this subse
tion are known to be exa
tly marginal. In the remain-der of this se
tion, we 
onstru
t solutions in terms of ÆÆ V (t1)V (t2) : : : V (tn) ÆÆ, and the 
onstru
tiondepends on the expli
it form of V only through these operator produ
ts. Thus all the marginaldeformations dis
ussed in this subse
tion are 
overed by our 
onstru
tion.32



4.3 Renormalizing operatorsFor the 
lass of marginal operators satisfying the �niteness 
ondition (4.10) in x 4.1, we 
an 
onstru
t�nite operators ÆÆ(V (a; b))n ÆÆ for any n using the point-splitting regularization. For n = 2, we 
onstru
tÆÆ(V (a; b))2 ÆÆ as follows:ÆÆ(V (a; b))2 ÆÆ = lim�!0 Z b��a dt1 Z bt1+� dt2 �V (t1)V (t2)�G(t1; t2)�+ lim�!0 Z ba+� dt1 Z t1��a dt2 �V (t1)V (t2)�G(t1; t2)� : (4.17)The �rst line and the se
ond line on the right-hand side are a
tually identi
al. We 
ould have writtenÆÆ(V (a; b))2 ÆÆ using only one of them, but we used both of them so that the integral region redu
es tothe produ
t of a � t1 � b and a � t2 � b without any ordering 
onstraint in the limit � ! 0. The
onstru
tion 
an be generalized to any n as follows:ÆÆ(V (a; b))n ÆÆ = lim�!0 Z�(n)� dt1dt2 : : : dtn X0�k�n=2 (�1)k n!2k k! (n� 2k)! kYi=1 G(ti; ti+k) nYj=2k+1V (tj) ; (4.18)where the integral region �(n)� is�(n)� : a � ti � b for i = 1; 2; : : : ; n with j ti � tj j � � for i 6= j : (4.19)The �niteness 
ondition (4.10) guarantees that the limit �! 0 is well de�ned and �nite for any n. Wethen de�ne ÆÆ e�V (a;b) ÆÆ by its expansion in �:ÆÆ e�V (a;b) ÆÆ � 1Xn=0 �nn! ÆÆ(V (a; b))n ÆÆ : (4.20)The de�nition of ÆÆ e�V (a;b) ÆÆ depends on the Riemann surfa
e where the boundary CFT is de�nedthrough the propagator G(t1; t2). When we 
al
ulate star produ
ts of string �elds involving theoperators in the expansion (4.20), the operators de�ned on Wn are embedded in a surfa
e Wm withm � n, and the operators in the expansion (4.20) are not invariant. Thus we 
annot simply set[ e�V (a;b) ℄r � ÆÆ e�V (a;b) ÆÆ be
ause the lo
ality assumption (V) on [ e�V (a;b) ℄r is not satis�ed.Let us study the issue more expli
itly in a simpler example. The operator ÆÆ V (a)V (a; b) ÆÆ is givenby ÆÆ V (a)V (a; b) ÆÆ = lim�!0 Z ba+� dt ÆÆ V (a)V (t) ÆÆ = lim�!0 Z ba+� dt hV (a)V (t)�G(a; t) i : (4.21)We denote the propagator G(t1; t2) on Wn by Gn(t1; t2). Its expli
it expression isGn(t1; t2) � hV (t1)V (t2) iWn = �2(n+ 1)2 sin2� t2 � t1n+ 1 �� : (4.22)33



The operator ÆÆ V (a)V (a; b) ÆÆ de�ned on Wn is thusÆÆ V (a)V (a; b) ÆÆ = lim�!0 Z ba+� dt h V (a)V (t)� �2(n+ 1)2 sin2� t�an+1 �� i on Wn : (4.23)When this operator is embedded in Wm, it should be written using the propagator on Wm as follows:lim�!0 Z ba+� dt hV (a)V (t)� �2(n+ 1)2 sin2� t�an+1 �� i= lim�!0 Z ba+� dt hV (a)V (t)� �2(m+ 1)2 sin2� t�am+1 �� i� Z ba dt ÆG(a; t) ; (4.24)where ÆG(t1; t2) � Gn(t1; t2)�Gm(t1; t2)= �2(n+ 1)2 sin2� t2 � t1n+ 1 �� � �2(m+ 1)2 sin2� t2 � t1m+ 1 ��= (m� n)(2 +m+ n)�23(m+ 1)2(n+ 1)2 +O((t2 � t1)2) ; (4.25)and ÆG(t1; t2) is �nite in the limit t2 ! t1. The operator ÆÆ V (a)V (a; b) ÆÆ de�ned on Wn is thusrewritten when embedded in Wm asÆÆ V (a)V (a; b) ÆÆ �������!Wn!Wm ÆÆ V (a)V (a; b) ÆÆ�Z ba dt ÆG(a; t) : (4.26)The notation A �������!Wn!Wm B (4.27)implies that A = B, but A is written in terms of the propagator on Wn and B is written in terms ofthe propagator on Wm. The assumption of lo
ality (V) 
an be stated using this notation as[ e�V (a;b) ℄r �������!Wn!Wm [ e�V (a;b) ℄r ; [OL(a) e�V (a;b) ℄r �������!Wn!Wm [OL(a) e�V (a;b) ℄r : (4.28)As 
an be expe
ted from the fa
t that O(1)L = O(1)R = 
V in general, we will need to de�ne the operator[V (a) e�V (a;b) ℄r satisfying [V (a) e�V (a;b) ℄r �������!Wn!Wm [V (a) e�V (a;b) ℄r : (4.29)The operator ÆÆ V (a)V (a; b) ÆÆ does not satisfy[V (a)V (a; b) ℄r �������!Wn!Wm [V (a)V (a; b) ℄r ; (4.30)and thus violates (4.29) at O(�). In order to 
an
el the extra term in (4.26), we add ba
k a �nitepart of the propagator 
ontra
tion whi
h we subtra
ted. We de�ne the renormalized 
ontra
tionhV (a)V (a; b) ir by hV (a)V (a; b)ir � lim�!0 � Z ba+� dtG(a; t) � 1� � : (4.31)34



Its expli
it expression on Wn ishV (a)V (a; b) ir = � �1 + n 
ot��(b� a)1 + n � on Wn ; (4.32)and it is rewritten when embedded in Wm ashV (a)V (a; b) ir �������!Wn!Wm hV (a)V (a; b) ir + Z ba dt ÆG(a; t) : (4.33)This allows us to de�ne our �rst renormalized operator [V (a)V (a; b) ℄r by�V (a)V (a; b) �r � ÆÆ V (a)V (a; b) ÆÆ + hV (a)V (a; b) ir : (4.34)Sin
e the extra term in (4.26) is 
an
eled by the extra terms in (4.33), the operator [V (a)V (a; b) ℄ris invariant under the embedding from Wn to Wm and thus satis�es (4.30). In fa
t, we 
an write[V (a)V (a; b) ℄r in the following form whi
h does not depend on the propagator:�V (a)V (a; b) �r = lim�!0� Z ba+� dt V (a)V (t)� 1� � : (4.35)Similarly, we 
an de�ne the renormalized 
ontra
tion and the renormalized operator for V (a; b)V (b)by hV (a; b)V (b) ir � lim�!0 � Z b��a G(t; b) � 1� � ;�V (a; b)V (b) �r � ÆÆ V (a; b)V (b) ÆÆ + hV (a; b)V (b) ir = lim�!0 � Z b��a dt V (t)V (b)� 1� � : (4.36)The renormalized 
ontra
tion hV (a; b)V (b) ir on Wn ishV (a; b)V (b) ir = � �1 + n 
ot��(b� a)1 + n � on Wn : (4.37)We use the same strategy to de�ne [ (V (a; b))2 ℄r. We de�ne hV (a; b)2 ir byhV (a; b)2 ir � 2 lim�!0� Z b��a dt1 Z bt1+� dt2G(t1; t2)� b� a� �� � ln � � : (4.38)Its expression on Wn ishV (a; b)2 ir = ln� �2(n+ 1)2 sin2� b�an+1 ��� = lnGn(a; b) on Wn : (4.39)We then de�ne [ (V (a; b))2 ℄r by� (V (a; b))2 �r � ÆÆ(V (a; b))2 ÆÆ + hV (a; b)2 ir : (4.40)35



Sin
e ÆÆ(V (a; b))2 ÆÆ and hV (a; b)2 ir de�ned on Wn are rewritten when embedded in Wm asÆÆ(V (a; b))2 ÆÆ �������!Wn!Wm ÆÆ(V (a; b))2 ÆÆ �� ;hV (a; b)2 ir �������!Wn!Wm hV (a; b)2 ir +� ; (4.41)where � � Z ba dt1 Z ba dt2 ÆG(t1; t2) ; (4.42)the operator [ (V (a; b))2 ℄r is invariant under the embedding from Wn to Wm.The operator [ e�V (a;b) ℄r 
an also be de�ned using hV (a; b)2 ir as follows:[ e�V (a;b) ℄r � e 12�2hV (a;b)2 ir ÆÆ e�V (a;b) ÆÆ : (4.43)By repla
ing Gn in (4.18) on Wn with Gm + ÆG, we �ndÆÆ(V (a; b))k ÆÆ �������!Wn!Wm X0�`�k=2 (�1)` k!2` (k � 2`)! `! �` ÆÆ(V (a; b))k�2` ÆÆ : (4.44)It then follows from ÆÆ e�V (a;b) ÆÆ �������!Wn!Wm e� 12 �2� ÆÆ e�V (a;b) ÆÆ ;e 12�2hV (a;b)2 ir �������!Wn!Wm e 12 �2� e 12�2hV (a;b)2 ir (4.45)that the operator [ e�V (a;b) ℄r transforms as[ e�V (a;b) ℄r �������!Wn!Wm [ e�V (a;b) ℄r (4.46)under the embedding and thus satis�es the lo
ality assumption (V). It is obvious from the de�nition(4.18) that [ e�V (a;b) ℄r is invariant when V (t) is repla
ed by V (a+b� t) and thus satis�es the re
e
tionassumption (VI) as well.Let us next de�ne the operators [V (a) e�V (a;b) ℄r and [ e�V (a;b) V (b) ℄r. Using the renormalized
ontra
tions hV (a; b)2 ir, hV (a)V (a; b) ir , and hV (a; b)V (b) ir, they are de�ned as follows:[V (a) e�V (a;b) ℄r � e 12�2hV (a;b)2ir ÆÆ �V (a) + � hV (a)V (a; b) ir� e�V (a;b) ÆÆ ;[ e�V (a;b) V (b) ℄r � e 12�2hV (a;b)2ir ÆÆ e�V (a;b)�V (b) + � hV (a; b)V (b) ir� ÆÆ : (4.47)Let us prove that [V (a) e�V (a;b) ℄r satis�es the 
ondition (4.29). It follows from the de�nition ofÆÆ V (t1)V (t2) : : : V (tn) ÆÆ thatÆÆ V (a) e�V (a;b) ÆÆ = lim�!0 �V (a� �) ÆÆ e�V (a;b) ÆÆ � � Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ � : (4.48)36



We thus �nde 12�2hV (a;b)2ir ÆÆ V (a) e�V (a;b) ÆÆ �������!Wn!Wm e 12�2hV (a;b)2ir ÆÆ V (a) e�V (a;b) ÆÆ � � Z ba dt ÆG(a; t) [ e�V (a;b) ℄r(4.49)for the �rst term in the de�nition (4.47) of [V (a) e�V (a;b) ℄r. Similarly, the se
ond term transforms as� hV (a)V (a; b) ir [ e�V (a;b)℄r �������!Wn!Wm � hV (a)V (a; b) ir [ e�V (a;b)℄r + � Z ba dt ÆG(a; t) [ e�V (a;b) ℄r ;(4.50)where we used (4.33). Combining (4.49) and (4.50), we have thus shown that [V (a) e�V (a;b) ℄r satis-�es (4.29).To summarize, we have de�ned [ e�V (a;b) ℄r satisfying the assumptions of lo
ality (V) and re
e
-tion (VI) and [V (a) e�V (a;b) ℄r satisfying (4.29) for the 
lass of marginal operators satisfying the �nite-ness 
ondition stated in x 4.1.4.4 The BRST transformationLet us next 
al
ulate the BRST transformation of [ e�V (a;b) ℄r de�ned in (4.43) to verify that theassumption (I) on the BRST transformation is satis�ed and determine OL and OR. The 
al
ulationat O(�) is the same as (2.3) in the regular 
ase and gives O(1)L = O(1)R = 
V . The 
al
ulation at O(�2)involves the OPE of the marginal operator with itself. We in fa
t expe
t that the assumption (I) isnot satis�ed when the marginal deformation is not exa
tly marginal. It is known that the deformationasso
iated with V is not exa
tly marginal if the single-pole term in (4.4) is nonvanishing. See, forexample, [47℄. In the 
onstru
tion of analyti
 solutions in [18℄, there was indeed an obstru
tion to solvethe equation of motion at O(�2) when the single-pole term in (4.4) is nonvanishing. It is thereforeinstru
tive to brie
y 
onsider the 
ase of the more general OPE (4.4),V (t)V (0) � 1t2 + 1t eV (0) ; (4.51)and to see how the assumption (I) is violated when the single-pole term with eV is nonvanishing. Weregularize V (2)(a; b) as follows: Z b��a dt1 Z bt1+� dt2 V (t1)V (t2) : (4.52)The 
al
ulation of its BRST transformation is similar to the 
al
ulation of QB	(3)L presented in (2.21)and (2.22):QB � � Z b��a dt1 Z bt1+� dt2 V (t1)V (t2) � = Z b��a dt1 Z bt1+� dt2 h �t1 [ 
V (t1) ℄V (t2) + V (t1) �t2 [ 
V (t2) ℄ i=Z b��a dt1 V (t1) 
V (b)� Z ba+� dt2 
V (a)V (t2) + Z b��a dt1 V (t1)V (t1 + �) � 
(t1)� 
(t1 + �) � :(4.53)37



The last term on the right-hand side no longer vanishes in the limit � ! 0 when the OPE of V withitself is singular and 
an be 
al
ulated as follows:Z b��a dt V (t)V (t+ �) h 
(t)� 
(t+ �) i= Z b��a dt� 1�2 � 1� eV (t) +O(�0)�h�� �
(t)� �22 �2
(t) +O(�3) i= Z b��a dt h �
eV (t)� 1� �
(t) � 12 �2
(t) i+O(�)= Z b��a dt �
eV (t)� 1� 
(b� �) + 1� 
(a)� 12 �
(b� �) + 12 �
(a) +O(�)= Z ba dt �
eV (t)� 1� 
(b) + 1� 
(a) + 12 �
(b) + 12 �
(a) +O(�) :
(4.54)

We thus obtain QB � �Z b��a dt1 Z bt1+� dt2 V (t1)V (t2)�= "Z b��a dt1 V (t1)V (b)� 1�#
(b)� 
(a)"Z ba+� dt2 V (a)V (t2)� 1�#+ �
(b)2 + �
(a)2 + Z ba dt1�
eV (t1) +O(�) : (4.55)
This does not take the form of the O(�2) term of [ e�V (a;b)OR(b) ℄r � [OL(a) e�V (a;b) ℄r be
ause of theterm with �
eV , whi
h is �nite in the limit � ! 0. The divergen
es in (4.55) arise only when V (t)approa
hes the end points of the integral region, and any 
ounterterms to take 
are of those lo
alizeddivergen
es will not 
an
el the �nite integral of �
eV over the whole integral region. Therefore, theassumption (I) on the BRST transformation is not satis�ed when the single-pole term in (4.51) isnonvanishing. This is 
onsistent be
ause the deformation is not exa
tly marginal in this 
ase, as wementioned before. When the single-pole term in (4.51) vanishes, the result (4.55) in the limit �! 0 is�nite and given bylim�!0 �QB � hZ b��a dt1 Z bt1+� dt2 V (t1)V (t2)i � = [V (a; b) 
V (b) ℄r � [ 
V (a)V (a; b) ℄r + �
(b)2 + �
(a)2 :(4.56)Note that [V (a; b) 
V (b) ℄r and [ 
V (a)V (a; b) ℄r given in (4.35) and (4.36) emerged naturally. We
on
lude that O(1)R = O(1)L = 
V ; O(2)R = �O(2)L = 12 �
 (4.57)for any exa
tly marginal deformation with the singular OPE given by (4.1).Let us now 
al
ulate the BRST transformation of [ e�V (a;b) ℄r for the 
lass of marginal operatorssatisfying the �niteness 
ondition (4.10) in x 4.1:QB � [ e�V (a;b) ℄r = e 12�2hV (a;b)2ir 1Xn=1 �nn! QB � ÆÆ (V (a; b))n ÆÆ (4.58)38



We use the expression (4.18) of ÆÆ (V (a; b))n ÆÆ and 
al
ulate its BRST transformation as follows:QB � ÆÆ (V (a; b))n ÆÆ= X0�k�n=2 (�1)k n!2k k! (n� 2k)! lim�!0Z�(n)� dnt kYi=1 G(ti; ti+k) QB � nYj=2k+1V (tj)= n X0�k<n=2 (�1)k (n� 1)!2k k! (n� 2k � 1)! lim�!0Z�(n)� dnt kYi=1 G(ti; ti+k) n�1Yj=2k+1V (tj) �tn�
V (tn)�= n lim�!0Z�(n)� dnt ÆÆ V (t1) : : : V (tn�1) ÆÆ �tn�
V (tn)� : (4.59)
Using (4.8), this 
an be written in the following way:QB � ÆÆ (V (a; b))n ÆÆ = lim�!0Z�(n)� dnt �n ÆÆ V (t1) : : : V (tn�1) �tn�
V (tn)� ÆÆ+ n(n� 1) ÆÆ V (t1) : : : V (tn�2) ÆÆ �tn�G(tn�1; tn) 
(tn)� � : (4.60)The �rst term of the integrand on the right-hand side is �nite so that we 
an take the limit � ! 0and 
arry out the integral over tn. The only divergen
e in the se
ond term of the integrand ariseswhen jtn � tn�1j ! 0. The integral region therefore fa
torizes into that of t1; t2; : : : tn�2 without therestri
tion jti � tjj � � and �(2)� for tn�1 and tn. We thus obtainQB � ÆÆ (V (a; b))n ÆÆ = nZ ba dtn ÆÆ (V (a; b))n�1 �tn�
V (tn)� ÆÆ+ n(n� 1) ÆÆ (V (a; b))n�2 ÆÆ lim�!0Z�(2)� dtn�1dtn �tn�G(tn�1; tn) 
(tn)�= n ÆÆ (V (a; b))n�1 �
V (b)� 
V (a)� ÆÆ+ n(n� 1) ÆÆ (V (a; b))n�2 ÆÆ lim�!0Z�(2)� dtn�1dtn �tn�G(tn�1; tn) 
(tn)� :(4.61)The integral 
an be evaluated as follows:lim�!0Z�(2)� dt1dt2 �t2�G(t1; t2) 
(t2) �= lim�!0� Z b��a dt1 Z bt1+� dt2 �t2�G(t1; t2) 
(t2) �+ Z ba+� dt1 Z t1��a dt2 �t2�G(t1; t2) 
(t2) � �= lim�!0� Z b��a dt1 hG(t1; b) 
(b) �G(t1; t1 + �) 
(t1 + �) i+ Z ba+� dt1 hG(t1 � �; t1) 
(t1 � �)�G(a; t1) 
(a) i �= lim�!0� Z b��a dtG(t; b) 
(b) � Z ba+� dtG(a; t) 
(a) + Z b��a dtG(t; t+ �) h 
(t)� 
(t+ �) i � :

(4.62)
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The 
al
ulation of the last term is essentially the same as that of (4.54) without the term involving eV :Z b��a dtG(t; t + �) h 
(t)� 
(t+ �) i = Z b��a dt� 1�2 +O(�0)�h�� �
(t)� �22 �2
(t) +O(�3) i= �1� 
(b) + 1� 
(a) + 12 �
(b) + 12 �
(a) +O(�) : (4.63)We thus �ndlim�!0Z�(2)� dt1dt2 �t2�G(t1; t2) 
(t2) �= lim�!0 � Z b��a dtG(t; b) � 1� � 
(b)� lim�!0 � Z ba+� dtG(a; t) � 1� � 
(a) + 12 �
(b) + 12 �
(a)= hV (a; b)V (b) ir 
(b)� hV (a)V (a; b) ir 
(a) + 12 �
(b) + 12 �
(a) ; (4.64)where we have used (4.31) and (4.36). Combining this and (4.61), the result 
an be written as follows:QB � ÆÆ e�V (a;b) ÆÆ = � ÆÆ e�V (a;b) 
V (b) ÆÆ � � ÆÆ 
V (a) e�V (a;b) ÆÆ+ �2 hV (a; b)V (b) ir ÆÆ e�V (a;b) 
(b) ÆÆ � �2 hV (a)V (a; b) ir ÆÆ 
(a) e�V (a;b) ÆÆ+ �22 ÆÆ e�V (a;b) �
(b) ÆÆ + �22 ÆÆ �
(a) e�V (a;b) ÆÆ : (4.65)Note that the stru
turesÆÆ�V (a) + � hV (a)V (a; b) ir� e�V (a;b) ÆÆ ; ÆÆ e�V (a;b) �V (b) + � hV (a; b)V (b) ir� ÆÆ (4.66)of [V (a) e�V (a;b) ℄r and [ e�V (a;b) V (b) ℄r de�ned in (4.47) emerged naturally. Therefore, the BRSTtransformation of [ e�V (a;b) ℄r 
an be written using the de�nitions (4.47) as follows:QB � [ e�V (a;b) ℄r = h e�V (a;b)��
V (b) + �22 �
(b)� ir � h ��
V (a)� �22 �
(a)�e�V (a;b) ir : (4.67)We have thus veri�ed the assumption (I) on the BRST transformation and determined the operatorsOL and OR to be OR = � 
V + �22 �
 ; OL = � 
V � �22 �
 ; (4.68)or equivalentlyO(1)R = O(1)L = 
V ; O(2)R = �O(2)L = 12 �
 ; O(n)R = O(n)L = 0 for n � 3 : (4.69)With these expressions for OR and OL and the expli
it forms of [ e�V (a;b) ℄r and [V (a) e�V (a;b) ℄r givenin (4.43) and (4.47), 	L and 	 
an be expli
itly 
onstru
ted for the 
lass of marginal deformations sat-isfying the �niteness 
ondition (4.10) in x 4.1. If all the assumptions (I){(VI) stated in the introdu
tionare satis�ed, 	L and 	 are guaranteed to solve the equation of motion. The lo
ality assumption (V)for the operator [OL(a) e�V (a;b) ℄r is satis�ed be
ause of (4.29), (4.46), and (4.68). We have thusveri�ed the assumptions (I), (V), and (VI). We prove the remaining assumptions of repla
ement(III) and fa
torization (IV) in appendix B.1 and the assumption (II) on the BRST transformation inappendix B.2. 40



4.5 Conformal properties of [OL(a) e�V (a;b) ℄rThe operator OL(a) always appears in the 
ombination [OL(a) e�V (a;b) : : : ℄r with some b. Similarly, theoperator OR(b) always appears in the 
ombination [ : : : e�V (a;b) OR(b) ℄r with some a. Correspondingly,the operators O(l)L (a) and O(r)R (b) always appear in the form� nXl=1 O(l)L (a)V (n�l)(a; b) : : : �r ; � : : : nXr=1 V (n�r)(a; b)O(r)R (b) �r ; (4.70)or � Xl+r�n O(l)L (a)V (n�l�r)(a; b)O(r)R (b) �r : (4.71)We do not need to require the existen
e of OL(a) andOR(b) as independent operators, and we only needto de�ne [OL(a) e�V (a;b) : : : ℄r and [ : : : e�V (a;b) OR(b) ℄r expanded in �. In fa
t, operators in these formsare expe
ted to transform 
ovariantly under 
onformal transformations. Let us 
onsider 
onformaltransformations of the operator [OL(a) e� V (a;b) ℄r we determined in x 4.4 to the �rst nontrivial orderin �.When we 
hange boundary 
onditions on a segment between a and b of the real axis, the two endpoints a and b behave as primary �elds under 
onformal transformations, and they are often des
ribedin terms of boundary-
ondition 
hanging operators. We thus expe
t that the operator [ e�V (a;b) ℄r ismapped by a 
onformal transformation g(z) to g0(a)h(�) g0(b)h(�) [ e�V (g(a); g(b)) ℄r, where h(�) 
an beinterpreted as the dimension of the boundary-
ondition 
hanging operator. For simpli
ity, we assumethat the segment between a and b is mapped by g(z) to a segment on the real axis so that theoperator [ e�V (g(a); g(b)) ℄r is well de�ned without any generalization. Sin
e the BRST transformationmaps a primary �eld to another primary �eld of the same dimension, we also expe
t that the operator[OL(a) e�V (a;b) ℄r transforms 
ovariantly and is mapped by g(z) asg Æ [OL(a) e�V (a;b) ℄r = g0(a)h(�) g0(b)h(�) [OL(g(a)) e�V (g(a); g(b)) ℄r : (4.72)To linear order in �, the 
onformal transformation isg Æ �� 
V (a) +O(�2) � = � 
V (g(a)) +O(�2) (4.73)and is 
onsistent with (4.72) for h(�) = O(�). At O(�2), we have[O(1)L (a)V (a; b) ℄r + [O(2)L (a) ℄r = [ 
V (a)V (a; b) ℄r � 12 �
(a) : (4.74)The operator �
 is not a primary �eld and thus the se
ond term of (4.74) does not transform 
ovariantlyunder 
onformal transformations. In fa
t, the �rst term does not transform 
ovariantly either butthe sum [O(1)L (a)V (a; b) ℄r + [O(2)L (a) ℄r does transform 
ovariantly. The operator �V (a)V (a; b) �r is41



mapped by g(z) as follows:g Æ �V (a)V (a; b) �r = lim�!0 � Z ba+� dt g0(a)V �g(a)� g0(t)V �g(t)�� 1� �= lim�!0 � g0(a)Z g(b)g(a+�) d~t V �g(a)� V �~t�� 1� �= g0(a) lim�!0 � Z g(b)g(a+�) d~t V �g(a)� V �~t�� 1g(a + �)� g(a) �+ lim�!0 � g0(a)g(a+ �)� g(a) � 1� �= g0(a) � V �g(a)� V �g(a); g(b)� �r � g00(a)2 g0(a) ; (4.75)
where ~t = g(t). If we 
ompare this withg Æ �
(a) = dda � 
�g(a)�g0(a) � = �
�g(a)�� g00(a)g0(a)2 
�g(a)� ; (4.76)we �nd g Æ [ 
V (a)V (a; b) ℄r � g Æ �
(a)2= � 
V �g(a)� V �g(a); g(b)� �r � g00(a)2 g0(a)2 
�g(a)�� �
�g(a)�2 + g00(a)2 g0(a)2 
�g(a)�= � 
V �g(a)� V �g(a); g(b)� �r � �
�g(a)�2 : (4.77)This is 
onsistent with (4.72) at O(�2) with h(�) = O(�2). Note that the 
oeÆ
ient of the se
ondterm in (4.74) had to be �1=2 for the non
ovariant term to be 
an
eled. Ea
h of these two operators[O(1)L (a)V (a; b) ℄r and [O(2)L (a) ℄r de�ned on Wn is invariant when embedded in Wm. Thus any linear
ombination of the two is invariant under the embedding from Wn to Wm, but only the 
ombination[O(1)L (a)V (a; b) ℄r +[O(2)L (a) ℄r transforms 
ovariantly under 
onformal transformations. Although the
ovarian
e of [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r under 
onformal transformations is not required for thesolution to satisfy the equation of motion, this 
al
ulation provides a nontrivial 
onsisten
y 
he
k ofour result for the operator OL.5 String �eld theory around the deformed ba
kground5.1 A
tionNow that we have 
onstru
ted solutions for general marginal deformations, let us expand the string�eld theory a
tion around the solutions. The string �eld theory a
tion is given byS[	℄ = � 1g2 � 12 h	 ; QB	 i+ 13 h	 ; 	 �	 i � ; (5.1)42



where g is the open string 
oupling 
onstant. In the 
ase of a D25-brane in 
at spa
etime, g is relatedto the D25-brane tension T25 as T25 = 1=(2�2g2) . We shift the string �eld 	 as	 = 	� + Æ	 ; (5.2)where the solution 	� is	� = 12 � 1pU �	L � pU +pU �	R � 1pU + 1pU �QBpU �QBpU � 1pU �= 12 � 1pU � (AL +AR) � 1pU + 1pU �QBpU �QBpU � 1pU � : (5.3)We then expand the a
tion and obtainS[	℄ = S[	�℄ + S[Æ	℄� 1g2 h Æ	 ; 	� � Æ	 i= S[	�℄ + S[Æ	℄� 12g2 h h Æ	 ; 1pU � (AL +AR) � 1pU � Æ	 i+ h Æ	 ; 1pU �QBpU � Æ	 i � h Æ	 ; QBpU � 1pU � Æ	 i i : (5.4)The term linear in Æ	 vanishes be
ause 	� satis�es the equation of motion. The term S[	�℄ onlyshifts the a
tion by an overall 
onstant. In fa
t, it should vanish for solutions 
orresponding to exa
tlymarginal deformations. The stru
ture of the a
tion suggests the following �eld rede�nition:� � pU � Æ	 � pU =) Æ	 = 1pU � � � 1pU : (5.5)The term S[Æ	℄ 
an be expressed in terms of the new variable � as follows:S[Æ	℄ = S� 1pU � � � 1pU �= � 12g2D 1pU � � � 1pU ; QB � � 1pU � � � 1pU �E� 13g2 
� ; U�1 � � � U�1 � � � U�1 �= � 12g2D� ; U�1 �QB� � U�1 E� 13g2 
� ; U�1 � � � U�1 � � � U�1 �� 12g2D 1pU � � � 1pU ; QB 1pU � � � 1pU E+ 12g2D 1pU � � � 1pU ; 1pU � � �QB 1pU E :(5.6)Using the identity QB 1pU = � 1pU �QBpU � 1pU ; (5.7)it is easy to see that the last line of (5.6) pre
isely 
an
els the last two terms on the right-hand sideof (5.4). The a
tion around the deformed ba
kground in terms of � is thus given byS[	℄ = S[	�℄� 12g2 h 
� ; U�1 �QB� � U�1 �+ 
� ; U�1 � (AL +AR) � U�1 � � � U�1 � i� 13g2 
� ; U�1 � � � U�1 � � � U�1 � : (5.8)43



Let us now introdu
e the following deformed algebrai
 stru
tures:A ? B � A � U�1 �B ;QA � QBA+AL ? A� (�1)AA ? AR = QBA+	L �A� (�1)AA �	R ;hhA;B ii � hA;U�1 � B � U�1 i : (5.9)As U = 1+O(�2), AL = O(�), and AR = O(�), these stru
tures redu
e to the original star produ
t �,BRST operator QB, and inner produ
t h ; i when �! 0. The shifted a
tion S[�℄ � S[	℄� S[	�℄ interms of the new variable � 
an be written as follows:S[�℄ = � 1g2 � 12 hh� ; Q� ii+ 13 hh� ; � ? � ii � ; (5.10)where we have usedh� ; U�1 � (AL +AR) � U�1 � � � U�1 i= h� ; U�1 � AL � U�1 � � � U�1 i + h� ; U�1 � � � U�1 �AR � U�1 i : (5.11)Thus string �eld theory around the deformed ba
kground 
an be des
ribed by the star produ
t ? , theoperator Q, and the inner produ
t hh ; ii. Note that pU and 1=pU 
ompletely disappeared and thea
tion is written in terms of U�1, AL, and AR.5.2 Properties of algebrai
 stru
tures around the deformed ba
kgroundLet us verify that the new algebrai
 stru
tures obey the following relations ne
essary for a 
onsistentformulation of string �eld theory: Q2A = 0 ; (5.12)Q (A ? B) = (QA) ? B + (�1)AA ? (QB) ; (5.13)hhA;B ii = (�1)AB hhB;A ii ; (5.14)hhQA;B ii = �(�1)AhhA;QB ii ; (5.15)hhA;B ? C ii = hhA ? B;C ii : (5.16)Furthermore, we show that the generalized wedge states U� satisfyQU� = 0 : (5.17)Let us begin with (5.12). It follows from the de�nition of Q thatQ2A = Q �QBA+	L � A� (�1)AA �	R �= Q2BA+QB	L � A�	L �QBA� (�1)AQBA �	R �A �QB	R+	L � �QBA+	L �A� (�1)AA �	R�+ (�1)A �QBA+	L �A� (�1)AA �	R� �	R :(5.18)44



Using Q2B = 0 and the equation of motion for 	L and 	R, all the terms 
an
el and we �nd Q2A = 0.Similarly, we 
an prove (5.13) as follows:QB (A ? B) = QBA � U�1 � B + (�1)AA �QBU�1 �B + (�1)AA � U�1 �QBB+	L � A � U�1 �B � (�1)A(�1)B A � U�1 � B �	R= QA ? B + (�1)AA ?QB+ (�1)AA �QBU�1 � B + (�1)AA �	R � U�1 � B � (�1)AA � U�1 �	L � B : (5.19)The terms in the last line 
an
el be
ause of the identityQBU�1 = � U�1 �QBU � U�1 = U�1 � (AL �AR) � U�1 = U�1 �	L �	R � U�1 : (5.20)This 
ompletes the proof of (5.13).It is easy to verify (5.14) using the properties of the inner produ
t h ; i:hhA;B ii = hA;U�1 �B � U�1 i= hA � U�1; B � U�1 i= (�1)ABhB � U�1; A � U�1 i= (�1)ABhB;U�1 � A � U�1 i= (�1)ABhhB;A ii : (5.21)
To show (5.15), we use the 
orresponding identity of QB and the properties of h ; i. We �ndhhQA;B ii = hQBA+	L � A� (�1)AA �	R ; U�1 � B � U�1 i= � (�1)AhA ; QBU�1 �B � U�1 + U�1 �QBB � U�1 + (�1)BU�1 � B �QBU�1 i+ (�1)A(�1)BhA ; U�1 �B � U�1 �	L i � (�1)AhA ; 	R � U�1 � B � U�1 i : (5.22)Using the identity (5.20), we obtainhhQA;B ii =� (�1)A hA ; U�1 � �QBB +	L �B � (�1)B B �	R � � U�1 i=� (�1)A hhA;QB ii : (5.23)Finally, the relation (5.16) follows from the de�nitions of the deformed stru
tures and the property ofthe inner produ
t h ; i:hhA;B ? C ii = hA ; U�1 � B � U�1 � C � U�1 i= hA � U�1 �B ; U�1 � C � U�1 i = hhA ? B;C ii : (5.24)We have thus shown that the deformed algebrai
 stru
tures satisfy all the algebrai
 relations requiredfor a 
onsistent formulation of string �eld theory.45



Let us now show the equation (5.17), namely, that the generalized wedge states U� are annihilatedby Q. We de�ne the generalizations AL;� and AR;� of AL and AR, respe
tively, byAL;� � 1Xn=1 �nA(n)L;� ; AR;� � 1Xn=1 �nA(n)R;� (5.25)for � � 0, where h� ;A(n)L;� i = nXl=1h f Æ �(0) [O(l)L (1)V (n�l)(1; n+ �) ℄r iWn+� ;h� ;A(n)R;� i = nXr=1h f Æ �(0) [V (n�r)(1; n+ �)O(r)R (n+ �) ℄r iWn+� : (5.26)Note that AL = AL;0 and AR = AR;0. The states AL;� and AR;� satisfy the following relations:QBU� = AR;� �AL;� ; AL;�+� = AL;� � U�1 � U� ; AR;�+� = U� � U�1 �AR;� ; (5.27)whi
h are generalizations of QBU = AR � AL and U�+� = U� � U�1 � U� . The �rst relation im-mediately follows from the assumption (I). The se
ond and third relations 
an be shown using theassumptions (III){(V) as in the proofs of U�+� = U� �U�1 �U� and �QBAL = AL �U�1 �AR in x 3.3and appendix A. Using these relations, it is easy to show that QU� vanishes:QU� = AR;� �AL;� +	L � U� � U� �	R= U� � U�1 �AR �AL � U�1 � U� +AL � U�1 � U� � U� � U�1 � AR= 0 : (5.28)The state U1 is expe
ted to play the role of the SL(2; R)-invariant va
uum in the deformed theory,and U = U0 is the identity state of the deformed star algebra. In fa
t,U ? A = U � U�1 � A = A ; A ? U = A � U�1 � U = A : (5.29)6 Dis
ussionThe main result of the paper is the 
onstru
tion of analyti
 solutions of open bosoni
 string �eld theoryfor general marginal deformations. We presented a pro
edure to 
onstru
t a solution from the operator[ e�V (a;b) ℄r satisfying the set of assumptions stated in the introdu
tion. We believe that all of theseassumptions are satis�ed for any exa
tly marginal deformation and are thus ne
essary 
onditions forexa
t marginality of the deformation. We also believe that the set of assumptions provides a suÆ
ient
ondition for marginality to all orders in � be
ause we have su

eeded in 
onstru
ting solutions ofstring �eld theory. We regard this new 
hara
terization of exa
t marginality as another importantresult of the paper, and we hope that our approa
h motivated by string �eld theory will provide newperspe
tives on the study of marginal deformations.46



In se
tion 4 we expli
itly 
onstru
ted the operator [ e�V (a;b) ℄r for any marginal operator satisfyingthe �niteness 
ondition (4.10). We thus believe that the �niteness 
ondition (4.10) is a suÆ
ient
ondition for marginality to all orders in �. We 
an a
tually relax the 
ondition be
ause we onlyneeded �niteness of the operator ÆÆ(V (a; b))n ÆÆ 
onstru
ted in (4.18). Therefore, we 
an 
onstru
tsolutions even if the �niteness 
ondition (4.10) is violated as long as the operator ÆÆ(V (a; b))n ÆÆ is wellde�ned for any n.4 It would be an interesting open problem whether the 
ondition 
an be furtherrelaxed. In parti
ular, it is an interesting question whether the operators O(n)L and O(n)R with n � 3 
anbe nonvanishing by nontrivial 
ollisions of more than two operators. In [47℄, Re
knagel and S
homerusgave a suÆ
ient 
ondition for exa
t marginality whi
h they 
alled self-lo
ality of the marginal operator.See x 2.4 of [47℄. It would be also interesting to investigate the relation between their 
hara
terizationof exa
t marginality in boundary 
onformal �eld theory and ours.In [21℄, Fu
hs, Kroyter and Potting 
onstru
ted non-real solutions for the marginal deformation
orresponding to turning on the 
onstant mode of the gauge �eld. We dis
uss the relation betweentheir solutions and ours in appendix C and show that our solutions 	L and 	R for this parti
ularmarginal deformation 
oin
ide with theirs.There are many interesting dire
tions for future work. It would be interesting to study the solution
orresponding to the deformation by the 
osine potential in detail. The deformation at the value of� des
ribing lower-dimensional D-branes is parti
ularly interesting. In the level-trun
ation analysis ofmarginal deformations, it has been demonstrated that the Siegel gauge 
ondition is not globally wellde�ned [55℄ and the bran
h of the marginal deformation 
orresponding to turning on the 
onstantmode of the gauge �eld trun
ates at a �nite value of the deformation parameter [29℄.5 It is thereforeimportant to study the 
onvergen
e property of the expansion in � for our solutions.We expe
t that our work will play a role in further investigating ba
kground independen
e instring �eld theory by extending previous work [50℄{[54℄. We also expe
t that the generalizationof our 
onstru
tion to open superstring �eld theory formulated by Berkovits [28℄ would be fairlystraightforward. Another important generalization is the 
onstru
tion of solutions 
orresponding toboundary 
onditions whi
h are not 
onne
ted by exa
tly marginal deformations. For example, 
onsiderthe 
ase where the original CFT 
ows to a di�erent CFT by a marginally relevant deformation. Wethen expe
t that the operator [ e�V (a;b) ℄r satisfying the assumptions (I) and (II) 
an be 
onstru
tedat a spe
ial value of � and our framework will be useful in 
onstru
ting solutions for su
h marginallyrelevant deformations. Finally, the approa
h explored in [58℄ seems to be 
losely related to ours andmay be useful in future developments of our work.
4 We thank Ashoke Sen for dis
ussions on this point and for explaining expli
it examples.5 See [56, 57℄ for re
ent related study. 47
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it proof at O(�4) and then explain how the proof generalizesto all orders. The equation (3.24) at O(�4) is�QBA(4)L = A(1)L � A(3)R +A(2)L � A(2)R +A(3)L � A(1)R �A(1)L � U (2)0 � A(1)R : (A.1)We need to prove that[O(1)L (1)V (2)(1; 4)O(1)R (4) ℄r + [O(1)L (1)V (1)(1; 4)O(2)R (4) ℄r + [O(2)L (1)V (1)(1; 4)O(1)R (4) ℄r+ [O(1)L (1)O(3)R (4) ℄r + [O(2)L (1)O(2)R (4) ℄r + [O(3)L (1)O(1)R (4) ℄r= [W (1)L (1; 1) ℄r [W (3)R (2; 4) ℄r + [W (2)L (1; 2) ℄r [W (2)R (3; 4) ℄r + [W (3)L (1; 3) ℄r [W (1)R (4; 4) ℄r� [W (1)L (1; 1) ℄r [V (2)(2; 3) ℄r [W (1)R (4; 4) ℄r ; (A.2)where we denoted terms of [OL(a) e�V (a;b) ℄r and [ e�V (a;b)OR(b) ℄r at O(�n) as follows:W (n)L (a; b) � nXl=1 O(l)L (a)V (n�l)(a; b) ; W (n)R (a; b) � nXr=1 V (n�r)(a; b)O(r)R (b) : (A.3)Re
all that V (0)(a; b) � 1 even in the limit b! a. Thus we have W (1)L (1; 1) = O(1)L (1) andW (1)R (4; 4) =O(1)R (4). Here we have used the lo
ality assumption (V) on [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r. Theoperator [ e�V (a;b)OR(b) ℄r de�ned onWn also takes the same form when embedded inWm withm > nbe
ause [ e�V (a;b) OR(b) ℄r = QB � [ e�V (a;b) ℄r + [OL(a) e�V (a;b) ℄r from the assumption (I).We next use the fa
torization assumption (IV) of the following form:[OL(1) e�1V (1;2) e�2V (3;4) OR(4) ℄r = [OL(1) e�1V (1;2) ℄r [ e�2V (3;4) OR(4) ℄r : (A.4)The operator OL(a) always appears in the 
ombination [OL(a) e�V (a;b) : : : ℄r with some b, and thevalue of � for OL(a) is the same as the one appearing in the exponential operator. Similarly, theoperator OR(b) always appears in the 
ombination [ : : : e�V (a;b) OR(b) ℄r with some a, and the value of48



� for OR(b) is the same as the one appearing in the exponential operator. In (A.4), for example, thevalue of � for OL(1) is �1 and the value of � for OR(4) is �2. The relation (A.4) at O(�21 �22) reads[W (2)L (1; 2)W (2)R (3; 4) ℄r = [W (2)L (1; 2) ℄r [W (2)R (3; 4) ℄r : (A.5)Sin
e W (1)L (a; a) = W (1)L (a; b) and W (1)R (b; b) = W (1)R (a; b) for a < b, the operators [W (1)L (1; 1) ℄r and[W (1)R (4; 4) ℄r 
an be thought of as the O(�1) term of [OL(1) e�1V (1;1+�) ℄r and the O(�2) term of[ e�2V (4��;4)OR(4) ℄r , respe
tively, with arbitrary � in the range 0 < � < 1. Therefore, the right-handside of (A.2) 
an be written using the fa
torization assumption (IV) as follows:[W (1)L (1; 1) ℄r [W (3)R (2; 4) ℄r + [W (2)L (1; 2) ℄r [W (2)R (3; 4) ℄r + [W (3)L (1; 3) ℄r [W (1)R (4; 4) ℄r� [W (1)L (1; 1) ℄r [V (2)(2; 3) ℄r [W (1)R (4; 4) ℄r= [W (1)L (1; 1)W (3)R (2; 4) ℄r + [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (3)L (1; 3)W (1)R (4; 4) ℄r� [W (1)L (1; 1)V (2)(2; 3)W (1)R (4; 4) ℄r : (A.6)We then apply the repla
ement assumption (III) of the following forms:[OL(1) e�1V (1;1+�) e�2V (2;4) OR(4) ℄r = [OL(1) e�1V (1;1+�) e�2V (2;3) e�2V (3;4)OR(4) ℄r ;[OL(1) e�1V (1;3) e�2V (4��;4) OR(4) ℄r = [OL(1) e�1V (1;2) e�1V (2;3) e�2V (4��;4)OR(4) ℄r ; (A.7)where � is again an arbitrary number in the range 0 < � < 1. The �rst equation at O(�1�32) and these
ond equation at O(�31�2) give[W (1)L (1; 1)W (3)R (2; 4) ℄r = [W (1)L (1; 1)W (3)R (3; 4) ℄r + [W (1)L (1; 1)V (1)(2; 3)W (2)R (3; 4) ℄r+ [W (1)L (1; 1)V (2)(2; 3)W (1)R (3; 4) ℄r ;[W (3)L (1; 3)W (1)R (4; 4) ℄r = [W (1)L (1; 2)V (2)(2; 3)W (1)R (4; 4) ℄r + [W (2)L (1; 2)V (1)(2; 3)W (1)R (4; 4) ℄r+ [W (3)L (1; 2)W (1)R (4; 4) ℄r : (A.8)Repla
ing W (1)L (1; 1) with W (1)L (1; 2) and W (1)R (4; 4) with W (1)R (3; 4), the right-hand side of (A.6) 
anbe written as follows:[W (1)L (1; 1)W (3)R (2; 4) ℄r + [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (3)L (1; 3)W (1)R (4; 4) ℄r� [W (1)L (1; 1)V (2)(2; 3)W (1)R (4; 4) ℄r= [W (1)L (1; 2)W (3)R (3; 4) ℄r + [W (1)L (1; 2)V (1)(2; 3)W (2)R (3; 4) ℄r + [W (1)L (1; 2)V (2)(2; 3)W (1)R (3; 4) ℄r+ [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (2)L (1; 2)V (1)(2; 3)W (1)R (3; 4) ℄r + [W (3)L (1; 2)W (1)R (3; 4) ℄r : (A.9)The terms on the left-hand side of (A.2) are obtained from the expansion of [OL(1) e�V (1;4) OR(4) ℄rin �. Using the repla
ement assumption (III), we have[OL(1) e�V (1;4)OR(4) ℄r = [OL(1) e�V (1;2) e�V (2;3) e�V (3;4)OR(4) ℄r : (A.10)49



By evaluating both sides at O(�4), the left-hand side of (A.2) 
an be written as[O(1)L (1)V (2)(1; 4)O(1)R (4) ℄r + [O(1)L (1)V (1)(1; 4)O(2)R (4) ℄r + [O(2)L (1)V (1)(1; 4)O(1)R (4) ℄r+ [O(1)L (1)O(3)R (4) ℄r + [O(2)L (1)O(2)R (4) ℄r + [O(3)L (1)O(1)R (4) ℄r= [W (1)L (1; 2)W (3)R (3; 4) ℄r + [W (1)L (1; 2)V (1)(2; 3)W (2)R (3; 4) ℄r + [W (1)L (1; 2)V (2)(2; 3)W (1)R (3; 4) ℄r+ [W (2)L (1; 2)W (2)R (3; 4) ℄r + [W (2)L (1; 2)V (1)(2; 3)W (1)R (3; 4) ℄r + [W (3)L (1; 2)W (1)R (3; 4) ℄r : (A.11)We have reprodu
ed (A.9) and thus shown �QBAL = AL � U�1 � AR at O(�4).We will now show that this proof 
an be generalized to O(�n) for any n � 3, while the equationtrivially holds for n = 1 and n = 2. Using the repla
ement assumption (III), we 
an rewrite[OL(1) e�V (1;n)OR(n) ℄r = �OL(1) e�V (1;2) n�2Yi=2 [ e�V (i;i+1) ℄ e�V (n�1;n)OR(n) �r : (A.12)At O(�n), this implies that the operator insertions for �QBA(n)L on Wn 
an be expanded in the basisn �W (`1)L (1; 2) n�2Yi=2 [V (`i)(i; i+ 1) ℄W (`n�1)R (n� 1; n) �r o ; (A.13)where `i's are non-negative integers with Pn�1i=1 `i = n and `1; `n�1 � 1. On the other hand, be
auseof the lo
ality assumption (V), the terms of AL � U�1 � AR at O(�n) 
an be expressed in terms ofprodu
ts of the form [W (k1)L (1; b1) ℄r m�1Yj=2 [V (kj)(aj ; bj) ℄r [W (km)R (am; n) ℄r (A.14)on Wn, where positive integers aj, bj and kj satisfy 1 � aj < bj � n, bj < aj+1, and Pmj=1 kj = n.From the fa
torization assumption (IV), we have[OL(1) e�1V (1;b1) ℄r m�1Yj=2 [ e�jV (aj ;bj) ℄r [ e�mV (am;n)OR(n) ℄r= �OL(1) e�1V (1;b1) m�1Yj=2 [ e�jV (aj ;bj) ℄ e�mV (am;n)OR(n) �r : (A.15)At O(Qj �kj ), this allows us to express (A.14) as�W (k1)L (1; b1) m�1Yj=2 [V (kj)(aj ; bj) ℄W (km)R (am; n) �r (A.16)on Wn. Finally, applying the repla
ement assumption (III) and using W (1)L (1; 1) = W (1)L (1; 2) andW (1)R (n; n) = W (1)R (n � 1; n), the operators 
an be expanded in the basis (A.13). Now 
onsider the50



following state for a marginal operator with regular operator produ
ts:1Xl; r=1�l+r 
(l)L 
(r)R Ul+r ; (A.17)where 
(l)L and 
(r)R are parameters. The operators at O(�n) on Wn 
an be expanded in the basisn!(`1)L (1; 2) n�2Yi=2 [V (`i)(i; i+ 1) ℄!(`n�1)R (n� 1; n)o ; (A.18)where !(i)L (1; 2) � iXl=1 
(l)L V (i�l)(1; 2) ; !(i)R (n� 1; n) � iXr=1 
(i)R V (i�r)(n� 1; n) ; (A.19)and `i's are non-negative integers with Pn�1i=1 `i = n and `1; `n�1 � 1 as in (A.13). The 
oeÆ
ientswhen the state (A.17) is expanded in this basis reprodu
e those of �QBAL expanded in the basis (A.13)with repla
ing W (i)L by !(i)L and W (i)R by !(i)R . Let us next 
onsider the following state for a marginaloperator with regular operator produ
ts:1Xl; r=1��l 
(l)L Ul � � U�1 � ��r 
(r)R Ur � (A.20)where again 
(l)L and 
(r)R are parameters. The terms of (A.20) at O(�n) 
an also be expanded inthe basis (A.18) and the 
oeÆ
ients reprodu
e those of AL � U�1 � AR at O(�n) expanded in thebasis (A.13) with repla
ing W (i)L by !(i)L and W (i)R by !(i)R . The states (A.17) and (A.20) are a
tuallyequal be
ause of the relation Ul+r = Ul � U�1 � Ur:1Xl; r=1�l+r 
(l)L 
(r)R Ul+r = 1Xl; r=1��l 
(l)L Ul � � U�1 � � �r 
(r)R Ur � : (A.21)We have thus shown that �QBAL = AL � U�1 � AR to all orders in �.B Proof of the assumptionsIn se
tion 4 we have presented expli
it forms of [ e�V (a;b) ℄r and [OL(a) e�V (a;b) ℄r, whi
h are used in
onstru
ting 	L and 	, for the 
lass of marginal deformations satisfying the �niteness 
ondition (4.10)in x 4.1. We have shown that the assumptions (I), (V), and (VI) are satis�ed for these operators. Weprove the remaining assumptions (II), (III), and (IV) in this appendix.
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B.1 Assumptions (III) and (IV): repla
ement and fa
torizationLet us start by proving the repla
ement and fa
torization assumptions (III) and (IV). To this end, we�rst need to de�ne [Qni=1 e�iV (ai ;ai+1) ℄r, [V (a1) Qni=1 e�iV (ai;ai+1) ℄r, [Qni=1 e�iV (ai;ai+1) V (an+1) ℄r,and [V (a1) Qni=1 e�iV (ai;ai+1) V (an+1) ℄r. Let us begin with [Qni=1 e�iV (ai;ai+1) ℄r. We de�ne it asfollows:[ nYi=1 e�iV (ai;ai+1) ℄r � nYi=1 e 12 �2i h V (ai;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ nYi=1 e�iV (ai;ai+1) ÆÆ ; (B.1)where hV (a; b)2ir � 2 lim�!0 � Z b��a dt1 Z bt1+� dt2G(t1; t2)� b� a� �� � ln � � ;hV (a; b)V (b; 
) ir � lim�!0 � Z b��=2a dt1 Z 
b+�=2 dt2G(t1; t2) + ln � � ;hV (a; b)V (
; d)ir � Z ba dt1 Z d
 dt2G(t1; t2) (B.2)
for a < b < 
 < d. Their expli
it expressions on Wn arehV (a; b)2ir = lnGn(a; b) ;hV (a; b)V (b; 
) ir = 12 h lnGn(a; 
)� lnGn(a; b)� lnGn(b; 
) i ;hV (a; b)V (
; d)ir = 12 h lnGn(a; d) + lnGn(b; 
)� lnGn(a; 
)� lnGn(b; d) i ; (B.3)where Gn(t1; t2) = �2(n+ 1)2 sin2� t2 � t1n+ 1 �� : (B.4)The operator (B.1) redu
es to [ e� V (a;b) ℄r de�ned in (4.43) when n = 1. It is easy to show thathV (a; 
)2 ir = hV (a; b)2 ir + 2 hV (a; b)V (b; 
) ir + hV (b; 
)2 ir ;hV (a; 
)V (
; d) ir = hV (a; b)V (
; d) ir + hV (b; 
)V (
; d) ir ;hV (a; b)V (b; d) ir = hV (a; b)V (b; 
) ir + hV (a; b)V (
; d) ir ;hV (a; 
)V (d; e) ir = hV (a; b)V (d; e) ir + hV (b; 
)V (d; e) ir ;hV (a; b)V (
; e) ir = hV (a; b)V (
; d) ir + hV (a; b)V (d; e) ir (B.5)
for a < b < 
 < d < e. The repla
ement assumption (III) is therefore satis�ed. The assumption (IV)of fa
torization is also satis�ed be
ause of the de�nition of hV (a; b)V (
; d) ir for a < b < 
 < d.Let us next de�ne the operators [V (a1) Qni=1 e�i V (ai ;ai+1) ℄r, [Qni=1 e�i V (ai;ai+1) V (an+1) ℄r, and
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[V (a1) Qni=1 e�i V (ai ;ai+1) V (an+1) ℄r. We de�ne them as follows:[V (a1) nYi=1 e�i V (ai;ai+1) ℄r� nYi=1 e 12 �2i h V (ai ;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ V (a1) nYi=1 e�i V (ai;ai+1) ÆÆ+ nXi=1 �i hV (a1)V (ai; ai+1) ir [ nYi=1 e�i V (ai;ai+1) ℄r ;[ nYi=1 e�i V (ai;ai+1) V (an+1) ℄r� nYi=1 e 12 �2i h V (ai ;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ nYi=1 e�i V (ai;ai+1) V (an+1) ÆÆ+ nXi=1 �i hV (ai; ai+1)V (an+1) ir [ nYi=1 e�i V (ai;ai+1) ℄r ;[V (a1) nYi=1 e�i V (ai;ai+1) V (an+1) ℄r� nYi=1 e 12 �2i h V (ai ;ai+1)2 ir Yi<j e�i�j hV (ai;ai+1)V (aj ;aj+1) ir ÆÆ V (a1) nYi=1 e�i V (ai;ai+1) V (an+1) ÆÆ+ nXi=1 �i hV (a1)V (ai; ai+1) ir [ nYi=1 e�i V (ai;ai+1) V (an+1) ℄r+ nXi=1 �i hV (ai; ai+1)V (an+1) ir [V (a1) nYi=1 e�i V (ai ;ai+1) ℄r� nXi; j=1 �i �j hV (a1)V (ai; ai+1) ir hV (aj ; aj+1)V (an+1) ir [ nYi=1 e�i V (ai ;ai+1) ℄r+ hV (a1)V (an+1) ir [ nYi=1 e�i V (ai;ai+1) ℄r ;

(B.6)

wherehV (a) V (a; b) ir � lim�!0� Z ba+� dtG(a; t) � 1� � ; hV (a; b)V (b) ir � lim�!0� Z b��a dtG(t; b) � 1� � ;hV (a)V (b; 
) ir � Z 
b dtG(a; t) ; hV (a; b)V (
) ir � Z ba dtG(t; 
) ; hV (a)V (b) ir � G(a; b)(B.7)for a < b < 
. These de�nitions are 
onsistent with [V (a) e� V (a;b) ℄r and [ e�V (a;b) V (b) ℄r in (4.47). It
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is easy to show that hV (a)V (a; 
) ir = hV (a)V (a; b) ir + hV (a)V (b; 
) ir ;hV (a)V (b; d) ir = hV (a)V (b; 
) ir + hV (a)V (
; d) ir ;hV (a; 
)V (
) ir = hV (a; b)V (
) ir + hV (b; 
)V (
) ir ;hV (a; 
)V (d) ir = hV (a; b)V (d) ir + hV (b; 
)V (d) ir (B.8)for a < b < 
 < d. The repla
ement assumption (III) is therefore satis�ed. The assumption (IV)of fa
torization is also satis�ed be
ause of the de�nitions of hV (a)V (b; 
) ir , hV (a; b)V (
) ir, andhV (a)V (b) ir for a < b < 
.B.2 Assumption (II): 
al
ulation of QB � [OL(a) e�V (a;b) ℄rLet us next prove the assumption (II) on the BRST transformation of [OL(a) e� V (a;b) ℄r:QB � [OL(a) e� V (a;b) ℄r = � [OL(a) e� V (a;b)OR(b) ℄r ; (B.9)where OL(a) = � 
V (a)� �22 �
(a) ; OR(b) = � 
V (b) + �22 �
(b) : (B.10)The operator [OL(a) e� V (a;b) ℄r 
an be written as[OL(a) e� V (a;b) ℄r = � e 12�2hV (a;b)2ir ÆÆ 
V (a) e�V (a;b) ÆÆ+ �2 hV (a)V (a; b) ir [ 
(a) e�V (a;b) ℄r � �22 [ �
(a) e�V (a;b) ℄r : (B.11)The BRST transformation of ÆÆ 
V (a) e�V (a;b) ÆÆ 
an be 
al
ulated in the following way:QB � ÆÆ 
V (a) e�V (a;b) ÆÆ= QB � lim�!0 � 
V (a� �) ÆÆ e�V (a;b) ÆÆ�� 
(a� �)Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ �= lim�!0� � 
V (a� �)QB � ÆÆ e�V (a;b) ÆÆ � � 
�
(a � �)Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ+ � 
(a� �)Z ba dtG(a � �; t) QB � ÆÆ e�V (a;b) ÆÆ � : (B.12)
The BRST transformation of ÆÆ e�V (a;b) ÆÆ appearing in (B.12) has been 
al
ulated in (4.65). The 
on-tribution from the �rst term � ÆÆ e�V (a;b) 
V (b) ÆÆ on the right-hand side of (4.65) islim�!0� � � 
V (a� �) ÆÆ e�V (a;b) 
V (b) ÆÆ + �2 
(a� �)Z ba dtG(a � �; t) ÆÆ e�V (a;b) 
V (b) ÆÆ �= � � ÆÆ 
V (a) e�V (a;b) 
V (b) ÆÆ � �G(a; b) ÆÆ 
(a) e�V (a;b) 
(b) ÆÆ : (B.13)
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The 
ontribution from the se
ond term �� ÆÆ 
V (a) e�V (a;b) ÆÆ on the right-hand side of (4.65) divergesin the limit �! 0:� 
V (a� �) ÆÆ 
V (a) e�V (a;b) ÆÆ � �2 
(a� �)Z ba dtG(a� �; t) ÆÆ 
V (a) e�V (a;b) ÆÆ= � ÆÆ 
V (a� �) 
V (a) e�V (a;b) ÆÆ + �G(a� �; a) 
(a � �) 
(a) ÆÆ e�V (a;b) ÆÆ : (B.14)The �rst term on the right-hand side vanishes in the limit � ! 0. The se
ond term is of O(1=�), butthe sum of this term and the se
ond term on the right-hand side of (B.12) is �nite in the limit �! 0:lim�!0� � � 
�
(a � �)Z ba dtG(a� �; t) ÆÆ e�V (a;b) ÆÆ + �G(a� �; a) 
(a � �) 
(a) ÆÆ e�V (a;b) ÆÆ �= � � hV (a)V (a; b) ir 
�
(a) ÆÆ e�V (a;b) ÆÆ + �2 
�2
(a) ÆÆ e�V (a;b) ÆÆ ; (B.15)where we have used Z ba dtG(a � �; t) = 1� + hV (a)V (a; b)ir +O(�) ;G(a� �; a) 
(a� �)
(a) � 1� 
�
(a � �) = 12
�2
(a) +O(�) : (B.16)Contributions from the remaining terms on the right-hand side of (4.65) 
an be easily 
al
ulated. The�nal result for the BRST transformation of ÆÆ 
V (a) e�V (a;b) ÆÆ isQB � ÆÆ 
V (a) e�V (a;b) ÆÆ = � � ÆÆ 
V (a) e�V (a;b) 
V (b) ÆÆ � �G(a; b) ÆÆ 
(a) e�V (a;b) 
(b) ÆÆ� � hV (a)V (a; b) ir ÆÆ 
�
(a) e�V (a;b) ÆÆ + �2 ÆÆ 
�2
(a) e�V (a;b) ÆÆ� �2 hV (a; b)V (b) ir ÆÆ 
V (a) e�V (a;b) 
(b) ÆÆ� �22 ÆÆ 
V (a) e�V (a;b) �
(b) ÆÆ��22 ÆÆ 
�
V (a) e�V (a;b) ÆÆ : (B.17)
Using (4.47) and (B.6), the operator QB � ÆÆ 
V (a) e�V (a;b) ÆÆ multiplied by the fa
tor � e 12�2hV (a;b)2ir 
anbe written as follows:� e 12�2hV (a;b)2ir QB � ÆÆ 
V (a) e�V (a;b) ÆÆ= � � [ 
V (a) e�V (a;b)OR(b) ℄r + �2 hV (a)V (a; b) ir [ 
(a) e�V (a;b)OR(b) ℄r� �2 hV (a)V (a; b) ir [ 
�
(a) e�V (a;b) ℄r + �22 [ 
�2
(a) e�V (a;b) ℄r� �32 [ 
�
V (a) e�V (a;b) ℄r + �42 hV (a)V (a; b) ir [ 
�
(a) e�V (a;b) ℄r : (B.18)
The BRST transformation of [ 
(a) e�V (a;b) ℄r in (B.11) 
an be 
al
ulated as follows:QB � [ 
(a) e�V (a;b) ℄r = lim�!0 QB � [ 
(a� �) e�V (a;b) ℄r= lim�!0 [ 
�
(a � �) e�V (a;b) ℄r � lim�!0 [ 
(a� �)QB � e�V (a;b) ℄r= [ 
�
(a) e�V (a;b) ℄r � [ 
(a) e�V (a;b)OR(b) ℄r � �22 [ 
�
(a) e�V (a;b) ℄r : (B.19)55



Similarly, the BRST transformation of [ �
(a) e�V (a;b) ℄r in (B.11) 
an be 
al
ulated asQB � [ �
(a) e�V (a;b) ℄r = lim�!0 QB � [ �
(a � �) e�V (a;b) ℄r= lim�!0 [ 
�2
(a� �) e�V (a;b) ℄r � lim�!0 [ �
(a � �)QB � e�V (a;b) ℄r= [ 
�2
(a) e�V (a;b) ℄r � [ �
(a) e�V (a;b) OR(b) ℄r � � [ 
�
V (a) e�V (a;b) ℄r : (B.20)By 
ombining the results (B.18), (B.19), and (B.20), we �ndQB � [OL(a) e� V (a;b) ℄r = � � [ 
V (a) e�V (a;b) OR(b) ℄r + �22 [ �
(a) e�V (a;b)OR(b) ℄r= � [OL(a) e�V (a;b) OR(b) ℄r : (B.21)This 
ompletes the proof of the assumption (II).C Marginal deformations for the 
onstant mode of the gauge �eldIn [21℄, Fu
hs, Kroyter and Potting 
onstru
ted solutions for the marginal deformation 
orrespondingto turning on the 
onstant mode of the gauge �eld. We dis
uss the relation between their solutionsand ours in this appendix.The marginal operator for this deformation isV (t) = ip2�0 �tX�(t) ; (C.1)where X� is a spa
e-like dire
tion along the D-brane.6 The solution in [21℄ is written formally as apure-gauge form using the operator X�. The propagator hX�(t1)X�(t2) i is logarithmi
, and thusthe operator X� does not belong to the 
omplete set of lo
al operators of the boundary CFT. If weallow to use X�, V (a; b) 
an be written as follows:V (a; b) = ip2�0 Z ba dt �tX�(t) = ip2�0�X�(b)�X�(a)� : (C.2)Then the operator ÆÆ e�V (a;b) ÆÆ 
an be written asÆÆ e�V (a;b) ÆÆ = : e�V (a;b) : = : e� i�p2�0X�(a) e i�p2�0X�(b) : : (C.3)To turn this operator into [ e�V (a;b) ℄r , we have to multiply it by e 12�2hV (a;b)2ir . We noti
e from theexpli
it expression (4.39) that hV (a; b)2 ir = 1�0 hX�(a) X�(b) i (C.4)6 It is straightforward to in
orporate the time-like dire
tion into the dis
ussion.56



and therefore [ e�V (a;b) ℄r = e 12�2hV (a;b)2ir : e� i�p2�0X�(a) e i�p2�0X�(b) := e �22�0 hX�(a)X�(b) i : e� i�p2�0X�(a) e i�p2�0X�(b) := : e� i�p2�0X�(a) : : e i�p2�0X�(b) : : (C.5)Be
ause of the fa
tor e 12�2hV (a;b)2ir , the operator : e� i�p2�0X�(a) e i�p2�0X�(b) : fa
torized into a produ
tof two primary �elds at a and b. We 
an interpret the operators : e� i�p2�0X�(a) : and : e i�p2�0X�(b) : asthe boundary-
ondition 
hanging operators at a and b, respe
tively. The 
onformal properties of theoperator [ e�V (a;b) ℄r dis
ussed in x 4.5 are manifest in this expression. In parti
ular, the 
onformaldimension of : e� i�p2�0X�(b) : is �2=2 and thus 
onsistent with h(�) = O(�2) found in x 4.5.Let us see how the operators OL and OR arise from this expression. Using the formulaQB � : e� i�p2�0X� : = : ��� ip2�0 
�X� + �22 �
� e �i�p2�0X� := : ��� 
V + �22 �
� e �i�p2�0X� : ; (C.6)the BRST transformation of [ e�V (a;b) ℄r 
an be 
al
ulated as follows:QB � � e�V (a;b) �r = : e� i�p2�0X�(a) : : �� 
V (b) + �22 �
(b)�e i�p2�0X�(b) :� : �� 
V (a)� �22 �
(a)�e� i�p2�0X�(a) : : e i�p2�0X�(b) : : (C.7)We have thus reprodu
ed our previous result for OL and OR:O(1)R = O(1)L = 
V ; O(2)R = �O(2)L = �
2 ; O(n)R = O(n)L = 0 for n � 3 : (C.8)The operator [ e�V (a;b) ℄r is written in (C.5) in terms of the exponential operators in the 
ompleteset of lo
al operators and thus well de�ned. When we 
onstru
t our solution, we have to expand[ e�V (a;b) ℄r in � to obtain [V (n)(a; b) ℄r . We 
an write [V (n)(a; b) ℄r in terms of lo
al operators in the
omplete set as we did in se
tion 4, but if we allow to use X�, [ e�V (a;b) ℄r 
an also be expanded in � as� e�V (a;b) �r = 1Xn=0�n� ip2�0�n nXk=0 (�1)kk!(n� k)! : �X�(a)�k : : �X�(b)�n�k : ; (C.9)and the state U (n) for n � 1 ish� ;U (n) i = nXk=0� ip2�0�n (�1)kk!(n� k)! 
 f Æ �(0) : �X�(1)�k : : �X�(n)�n�k : �Wn : (C.10)The state U 
an be formally fa
torized [21℄ as follows:U = �L � �R ; (C.11)57



where �L = 1 + 1Xn=1�n �(n)L ; �R = 1 + 1Xn=1�n �(n)R (C.12)with h� ;�(n)L i = 1n! �� ip2�0�n 
 f Æ �(0) : �X�(1)�n : �Wn ;h� ;�(n)R i = 1n! � ip2�0�n 
 f Æ �(0) : �X�(n)�n : �Wn : (C.13)The BRST transformation of U isQBU = (QB�L) � �R +�L � (QB�R) ; (C.14)and we �nd AL = � (QB�L) � �R ; AR = �L � (QB�R) : (C.15)The solutions 	L and 	R 
an thus be written as	L = AL � U�1 = � (QB�L) � ��1L ; 	R = U�1 � AR = ��1R � (QB�R) : (C.16)These expressions in the pure-gauge form 
oin
ide with the solutions in [21℄.7 Sin
e the real solution 	
onstru
ted in x 3.4 is related to 	L and 	R by gauge transformations, 	 
an also be written in apure-gauge form:	 = � hQB � 1pU � �L � i � ���1L � pU �= �pU � ��1R � � hQB ��R � 1pU � i= 12 �pU � ��1R � � hQB ��R � 1pU � i � 12 hQB � 1pU � �L � i � ���1L � pU � : (C.17)In the last expression, 	 is manifestly real be
ause �zR = �L. We have thus solved the problem of�nding a real solution in a pure-gauge form raised in [25℄.The states �L and �R 
annot be written in terms of lo
al operators in the 
omplete set, while thesolutions 	L and 	R 
an be written without usingX�, as we have expli
itly demonstrated in se
tion 4.It is, however, highly nontrivial to derive su
h an expression of 	L or 	R from the pure-gauge formin [21℄. We 
ould attempt, for example, to write X�(a) asX�(a) = � Z 1a dt �tX�(t) (C.18)7 When the polarization ve
tor �� of [21℄ is given by �� = ��� , our � is related to that of [21℄ as follows:�FKP = ip2 � ours :Note in parti
ular that their � must be imaginary for the solution at O(�) to satisfy the reality 
ondition.58



with the pres
ription that the 
ontribution of its BRST transformation from the boundary t = 1vanishes and with the 
ondition that the \
ux" to in�nity 
an
els in the solution. While this pi
ture
ould give some useful insight, it is obviously formal and it seems to be diÆ
ult to make su
h approa
heswell de�ned in general.We have seen that the operator X� used in [21℄ as the basi
 obje
t in the 
onstru
tion of thesolution is formally the logarithm of the boundary-
ondition 
hanging operator 
orresponding to themarginal deformation. Thus the solution in [21℄ 
an be generalized to other marginal deformations ifan expansion of the boundary-
ondition 
hanging operator in � is given. However, the terms in theexpansion do not belong to the 
omplete set of lo
al operators, and it is not 
lear how to 
al
ulate
orrelation fun
tions involving su
h operators in general. Let us, for example, 
onsider the deformationby the 
osine potential along a spa
e-like dire
tion X� whi
h is 
ompa
ti�ed at the self-dual radius.In this 
ase, the expansion of the boundary-
ondition 
hanging operator 
an be written in terms of: (Y �)n : , where Y � is the free boson in the di�erent des
ription we mentioned in x 4.2. We then needto 
al
ulate 
orrelation fun
tions involving both : (Y �)n : and operators in the X� des
ription, forexample, when we expand the solution in the 
omponent �elds.While the approa
h in [21℄ 
an be pra
ti
ally useful for the parti
ular marginal deformation (C.1),we believe that our approa
h has an advantage in the generalization to other marginal deformations. Inparti
ular, we do not need to enlarge the Hilbert spa
e of the boundary CFT at any intermediate stage,whi
h we believe will be a useful feature when we address the question of ba
kground independen
ein string �eld theory.
Referen
es[1℄ W. Taylor and B. Zwieba
h, \D-branes, ta
hyons, and string �eld theory," arXiv:hep-th/0311017.[2℄ A. Sen, \Ta
hyon dynami
s in open string theory," Int. J. Mod. Phys. A 20, 5513 (2005)[arXiv:hep-th/0410103℄.[3℄ L. Rastelli, \String �eld theory," arXiv:hep-th/0509129.[4℄ W. Taylor, \String �eld theory," arXiv:hep-th/0605202.[5℄ M. S
hnabl, \Analyti
 solution for ta
hyon 
ondensation in open string �eld theory," Adv. Theor. Math.Phys. 10, 433 (2006) [arXiv:hep-th/0511286℄.[6℄ Y. Okawa, \Comments on S
hnabl's analyti
 solution for ta
hyon 
ondensation in Witten's open string�eld theory," JHEP 0604, 055 (2006) [arXiv:hep-th/0603159℄.[7℄ E. Fu
hs and M. Kroyter, \On the validity of the solution of string �eld theory," JHEP 0605, 006 (2006)[arXiv:hep-th/0603195℄.[8℄ E. Fu
hs and M. Kroyter, \S
hnabl's L0 operator in the 
ontinuous basis," JHEP 0610, 067 (2006)[arXiv:hep-th/0605254℄. 59

http://arXiv.org/abs/hep-th/0311017
http://arXiv.org/abs/hep-th/0410103
http://arXiv.org/abs/hep-th/0509129
http://arXiv.org/abs/hep-th/0605202
http://arXiv.org/abs/hep-th/0511286
http://arXiv.org/abs/hep-th/0603159
http://arXiv.org/abs/hep-th/0603195
http://arXiv.org/abs/hep-th/0605254


[9℄ L. Rastelli and B. Zwieba
h, \Solving open string �eld theory with spe
ial proje
tors,"arXiv:hep-th/0606131.[10℄ I. Ellwood and M. S
hnabl, \Proof of vanishing 
ohomology at the ta
hyon va
uum," JHEP 0702, 096(2007) [arXiv:hep-th/0606142℄.[11℄ H. Fuji, S. Nakayama and H. Suzuki, \Open string amplitudes in various gauges," JHEP 0701, 011 (2007)[arXiv:hep-th/0609047℄.[12℄ E. Fu
hs and M. Kroyter, \Universal regularization for string �eld theory," JHEP 0702, 038 (2007)[arXiv:hep-th/0610298℄.[13℄ Y. Okawa, L. Rastelli and B. Zwieba
h, \Analyti
 solutions for ta
hyon 
ondensation with general proje
-tors," arXiv:hep-th/0611110.[14℄ T. Erler, \Split string formalism and the 
losed string va
uum," JHEP 0705, 083 (2007)[arXiv:hep-th/0611200℄.[15℄ C. Imbimbo, \The spe
trum of open string �eld theory at the stable ta
hyoni
 va
uum," Nu
l. Phys. B770, 155 (2007) [arXiv:hep-th/0611343℄.[16℄ T. Erler, \Split string formalism and the 
losed string va
uum. II," JHEP 0705, 084 (2007)[arXiv:hep-th/0612050℄.[17℄ M. S
hnabl, \Comments on marginal deformations in open string �eld theory," arXiv:hep-th/0701248.[18℄ M. Kiermaier, Y. Okawa, L. Rastelli and B. Zwieba
h, \Analyti
 solutions for marginal deformations inopen string �eld theory," arXiv:hep-th/0701249.[19℄ T. Erler, \Marginal Solutions for the Superstring," arXiv:0704.0930 [hep-th℄.[20℄ Y. Okawa, \Analyti
 solutions for marginal deformations in open superstring �eld theory," arXiv:0704.0936[hep-th℄.[21℄ E. Fu
hs, M. Kroyter and R. Potting, \Marginal deformations in string �eld theory," arXiv:0704.2222[hep-th℄.[22℄ Y. Okawa, \Real analyti
 solutions for marginal deformations in open superstring �eld theory,"arXiv:0704.3612 [hep-th℄.[23℄ I. Ellwood, \Rolling to the ta
hyon va
uum in string �eld theory," arXiv:0705.0013 [hep-th℄.[24℄ I. Kishimoto and Y. Mi
hishita, \Comments on Solutions for Nonsingular Currents in Open String FieldTheories," arXiv:0706.0409 [hep-th℄.[25℄ E. Fu
hs and M. Kroyter, \Marginal deformation for the photon in superstring �eld theory,"arXiv:0706.0717 [hep-th℄.[26℄ L. Bonora, C. Ma

aferri, R. J. S
herer Santos and D. D. Tolla, \Ghost story. I. Wedge states in theos
illator formalism," arXiv:0706.1025 [hep-th℄.[27℄ E. Witten, \Non
ommutative Geometry And String Field Theory," Nu
l. Phys. B 268, 253 (1986).[28℄ N. Berkovits, \SuperPoin
are invariant superstring �eld theory," Nu
l. Phys. B 450, 90 (1995) [Erratum-ibid. B 459, 439 (1996)℄ [arXiv:hep-th/9503099℄.[29℄ A. Sen and B. Zwieba
h, \Large marginal deformations in string �eld theory," JHEP 0010, 009 (2000)[arXiv:hep-th/0007153℄.[30℄ A. Iqbal and A. Naqvi, \On marginal deformations in superstring �eld theory," JHEP 0101, 040 (2001)[arXiv:hep-th/0008127℄.[31℄ T. Takahashi and S. Tanimoto, \Wilson lines and 
lassi
al solutions in 
ubi
 open string �eld theory,"Prog. Theor. Phys. 106, 863 (2001) [arXiv:hep-th/0107046℄.60

http://arXiv.org/abs/hep-th/0606131
http://arXiv.org/abs/hep-th/0606142
http://arXiv.org/abs/hep-th/0609047
http://arXiv.org/abs/hep-th/0610298
http://arXiv.org/abs/hep-th/0611110
http://arXiv.org/abs/hep-th/0611200
http://arXiv.org/abs/hep-th/0611343
http://arXiv.org/abs/hep-th/0612050
http://arXiv.org/abs/hep-th/0701248
http://arXiv.org/abs/hep-th/0701249
http://arXiv.org/abs/0704.0930
http://arXiv.org/abs/0704.0936
http://arXiv.org/abs/0704.2222
http://arXiv.org/abs/0704.3612
http://arXiv.org/abs/0705.0013
http://arXiv.org/abs/0706.0409
http://arXiv.org/abs/0706.0717
http://arXiv.org/abs/0706.1025
http://arXiv.org/abs/hep-th/9503099
http://arXiv.org/abs/hep-th/0007153
http://arXiv.org/abs/hep-th/0008127
http://arXiv.org/abs/hep-th/0107046


[32℄ J. Kluson, \Exa
t solutions of open bosoni
 string �eld theory," JHEP 0204, 043 (2002)[arXiv:hep-th/0202045℄.[33℄ T. Takahashi and S. Tanimoto, \Marginal and s
alar solutions in 
ubi
 open string �eld theory," JHEP0203, 033 (2002) [arXiv:hep-th/0202133℄.[34℄ J. Kluson, \Marginal deformations in the open bosoni
 string �eld theory for N D0-branes," Class. Quant.Grav. 20, 827 (2003) [arXiv:hep-th/0203089℄.[35℄ J. Kluson, \Exa
t solutions in open bosoni
 string �eld theory and marginal deformation in CFT," Int. J.Mod. Phys. A 19, 4695 (2004) [arXiv:hep-th/0209255℄.[36℄ J. Kluson, \Exa
t solutions in SFT and marginal deformation in BCFT," JHEP 0312, 050 (2003)[arXiv:hep-th/0303199℄.[37℄ E. Coletti, I. Sigalov and W. Taylor, \Abelian and nonabelian ve
tor �eld e�e
tive a
tions from string �eldtheory," JHEP 0309, 050 (2003) [arXiv:hep-th/0306041℄.[38℄ N. Berkovits and M. S
hnabl, \Yang-Mills a
tion from open superstring �eld theory," JHEP 0309, 022(2003) [arXiv:hep-th/0307019℄.[39℄ A. Sen, \Energy momentum tensor and marginal deformations in open string �eld theory," JHEP 0408,034 (2004) [arXiv:hep-th/0403200℄.[40℄ F. Katsumata, T. Takahashi and S. Zeze, \Marginal deformations and 
losed string 
ouplings in open string�eld theory," JHEP 0411, 050 (2004) [arXiv:hep-th/0409249℄.[41℄ H. Yang and B. Zwieba
h, \Testing 
losed string �eld theory with marginal �elds," JHEP 0506, 038 (2005)[arXiv:hep-th/0501142℄.[42℄ I. Kishimoto and T. Takahashi, \Marginal deformations and 
lassi
al solutions in open superstring �eldtheory," JHEP 0511, 051 (2005) [arXiv:hep-th/0506240℄.[43℄ M. R. Gaberdiel and B. Zwieba
h, \Tensor 
onstru
tions of open string theories I: Foundations," Nu
l.Phys. B 505, 569 (1997) [arXiv:hep-th/9705038℄.[44℄ L. Rastelli and B. Zwieba
h, \Ta
hyon potentials, star produ
ts and universality," JHEP 0109, 038 (2001)[arXiv:hep-th/0006240℄.[45℄ C. G. . Callan, I. R. Klebanov, A. W. W. Ludwig and J. M. Malda
ena, \Exa
t solution of a boundary
onformal �eld theory," Nu
l. Phys. B 422, 417 (1994) [arXiv:hep-th/9402113℄.[46℄ J. Pol
hinski and L. Thorla
ius, \Free fermion representation of a boundary 
onformal �eld theory," Phys.Rev. D 50, 622 (1994) [arXiv:hep-th/9404008℄.[47℄ A. Re
knagel and V. S
homerus, \Boundary deformation theory and moduli spa
es of D-branes," Nu
l.Phys. B 545, 233 (1999) [arXiv:hep-th/9811237℄.[48℄ A. Sen, \Des
ent relations among bosoni
 D-branes," Int. J. Mod. Phys. A 14, 4061 (1999)[arXiv:hep-th/9902105℄.[49℄ A. Sen, \Rolling ta
hyon," JHEP 0204, 048 (2002) [arXiv:hep-th/0203211℄.[50℄ A. Sen, \On the ba
kground independen
e of string �eld theory," Nu
l. Phys. B 345, 551 (1990).[51℄ A. Sen, \On the ba
kground independen
e of string �eld theory (II). Analysis of on-shell S-matrix elements,"Nu
l. Phys. B 347, 270 (1990).[52℄ A. Sen, \On the ba
kground independen
e of string �eld theory (III). Expli
it �eld rede�nitions," Nu
l.Phys. B 391, 550 (1993) [arXiv:hep-th/9201041℄.[53℄ A. Sen and B. Zwieba
h, \A Proof of lo
al ba
kground independen
e of 
lassi
al 
losed string �eld theory,"Nu
l. Phys. B 414, 649 (1994) [arXiv:hep-th/9307088℄.61

http://arXiv.org/abs/hep-th/0202045
http://arXiv.org/abs/hep-th/0202133
http://arXiv.org/abs/hep-th/0203089
http://arXiv.org/abs/hep-th/0209255
http://arXiv.org/abs/hep-th/0303199
http://arXiv.org/abs/hep-th/0306041
http://arXiv.org/abs/hep-th/0307019
http://arXiv.org/abs/hep-th/0403200
http://arXiv.org/abs/hep-th/0409249
http://arXiv.org/abs/hep-th/0501142
http://arXiv.org/abs/hep-th/0506240
http://arXiv.org/abs/hep-th/9705038
http://arXiv.org/abs/hep-th/0006240
http://arXiv.org/abs/hep-th/9402113
http://arXiv.org/abs/hep-th/9404008
http://arXiv.org/abs/hep-th/9811237
http://arXiv.org/abs/hep-th/9902105
http://arXiv.org/abs/hep-th/0203211
http://arXiv.org/abs/hep-th/9201041
http://arXiv.org/abs/hep-th/9307088


[54℄ A. Sen and B. Zwieba
h, \Quantum ba
kground independen
e of 
losed string �eld theory," Nu
l. Phys.B 423, 580 (1994) [arXiv:hep-th/9311009℄.[55℄ I. Ellwood and W. Taylor, \Gauge invarian
e and ta
hyon 
ondensation in open string �eld theory,"arXiv:hep-th/0105156.[56℄ M. Asano and M. Kato, \New 
ovariant gauges in string �eld theory," arXiv:hep-th/0611189.[57℄ M. Asano and M. Kato, \Level trun
ated ta
hyon potential in various gauges," JHEP 0701, 028 (2007)[arXiv:hep-th/0611190℄.[58℄ Y. Imamura, H. Isono and Y. Matsuo, \Boundary states in open string 
hannel and CFT near 
orner,"Prog. Theor. Phys. 115, 979 (2006) [arXiv:hep-th/0512098℄.

62

http://arXiv.org/abs/hep-th/9311009
http://arXiv.org/abs/hep-th/0105156
http://arXiv.org/abs/hep-th/0611189
http://arXiv.org/abs/hep-th/0611190
http://arXiv.org/abs/hep-th/0512098

	Introduction
	Assumptions
	Solutions
	The organization of the paper

	Marginal deformations with regular operator products
	Solutions using integrated vertex operators
	Solutions satisfying the reality condition
	The reality condition
	Gauge transformation
	Construction of a real solution

	Generalization of wedge states

	Marginal deformations with singular operator products
	Another form of the solution with regular operator products
	Generalization to the case with singular operator products
	Proof that the equation of motion is satisfied
	Construction of a real solution

	Explicit construction
	A class of marginal deformations with singular operator products
	Examples
	Renormalizing operators
	The BRST transformation
	Conformal properties of [  OL(a)  e V(a,b)  ]r

	String field theory around the deformed background
	Action
	Properties of algebraic structures around the deformed background

	Discussion
	Proof of -QBAL=ALU-1AR
	Proof of the assumptions
	Assumptions (III) and (IV): replacement and factorization
	Assumption (II): calculation of QB [  OL(a)  e V(a,b)  ]r

	Marginal deformations for the constant mode of the gauge field

